WorldWideScience

Sample records for surface effects caused

  1. SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella [Institute for Astronomy, Department of Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2016-12-10

    There are very strong observed correlations between the specific star formation rates (sSFRs) of galaxies and their mean surface mass densities, Σ, as well as other aspects of their internal structure. These strong correlations have often been taken to argue that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size–mass relation for star-forming galaxies is taken into account. In particular, the model reproduces the sharp threshold in Σ between galaxies that are star-forming and those that are quenched and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the f {sub Q}( m , R {sub e}) plane that are almost exactly parallel to lines of constant Σ for centrals and shallower for satellites. It does so without any dependence on quenching on size or Σ and without invoking any differences between centrals and satellites, beyond the different mass dependences of their quenching laws. The toy model also reproduces several other observations, including the sSFR gradients within galaxies and the appearance of inside-out build-up of passive galaxies. Finally, it is shown that curvature in the main-sequence sSFR–mass relation can produce curvature in the apparent B / T ratios with mass. Our analysis therefore suggests that many of the strong correlations that are observed between galaxy structure and sSFR may well be a consequence of things unrelated to quenching and should not be taken as evidence of the physical processes that drive quenching.

  2. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K.; Mishima, K.; Furuya, M.

    2003-01-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by γ-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by γ-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co γ-ray irradiation

  3. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K. [Tokyo Univ., Tokyo (Japan); Mishima, K. [Kyoto Univ., Kyoto (Japan); Furuya, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by {gamma}-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by {gamma}-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co {gamma}-ray irradiation.

  4. Effects on Buildings of Surface Curvature Caused by Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-08-01

    Full Text Available Ground curvature caused by underground mining is one of the most obvious deformation quantities in buildings. To study the influence of surface curvature on buildings and predict the movement and deformation of buildings caused by ground curvature, a prediction model of the influence function on mining subsidence was used to establish the relationship between surface curvature and wall deformation. The prediction model of wall deformation was then established and the surface curvature was obtained from mining subsidence prediction software. Five prediction lines were set up in the wall from bottom to top and the predicted deformation of each line was used to calculate the crack positions in the wall. Thus, the crack prediction model was obtained. The model was verified by a case study from a coalmine in Shanxi, China. The results show that when the ground curvature is positive, the crack in the wall is shaped like a “V”; when the ground curvature is negative, the crack is shaped like a “∧”. The conclusion provides the basis for a damage evaluation method for buildings in coalmine areas.

  5. Bacterial inhibiting surfaces caused by the effects of silver release and/or electrical field

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Hilbert, Lisbeth Rischel; Schroll, Casper

    2008-01-01

    In this study, silver-palladium surfaces and silver-bearing stainless steels were designed and investigated focusing on electrochemical principles to form inhibiting effects on planktonic and/or biofilm bacteria in water systems. Silver-resistant Escherichia coli and silver-sensitive E. coli were...... silver ions release can occur from their Surfaces. For silver-bearing stainless steels, the inhibiting effect can only be explained by high local silver ions release. and can be limited or deactivated dependent on the specific environment. (c) 2008 Elsevier Ltd. All rights reserved....

  6. Landslides - Cause and effect

    Science.gov (United States)

    Radbruch-Hall, D. H.; Varnes, D.J.

    1976-01-01

    Landslides can cause seismic disturbances; landslides can also result from seismic disturbances, and earthquake-induced slides have caused loss of life in many countries. Slides can cause disastrous flooding, particularly when landslide dams across streams are breached, and flooding may trigger slides. Slope movement in general is a major process of the geologic environment that places constraints on engineering development. In order to understand and foresee both the causes and effects of slope movement, studies must be made on a regional scale, at individual sites, and in the laboratory. Areal studies - some embracing entire countries - have shown that certain geologic conditions on slopes facilitate landsliding; these conditions include intensely sheared rocks; poorly consolidated, fine-grained clastic rocks; hard fractured rocks underlain by less resistant rocks; or loose accumulations of fine-grained surface debris. Field investigations as well as mathematical- and physical-model studies are increasing our understanding of the mechanism of slope movement in fractured rock, and assist in arriving at practical solutions to landslide problems related to all kinds of land development for human use. Progressive failure of slopes has been studied in both soil and rock mechanics. New procedures have been developed to evaluate earthquake response of embankments and slopes. The finite element method of analysis is being extensively used in the calculation of slope stability in rock broken by joints, faults, and other discontinuities. ?? 1976 International Association of Engineering Geology.

  7. Iridescence in Meat Caused by Surface Gratings

    Directory of Open Access Journals (Sweden)

    Ali Kemal Yetisen

    2013-11-01

    Full Text Available The photonic structure of cut muscle tissues reveals that the well-ordered gratings diffract light, producing iridescent colours. Cut fibrils protruding from the muscle surface create a two-dimensional periodic array, which diffract light at specific wavelengths upon illumination. However, this photonic effect misleads consumers in a negative way to relate the optical phenomenon with the quality of the product. Here we discuss the fundamentals of this optical phenomenon and demonstrate a methodology for quantitatively measuring iridescence caused by diffraction gratings of muscle tissue surface of pork (Sus scrofa domesticus using reflection spectrophotometry. Iridescence was discussed theoretically as a light phenomenon and spectral measurements were taken from the gratings and monitored in real time during controlled drying. The findings show that the intensity of diffraction diminishes as the surface grating was dried with an air flow at 50 °C for 2 min while the diffracted light wavelength was at 585 ± 9 nm. Our findings indicate that the diffraction may be caused by a blazed surface grating. The implications of the study include providing guidelines to minimise the iridescence by altering the surface microstructure, and in consequence, removing the optical effect.

  8. Sound concentration caused by curved surfaces

    NARCIS (Netherlands)

    Vercammen, M.L.S.

    2012-01-01

    In room acoustics the focusing effect of reflections from concave surfaces is a wellknown problem. Although curved surfaces are found throughout the history of architecture, the occurrence of concave surfaces has tended to increase in modern architecture, due to new techniques in design, materials

  9. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    Science.gov (United States)

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  10. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2015-12-01

    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  11. On the Causes of Effects

    Science.gov (United States)

    Dawid, A. Philip; Faigman, David L.; Fienberg, Stephen E.

    2015-01-01

    We welcome Professor Pearl's comment on our original article, Dawid et al. Our focus there on the distinction between the "Effects of Causes" (EoC) and the "Causes of Effects" (CoE) concerned two fundamental problems, one a theoretical challenge in statistics and the other a practical challenge for trial courts. In this…

  12. Self-induced free surface oscillations caused by water jet

    International Nuclear Information System (INIS)

    Fukaya, M.; Madarame, H.; Okamoto, K.; Iida, M.; Someya, S.

    1995-01-01

    The interaction between the high speed flow and the free surfaces could induced surface oscillations. Recently, some kinds of self-induced free surface oscillations caused by water jet were discovered, e.g., a self-induced sloshing, 'Jet-Flutter' and a self-induced manometer oscillation. These oscillations have many different characteristics with each other. In this study, the similarities and differences of these oscillations are examined, and the geometrical effects on the phenomena are experimentally investigated. The self-induced sloshing and the Jet-Flutter have different dimensionless traveling times, which suggests a difference in the energy supply mechanism. When the distance between the inlet and the outlet is small in a vessel, the self-induced manometer oscillation could occur in the multi-free-surface system. (author)

  13. Esophageal hypermotility: cause or effect?

    Science.gov (United States)

    Crespin, O M; Tatum, R P; Yates, R B; Sahin, M; Coskun, K; Martin, A V; Wright, A; Oelschlager, B K; Pellegrini, C A

    2016-07-01

    Nutcracker esophagus (NE), Jackhammer esophagus (JHE), distal esophageal spasm (DES), and hypertensive lower esophageal sphincter (HTLES) are defined by esophageal manometric findings. Some patients with these esophageal motility disorders also have abnormal gastroesophageal reflux. It is unclear to what extent these patients' symptoms are caused by the motility disorder, the acid reflux, or both. The aim of this study was to determine the effectiveness of laparoscopic Nissen fundoplication (LNF) on esophageal motility disorders, gastroesophageal reflux, and patient symptoms. Between 2007 and 2013, we performed high-resolution esophageal manometry on 3400 patients, and 221 patients were found to have a spastic esophageal motility disorder. The medical records of these patients were reviewed to determine the manometric abnormality, presence of gastroesophageal symptoms, and amount of esophageal acid exposure. In those patients that underwent LNF, we compared pre- and postoperative esophageal motility, gastroesophageal symptom severity, and esophageal acid exposure. Of the 221 patients with spastic motility disorders, 77 had NE, 2 had JHE, 30 had DES, and 112 had HTLES. The most frequently reported primary and secondary symptoms among all patients were: heartburn and/or regurgitation, 69.2%; respiratory, 39.8%; dysphagia, 35.7%; and chest pain, 22.6%. Of the 221 patients, 192 underwent 24-hour pH monitoring, and 103 demonstrated abnormal distal esophageal acid exposure. Abnormal 24-hour pH monitoring was detected in 62% of patients with heartburn and regurgitation, 49% of patients with respiratory symptoms, 36.8 % of patients with dysphagia, and 32.6% of patients with chest pain. Sixty-six of the 103 patients with abnormal 24-hour pH monitoring underwent LNF. Thirty-eight (13NE, 2JHE, 6 DES, and 17 HTLES) of these 66 patients had a minimum of 6-month postoperative follow-up that included clinical evaluation, esophageal manometry, and 24-hour pH monitoring

  14. On machine surface to the unit event causing residual stress

    International Nuclear Information System (INIS)

    Arunachalama, R.M.; Mannanb, M.A.; Spowageca, A.

    2005-01-01

    Integrity and reduce overall costs. Within the framework of surface integrity investigations, special emphasis is given to the measurement of residual stresses because they contribute directly to premature failure of components. Since the highest residual stresses are to be found in surface layers, these deserve special attention when dealing with dynamically, heavily loaded machine parts such as gas turbine components used in aero engines. Of the many techniques available for the measurement of residual stresses, the most highly developed and widely used non-destructive method is based on X-ray diffraction (XRD). However, it is not possible to use this technique for inspection of all the components, since it is time consuming, complicated as well as expensive. In this paper, a method is being proposed that augments the XRD method but at the same time capable of inspecting all the components. A non-destructive, visual inspection technique has been developed that can correlate the characteristic features on the surface to the unit event causing the residual stress and the type of residual stress generated on the machined surface. Pictures of the machined surfaces have been taken using a digital video microscope at a magnification of 500 and the surface feature correlated to the unit event causing the residual stress. Sharp and well defined long grooves indicate that the plastic deformation is dominated by a mechanical unit event while appearance of streaks and small areas of smeared material indicate that the plastic deformation is dominated by a thermal unit event. These trends have been confirmed by measuring the residual stresses using XRD. The proposed technique is an attempt at establishing a simple methodology that would be useful to industries manufacturing aerospace and other components that require good surface integrity. (Author)

  15. Damage to underground coal mines caused by surface blasting

    International Nuclear Information System (INIS)

    Fourie, A.B.; Green, R.W.

    1993-01-01

    An investigation of the potential damage to underground coal workings as a result of surface blasting at an opencast coal mine is described. Seismometers were installed in a worked out area of an underground mine, in the eastern Transvaal region of South Africa, and the vibration caused by nearby surface blasting recorded. These measurements were used to derive peak particle velocities. These velocities were correlated with observed damage underground in order to establish the allowable combination of the two blasting parameters of charge mass per relay, and blast-to-gage point distance. An upper limit of 110mm/sec peak particle velocity was found to be sufficient to ensure that the damage to the particular workings under consideration was minimal. It was further found that a cube-root scaling law provided a better fit to the field data than the common square-root law. 11 refs., 6 figs., 5 tabs

  16. Clays causing adhesion with tool surfaces during mechanical tunnel driving

    Science.gov (United States)

    Spagnoli, G.; Fernández-Steeger, T.; Stanjek, H.; Feinendegen, M.; Post, C.; Azzam, R.

    2009-04-01

    During mechanical excavation with a tunnel boring machine (TBM) it is possible that clays stick to the cutting wheel and to other metal parts. The resulting delays in the progress of construction work, cause great economic damage and often disputes between the public awarding authorities and executing companies. One of the most important factors to reduce successfully the clay adhesion is the use of special polymers and foams. But why does the clay stick to the metal parts? A first step is to recognize which kind of clay mineralogy shows serious adhesion problems. The mechanical properties of clay and clay suspensions are primarily determined by surface chemistry and charge distribution at the interfaces, which in turn affect the arrangement of the clay structure. As we know, clay is a multi-phase material and its behaviour depends on numerous parameters such as: clay mineralogy, clay fraction, silt fraction, sand fraction, water content, water saturation, Atterberg limits, sticky limit, activity, cation exchange capacity, degree of consolidation and stress state. It is therefore likely that adhesion of clay on steel is also affected by these clay parameters. Samples of clay formations, which caused problems during tunnel driving, will be analyzed in laboratory. Mineralogical analyses (diffractometry, etc.) will be carried out to observe which minerals are responsible for adherence problems. To manipulate the physical properties, batch tests will be carried out in order to eliminate or reduce the adhesion on tool surfaces through variation of the zeta potential. Second step is the performance of vane shear tests on clay samples. Different pore fluid (distilled water, pure NaCl solution, ethanol and methanol) will be used to study the variation of the mechanical behaviour of clay depending on the dielectric constant of the fluids. This project is funded by the German Federal Ministry of Education and Research (BMBF) and the DFG (German Research Foundation) in the

  17. Delamination in surface plies of graphite/epoxy caused by the edge trimming process

    Science.gov (United States)

    Colligan, K.; Ramulu, M.

    Delamination in surface plies of graphite/epoxy laminates caused by edge trimming using polycrystalline diamond (PCD) and carbide cutters is investigated. The effect of several machining variables on formation of delaminations in the surface plies of a graphite fiber reinforced composite material is presented. Machining tests were performed to assess the impact of cutter geometry, feedrate, rotation direction, and graphite fiber orientation. Three typical delamination modes were observed and documented. Feedrate was found to have a significant effect on surface ply delamination in graphite/epoxy composite materials.

  18. Breakdown Cause and Effect Analysis. Case Study

    Science.gov (United States)

    Biały, Witold; Ružbarský, Juraj

    2018-06-01

    Every company must ensure that the production process proceeds without interferences. Within this article, the author uses the term "interferences" in reference to unplanned stoppages caused by breakdowns. Unfortunately, usually due to machine operators' mistakes, machines break, which causes stoppages thus generating additional costs for the company. This article shows a cause and effect analysis of a breakdown in a production process. The FMEA as well as quality management tools: the Ishikawa diagram and Pareto chart were used for the analysis. Correction measures were presented which allowed for a significant reduction in the number of stoppages caused by breakdowns.

  19. Colossal magnetodielectric effect caused by magnetoelectric effect ...

    Indian Academy of Sciences (India)

    The colossal magnetodielectric effect is reported in Pb(Zr,Ti)O3/Terfenol-D laminate composite under low magnetic field. When the composite is placed in an external a.c. magnetic field, magnetoelectric effect is produced, as a result, the dielectric properties of the Pb(Zr,Ti)O3 is changed, i.e. magnetodielectric effect. Both the ...

  20. Colossal magnetodielectric effect caused by magnetoelectric effect ...

    Indian Academy of Sciences (India)

    -D laminate composite under low magnetic field. When the composite is placed in an external a.c. magnetic field, magnetoelectric effect is produced, as a result, the dielectric properties of the Pb(Zr,Ti)O3 is changed, i.e. magnetodielectric effect ...

  1. The additional greenhouse effect: Causes, effects, countermeasures

    International Nuclear Information System (INIS)

    Grassl, H.

    1992-01-01

    The carbon dioxide, ozone, nitrous oxide and methane influence through steam and all of them through the distribution of temperature and precipitation on earth. Since the beginning of the industrialisation, man has been destroying the composition of the atmosphere thus causing global changes in the climate. Due to the retardation of the warming up by oceans and ice regions and due to the strong natural variability, neither the heating-up observed during the measuring concentration of the above listed gases nor the rising sea level can be definitely traced back to man's activities. The results of complex climate models - supported by findings from climate history - forecast, with emissions continuing to rise, a continuing average heating-up by approximately 3 C up to the year 2100, i.e. a temperature rise in only 100 years which nearly equals to that of 10,000 years between the ice age and the warm age. (orig./KW) [de

  2. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  3. Novel CLCNKB mutations causing Bartter syndrome affect channel surface expression.

    Science.gov (United States)

    Keck, Mathilde; Andrini, Olga; Lahuna, Olivier; Burgos, Johanna; Cid, L Pablo; Sepúlveda, Francisco V; L'hoste, Sébastien; Blanchard, Anne; Vargas-Poussou, Rosa; Lourdel, Stéphane; Teulon, Jacques

    2013-09-01

    Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance. © 2013 WILEY PERIODICALS, INC.

  4. Causes And Effects Of Fast Food

    Directory of Open Access Journals (Sweden)

    Eman Al-Saad

    2015-08-01

    Full Text Available Fast food affects our life in many aspects. In fact There are many reasons that have been shown why people continuing eating fast food while they knew about its negative effects on their health and family because of eating fast food. The commercial advertisements play a major role in consuming fast food. In this research I will focus on causes and effects of eating fast food.

  5. Causes And Effects Of Fast Food

    OpenAIRE

    Eman Al-Saad

    2015-01-01

    Fast food affects our life in many aspects. In fact There are many reasons that have been shown why people continuing eating fast food while they knew about its negative effects on their health and family because of eating fast food. The commercial advertisements play a major role in consuming fast food. In this research I will focus on causes and effects of eating fast food.

  6. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  7. The causes of alkalinity variations in the global surface ocean

    OpenAIRE

    Fry, Claudia Helen

    2016-01-01

    Human activities have caused the atmospheric concentration of carbon dioxide (CO2) to increase by 120 ppmv from pre-industrial times to 2014. The ocean takes up approximately a quarter of the anthropogenic CO2, causing ocean acidification (OA). Therefore it is necessary to study the ocean carbonate system, including alkalinity, to quantify the flux of CO2 into the ocean and understand OA. Since the 1970s, carbonate system measurements have been undertaken which can be analyzed to quantify the...

  8. Changes in surface properties caused by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    This report outlines various aspects of ion implantation. Major features of ion implantation are described first, focusing on the structure of ion implantation equipment and some experimental results of ion implantation into semiconductors. Distribution of components in ion-implantated layers is then discussed. The two major features of ion implantation in relation to the distribution of implanted ions are: (1) high controllability of addition of ions to a surface layer and (2) formation of a large number of lattice defects in a short period of time. Application of ion implantation to metallic materials is expected to permit the following: (1) formation of a semi-stable alloy surface layer by metallic ion implantation, (2) formation of a semi-stable ceramic surface layer or buried layer by non-metallic ion implantation, and (3) formation of a buried layer by combined implementation of a different metallic ion and non-metallic ion. Ion implantation in carbon materials, polymers and ceramics is discussed next. The last part of the report is dedicated to macroscopic properties of an ion-implanted layer, centering on surface modification, formation of a conductive surface layer, and tribology. (Nogami, K.) 60 refs

  9. Erosion of a grooved surface caused by impact of particle-laden flow

    Science.gov (United States)

    Jung, Sohyun; Yang, Eunjin; Kim, Ho-Young

    2016-11-01

    Solid erosion can be a life-limiting process for mechanical elements in erosive environments, thus it is of practical importance in many industries such as construction, mining, and coal conversion. Erosion caused by particle-laden flow occurs through diverse mechanisms, such as cutting, plastic deformation, brittle fracture, fatigue and melting, depending on particle velocity, total particle mass and impingement angle. Among a variety of attempts to lessen erosion, here we investigate the effectiveness of millimeter-sized grooves on the surface. By experimentally measuring the erosion rates of smooth and triangular-grooved surfaces under various impingement angles, we find that erosion can be significantly reduced within a finite range of impingement angles. We show that such erosion resistance is attributed to the swirls of air within grooves and the differences in erosive strength of normal and slanted impact. In particular, erosion is mitigated when we increase the effective area under normal impact causing plastic deformation and fracture while decreasing the area under slanted impact that cuts the surface to a large degree. Our quantitative model for the erosion rate of grooved surfaces considering the foregoing effects agrees with the measurement results.

  10. Tidal Disruption of Phobos as the Cause of Surface Fractures

    Science.gov (United States)

    Hurford, T. A.; Asphaug, E.; Spitale, J. N.; Hemingway, D.; Rhoden, A. R.; Henning, W. G.; Bills, B. G.; Kattenhorn, S. A.; Walker, M.

    2016-01-01

    Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises on Mars lagging behind Phobos' orbital position and will suffer tidal disruption before colliding with Mars in a few tens of millions of years. We calculate the surface stress field of the deorbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos' prominent grooves have an excellent correlation with computed stress orientations. The model requires a weak interior that has very low rigidity on the tidal evolution time scale, overlain by an approximately 10-100 m exterior shell that has elastic properties similar to lunar regolith as described by Horvath et al. (1980).

  11. Young surface of Pluto's Sputnik Planitia caused by viscous relaxation

    Science.gov (United States)

    Wei, Q.; Hu, Y.; Liu, Y.; Lin, D. N. C.; Yang, J.; Showman, A. P.

    2017-12-01

    The young surface of Pluto's Sputnik Planitia (SP) is one of the most prominent features observed by the New Horizon mission (Moore et al., 2016; Stern et al., 2015). No crater has been confirmed on the heart-shaped SP basin, in contrast to more than 5000 identified over comparable areas elsewhere (Robbins et al., 2016). The SP basin is filled with mostly N2 ice and small amount of CH4 and CO ice (Protopapa et al., 2017). Previous studies suggested that the SP surface might be renewed through vigorous thermal convection (McKinnon et al., 2016), and that the surface age may be as young as 500,000 years. In this paper, we present numerical simulations demonstrating that craters can be removed by rapid viscous relaxation of N2 ice over much shorter timescales. The crater retention age is less than 1000 years if the N2-ice thickness is several kilometers. McKinnon, W. B., Nimmo, F., Wong, T., Schenk, P. M., White, O. L., Roberts, J., . . . Umurhan, O. (2016). Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature, 534(7605), 82-85. Moore, J. M., McKinnon, W. B., Spencer, J. R., Howard, A. D., Schenk, P. M., Beyer, R. A., . . . White, O. L. (2016). The geology of Pluto and Charon through the eyes of New Horizons. Science, 351(6279), 1284-1293. Protopapa, S., Grundy, W. M., Reuter, D. C., Hamilton, D. P., Dalle Ore, C. M., Cook, J. C., . . . Young, L. A. (2017). Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus, Volume 287, 218-228. doi:http://dx.doi.org/10.1016/j.icarus.2016.11.028Robbins, S. J., Singer, K. N., Bray, V. J., Schenk, P., Lauer, T. R., Weaver, H. A., . . . Porter, S. (2016). Craters of the Pluto-Charon system. Icarus. Stern, S. A., Bagenal, F., Ennico, K., Gladstone, G. R., Grundy, W. M., McKinnon, W. B., . . . Zirnstein, E. (2015). The Pluto system: Initial results from its exploration by New Horizons. Science, 350(6258), aad1815.

  12. Thermoluminescent Signals Caused by Disturbing Effects

    International Nuclear Information System (INIS)

    German, U.; Weinstein, M.; Ben-Shachar, B.

    1999-01-01

    One of the major sources of uncertainty in the measurement of low radiation doses by means of thermoluminescence dosemeters is the presence of disturbing thermoluminescence signals, especially luminescence caused by visible light, and by materials attached to the heated areas. Glow curves of thermoluminescence dosemeters contain useful information that can improve the accuracy and the reliability of the thermoluminescent measurements. The influence of the various disturbing effects can be recognised in the shape of the glow curves and can sometimes be separated from the exposure. Some examples are presented of signals arising from the two disturbing effects mentioned above, the signal contributed by Teflon used in the TLD-100 cards of Bicron/Harshaw and some abnormal glow curves due to dirt attached to the cards. Subtraction of the contributions due to these effects is suggested to obtain the net exposure signal. (author)

  13. Surface layers of Xanthomonas malvacearum, the cause of bacterial blight of cotton.

    Science.gov (United States)

    Verma, J P; Formanek, H

    1981-01-01

    Mureins were isolated from two strains of Xanthomonas malvacearum, a phytopathogenic bacterium causing bacterial blight of cotton. The purity of murein was 70-95 % and the amino acid and amino sugar components (glutamic acid, alanina, meso-disminopimelic acid, muramic acid and glucosamine) were present at the molar ratio of 1:1.9:1:l.12.0.85. The bacterium secreted a copious amount of slime which masked itd surface structure. The slime was composed of densley interwoven network of filamentous material originating from the cell surface and extended into the medium without and discernable boundary. The slime was secreted through surface layers pores by force, giving the effect of a spray or jet. Slime also played a role in chain formatin of baterial cells.

  14. BUSINESS PROCESS REENGINEERING: CONCEPTS CAUSES AND EFFECT

    Directory of Open Access Journals (Sweden)

    Bernardo Nugroho Yahya

    2002-01-01

    Full Text Available Some people made a wrong concept about Business Process Reengineering (BPR. Some were misunderstanding about the BPR term. In other way, so many researches were introduced to describe a better definition about BPR. The thinking about concepts, causes, and effect of BPR will make a new perception about the term of BPR itself as a better methodology instead of the other Quality Management Methodology such as Total Quality Management (TQM, Just In Time (JIT, etc. This paper will mention the context of BPR in some of case study's journal.

  15. CAUSE AND EFFECT IN PROMOTING A PROJECT

    Directory of Open Access Journals (Sweden)

    SEVERIAN-VLĂDUȚ IACOB

    2013-12-01

    Full Text Available For a project to be considered successful it is necessary, besides a proper coordination, to be also done a good and wide promotion. In view of communication, promotion and maintenance ensures the organization's image. Disturbances occurring in any type of project, as a result of poor promotion, affect the image of the team and highlight the weaknesses in its management. Therefore, the promotion should be permanently monitored and evaluated. Cause-effect analysis is one of the ways we can identify some of nonconformities of the promotion process within a project.

  16. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  17. Surface effects in controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1975-08-01

    During the operation of large size plasma facilities and future controlled thermonuclear fusion reactors the surfaces of such major components as container walls, beam limiters, diverter walls and beam-dump walls of the injector region will be exposed to particle and photon bombardment from primary plasma radiations and from secondary radiations. Such radiations can cause, for example, physical and chemical sputtering, blistering, particle- and photon-impact induced desorption, secondary electron and x-ray emission, backscattering, nuclear reactions, photo-decomposition of surface compounds, photocatalysis, and vaporization. Such effects in turn can (a) seriously damage and erode the bombarded surface and (b) release major quantities of impurities which will contaminate the plasma. The effects of some of the major surface phenomena on the operation of plasma facilities and future fusion reactors are discussed

  18. Surface deformation caused by the Abrikosov vortex lattice

    Czech Academy of Sciences Publication Activity Database

    Lipavský, Pavel; Morawetz, K.; Koláček, Jan; Brandt, E. H.

    2008-01-01

    Roč. 77, č. 18 (2008), 184509/1-184509/7 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0326; GA AV ČR IAA100100712 Grant - others:GA ČR(CZ) GA202/07/0597 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * magneto-elastic effect * vortex lattice Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  19. Causes and Solutions of the Trampoline Effect.

    Science.gov (United States)

    Miwa, Masamiki; Ota, Noboru; Ando, Chiyono; Miyazaki, Yukio

    2015-01-01

    A trampoline effect may occur mainly when a buttonhole tract and the vessel flap fail to form a straight line. Certain findings, however, suggest another cause is when the vessel flap is too small. The frequency of the trampoline effect, for example, is lower when a buttonhole tract is created by multiple punctures of the arteriovenous fistula (AVF) vessel than when it is done by one-time puncture of the vessel. Lower frequency of the trampoline effect with multiple punctures of the AVF vessel may be due to enlargement of the initial puncture hole on the vessel every time the vessel is punctured with a sharp needle. Even if aiming at exactly the same point on the AVF vessel every time, the actual puncture point shifts slightly at every puncture, which potentially results in enlargement of the initial hole on the AVF vessel. Moreover, in some patients, continued use of a buttonhole tract for an extended period of time increases the frequency of the trampoline effect. In such cases, reduction of the incidence of the trampoline effect can be achieved by one buttonhole cannulation using a new dull needle with sharp side edges that is used to enlarge the vessel flap. Such single buttonhole cannulation may suggest that the increased frequency of the trampoline effect also potentially occurs in association with gradually diminishing flap size. As a final observation, dull needle insertion into a vessel flap in the reverse direction has been more smoothly achieved than insertion into a vessel flap in the conventional direction. A vessel flap in the reverse direction can be adopted clinically. © 2015 S. Karger AG, Basel.

  20. Causes, Effects, and Remedies in Conflict Management

    Directory of Open Access Journals (Sweden)

    Kamran Khan

    2017-05-01

    Full Text Available While workplace conflicts have been widely studied in the literature, this researchprovides a holistic view of the causes and effects of such, and how managers or amanagement can resolve the conflicts among their teams and organization througha detailed, multidimensional framework carried out on one of the biggest textilefirms of Pakistan. With an initial sample of 145 respondents, 37 questionnaireswere dropped because of invalid and incomplete answers; therefore, the studywas carried out on 108 respondents. Conflicts are a part of human nature, butmanagement should play an important role in dealing with these issues, as therecan be enormous chances of conflicts due to a diverse workforce. Conflict alsoresults in poor work performance and low productivity; therefore, it’s suggestedto create teams or groups which may encourage a competitive culture in theorganization. Additionally, a few remedies are identified, which may resolve someissues; managers must look at those techniques for a better culture. 

  1. Changes in terrestrial near-surface wind speed and their possible causes: an overview

    Science.gov (United States)

    Wu, Jian; Zha, Jinlin; Zhao, Deming; Yang, Qidong

    2017-11-01

    Changes in terrestrial near-surface wind speed (SWS) are induced by a combination of anthropogenic activities and natural climate changes. Thus, the study of the long-term changes of SWS and their causes is very important for recognizing the effects of these processes. Although the slowdown in SWS has been analyzed in previous studies, to the best of knowledge, no overall comparison or detailed examination of this research has been performed. Similarly, the causes of the decreases in SWS and the best directions of future research have not been discussed in depth. Therefore, we analyzed a series of studies reporting SWS trends spanning the last 30 years from around the world. The changes in SWS differ among different regions. The most significant decreases have occurred in Central Asia and North America, with mean linear trends of - 0.11 m s-1 decade-1; the second most significant decreases have occurred in Europe, East Asia, and South Asia, with mean linear trends of - 0.08 m s-1 decade-1; and the weakest decrease has occurred in Australia. Although the SWS in Africa has decreased, this region lacks long-term observational data. Therefore, the uncertainties in the long-term SWS trend are higher in this region than in other regions. The changes in SWS, caused by a mixture of global-, regional-, and local-scale factors, are mainly due to changes in driving forces and drag forces. The changes in the driving forces are caused by changes in atmospheric circulation, and the changes in the drag forces are caused by changes in the external and internal friction in the atmosphere. Changes in surface friction are mainly caused by changes in the surface roughness due to land use and cover change (LUCC), including urbanization, and changes in internal friction are mainly induced by changes in the boundary layer characteristics. Future studies should compare the spatio-temporal differences in SWS between high and low altitudes and quantify the effects of different factors on

  2. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  3. Abnormal high surface heat flow caused by the Emeishan mantle plume

    Science.gov (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  4. Hypothyroidism and obesity: Cause or Effect

    International Nuclear Information System (INIS)

    Verma, A.; Jayaraman, M.; Kumar, Hari K.V.S.; Modi, Kirtikumar D.

    2008-01-01

    Objective was to establish relationship between obesity and hypothyroidism and to analyze the frequency of primary hypothyroidism in obese patients and frequency of obesity in primary hypothyroidism patients. We conducted this retrospective, observational study in Department of Endocrinology and Obesity Clinic, Medwin Hospital, Hyderabad, India in March 2008. In the last 18 months (between September 2006 to February 2008), data on 625 consecutive primary hypothyroidism patients (Group I) and 450 patients from obesity clinic (Group II) were analyzed. Frequency difference between the 2 groups was assessed by Chi-square test. In Group I, 278/625 (44%) had body mass index (BMI) >25 kg/m2. Obesity was higher (46% versus 34%) in overt hypothyroidism than in subclinical hypothyroidism (p=0.21). More patients were overweight in overt hypothyroidism group than in subclinical hypothyroidism group (p=0.02). In obesity patients, overt hypothyroidism was present in 33% and subclinical hypothyroidism in 11% patients. Overall thyroid dysfunction was found more in obese individuals with varying degree of significance. Detailed studies are required to assess the cause and effect relation between obesity and hypothyroidism. (author)

  5. Damage caused by a nanosecond UV laser on a heated copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Henč-Bartolić, V., E-mail: visnja.henc@fer.hr [University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb (Croatia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Jakovljević, S., E-mail: suzana.jakovljevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb (Croatia); Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zupanič, F. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia)

    2016-08-15

    Highlights: • A Cu-plate was exposed to nanosecond UV laser with max. energy 1.1 J/cm{sup 2}. • Surface topography was studied on the cold and heated copper plate. • At room temperature, a crater formed, the melt was ejected from it. • Capillary waves formed in the vicinity of the crater at 360 °C. - Abstract: This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh–Bénard convection.

  6. Range of drainage effect of surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Sozanski, J.

    1978-03-01

    This paper discusses methods of calculating the range of effects of water drainage from surface coal mines and other surface mines. It is suggested that methods based on test pumping (water drainage) are time consuming, and the results can be distorted by atmospheric factors such as rain fall or dry period. So-called empirical formulae produce results which are often incorrect. The size of a cone shaped depression calculated on the basis of empirical formulae can be ten times smaller than the size of the real depression. It is suggested that using a formula based on the Dupuit formula is superior to other methods of depression calculation. According to the derived formulae the radius of the depresion cone is a function of parameters of the water bearing horizons, size of surface mine working and of water depression. The proposed formula also takes into account the influence of atmospheric factors (water influx caused by precipitation, etc.). (1 ref.) (In Polish)

  7. Surface effects on the red giant branch

    Science.gov (United States)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  8. Causes, effects and therapy of radiophobie syndrome

    International Nuclear Information System (INIS)

    Becker, K.

    2005-01-01

    The basic symptoms and causes of the origination of radiophobie in Germany and other developed countries are considered. The economic and ecological consequences of the ideological antinuclear politics and the struggle against NPP are analyzed. The measures on overcoming radiophobie among population of developed countries are proposed. The particular attention for this problem solving is given to the position of mass media [ru

  9. The Young Drinking Driver: Cause or Effect?

    Science.gov (United States)

    Waller, Patricia F.; Waller, Marcus B.

    Drunk driving is a major public health problem and young people suffer disproportionately high rates of morbidity and mortality as a result of drinking and driving. Motor vehicle injuries are the leading cause of death for persons aged 15-24 in this country, and alcohol is implicated in many of these deaths. Countermeasures to drinking and driving…

  10. Damage Mechanism in Counter Pairs Caused by Bionic Non-smoothed Surface

    Directory of Open Access Journals (Sweden)

    ZHANG Zhan-hui

    2016-08-01

    Full Text Available Four biomimetic non-smoothed surface specimens with different shapes were prepared by laser processing. Tests were conducted on MMU-5G wear and abrasion test machine to study the influencing rule of non-smoothed surfaces on counter pairs. The results show that the mass loss of the friction pair matching with the non-smoothed units is much greater than the ones matching with the smooth specimens. The pairs matching with different non-smoothed units suffer differently. The non-smoothed surface protruding zone exerts micro cutting on counter pairs. The striation causes the greatest mass loss of the pairs than the other non-smoothed units, which almost doubles the damage of the grid ones suffering the least. The difference in pairs damage is attributed to the different mechanism of undertaking the load in the process of wear. The damage can be alleviated effectively by changing the shapes of the units without increasing or decreasing the area ratio of the non-smoothed units.

  11. Surface erosion and sedimentation caused by ejecta from the lunar crater Tycho

    Science.gov (United States)

    Shkuratov, Y.; Basilevsky, A.; Kaydash, V.; Ivanov, B.; Korokhin, V.; Videen, G.

    2018-02-01

    We use Kaguya MI images acquired at wavelengths 415, 750, and 950 nm to map TiO2 and FeO content and the parameter of optical maturity OMAT in lunar regions Lubiniezky E and Taurus-Littrow with a spatial resolution of 20 m using the Lucey method [Lucey et al., JGR 2000, 105. 20,297]. We show that some ejecta from large craters, such as Tycho and Copernicus may cause lunar surface erosion, transportation of the eroded material and its sedimentation. The traces of the erosion resemble wind tails observed on Earth, Mars, and Venus, although the Moon has no atmosphere. The highland material of the local topographic prominences could be mobilized by Tycho's granolometrically fine ejecta and caused by its transportation along the ejecta way to adjacent mare areas and subsequent deposition. The tails of mobilized material reveal lower abundances of Ti and Fe than the surrounding mare surface. We have concluded that high-Ti streaks also seen in the Lubiniezky E site, which show unusual combinations of the TiO2 and FeO content on the correlation diagram, could be the result of erosion by Tycho's ejecta too. In these locations, Tycho's material did not form a consolidated deposit, but resulted in erosion of the mare surface material that became intermixed, consequently, diluting the ejecta. The Taurus-Littrow did provide evidence of the mechanical effect of Tycho's ejecta on the local landforms (landslide, secondary craters) and do not show the compositional signature of Tycho's ejecta probably due to intermixing with local materials and dilution.

  12. The Monju accident. Causes and effects

    International Nuclear Information System (INIS)

    Marth, W.

    1996-01-01

    On December 8, 1995, the Japanese prototype fast breeder reactor, Monju, suffered an accident which aroused considerable national and international attention. A thermocouple in a pipe carrying sodium in the secondary plant system had broken, causing some 700 kg of non-radioactive sodium to be spilled. The safety of the reactor, of the plant crew, and of the environment was not jeopardized. However, as a consequence of some badly handled public relations, rather negative reactions of the public authorities and of the public at large were encountered. One member of the investigating committee, facing a conflict of loyalities not uncommon in Japan, even committed suicide. According to current estimates, Monju will be down for at least two years, thus causing major financial problems to the operator, PNC. On the political level, more difficulties are expected to arise in the introduction of plutonium recycling. (orig.) [de

  13. Total pollution effect of urban surface runoff.

    Science.gov (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  14. Dispersant effectiveness: Studies into the causes of effectiveness variations

    International Nuclear Information System (INIS)

    Fingas, M.F.; Kyle, D.; Tennyson, E.

    1995-01-01

    Effectiveness, a key issue of using dispersants, is affected by many interrelated factors. The principal factors involved are the oil composition, dispersant formulation, sea surface turbulence and dispersant quantity. Oil composition is a very strong determinant. Current dispersant formulation effectiveness correlates strongly with the amount of saturate component in the oil. The other components of the oil, the asphaltenes, resins or polars and aromatic fractions show a negative correlation with the dispersant effectiveness. Viscosity is also a predictor of dispersant effectiveness and may have an effect because it is in turn determined by oil composition. Dispersant composition is significant and interacts with oil composition. Dispersants show high effectiveness at HLB values near 10. Sea turbulence strongly affects dispersant effectiveness.Effectiveness rises with increasing turbulence to a maximum value. Effectiveness for current commercial dispersants is gaussian around a peak salinity value. Peak effectiveness is achieved at very high dispersant quantities--at a ratio of 1:5, dispersant-to-oil volume. Dispersant effectiveness for those oils tested and under the conditions measured, is approximately logarithmic with dispersant quantity and will reach about 50% of its peak value at a dispersant to oil ratio of about 1:20 and near zero at a ratio of about 1:50

  15. Geomagnetic effects caused by rocket exhaust jets

    Directory of Open Access Journals (Sweden)

    Lipko Yu.V.

    2016-09-01

    Full Text Available In the space experiment Radar–Progress, we have made 33 series of measurements of geomagnetic variations during ignitions of engines of Progress cargo spacecraft in low Earth orbit. We used magneto-measuring complexes, installed at observatories of the Institute of Solar-Terrestrial Physics of Siberian Branch of the Russian Academy of Sciences, and magnetotelluric equipment of a mobile complex. We assumed that engine running can cause geomagnetic disturbances in field tubes crossed by the spacecraft. When analyzing experimental data, we took into account the following space weather factors: solar wind parameters, total daily mid-latitude geomagnetic activity index Kр, geomagnetic auroral electrojet index AE, global geomagnetic activity. The empirical data we obtained indicate that 18 of the 33 series showed geomagnetic variations with various periods.

  16. Microscopic degradation mechanism of polyimide film caused by surface discharge under bipolar continuous square impulse voltage

    International Nuclear Information System (INIS)

    Luo Yang; Wu Guang-Ning; Liu Ji-Wu; Peng Jia; Gao Guo-Qiang; Zhu Guang-Ya; Wang Peng; Cao Kai-Jiang

    2014-01-01

    Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to premature failures in insulation systems of inverter-fed motors. In order to explore the damage mechanism of PI film caused by discharge, an aging system of surface discharge under bipolar continuous square impulse voltage (BCSIV) is designed based on the ASTM 2275 01 standard and the electrical aging tests of PI film samples are performed above the partial discharge inception voltage (PDIV). The chemical bonds of PI polymer chains are analyzed through Fourier transform infrared spectroscopy (FTIR) and the dielectric properties of unaged and aged PI samples are investigated by LCR testers HIOKI 3532-50. Finally, the micro-morphology and micro-structure changes of PI film samples are observed through scanning electron microscopy (SEM). The results show that the physical and chemical effects of discharge cut off the chemical bonds of PI polymer chains. The fractures of ether bond (C—O—C) and imide ring (C—N—C) on the backbone of a PI polymer chain leads to the decrease of molecular weight, which results in the degradation of PI polymers and the generation of new chemical groups and materials, like carboxylic acid, ketone, aldehydes, etc. The variation of microscopic structure of PI polymers can change the orientation ability of polarizable units when the samples are under an AC electric field, which would cause the dielectric constant ε to increase and dielectric loss tan δ to decrease. The SEM images show that the degradation path of PI film is initiated from the surface and then gradually extends to the interior with continuous aging. The injection charge could result in the PI macromolecular chain degradation and increase the trap density in the PI polymer bulk. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Technostress in Libraries: Causes, Effects and Solutions.

    Science.gov (United States)

    Bichteler, Julie

    1987-01-01

    Examines some of the fears, frustrations, and misconceptions of library staff and patrons that hamper the effective use of computers in libraries. Strategies that library administrators could use to alleviate stress are outlined, including staff participation in the automation process, well-designed workstations, and adequate training for staff…

  18. Peristomal skin complications: causes, effects, and treatments

    Directory of Open Access Journals (Sweden)

    Doctor K

    2016-12-01

    Full Text Available Kimberly Doctor, Dorin T Colibaseanu Section of Colon and Rectal Surgery, Mayo Clinic, Jacksonville, FL, USA Abstract: Enterostomal formation remains a necessary part of multiple types of surgeries. Stomal difficulties can be a source of frustration for patients; however, a properly functioning stoma in a patient educated in its care can result in a highly functional individual, with a high quality of life, comparable to a person without a stoma. Correct surgical technique is vital to creating a stoma that is sufficiently everted, and in a good anatomical location. Loop ileostomies have a higher chance of complications, thus care in their formation is especially important. Systemic disease (inflammatory conditions, and autoimmune diseases especially as well as local conditions (pyoderma gangrenosum, infections, and fistulas, among others can be the causes for difficult-to-treat peristomal complications. Accurate diagnosis is essential in order to be able to address the underlying disease. Choosing the appropriate products to care for the stoma is often a process of trial and error, and is best done under the guidance of an enterostomal therapist. This is especially true for stomas in overweight individuals or stomas that have become flush with the skin with time and changing body habitus. Inattention to care can result in problems that range from simple mucocutaneous separations (separation of the bowel edge from the surrounding skin to large and difficult-to-heal ulcers. This article provides a systematic review of the most common challenges that patients with stoma are faced with, and offers solutions based on up-to-date review of the literature. Keywords: stoma care, stoma complications, stoma wound

  19. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Science.gov (United States)

    Jadhav, Vidya

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.

  20. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    International Nuclear Information System (INIS)

    Jadhav, Vidya

    2015-01-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10 17 cm −3 were irradiated at 100 MeV Fe 7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10 10 –1 × 10 14 ions cm −2 . The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10 13 , 5 × 10 13 and 1 × 10 14 ions cm −2 , we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10 13 ion cm −2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E 1 , E 1 + Δ and E 2 band gaps in all irradiated samples

  1. STRESSES IN CEMENT-CONCRETE PAVEMENT SURFACING CAUSED BY THERMAL SHOCK

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available It is necessary to mention specially so-called thermal shock among various impacts on highway surface. Ice layer is formed on a concrete surface during the winter period of pavement surfacing operation. Sodium chloride which lowers temperature of water-ice transition temperature and causes ice thawing at negative temperature is usually used to remove ice from the pavement surface. Consequently, temperature in the concrete laying immediately under a thawing ice layer is coming down with a run that leads to significant stresses. Such phenomenon is known as a thermal shock with a meaning of local significant change in temperature. This process is under investigation, it has practical importance for an estimation of strength and longevity of a cement-concrete pavement surfacing and consequently it is considered as rather topical issue. The purpose of investigations is to develop a mathematical model and determination of shock blow permissible gradients for a cementconcrete road covering. Finite difference method has been used in order to determine stressed and deformed condition of the cement-concrete pavement surfacing of highways. A computer program has been compiled and it permits to carry out calculation of a road covering at various laws of temperature distribution in its depth. Regularities in distribution of deformation and stresses in the cement-concrete pavement surfacing of highways at thermal shock have been obtained in the paper. A permissible parameter of temperature distribution in pavement surfacing thickness has been determined in the paper. A strength criterion based on the process of micro-crack formation and development in concrete has been used for making calculations. It has been established that the thermal shock causes significant temperature gradients on the cement-concrete surfacing that lead to rather large normal stresses in the concrete surface layer. The possibility of micro-crack formation in a road covering is

  2. Interference effects with surface plasmons

    NARCIS (Netherlands)

    Kuzmin, Nikolay Victorovich

    2008-01-01

    A surface plasmon is a purely two-dimensional electromagnetic excitation bound to the interface between metal and dielectric and quickly decaying away from it. A surface plasmon is able to concentrate light on sub-wavelength scales – a feature that is attractive for nano-photonics and integrated

  3. Prevalence, Causes and Effects of Academic Corruption in Rivers ...

    African Journals Online (AJOL)

    This study investigated the prevalence, causes and effects of academic corruption in Rivers State universities, Nigeria. Data were collected from 400 respondents using a 'Prevalence, Causes and Effects of Academic Corruption Questionnaire' (PCEACQ). The data were analyzed using frequency counts and percentages.

  4. Effects of surface treatments on microstructure in stainless steel

    International Nuclear Information System (INIS)

    Mabuchi, Yasuhiro; Tamako, Hiroaki; Kaneda, Junya; Yamashita, Norimichi; Miyakawa, Masahiko

    2009-01-01

    It is revealed that Stress Corrosion Cracking (SCC) on the surface of the L-grade stainless steels in Nuclear Power Plants is caused by heavily cold work of the materials. The microstructure, hardness and residual stress on the surface of the material are factors for SCC initiation. There are surface treatment methods that is effective reduction on SCC such as Flap Wheel (FW) polishing, Clean N Strip (CNS) polishing, Water Jet Peening (WJP) and Shot Peening (SP). In this paper, the characteristics of the surface cold worked layer of the L-grade stainless steels conducted by above-mentioned surface treatments are analyzed, and effects of the surface treatments on the surface layer are discussed. (author)

  5. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya, E-mail: vj1510@yahoo.com

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10{sup 17} cm{sup −3} were irradiated at 100 MeV Fe{sup 7+} ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10{sup 10}–1 × 10{sup 14} ions cm{sup −2}. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10{sup 13}, 5 × 10{sup 13} and 1 × 10{sup 14} ions cm{sup −2}, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10{sup 13} ion cm{sup −2} was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E{sub 1}, E{sub 1} + Δ and E{sub 2} band gaps in all irradiated samples.

  6. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    Science.gov (United States)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  7. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    Science.gov (United States)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  8. Bonding of radioactive contamination. IV. Effect of surface finish

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1983-01-01

    The mechanisms by which radioactive contamination would be bonded to a DWPF canister are being investigated. Previous investigations in this series have examined the effects of temperature, oxidation before contamination, and atmosphere composition control on the bonding of contamination. This memorandum describes the results of tests to determine the effect of special surface finishes on the bonding of contamination to waste glass canisters. Surface pretreatments which produce smoother canister surfaces actually cause radioactive contamination to be more tightly bonded to the metal surface than on an untreated surface. Based on the results of these tests it is recommended that the canister surface finish be specified as having a bright cold rolled mill finish equivalent to ASTM No. 2B. 7 references, 3 figures, 3 tables

  9. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    International Nuclear Information System (INIS)

    Yang, F.; Shao, Y.; Guichen, M.

    2010-01-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  10. NRC Information No. 88-98: Electrical relay degradation caused by oxidation of contact surfaces

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The NRC staff was recently informed by Clinton Power Station that a reactor scram on June 24, 1988, was caused by an electrical relay failure from oxide buildup on relay contact surfaces. Other information on relay failure from contact oxidation indicates that this problem may be more prevalent than previously thought. For example, a July 17, 1988, 10 CFR Part 21 report from Palo Verde, Unit 2, reported relay failures from contact oxidation that were due to the low current application of the relays. The relay contact surfaces in both of these examples are silver-nickel alloys, and both applications were for low current (i.e., milli-ampere current). Electrical relay contacts made of silver-nickel or silver-cadmium alloys will oxidize (tarnish) when used in low current applications because of the absence of contact surface sparking from the typical relay contact ''making and breaking'' functions. The sparking in the contact surfaces promotes a self-cleaning mechanism that reduces the tarnish buildup on the silver-nickel or silver-cadmium contacts. Discussions with one relay manufacturer revealed that the normal industry practice for low current circuit applications is either to use a contact surface material that will not oxidize or to compensate for the oxidation by increased maintenance activities to ensure reliability. The applied voltage may also influence contact oxidation

  11. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Liaoning Technical Univ., Fuxin (China). School of Geomatics; Shao, Y. [Liaoning Technical Univ., Fuxin (China). Dept. of Foreign Language; Guichen, M. [Gifu Univ., Yanagido, Gifu (Japan). Dept. of Civil Engineering

    2010-07-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  12. Interaction of the wood surface with metal ions. Part 3: The effects of light on chromium impregnated wood surface

    International Nuclear Information System (INIS)

    Stipta, J.; Németh, K.; Molnárné Hamvas, L.

    2004-01-01

    UV-light changes of untreated and chromium impregnated wood surface were investigated by absorption spectrophotometric methods. The properties of indifferent silicagel and celulose layers were to the behaviour of poplar and black locust surface. Chromic-ion-impregnation had no significant effect on the absorption spectra of these layers. On the other hand, hexavalent chromium was reduced and UV-light caused irreversible wood degradation. Surface treatment caused considerable modification in black locust

  13. climate change: causes, effects and mitigation measures-a review

    African Journals Online (AJOL)

    BARTH EKWUEME

    Both natural and human causes of climate change including the earth's orbital changes, solar variations .... analysis supported by climate models have revealed that cloud ... clouds could actually exert a small cooling effect as temperature ...

  14. Guidance for modeling causes and effects in environmental problem solving

    Science.gov (United States)

    Armour, Carl L.; Williamson, Samuel C.

    1988-01-01

    Environmental problems are difficult to solve because their causes and effects are not easily understood. When attempts are made to analyze causes and effects, the principal challenge is organization of information into a framework that is logical, technically defensible, and easy to understand and communicate. When decisionmakers attempt to solve complex problems before an adequate cause and effect analysis is performed there are serious risks. These risks include: greater reliance on subjective reasoning, lessened chance for scoping an effective problem solving approach, impaired recognition of the need for supplemental information to attain understanding, increased chance for making unsound decisions, and lessened chance for gaining approval and financial support for a program/ Cause and effect relationships can be modeled. This type of modeling has been applied to various environmental problems, including cumulative impact assessment (Dames and Moore 1981; Meehan and Weber 1985; Williamson et al. 1987; Raley et al. 1988) and evaluation of effects of quarrying (Sheate 1986). This guidance for field users was written because of the current interest in documenting cause-effect logic as a part of ecological problem solving. Principal literature sources relating to the modeling approach are: Riggs and Inouye (1975a, b), Erickson (1981), and United States Office of Personnel Management (1986).

  15. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  16. Manual on the Fatigue of Structures. II. Causes and Prevention of Damage. 7. Mechanical Surface Damage,

    Science.gov (United States)

    1981-06-01

    AO-A103 «29 ADVISORY 6R0UP FOR AEROSPACE RESEARCH AND DEVELOPMENT—ETC F/O 20/11 MANUAL ON THE FATIfUE OF STRUCTURES. IX. CAUSES AND PREVENTION —ETC... stresses . In the case of 99.999% pure aluminium Vyas and Preece240 investigated the changes in the surface finish of the metal under the electron...during the erosion process. In the case of annealed nickel and of electrolytically polished test specimens cavitation- stressed in distilled water at 25°C

  17. Causes, Effects and Possible Solution of Seasonal Egg Gluts: A ...

    African Journals Online (AJOL)

    A study was conducted to assess small holder poultry farmers' perspectives on the causes, effects and solution to the cyclical egg glut in Ejigbo, Nigeria using questionnaire for data collection and descriptive data analysis. Farmers interviewed agreed that government policies have a registered effect on drop of egg sales ...

  18. Antibacterial effect of silver nanofilm modified stainless steel surface

    Science.gov (United States)

    Fang, F.; Kennedy, J.; Dhillon, M.; Flint, S.

    2015-03-01

    Bacteria can attach to stainless steel surfaces, resulting in the colonization of the surface known as biofilms. The release of bacteria from biofilms can cause contamination of food such as dairy products in manufacturing plants. This study aimed to modify stainless steel surfaces with silver nanofilms and to examine the antibacterial effectiveness of the modified surface. Ion implantation was applied to produce silver nanofilms on stainless steel surfaces. 35 keV Ag ions were implanted with various fluences of 1 × 1015 to 1 × 1017 ions•cm-2 at room temperature. Representative atomic force microscopy characterizations of the modified stainless steel are presented. Rutherford backscattering spectrometry spectra revealed the implanted atoms were located in the near-surface region. Both unmodified and modified stainless steel coupons were then exposed to two types of bacteria, Pseudomonas fluorescens and Streptococcus thermophilus, to determine the effect of the surface modification on bacterial attachment and biofilm development. The silver modified coupon surface fluoresced red over most of the surface area implying that most bacteria on coupon surface were dead. This study indicates that the silver nanofilm fabricated by the ion implantation method is a promising way of reducing the attachment of bacteria and delay biofilm formation.

  19. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact

    Science.gov (United States)

    Karamış, M. B.

    2018-01-01

    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770-800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  20. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  1. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun; Grigoryan, Vahram L.; Maekawa, Sadamichi; Wang, Xuhui; Xiao, Jiang

    2015-01-01

    induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  2. Prediction of abrupt reservoir compaction and surface subsidence caused by pore collapse in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Smits, R.M.M.; De Waal, J.A.; Van Kootan, J.F.C.

    1988-06-01

    A new procedure has been developed to predict the abrupt in-situ compaction and the associated surface subsidence above high-porosity carbonate fields that show pore collapse. The approach is based on an extensive laboratory compaction study in which the effects of carbonate type, porosity, core preparation, pore saturant, horizontal/vertical stress ratio, and loading rate on pore-collapse behavior were investigated. For a number of carbonate types, a trendline was established that describes the relationship between the porosity after collapse and the vertical effective stress. This trendline concept, in combination with existing subsidence models, enables reservoir compaction and surface subsidence to be predicted on the basis of wireline porosity logs. Static and dynamic elastic constants were found to be uncorrelated during pore collapse. The position of the trendline depends strongly on carbonate type, pore saturant, loading rate, and stress ratio. Therefore, procedures are given to derive the correct in-situ trendline from laboratory compaction experiments.

  3. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  4. Effect of corticosteroid therapy in acute pain edema caused by ...

    African Journals Online (AJOL)

    Purpose: To evaluate the curative effect of corticosteroids in the treatment of acute pain, local edema, and skin lesions caused by herpes zoster, and to develop some pertinent therapeutic guidelines. Methods: A total of 48 cases of patients diagnosed with herpes zoster from 2010 to 2011 in the dermatology clinic of Shan ...

  5. Effects of ion sputtering on semiconductor surfaces

    International Nuclear Information System (INIS)

    McGuire, G.E.

    1978-01-01

    Ion beam sputtering has been combined with Auger spectroscopy to study the effects of ion beams on semiconductor surfaces. Observations on the mass dependence of ion selective sputtering of two component systems are presented. The effects of ion implantation are explained in terms of atomic dilution. Experimental data are presented that illustrate the super-position of selective sputtering and implantation effects on the surface composition. Sample reduction from electron and ion beam interaction is illustrated. Apparent sample changes which one might observe from the effects of residual gas contamination and electric fields are also discussed. (Auth.)

  6. Using remote sensing imagery to monitoring sea surface pollution cause by abandoned gold-copper mine

    Science.gov (United States)

    Kao, H. M.; Ren, H.; Lee, Y. T.

    2010-08-01

    The Chinkuashih Benshen mine was the largest gold-copper mine in Taiwan before the owner had abandoned the mine in 1987. However, even the mine had been closed, the mineral still interacts with rain and underground water and flowed into the sea. The polluted sea surface had appeared yellow, green and even white color, and the pollutants had carried by the coast current. In this study, we used the optical satellite images to monitoring the sea surface. Several image processing algorithms are employed especial the subpixel technique and linear mixture model to estimate the concentration of pollutants. The change detection approach is also applied to track them. We also conduct the chemical analysis of the polluted water to provide the ground truth validation. By the correlation analysis between the satellite observation and the ground truth chemical analysis, an effective approach to monitoring water pollution could be established.

  7. Effects of surfaces on resistor percolation.

    Science.gov (United States)

    Stenull, O; Janssen, H K; Oerding, K

    2001-05-01

    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization-group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents phiS and phiS(infinity) for the special and the ordinary transition, respectively, to one-loop order.

  8. Vibration of Piezoelectric Nanowires Including Surface Effects

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-04-01

    Full Text Available In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with simply-supported boundary conditions is obtained. The effects of piezoelectricity and surface effects on the vibrational behavior of Timoshenko NWs are graphically illustrated. A comparison is also made between the predictions of Timoshenko beam model and those of its Euler-Bernoulli counterpart. Additionally, the present results are validated through comparison with the available data in the literature.

  9. Advances in surface treatments: Technology, applications, effects

    International Nuclear Information System (INIS)

    Niku-Lari, A.

    1987-01-01

    An international handbook has been produced to include all aspects of residual stresses, including the theoretical background, effects of residual stresses, measurement and calculation and quantitative assessment of residual stress effects. Techniques for altering residual stresses, particularly surface treatments, are discussed. Up to date information on the state of the art is presented. (UK)

  10. Surface and interface effects in VLSI

    CERN Document Server

    Einspruch, Norman G

    1985-01-01

    VLSI Electronics Microstructure Science, Volume 10: Surface and Interface Effects in VLSI provides the advances made in the science of semiconductor surface and interface as they relate to electronics. This volume aims to provide a better understanding and control of surface and interface related properties. The book begins with an introductory chapter on the intimate link between interfaces and devices. The book is then divided into two parts. The first part covers the chemical and geometric structures of prototypical VLSI interfaces. Subjects detailed include, the technologically most import

  11. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  12. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon; Oh, Sang-gyun; Ha, Juyoung; Monteiro, Paulo M.

    2012-01-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  13. Effect of impact surface in equestrian falls

    OpenAIRE

    Clark, J. Michio; Post, Andrew; Connor, Thomas A.; Hoshizaki, Thomas Blaine; Gilchrist, M. D.

    2016-01-01

    This study examines the effect of impact surface on head kinematic response and maximum principal strain (MPS) for equestrian falls. A helmeted Hybrid III headform was dropped unrestrained onto three impact surfaces of different stiffness (steel, turf and sand) and three locations. Peak resultant linear acceleration, rotational acceleration and duration of the impact events were measured. A finite element brain model was used to calculate MPS. The results revealed that drops onto steel produc...

  14. Application of cause-and-effect analysis to potentiometric titration.

    Science.gov (United States)

    Kufelnicki, A; Lis, S; Meinrath, G

    2005-08-01

    A first attempt has been made to interpret physicochemical data from potentiometric titration analysis in accordance with the complete measurement-uncertainty budget approach (bottom-up) of ISO and Eurachem. A cause-and-effect diagram is established and discussed. Titration data for arsenazo III are used as a basis for this discussion. The commercial software Superquad is used and applied within a computer-intensive resampling framework. The cause-and-effect diagram is applied to evaluation of seven protonation constants of arsenazo III in the pH range 2-10.7. The data interpretation is based on empirical probability distributions and their analysis by second-order correct confidence estimates. The evaluated data are applied in the calculation of a speciation diagram including uncertainty estimates using the probabilistic speciation software Ljungskile.

  15. [Crabtree effect caused by ketoses in isolated rat hepatocytes].

    Science.gov (United States)

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1982-01-01

    Oxygen uptake and glycolytic activity were studied in hepatocytes isolated from fed rats. The addition of fructose or tagatose resulted in a 38% and 31% inhibition of cellular respiration respectively. The addition of 10 mM D-glyceraldehyde caused a slight Crabtree effect. Glucose, L-sorbose, or glycerol failed to modify oxygen consumption. Only incubation in the presence of fructose showed a high aerobic glycolysis measured by lactate production.

  16. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  17. Biofilm Surface Density Determines Biocide Effectiveness

    Directory of Open Access Journals (Sweden)

    Sara Bas

    2017-12-01

    Full Text Available High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones.

  18. A study of the mechanisms causing surface defects on sidewalls during Si etching for TSV (through Si via)

    International Nuclear Information System (INIS)

    Choi, Jae Woong; Loh, Woon Leng; Praveen, Sampath Kumar; Murphy, Ramana; Swee, Eugene Tan Kiat

    2013-01-01

    In this paper we report three mechanisms causing surface defects on Si sidewalls during Si etching for TSV. The first mechanism causing surface defects was a downward surface-defect formation due to the participation of the residual polymerizing gas in the transition periods between passivation steps and etch steps. The second mechanism was an upward surface-defect formation due to etchant attacking the interface between the Si and the sidewall polymer. Although the sidewall polymer was thick enough to protect the Si surface, it was not possible to avoid surface defects if the etch step was not switched to the following passivation step in time. The third mechanism was a sponge-like surface-defect formation caused by either poor polymer depositions or voids inside the sidewall polymer. The sponge-like surface defects were formed by Si isotropic etching through the weak points of the sidewall polymer. All three surface defects were considered as the major factors on TSV integration and packaging reliability issues. (paper)

  19. Revisiting the Effect of Anthropomorphizing a Social Cause Campaign.

    Directory of Open Access Journals (Sweden)

    Lisa A Williams

    Full Text Available Recent research suggests that anthropomorphism can be harnessed as a tool to boost intentions to comply with social cause campaigns. Drawing on the human tendency to extend moral concern to entities portrayed as humanlike, it has been argued that adding personified features to a social campaign elevates anticipated guilt at failing to comply, and this subsequently boosts intentions to comply with that campaign. The present research aimed to extend extant research by disentangling the effects of emotional and non-emotional anthropomorphism, and differentiating amongst other emotional mechanisms of the anthropomorphism-compliance effect (namely, anticipated pride and anticipated regret. Experiment 1 (N = 294 compared the effectiveness of positive, negative, and emotionally-neutral anthropomorphized campaign posters for boosting campaign compliance intentions against non-anthropomorphized posters. We also measured potential mechanisms including anticipated guilt, regret, and pride. Results failed to support the anthropomorphism-compliance effect, and no changes in anticipated emotion according to anthropomorphism emerged. Experiments 2 (N = 150 and 3 (N = 196 represented further tests of the anthropomorphism-compliance effect. Despite high statistical power and efforts to closely replicate the conditions under which the anthropomorphism-compliance effect had been previously observed, no differences in compliance intention or anticipated emotion according to anthropomorphism emerged. A meta-analysis of the effects of anthropomorphism on compliance and anticipated emotion across the three experiments revealed effect size estimates that did not differ significantly from zero. The results of these three experiments suggest that the anthropomorphism-compliance effect is fragile and perhaps subject to contextual and idiographic influences. Thus, this research provides important insight and impetus for future research on the applied and theoretical

  20. Revisiting the Effect of Anthropomorphizing a Social Cause Campaign.

    Science.gov (United States)

    Williams, Lisa A; Masser, Barbara; Sun, Jessie

    2015-01-01

    Recent research suggests that anthropomorphism can be harnessed as a tool to boost intentions to comply with social cause campaigns. Drawing on the human tendency to extend moral concern to entities portrayed as humanlike, it has been argued that adding personified features to a social campaign elevates anticipated guilt at failing to comply, and this subsequently boosts intentions to comply with that campaign. The present research aimed to extend extant research by disentangling the effects of emotional and non-emotional anthropomorphism, and differentiating amongst other emotional mechanisms of the anthropomorphism-compliance effect (namely, anticipated pride and anticipated regret). Experiment 1 (N = 294) compared the effectiveness of positive, negative, and emotionally-neutral anthropomorphized campaign posters for boosting campaign compliance intentions against non-anthropomorphized posters. We also measured potential mechanisms including anticipated guilt, regret, and pride. Results failed to support the anthropomorphism-compliance effect, and no changes in anticipated emotion according to anthropomorphism emerged. Experiments 2 (N = 150) and 3 (N = 196) represented further tests of the anthropomorphism-compliance effect. Despite high statistical power and efforts to closely replicate the conditions under which the anthropomorphism-compliance effect had been previously observed, no differences in compliance intention or anticipated emotion according to anthropomorphism emerged. A meta-analysis of the effects of anthropomorphism on compliance and anticipated emotion across the three experiments revealed effect size estimates that did not differ significantly from zero. The results of these three experiments suggest that the anthropomorphism-compliance effect is fragile and perhaps subject to contextual and idiographic influences. Thus, this research provides important insight and impetus for future research on the applied and theoretical utility of

  1. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  2. Effects of Surface Treatment of Activated Carbon on Its Surface and Cr(VI) Adsorption Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Jin; Jang, Yu Sin [Advanced Materials Division., Korea Research Institute of Chimical Technology, Taejon (Korea)

    2001-04-01

    In this work, the effect of surface treatments on activated carbons (ACs) has been studied in the context of gas and liquid adsorption behaviors. The chemical solutions used in this experiment were 35% sodium hydroxide, and these were used for the acidic and basic treatments, respectively. The surface properties have been determined by pH, acid-base values, and FT-IR. The adsorption isotherms of Cr(VI) ion on activated carbons have been studied with the 5 mg/l concentration at ambient temperature. N{sub 2} adsorption isotherm characteristics, which include the specific surface area, micro pore volume, and microporosity, were determined by BET and Boer's-plot methods. In case of the acidic treatment of activated carbons, it was observed that the adsorption of Cr(VI) ion was more effective due to the increase acid value (or acidic functional group) of activated carbon surfaces. However, the basic treatment on activated carbons was caused no significant effects, probably due to the decreased specific surface area and total pore volume. 27 refs., 7 figs., 4 tabs.

  3. 'Thermal ghosts': apparent decay of fixed surfaces caused by heat diffusion

    International Nuclear Information System (INIS)

    Livadiotis, George

    2007-01-01

    The behaviour concerning classical heat diffusion on fixed thermal surfaces, studied by observations, still holds surprises. As soon as convective and radiative processes are negligible within the medium, this is considered to be free from energy sources and sinks. Then, the heat diffusion equation is conveniently solved using standard Fourier methods. Some considerations about the contrast effect suggest that the surface boundary would rather be observed to follow specific area decay dynamics than remaining fixed and static. Here it is shown that the apparent boundary lies on a specific isothermal spatiotemporal curve, which depends on the observing device. This is characterized by a slight, though determinative, difference between its radiance and that of the ambient background. Thereafter, the heat diffusion yields apparent boundary shrinkage with the passing of time. This phenomenon is particularly notable for two reasons: its lifetime and final decay rate depend only on the medium thermal properties, while being independent of the apparent boundary spatiotemporal curve. Thus, the former provides a suitable method for measuring the medium thermal properties via the observational data. The latter strongly reveal a kind of universality of some characteristic properties of the phenomenon, common to all observers

  4. General review on climate change problems: causes, potential effects

    International Nuclear Information System (INIS)

    Martellet, J.

    1991-01-01

    Greenhouse gases and greenhouse effect principles are reviewed and climate changes due to the human activities are discussed: identification of gases, human or natural causes, composition evolution in the atmosphere and relative roles of greenhouse gases. The various tools and calculations methods for evaluating the climate change due to greenhouse effect are presented. Several problems are stated: evolution of the climate structure in 2030, variations of the climatic extremes and the extreme phenomena, augmentation or diminution of the storms on a warmed planet, long term evolution of the climate. Some consequences of a climate change are reviewed: sea level raising, climate change effects on ecosystems. Precision and validity of these predictions are discussed; recommendations for diminishing the uncertainties are proposed

  5. Black-boxing and cause-effect power

    Science.gov (United States)

    Albantakis, Larissa; Tononi, Giulio

    2018-01-01

    Reductionism assumes that causation in the physical world occurs at the micro level, excluding the emergence of macro-level causation. We challenge this reductionist assumption by employing a principled, well-defined measure of intrinsic cause-effect power–integrated information (Φ), and showing that, according to this measure, it is possible for a macro level to “beat” the micro level. Simple systems were evaluated for Φ across different spatial and temporal scales by systematically considering all possible black boxes. These are macro elements that consist of one or more micro elements over one or more micro updates. Cause-effect power was evaluated based on the inputs and outputs of the black boxes, ignoring the internal micro elements that support their input-output function. We show how black-box elements can have more common inputs and outputs than the corresponding micro elements, revealing the emergence of high-order mechanisms and joint constraints that are not apparent at the micro level. As a consequence, a macro, black-box system can have higher Φ than its micro constituents by having more mechanisms (higher composition) that are more interconnected (higher integration). We also show that, for a given micro system, one can identify local maxima of Φ across several spatiotemporal scales. The framework is demonstrated on a simple biological system, the Boolean network model of the fission-yeast cell-cycle, for which we identify stable local maxima during the course of its simulated biological function. These local maxima correspond to macro levels of organization at which emergent cause-effect properties of physical systems come into focus, and provide a natural vantage point for scientific inquiries. PMID:29684020

  6. Black-boxing and cause-effect power.

    Directory of Open Access Journals (Sweden)

    William Marshall

    2018-04-01

    Full Text Available Reductionism assumes that causation in the physical world occurs at the micro level, excluding the emergence of macro-level causation. We challenge this reductionist assumption by employing a principled, well-defined measure of intrinsic cause-effect power-integrated information (Φ, and showing that, according to this measure, it is possible for a macro level to "beat" the micro level. Simple systems were evaluated for Φ across different spatial and temporal scales by systematically considering all possible black boxes. These are macro elements that consist of one or more micro elements over one or more micro updates. Cause-effect power was evaluated based on the inputs and outputs of the black boxes, ignoring the internal micro elements that support their input-output function. We show how black-box elements can have more common inputs and outputs than the corresponding micro elements, revealing the emergence of high-order mechanisms and joint constraints that are not apparent at the micro level. As a consequence, a macro, black-box system can have higher Φ than its micro constituents by having more mechanisms (higher composition that are more interconnected (higher integration. We also show that, for a given micro system, one can identify local maxima of Φ across several spatiotemporal scales. The framework is demonstrated on a simple biological system, the Boolean network model of the fission-yeast cell-cycle, for which we identify stable local maxima during the course of its simulated biological function. These local maxima correspond to macro levels of organization at which emergent cause-effect properties of physical systems come into focus, and provide a natural vantage point for scientific inquiries.

  7. THE PRESENT COLLAPSE OF ROMANIAN HIGHER EDUCATION. CAUSES AND EFFECTS

    Directory of Open Access Journals (Sweden)

    GABRIELA DUMBRAVĂ

    2014-12-01

    Full Text Available The paper corroborates statistical data of economic and social nature in an attempt to outline the national and European context within which the Romanian educational system has constantly degraded over the past years. At the same time, the study exceeds the limits of a simple identification of causes and analyzes the collapse of higher education both as an ultimate consequence of governmental oblivion towards national education, and from the perspective of its devastating boomerang effect on the Romanian economy and on the society at large.

  8. I and C functional test facility malfunction cause and effect

    International Nuclear Information System (INIS)

    Kwon, Kee Choon.

    1997-06-01

    The objective of I and C function test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. To realize transient and accident situation in the FTF, the result of the activation of malfunction should be similar to the situation of real nuclear power plants. In this technical report, describe the Group, Malfunction No., Description, Option, Recommendations, Considered in Subroutine, Limitations, Cause, and Effect of the malfunctions implemented in FTF. (author)

  9. Effects of operative treatment for muscular asthenopia caused by esophoria

    Directory of Open Access Journals (Sweden)

    Tao Zeng

    2016-05-01

    Full Text Available AIM:To observe the effects of operative treatment for muscular asthenopia caused by esophoria. METHODS:Twenty-one cases(42 eyeswith muscular asthenopia caused by esophoria were included. After examination of refraction, phoria and fusion function, all cases were given operative treatment to correct esophoria. RESULTS:At 1wk after surgery, clinical symptoms were improved evidently in all cases, such as headache, diplopia and eye swelling. After followed up for 1a, no recrudescence was found. Before surgery, at 1wk and 1a after surgery, esophoria in the distance were 20.3△±6.3△,-3.1△±1.4△,0.7△±1.6△ respectively and esophoria in the near distance were 10.5△±3.1△,-1.3△±0.6△,1.5△±0.8△ respectively. By comparison of esophoria before and after surgery in different stages separately, the differences were statistically(PP>0.05. CONCLUSION:Esophoria operation may relieve obviously muscular asthenopia caused by esophoria without changing fusion function.

  10. Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces.

    Science.gov (United States)

    Gaw, Sheng Long; Sarkar, Sujoy; Nir, Sivan; Schnell, Yafit; Mandler, Daniel; Xu, Zhichuan J; Lee, Pooi See; Reches, Meital

    2017-08-09

    Biofouling, the adsorption of organisms to a surface, is a major problem today in many areas of our lives. This includes: (i) health, as biofouling on medical device leads to hospital-acquired infections, (ii) water, since the accumulation of organisms on membranes and pipes in desalination systems harms the function of the system, and (iii) energy, due to the heavy load of the organic layer that accumulates on marine vessels and causes a larger consumption of fuel. This paper presents an effective electrochemical approach for generating antifouling and antimicrobial surfaces. Distinct from previously reported antifouling or antimicrobial electrochemical studies, we demonstrate the formation of a hydrogen gas bubble layer through the application of a low-voltage square-waveform pulses to the conductive surface. This electrochemically generated gas bubble layer serves as a separation barrier between the surroundings and the target surface where the adhesion of bacteria can be deterred. Our results indicate that this barrier could effectively reduce the adsorption of bacteria to the surface by 99.5%. We propose that the antimicrobial mechanism correlates with the fundamental of hydrogen evolution reaction (HER). HER leads to an arid environment that does not allow the existence of live bacteria. In addition, we show that this drought condition kills the preadhered bacteria on the surface due to water stress. This work serves as the basis for the exploration of future self-sustainable antifouling techniques such as incorporating it with photocatalytic and photoelectrochemical reactions.

  11. Surface effects on converse piezoelectricity of crystals.

    Science.gov (United States)

    Molayem, Mohammad; Springborg, Michael; Kirtman, Bernard

    2017-09-20

    The contribution of surface units to bulk properties are often neglected in theoretical and computational studies of crystalline systems. We demonstrate that this assumption has to be made with caution in the case of (electric field) polarization. As a generalization of an earlier work on quasi-one-dimensional systems [Springborg, et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 165442], it is shown that the polarization for 2D and 3D systems contains a surface contribution that can, in principle, take any value (within physical limits) and has consequences for converse piezoelectric responses. Subsequently, we determine the surface effects quantitatively for a group of ferroelectric perovskite structures. Our results indicate that such contributions can be substantial.

  12. Effects of XPS operational parameters on investigated sample surfaces

    International Nuclear Information System (INIS)

    Mrad, O.; Ismail, I.

    2013-04-01

    In this work, we studied the effects of the operating conditions of the xray photoelectron spectroscopy analysis technique (XPS) on the investigated samples. Firstly, the performances of the whole system have been verified as well as the accuracy of the analysis. Afterwards, the problem of the analysis of insulating samples caused by the charge buildup on the surface has been studied. The use of low-energy electron beam (<100 eV) to compensate the surface charge has been applied. The effect of X-ray on the samples have been assessed and was found to be nondestructive within the analysis time. The effect of low- and high-energy electron beams on the sample surface have been investigated. Highenergy electrons were found to have destructive effect on organic samples. The sample heating procedure has been tested and its effect on the chemical stat of the surface was followed. Finally, the ion source was used to determine the elements distribution and the chemical stat of different depths of the sample. A method has been proposed to determine these depths (author).

  13. The greenhouse effect: Its causes, possible impacts, and associated uncertainties

    International Nuclear Information System (INIS)

    Schneider, S.H.; Rosenberg, N.J.

    1991-01-01

    The Earth's climate changes. The climatic effects of having polluted the atmosphere with gases such as carbon dioxide (CO2) may already be felt. There is no doubt that the concentration of CO2 in the atmosphere has been rising. CO2 tends to trap heat near the Earth's surface. This is known as the greenhouse effect, and its existence and basic mechanisms are not questioned by atmospheric scientists. What is questioned is the precise amount of warming and the regional pattern of climatic change that can be expected on the Earth from the anthropogenic increase in the atmospheric concentration of CO2 and other greenhouse gases. It is the regional patterns of changes in temperature, precipitation, and soil moisture that will determine what impact the greenhouse effect will have on natural ecosystems, agriculture, and water supplies. These possible effects are discussed in detail. It is concluded, however, that a detailed assessment of the climatic, biological, and societal changes that are evolving and should continue to occur into the next century cannot reliably be made with available scientific capabilities. Nevertheless, enough is known to suggest a range of plausible futures with attendant impacts, both positive and negative, on natural resources and human well being

  14. Effect of surface fouling on the output of PV panels

    Science.gov (United States)

    Zhang, Zele

    2018-04-01

    Surface fouling on the photovoltaic system caused by the output of a certain impact, therefore, it is very important to explore the effect of fouling on its contribution. Through the use of photovoltaic panels to collect Baoding area under different weather output data, and the collected data for comparative analysis, obtained under different environments on the impact of its contribution. It is concluded that the output of the photovoltaic cells will decrease, and the power drop rate will stabilize after three or four days. The effect of fouling on the fog haze and low temperature is more obvious.

  15. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults.

    Science.gov (United States)

    Madrid, Eva; Urrútia, Gerard; Roqué i Figuls, Marta; Pardo-Hernandez, Hector; Campos, Juan Manuel; Paniagua, Pilar; Maestre, Luz; Alonso-Coello, Pablo

    2016-04-21

    Inadvertent perioperative hypothermia is a phenomenon that can occur as a result of the suppression of the central mechanisms of temperature regulation due to anaesthesia, and of prolonged exposure of large surfaces of skin to cold temperatures in operating rooms. Inadvertent perioperative hypothermia has been associated with clinical complications such as surgical site infection and wound-healing delay, increased bleeding or cardiovascular events. One of the most frequently used techniques to prevent inadvertent perioperative hypothermia is active body surface warming systems (ABSW), which generate heat mechanically (heating of air, water or gels) that is transferred to the patient via skin contact. To assess the effectiveness of pre- or intraoperative active body surface warming systems (ABSW), or both, to prevent perioperative complications from unintended hypothermia during surgery in adults. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 9, 2015); MEDLINE (PubMed) (1964 to October 2015), EMBASE (Ovid) (1980 to October 2015), and CINAHL (Ovid) (1982 to October 2015). We included randomized controlled trials (RCTs) that compared an ABSW system aimed at maintaining normothermia perioperatively against a control or against any other ABSW system. Eligible studies also had to include relevant clinical outcomes other than measuring temperature alone. Several authors, by pairs, screened references and determined eligibility, extracted data, and assessed risks of bias. We resolved disagreements by discussion and consensus, with the collaboration of a third author. We included 67 trials with 5438 participants that comprised 79 comparisons. Forty-five RCTs compared ABSW versus control, whereas 18 compared two different types of ABSW, and 10 compared two different techniques to administer the same type of ABSW. Forced-air warming (FAW) was by far the most studied intervention.Trials varied widely regarding whether the interventions were

  16. Vascular pathology: Cause or effect in Alzheimer disease?

    Science.gov (United States)

    Rius-Pérez, S; Tormos, A M; Pérez, S; Taléns-Visconti, R

    2018-03-01

    Alzheimer disease (AD) is the main cortical neurodegenerative disease. The incidence of this disease increases with age, causing significant medical, social and economic problems, especially in countries with ageing populations. This review aims to highlight existing evidence of how vascular dysfunction may contribute to cognitive impairment in AD, as well as the therapeutic possibilities that might arise from this evidence. The vascular hypothesis emerged as an alternative to the amyloid cascade hypothesis as an explanation for the pathophysiology of AD. This hypothesis locates blood vessels as the origin for a variety of pathogenic pathways that lead to neuronal damage and dementia. Destruction of the organisation of the blood brain barrier, decreased cerebral blood flow, and the establishment of an inflammatory context would thus be responsible for any subsequent neuronal damage since these factors promote aggregation of β-amyloid peptide in the brain. The link between neurodegeneration and vascular dysfunction pathways has provided new drug targets and therapeutic approaches that will add to the treatments for AD. It is difficult to determine whether the vascular component in AD is the cause or the effect of the disease, but there is no doubt that vascular pathology has an important relationship with AD. Vascular dysfunction is likely to act synergistically with neurodegenerative changes in a cycle that exacerbates the cognitive impairment found in AD. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    Science.gov (United States)

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  18. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  19. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  20. Radiation effects on lead silicate glass surfaces

    International Nuclear Information System (INIS)

    Wang, P.W.; Zhang, L.P.; Borgen, N.; Pannell, K.

    1996-01-01

    Radiation-induced changes in the microstructure of lead silicate glass were investigated in situ under Mg K α irradiation in an ultra-high vacuum (UHV) environment by X-ray photoelectron spectroscopy (XPS). Lead-oxygen bond breaking resulting in the formation of pure lead was observed. The segregation, growth kinetics and the structural relaxation of the lead, with corresponding changes in the oxygen and silicon on the glass surfaces were studied by measuring the time-dependent changes in concentration, binding energy shifts, and the full width at half maximum. A bimodal distribution of the oxygen XPS signal, caused by bridging and non-bridging oxygens, was found during the relaxation process. All experimental data indicate a reduction of the oxygen concentration, a phase separation of the lead from the glass matrix, and the metallization of the lead occurred during and after the X-ray irradiation. (author)

  1. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  2. Erosion of Brassica incana Genetic Resources: Causes and Effects

    Science.gov (United States)

    Muscolo, A.; Settineri, G.; Mallamaci, C.; Papalia, T.; Sidari, M.

    2017-07-01

    Brassica incana Ten., possessing a number of useful agronomic traits, represents a precious genetic resource to be used in plant breeding programs to broaden the genetic base in most Brassica crop species. B. incana that grows on limestone cliffs is at risk of genetic erosion for environmental constraints and human activities. We studied the pedological conditions of a Calabrian site where the B. incana grows, and we correlated the soil properties to the physiological and biochemical aspects of B. incana to identify the causes and effects of the genetic erosion of this species. Our results evidenced that physical soil conditions did not affect B. incana growth and nutraceutical properties; conversely, biological soil properties modified its properties. We identified leaf pigments and secondary metabolites that can be used routinely as early warning indicators of plant threat, to evaluate in a short term the dynamic behavior of plants leading to species extinction.

  3. Ion bombardment effect on surface state of metal

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.

    1990-01-01

    The effect of slow argon ion bombardment on the surface microstructure of polycrystalline copper as well as the effect of surface state on sputtering of D-16 polycrystalline alloy are experimentally studied. Reduction of copper surface roughness is observed. It is shown that the D-16 alloy sputtering coefficient is sensitive to the surface state within the limits of the destructed surface layer

  4. Exploring environmental causes of altered ras effects: fragmentation plus integration?

    Science.gov (United States)

    Porta, Miquel; Ayude, Daniel; Alguacil, Juan; Jariod, Manuel

    2003-02-01

    Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects. Copyright 2003 Wiley-Liss, Inc.

  5. The causes of geometry effects in ductile tearing

    International Nuclear Information System (INIS)

    Dexter, R.J.; Griesbach, T.J.

    1993-01-01

    An adequate understanding of geometry effects in ductile tearing can only be achieved when the different causes of the effects are distinguished and these geometry effects are linked to particular micromechanical fracture processes or global deformation mechanisms. It is shown that the micromechanical process of ductile (fibrous) fracture is dependent on achieving a critical strain, which is only slightly dependent on the stress state for the range of triaxiality conditions in pressure vessels and through-cracked plates. Under certain conditions, the crack tip strain can be shown to scale with the value of the J integral and there is a direct connection between J and the underlying micro mechanical process. This connection is lost for significant crack extension or large-scale plasticity. Nevertheless the J integral may still be use on an empirical basis under some conditions. Under fully-plastic conditions the primary source of geometry dependence in the J-R curves is due to the geometry dependence of the shape and volume of the plastic region that develops around the uncracked ligament. This occurs because J is essentially proportional to the total plastic work done on the specimen. If it can be assured that the fracture mode in both the test specimen and the structure will remain fully fibrous, it is conservative to extrapolate J-R curves generated from small compact specimens for the analysis of pressure vessel crack stability. 132 refs., 12 figs., 3 tabs

  6. Regional distribution patterns of chemical parameters in surface sediments of the south-western Baltic Sea and their possible causes

    Science.gov (United States)

    Leipe, T.; Naumann, M.; Tauber, F.; Radtke, H.; Friedland, R.; Hiller, A.; Arz, H. W.

    2017-12-01

    This study presents selected results of a sediment geochemical mapping program of German territorial waters in the south-western Baltic Sea. The field work was conducted mainly during the early 2000s. Due to the strong variability of sediment types in the study area, it was decided to separate and analyse the fine fraction (<63 μm, mud) from more than 600 surficial samples, combined with recalculations for the bulk sediment. For the contents of total organic carbon (TOC) and selected elements (P, Hg), the regional distribution maps show strong differences between the analysed fine fraction and the recalculated total sediment. Seeing that mud contents vary strongly between 0 and 100%, this can be explained by the well-known grain-size effect. To avoid (or at least minimise) this effect, further interpretations were based on the data for the fine fraction alone. Lateral transport from the large Oder River estuary combined with high abundances and activities of benthic fauna on the shallow-water Oder Bank (well sorted fine sand) could be some main causes for hotspots identified in the fine-fraction element distribution. The regional pattern of primary production as the main driver of nutrient element fixation (C, N, P, Si) was found to be only weakly correlated with, for example, the TOC distribution in the fine fraction. This implies that, besides surface sediment dynamics, local conditions (e.g. benthic secondary production) also have strong impacts. To the best of the authors' knowledge, there is no comparable study with geochemical analyses of the fine fraction of marine sediments to this extent (13,600 km2) and coverage (between 600 and 800 data points) in the Baltic Sea. This aspect proved pivotal in confidently pinpointing geochemical "anomalies" in surface sediments of the south-western Baltic Sea.

  7. A study of solar magnetic fields below the surface, at the surface, and in the solar atmosphere - understanding the cause of major solar activity

    Science.gov (United States)

    Chintzoglou, Georgios

    2016-04-01

    magnetic flux tubes while forming ARs on the surface. Using advanced 3D visualization tools and applying this technique on a complex flare and CME productive AR, we found that the magnetic flux tubes involved in forming the complex AR may originate from a single progenitor flux tube in the SCZ. The complexity can be explained as a result of vertical and horizontal bifurcations that occurred on the progenitor flux tube. Third, this dissertation proposes a new scenario on the origin of major solar activity. When more than one flux tubes are in close proximity to each other while they break through the photospheric surface, collision and shearing may occur as they emerge. Once this collisional shearing occurs between nonconjugated sunspots (opposite polarities not belonging to the same bipole), major solar activity is triggered. The collision and the shearing occur due to the natural separation of polarities in emerging bipoles. This is forcing changes in the connectivity close to the photosphere (up to a few local pressure scale heights above the surface) by means of photospheric reconnection and subsequent submergence of small bipoles at the collision interface (polarity inversion line; PIL). In this continuous collision, more poloidal flux is added to the system effectively creating an expanding MFR into the corona, explaining the observation of filament formation above the PIL together with flare activity and CMEs. Our results reject two popular scenarios on the possible cause of solar eruptions (1) eruption occurs due to shearing motion between conjugate polarities, and, (2) bodily emergence of an MFR.

  8. Sudden oak death-caused changes to surface fuel loading and potential fire behavior in Douglas-fir-tanoak forests

    Science.gov (United States)

    Y.S. Valachovic; C.A. Lee; H. Scanlon; J.M. Varner; R. Glebocki; B.D. Graham; D.M. Rizzo

    2011-01-01

    We compared stand structure and fuel loading in northwestern California forests invaded by Phytophthora ramorum, the cause of sudden oak death, to assess whether the continued presence of this pathogen alters surface fuel loading and potential fire behavior in ways that may encumber future firefighting response. To attempt to account for these...

  9. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  10. Longitudinal surface curvature effect in magnetohydrodynamics

    International Nuclear Information System (INIS)

    Bodas, N.G.

    1975-01-01

    The two-dimensional motion of an incompressible and electrically conducting fluid past an electrically insulated body surface (having curvature) is studied for a given O(1) basic flow and magnetic field, when (i) the applied magnetic field is aligned with the velocity in the basic flow, and (ii) the applied magnetic field is within the body surface. 01 and 0(Re sup(1/2)) mean the first and second order approximations respectively in an exansion scheme in powers of Resup(-1/2), Re being the Reynolds number). The technique of matched asymptotic expansions is used to solve the problem. The governing partial differential equations to 0(Resup(-1/2)) boundary layer approximation are found to give similarity solutions for a family of surface curvature and pressure gradient distributions in case (i), and for uniform basic flow with analytic surface curvature distributions in case (ii). The equations are solved numerically. In case (i) it is seen that the effect of the magnetic field on the skin-friction- correction due to the curvature is very small. Also the magnetic field at the wall is reduced by the curvature on the convex side. In case (ii) the magnetic field significantly increases the skin-friction-correction due to the curvature. The effect of the magnetic field on the O(1) and O(Resup(-1/2)) skin friction coefficients increases with the increase of the electrical conductivity of the fluid. Also, at higher values of the magnetic pressure, moderate changes in the electrical conductivity do not influence the correction to the skin-friction significantly. (Auth.)

  11. Surface kinetic roughening caused by dental erosion: An atomic force microscopy study

    Science.gov (United States)

    Quartarone, Eliana; Mustarelli, Piercarlo; Poggio, Claudio; Lombardini, Marco

    2008-05-01

    Surface kinetic roughening takes place both in case of growth and erosion processes. Teeth surfaces are eroded by contact with acid drinks, such as those used to supplement mineral salts during sporting activities. Calcium-phosphate based (CPP-ACP) pastes are known to reduce the erosion process, and to favour the enamel remineralization. In this study we used atomic force microscopy (AFM) to investigate the surface roughening during dental erosion, and the mechanisms at the basis of the protection role exerted by a commercial CPP-ACP paste. We found a statistically significant difference (p<0.01) in the roughness of surfaces exposed and not exposed to the acid solutions. The treatment with the CPP-ACP paste determined a statistically significant reduction of the roughness values. By interpreting the AFM results in terms of fractal scaling concepts and continuum stochastic equations, we showed that the protection mechanism of the paste depends on the chemical properties of the acid solution.

  12. Laser assisted decontamination of metal surface: Evidence of increased surface absorptivity due to field enhancement caused by transparent/semi-transparent contaminant particulates

    International Nuclear Information System (INIS)

    Nilaya, J. Padma; Biswas, Dhruba J.

    2010-01-01

    Small signal absorption measurements of the incident coherent radiation by the metal surface have revealed an increase in the absorption by the surface in presence of transparent/semi-transparent particulates on it. This effect, identified as field enhanced surface absorption, has been found to increase with reduction in the average particulate size. Consequently higher laser assisted removal efficiency of contamination from a metal surface has been observed for smaller contaminant particulates. These measurements have been carried out utilizing coherent radiations of two different wavelengths so chosen that for one the particulates are totally transparent while for the other they are partially transparent.

  13. Surface effects in segmented silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kopsalis, Ioannis

    2017-05-15

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO{sub 2} layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO{sub 2} and at the Si-SiO{sub 2} interface. In this thesis the surface radiation damage of the Si-SiO{sub 2} system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO{sub 2} of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO{sub 2}) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO{sub 2} interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface

  14. Surface effects in segmented silicon sensors

    International Nuclear Information System (INIS)

    Kopsalis, Ioannis

    2017-05-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO 2 layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO 2 and at the Si-SiO 2 interface. In this thesis the surface radiation damage of the Si-SiO 2 system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO 2 of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO 2 ) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO 2 interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface radiation damage of silicon sensors.

  15. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  16. On the Stress Transfer of Nanoscale Interlayer with Surface Effects

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    2018-01-01

    Full Text Available An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.

  17. EFFECT OF RATIO OF SURFACE AREA ON THE CORROSION RATE

    OpenAIRE

    Dody Prayitno; M. Irsyad

    2018-01-01

    Aluminum and steel are used to be a construction for a building outdoor panel. Aluminum and steel are connected by bolt and nut. An atmosphere due to a corrosion of the aluminum. The corrosion possibly to cause the hole diameter of bolt and nut to become larger. Thus the bolt and nut can not enough strong to hold the panel. The panel may collapse. The aim of the research is first to answer a question where does the corrosion starts. The second is to know the effect of ratio surface area of st...

  18. The Effect of Aquaplast on Surface Dose of Photon Beam

    International Nuclear Information System (INIS)

    Oh, Do Hoon; Bae, Hoon Sik

    1995-01-01

    Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy. Materials and Methods : To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in 25 X 25 X 3 cm 3 acrylic phantom and set on 25 X 25 X 5 cm 3 , polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 10 cm SSD for 5 X 5 cm 2 , 10 X 10 cm 2 , and 15 X 15 cm 2 field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types o Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and khan to correct over response of the Markus chamber. Results : The surface doses for open fields of 5 X 5 cm 2 , 10 X 10 cm 2 , 15 X 15 cm 2 were 7.9%, 13.6%, and 18.7% respectively. He original Aquaplast increased the surface doses upto 38.4%, 43.6% and 47.4% respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by 0.2%, 1.7%, 3.0% without Aquaplast, 0.2%, 1.9%, 3.7% with transformed Aquaplast, respectively. Conclusion : The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax

  19. Causes of global mean surface temperature slowdowns, trends and variations from months to a century, 1891-2015

    Science.gov (United States)

    Folland, C. K.; Boucher, O.; Colman, A.; Parker, D. E.

    2017-12-01

    The recent slowdown in the warming of global mean surface temperature (GST) has highlighted the influences of natural variability. This talk discusses reconstructions of the variations of GST down to the monthly time scale since 1891 using monthly forcing data. We show that most of the variations in annual, and to some extent sub-annual, GST since 1891 can be reproduced skillfully from known forcing factors external and internal to the climate system. This includes the slowdown in warming over about 1998-2013 where reconstruction skill is particularly high down to the multi-monthly time scale. The relative contributions of the several key forcing factors to GST continually vary, but most of the net warming since 1891 is reconstructed to be attributable to the net forcing due to increasing greenhouse gases and anthropogenic aerosols. Separate analyses are carried out for three periods of GST slowdown:- 1896-1910, 1941-1976, together with 1998-2013 and some of its sub periods. We also study two periods where strong warming occurred, 1911-1940 and 1977-1997. Comparisons are made with the skill of average GST provided by 40 CMIP5 models. In the recent 1998-2013 slowdown, TSI forcing appears to have caused significant cooling, particularly over 2001-2010. This is additional to well documented cooling effects of an increased frequency of La Nina events, a negative Interdecadal Pacific Oscillation and some increases in volcanic forcing. Although there are short-term features of the GST curve since 1891 that cannot be fully explained, the most serious disagreements between the reconstructions and observations occur in the Second World War, especially in 1944-1945. Here observed near worldwide SSTs may be biased significantly too warm. Despite this, our generally high reconstruction skill is consistent with a good understanding of the multiple causes of observed GST variations and the general veracity of the GST record since 1891.

  20. Defensiveness in Communication: Its Causes, Effects, and Cures.

    Science.gov (United States)

    Baker, William H.

    1980-01-01

    Analyzes defensiveness in communication as caused by an unwillingness to acknowledge and tolerate differences in others, a fear of change in ourselves, and a desire to avoid mental imbalance. It causes a deteriorating cycle between communicators but can be reduced by empathy, treatment of fellow communicators as equals, and genuineness. (JMF)

  1. Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks

    NARCIS (Netherlands)

    Mooij, J.M.; Peters, J.; Janzing, D.; Zscheischler, J.; Schölkopf, B.

    2016-01-01

    The discovery of causal relationships from purely observational data is a fundamental problem in science. The most elementary form of such a causal discovery problem is to decide whether X causes Y or, alternatively, Y causes X, given joint observations of two variables X,Y. An example is to decide

  2. Violence Against Women: Causes, Effects and Challenges to ...

    African Journals Online (AJOL)

    The paper discusses the types of violence against women such as physical, sexual and emotional abuse. It is argued that the causes of violence against women are multifarious but sex-ratio, male chauvinism, change of values, economic harship and legal protection are the major causes. The violence affects the social, ...

  3. Hypertension in Adults: Part 1. Prevalence, types, causes and effects

    African Journals Online (AJOL)

    Siegal_D

    Hyper / Hypothyroidism. ▫ Acromegaly. ▫ Hyperparathyroidism. ▫ Exogenous hormones, e.g. contraceptive pills, glucocorticoids. 2. Renal causes: ▫ Glomerulonephritis. ▫ Diabetic nephropathy. ▫ Polycystic kidney disease. ▫ Renal artery stenosis. 3. Other causes: ▫ Coarctation of the aorta. ▫ Pregnancy associated hypertension.

  4. Cause Related Marketing and its Effects on Employees

    Directory of Open Access Journals (Sweden)

    Victor Quiñones

    2009-09-01

    Full Text Available Research is lacking concerning the perspectives professional accountants and the administrative staffs working for a global firm strongly involved in social causes have concerning cause-related (CRM. This paper discusses internal customers’ (employees feelings towards cause-related marketing activities sponsored by their employer at an important accounting firm located in Puerto Rico. The results show that internal customers strongly favor the firms’ involvement in cause-related activities and that such activities not only increases the public perception of the firm, but in addition, the way the firm is perceived as an employer, by both the business and non-business communities. The main driving force supporting internal customers responses appear to be an increased awareness of worthy causes throughout our society, as well as employees urge in making significant contributions to their surrounding environment or community of which they are also part of.

  5. Selenium toxicity: cause and effects in aquatic birds

    Science.gov (United States)

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  6. Ni3Si surface-film formation caused by radiation-induced segregation

    International Nuclear Information System (INIS)

    Potter, D.I.; Rehn, L.E.; Okamoto, P.R.; Wiedersich, H.

    1977-01-01

    Several advanced alloys being considered for reactor applications contain the ordered γ' phase Ni 3 X in which the X component is frequently Al, Si and/or Ti. These alloys are precipitation hardened, and their strength depends upon the volume fraction, size, and spatial distribution of the coherent γ' precipitate. The investigation shows that a substantial Ni 3 Si precipitate film forms on the surface of irradiated specimens of solid-solution as well as two-phase Ni-Si alloys

  7. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    Science.gov (United States)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  8. ANALYSIS OF THE CAUSES AND EFFECTS OF RECIDIVISM IN ...

    African Journals Online (AJOL)

    GRACE

    objectives: causes, consequences, and prevention and control of recidivism in the Nigerian ... not only facing the Nigerian prison system but also the society at large. Abrifor et al. ..... Relational problems with peers, gender and delinquency.

  9. Motion-induced blindness and microsaccades: cause and effect

    NARCIS (Netherlands)

    Bonneh, Y.S.; Donner, T.H.; Sagi, D.; Fried, M.; Heeger, D.J.; Arieli, A.

    2010-01-01

    It has been suggested that subjective disappearance of visual stimuli results from a spontaneous reduction of microsaccade rate causing image stabilization, enhanced adaptation, and a consequent fading. In motion-induced blindness (MIB), salient visual targets disappear intermittently when

  10. Effect of corticosteroid therapy in acute pain edema caused by ...

    African Journals Online (AJOL)

    and skin lesions caused by herpes zoster, and to develop some pertinent therapeutic guidelines. Methods: A total of 48 ... antiviral, pain-relieving and nerve nutrition. They were ... nerve dysfunction as well as Ramsay-Hunt syndrome (facial.

  11. Surface Effects on Nanoscale Gas Flows

    Science.gov (United States)

    Beskok, Ali; Barisik, Murat

    2010-11-01

    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  12. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien

    2015-10-29

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  13. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien; Duran Retamal, Jose Ramon; Ke, Jr Jian; Kang, Chen Fang; He, Jr-Hau

    2015-01-01

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  14. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  15. AFM studies of a new type of radiation defect on mica surfaces caused by highly charged ion impact

    International Nuclear Information System (INIS)

    Ruehlicke, C.; Briere, M.A.; Schneider, D.

    1994-01-01

    Radiation induced defects on mica caused by the impact of slow very highly charged ions (SVHCI) have been investigated with an atomic force microscope (AFM). Freshly cleaved surfaces of different types of muscovite were irradiated with SVHCI extracted from the LLNL electron beam ion trap (EBIT) at velocities of ca. 2 keV/amu. Atomic force microscopy of the surface reveals the formation of blisterlike defects associated with single ion impact. The determined defect volume which appears to increase linearly with the incident charge state and exhibits a threshold incident charge state has been determined using the AFM. These results indicate that target atoms are subjected to mutual electrostatic repulsion due to ionization through potential electron emission upon approach of the ion. If the repulsion leads to permanent atomic displacement, surface defects are formed

  16. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    Science.gov (United States)

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  17. All-(111) surface silicon nanowire field effect transistor devices: Effects of surface preparations

    NARCIS (Netherlands)

    Masood, M.N.; Carlen, Edwin; van den Berg, Albert

    2014-01-01

    Etching/hydrogen termination of All-(111) surface silicon nanowire field effect (SiNW-FET) devices developed by conventional photolithography and plane dependent wet etchings is studied with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and

  18. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  19. Effect of machining parameters on surface textures in EDM of Fe-Mn-Al alloy

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hou, Max Ti-Kuang

    2007-01-01

    In this work, the surface characteristics caused by EDM were analyzed by means of the atomic force microscopy (AFM) technique. An empirical model of Fe-Mn-Al alloy was proposed based on the experimental data. A qualitative energy dispersive spectroscopic analyzer was used to measure the chemical composition of the specimen. Surface hardness was determined with a microhardness tester. Experimental results indicate that the EDM process causes a ridged surface and induces machining damage in the surface layer, and increases the surface roughness. The depth of micro-cracks, micro-voids and machined damage increase with an increase in the amount of pulsed current and pulse-on duration. The effect of the magnitude of the pulse-on duration on the surface texture of the specimen is more significant than the pulsed current. Furthermore, the AFM method reveals the 3D surface textures of the EDM specimen with a nanometer scale

  20. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    Science.gov (United States)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  1. Surface effect theory in binary alloys: surfaces with cut-off

    International Nuclear Information System (INIS)

    Kumar, V.; Silva, C.E.T.G. da; Moran-Lopez, J.L.

    1981-01-01

    A surface effect theory in binary alloys which ore ordered with surfaces with cut-off is presented. This theory is based in a model of pair interaction between first neighbours and includes long and short range effects. The (120) surface with sup(-) (110) monoatomic cut-off and terrace in the (110) planes of an alloy with body centered cubic structure is presented as example. Results for the concentrations in all the different surface sites are given. (L.C.) [pt

  2. Analyses of surface motions caused by the magnitude 9.0 2004 Sumatra earthquake

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Gudmundsson, Ó.

    The Sumatra, Indonesia, earthquake on December 26th was one of the most devastating earthquakes in history. With a magnitude of Mw = 9.0 it is the forth largest earthquake recorded since 1900. It occurred about one hundred kilometers off the west coast of northern Sumatra, where the relatively thin...... of years. The result was a devastating tsunami hitting coastlines across the Indian Ocean killing more than 225,000 people in Sri Lanka, India, Indonesia, Thailand and Malaysia. An earthquake of this magnitude is expected to involve a displacement on the fault on the order of 10 meters. But, what...... was the actual amplitude of the surface motions that triggered the tsunami? This can be constrained using the amplitudes of elastic waves radiated from the earthquake, or by direct measurements of deformation. Here we present estimates of the deformation based on continuous Global Positioning System (GPS...

  3. Causes, Spectrum and Effects of Surgical Child Abuse and Neglect ...

    African Journals Online (AJOL)

    BACKGROUND: Children are dependent on parents/care givers for the quality of health care services received and in developing countries, where they are not protected against child abuse; many die as a result of denial of appropriate treatment. OBJECTIVE: The objective of this study was to determine the causes, ...

  4. Climate change: Causes, effects and mitigation measures- A review ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... far more than at any time in the last 650,000 years resulting in climate change or global warming. Both natural and human causes of climate change including the earth's orbital changes, ... food production, loss of biodiversity, food insecurity, decreased animal health et cetera.

  5. Mucosal surface nodularity on upper gastrointestinal series (UGIS) : prospective analysis of its primary cause and prevalence of gastric malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Youn; Kim, Sun Mi; Kim, Ah Young; Kim, Tae Kyoung; Kim, Pyo Nyun; Ha, Hyun Kwon [Univ. of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2001-10-01

    Mucosal surface nodularity was defined as present at UGIS when multiple nodular defects larger than 5 mm were scattered in the gastric mucosa in an area greater than 5 x 5 cm. The purpose of this study was to determine the primary causes of this radiographic finding and to assess the incidence of gastric malignancy in these patients. During a one-year period were prospectively collected among patients who underwent UGIS, data for 51 [aged 30-78 (mean, 51) years] above who met the criteria of mucosal surface nodularity. Whether or not this was present was decided by two radiologists who in reaching a consensus excluded the possibility of erosive gastritis, indicated by central barium collection in the nodular defects. The primary causes of mucosal nodularity and associated gastric pathologies were determined by the histopathological results obtained from the specimens after surgery (n=18) or endoscopic biopsy (n=33). Pathological examinations revealed that the primary causes of the mucosal nodularity in these 51 patients were intestinal metaplasia in 28 (54.9%), MALT lymphoma in seven (13.7%), early gastric cancer in six (11.8%), chronic gastritis in five (9.8%), low grade dysplasia in four (7.8%), and gastritis cystica profunda in one (2%). Gastric malignancy was present either in or outside the area of mucosal nodularity in 34 (66/7%) of the 51 (27 carcinomas and 7 MALT lymphomas). No different patterns of mucosal surface nodularity were noted between the groups of each disease entity. Mucosal surface nodularity is observed at UGIS in various gastric pathologies. Because of the high incidence of gastric malignancy in these patients, close follow-up or gastrofiberscopic biopsy is mandatory.

  6. Mucosal surface nodularity on upper gastrointestinal series (UGIS) : prospective analysis of its primary cause and prevalence of gastric malignancy

    International Nuclear Information System (INIS)

    Park, Soo Youn; Kim, Sun Mi; Kim, Ah Young; Kim, Tae Kyoung; Kim, Pyo Nyun; Ha, Hyun Kwon

    2001-01-01

    Mucosal surface nodularity was defined as present at UGIS when multiple nodular defects larger than 5 mm were scattered in the gastric mucosa in an area greater than 5 x 5 cm. The purpose of this study was to determine the primary causes of this radiographic finding and to assess the incidence of gastric malignancy in these patients. During a one-year period were prospectively collected among patients who underwent UGIS, data for 51 [aged 30-78 (mean, 51) years] above who met the criteria of mucosal surface nodularity. Whether or not this was present was decided by two radiologists who in reaching a consensus excluded the possibility of erosive gastritis, indicated by central barium collection in the nodular defects. The primary causes of mucosal nodularity and associated gastric pathologies were determined by the histopathological results obtained from the specimens after surgery (n=18) or endoscopic biopsy (n=33). Pathological examinations revealed that the primary causes of the mucosal nodularity in these 51 patients were intestinal metaplasia in 28 (54.9%), MALT lymphoma in seven (13.7%), early gastric cancer in six (11.8%), chronic gastritis in five (9.8%), low grade dysplasia in four (7.8%), and gastritis cystica profunda in one (2%). Gastric malignancy was present either in or outside the area of mucosal nodularity in 34 (66/7%) of the 51 (27 carcinomas and 7 MALT lymphomas). No different patterns of mucosal surface nodularity were noted between the groups of each disease entity. Mucosal surface nodularity is observed at UGIS in various gastric pathologies. Because of the high incidence of gastric malignancy in these patients, close follow-up or gastrofiberscopic biopsy is mandatory

  7. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    Science.gov (United States)

    Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.

    2018-03-01

    Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.

  8. Climate effects caused by land plant invasion in the Devonian

    Science.gov (United States)

    Hir guillaume, Le; yannick, Donnadieu; yves, Goddéris; brigitte, Meyer-Berthaud; gilles, Ramstein

    2017-04-01

    Land plants invaded continents during the Mid-Paleozoic. Their spreading and diversification have been compared to the Cambrian explosion in terms of intensity and impact on the diversification of life on Earth. Whereas prior studies were focused on the evolution of the root system and its weathering contribution, here we investigated the biophysical impacts of plant colonization on the surface climate through changes in continental albedo, roughness, thermal properties, and potential evaporation using a 3D-climate model coupled to a global biogeochemical cycles associated to a simple model for vegetation dynamics adapted to Devonian conditions. From the Early to the Late Devonian, we show that continental surface changes induced by land plants and tectonic drift have produced a large CO2 drawdown without being associated to a global cooling, because the cooling trend is counteracted by a warming trend resulting from the surface albedo reduction. If CO2 is consensually assumed as the main driver of the Phanerozoic climate, during land-plant invasion, the modifications of soil properties could have played in the opposite direction of the carbon dioxide fall, hence maintaining warm temperatures during part of the Devonian.

  9. Mucin deficiency causes functional and structural changes of the ocular surface.

    Science.gov (United States)

    Floyd, Anne M; Zhou, Xu; Evans, Christopher; Rompala, Olivia J; Zhu, Lingxiang; Wang, Mingwu; Chen, Yin

    2012-01-01

    MUC5AC is the most abundant gel-forming mucin in the ocular system. However, the specific function is unknown. In the present study, a Muc5ac knockout (KO) mouse model was subject to various physiological measurements as compared to its wide-type (WT) control. Interestingly, when KO mice were compared to WT mice, the mean tear break up time (TBUT) values were significantly lower and corneal fluorescein staining scores were significantly higher. But the tear volume was not changed. Despite the lack of Muc5ac expression in the conjunctiva of KO mice, Muc5b expression was significantly increased in these mice. Corneal opacification, varying in location and severity, was found in a few KO mice but not in WT mice. The present results suggest a significant difference in the quality, but not the quantity, of tear fluid in the KO mice compared to WT mice. Dry eye disease is multifactorial and therefore further evaluation of the varying components of the tear film, lacrimal unit and corneal structure of these KO mice may help elucidate the role of mucins in dry eye disease. Because Muc5ac knockout mice have clinical features of dry eye, this mouse model will be extremely useful for further studies regarding the pathophysiology of the ocular surface in dry eye in humans.

  10. Mucin deficiency causes functional and structural changes of the ocular surface.

    Directory of Open Access Journals (Sweden)

    Anne M Floyd

    Full Text Available MUC5AC is the most abundant gel-forming mucin in the ocular system. However, the specific function is unknown. In the present study, a Muc5ac knockout (KO mouse model was subject to various physiological measurements as compared to its wide-type (WT control. Interestingly, when KO mice were compared to WT mice, the mean tear break up time (TBUT values were significantly lower and corneal fluorescein staining scores were significantly higher. But the tear volume was not changed. Despite the lack of Muc5ac expression in the conjunctiva of KO mice, Muc5b expression was significantly increased in these mice. Corneal opacification, varying in location and severity, was found in a few KO mice but not in WT mice. The present results suggest a significant difference in the quality, but not the quantity, of tear fluid in the KO mice compared to WT mice. Dry eye disease is multifactorial and therefore further evaluation of the varying components of the tear film, lacrimal unit and corneal structure of these KO mice may help elucidate the role of mucins in dry eye disease. Because Muc5ac knockout mice have clinical features of dry eye, this mouse model will be extremely useful for further studies regarding the pathophysiology of the ocular surface in dry eye in humans.

  11. Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis

    Science.gov (United States)

    Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad

    2017-11-01

    Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.

  12. Reduction of surface erosion caused by helium blistering in sintered beryllium and sintered aluminum powder

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.

    1976-01-01

    Studies have been conducted to find materials with microstructures which minimize the formation of blisters. A promising class of materials appears to be sintered metal powder with small average grain sizes and low atomic number Z. Studies of the surface erosion of sintered aluminum powder (SAP 895) and of aluminum held at 400 0 C due to blistering by 100 keV helium ions have been conducted and the results are compared to those obtained earlier for room temperature irradiation. A significant reduction of the erosion rate in SAP 895 in comparison to annealed aluminum and SAP 930 is observed. In addition results on the blistering of sintered beryllium powder (type I) irradiated at room temperature and 600 0 C by 100 keV helium ions are given. These results will be compared with those reported recently for vacuum cast beryllium foil and a foil of sintered beryllium powder (type II) which was fabricated differently, than type I. For room temperature irradiation only a few blisters could be observed in sintered beryllium powder type I and type II and they are smaller in size and in number than in vacuum cast beryllium. For irradiation at 600 0 C large scale exfoliation of blisters was observed for vacuum cast beryllium but much less exfoliation was seen for sintered beryllium powder, type I, and type II. The results show a reduction in erosion rate cast beryllium, for both room temperature and 600 0 C

  13. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  14. Selenium Poisoning of Wildlife and Western Agriculture: Cause and Effect

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    2000-02-01

    This project examined the hypothesis that selenium contamination is not the principal cause of the decline of endemic fish species in the Upper Colorado Basin. Activities employed to test this hypothesis included a reconnaissance of locations altered by recent road construction, a re-interpretation of available literature regarding selenium toxicity, and the interpretation of unpublished data obtained from the Upper Colorado Basin Fish Recovery Program. The project demonstrates that most of the evidence implicating selenium is circumstantial.

  15. Symptoms and causes : gender effects and institutional failures.

    OpenAIRE

    Hashimzade, N.; Vershinina, N.

    2017-01-01

    The existence and causes of gender gaps in pay and in occupational choice have been increasingly at the centre of research in economics, sociology, psychology, managerial science, and other fields. The research findings across countries and over time generally suggest that gaps exist and are significant, indicating that gender inequality remains persistent in many areas, even in the developed Western democracies. Forcefully closing the gaps directly, however, may not be sufficient in the long...

  16. Ionization waves caused by the effects of a magnetic field

    International Nuclear Information System (INIS)

    Miura, Kosuke; Imazu, Shingo

    1980-01-01

    The self-excited ionization waves was observed in the Ne positive column. The experiments were made for Ne gas from 0.07 to 1.0 Torr, with the magnetic field from 0 to 3.33 kG. The discharge current were 10 to 300 mA. The longitudinal magnetic field was made by an air-core solenoid coil. The axial electric field was measured by two wall probes. The frequency, wave length and amplitude of waves were measured with a photo multiplier. It was found that the longitudinal magnetic field caused new self-excited ionization waves. The frequency of these waves decreased monotonously with increasing field. The behaviors of the wave length and amplitude were complicate, and the cause of these phenomena is related to the ionization waves due to the spatial resonance of electron gas, namely s-waves, p-waves and fluid γ-waves. The threshold of the magnetic field to cause the ionization waves increased with increasing gas pressure, and with decreasing discharge current in the range 0.07 to 0.44 Torr. The frequency of the self-excited ionization waves occurred at zero field was almost constant in the field-frequency relation. A simple dispersion equation was derived, and the Novak constant can be introduced. (J.P.N.)

  17. Chemotherapy Side Effects: A Cause of Heart Disease?

    Science.gov (United States)

    ... Can chemotherapy side effects increase the risk of heart disease? Answers from Timothy J. Moynihan, M.D. Chemotherapy side effects may increase the risk of heart disease, including weakening of the heart muscle (cardiomyopathy) and ...

  18. Photoelectric effect in surface-barrier structures

    International Nuclear Information System (INIS)

    Kononenko, V.K.; Tupenevich, P.A.

    1985-08-01

    Deviations from the Fowler law were observed when investigating photoelectric emission in p-type ZnTe surface-barrier structures. The revealed peculiarities of the structure photosensitivity spectrum are explained by the electron transitions involving surface states at the metal-semiconductor interface. (author)

  19. Indicative Surfaces for Crystal Optical Effects

    OpenAIRE

    R.Vlokh,; O.Mys; O.Vlokh

    2005-01-01

    This paper has mainly a pedagogical meaning. Our aim is to demonstrate a correct general approach for constructing indicative surfaces of higher-rank tensors. We reconstruct the surfaces of piezo-optic tensor for beta-BaB2O4 and LiNbO3 crystals, which have been incorrectly presented in our recent papers.

  20. Antibacterial effect of surface pretreatment techniques against ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to evaluate the antibacterial surface pretreatment methods against Streptococcus mutans within the infected dentin surface using a tooth cavity model. Material and Methods: Seventy-two cavities were prepared on caries-free third molars (n = 8). After sterilization, teeth were inoculated ...

  1. Effects of Common Cause Failure on Electrical Systems

    International Nuclear Information System (INIS)

    Pepper, Kevin

    2015-01-01

    The essential electrical systems of reactor designs have developed progressively with an increased focus on the use of redundant, segregated and independent safety system equipment 'trains'. In this arrangement, essential safety functions associated with safe shutdown and cooling of the reactor are replicated on near identical electrical systems with each of the trains of safety system equipment supported by a fully rated standby generator. Development in designs has seen the number of trains increased to enable maintenance to be undertaken with reactors at power, improving the economics of the units whilst maintaining nuclear safety. This paper provides a background to common cause failure and provides examples where supporting guidance and international experience is available. It also highlights the regulatory guidance available to UK licensees. Recent examples of common cause failures on plant in the UK are presented together with an issue identified during the recent Generic Design Assessment review of new reactor designs within the UK. It was identified that one design was claiming a very low probability of failure associated with the loss of a single break and no-break voltage level, orders of magnitude below the target figure within ONR's Safety Assessment Principles. On closer scrutiny it was established that a significant safety function provided from identical low voltage switchboards would be lost in the event of a common cause failure affecting these boards. The paper will explain the action that has been taken by the requesting party to improve the resilience of the design and how this impacts on the ONR reliability targets for reactor designs within the UK. (authors)

  2. Effective training based on the cause analysis of operation errors

    International Nuclear Information System (INIS)

    Fujita, Eimitsu; Noji, Kunio; Kobayashi, Akira.

    1991-01-01

    The authors have investigated typical error types through our training experience, and analyzed the causes of them. Error types which are observed in simulator training are: (1) lack of knowledge or lack of its applying ability to actual operation; (2) defective mastery of skillbase operation; (3) rote operation or stereotyped manner; (4) mind-setting or lack of redundant verification; (5) lack of team work; (6) misjudgement for the plant overall conditions by operation chief, who directs a reactor operator and a turbine operator in the training. The paper describes training methods used in Japan for BWR utilities to overcome these error types

  3. Health effects of fluoride pollution caused by coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Ando, M.; Tadano, M.; Yamamoto, S.; Tamura, K.; Chen, X. [Regional Environment Division, National Institute for Environmental Studies, Tsukuba, 305-0083 Ibaraki (Japan); Asanuma, S. [Japan Institute of Rural Medicine, Usuda, Nagano (Japan); Watanabe, T. [Saku Central Hospital, Usuda, Nagano (Japan); Kondo, T. [Matsumoto Dental College, Shiojiri, Nagano (Japan); Sakurai, S. [Otsuma Women' s University, Tama, Tokyo (Japan); Ji, R.; Liang, C.; Cao, S. [Institute of Environmental Health and Engineering, Beijing (China); Hong, Z. [Shanxi Maternity and Children' s Hospital, Taiyuan (China)

    2001-04-23

    Recently a huge amount of fluoride in coal has been released into indoor environments by the combustion of coal and fluoride pollution seems to be increasing in some rural areas in China. Combustion of coal and coal bricks is the primary source of gaseous and aerosol fluoride and these forms of fluoride can easily enter exposed food products and the human respiratory tract. Major human fluoride exposure was caused by consumption of fluoride contaminated food, such as corn, chilies and potatoes. For each diagnostic syndrome of dental fluorosis, a log-normal distribution was observed on the logarithm of urinary fluoride concentration in students in China. Urinary fluoride content was found to be a primary health indicator of the prevalence of dental fluorosis in the community. In the fluorosis areas, osteosclerosis in skeletal fluorosis patients was observed with a high prevalence. A biochemical marker of bone resorption, urinary deoxypyridinoline content was much higher in residents in China than in residents in Japan. It was suggested that bone resorption was stimulated to a greater extent in residents in China and fluoride may stimulate both bone resorption and bone formation. Renal function especially glomerular filtration rate was very sensitive to fluoride exposure. Inorganic phosphate concentrations in urine were significantly lower in the residents in fluorosis areas in China than in non-fluorosis area in China and Japan. Since airborne fluoride from the combustion of coal pollutes extensively both the living environment and food, it is necessary to reduce fluoride pollution caused by coal burning.

  4. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  5. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  6. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    surface layers or bulk nanocrystalline metals and alloys more effectively. ... severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. .... scanning electron microscopy (SEM) (Zeiss, model: Sigma. VP), energy ...

  7. Tribological effects of polymer surface modification through plastic

    Indian Academy of Sciences (India)

    Tribological effects of polymer surface modification through plastic deformation. K O Low K J Wong ... In this regard, a surface modification technique through plastic deformation has been implemented. ... Bulletin of Materials Science | News.

  8. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  9. The Study of Foreign Object Damage Caused by Aircraft Operations on Unconventional and Bomb-Damaged Airfield Surfaces.

    Science.gov (United States)

    1981-06-01

    missile IR seeker heads and EO missiles such as MAVERICK should not be a problem for limited exposure of takeoff and landing. (3) Aircraft engines are...no rocks are thrown ahead of the tire. b. A trampoline effect exists directly behind the tire wherein the rebound of the soil tosses the surface...the fuselage skin as 138 scratches in the paint. One possible explanation is that the stones were raised by the trampoline effect and then received an

  10. Cause-and-effect mapping of critical events.

    Science.gov (United States)

    Graves, Krisanne; Simmons, Debora; Galley, Mark D

    2010-06-01

    Health care errors are routinely reported in the scientific and public press and have become a major concern for most Americans. In learning to identify and analyze errors health care can develop some of the skills of a learning organization, including the concept of systems thinking. Modern experts in improving quality have been working in other high-risk industries since the 1920s making structured organizational changes through various frameworks for quality methods including continuous quality improvement and total quality management. When using these tools, it is important to understand systems thinking and the concept of processes within organization. Within these frameworks of improvement, several tools can be used in the analysis of errors. This article introduces a robust tool with a broad analytical view consistent with systems thinking, called CauseMapping (ThinkReliability, Houston, TX, USA), which can be used to systematically analyze the process and the problem at the same time. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Environmental chemicals and autoimmune disease: cause and effect

    International Nuclear Information System (INIS)

    Hess, Evelyn V.

    2002-01-01

    Many important clues have been provided by the relationship of certain medications to lupus and other autoimmune syndromes. These are temporary conditions that resolve when the medication is removed. There are now over 70 such medications which have been reported related to these autoimmune conditions. Interest continues to grow in the potential for environmental substances to cause these syndromes. Among those under suspicion are hydrazines, tartrazines, hair dyes, trichloroethylene, industrial emissions and hazardous wastes. Other possible associations include silica, mercury, cadmium, gold and L canavanine. Two recognised outbreaks include 'toxic oil syndrome' related to contaminated rape seed oil in Spain in 1981 and exposure to a contaminated environmental substance associated with an autoimmune attack on muscle tissue in 1989. Recently, there have been proposals made for the definition and identification of environmentally associated immune disorders. The World Health Organisation (WHO) has also provided recent publications for other environmentally related problems. All these aspects will be presented and reviewed in detail

  12. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  13. Does neighborhood size really cause the word length effect?

    Science.gov (United States)

    Guitard, Dominic; Saint-Aubin, Jean; Tehan, Gerald; Tolan, Anne

    2018-02-01

    In short-term serial recall, it is well-known that short words are remembered better than long words. This word length effect has been the cornerstone of the working memory model and a benchmark effect that all models of immediate memory should account for. Currently, there is no consensus as to what determines the word length effect. Jalbert and colleagues (Jalbert, Neath, Bireta, & Surprenant, 2011a; Jalbert, Neath, & Surprenant, 2011b) suggested that neighborhood size is one causal factor. In six experiments we systematically examined their suggestion. In Experiment 1, with an immediate serial recall task, multiple word lengths, and a large pool of words controlled for neighborhood size, the typical word length effect was present. In Experiments 2 and 3, with an order reconstruction task and words with either many or few neighbors, we observed the typical word length effect. In Experiment 4 we tested the hypothesis that the previous abolition of the word length effect when neighborhood size was controlled was due to a confounded factor: frequency of orthographic structure. As predicted, we reversed the word length effect when using short words with less frequent orthographic structures than the long words, as was done in both of Jalbert et al.'s studies. In Experiments 5 and 6, we again observed the typical word length effect, even if we controlled for neighborhood size and frequency of orthographic structure. Overall, the results were not consistent with the predictions of Jalbert et al. and clearly showed a large and reliable word length effect after controlling for neighborhood size.

  14. In vitro chronic effects on hERG channel caused by the marine biotoxin Yessotoxin.

    Directory of Open Access Journals (Sweden)

    Sara Fernández Ferreiro

    2014-06-01

    Currently, published evidence indicates that hERG channel dysfunction can be due to more than one mechanism for many drugs (Guth, 2007. Alterations of hERG channel trafficking are considered an important factor in hERG-related cardiotoxicity. Actually, a screening study revealed that almost 40% of the drugs that block Ikr have also trafficking effects (Wible et al., 2005. Although YTX does not block hERG channels, it has been historically described as cardiotoxic due to in vivo damage to cardiomyocytes. Our results show that YTX induces a significant increase of hERG channel levels on the extracellular side of the plasma membrane in vitro. YTX causes cell death in many cell lines (Korsnes and Espenes, 2011 and the alterations of surface hERG levels might be related to the apoptotic process. However, annexin-V, a relatively early marker of apoptosis (Vermes et al., 1995, occurs later than the increase of surface hERG. Additionally, staurosporine triggered apoptosis without a simultaneous increase of surface hERG, so events are not necessarily related. Therefore YTX-induced elevated hERG in the plasma membrane seem to be independent of apoptosis. Functional implications of hERG currents have been described after alterations of cell surface hERG density (Guth, 2007. YTX did not cause significant alterations of hERG currents. Furthermore the hERG levels after YTX treatment were duplicated, so the effect on currents should be clearly evidenced if these channels were functional. The hERG channels on the cell surface are regulated by its production, translocation to the plasma membrane and degradation. The increase of extracellular channel could be a consequence of a higher production and externalization or a slower degradation. Higher synthesis in our cell model would not be physiologically relevant but our results demonstrated that the amount of immature hERG is reduced instead of increased. Fully glycosylated hERG seems slightly increased in these conditions but it is

  15. Radiation, waves, fields. Causes and effects on environment and health

    International Nuclear Information System (INIS)

    Leitgeb, N.

    1990-01-01

    The book discusses static electricity, alternating electric fields, magnetostatic fields, alternating magnetic fields, electromagnetic radiation, optical and ionizing radiation and their hazards and health effects. Each chapter presents basic physical and biological concepts and describes the common radiation sources and their biological effects. Each chapter also contains hints for everyday behaviour as well as in-depth information an specific scientific approaches for assessing biological effects; the latter are addressed to all expert readers working in these fields. There is a special chapter on the problem of so-called 'terrestrial radiation'. (orig.) With 88 figs., 31 tabs [de

  16. Antibacterial Effect of Surface Pretreatment Techniques against ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ... Objective: The aim of this study was to evaluate the antibacterial surface .... glass ionomer cement. ..... resin containing antibacterial monomer MDPB.

  17. Students' perceived causes and effects of examination malpratices ...

    African Journals Online (AJOL)

    ... and effects of examination malpratices: implications for counselling strategies. ... Thus, this study attempted to investigate the perception of students about the ... unseriousness, uncompleted syllabus, fear of failure and poor reading skills ...

  18. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  19. Nature and analysis of chemical species: pollution effects on surface waters and groundwater

    International Nuclear Information System (INIS)

    Young, R.H.F.

    1975-01-01

    A literature review of 103 items covers: nutrients in surface waters; runoff and waste discharges primarily from energy-intensive activities; groundwater pollution causes, effects, controls and monitoring; land and subsurface wastewater disposal; radionuclides; biological effects; thermal effluents; and biological and mathematical models for rivers

  20. The effect of cathode bias (field effect) on the surface leakage current of CdZnTe detectors

    International Nuclear Information System (INIS)

    Bolotnikov, A.E.; Hubert Chen, C.M.; Cook, W.R.; Harrison, F.A.; Kuvvetli, I.; Schindler, S.M.; Stahle, C.M.; Parker, B.H.

    2003-01-01

    Surface resistivity is an important parameter of multi-electrode CZT detectors such as coplanar-grid, strip, or pixel detectors. Low surface resistivity results in a high leakage current and affects the charge collection efficiency in the areas near contacts. Thus, it is always desirable to have the surface resistivity of the detector as high as possible. In the past the most significant efforts were concentrated to develop passivation techniques for CZT detectors. However, as we found, the field-effect caused by a bias applied on the cathode can significantly reduce the surface resistivity even though the detector surface was carefully passivated. In this paper we illustrate that the field-effect is a common feature of the CZT multi-electrode detectors, and discuss how to take advantage of this effect to improve the surface resistivity of CZT detectors

  1. Measurement of reactivity effect caused by nonuniform fuel distribution

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Nishina, Kojiro; Shiroya, Seiji

    1991-01-01

    A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem in a reprocessing plant. To estimate this reactivity effect theoretically, the ''Goertzel's necessary condition, and th Fuel Importance'' theory have been proposed. In order to verify these theories, we have performed systematic measurements of reactivity effect due to the nonuniformity in the fuel distribution within the Kyoto University Critical Assembly. Neutron flux distribution and Fuel Importance distribution were also determined. A nonuniform assembly whose fuel concentration in the center region was 40% higher than the uniform one was found to have an excess reactivity of 0.3%Δk/k, with the same total uranium mass for which the uniform assembly was just critical. Moreover, its spatial distribution of thermal neutron flux and of Fuel Importance were more flat than those of the uniform assembly, as expected by the Goertzel's condition and the Fuel Importance theory. (Author)

  2. Hypoxemia in patients with COPD: cause, effects, and disease progression.

    LENUS (Irish Health Repository)

    Kent, Brian D

    2012-02-01

    Chronic obstructive pulmonary disease (COPD) is a leading cause of death and disability internationally. Alveolar hypoxia and consequent hypoxemia increase in prevalence as disease severity increases. Ventilation\\/perfusion mismatch resulting from progressive airflow limitation and emphysema is the key driver of this hypoxia, which may be exacerbated by sleep and exercise. Uncorrected chronic hypoxemia is associated with the development of adverse sequelae of COPD, including pulmonary hypertension, secondary polycythemia, systemic inflammation, and skeletal muscle dysfunction. A combination of these factors leads to diminished quality of life, reduced exercise tolerance, increased risk of cardiovascular morbidity, and greater risk of death. Concomitant sleep-disordered breathing may place a small but significant subset of COPD patients at increased risk of these complications. Long-term oxygen therapy has been shown to improve pulmonary hemodynamics, reduce erythrocytosis, and improve survival in selected patients with severe hypoxemic respiratory failure. However, the optimal treatment for patients with exertional oxyhemoglobin desaturation, isolated nocturnal hypoxemia, or mild-to-moderate resting daytime hypoxemia remains uncertain.

  3. Atrial Fibrillation and Heart Failure - Cause or Effect?

    Science.gov (United States)

    Prabhu, Sandeep; Voskoboinik, Aleksandr; Kaye, David M; Kistler, Peter M

    2017-09-01

    There are emerging epidemics of atrial fibrillation (AF) and heart failure in most developed countries, with a significant health burden. Due to many shared pathophysiological mechanisms, which facilitate the maintenance of each condition, AF and heart failure co-exist in up to 30% of patients. In the circumstance where known structural causes of heart failure (such as myocardial infarction) are absent, patients presenting with both conditions present a unique challenge, particularly as the temporal relationship of each condition can often remain elusive from the clinical history. The question of whether the AF is driving, or significantly contributing to the left ventricular (LV) dysfunction, rather than merely a consequence of heart failure, has become ever more pertinent, especially as catheter ablation now offers a significant advancement over existing rhythm control strategies. This paper will review the inter-related physiological drivers of AF and heart failure before considering the implications from the outcomes of recent clinical trials in patients with AF and heart failure. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  4. Standard Test Method to Determine Color Change and Staining Caused by Aircraft Maintenance Chemicals upon Aircraft Cabin Interior Hard Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of color change and staining from liquid solutions, such as cleaning or disinfecting chemicals or both, on painted metallic surfaces and nonmetallic surfaces of materials being used inside the aircraft cabin. The effects upon the exposed specimens are measured with the AATCC Gray Scale for Color Change and AATCC Gray Color Scale for Staining. Note 1—This test method is applicable to any colored nonmetallic hard surface in contact with liquids. The selected test specimens are chosen because these materials are present in the majority of aircraft cabin interiors. 1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Eutrophication of an Urban Forest Ecosystem: Causes and Effects

    Science.gov (United States)

    Bednova, O. V.; Kuznetsov, V. A.; Tarasova, N. P.

    2018-01-01

    The combined use of methods of passive dosimetry of the status of atmospheric air, phytoindication, and cartographic visualization of data made it possible to elaborate and substantiate approaches to evaluation of the effect of atmospheric air contamination on the eutrophication of forest ecosystems under urban conditions.

  6. Does length or neighborhood size cause the word length effect?

    Science.gov (United States)

    Jalbert, Annie; Neath, Ian; Surprenant, Aimée M

    2011-10-01

    Jalbert, Neath, Bireta, and Surprenant (2011) suggested that past demonstrations of the word length effect, the finding that words with fewer syllables are recalled better than words with more syllables, included a confound: The short words had more orthographic neighbors than the long words. The experiments reported here test two predictions that would follow if neighborhood size is a more important factor than word length. In Experiment 1, we found that concurrent articulation removed the effect of neighborhood size, just as it removes the effect of word length. Experiment 2 demonstrated that this pattern is also found with nonwords. For Experiment 3, we factorially manipulated length and neighborhood size, and found only effects of the latter. These results are problematic for any theory of memory that includes decay offset by rehearsal, but they are consistent with accounts that include a redintegrative stage that is susceptible to disruption by noise. The results also confirm the importance of lexical and linguistic factors on memory tasks thought to tap short-term memory.

  7. Quantum Hall effect on Riemann surfaces

    Science.gov (United States)

    Tejero Prieto, Carlos

    2009-06-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  8. Quantum Hall effect on Riemann surfaces

    International Nuclear Information System (INIS)

    Tejero Prieto, Carlos

    2009-01-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  9. Size effect related to damping caused by water submersion

    International Nuclear Information System (INIS)

    Dong, R.G.

    1981-01-01

    An important effect of water submersion on the dynamic response of a structure is the increase in effective damping. The dynamic response of submerged structures is of interest in the nuclear power industry for reasons of operational safety during seismic and other dynamic excitations. In this paper, the added damping contribution that results from the viscosity of water and the dependence of the contribution on structural size are examined. Other factors considered are the applicable range of viscous damping with respect to displacement amplitude and, as far as damping is concerned, how far neighboring members must be from each other to respond as if in open water. An expression is derived for relating the damping value to structural size. Estimated added-damping values for representative fuel elements, fuel bundles, and main steam-pressure-relief-valve lines are given based on our derived expression for added damping

  10. Linguistic ostracism causes prejudice: Support for a serial mediation effect.

    Science.gov (United States)

    Hitlan, Robert Thomas; A Zárate, Michael; Kelly, Kristine M; Catherine DeSoto, M

    2016-01-01

    This research investigated the effects of linguistic ostracism, defined as any communication setting in which a target individual (or group) is ostracized by another individual (or group) in a language that the target has extremely limited ability to understand. Participants were included or ostracized by their group members during a computer-mediated group discussion. Half of the ostracized participants were linguistically ostracized via their group members conversing with one another in a language the participant did not know well (Spanish Ostracism: SO), or in a language the participant did know well (English Ostracism: EO). SO participants reported feeling less similar than both included and EO participants. SO participants also reported being angrier and expressed more prejudice than included participants (and EO participants using effect size estimates). Results also provided support for the hypothesized serial mediation model. Findings are discussed in terms of implications for intergroup relations.

  11. May disordered protein cause serious drug side effect?

    Science.gov (United States)

    Tou, Weng Ieong; Chen, Calvin Yu-Chian

    2014-04-01

    Insomnia is a self-reported disease where patients lose their ability to initiate and maintain sleep, leading to daytime performance impairment. Several drug targets to ameliorate insomnia symptoms have been discovered; however, these drug targets lead to serious side effects. Thus, we characterize the structural properties of these sleep-related receptors and the clock complex and discuss a possible drug design that will reduce side effects. Computational prediction shows that disordered property is shared. Over 30% of the structure of CLOCK, PER1/2/3, BMAL-1, muscarinic acetylcholine receptor-M1, melatonin receptor and casein kinase I are structurally disordered (the remaining proteins represent insomnia drugs might be closely related to the protein architecture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Effects on energetic impact of atomic clusters with surfaces

    International Nuclear Information System (INIS)

    Popok, V.N.; Vuchkovich, S.; Abdela, A.; Campbell, E.E.B.

    2007-01-01

    A brief state-of-the-art review in the field of cluster ion interaction with surface is presented. Cluster beams are efficient tools for manipulating agglomerates of atoms providing control over the synthesis as well as modification of surfaces on the nm-scale. The application of cluster beams for technological purposes requires knowledge of the physics of cluster-surface impact. This has some significant differences compared to monomer ion - surface interactions. The main effects of cluster-surface collisions are discussed. Recent results obtained in experiments on silicon surface nanostructuring using keV-energy implantation of inert gas cluster ions are presented and compared with molecular dynamics simulations. (authors)

  13. Food stress causes sex-specific maternal effects in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2015-08-01

    Life history theory predicts that females should produce few large eggs under food stress and many small eggs when food is abundant. We tested this prediction in three female-biased size-dimorphic predatory mites feeding on herbivorous spider mite prey: Phytoseiulus persimilis, a specialized spider mite predator; Neoseiulus californicus, a generalist preferring spider mites; Amblyseius andersoni, a broad diet generalist. Irrespective of predator species and offspring sex, most females laid only one small egg under severe food stress. Irrespective of predator species, the number of female but not male eggs decreased with increasing maternal food stress. This sex-specific effect was probably due to the higher production costs of large female than small male eggs. The complexity of the response to the varying availability of spider mite prey correlated with the predators' degree of adaptation to this prey. Most A. andersoni females did not oviposit under severe food stress, whereas N. californicus and P. persimilis did oviposit. Under moderate food stress, only P. persimilis increased its investment per offspring, at the expense of egg number, and produced few large female eggs. When prey was abundant, P. persimilis decreased the female egg sizes at the expense of increased egg numbers, resulting in a sex-specific egg size/number trade-off. Maternal effects manifested only in N. californicus and P. persimilis. Small egg size correlated with the body size of daughters but not sons. Overall, our study provides a key example of sex-specific maternal effects, i.e. food stress during egg production more strongly affects the sex of the large than the small offspring. © 2015. Published by The Company of Biologists Ltd.

  14. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  15. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...

  16. Protective effect of rutin on cognitive impairment caused by phenytoin

    Science.gov (United States)

    Dubey, Shagun; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen

    2015-01-01

    Objective: To study the effect of the co-administration of phenytoin (PHT) and rutin in comparison with PHT and piracetam (PIM) on seizure control, cognitive, and motor functions in mice. Materials and Methods: Increasing current electroshock seizure (ICES) test was used to evaluate the effect of the co-administration of PHT and PIM on convulsions. Cognitive functions in mice were assessed by a spontaneous alternation in behavior on a plus maze while motor functions were screened using rolling roller apparatus and by counting the number of arms entries on a plus maze. Brain acetyl-cholinesterase (AChE) activity was also estimated. Statistical Analysis: The expression of data was done as mean ± standard error of the mean. The normally distributed data were subjected to one-way ANOVA followed by Dunnett's test. P < 0.05 was considered significant. Results: The study showed that rutin when co-administered with PHT, significantly reversed PHT-induced reduction in spontaneous alternation without altering the efficacy of PHT against ICES, in both acute and chronic studies. Further, it also reversed PHT-induced increase in AChE activity. Conclusion: Rutin alleviated the PHT-induced cognitive impairment without compromising its antiepileptic efficacy. PMID:26729954

  17. What causes the density effect in young forest plantations?; FINAL

    International Nuclear Information System (INIS)

    Barbara J. Bond; Gary A. Ritchie

    2002-01-01

    In young forest plantations, trees planted at high densities frequently show more rapid height and diameter growth than those plants at lower densities. This positive growth response to density (the ''density effect'') often manifests long before seedlings are tall enough to shade one another, so it is not a simple response to shade. The mechanism(s) which trigger and sustain this growth enhancement are unknown. Our objectives were to document the temporal dynamics of positive growth response to increasing density in Douglas-fir plantations and to test two hypotheses as potential mechanisms for this response. The hypotheses are (1) a canopy boundary layer effect, and (2) alterations in the quality of light reflected from neighboring trees. The ''boundary layer'' hypotheses proposes that changes in atmospheric mixing occur in high-density plantations, promoting increased concentrations of CO(sub 2) and H(sub 2)O vapor during early morning hours, which in turn would enhance carbon assimilation. The ''light quality'' hypothesis proposes that the presence of neighbors alters the ratio of red to far red light in the canopy environment. Plant sensors detect this change in light quality, and growth and development is altered in response. We found that boundary layer conductance was higher, as we predicted, in low-density Douglas-fir stands than in high-density stands five years after planting. The changes in boundary conductance were accompanied by higher CO(sub 2) and H(sub 2)O vapor during early morning hours. However, we also found that the primary manifestation of the density effect in Douglas-fir occurs two to four years after planting, and we were not able to measure differences in boundary conductance in different densities at that time. Also, we found no difference in carbon isotope composition of wood cellulose formed in high- vs. low-density stands two to three years after planting. We conclude that although stand density may have a significant impact on

  18. Effects of surface deposition and droplet injection on film cooling

    International Nuclear Information System (INIS)

    Wang, Jin; Cui, Pei; Vujanović, Milan; Baleta, Jakov; Duić, Neven; Guzović, Zvonimir

    2016-01-01

    Highlights: • Cooling effectiveness is significantly affected by the deposition size. • Coverage area for model without mist is reduced by increasing the deposition height. • Wall temperature is decreased by 15% with 2% mist injection. • Cooling coverage is increased by more than three times with 2% mist injection. • Cooling effectiveness for mist models is improved by increasing deposition height. - Abstract: In the present research, the influence of the particle dispersion onto the continuous phase in film cooling application was analysed by means of numerical simulations. The interaction between the water droplets and the main stream plays an important role in the results. The prediction of two-phase flow is investigated by employing the discrete phase model (DPM). The results present heat transfer characteristics in the near-wall region under the influence of mist cooling. The local wall temperature distribution and film cooling effectiveness are obtained, and results show that the film cooling characteristics on the downstream wall are affected by different height of surface deposits. It is also found that smaller deposits without mist injection provide a lower wall temperature and a better cooling performance. With 2% mist injection, evaporation of water droplets improves film cooling effectiveness, and higher deposits cause lateral and downstream spread of water droplets. The results indicate that mist injection can significantly enhance film cooling performance.

  19. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  20. Study on shadowing effect caused by transient rods at NSRR

    International Nuclear Information System (INIS)

    Nakamura, T.; Yachi, S.; Ishijima, K.

    1992-01-01

    Irregularly inserted three control rods created so called shadowing effects on some of the neutronic instruments at the Nuclear Safety Research Reactor (NSRR). During operations at the reactor power of up to 10 MW, the three control rods called transient rods, could be fully or partly inserted into the NSRR core. Reactor power monitors located outside of the core at the direction of deeply inserted transient rods indicated lower power in such operations. Power profiles of the reactor and neutron fluxes at power monitor locations were calculated with a three dimensional neutron diffusion code, CITATION. The calculation indicated that the real reactor power could be smaller than the measured maximum power by as mush as 30 % in such operations. The calculated neutron fluxes well described the changes in the apparent power monitor indications as a function of the transient rod position. (author)

  1. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  2. Effects of environment pollution on the ocular surface.

    Science.gov (United States)

    Jung, Se Ji; Mehta, Jodhbir S; Tong, Louis

    2018-04-01

    The twenty-first century is fraught with dangers like climate change and pollution, which impacts human health and mortality. As levels of pollution increase, respiratory illnesses and cardiovascular ailments become more prevalent. Less understood are the eye-related complaints, which are commonly associated with increasing pollution. Affected people may complain of irritation, redness, foreign body sensation, tearing, and blurring of vision. Sources of pollution are varied, ranging from gases (such as ozone and NO 2 ) and particulate matter produced from traffic, to some other hazards associated with indoor environments. Mechanisms causing ocular surface disease involve toxicity, oxidative stress, and inflammation. Homeostatic mechanisms of the ocular surface may adapt to certain chronic changes in the environment, so affected people may not always be symptomatic. However there are many challenges associated with assessing effects of air pollution on eyes, as pollution is large scale and difficult to control. Persons with chronic allergic or atopic tendencies may have a pre-existing state of heightened mucosal immune response, hence they may have less tolerance for further environmental antigenic stimulation. It is beneficial to identify vulnerable people whose quality of life will be significantly impaired by environmental changes and provide counter measures in the form of protection or treatment. Better technologies in monitoring of pollutants and assessment of the eye will facilitate progress in this field. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  4. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  5. Surface effects in black hole physics

    International Nuclear Information System (INIS)

    Damour, T.

    1982-01-01

    This contribution reviews briefly the various analogies which have been drawn between black holes and ordinary physical objects. It is shown how, by concentrating on the properties of the surface of a black hole, it is possible to set up a sequence of tight analogies allowing one to conclude that a black hole is, qualitatively and quantitatively, similar to a fluid bubble possessing a negative surface tension and endowed with finite values of the electrical conductivity and of the shear and bulk viscosities. These analogies are valid simultaneously at the levels of electromagnetic, mechanical and thermodynamical laws. Explicit applications of this framework are worked out (eddy currents, tidal drag). The thermostatic equilibrium of a black hole electrically interacting with its surroundings is discussed, as well as the validity of a minimum entropy production principle in black hole physics. (Auth.)

  6. Surface effects in the Potts ferromagnet

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.

    1984-01-01

    Within a real space renormalisation group framework, the phase diagram of a semi-infinite cubic-lattice q-state Potts ferromagnet is studied, in which the free surface coupling constant J sub(S) = (1+Δ)J sub(B) might be different from the bulk one J sub(B). The starting value Δ sub(c) (q) is calculated above which surface order is possible even if bulk order is absent. Our results can be alternatively seen as approximate for the simple cubic lattice (as a matter of fact, the Ising value Δ sub(c) (2) obtained approaches the series result better than any other theory known consequently Δ sub(c) (q) is expected to be quite satisfactory even for q not= 2) or as exact for a well defined diamond-like hierarchical lattice. In the q →0 limit, Δ sub(c) diverges as 1/√q. (Author) [pt

  7. Surface effects in quantum spin chains

    International Nuclear Information System (INIS)

    Parkinson, J B

    2004-01-01

    Chains of quantum spins with open ends and isotropic Heisenberg exchange are studied. By diagonalizing the Hamiltonian for chains of finite length N and obtaining all the energy eigenvalues, the magnetic susceptibility χ, the specific heat C v , and the partition function Z can be calculated exactly for these chains. The high-temperature series expansions of these are then evaluated. For χ and C v it is found that the terms in the series consist of three parts. One is the normal high-T series already known in great detail for the N → infinity ring(chain with periodic boundary conditions). The other two consist of a 'surface' term and a correction term of order (1/T) N . The surface term is found as a series up to and including (1/T) 8 for spin S = 1/2 and 1. Simple Pade approximant formulae are given to extend the range of validity below T = 1

  8. Surface Effects in Segmented Silicon Sensors

    OpenAIRE

    Kopsalis, Ioannis

    2017-01-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO2 layers at the surface, thus changing the sensor properties and limiting their...

  9. Entropy Generation Analysis of Power-Law Non-Newtonian Fluid Flow Caused by Micropatterned Moving Surface

    Directory of Open Access Journals (Sweden)

    M. H. Yazdi

    2014-01-01

    Full Text Available In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant fluids.

  10. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. An In Vitro Evaluation of Alumina, Zirconia, and Lithium Disilicate Surface Roughness Caused by Two Scaling Instruments.

    Science.gov (United States)

    Vigolo, Paolo; Buzzo, Ottavia; Buzzo, Maurizio; Mutinelli, Sabrina

    2017-02-01

    Plaque control is crucial for the prevention of inflammatory periodontal disease. Hand scaling instruments have been shown to be efficient for the removal of plaque; however, routine periodontal prophylactic procedures may modify the surface profile of restorative materials. The purpose of this study was to assess in vitro the changes in roughness of alumina, zirconia, and lithium disilicate surfaces treated by two hand scaling instruments. Forty-eight alumina specimens, 48 zirconia specimens, and 48 lithium disilicate specimens, were selected. All specimens were divided into three groups of 16 each; one group for each material was considered the control group and no scaling procedures were performed; the second group of each material was exposed to scaling with steel curettes simulating standard clinical conditions; the third group of each material was exposed to scaling with titanium curettes. After scaling, the surface roughness of the specimens was evaluated with a profilometer. First, a statistical test was carried out to evaluate the difference in surface roughness before the scaling procedure of the three materials was effected (Kruskal-Wallis test). Subsequently, the effect of curette material (steel and titanium) on roughness difference and roughness ratio was analyzed throughout the entire sample and within each material group, and a nonparametric test for dependent values was conducted (Wilcoxon signed-rank test). Finally, the roughness ratios of the three material groups were compared by means of a Kruskal-Wallis test and a Wilcoxon signed-rank test. Upon completion of profilometric evaluation, representative specimens from each group were prepared for SEM evaluation to evaluate the effects of the two scaling systems on the different surfaces qualitatively. After scaling procedure, the roughness profile value increased in all disks. Classifying the full sample according to curette used, the roughness of the disks treated with a steel curette reached a

  12. Modeling surface area to volume effects on borosilicate glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Ebert, W.L.; Feng, X.

    1992-11-01

    We simulated the reaction of SRL-131 glass with equilibrated J-13 water in order to investigate the effects of surface area to volume ratio (SA/V) on glass dissolution. We show that glass-fluid ion exchange causes solution pH to rise to progressively higher values as SA/V increases. Because the ion exchange is rapid relative to the duration of the glass dissolution experiment, the pH effect does not scale with (SA/V)*time. Experiments compared at the same (SA/V)*time value therefore have different pHs, with higher pHs at higher SA/V ratios. Both experimental data and our simulation results show similar trends of increasing reaction rate as a function of SA/V ratio when scaled to (SA/V)*time. Glasses which react in systems of differing SA/V ratio therefore follow different reaction paths and high SA/V ratios cannot be used to generate data which accurately scales to long time periods unless the ion exchange effect is taken into account. We suggest some simple test designs which enable more reliable high. SA/V accelerated tests

  13. Biomimicking micropatterned surfaces and their effect on marine biofouling.

    Science.gov (United States)

    Brzozowska, Agata M; Parra-Velandia, Fernando J; Quintana, Robert; Xiaoying, Zhu; Lee, Serina S C; Chin-Sing, Lim; Jańczewski, Dominik; Teo, Serena L-M; Vancso, Julius G

    2014-08-05

    When synthetic materials are submerged in marine environments, dissolved matter and marine organisms attach to their surfaces by a process known as marine fouling. This phenomenon may lead to diminished material performance with detrimental consequences. Bioinspired surface patterning and chemical surface modifications present promising approaches to the design of novel functional surfaces that can prevent biofouling phenomena. In this study, we report the synergistic effects of surface patterns, inspired by the marine decapod crab Myomenippe hardwickii in combination with chemical surface modifications toward suppressing marine fouling. M. hardwickii is known to maintain a relatively clean carapace although the species occurs in biofouling communities of tropical shallow subtidal coastal waters. Following the surface analysis of selected specimens, we designed hierarchical surface microtopographies that replicate the critical features observed on the crustacean surface. The micropatterned surfaces were modified with zwitterionic polymer brushes or with layer-by-layer deposited polyelectrolyte multilayers to enhance their antifouling and/or fouling-release potential. Chemically modified and unmodified micropatterned surfaces were subjected to extensive fouling tests, including laboratory assays against barnacle settlement and algae adhesion, and field static immersion tests. The results show a statistically significant reduction in settlement on the micropatterned surfaces as well as a synergistic effect when the microtopographies are combined with grafted polymer chains.

  14. Effect of surface conditions on blast wave propagation

    International Nuclear Information System (INIS)

    Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il

    2016-01-01

    We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface

  15. Numerical Investigation of Effect of Surface Roughness in a Microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob; Byun, Sung Jun; Yoon, Joon Yong [Hanyang University, Seoul (Korea, Republic of)

    2010-05-15

    In this paper, lattice Boltzmann method(LBM) results for a laminar flow in a microchannel with rough surface are presented. The surface roughness is modeled as an array of rectangular modules placed on the top and bottom surface of a parallel-plate channel. The effects of relative surface roughness, roughness distribution, and roughness size are presented in terms of the Poiseuille number. The roughness distribution characterized by the ratio of the roughness height to the spacing between the modules has a negligible effect on the flow and friction factors. Finally, a significant increase in the Poiseuille number is observed when the surface roughness is considered, and the effects of roughness on the microflow field mainly depend on the surface roughness.

  16. The Effect of Fit and Company’s Motivation on Consumers’ Evaluation of Cause Related Marketing

    OpenAIRE

    CHEN, YUN-PING

    2011-01-01

    Cause Related Marketing has increasingly became a prevalent and meaningful part of a company’s marketing plan. A successful Cause Related Marketing campaign can create a win-win-win situation for companies, customers and non-profit organisations. It has been found that whether company and cause is compatible with each other and perceived company motives are two key determinants of the effectiveness of Cause Related Marketing campaigns. Most of research has shown that a high fit partnersh...

  17. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  18. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions

    Science.gov (United States)

    Biswas, Rajib; Bagchi, Biman

    2018-01-01

    In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the

  19. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  20. Cause-Effect Analysis: Improvement of a First Year Engineering Students' Calculus Teaching Model

    Science.gov (United States)

    van der Hoff, Quay; Harding, Ansie

    2017-01-01

    This study focuses on the mathematics department at a South African university and in particular on teaching of calculus to first year engineering students. The paper reports on a cause-effect analysis, often used for business improvement. The cause-effect analysis indicates that there are many factors that impact on secondary school teaching of…

  1. Analysis of cause-effect relationship of hip dysplasia in pre-school children

    Directory of Open Access Journals (Sweden)

    Anna Rudenko

    2015-12-01

    Full Text Available Purpose: to analyze and scientifically substantiate peculiarities of cause-effect relationship of hip dysplasia in pre-school children. Material and Methods: analysis and systematization of scientific and methodological literature, medical histories, anamneses, interviews and questionings. Results: it is specified that failure to timely identify and eliminate the symptoms of hip dysplasia in pre-school children leads to negative consequences, namely limited amplitude of hip joint movements; lower limp muscle weakness; valgus and varus deformations of lower limp; increasing of L-lordosis; skewness of hip bones; scoliosis; claudication. Conclusions: the modern state of the problem of hip dysplasia in pre-school children is analyzed. The cause-effect relationship is defined, their mutual transition is projected. All cause-effect relationships are in direct proportion and in constant interaction: the cause the forms effect and the effect influences the cause

  2. Strain gradient effects in surface roughening

    DEFF Research Database (Denmark)

    Borg, Ulrik; Fleck, N.A.

    2007-01-01

    evidence for strain gradient effects. Numerical analyses of a bicrystal undergoing in-plane tensile deformation are also studied using a strain gradient crystal plasticity theory and also by using a strain gradient plasticity theory for an isotropic solid. Both theories include an internal material length...

  3. Effectiveness and cost-effectiveness of policies and programmes to reduce the harm caused by alcohol.

    Science.gov (United States)

    Anderson, Peter; Chisholm, Dan; Fuhr, Daniela C

    2009-06-27

    This paper reviews the evidence for the effectiveness and cost-effectiveness of policies and programmes to reduce the harm caused by alcohol, in the areas of education and information, the health sector, community action, driving while under the influence of alcohol (drink-driving), availability, marketing, pricing, harm reduction, and illegally and informally produced alcohol. Systematic reviews and meta-analyses show that policies regulating the environment in which alcohol is marketed (particularly its price and availability) are effective in reducing alcohol-related harm. Enforced legislative measures to reduce drink-driving and individually directed interventions to already at-risk drinkers are also effective. However, school-based education does not reduce alcohol-related harm, although public information and education-type programmes have a role in providing information and in increasing attention and acceptance of alcohol on political and public agendas. Making alcohol more expensive and less available, and banning alcohol advertising, are highly cost-effective strategies to reduce harm. In settings with high amounts of unrecorded production and consumption, increasing the proportion of alcohol that is taxed could be a more effective pricing policy than a simple increase in tax.

  4. The effect of plasma etching on the surface topography of niobium superconducting radio frequency cavities

    Science.gov (United States)

    Radjenović, B.; Radmilović-Radjenović, M.

    2014-11-01

    In this letter the evolution of the surface topography of a niobium superconducting radio frequency cavity caused by different plasma etching modes (isotropic and anisotropic) is studied by the three-dimensional level set method. The initial rough surface is generated starting from an experimental power spectral density. The time dependence of the rms roughness is analyzed and the growth exponential factors β are determined for two etching modes (isotropic and anisotropic) assuming that isotropic etching is a much more effective mechanism of smoothing. The obtained simulation results could be useful for optimizing the parameters of the etching processes needed to obtain high quality niobium surfaces for superconducting radio frequency cavities.

  5. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  6. Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects

    International Nuclear Information System (INIS)

    Hosseini-Hashemi, Shahrokh; Nahas, Iman; Fakher, Mahmood; Nazemnezhad, Reza

    2014-01-01

    In this study, the nonlinear free vibration of piezoelectric nanobeams incorporating surface effects (surface elasticity, surface tension, and surface density) is studied. The governing equation of the piezoelectric nanobeam is derived within the framework of Euler–Bernoulli beam theory with the von Kármán geometric nonlinearity. In order to satisfy the balance conditions between the nanobeam bulk and its surfaces, the component of the bulk stress, σ zz , is assumed to vary linearly through the nanobeam thickness. An exact solution is obtained for the natural frequencies of a simply supported piezoelectric nanobeam in terms of the Jacobi elliptic functions using the free vibration mode shape of the corresponding linear problem. Then, the influences of the surface effects and the piezoelectric field on the nonlinear free vibration of nanobeams made of aluminum and silicon with positive and negative surface elasticity, respectively, have been studied for various properties of the piezoelectric field, various nanobeam sizes and amplitude ratios. It is observed that if the Young’s modulus of a nanobeam is lower, the effect of the piezoelectric field on the frequency ratios (FRs) of the nanobeam will be greater. In addition, it is seen that by increasing the nanobeam length so that the nanobeam cross section is set to be constant, the surface effects and the piezoelectric field with negative voltage values increases the FRs, whereas it is the other way around when the nanobeam cross section is assumed to be dependent on the length of the nanobeam. (paper)

  7. Effect of impurities in description of surface nanobubbles

    NARCIS (Netherlands)

    Das, S.; Snoeijer, Jacobus Hendrikus; Lohse, Detlef

    2010-01-01

    Surface nanobubbles emerging at solid-liquid interfaces of submerged hydrophobic surfaces show extreme stability and very small (gas-side) contact angles. In a recent paper Ducker [ W. A. Ducker Langmuir 25 8907 (2009)]. conjectured that these effects may arise from the presence of impurities at the

  8. Surface roughness and morphologic changes of zirconia: Effect of ...

    African Journals Online (AJOL)

    4-6 W/20 Hz presented significantly effect in surface roughness changes of zirconia than other surface treatments. Key words:Erbium, chromium: Yttrium, scandium, gallium, garnet laser, scanning electron .... ZrO2, (f) After sintering ZrO2 in letter “e”, (g) 2 W laser irridiation pre-sintered ZrO2, (h) After ..... Acta Odontol Scand.

  9. Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

    Science.gov (United States)

    Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin

    2018-05-01

    The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

  10. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed...... by the sensor. This is further complicated by temperature differences between the sunlit and shaded parts of each of the components, controlled by the exposure of the components to direct sunlight. As the SEVIRI sensor is onboard a geostationary platform, the viewing geometry is fixed (for each pixel), while...

  11. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Lu Zixing; Zhang Cungang; Liu Qiang; Yang Zhenyu

    2011-01-01

    In this paper, surface effects on the mechanical behaviour of nanoporous materials are investigated using the theory of surface elasticity and Timoshenko beam theory based on the tetrakaidecahedron (or Kelvin) open-cell foam model. Meanwhile, the influence of surface elasticity and residual surface stress on the mechanical properties of nanoporous materials is discussed. In addition, the results derived from the theory of Euler-Bernoulli beam model are also provided for comparison. Theoretical results show that the effective Young's modulus of the nanoporous materials increases as the diameter of the strut decreases, but in contrast Poisson's ratio and the brittle collapse strength decrease with the diameter of the strut. The contribution of shear deformation to surface effects on elastic properties is more significant, while the surface effects on brittle collapse strength are not sensitive to shear deformation, and it can even be neglected. As the strut size increases, the present results can be reduced to the cases without considering surface effects, which verifies the efficiency of the present model to a certain extent.

  12. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    Science.gov (United States)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  13. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  14. FORMATION OF ANTIBACTERIAL EFFECT ON CERAMIC TILE SURFACES

    Directory of Open Access Journals (Sweden)

    Selçuk ÖZCAN

    2017-03-01

    Full Text Available Biocidal antimicrobial molecular barrier (BAMB solutions are known to provide antimicrobial effect on the surfaces in industrial applications. However, there has been a lack of scientific reports about the subject in the literature. In this study, in order to impart an antimicrobial surface property on ceramic surfaces, a BAMB solution was applied on gloss fired ceramic wall tile substrates and the surface antimicrobial activity results were compared with that of plain wall tiles (without BAMB application. The ceramic surfaces were cleaned, and stove dried at120°C prior to spray coating with a BAMB solution. The coated substrates were dried in the ambient. The intactness of the coatings was checked with the bromophenol blue test. The microstructural and molecular characterization of the BAMB coated surfaces were carried out with SEM imaging and surface FTIR, respectively. The antimicrobial activity tests of the surfaces were conducted according to ASTM E2180-07 (Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent in Polymeric or Hydrophobic Materials. The microorganisms used were Staphylococcus aureus (ATCC 6538 and Pseudomonas aeruginosa (ATCC 15442 bacteria. The BAMB coated surfaces showed less flocculent bacterial growth in comparison to uncoated ceramic surfaces leading to the conclusion that the BAMB improved the antimicrobial property.

  15. The effect of lizardite surface characteristics on pyrite flotation

    International Nuclear Information System (INIS)

    Feng Bo; Feng Qiming; Lu Yiping

    2012-01-01

    Highlights: ► Two kinds of lizardite samples have different effect on the flotation of pyrite. ► Acid leaching changed the surface characteristics of lizardite mineral. ► The leached lizardite has less magnesium on its surface. ► The electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on mineral surface. - Abstract: The effect of lizardite surface characteristics on pyrite flotation has been investigated through flotation tests, adsorption tests, zeta potential measurements, FTIR study, X-ray photoelectron spectroscopy (XPS) and sedimentation tests. The flotation results show that at pH value 9, where flotation of nickel sulfide ores is routinely performed, two kinds of lizardite samples (native lizardite and leached lizardite) have different effects on the flotation of pyrite. The native lizardite adheres to the surface of pyrite and reduces pyrite flotation recovery while the leached lizardite does not interfere with pyrite flotation. Infrared analyses and XPS tests illustrate that acid leaching changed the surface characteristics of lizardite mineral and the leached lizardite has less magnesium on its surface. It has been determined that the electro-kinetic behavior of lizardite aqueous suspensions is mainly a function of the Mg/Si atomic ratio on lizardite surface. So, the low isoelectric point observed in the leached sample has been linked to values of this ratio lower than that of the native lizardite.

  16. PROBABLE CHARACTERISTICS ОF ELECTROMAGNETIC FIELD ENVIRONMENT AT EARTH SURFACE CAUSED BY RADIO-ELECTRONIC AIDS OPERATING OVER EARTH SURFACE

    Directory of Open Access Journals (Sweden)

    V. I. Mordachev

    2009-01-01

    Full Text Available The paper provides results of modeling distribution of signal probability of radio-electronic aids located over the Earth surface at a specific height and determining an electromagnetic environment on its surface according to a power parameter and an input direction angle at an optionally selected observation point being on the earth surface.

  17. PROBABLE CHARACTERISTICS ОF ELECTROMAGNETIC FIELD ENVIRONMENT AT EARTH SURFACE CAUSED BY RADIO-ELECTRONIC AIDS OPERATING OVER EARTH SURFACE

    OpenAIRE

    V. I. Mordachev

    2009-01-01

    The paper provides results of modeling distribution of signal probability of radio-electronic aids located over the Earth surface at a specific height and determining an electromagnetic environment on its surface according to a power parameter and an input direction angle at an optionally selected observation point being on the earth surface.

  18. Effect of strain on surface diffusion and nucleation

    DEFF Research Database (Denmark)

    Brune, Harald; Bromann, Karsten; Röder, Holger

    1995-01-01

    The influence of strain on diffusion and nucleation has been studied by means of scanning tunneling microscopy and effective-medium theory for Ag self-diffusion on strained and unstrained (111) surfaces. Experimentally, the diffusion barrier is observed to be substantially lower on a pseudomorphic...... effect on surface diffusion and nucleation in heteroepitaxy and are thus of significance for the film morphology in the kinetic growth regime....

  19. Effects of mass transfer between Martian satellites on surface geology

    Science.gov (United States)

    2015-12-21

    suspected. Published by Elsevier Inc.1. Introduction Several features about the surface geology on the moons of Mars remain poorly understood. The grooves on...Deimos may have an effect on Phobos’ geology ; we shall attempt to estimate the magnitude of that effect in Section 4. For impacts with Mars, Phobos or...global surface geology , particularly in the 100+ Ma since the last Voltaire-sized impact. Therefore we believe it unlikely that the red veneer of

  20. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  1. Identification of Causes and Effects of Poor Communication in Construction Industry: A Theoretical Review

    Directory of Open Access Journals (Sweden)

    Yaser Gamil

    2018-01-01

    Full Text Available Construction industry is characterized in nature as complex, fragmented, dynamic and involves many parties therefore effective communication is essential to overcome these challenges. Many researchers found that the industry faces major challenge to ensure effective and successful communication throughout the lifecycle of the project which therefore resulted to project failure. Poor communication in construction industry had been addressed in previous research studies; however, this paper presents and examines the identification of causes and effects which lead to poor communication. Further investigations on previous literature were conducted to extract the causes and effects which contributed to poor communication in construction industry. Similarity technique was applied to avoid duplications in the identified causes and effect of poor communication. Using the frequency technique, from the 33 causes of poor communication it was found that the most dominant cause is lack of effective communication. Whereas, out of 21 effects from poor communication, it was found that highly repeated effect is time overrun. These findings will serve a good platform for further investigation on the relevancy of causes and effects to the local construction practitioners.

  2. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    Science.gov (United States)

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.

  3. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Butvinová, B., E-mail: beata.butvinova@savba.sk [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Butvin, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Brzózka, K. [Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom (Poland); Kuzminski, M. [Institute of Physics PAS, Al. Lotnikow 36/42, 02-668 Warsaw (Poland); Maťko, I.; Švec Sr, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Chromčíková, M. [Institute of Inorg. Chem. SAS, Centrum VILA, Študentská 2, 911 50 Trenčín (Slovakia)

    2017-02-15

    Si-poor Fe{sub 74}Nb{sub 3}Cu{sub 1}Si{sub 8}B{sub 14−x}P{sub x}, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties. - Highlights: • Ar anneal of low-Si FeNbCuBSi ribbons produce surfaces that stress ribbon interior. • The stress comes mainly from preferred crystallization of surfaces. • Partial substitution of B by P changes annealing evolution of surface properties. • Without P, more crystalline surfaces significantly reduce ribbon's elasticity. • P suppresses surface crystallinity, promotes oxides and reduces mutual stress.

  4. Effect of different machining processes on the tool surface integrity and fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chuan Liang [College of Mechanical and Electrical Engineering, Nanchang University, Nanchang (China); Zhang, Xianglin [School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-08-15

    Ultra-precision grinding, wire-cut electro discharge machining and lapping are often used to machine the tools in fine blanking industry. And the surface integrity from these machining processes causes great concerns in the research field. To study the effect of processing surface integrity on the fine blanking tool life, the surface integrity of different tool materials under different processing conditions and its influence on fatigue life were thoroughly analyzed in the present study. The result shows that the surface integrity of different materials was quite different on the same processing condition. For the same tool material, the surface integrity on varying processing conditions was quite different too and deeply influenced the fatigue life.

  5. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  6. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    Brown, Angela Ann

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  7. The Anthropogenic "Greenhouse Effect": Greek Prospective Primary Teachers' Ideas about Causes, Consequences and Cures

    Science.gov (United States)

    Ikonomidis, Simos; Papanastasiou, Dimitris; Melas, Dimitris; Avgoloupis, Stavros

    2012-01-01

    This study explores the ideas of Greek prospective primary teachers about the anthropogenic greenhouse effect, particularly about its causes, consequences and cures. For this purpose, a survey was conducted: 265 prospective teachers completed a closed-form questionnaire. The results showed serious misconceptions in all areas (causes, consequences…

  8. Causes of Indiscipline in the Family and Its Effect on the Child ...

    African Journals Online (AJOL)

    Causes of Indiscipline in the Family and Its Effect on the Child. ... Log in or Register to get access to full text downloads. ... revealed causes of indiscipline in the home to include lack of attention/love from parents, poor parent-child relationship, ...

  9. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureus Adhesion

    Directory of Open Access Journals (Sweden)

    Peifu Tang

    2011-01-01

    Full Text Available Despite the systemic antibiotics prophylaxis, orthopedic implants still remain highly susceptible to bacterial adhesion and resulting in device-associated infection. Surface modification is an effective way to decrease bacterial adhesion. In this study, we prepared surfaces with different wettability on titanium surface based on TiO2 nanotube to examine the effect of bacterial adhesion. Firstly, titanium plates were calcined to form hydrophilic TiO2 nanotube films of anatase phase. Subsequently, the nanotube films and inoxidized titaniums were treated with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES, forming superhydrophobic and hydrophobic surfaces. Observed by SEM and contact angle measurements, the different surfaces have different characteristics. Staphylococcus aureus (SA adhesion on different surfaces was evaluated. Our experiment results show that the superhydrophobic surface has contact angles of water greater than 150∘ and also shows high resistance to bacterial contamination. It is indicated that superhydrophobic surface may be a factor to reduce device-associated infection and could be used in clinical practice.

  10. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  11. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies’ Functions

    Directory of Open Access Journals (Sweden)

    Hong Yao

    2016-01-01

    Full Text Available The number of surface water pollution accidents (abbreviated as SWPAs has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies’ functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident’s origin and other indirect losses. In the valuation of damage to people’s life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water’s recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  12. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies’ Functions

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-01

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies’ functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident’s origin and other indirect losses. In the valuation of damage to people’s life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water’s recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole. PMID:26805869

  13. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    Science.gov (United States)

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-22

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  14. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    Science.gov (United States)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  15. Atmospheric effect on the ground-based measurements of broadband surface albedo

    Directory of Open Access Journals (Sweden)

    T. Manninen

    2012-11-01

    Full Text Available Ground-based pyranometer measurements of the (clear-sky broadband surface albedo are affected by the atmospheric conditions (mainly by aerosol particles, water vapour and ozone. A new semi-empirical method for estimating the magnitude of the effect of atmospheric conditions on surface albedo measurements in clear-sky conditions is presented. Global and reflected radiation and/or aerosol optical depth (AOD at two wavelengths are needed to apply the method. Depending on the aerosol optical depth and the solar zenith angle values, the effect can be as large as 20%. For the cases we tested using data from the Cabauw atmospheric test site in the Netherlands, the atmosphere caused typically up to 5% overestimation of surface albedo with respect to corresponding black-sky surface albedo values.

  16. Elastic layer under axisymmetric indentation and surface energy effects

    Science.gov (United States)

    Intarit, Pong-in; Senjuntichai, Teerapong; Rungamornrat, Jaroon

    2018-04-01

    In this paper, a continuum-based approach is adopted to investigate the contact problem of an elastic layer with finite thickness and rigid base subjected to axisymmetric indentation with the consideration of surface energy effects. A complete Gurtin-Murdoch surface elasticity is employed to consider the influence of surface stresses. The indentation problem of a rigid frictionless punch with arbitrary axisymmetric profiles is formulated by employing the displacement Green's functions, derived with the aid of Hankel integral transform technique. The problem is solved by assuming the contact pressure distribution in terms of a linear combination of admissible functions and undetermined coefficients. Those coefficients are then obtained by employing a collocation technique and an efficient numerical quadrature scheme. The accuracy of proposed solution technique is verified by comparing with existing solutions for rigid indentation on an elastic half-space. Selected numerical results for the indenters with flat-ended cylindrical and paraboloidal punch profiles are presented to portray the influence of surface energy effects on elastic fields of the finite layer. It is found that the presence of surface stresses renders the layer stiffer, and the size-dependent behavior of elastic fields is observed in the present solutions. In addition, the surface energy effects become more pronounced with smaller contact area; thus, the influence of surface energy cannot be ignored in the analysis of indentation problem especially when the indenter size is very small such as in the case of nanoindentation.

  17. Effect of sterilization process on surface characteristics and biocompatibility of pure Mg and MgCa alloys

    International Nuclear Information System (INIS)

    Liu, X.L.; Zhou, W.R.; Wu, Y.H.; Cheng, Y.; Zheng, Y.F.

    2013-01-01

    The aim of this work was to investigate the effect of various sterilization methods on surface characteristics and biocompatibility of MgCa alloy, with pure Mg as a comparison, including steam autoclave sterilization (SA), ethylene oxide steam sterilization (EO), glutaraldehyde sterilization (GD), dry heat sterilization (DH) and Co60 γ ray radiation sterilization (R) technologies. The surface characterizations were performed by environmental scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, water contact angle and surface free energy measurement, whereas the cytotoxicity and hemocompatibility were evaluated by cellular adhesive experiment, platelet adhesion and hemolysis test. The results showed that the five sterilization processes caused more changes on the surface of MgCa alloy than that on the surface of pure Mg. The GD sterilization caused the most obvious changes on the surface of the pure Mg, and the SA sterilization made the largest alteration on the MgCa alloy surface. The GD and DH sterilization processes could cause increases on surface free energy for both pure Mg and MgCa alloys, while the other three sterilization processes reduced the surface free energy. The DH and GD sterilization processes caused the least alteration on the cell adhesion on pure Mg surface, whereas the EO sterilization performed the greatest impact on the cell adhesion on the Mg–Ca alloy surface. The hemolysis percentage of pure Mg and MgCa alloys were reduced by SA sterilization, meanwhile the other four sterilization processes increased their hemolysis percentages significantly, especially for the EO sterilization. - Highlights: • The effect of sterilization on surface chemistry and biocompatibility was studied. • Sterilization caused more surface changes on MgCa alloy than pure Mg. • Co60 γ ray radiation is the most appropriate sterilization process

  18. Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects.

    Directory of Open Access Journals (Sweden)

    Christin Buro

    2014-06-01

    Full Text Available Schistosome parasites cause schistosomiasis, one of the most important infectious diseases worldwide. For decades Praziquantel (PZQ is the only drug widely used for controlling schistosomiasis. The absence of a vaccine and fear of PZQ resistance have motivated the search for alternatives. Studies on protein kinases (PKs demonstrated their importance for diverse physiological processes in schistosomes. Among others two Abl tyrosine kinases, SmAbl1 and SmAbl2, were identified in Schistosoma mansoni and shown to be transcribed in the gonads and the gastrodermis. SmAbl1 activity was blocked by Imatinib, a known Abl-TK inhibitor used in human cancer therapy (Gleevec/Glivec. Imatinib exhibited dramatic effects on the morphology and physiology of adult schistosomes in vitro causing the death of the parasites.Here we show modeling data supporting the targeting of SmAbl1/2 by Imatinib. A biochemical assay confirmed that SmAbl2 activity is also inhibited by Imatinib. Microarray analyses and qRT-PCR experiments were done to unravel transcriptional processes influenced by Imatinib in adult schistosomes in vitro demonstrating a wide influence on worm physiology. Surface-, muscle-, gut and gonad-associated processes were affected as evidenced by the differential transcription of e.g. the gynecophoral canal protein gene GCP, paramyosin, titin, hemoglobinase, and cathepsins. Furthermore, transcript levels of VAL-7 and egg formation-associated genes such as tyrosinase 1, p14, and fs800-like were affected as well as those of signaling genes including a ribosomal protein S6 kinase and a glutamate receptor. Finally, a comparative in silico analysis of the obtained microarray data sets and previous data analyzing the effect of a TGFβR1 inhibitor on transcription provided first evidence for an association of TGFβ and Abl kinase signaling. Among others GCP and egg formation-associated genes were identified as common targets.The data affirm broad negative effects of

  19. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights:

  20. Uncertainties of Large-Scale Forcing Caused by Surface Turbulence Flux Measurements and the Impacts on Cloud Simulations at the ARM SGP Site

    Science.gov (United States)

    Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.

    2017-12-01

    Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.

  1. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  2. Surface roughness effects on blister formation in polycrystalline molybdenum

    International Nuclear Information System (INIS)

    Saidoh, Masahiro; Sone, Kazuho; Yamada, Rayji; Ohtsuka, Hidewo; Murakami, Yoshio

    1977-07-01

    Polycrystalline molybdenum targets with electropolished and roughened surfaces were bombarded with 100 keV He + and 200 keV H 2 + ions at room temperature. It has been demonstrated that the blister formation is largely or completely suppressed by roughening the electropolished surface with emery paper of No. 1200, No. 400 and No. 100. Up to a He + fluence of 1.0 x 10 19 particles/cm 2 , no blisters are observed in the targets with the two roughest surfaces, while on the smooth surface blisters begin to occur at a fluence of 7.5 x 10 17 particles/cm 2 . The surface roughness effect on blister suppression is discussed in relation to the projected range of incident particles. (auth.)

  3. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  4. Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity

    Directory of Open Access Journals (Sweden)

    Jae Hwan Jung

    2012-12-01

    Full Text Available We investigated the aerodynamic characteristics of a three-dimensional (3D wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE moved laterally to a greater extent than that of a wing-without-endplate (WOE. This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  5. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    Science.gov (United States)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  6. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.

    Science.gov (United States)

    Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R

    2016-09-19

    Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.

  7. Comparative Evaluation of Effect of Water Absorption on the Surface Properties of Heat Cure Acrylic: An in vitro Study

    OpenAIRE

    Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.

    2015-01-01

    Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic dent...

  8. Effective field theories for superconducting systems with multiple Fermi surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Granado, D.R., E-mail: diegorochagrana@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium); Guimaraes, M.S., E-mail: msguimaraes@uerj.br [Departamento de Física Teórica, Instituto de Física, UERJ - Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-013 Maracanã, Rio de Janeiro (Brazil); Wotzasek, C., E-mail: clovis@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro (Brazil)

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  9. Antibacterial effect of doxycycline-coated dental abutment surfaces

    International Nuclear Information System (INIS)

    Xing, Rui; Tiainen, Hanna; Shabestari, Maziar; Lyngstadaas, Ståle P; Haugen, Håvard J; Witsø, Ingun L; Lönn-Stensrud, Jessica; Jugowiec, Dawid

    2015-01-01

    Biofilm formation on dental abutment may lead to peri-implant mucositis and subsequent peri-implantitis. These cases are clinically treated with antibiotics such as doxycycline (Doxy). Here we used an electrochemical method of cathodic polarization to coat Doxy onto the outer surface of a dental abutment material. The Doxy-coated surface showed a burst release in phosphate-buffered saline during the first 24 h. However, a significant amount of Doxy remained on the surface for at least 2 weeks especially on a 5 mA–3 h sample with a higher Doxy amount, suggesting both an initial and a long-term bacteriostatic potential of the coated surface. Surface chemistry was analyzed by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. Surface topography was evaluated by field emission scanning electron microscopy and blue-light profilometry. Longer polarization time from 1 h to 5 h and higher current density from 1 to 15 mA cm −2 resulted in a higher amount of Doxy on the surface. The surface was covered by a layer of Doxy less than 100 nm without significant changes in surface topography. The antibacterial property of the Doxy-coated surface was analyzed by biofilm and planktonic growth assays using Staphylococcus epidermidis. Doxy-coated samples reduced both biofilm accumulation and planktonic growth in broth culture, and also inhibited bacterial growth on agar plates. The antibacterial effect was stronger for samples of 5 mA–3 h coated with a higher amount of Doxy compared to that of 1 mA–1 h. Accordingly, an abutment surface coated with Doxy has potential for preventing bacterial colonization when exposed to the oral cavity. Doxy-coating could be a viable way to control peri-implant mucositis and prevent its progression into peri-implantitis. (paper)

  10. Modeling of surface tension effects in venturi scrubbing

    Science.gov (United States)

    Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.

    A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.

  11. Surface-environment effects in spin crossover solids

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iu., E-mail: yugudyma@gmail.com; Maksymov, A.

    2017-06-15

    Highlights: • The spin-crossover nanocrystals were described by modified Ising-like model. • The ligand field on the surface is a function of external fluctuations. • The thermal hysteresis with surface and bulk interactions of the lattice was studied. • The system behavior with fluctuating ligand field on the surface was examined. • The fluctuations enlarge the hysteresis, but smaller surface interaction narrows it. - Abstract: The impact of surface effects on thermal induced spin crossover phenomenon is a subject of a broad and current interest. Using the modified Ising-like model of spin crossover solids with the ligand field as function of the molecule’ positions and random component on surface by means of Metropolis Monte Carlo algorithm the thermal spin transition curves were calculated. The analysis of spin configuration during transition gives a general idea about contribution of molecules from the surface and inside the lattice into resulting magnetization of the systems. The behavior of hysteresis loop for various surface coupling and fluctuations strength has been described.

  12. Screening effect on the polaron by surface plasmons

    Science.gov (United States)

    Xu, Xiaoying; Xu, Xiaoshan; Seal, Katyayani; Guo, Hangwen; Shen, Jian; Low Dimensional Materials Physics, Oak Ridge National Lab Team; University of Tennessee Team; Physics Department, Fudan University Team

    2011-03-01

    Surface plasmons occur when the conduction electrons at a metal/dielectric interface resonantly interact with external electromagnetic fields. While surface plasmons in vicinity of a polaron in the dielectric material, a strong screening effect on polaron characteristics is introduced. In this work, we observed the reduction of polarons in multiferroic LuFe2O4, which is mainly contributed by surface plasmons. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  13. Effects of capillary condensation in adhesion between rough surfaces.

    Science.gov (United States)

    Wang, Jizeng; Qian, Jin; Gao, Huajian

    2009-10-06

    Experiments on the effects of humidity in adhesion between rough surfaces have shown that the adhesion energy remains constant below a critical relative humidity (RHcr) and then abruptly jumps to a higher value at RHcr before approaching its upper limit at 100% relative humidity. A model based on a hierarchical rough surface topography is proposed, which quantitatively explains the experimental observations and predicts two threshold RH values, RHcr and RHdry, which define three adhesion regimes: (1) RHRHcr, water menisci freely form and spread along the interface between the rough surfaces.

  14. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang

    2010-01-01

    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  15. On surface clustering and Pauli principle effects in alpha decay

    International Nuclear Information System (INIS)

    Holan, S.

    1983-01-01

    The importance of the correct description of nuclear surface region in alpha decay calculations is pointed out. A model is proposed takinq into account explicitly surface clustering and Pauli principle effects which are essential in this region. A method for solving the main integrodifferential equation of the model by using the oscillator shell basis and the Collatz method is worked out. The first numerical results are obtained for nonlocal potential of the atpha particle-daughter nucleus interaction

  16. Investigation of the Si(111) surface in uhv: oxidation and the effect of surface phosphorus

    International Nuclear Information System (INIS)

    Tom, H.W.K.; Zhu, X.D.; Shen, Y.R.; Somorjai, G.A.

    1984-06-01

    We have studied the initial stages of oxidation, the segregation of phosphorus, and the effect of phosphorus on oxidation of the Si(111) 7 x 7 surface using optical second-harmonic generation. We have also observed a (√3 x √3)R30 0 LEED pattern for P on Si

  17. The effect of surface modification on initial ice formation on aluminum surfaces

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza; Fojan, Peter

    2015-01-01

    material of heat exchanger fins is aluminum, this paper focuses on the effect of aluminum wettability on the initial stages of ice formation. The ice growth was studied on bare as well as hydrophilically and hydrophobically modified surfaces of aluminum (8011A) sheets, commonly used in heat exchangers...

  18. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel.

    Science.gov (United States)

    Kwon, So Ran; Kurti, Steven R; Oyoyo, Udochukwu; Li, Yiming

    2015-09-01

    The purpose of this study was to evaluate the effect of four whitening modalities on surface enamel as assessed with microhardness tester, profilometer, and scanning electron microscopy (SEM). Whitening was performed according to manufacturer's directions for over-the-counter (OTC), dentist dispensed for home use (HW) and in-office (OW) whitening. Do-it-yourself (DIY) whitening consisted of a strawberry and baking soda mix. Additionally, negative and positive controls were used. A total of 120 enamel specimens were used for microhardness testing at baseline and post-whitening. Following microhardness testing specimens were prepared for SEM observations. A total of 120 enamel specimens were used for surface roughness testing at baseline and post-whitening (n = 20 per group). Rank-based Analysis of Covariance was performed to compare microhardness and surface roughness changes. Tests of hypotheses were two-sided with α = 0.05. There was a significant difference in Knoop hardness changes (ΔKHN) among the groups (Kruskal-Wallis test, p whitening modalities-DIY, OTC, HW and OW induced minimal surface morphology changes when observed with SEM. It can be concluded that none of the four whitening modalities adversely affected enamel surface morphology. However, caution should be advised when using a DIY regimen as it may affect enamel microhardness and an OTC product as it has the potential to increase surface roughness.

  19. Surface planarization effect of siloxane derivatives in organic semiconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    Sakanoue, Kei [Center for Organic Photonics and Electronics Research, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Harada, Hironobu; Ando, Kento [Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Yahiro, Masayuki [Institute of Systems, Information Technologies and Nanotechnologies, 2-1-22, Sawara-ku, Fukuoka 814-0001 (Japan); Fukai, Jun, E-mail: jfukai@chem-eng.kyushu-u.ac.jp [Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-12-31

    The ability of siloxane surface control additives (SCAs) to planarize organic semiconductor films with a thickness of tens of nanometers printed on indium tin oxide (ITO) surfaces with stripe-patterned bank structures using a liquid-phase method is demonstrated. Three types of SCAs with different molecular structures are examined in organic solutions of toluene, anisole and tetralin containing N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-benzidine as a solute and typical organic semiconductor. While there is an optimum SCA and concentration for each solution, one type of SCA is comprehensively effective for all solutions. This SCA increased contact angle, which is contrary to the typical behavior of SCAs. Scanning electron microscope images of the thin films near the banks reveal that this SCA did not change the contact area between the film and substrate surface, which is related to the effectiveness of the SCA. SCAs did not affect the current–voltage characteristics of green organic light-emitting diodes, but did increase external quantum efficiencies, suggesting that SCAs can be used to improve the quality of solution-deposited films for use in optical devices. - Highlights: • Surface control additives planarize organic semiconductor films coated on surfaces. • The most effective additive increases the contact angle of solutions during drying. • The effect of additives is deduced from solutal Marangoni forces. • Additives have little effect on organic light-emitting diode performance.

  20. Surface planarization effect of siloxane derivatives in organic semiconductor layers

    International Nuclear Information System (INIS)

    Sakanoue, Kei; Harada, Hironobu; Ando, Kento; Yahiro, Masayuki; Fukai, Jun

    2015-01-01

    The ability of siloxane surface control additives (SCAs) to planarize organic semiconductor films with a thickness of tens of nanometers printed on indium tin oxide (ITO) surfaces with stripe-patterned bank structures using a liquid-phase method is demonstrated. Three types of SCAs with different molecular structures are examined in organic solutions of toluene, anisole and tetralin containing N,N′-bis(3-methylphenyl)-N,N′-bis(phenyl)-benzidine as a solute and typical organic semiconductor. While there is an optimum SCA and concentration for each solution, one type of SCA is comprehensively effective for all solutions. This SCA increased contact angle, which is contrary to the typical behavior of SCAs. Scanning electron microscope images of the thin films near the banks reveal that this SCA did not change the contact area between the film and substrate surface, which is related to the effectiveness of the SCA. SCAs did not affect the current–voltage characteristics of green organic light-emitting diodes, but did increase external quantum efficiencies, suggesting that SCAs can be used to improve the quality of solution-deposited films for use in optical devices. - Highlights: • Surface control additives planarize organic semiconductor films coated on surfaces. • The most effective additive increases the contact angle of solutions during drying. • The effect of additives is deduced from solutal Marangoni forces. • Additives have little effect on organic light-emitting diode performance.

  1. Demonstrating a lack of brand/cause effects on point of sale donations

    Directory of Open Access Journals (Sweden)

    Coleman Joshua T.

    2015-10-01

    Full Text Available Point of sale cause-related marketing has raised over $2 billion for charities over the past 30 years, yet the subject remains largely unexplored in academic literature. The subject of brand/cause fit, however, is prolific throughout extant research, with many studies showing that high congruence between a company and a charity is necessary to achieve philanthropic success. This paper challenges current marketing thinking both conceptually and empirically. Employing tests of no-effect hypotheses following the guidelines set out by Cortina and Folger (1998, it is established that, in the point of sale cause-related marketing context, the traditional effects of brand/cause fits do not apply. Across three studies involving experimental designs and over 500 respondents, the results of one-way ANOVA analyses consistently demonstrate that a low brand/cause fit can be just as effective as a high/brand cause fit. These findings contribute to a profound understanding of social efforts such as cause-related marketing may not be as simple or easily understood as was once thought.

  2. Immobilization of β-galactosidase from Kluyveromyces lactis onto polymeric membrane surfaces: effect of surface characteristics.

    Science.gov (United States)

    Güleç, Hacı Ali

    2013-04-01

    The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  4. Variations of Near Surface Energy Balance Caused by Land Cover Changes in the Semiarid Grassland Area of China

    Directory of Open Access Journals (Sweden)

    Qun’ou Jiang

    2014-01-01

    Full Text Available This study applies the Dynamics of Land System (DLS model to simulating the land cover under the designed scenarios and then analyzes the effects of land cover conversion on energy flux in the semiarid grassland area of China with the Weather Research and Forecasting (WRF model. The results indicate that the grassland will show a steadily upgrowing trend under the coordinated environmental sustainability (CES scenario. Compared to the CES scenario, the rate of increase in grassland cover is lower, while the rate of increase in urban land cover will be higher under the rapid economic growth (REG scenario. Although the conversion from cropland to grassland will reduce the energy flux, the expansion of urban area and decreasing of forestry area will bring about more energy flux. As a whole, the energy flux of near surface will obviously not change under the CES scenario, and the climate therefore will not be possible to be influenced greatly by land cover change. The energy flux under the REG scenario is higher than that under the CES scenario. Those research conclusions can offer valuable information for the land use planning and climate change adaptation in the semiarid grassland area of China.

  5. Quantitative risk analysis for potentially resistant E. coli in surface waters caused by antibiotic use in agricultural systems.

    Science.gov (United States)

    Limayem, Alya; Martin, Elizabeth M

    2014-01-01

    Antibiotics are frequently used in agricultural systems to promote livestock health and to control bacterial contaminants. Given the upsurge of the resistant fecal indicator bacteria (FIB) in the surface waters, a novel statistical method namely, microbial risk assessment (MRA) was performed, to evaluate the probability of infection by resistant FIB on populations exposed to recreational waters. Diarrheagenic Escherichia coli, except E. coli O157:H7, were selected for their prevalence in aquatic ecosystem. A comparative study between a typical E. coli pathway and a case scenario aggravated by antibiotic use has been performed via Crystal Ball® software in an effort to analyze a set of available inputs provided by the US institutions including E. coli concentrations in US Great Lakes through using random sampling and probability distributions. Results from forecasting a possible worst-case scenario dose-response, accounted for an approximate 50% chance for 20% of the exposed human populations to be infected by recreational water in the U.S. However, in a typical scenario, there is a 50% chance of infection for only 1% of the exposed human populations. The uncertain variable, E. coli concentration accounted for approximately 92.1% in a typical scenario as the major contributing factor of the dose-response model. Resistant FIB in recreational waters that are exacerbated by a low dose of antibiotic pollutants would increase the adverse health effects in exposed human populations by 10 fold.

  6. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Science.gov (United States)

    Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei

    2018-05-01

    As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC

  7. Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China

    Directory of Open Access Journals (Sweden)

    J. Gao

    2018-05-01

    Full Text Available As an important solar radiation absorbing aerosol, the effect of black carbon (BC on surface ozone, via reducing photolysis rate, has been widely discussed by offline model studies. However, BC–boundary layer (BL interactions also influence surface ozone. Using the online model simulations and process analysis, we demonstrate the significant impact of BC–BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection. For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the

  8. Surface effects on the mechanical properties of nanoporous materials

    International Nuclear Information System (INIS)

    Xia Re; Li Xide; Feng Xiqiao; Qin Qinghua; Liu Jianlin

    2011-01-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  9. Surface effects on the mechanical properties of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Xia Re [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Li Xide; Feng Xiqiao [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Qin Qinghua [School of Engineering, Australian National University, Canberra, ACT 0200 (Australia); Liu Jianlin, E-mail: fengxq@tsinghua.edu.cn [Department of Engineering Mechanics, China University of Petroleum, Qingdao 266555 (China)

    2011-07-01

    Using the theory of surface elasticity, we investigate the mechanical properties of nanoporous materials. The classical theory of porous materials is modified to account for surface effects, which become increasingly important as the characteristic sizes of microstructures shrink to nanometers. First, a refined Timoshenko beam model is presented to predict the effective elastic modulus of nanoporous materials. Then the surface effects on the elastic microstructural buckling behavior of nanoporous materials are examined. In particular, nanoporous gold is taken as an example to illustrate the application of the proposed model. The results reveal that both the elastic modulus and the critical buckling behavior of nanoporous materials exhibit a distinct dependence on the characteristic sizes of microstructures, e.g. the average ligament width.

  10. Cohesion and coordination effects on transition metal surface energies

    Science.gov (United States)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  11. Assessment of DNA damages caused by exposure of bacterial cells and spores to the Mars surface environment

    Science.gov (United States)

    Fajardo-Cavazos, Patricia; Schuerger, Andrew; Robles-Martinez, Jose; Douki, Thierry; Nicholson, Wayne

    Joint NASA and ESA missions are planned for the next decade to investigate the possibility of present or past life on Mars [1]. Evidence of extraterrestrial life will likely rely on the de-tection of biomarkers, highlighting the importance of preventing forward contamination not only with viable microorganisms, but also with biomolecules that could compromise the valid-ity of life-detection experiments [2-4]. The designation of DNA as a high-priority biomarker makes it necessary to evaluate its persistence in extraterrestrial environments, and the effects of exposure on its biological activity. To accomplish this, we deposited naked DNA, cells and spores of Bacillus subtilis 168 or B. pumilus SAFR-032, or cells of Acinetobacter radioresistens 50v1 onto spacecraft-qualified aluminum coupons. Samples were exposed to a simulated Mars surface environment as described in detail previously [4, 5] for various periods of time, and DNA damage was assessed by a number of measurements. Double-and single-strand breaks were measured by neutral and alkaline agarose gel electrophoresis, and DNA bipyrimidine pho-toproducts were measured by HPLC-mass spectrometry, as described previously [6, 7]. Loss of functionality of DNA to serve as a template for replication by DNA polymerase was measured using a quantitative polymerase chain reaction (qPCR) assay [8]. In all cases, DNA damage was directly correlated with time of exposure to simulated martian solar radiation (UV, visible, and infrared wavelengths). Exposure of samples to Mars surface conditions, but shielded from solar radiation, did not result in appreciable damage over the time periods tested, relative to controls. DNA contained within cells or spores was much less susceptible to damage than was naked DNA. Using the qPCR assay, we found that inactivation of naked DNA or DNA extracted from exposed spores of B. subtilis followed a multiphasic dose-response, and that a fraction of DNA molecules retained functionality after

  12. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  13. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  14. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  15. The Joint Effect of Sleep Duration and Disturbed Sleep on Cause-Specific Mortality

    DEFF Research Database (Denmark)

    Rod, Naja Hulvej; Kumari, Meena; Lange, Theis

    2014-01-01

    Both sleep duration and sleep quality are related to future health, but their combined effects on mortality are unsettled. We aimed to examine the individual and joint effects of sleep duration and sleep disturbances on cause-specific mortality in a large prospective cohort study....

  16. The effects of sea surface temperature gradients on surface turbulent fluxes

    Science.gov (United States)

    Steffen, John

    A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (DeltaSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near-surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air--sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air--sea interactions, a flux model was forced with and without SST--induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary-Layer (UWPBL) model. Other input parameters include 2-m air temperature, 2-m dew point temperature, surface pressure (all from ERA--interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between DeltaSST and no DeltaSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December-January-February (DJF) seasons were analyzed for 1987--1990 and 1999--2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002---2003 DJF seasonal differences in SHF

  17. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  18. Semiconductor surface diffusion: Nonthermal effects of photon illumination

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E. G.

    2000-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally. Activation energies and pre-exponential factors for diffusion of germanium, indium, and antimony on silicon change by up to 0.3 eV and two orders of magnitude, respectively, in response to illumination by photons having energies greater than the substrate band gap. The parameters decrease for n-type material and increase for p-type material. Aided by results from photoreflectance spectroscopy, we suggest that motion of the surface quasi-Fermi-level for minority carriers accounts for much of the effect by changing the charge states of surface vacancies. An additional adatom-vacancy complexation mechanism appears to operate on p-type substrates. The results have significant implications for aspects of microelectronics fabrication by rapid thermal processing that are governed by surface mobility. (c) 2000 The American Physical Society

  19. Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples

    International Nuclear Information System (INIS)

    Khun, N.W.; Frankel, G.S.

    2013-01-01

    Highlights: ► Cathodic delamination of epoxy coated steel samples was studied using SKP. ► Delamination of the coating decreased with increased substrate surface roughness. ► Delamination of the coating was faster on the substrate with parallel surface scratches. ► Delamination of the coating exposed to weathering conditions increased with prolonged exposure. - Abstract: The Scanning Kelvin Probe (SKP) technique was used to investigate the effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel. The cathodic delamination rate of the epoxy coatings dramatically decreased with increased surface roughness of the underlying steel substrate. The surface texture of the steel substrates also had a significant effect in that samples with parallel abrasion lines exhibiting faster cathodic delamination in the direction of the lines compared to the direction perpendicular to the lines. The cathodic delamination kinetics of epoxy coatings previously exposed to weathering conditions increased with prolonged exposure due to pronounced polymer degradation. SEM observation confirmed that the cyclic exposure to UV radiation and water condensation caused severe deterioration in the polymer structures with surface cracking and erosion. The SKP results clearly showed that the cathodic delamination of the epoxy coatings was significantly influenced by the surface features of the underlying steel substrates and the degradation of the coatings.

  20. Durable anti-fogging effect and adhesion improvement on polymer surfaces

    Science.gov (United States)

    Moser, E. M.; Gilliéron, D.; Henrion, G.

    2010-01-01

    The hydrophobic properties of polymeric surfaces may cause fogging in transparent packaging and poor adhesion to printing colours and coatings. Novel plasma processes for durable functionalization of polypropylene and polyethylene terephthalate substrates were developed and analysed using optical emission spectroscopy. A worm-like nano pattern was created on the polypropylene surface prior to the deposition of thin polar plasma polymerised layers. For both substrates, highly polar surfaces exhibiting a surface tension of up to 69 mN/m and a water contact angle of about 10° were produced - providing the anti-fogging effect. The deposition of thin plasma polymerised layers protects the increased surface areas and enables to tailoring the surface energy of the substrate in a wide range. Wetting characteristics were determined by dynamic contact angle measurements. Investigations of the chemical composition of several layers using X-ray photoelectron spectroscopy and FT-infrared spectroscopy were correlated with functional testing. The surface topography was investigated using atomic force microscopy. The weldability and peeling-off characteristics of the plasma treated polymer films could be adjusted by varying the process parameters. Global and specific migration analyses were undertaken in order to ensure the manufacturing of plasma treated polymer surfaces for direct food contact purposes.

  1. Incredible negative values of effective electromechanical coupling coefficient for surface acoustic waves in piezoelectrics.

    Science.gov (United States)

    Mozhaev, V G; Weihnacht, M

    2000-07-01

    The extraordinary case of increase in velocity of surface acoustic waves (SAW) caused by electrical shorting of the surface of the superstrong piezoelectric crystal potassium niobate, KNbO3, is numerically found. The explanation of this effect is based on considering SAWs as coupled Rayleigh and Bleustein-Gulyaev modes. A general procedure of approximate decoupling of the modes is suggested for piezoelectric crystals of arbitrary anisotropy. The effect under study takes place when the phase velocity of uncoupled sagittally polarized Rayleigh waves is intermediate between the phase velocities of uncoupled shear-horizontal Bleustein Gulyaev waves at the free and metallized surfaces. In this case, the metallization of the surface by an infinitely thin layer may cause a crossover of the velocity curves of the uncoupled waves. The presence of the mode coupling results in splitting of the curves with transition from one uncoupled branch to the other. This transition is responsible for the increase in SAW velocity, which appears to be greater than its common decrease produced by electrical shorting of the substrate surface.

  2. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    International Nuclear Information System (INIS)

    Wang, Fuyuan; Cheng, Laifei; Zhang, Qing; Zhang, Litong

    2014-01-01

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density

  3. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fuyuan, E-mail: wangfy1986@gmail.com; Cheng, Laifei; Zhang, Qing, E-mail: zhangqing@nwpu.edu.cn; Zhang, Litong

    2014-09-15

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density.

  4. Deposition of silver nanoparticles on titanium surface for antibacterial effect

    Directory of Open Access Journals (Sweden)

    Liao Juan

    2010-04-01

    Full Text Available Liao Juan1, Zhu Zhimin3, Mo Anchun1,2, Li Lei1, Zhang Jingchao11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; 2Department of Dental Implant, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR China; 3Department of Prosthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR ChinaAbstract: Microbial colonization on implanted devices and biofilm formation is a recurrent complication in implant surgery and may result in loss of implants. The aim of this study was to deposit silver nanoparticles on a titanium surface to obtain antibacterial properties. In the present study, we prepared a silver nanoparticle-modified titanium (Ti-nAg surface using silanization method. The morphology and chemical components of the Ti-nAg surface were characterized by scanning electron microscopy (SEM equipped with energy-dispersive spectroscopy (EDS. Two species of bacteria, Staphylococcus aureus and Escherichia coli, were utilized to test the antibacterial effect of the Ti-nAg treated surface. The SEM examination revealed that a small quantity of silver nanoparticles was sparsely deposited on the titanium surface. The diameter of these nanoparticles ranged from ten to several hundred nm. EDS analyses revealed that there was 4.26% of Ag present on the surface. After a 24-hour incubation, 94% of Staphylococcus aureus and over 95% of Escherichia coli had been killed on the Ti-nAg surface, and the SEM examination of anti-adhesive efficacy test showed that there were less bacteria attached to Ti-nAg surface than to a control surface of untreated Titanium. These data suggest that silver nanoparticle-modified titanium is a promising material with an antibacterial property that may be used as an implantable biomaterial.Keywords: nano-silver, titanium, antibacterial activity, silanization method

  5. Effect of Macrogeometry on the Surface Topography of Dental Implants.

    Science.gov (United States)

    Naves, Marina Melo; Menezes, Helder Henrique Machado; Magalhães, Denildo; Ferreira, Jessica Afonso; Ribeiro, Sara Ferreira; de Mello, José Daniel Biasoli; Costa, Henara Lillian

    2015-01-01

    Because the microtopography of titanium implants influences the biomaterial-tissue interaction, surface microtexturing treatments are frequently used for dental implants. However, surface treatment alone may not determine the final microtopography of a dental implant, which can also be influenced by the implant macrogeometry. This work analyzed the effects on surface roughness parameters of the same treatment applied by the same manufacturer to implants with differing macro-designs. Three groups of titanium implants with different macro-designs were investigated using laser interferometry and scanning electron microscopy. Relevant surface roughness parameters were calculated for different regions of each implant. Two flat disks (treated and untreated) were also investigated for comparison. The tops of the threads and the nonthreaded regions of all implants had very similar roughness parameters, independent of the geometry of the implant, which were also very similar to those of flat disks treated with the same process. In contrast, the flanks and valleys of the threads presented larger irregularities (Sa) with higher slopes (Sdq) and larger developed surface areas (Sdr) on all implants, particularly for implants with threads with smaller heights. The flanks and valleys displayed stronger textures (Str), particularly on the implants with threads with larger internal angles. Parameters associated with the height of the irregularities (Sa), the slope of the asperities (Sdq), the presence of a surface texture (Str), and the developed surface area of the irregularities (Sdr) were significantly affected by the macrogeometry of the implants. Flat disks subjected to the same surface treatment as dental implants reproduced only the surface topography of the flat regions of the implants.

  6. Surface correlation effects in two-band strongly correlated slabs.

    Science.gov (United States)

    Esfahani, D Nasr; Covaci, L; Peeters, F M

    2014-02-19

    Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.

  7. Effect of multipactor conditioning on technical electrode surfaces

    International Nuclear Information System (INIS)

    Graves, T. P.; Spektor, R.; Stout, P.

    2009-01-01

    Historically, multipactor conditioning has been utilized to remove surface contaminants from rf electrodes by electron-stimulated gas desorption, and such conditioning has been shown to reduce multipactor susceptibility. Multipactor threshold improvements are due to increasing E 1 , the minimum energy for the secondary electron coefficient, δ>1, such that resonant electrons are incapable of producing discharge-sustaining secondary emission. Using an rf amplitude sweep technique, the evolution of the multipactor threshold is measured as a function of multipactor conditioning time for a series of technical electrode surfaces. Results show over +3 dB of threshold improvement in copper and gold electrodes, while the aluminum threshold actually decreases with conditioning exposure. Additionally, these conditioning results indicate the possible voltage region for transient-mode multipaction (TMM), which can cause significant risk to rf systems such as space satellite components for which in-situ conditioning is generally not possible. Experimental results and supporting Monte Carlo particle tracking simulation results are presented.

  8. Effect of Alkaline Peroxides on the Surface of Cobalt Chrome Alloy: An In Vitro Study.

    Science.gov (United States)

    Vasconcelos, Glenda Lara Lopes; Curylofo, Patricia Almeida; Raile, Priscilla Neves; Macedo, Ana Paula; Paranhos, Helena Freitas Oliveira; Pagnano, Valeria Oliveira

    2018-03-24

    Removable denture hygiene care is very important for the longevity of the rehabilitation treatment; however, it is necessary to analyze the effects that denture cleansers can cause on the surfaces of prostheses. Thus, this study evaluated the effect of alkaline peroxide-effervescent tablets on the surface of cobalt-chromium alloys (Co-Cr) used in removable partial dentures. Circular metallic specimens (12 × 3 mm) were fabricated and were immersed (n = 16) in: control, Polident 3 Minute (P3M), Steradent (S), Efferdent (E), Polident for Partials (PFP), and Corega Tabs (CT). The surface roughness (μm) (n = 10) was measured before and after periods of cleanser immersion corresponding to 0.5, 1, 2, 3, 4, and 5 years. Ion release was analyzed (n = 5) for Co, Cr, and molybdenum (Mo). Scanning electron microscopy (SEM) analysis and an Energy-dispersive X-ray spectroscopy (EDS) were conducted in one specimen. The surface roughness data were statistically analyzed (α = 0.05) with the Kruskal-Wallis test to compare the solutions, and the Friedman test compared the immersion durations. Ion release analysis was performed using 2-way ANOVA and Tukey's test. There was no significant surface roughness difference when comparing the solutions (p > 0.05) and the immersion durations (p = 0.137). Regarding ion release (μg/L), CT, E, and control produced a greater release of Co ions than S (p < 0.05). CT produced a greater release of Cr ions than control, S, and P3M (p < 0.05). Finally, E caused the greatest release of Mo ions (p < 0.05). SEM confirmed that the solutions did not damage the surfaces and EDS confirmed that there were no signs of oxidation. The various solutions tested did not have any deleterious effects on the Co-Cr alloy surface. Steradent, however, presented the smallest ionic release. © 2018 by the American College of Prosthodontists.

  9. Turbulent lubrication theory considering the surface roughness effects, 2

    International Nuclear Information System (INIS)

    Hashimoto, Hiromu; Wada, Sanae; Kobayashi, Toshinobu.

    1990-01-01

    This second paper describes an application of the generalized turbulent lubrication theory considering the surface roughness effects, which is developed in the previous paper, to the finite-width journal bearings. In the numerical analysis, the nonlinear equations for the modified turbulence coefficients are simplified to save a computation time within a satisfactory accuracy under the assumption that the shear flow is superior to the pressure flow in the turbulent lubrication films. The numerical results of pressure distribution, Sommerfeld number, attitude angle, friction coefficient and flow rate for the Reynolds number of Re=2000, 5000 and 10000 are indicated in graphic form for various values of relative roughness, and the effects of surface roughness on these static performance characteristics are discussed. Moreover, the eccentricity ratio and attitude angle of the journal bearings with homogeneous rough surface are obtained experimentally for a wide range of Sommerfeld number, and the experimental results are compared with theoretical results. (author)

  10. Influence of a new surface modification of intraocular lenses with fluoroalkylsilan on the adherence of endophthalmitis-causing bacteria in vitro.

    Science.gov (United States)

    Kienast, Antonia; Kämmerer, Regine; Weiss, Claudia; Klinger, Matthias; Menz, Dirk-Henning; Dresp, Joachim; Ohgke, Helge; Solbach, Werner; Laqua, Horst; Hoerauf, Hans

    2006-09-01

    Dynasilan is a fluoroalkylsilan that is able to interact with surface active centres on intraocular lenses (IOL), offering a new way for surface modification of different IOL materials. The purpose of this in vitro study was to investigate the influence of this new surface modification on the adherence of two typical endophthalmitis causing bacteria (Staphylococcus epidermidis, Propionibacterium acnes). In a pilot experiment, the effect of Dynasilan coating on the adherence of S. epidermidis was tested on glass slides. Forty-two Dynasilan-modified and 42 unmodified IOL (14 PMMA, 14 silicone and 14 hydrogel) were incubated at 37 degrees C in brain heart infusion broth (10(8) CFU/ml) with either S. epidermidis for 24 h or with P. acnes for 1 h. Subsequently, the adherent bacteria were resuspended using ultrasonification at 35 kHz for 3x45 s. After dilution series and incubation at 37 degrees C on Petri dishes for 24 h and 3 days, respectively, the colonies were counted. In the pilot experiment, a markedly lower number of adherent S. epidermidis was observed on Dynasilan-modified glass slides. Of all IOL materials incubated with S. epidermidis, those modified with Dynasilan showed a lower mean number of adherent bacteria (mean 1.37x10(7); SD 2.37x10(7)) than those untreated (2.43x10(7); SD 3.04x10(7)). IOLs incubated with P. acnes showed a significantly lower mean number of adherent bacteria of 2.51x10(4) (SD 2.71x10(4)) on Dynasilan-modified IOLs versus 6.27x10(4) (SD 7.70x10(4)) on untreated IOLs. The presented in vitro results indicate that Dynasilan surface modification is able to reduce the adherence of S. epidermidis and P. acnes on all IOL materials tested. Further studies regarding the stability of this modification and its biocompatibility must be performed.

  11. Observation for clinical effect of phellodendron wet compress in treating the phlebitis caused by infusion.

    Science.gov (United States)

    Wan, Ying

    2018-05-01

    Aim of the study was to observe and analyze the clinical effect of phellodendron wet compress in treating the phlebitis caused by infusion. The research objects were 600 cases of phlebitis caused by infusion, all of which were treated in our hospital from June 2013 to June 2016. All patients were entitled to the right to know. They were randomly divided into the research group and the control group. Patients in the control group were treated with magnesium sulfate solution wet compress, while patients in the research group were treated with phellodendron wet compress. The effects in these two groups were observed and compared. Compared with the control group, the research group has better overall treatment efficiency, pred swelling and pain, p<0.05. Phellodendron wet compress shows a beneficial effect in treating the phlebitis caused by infusion. It can not only obviously shorten the onset of action, but also level up the overall treatment efficiency that helps patients to recover.

  12. Surface Finish Effects Using Coating Method on 3D Printing (FDM) Parts

    Science.gov (United States)

    Haidiezul, AHM; Aiman, AF; Bakar, B.

    2018-03-01

    One of three-dimensional (3-D) printing economical processes is by using Fused Deposition Modelling (FDM). The 3-D printed object was built using layer-by-layer approach which caused “stair stepping” effects. This situation leads to uneven surface finish which mostly affect the objects appearance for product designers in presenting their models or prototypes. The objective of this paper is to examine the surface finish effects from the application of XTC-3D coating developed by Smooth-On, USA on the 3D printed parts. From the experimental works, this study shows the application of XTC-3D coating to the 3-D printed parts has improve the surface finish by reducing the gap between the layer

  13. [Effect of thermal cycling on surface microstructure of different light-curing composite resins].

    Science.gov (United States)

    Lv, Da; Liu, Kai-Lei; Yao, Yao; Zhang, Wei-Sheng; Liao, Chu-Hong; Jiang, Hong

    2015-04-01

    To evaluate the effect of thermal cycling on surface microstructure of different light-curing composite resins. A nanofilled composite (Z350) and 4 microhybrid composites (P60, Z250, Spectrum, and AP-X) were fabricated from lateral to center to form cubic specimens. The lateral surfaces were abrased and polished before water storage and 40 000 thermal cycles (5/55 degrees celsius;). The mean surface roughness (Ra) were measured and compared before and after thermal cycling, and the changes of microstructure were observed under scanning electron microscope (SEM). Significant decreases of Ra were observed in the composites, especially in Spectrum (from 0.164±0.024 µm to 0.140±0.017 µm, Presins, and fissures occurred on Z350 following the thermal cycling. Water storage and thermal cycling may produce polishing effect on composite resins and cause fissures on nanofilled composite resins.

  14. Reconstructing satellite images to quantify spatially explicit land surface change caused by fires and succession: A demonstration in the Yukon River Basin of interior Alaska

    Science.gov (United States)

    Huang, Shengli; Jin, Suming; Dahal, Devendra; Chen, Xuexia; Young, Claudia; Liu, Heping; Liu, Shuguang

    2013-01-01

    Land surface change caused by fires and succession is confounded by many site-specific factors and requires further study. The objective of this study was to reveal the spatially explicit land surface change by minimizing the confounding factors of weather variability, seasonal offset, topography, land cover, and drainage. In a pilot study of the Yukon River Basin of interior Alaska, we retrieved Normalized Difference Vegetation Index (NDVI), albedo, and land surface temperature (LST) from a postfire Landsat image acquired on August 5th, 2004. With a Landsat reference image acquired on June 26th, 1986, we reconstructed NDVI, albedo, and LST of 1987–2004 fire scars for August 5th, 2004, assuming that these fires had not occurred. The difference between actual postfire and assuming-no-fire scenarios depicted the fires and succession impact. Our results demonstrated the following: (1) NDVI showed an immediate decrease after burning but gradually recovered to prefire levels in the following years, in which burn severity might play an important role during this process; (2) Albedo showed an immediate decrease after burning but then recovered and became higher than prefire levels; and (3) Most fires caused surface warming, but cooler surfaces did exist; time-since-fire affected the prefire and postfire LST difference but no absolute trend could be found. Our approach provided spatially explicit land surface change rather than average condition, enabling a better understanding of fires and succession impact on ecological consequences at the pixel level.

  15. Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Lin, Chien-Hung

    2013-01-01

    Highlights: ► Various degrees of roughness are caused by the sandblasting method. ► An improper surface modification depletes the PEMFC performance severely. ► The AC impedance are used to assess the fuel gas transfer effect. ► The Warburg resistance form in the coarse flow channel surface. - Abstract: Proton exchange membrane fuel cells (PEMFCs) is a promising candidate as energy systems. However, the stability and lifetime of cells are still important issues. The effect of surface roughness on metallic bipolar plate is discussed in this paper. Various roughness on the bulk surface are obtained by the sandblasting method. The grain sizes of sand are selected as 50, 100 and 200 μm. The Ac impedance experiment results show that the bipolar plate roughness and carbon paper porosity are well matched when the surface roughness is within 1–2 μm. Superior condition decreases the contact resistance loss in the fuel cell. The high frequency resistance of the coarse surface was larger than that of the substrate by around 5 mΩ. Furthermore, a new arc was formed at the low frequency region. Hence, the unmatch roughness condition of the bipolar plate significantly increases the contact resistance and mass transfer resistance. This paper develops a sequential approach to study an optimum surface roughness by combining the whole performance (I–V) curve and AC impedance result. It benefits us to quantify the contact and mass transfer resistance exists in the PEMFC. The proposed surface treatment improves the surface effect and promotes the implement of potential metallic bipolar plate in near future

  16. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.

    Science.gov (United States)

    Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan

    2015-12-21

    Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.

  17. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China

    Directory of Open Access Journals (Sweden)

    Xuying Wang

    2015-12-01

    Full Text Available Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34 to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.

  18. Perceived Cause and Effect Relationship for Nutritional Anemia Among Adolescent Girls in Rural Puducherry

    Directory of Open Access Journals (Sweden)

    Mayura S

    2014-10-01

    Full Text Available Background & Objectives: The prevalence of nutritional anemia among adolescent girls is high (47.6% to 90% as previously reported in the different parts of North India. Since there are limited studies on nutritional anemia at the sub-district level in the Southern part of India, there is a need to know the extent of the problem among adolescent girls to plan context specific interventions. With this background, the present study was done with the objectives 1 To find the prevalence of nutritional anemia among adolescent girls 2 To ‘qualitatively’ explore their perceptions of the causes and effects of nutritional anemia. Methods: The study was undertaken in two wards of Kallitheerthalkuppam village, the field practice area of the Department of Community Medicine, SMVMCH, Puducherry. Mixed-methods design which includes quantitative (survey and qualitative (cause-effect diagram methods was used. A representative sample of 100 adolescent girls aged 12-19 years were the study participants. Data for quantitative (survey using a questionnaire and qualitative (cause-effect diagram methods were collected over the period of two months. Result: The prevalence of anemia among the study population was 58 per cent. In The cause and effect diagram exercise, girls linked deficiency of iron as the cause for tiredness, irregular menstrual cycles and low birth weight. They also linked deficiency of iron and the habit of not wearing footwear to tiredness, reduced intake of green leafy vegetables, and intestinal worm infections to giddiness and hookworm infections to peptic ulcer. Interpretation & Conclusions: The study found a gap between knowledge and practice as reflected in the cause and effect diagram. This result indicates the need to initiate an effective behavior change communication for improving the hemoglobin status of adolescent girls.

  19. Surface effects on the propagation of sound in Fermi liquids

    International Nuclear Information System (INIS)

    Nagai, K.; Woelfle, P.

    1981-01-01

    The propagation of sound in a resonator is discussed in both the normal and superfluid Fermi liquids. A set of model hydrodynamic equations is developed for describing the transition from the hydrodynamic regime to the collisionless regime. Surface effects are incorporated by using a slip boundary condition. The resonance condition for the sound propagation in a cylindrical resonator is derived

  20. Effects of rational surface density on resistive g turbulence

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Sugama, H.; Horton, W.

    1993-01-01

    The Beklemishev-Horton theory states that the anomalous transport coefficient is proportional to the density of rational surfaces provided that the interaction between the modes localized around different rational surfaces is weak compared with modes of the same helicity. The authors examine the effects of the density of states ρ using resistive g turbulence in 2D (single-helicity) and 3D (multi-helicity) simulations. They find that the modes with different helicities do not equipartition the available energy, but rather the coalescence or inverse cascade effect is strong so that a few low order mode rational surfaces receive most of the energy. The quasilinear flattening at the surfaces is a strong effect and they use bifurcation theory to derive that the effective diffusivity increases as χ eff = χ 0 ρ/(1 - Cρ) where C is a constant determined by interaction integrals. For a sufficiently high density of states Cρ ≤ 1, the higher order nonlinear interaction must be taken into account

  1. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  2. Surface and temperature effects in isovector giant resonances

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.

    1988-01-01

    Using the liquid droplet model (LDM) we investigate three different sum rules for the isovector dipole and monopole excitations. Analytical formulae are derived for the excitation energies of these resonances and the predictions are compared with experiments. The role of the surface and the effects of temperature are explicitly discussed. (orig.)

  3. The effect of surface albedo and grain size distribution on ...

    African Journals Online (AJOL)

    Sand dams are very useful in arid and semi arid lands (ASALs) as facilities for water storage and conservation. Soils in ASALs are mainly sandy and major water loss is by evaporation and infiltration. This study investigated the effect of sand media characteristics, specifically surface albedo, grain size and stratification on ...

  4. The effect of stability treatmetn on the surface energetics of ...

    African Journals Online (AJOL)

    The effect of stability treatmetn on the surface energetics of inhalation grade lactose. IP Okoye. Abstract. No Abstract. Global Journal of Pure and Applied Physics Vol. 14 (1) 2008 pp.85-88. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  5. Effectiveness of hearing conservation program at a large surface ...

    African Journals Online (AJOL)

    A study conducted to determine the effectiveness of a Hearing Conservation Programme (HcP) was conducted in a surface gold mining Company in Ghana. The procedure adopted included a retrospective review and comparison of individual Audiograms from 1999-2003. The analysis of data was based on 200 workers at ...

  6. Surface effects in adhesion, friction, wear, and lubrication

    National Research Council Canada - National Science Library

    Buckley, Donald H

    1981-01-01

    ... for carbon bodies to improve their wear resistance in high altitude aircraft generator applications. Basic researchers found that moisture in the carbon was critical t o its lubrication. Therefore, the presence of moisture o n the surface of the carbon was important. With it present, the carbon lubricated very effectively and very low wear was ...

  7. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  8. Effectiveness of hearing conservation program at a large surface ...

    African Journals Online (AJOL)

    kemrilib

    African Journal of Health Sciences, Volume 14, Numbers 1-2, January-June 2007. 49. Effectiveness ... Programme (HcP) was conducted in a surface gold mining Company in Ghana. The ... The analysis of data was based on 200 workers at ..... Industry. New York Raven Press 1982. 9. Franks JR, Davis RR and Kreig EF jr.

  9. Depletion region surface effects in electron beam induced current measurements

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Paul M.; Zhitenev, Nikolai B. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Yoon, Heayoung P. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Gaury, Benoit [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-07

    Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p-n junction depletion region result in perfect charge collection efficiency. However, we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces, we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find that the experimental data on FIB-prepared Si solar cells are most consistent with a charged surface and discuss the implications for EBIC experiments on polycrystalline materials.

  10. EFFECT OF SURFACE CONDTIONINGON BOND STRENGTH TO ENAMEL AND DENTIN

    Directory of Open Access Journals (Sweden)

    M MOUSAVINASAB

    2002-09-01

    Full Text Available Introduction. Compoglass is a trade mark of dental compomers and because of its partially resinus structure, surface conditioning of dental surfaces is needed for a better bonding process. In this study, the effect of enamel and dentin conditioning procedure on shear bond strength (SBS of compoglass to tooth surfaces was studied. Methods. four groups each one including 11 sound premolars were chosen and their surfaces were prepared as following groups: group1, unconitioned dentin; group 2, dentin conditioning with phosphoric acid 35%; group 3, dentin conditioning with polyacrylic acid 20% group 4, unconditioning enamel; group 5, enamel conditioning with phosphoric acid 35%; and group 6, enamel conditioning with polyacrylic acid 20%. Compoglass was bonded to prepared surfaces and after fixation of the samples in acrylic molds, all samples were tested under shear force of instron testing machine at a rate of 1 mm/min speed. Results. The mean SBS obtained in these 6 groups were 6.207, 8.057, 10.146, 25.939 and 11.827 mpa. the mode of fracture also studied using a streomicroscope. Statistical analysis of the results showed that the maximum SBS obtained in group 5 and the lowest SBS about 6.207 mpa obtained in group 1. Despite increase in SBS group 2 and 3, there was no statistical differncies between group 1, 2 and 3. Discussion. Based on results of this study, conditioning of enamel and dentin surface due to improve SBS is recommeneded.

  11. Experimental Investigation of the Root Cause Mechanism and Effectiveness of Mitigating Actions for Axial Offset Anomaly in Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Said Abdel-Khalik

    2005-01-01

    Axial offset anomaly (AOA) in pressurized water reactors refers to the presence of a significantly larger measured negative axial offset deviation than predicted by core design calculations. The neutron flux depression in the upper half of high-power rods experiencing significant subcooled boiling is believed to be caused by the concentration of boron species within the crud layer formed on the cladding surface. Recent investigations of the root-cause mechanism for AOA [1,2] suggest that boron build-up on the fuel is caused by precipitation of lithium metaborate (LiBO2) within the crud in regions of subcooled boiling. Indirect evidence in support of this hypothesis was inferred from operating experience at Callaway, where lithium return and hide-out were, respectively, observed following power reductions and power increases when AOA was present. However, direct evidence of lithium metaborate precipitation within the crud has, heretofore, not been shown because of its retrograde solubility. To this end, this investigation has been undertaken in order to directly verify or refute the proposed root-cause mechanism of AOA, and examine the effectiveness of possible mitigating actions to limit its impact in high power PWR cores

  12. Tunnel flexibility effect on the ground surface acceleration response

    Science.gov (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  13. Effects of surface tension on tray point efficiencies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G.X.; Afacan, A.; Chuang, K.T. (Alberta Univ., Edmonton, AB (Canada))

    1994-08-01

    Sieve tray efficiencies for the distillation of methanol/water, acetic acid/water, and cyclohexane/n-heptane mixtures were measured as a function of composition under fixed vapor and liquid rates in a 0.15 m diameter distillation column. The three binary distillation systems used in the study had a wide range of surface tensions measured as a function of composition. From the efficiencies measured, the number of vapor- and liquid-phase transfer units (Ng and Nl) was determined and the effects of surface tension on Ng and Nl were identified. To further verify the results obtained from the distillation column, bubble sizes in froths for air/water, air/methanol, and air/(water + surfactant) systems with different surface tensions were measured. The results show that surface tension has a significant effect on tray efficiency and the number of transfer units. Bubble sizes in the tray froths were mainly determined by surface tension, and bubble breakup and coalescence occur in the froths. 45 refs., 15 figs., 1 tab.

  14. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    Science.gov (United States)

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  15. Effect of gamma radiation treatment on some fungi causing storage diseases of banana fruits

    International Nuclear Information System (INIS)

    EL-Ashmawi, A.M.M.

    1982-01-01

    Banana is one of the most popular fruits in many tropical and sub-tropical countries. in recent years, the quality of egyptian banana markedly declined. A major factor contributing to this decline is the development of fruit rot, which is the most widely occurring disease either in the field or in storage. Different fungi attack banana fruits causing considerable losses. Most of the fungi responsible for post harvest rots of banana are usually carried from the field, on the surface of the fruit itself or in injured and rotting fruits causing severe rats during storage. These rots make the fruits difficult to handle and undesirable to the consumers. Botryodiplodia theobromae is known to be the most important pathogen responsible for the infection in storage

  16. Surface topology caused by dislocations in polar, semipolar, and nonpolar InGaN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schade, L.; Schwarz, U.T. [Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Wernicke, T.; Rass, J.; Ploch, S. [Institute of Solid State Physics, TU Berlin (Germany); Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, TU Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Berlin (Germany)

    2014-04-15

    The impact of dislocations on surface topology as well as on quantum well emission in c-plane, semipolar, and nonpolar InGaN/GaN heterostructures is being analyzed by micro-photoluminescence and white-light-interferometry. V-pits with (10 anti 11) and (10 anti 1 anti 4) side facets are identified in a (10 anti 12) semipolar heterostructure. Hillocks formed by spiral growth around screw dislocations change from hexagonal to triangular to rectangular shape in polar, semipolar, and nonpolar heterostructures, respectively, reflecting the symmetry of the individual surface. The emission in semipolar quantum wells, grown homoepitaxially on bulk GaN substrates, show dark stripes aligned with misfit dislocations. For (11 anti 22) and (20 anti 21) orientation, these dark stripes are perpendicular and parallel, respectively, to surface striation. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Inverse design of nanostructured surfaces for color effects

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Johansen, Villads Egede; Friis, Kasper Storgaard

    2014-01-01

    We propose an inverse design methodology for systematic design of nanostructured surfaces for color effects. The methodology is based on a 2D topology optimization formulation based on frequency-domain finite element simulations for E and/or H polarized waves. The goal of the optimization...... is to maximize color intensity in prescribed direction(s) for a prescribed color (RGB) vector. Results indicate that nanostructured surfaces with any desirable color vector can be generated; that complex structures can generate more intense colors than simple layerings; that angle independent colorings can...

  18. Numerical study of aerodynamic effects on road vehicles lifting surfaces

    Science.gov (United States)

    Cernat, Mihail Victor; Cernat Bobonea, Andreea

    2017-01-01

    The aerodynamic performance analysis of road vehicles depends on the study of engine intake and cooling flow, internal ventilation, tire cooling, and overall external flow as the motion of air around a moving vehicle affects all of its components in one form or another. Due to the complex geometry of these, the aerodynamic interaction between the various body components is significant, resulting in vortex flow and lifting surface shapes. The present study, however focuses on the effects of external aerodynamics only, and in particular on the flow over the lifting surfaces of a common compact car, designed especially for this study.

  19. Neutralized wettability effect of superhydrophilic Cr-layered surface on pool boiling critical heat flux

    International Nuclear Information System (INIS)

    Son, Hong Hyun; Jeong, Ui Ju; Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2016-01-01

    The former method is deemed challenging due to longer development period and license issue. In this regard, FeCrAl, Cr, and SiC have been received positive attention as ATF coating materials because they are highly resistant to high temperature steam reaction causing massive hydrogen generation. In this study, Cr was selected as a target deposition material on the metal substrate because we found that Cr-layered surface becomes superhydrophilic, favorable to delaying the triggering of the critical heat flux (CHF). Thus in order to investigate the effect of Cr-layered superhydrophilic surfaces (under explored coating conditions) on pool boiling heat transfer, pool boiling experiment was conducted in the saturated deionized water under atmospheric pressure. As a physical vapor deposition (PVD) method, the DC magnetron sputtering technique was introduced to develop Cr-layered nanostructure. As a control variable of DC sputtering, substrate temperature was selected. Surface wettability and nanostructure were analyzed as major surface parameters on the CHF. We believe that highly dense micro/nano structure without nucleation cavities and inner pores neutralized the wettability effect on the CHF. Moreover, superhydrophilic surface with deficient cavity density rather hinders active nucleation. This emphasizes the importance of micro/nano structure surface for enhanced boiling heat transfer.

  20. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  1. The effect of attractions on the structure of fused sphere chains confined between surfaces

    International Nuclear Information System (INIS)

    Patra, C.N.; Yethiraj, A.; Curro, J.G.

    1999-01-01

    The effect of attractive interactions on the behavior of polymers between surfaces is studied using Monte Carlo simulations. The molecules are modeled as fused sphere freely rotating chains with fixed bond lengths and bond angles; wall endash fluid and fluid endash fluid site endash site interaction potentials are of the hard sphere plus Yukawa form. For athermal chains the density at the surface (relative to the bulk) is depleted at low densities and enhanced at high densities. The introduction of a fluid endash fluid attraction causes a reduction of site density at the surface, and an introduction of a wall endash fluid attraction causes an enhancement of site density at the surface, compared to when these interactions are absent. When the wall endash fluid and fluid endash fluid attractions are of comparable strength, however, the depletion mechanism due to the fluid endash fluid attraction dominates. The center of mass profiles show the same trends as the site density profiles. Near the surface, the parallel and the perpendicular components of chain dimensions are different, which is explained in terms of a reorientation of chains. copyright 1999 American Institute of Physics. thinsp

  2. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?

    International Nuclear Information System (INIS)

    Modak, Angshuman; Bala, Govindasamy; Cao, Long; Caldeira, Ken

    2016-01-01

    Many previous studies have shown that a solar forcing must be greater than a CO 2 forcing to cause the same global mean surface temperature change but a process-based mechanistic explanation is lacking in the literature. In this study, we investigate the physical mechanisms responsible for the lower efficacy of solar forcing compared to an equivalent CO 2 forcing. Radiative forcing is estimated using the Gregory method that regresses top-of-atmosphere (TOA) radiative flux against the change in global mean surface temperature. For a 2.25% increase in solar irradiance that produces the same long term global mean warming as a doubling of CO 2 concentration, we estimate that the efficacy of solar forcing is ∼80% relative to CO 2 forcing in the NCAR CAM5 climate model. We find that the fast tropospheric cloud adjustments especially over land and stratospheric warming in the first four months cause the slope of the regression between the TOA net radiative fluxes and surface temperature to be steeper in the solar forcing case. This steeper slope indicates a stronger net negative feedback and hence correspondingly a larger solar forcing than CO 2 forcing for the same equilibrium surface warming. Evidence is provided that rapid land surface warming in the first four months sets up a land-sea contrast that markedly affects radiative forcing and the climate feedback parameter over this period. We also confirm the robustness of our results using simulations from the Hadley Centre climate model. Our study has important implications for estimating the magnitude of climate change caused by volcanic eruptions, solar geoengineering and past climate changes caused by change in solar irradiance such as Maunder minimum. (letter)

  3. A theoretical model on surface electronic behavior: Strain effect

    International Nuclear Information System (INIS)

    Qin, W.G.; Shaw, D.

    2009-01-01

    Deformation from mechanical loading can affect surface electronic behavior. Surface deformation and electronic behavior can be quantitatively expressed using strain and work function, respectively, and their experimental relationship can be readily determined using the Kelvin probing technique. However, the theoretical correlation between work function and strain has been unclear. This study reports our theoretical exploration, for the first time, of the effect of strain on work function. We propose a simple electrostatic action model by considering the effect of a dislocation on work function of a one-dimensional lattice and further extend this model to the complex conditions for the effect of dislocation density. Based on this model, we established successfully a theoretical correlation between work function and strain.

  4. Effect of surface topography upon micro-impact dynamics

    International Nuclear Information System (INIS)

    Mohammadpour, M; Morris, N J; Leighton, M; Rahnejat, H

    2016-01-01

    Often the effect of interactions at nano-scale determines the tribological performance of load bearing contacts. This is particularly the case for lightly loaded conjunctions where a plethora of short range kinetic interactions occur. It is also true of larger load bearing conjunctions where boundary interactions become dominant. At the diminutive scale of fairly smooth surface topography the cumulative discrete interactions give rise to the dominance of boundary effects rather than the bulk micro-scale phenomena, based on continuum mechanics. The integration of the manifold localized discrete interactions into a continuum is the pre-requisite to the understanding of characteristic boundary effects, which transcend the physical length scales and affect the key observed system attributes. These are energy efficiency and vibration refinement. This paper strives to present such an approach. It is shown that boundary and near boundary interactions can be adequately described by surface topographical measures, as well the thermodynamic conditions. (paper)

  5. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete.

    Science.gov (United States)

    Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan

    2017-07-15

    The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation

  6. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    Science.gov (United States)

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  7. An observational and modeling study of impacts of bark beetle-caused tree mortality on surface energy and hydrological cycles

    Science.gov (United States)

    Fei Chen; Guo Zhang; Michael Barlage; Ying Zhang; Jeffrey A. Hicke; Arjan Meddens; Guangsheng Zhou; William J. Massman; John Frank

    2015-01-01

    Bark beetle outbreaks have killed billions of trees and affected millions of hectares of forest during recent decades. The objective of this study was to quantify responses of surface energy and hydrologic fluxes 2-3 yr following a spruce beetle outbreak using measurements and modeling. The authors used observations at the Rocky Mountains Glacier Lakes Ecosystem...

  8. Ion beam effects on the surface and near-surface composition of TaSi2

    International Nuclear Information System (INIS)

    Valeri, S.; Di Bona, A.; Ottaviani, G.; Procop, M.

    1991-01-01

    Low-energy (0.7-4.5 keV) ion bombardment effects on polycrystalline TaSi 2 at sputter steady state and in various intermediate steps have been investigated, in the temperature range up to 550degC, to determine the time and temperature dependence of the altered layer formation. This in turn enables a better knowledge of the synergistic effects of the processes mentioned above. At low temperatures (T≤410degC) the surface is silicon depleted, and the depletion is even more severe in the subsurface region up to a depth of several tens of angstroems; silicon preferential sputtering and radiation-enhanced segregation assisted by the displacement mixing-induced motion of atoms are assumed to be responsible for this composition profile, while thermally activated diffusion processes become operative above 410degC, reducing progressively the concentration gradient between the surface and the subsurface zone. The composition at different depths has been determined from Auger peaks for different kinetic energies, by varying the take-off angle and finally by sputter profiling at low in energy the high energy processed surfaces. Quantitative analysis has been performed by XPS and AES by using the elemental standard method. (orig.)

  9. Effect of remote clouds on surface UV irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Deguenther, M.; Meerkoetter, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    2000-06-01

    Clouds affect local surface UV irradiance, even if the horizontal distance from the radiation observation site amounts to several kilometers. In order to investigate this effect, which we call remote clouds effect, a 3-dimensional radiative transfer model is applied. Assuming the atmosphere is subdivided into a quadratic based sector and its surrounding, we quantify the influence of changing cloud coverage within this surrounding from 0% to 100% on surface UV irradiance at the sector center. To work out this remote clouds influence as a function of sector base size, we made some calculations for different sizes between 10 km x 10 km and 100 km x 100 km. It appears that in the case of small sectors (base size {<=}20 km x 20 km) the remote clouds effect is highly variable: Depending on cloud structure, solar zenith angle and wavelength, the surface UV irradiance may be enhanced up to 15% as well as reduced by more than 50%. In contrast, for larger sectors it is always the case that enhancements become smaller by 5% if sector base size exceeds 60 km x 60 km. However, these values are upper estimates of the remote cloud effects and they are found only for special cloud structures. Since these structures might occur but cannot be regarded as typical, different satellite observed cloud formations (horizontal resolution about 1 km x 1 km) have also been investigated. For these more common cloud distributions we find remote cloud effects to be distinctly smaller than the corresponding upper estimates, e.g., for a sector with base size of 25 km x 25 km the surface UV irradiance error due to ignoring the actual remote clouds and replacing their influence with periodic horizontal boundary conditions is less than 3%, whereas the upper estimate of remote clouds effect would suggest an error close to 10%. (orig.)

  10. Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.

    Science.gov (United States)

    Arai, Yuji; Fuller, C C

    2012-01-01

    Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Effects of ultrasonic instrumentation on enamel surfaces with various defects.

    Science.gov (United States)

    Kim, S-Y; Kang, M-K; Kang, S-M; Kim, H-E

    2018-05-01

    The aim of this study was to analyse the enamel damage caused by ultrasonic scaling of teeth with various enamel conditions that are difficult to identify by visual inspection, such as enamel cracks, early caries and resin restorations. In total, 120 tooth surfaces were divided into 4 experimental groups using a quantitative light-induced fluorescence-digital system: sound enamel group, enamel cracks group, early caries group and resin restoration group. A skilled dental hygienist performed ultrasonic scaling under a standardized set of conditions: a ≤ 15° angle between the scaler tip and tooth surface and 40-80 g of lateral pressure at the rate of 12 times/10 s. Following scaling, the depth of enamel damage was measured using a surface profilometer and observed using scanning electron microscopy (SEM). The damage depth was the greatest in the enamel cracks group (37.63 ± 34.42 μm), followed by the early caries group (26.81 ± 8.67 μm), resin restoration group (19.63 ± 6.73 μm) and the sound enamel group (17.00 ± 5.66 μm). The damage depth was significantly deeper in the enamel cracks and early caries groups than in the sound enamel group (P enamel loss in the enamel cracks, early caries and resin restoration groups. The results of this study suggest that ultrasonic scaling can cause further damage to teeth with enamel cracks, early caries and resin restorations. Therefore, accurate identification of tooth conditions and calculus before the initiation of ultrasonic scaling is necessary to minimize damage. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Research of reducing the shielding effect caused by vehicles passing the radioactivity monitor system

    International Nuclear Information System (INIS)

    Deng Xianqi; Li Jianmin; Wang Xiaobing

    2008-01-01

    A kind of Radioactivity Monitor System with Vehicle Contour Acquisition Module based on Optical Screen is developed. The system can reduce the shielding effect caused by the passing vehicles, so that the alarming sensitivity is improved. This paper introduces the work situation of the system and preliminary experimental results. (authors)

  13. Effects of subfertility cause, smoking and body weight on the success rate of IVF

    NARCIS (Netherlands)

    Lintsen, A.M.E.; Pasker-Jong, P.C.M. de; Boer, E.J. de; Burger, C.W.; Jansen, C.A.M.; Braat, D.D.M.; Leeuwen, F.E. van; Kortman, M.; Velde, E.R. te; Macklon, N.; Jansen, C.A.M.; Leerentveld, R.A.; Willemsen, W.N.P.; Schats, R.; Naaktgeboren, N.; Helmerhorst, F.M.; Bots, R.S.G.M.; Simons, A.H.M.; Hogerzeil, H.V.; Evers, J.L.H.; Dop, P.A. van

    2005-01-01

    Background: We investigated the separate and combined effects of smoking and body mass index (BMI) on the success rate of IVF for couples with different causes of subfertility. Methods: The success rate of IVF was examined in 8457 women. Detailed information on reproduction and lifestyle factors was

  14. Ionospheric storm effects in the nighttime E region caused by neutralized ring current particles

    Directory of Open Access Journals (Sweden)

    R. Bauske

    1997-03-01

    Full Text Available During magnetic storms an anomalous increase in the ionization density of the nighttime E region is observed at low and middle latitudes. It has been suggested that this effect is caused by the precipitation of neutralized ring current particles. Here a coupled ring current decay-ionosphere model is used to confirm the validity of this explanation.

  15. PREGNANCY LOSS IN THE F344 RAT CAUSED BY BROMODICHLOROMETHANE: EFFECTS ON SERUM LUTEINIZING HORMONE LEVELS

    Science.gov (United States)

    PREGNANCY LOSS IN THE F344 RAT CAUSED BY BROMODICHLOROMETHANE: EFFECTS ON SERUM LUTEINIZING HORMONE LEVELS Bielmeier1, S.R., D.S. Best2, and M.G. Narotsky2; 1University of North Carolina at Chapel Hill, Curriculum in Toxicology, 2Reproductive Toxicology Division, U.S. Enviro...

  16. The Nature, Causes and Effects of School Violence in South African High Schools

    Science.gov (United States)

    Ncontsa, Vusumzi Nelson; Shumba, Almon

    2013-01-01

    We sought to investigate the nature, causes and effects of school violence in four South African high schools. A purposive sample of five principals, 80 learners and 20 educators was selected from the four schools used in the study. A sequential mixed method approach was used in this study; both questionnaires and interviews were used. The design…

  17. Causal Mechanism Graph - A new notation for capturing cause-effect knowledge in software dependability

    International Nuclear Information System (INIS)

    Huang, Fuqun; Smidts, Carol

    2017-01-01

    Understanding cause-effect relations between concepts in software dependability engineering is fundamental to various research or industrial activities. Cognitive maps are traditionally used to elicit and represent such knowledge; however they seem incapable of accurately representing complex causal mechanisms in dependability engineering. This paper proposes a new notation called Causal Mechanism Graph (CMG) to elicit and represent the cause-effect domain knowledge embedded in experts’ minds or described in the literature. CMG contains a new set of symbols elicited from domain experts to capture the recurring interaction mechanisms between multiple concepts in software dependability engineering. Furthermore, compared to major existing graphic methods, CMG is particularly robust and suitable for mental knowledge elicitation: it allows one to represent the full range of cause-effect knowledge, accurately or fuzzily as one sees fit depending on the depth of knowledge he/she has. This feature combined with excellent reliability and validity poses CMG as a promising method that has the potential to be used in various areas, such as software dependability requirement elicitation, software dependability assessment and dependability risk control. - Highlights: • A new notation CMG for capturing cause-effect conceptual knowledge in software dependability. • CMG is particularly robust and suitable for mental knowledge representation. • CMG is a visual representation that bridges mental knowledge, natural and mathematical language. • CMG possesses excellent representation capability, validity and inter-coder reliability. • CMG is a fundamental method for various areas in dependability engineering.

  18. Fire in Ghana's dry forest: Causes, frequency, effects and management interventions

    Science.gov (United States)

    Sandra Opoku Agyemang; Michael Muller; Victor Rex Barnes

    2015-01-01

    This paper describes the number of fires, area burned, causes and seasonality of fires over a ten year period from 2002-2012 and investigates different fire management strategies and their effectiveness in the Afram headwaters forest reserve in Ghana. Data were collected from interviews of stakeholders in two communities adjacent to the reserve, and from 2002-2012 fire...

  19. Effects of long-term exposure to air pollution on natural-cause mortality

    DEFF Research Database (Denmark)

    Beelen, Rob; Raaschou-Nielsen, Ole; Stafoggia, Massimo

    2013-01-01

    Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air...... pollutants....

  20. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  1. Theory of inelastic effects in resonant atom-surface scattering

    International Nuclear Information System (INIS)

    Evans, D.K.

    1983-01-01

    The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results

  2. Is the increase in allergic respiratory disease caused by a cohort effect?

    DEFF Research Database (Denmark)

    Linneberg, A; Nielsen, N H; Madsen, F

    2002-01-01

    -sectional studies have shown that the prevalence of allergic sensitization decreases with increasing age. This could reflect the natural course of allergic sensitization. Alternatively, this could reflect that the increase in sensitization is caused by a cohort effect, i.e. an increase among subjects born during...... by a cohort effect. Thus, changes in lifestyle or environmental factors that occurred around or after 1960 may have contributed to this increase....

  3. Content and effects of news stories about uncertain cancer causes and preventive behaviors.

    Science.gov (United States)

    Niederdeppe, Jeff; Lee, Theodore; Robbins, Rebecca; Kim, Hye Kyung; Kresovich, Alex; Kirshenblat, Danielle; Standridge, Kimberly; Clarke, Christopher E; Jensen, Jakob; Fowler, Erika Franklin

    2014-01-01

    This article presents findings from two studies that describe news portrayals of cancer causes and prevention in local TV and test the effects of typical aspects of this coverage on cancer-related fatalism and overload. Study 1 analyzed the content of stories focused on cancer causes and prevention from an October 2002 national sample of local TV and newspaper cancer coverage (n = 122 television stations; n = 60 newspapers). Informed by results from the content analysis, Study 2 describes results from a randomized experiment testing effects of the volume and content of news stories about cancer causes and prevention (n = 601). Study 1 indicates that local TV news stories describe cancer causes and prevention as comparatively more certain than newspapers but include less information about how to reduce cancer risk. Study 2 reveals that the combination of stories conveying an emerging cancer cause and prevention behavior as moderately certain leads to an increased sense of overload, while a short summary of well-established preventive behaviors mitigates these potentially harmful beliefs. We conclude with a series of recommendations for health communication and health journalism practice.

  4. Causes and effects of vital instrumentation and control power supply bus failures

    International Nuclear Information System (INIS)

    Muhlheim, M.D.; Murphy, G.A.

    1987-01-01

    This article presents the results of a study in which the objective was to evaluate nuclear power-plant operating experience to identify the causes and the effects of vital instrumentation and control (I and C) power supply bus failures. Vital I and C power is normally provided to essential instrumentation and controls through either vital d-c or a-c power supply systems. The vital d-c power supply system generally provides control power for starting the diesel generators, for operating electrical circuit breakers, and for controlling various logic circuits. The vital d-c power system also supplies vital a-c power through an inverter. The vital a-c power supply system generally feeds the reactor protection system channels, the engineered safety features actuation system channels, and critical instrumentation in the control room. The leading cause of vital bus failures is inverter failures; other causes are human errors, battery charger failures, and miscellaneous failures. The effects of these failures are that the margin of safety can be degraded by (1) denying key information to the operators, (2) inducing plant transients, (3) causing safety injection actuations, and (4) causing the loss of shutdown cooling flow

  5. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  6. Horizon effects with surface waves on moving water

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, Germain; Maissa, Philippe; Mathis, Christian; Coullet, Pierre [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNS 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf, E-mail: Germain.Rousseaux@unice.f [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS (United Kingdom)

    2010-09-15

    Surface waves on a stationary flow of water are considered in a linear model that includes the surface tension of the fluid. The resulting gravity-capillary waves experience a rich array of horizon effects when propagating against the flow. In some cases, three horizons (points where the group velocity of the wave reverses) exist for waves with a single laboratory frequency. Some of these effects are familiar in fluid mechanics under the name of wave blocking, but other aspects, in particular waves with negative co-moving frequency and the Hawking effect, were overlooked until surface waves were investigated as examples of analogue gravity (Schuetzhold R and Unruh W G 2002 Phys. Rev. D 66 044019). A comprehensive presentation of the various horizon effects for gravity-capillary waves is given, with emphasis on the deep water/ short wavelength case kh>>1, where many analytical results can be derived. A similarity of the state space of the waves to that of a thermodynamic system is pointed out.

  7. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  8. Causes and effects of Romania deepening financial crisis. Short term means

    OpenAIRE

    Tudor Florin

    2011-01-01

    Deepening and expanding financial crisis triggered in October 2008 in the U.S. and other countries is the event that has caused the utmost concern of the policy makers in the economy and society. Forecasts for Romania show a slowdown in economy. As the current global status indicates the likelihood of a major global economic crisis, we attempt through this study to identify the real causes of this deepening crisis in Romania. As well as public policy priorities to counteract the effects of th...

  9. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  10. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  11. Shukla-Spatschek diffusion effects on surface plasma waves in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    The effects of Shukla-Spatschek turbulent diffusion on a temporal mode of surface waves propagating at the interface of an astrophysical turbulent plasma are investigated. The damping rates for high and low modes of surface wave are kinetically derived by employing the Vlasov-Poisson equation and the specular reflection boundary condition. We found that the diffusion caused by the fluctuating electric fields leads to damping for both high and low modes of surface waves. The high-mode damping is enhanced with an increase of the wavenumber and the diffusion coefficient, but suppressed by an increase of electron thermal energy. By contrast, the low-mode damping is suppressed as the wavenumber and the thermal energy increase although it is enhanced as the diffusion increases. The variation of the damping rate due to the Shukla-Spatschek turbulent diffusion is also discussed.

  12. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Directory of Open Access Journals (Sweden)

    M. Hess

    2008-07-01

    Full Text Available A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  13. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Science.gov (United States)

    Hess, M.; Koepke, P.

    2008-07-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  14. Adsorption of nitrogen on W(100): effect of surface disorder on the work function change

    International Nuclear Information System (INIS)

    Singh-Bofarai, S.P.; King, D.A.

    1976-01-01

    At room temperature nitrogen adsorption causes the work function of the (100) plane of tungsten to decrease by approximately 0.6 eV, while on all other planes the work function is increased, albeit by as little as 0.03 eV on the (110) plane. Surface disorder can readily be created by the vapour deposition of W onto a clean, annealed W single crystal surface, and in the present work this technique was used to shadow a W field emission tip with disordered W atoms so as to observe the effect of surface disorder on the work function change due to nitrogen adsorption, particularly at the (100) poles of the tip. (Auth.)

  15. Cause-effect analysis on Fukushima accident reports. What did McMaster undergraduate students learn?

    International Nuclear Information System (INIS)

    Nagasaki, Shinya

    2016-01-01

    In the ENG PHYS 4ES3 Course “Special Topics in Energy Systems (2014-2015)” in McMaster University, sixteen 4th-year undergraduate students studied the Fukushima accident, discussed the causes of accident and its impacts on the energy systems from the sustainability point of view, made the oral presentation and submitted the reports. In this paper, a cause-effect and causal-loop analysis was applied to the discussion in the reports, the diagram of cause-effect relationship was drawn, and the important problems were extracted from the diagram. It was found that the important problems and the diagram of cause-effect relationship McMaster undergraduate students considered were similar to the essential problems and the diagram Horii pointed out, although Interim Report of the Investigation Committee on the Accident at Fukushima Nuclear Stations of Tokyo Electric Power Company which Horii used was not adopted in the reports submitted by students. (author)

  16. Surface effects on the thermal conductivity of silicon nanowires

    Science.gov (United States)

    Li, Hai-Peng; Zhang, Rui-Qin

    2018-03-01

    Thermal transport in silicon nanowires (SiNWs) has recently attracted considerable attention due to their potential applications in energy harvesting and generation and thermal management. The adjustment of the thermal conductivity of SiNWs through surface effects is a topic worthy of focus. In this paper, we briefly review the recent progress made in this field through theoretical calculations and experiments. We come to the conclusion that surface engineering methods are feasible and effective methods for adjusting nanoscale thermal transport and may foster further advancements in this field. Project supported by the National Natural Science Foundation ofChina (Grant No. 11504418), China Scholarship Council (Grant No. 201706425053), Basic Research Program in Shenzhen, China (Grant No. JCYJ20160229165210666), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).

  17. Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs

    Science.gov (United States)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred

    2017-10-01

    MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet

  18. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    OpenAIRE

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The opti...

  19. Nanotopography effects on astrocyte attachment to nanoporous gold surfaces.

    Science.gov (United States)

    Kurtulus, Ozge; Seker, Erkin

    2012-01-01

    Nanoporous gold, synthesized by a self-assembly process, is a new biomaterial with desirable attributes, including tunable nanotopography, drug delivery potential, electrical conductivity, and compatibility with conventional microfabrication techniques. This study reports on the effect of nanotopography in guiding cellular attachment on nanoporous gold surfaces. While the changes in topography do not affect adherent cell density, average cell area displays a non-monotonic dependence on nanotopography.

  20. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    Science.gov (United States)

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  1. Liquid lithium surface control and its effect on plasma performance in the HT-7 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, G.Z.; Ren, J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, J.S., E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Z.; Yang, Q.X.; Li, J.G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zakharov, L.E. [Princeton University Plasma Physics Laboratory Princeton, NJ 08543 (United States); Ruzic, David N. [University of Illinois, Urbana, IL 61801 (United States)

    2014-12-15

    Highlights: • Strong interaction between plasma and Li would cause strong Li emission and lead to disruptive plasmas, and probable reasons were analyzed. • Serious Li would be emitted from the free statics surface mainly due to J × B force leading to plasma instable and disruptions. • CPS surface would partially suppress the emission and be beneficial for plasma operation. • Li emission from flowing LLLs on free surfaces on SS trenches and on SS plate were compared. - Abstract: Experiments with liquid lithium limiters (LLLs) have been successfully performed in HT-7 since 2009 and the effects of different limiter surface structures on the ejection of Li droplets have been studied and compared. The experiments have demonstrated that strong interaction between the plasma and the liquid surface can cause intense Li efflux in the form of ejected Li droplets – which can, in turn, lead to plasma disruptions. The details of the LLL plasma-facing surface were observed to be extremely important in determining performance. Five different LLLs were evaluated in this work: two types of static free-surface limiters and three types of flowing liquid Li (FLLL) structures. It has been demonstrated that a FLLL with a slowly flowing thin liquid Li film on vertical flow plate which was pre-treated with evaporated Li was much less susceptible to Li droplet ejection than any of the other structures tested in this work. It was further observed that the plasmas run against this type of limiter were reproducibly well-behaved. These results provide technical references for the design of FLLLs in future tokamaks so as to avoid strong Li ejection and to decrease disruptive plasmas.

  2. Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. Keul

    2013-10-01

    Full Text Available About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA. Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic calcium carbonate in the open oceans. We have compiled the state of the art literature on OA effects on foraminifera, because the majority of OA research on this group was published within the last three years. Disparate responses of this important group of marine calcifiers to OA were reported, highlighting the importance of a process-based understanding of OA effects on foraminifera. We cultured the benthic foraminifer Ammonia sp. under a range of carbonate chemistry manipulation treatments to identify the parameter of the carbonate system causing the observed effects. This parameter identification is the first step towards a process-based understanding. We argue that [CO32−] is the parameter affecting foraminiferal size-normalized weights (SNWs and growth rates. Based on the presented data, we can confirm the strong potential of Ammonia sp. foraminiferal SNW as a [CO32−] proxy.

  3. Friction Surface Treatment Selection: Aggregate Properties, Surface Characteristics, Alternative Treatments, and Safety Effects

    Science.gov (United States)

    2017-07-01

    This study aimed to evaluate the long term performance of the selected surface friction treatments, including high friction surface treatment (HFST) using calcined bauxite and steel slag, and conventional friction surfacing, in particular pavement pr...

  4. The Effects of Particle Size on the Surface Properties of an HVOF Coating of WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Tong Yul; Yoon, Jae Hong; Yoon, Sang Hwan; Joo, Yun Kon [Changwon National University, Changwon (Korea, Republic of); Choi, Won Ho; Son, Young Bok [Xinix Metallizing Co., Ltd, Gyungnam (Korea, Republic of)

    2017-04-15

    The effects of particle size on the surface properties of HVOF spray coating were studied to improve of the durability of metal components. Micro and nano sized WC-12Co powders were coated on the surface of Inconel718, and the effects of particle size on surface properties were studied. Surface hardness was reduced when the particle sizes of the powder were decreased, because the larger specific surface area of the smaller particles caused greater heat absorption and decomposition of the hard WC to less hard W{sub 2}C and graphite. Porosity was increased by decreasing the particle size, because the larger specific surface area of the smaller particles caused a greater decomposition of WC to W{sub 2}C and free carbon. The free carbon formed carbon oxide gases which created the porous surface. The friction coefficient was reduced by decreasing the particle size because the larger specific surface area of the smaller particles produced more free carbon free Co and Co oxide which acted as solid lubricants. The friction coefficient increased when the surface temperature was increased from 25 to 500 ℃, due to local cold welding. To improve the durability of metal mechanical components, WC-Co coating with the proper particle size is recommended.

  5. Environmental cause/effect phenomena relating to technological development in the Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Eedy, E

    1974-01-01

    The environmental cause/effect interrelationships observed as a consequence of man-mediated disruptions in Canadian Arctic regions are summarized. Sulfur dioxide pollution has destroyed vegetation in Southern Canada. Lichens are particularly vulnerable and have no defense mechanism against pollutants. In Fairbanks, ice fogs and stagnant air collect very high concentrations of pollutants, with the worst conditions arising from fossil fuel combustion and vehicle exhaust. In Yellowknife (Mackenzie) thermal inversions cause high local deposition of arsenic arising from smelter fumes. Concentrations are reported as high as 3 ppM. Fogs cause problems in the Edmonton (Alberta) air. Stable smoke clouds drifted north from a southern forest fire and reduced the solar radiation by 25 percent. Similar problems can occur with the plumes of industrial or thermoelectric stacks. (Air Pollut. Abstr.)

  6. Final state effects in photoemission studies of Fermi surfaces

    International Nuclear Information System (INIS)

    Kurtz, Richard L; Browne, Dana A; Mankey, Gary J

    2007-01-01

    Photoelectron spectroscopy is one of the most important methods for extracting information about the Fermi surface (FS) of materials. An electron photoexcited from the FS is emitted from the crystal conserving the parallel momentum, k parallel , while the perpendicular momentum k perpendicular is reduced due to the surface potential barrier. A simple interpretation of the process assumes the final state is free-electron-like allowing one to 'map' the detected photoelectron back to its initial k momentum. There are multiple final state effects that can complicate the interpretation of photoelectron data and these effects are reviewed here. These can involve both energy and k broadening, which can give rise to shadow or ghost FS contours, scattering and final state diffraction effects that modify intensities, and matrix element effects which reflect the symmetries of the states involved and can be highly dependent on photon polarization. These matrix elements result in contours of photoelectron intensity that follow the dispersion in k-space of the initial state, the FS, and the final state. Locations where intensities go to zero due to matrix element and symmetry effects can result in gaps where FS contours 'disappear'. Recognition that these effects can play a significant role in determining the measured angular distributions is crucial in developing an informed model of where the FS contours actually lie in relation to measured intensity contours

  7. The effect of surface electrical stimulation on vocal fold position.

    Science.gov (United States)

    Humbert, Ianessa A; Poletto, Christopher J; Saxon, Keith G; Kearney, Pamela R; Ludlow, Christy L

    2008-01-01

    Closure of the true and false vocal folds is a normal part of airway protection during swallowing. Individuals with reduced or delayed true vocal fold closure can be at risk for aspiration and may benefit from intervention to ameliorate the problem. Surface electrical stimulation is currently used during therapy for dysphagia, despite limited knowledge of its physiological effects. Prospective single effects study. The immediate physiological effect of surface stimulation on true vocal fold angle was examined at rest in 27 healthy adults using 10 different electrode placements on the submental and neck regions. Fiberoptic nasolaryngoscopic recordings during passive inspiration were used to measure change in true vocal fold angle with stimulation. Vocal fold angles changed only to a small extent during two electrode placements (P vocal fold abduction was 2.4 degrees; while horizontal placements of electrodes in the submental region produced a mean adduction of 2.8 degrees (P = .03). Surface electrical stimulation to the submental and neck regions does not produce immediate true vocal fold adduction adequate for airway protection during swallowing, and one position may produce a slight increase in true vocal fold opening.

  8. Surface wave propagation effects on buried segmented pipelines

    Directory of Open Access Journals (Sweden)

    Peixin Shi

    2015-08-01

    Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.

  9. Evaluation of dosimetric effects caused by the table top of therapy

    International Nuclear Information System (INIS)

    Camargo, Andre Vinicius de; Alvares, Bruno; Fioravante, Gustavo Donisete; Silva, Diego da Cunha Silveira Alves da; Giglioli, Milena; Batista, Felipe Placido; Silva, Lais Bueno da; Radicchi, Lucas Augusto

    2016-01-01

    The attenuation and bolus effect for two tables top from different manufacturers were investigated for 6MV photons. The bolus effect of couch was compared with 0,5cm bolus (water equivalent). Maximum attenuation found in Exact Couch table was 6,9% and the minimum was 0,63%. The rail of Exact Couch, for beam in 180 deg, was observed attenuation of 13,61%. The same way that for attenuation, the surface dose was different for each region of couch Exact Couch and for different components of iBeam evo. The percentage of the dose in the depth of 1,8 mm was greater for table top of Exact Couch (66,2%). The extender of table iBeam evo offered increase dose of 38,3% and it table top of 51,9% in the same depth. The bolus increased surface dose in 61,1%. The results of this study showed that table tops when in contact with surface of the patient may significantly increase surface dose and beam attenuation. (author)

  10. Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas

    Science.gov (United States)

    Hao, D.; Wen, J.; Xiao, Q.

    2017-12-01

    Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.

  11. An economic assessment of the health effects and crop yield losses caused by air pollution in mainland China.

    Science.gov (United States)

    Miao, Weijie; Huang, Xin; Song, Yu

    2017-06-01

    Air pollution is severe in China, and pollutants such as PM 2.5 and surface O 3 may cause major damage to human health and crops, respectively. Few studies have considered the health effects of PM 2.5 or the loss of crop yields due to surface O 3 using model-simulated air pollution data in China. We used gridded outputs from the WRF-Chem model, high resolution population data, and crop yield data to evaluate the effects on human health and crop yield in mainland China. Our results showed that outdoor PM 2.5 pollution was responsible for 1.70-1.99 million cases of all-cause mortality in 2006. The economic costs of these health effects were estimated to be 151.1-176.9 billion USD, of which 90% were attributed to mortality. The estimated crop yield losses for wheat, rice, maize, and soybean were approximately 9, 4.6, 0.44, and 0.34 million tons, respectively, resulting in economic losses of 3.4 billion USD. The total economic losses due to ambient air pollution were estimated to be 154.5-180.3 billion USD, accounting for approximately 5.7%-6.6% of the total GDP of China in 2006. Our results show that both population health and staple crop yields in China have been significantly affected by exposure to air pollution. Measures should be taken to reduce emissions, improve air quality, and mitigate the economic loss. Copyright © 2016. Published by Elsevier B.V.

  12. Effects of heat flux on dropwise condensation on a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Kyung Won; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of); Kim, Dong Hyun [KAERI, Daejeon (Korea, Republic of); Jo, Hang Jin [University of Wisconsin-Madison, Wisconsin (United States); Kim, Moo Hwan [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    The condensation heat transfer efficiencies of superhydrophobic surfaces that have ∼160.deg. contact angle under atmospheric conditions were investigated experimentally. The departing diameter and the contact angle hysteresis of droplets were measured by capturing front and tilted side views of condensation phenomena with a high speed camera and an endoscope, respectively. Condensation behaviors on the surface were observed at the micro-scale using an Environmental scanning electron microscope (ESEM). Apparently-spherical droplets formed at very low heat flux q' ∼20 kW/m{sup 2} but hemispherical droplets formed at high q' ∼ 440 kW/m{sup 2} . At high q', heat transfer coefficients were lower on the superhydrophobic surface than on a hydrophobic surface although the superhydrophobic surface is water repellent so droplets roll off. The results of contact angle hysteresis and ESEM image revealed that the reduced heat transfer of the surface can be attributed to the large size of departing droplets caused by adhesive condensed droplets at nucleation sites. The results suggest that the effect of q' or degree of sub-cooling of a condensation wall determine the droplet shape, which is closely related to removal rates of condensates and finally to the heat transfer coefficient.

  13. Effect of interaction of embedded crack and free surface on remaining fatigue life

    Directory of Open Access Journals (Sweden)

    Genshichiro Katsumata

    2016-12-01

    Full Text Available Embedded crack located near free surface of a component interacts with the free surface. When the distance between the free surface and the embedded crack is short, stress at the crack tip ligament is higher than that at the other area of the cracked section. It can be easily expected that fatigue crack growth is fast, when the embedded crack locates near the free surface. To avoid catastrophic failures caused by fast fatigue crack growth at the crack tip ligament, fitness-for-service (FFS codes provide crack-to-surface proximity rules. The proximity rules are used to determine whether the cracks should be treated as embedded cracks as-is, or transformed to surface cracks. Although the concepts of the proximity rules are the same, the specific criteria and the rules to transform embedded cracks into surface cracks differ amongst FFS codes. This paper focuses on the interaction between an embedded crack and a free surface of a component as well as on its effects on the remaining fatigue lives of embedded cracks using the proximity rules provided by the FFS codes. It is shown that the remaining fatigue lives for the embedded cracks strongly depend on the crack aspect ratio and location from the component free surface. In addition, it can be said that the proximity criteria defined by the API and RSE-M codes give overly conservative remaining lives. On the contrary, the WES and AME codes always give long remaining lives and non-conservative estimations. When the crack aspect ratio is small, ASME code gives non-conservative estimation.

  14. Vessel size effect on the characteristic frequency of the free surface fluctuations

    International Nuclear Information System (INIS)

    Nam, Ho Yun; Kim, Min Joon; Kim, Jong Man; Choi, Byoung Hae

    2004-01-01

    Studies of the free surface fluctuations is one of the important topics in a liquid metal nuclear reactor using sodium as the coolant that has a free surface in the upper plenum of the reactor vessel. The main reasons for the study on the free surface fluctuations can be summarized as: 1. to secure the structural integrity of a reactor vessel by considering the thermal stress on the vessel wall induced by the fluctuations of the free surface between the hot sodium and cold cover gas, 2. to prevent the cover gas entrainment at the free surface of the sodium because the entrained gas causes a change in the reactivity and also reduces the heat removal capability in the core. Some experimental studies on the free surface fluctuations have been reported. However, most of them focus on the gas entrainment phenomena and only a few works concern the basic characteristics of the free surface fluctuations. Since the thermal stress on the wall is strongly dependent on the amplitude and frequency of the free surface fluctuations, studies on the amplitudes and frequencies should receive more attention. In Nam, empirical formulae on the amplitudes and frequencies with respect to the geometric and hydraulic parameters were introduced. It is an interesting result, but the experiment was performed within the parameter range near the onset point of the fluctuations. In the real reactor condition, larger sized fluctuations may exist and the formula needs to be modified. In this study, we performed experiments on the free surface fluctuations, especially on larger sized fluctuations and made an analysis of the amplitudes and frequencies. The main focus of this paper is the effect of the vessel size on the characteristic frequencies. It is thought to be helpful for finding the scaling laws, for example, designing a scale-down experiment

  15. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  16. Titan's methane cycle and its effect on surface geology

    Science.gov (United States)

    Lopes, R. M.; Peckyno, R. S.; Le Gall, A. A.; Wye, L.; Stofan, E. R.; Radebaugh, J.; Hayes, A. G.; Aharonson, O.; Wall, S. D.; Janssen, M. A.; Cassini RADAR Team

    2010-12-01

    units and conclude that aeolian and fluvial/pluvial/lacustrine processes - all products of the methane cycle - are the most recent, while tectonic processes that led to the formation of mountainous terrains and Xanadu are likely the most ancient. Mountainous terrains, which along with Xanadu may have at least in part a tectonic origin, are radar-bright and radiometrically distinct from most other areas. They may have been washed clean of organic particulates by methane rains. Radiometric data from the Sinlap ejecta blanket reveals fresh water ice, indicating that the crater is relatively young. Preliminary correlations between geologic units and surface properties derived from the radiometry measurements (brightness temperature, effective dielectric constant, and degree of volume scattering) will also be presented.

  17. Opposing effects of humidity on rhodochrosite surface oxidation.

    Science.gov (United States)

    Na, Chongzheng; Tang, Yuanzhi; Wang, Haitao; Martin, Scot T

    2015-03-03

    Rhodochrosite (MnCO3) is a model mineral representing carbonate aerosol particles containing redox-active elements that can influence particle surface reconstruction in humid air, thereby affecting the heterogeneous transformation of important atmospheric constituents such as nitric oxides, sulfur dioxides, and organic acids. Using in situ atomic force microscopy, we show that the surface reconstruction of rhodochrosite in humid oxygen leads to the formation and growth of oxide nanostructures. The oxidative reconstruction consists of two consecutive processes with distinctive time scales, including a long waiting period corresponding to slow nucleation and a rapid expansion phase corresponding to fast growth. By varying the relative humidity from 55 to 78%, we further show that increasing humidity has opposing effects on the two processes, accelerating nucleation from 2.8(±0.2) × 10(-3) to 3.0(±0.2) × 10(-2) h(-1) but decelerating growth from 7.5(±0.3) × 10(-3) to 3.1(±0.1) × 10(-3) μm(2) h(-1). Through quantitative analysis, we propose that nanostructure nucleation is controlled by rhodochrosite surface dissolution, similar to the dissolution-precipitation mechanism proposed for carbonate mineral surface reconstruction in aqueous solution. To explain nanostructure growth in humid oxygen, a new Cabrera-Mott mechanism involving electron tunneling and solid-state diffusion is proposed.

  18. Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.

    Science.gov (United States)

    Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Fox, Kate; Field, Matthew R; Deeleepojananan, Cholaphan; Mochalin, Vadym N; Gibson, Brant C

    2017-11-28

    Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.

  19. Fluid Surface Deformation by Objects in the Cheerios Effect

    Science.gov (United States)

    Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team

    2012-11-01

    Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.

  20. Influence of surface effects on subsecond processes in liquid metals

    International Nuclear Information System (INIS)

    Tkachenko, S.I.; Vorob'ev, V.S.; Khishchenko, K.V.

    2001-01-01

    Full Text: We discuss a problem of experimental-data interpretation during subsecond measurements of thermophysical properties of matter at high temperatures and pressures. Peculiarity of these measurements is optical opaqueness of matter under interesting conditions (T∼1 eV, ρ∼10 4 kg m -3 ), so only at assuming of bulk specimen uniformity one can obtain a temperature dependencies of the specific properties of matter. Changing circuit current and changing sample geometry we can avoid a development of hydromagnetic instability and decrease a nonuniform heating due to skin effect. As temperature of wire surface reaches the boiling temperature under normal pressure so part of internal energy is lost because of evaporation and surface radiation at high temperature. So one can register a surface temperature and ascribe it to the whole sample bulk. Computer simulation of wire explosion taking into account surface radiation losses was carried out. Typical phase tracks for matter were obtained in both case as in consideration of radiation losses as without it. Comparison of the results with data concerning to isobaric-expansion experiments and semi-empirical multi-phase equation of state were carried out. It was proposed uniformity criterion for investigation of thermophysical properties of liquid metal by subsecond wire explosion. (author)

  1. Side Flow Effect on Surface Generation in Nano Cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong

    2017-12-01

    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  2. Effect of sealer coating and storage methods on the surface roughness of soft liners.

    Science.gov (United States)

    Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat

    2016-03-01

    A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry

  3. Damage of niobium surfaces caused by bombardment with 4He+ ions of different energies typical for T-20

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gusev, V.; Martynenko, Yu.V.; Das, S.K.; Kaminsky, N.

    1979-01-01

    The surface damage of cold worked and annealed polycrystalline Nb irradiated at room temperature with He + ions sequentially at different energies over the range from 0.5 keV to 1.8 MeV has been investigated. The individual energy and the dose of the He + ion was chosen to match the theoretically calculated He + ion spectrum expected in the Tokamak T-20. In one set of irradiations, targets were irradiated at Kurchatov Institute starting with 0.5 keV 4 He + ions and extending up to 90 keV in eleven steps. Subsequently, the same area was irradiated at ANL starting at 150 keV and increased in eight steps up to 1.8 MeV. The irradiations were carried out for a total dose of 5.0 C/cm 2 . In another set of irradiations the sequence was reversed. Scanning electron microscopy results show formation of blisters and exfoliation. For the same dose the broad energy implant (due to sequential irradiation) appears to decrease the blister diameter and density as compared to irradiation with monoenergetic He + ions at a given energy (in the energy range considered). Some estimates of surface erosion yields due to blistering are given

  4. Demographic, social, and economic effects on Mexican causes of death in 1990.

    Science.gov (United States)

    Pick, J B; Butler, E W

    1998-01-01

    This study examined spatial geographic patterns of cause of death and 28 demographic and socioeconomic influences on causes of death for 31 Mexican states plus the Federal District for 1990. Mortality data were obtained from the state death registration system and are age standardized. The 28 socioeconomic variables were obtained from Census records. Analysis included 2 submodels: one with all 28 socioeconomic variables in a stepwise regression, and one with each of the 4 groups of factors. The conceptual model is based on epidemiological transition theory and empirical findings. There are 4 stages in mortality decline. Effects are grouped as demographic, sociocultural, economic prosperity, and housing, health, and crime factors. Findings indicate that cancer and cardiovascular disease were strongly correlated and consistently high in border areas as well as the Federal District and Jalisco. Respiratory mortality had higher values in the Federal District, Puebla, and surrounding states, as well as Jalisco. The standardized total mortality rate was only in simple correlations associated inversely with underemployment. All cause specific mortality was associated with individual factors. Respiratory mortality was linked with manufacturing work force. Cardiovascular and cancer mortality were associated with socioeconomic factors. In submodel I, cause specific mortality was predicted by crowding, housing characteristics, marriage and divorce, and manufacturing work force. In submodel II, economic group factors had the strongest model fits explaining 33-60% of the "r" square. Hypothesized effects were only partially validated.

  5. The initial decrease in effective peritoneal surface area is not caused by an increase in hematocrit

    NARCIS (Netherlands)

    Struijk, D. G.; Krediet, R. T.; Koomen, G. C.; Boeschoten, E. W.; Hoek, F. J.; Arisz, L.

    1993-01-01

    The possible relationship between initial changes in functional characteristics of the peritoneal membrane in time and hemoglobin (Hb) or hematocrit (Ht) was analyzed as part of a prospective longitudinal study. The patients were investigated twice: the first time within 3 months after the start of

  6. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2012-09-27

    In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.

  7. Damage of niobium surfaces caused by bombardment with 4He+ ions of different energies typical for T-20

    International Nuclear Information System (INIS)

    Guseva, M.I.; Gusev, V.; Martynenko, Yu.V.; Das, S.K.; Kaminsky, M.

    1979-01-01

    The aim of the present studies was to study surface damage due to blistering of both annealed and cold-worked niobium (a candidate first wall material for keV) irradiated sequentially with 4 He + ions with energies of 0.5 to 1800 keV for a total dose of 5.0 C/cm 2 . A typical surface of cold-worked Nb after irradiations with 4 He + ions with increasing energy from 0.5 to 90 keV is shown. The blister diameters range from 0.1 μm to 3 μm, and most of the blisters have exfoliated. The blisters fall into several size classes, the two most dominant ones having most probable blister diameters of approx. 0.27 μm and approx. 2.0 μm. The skin thickness of the larger blisters was measured to be approx. 0.23 μm. Also shown is the same area after irradiation with 150-1800-keV 4 He + irradiation for a dose of 0.66 C/cm 2 . A few additional blisters can be seen. A cold-worked Nb surface that was irradiated only with 150-1800-keV 4 He + ions is also shown. It is seen that prior irradiation with 0.5-90-keV 4 He + helped in significantly reducing blistering. For a total dose of 0.5 C/cm 2 , the erosion yield due to helium blistering of Nb ranges from (5.4 +- 2.0) x 10 -3 to (1.5 +- 0.7) x 10 -2 atoms/ion. For the cold-worked Nb target the results indicate clearly that the 4 He + implantations for the energy range from 0.5 to 90 keV help to reduce both the density and diameter of blisters formed by subsequent He-implantation for the energy ranging from 150 to 1800 keV. 2 figures

  8. Rarefaction effects in gas flows over curved surfaces

    Science.gov (United States)

    Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    The fundamental test case of gas flow between two concentric rotating cylinders is considered in order to investigate rarefaction effects associated with the Knudsen layers over curved surfaces. We carry out direct simulation Monte Carlo simulations covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Numerical data is compared with classical slip flow theory and a new power-law (PL) wall scaling model. The PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. The limitations of both theoretical models are explored with respect to rarefaction and curvature effects. Torque and velocity profile comparisons also convey that mere prediction of integral flow parameters does not guarantee the accuracy of a theoretical model, and that it is important to ensure that prediction of the local flowfield is in agreement with simulation data.

  9. Surface effects on the photoluminescence of Si quantum dots

    International Nuclear Information System (INIS)

    Wang, Chiang-Jing; Tsai, Meng-Yen; Chi, Cheng Chung; Perng, Tsong-Pyng

    2009-01-01

    Si quantum dots (SiQDs) with sizes ranging from 5 to 20 nm were fabricated by vapor condensation. They showed red photoluminescence (PL) in vacuum with the peak located at around 750 nm. After the specimen was exposed to air, the PL intensity became higher, and continued to increase during the PL test with a cycling of vacuum-air-vacuum. In pure oxygen, the PL intensity exhibited an irreversible decrease, while in nitrogen a smaller amount of reversible increase of PL intensity was observed. Furthermore, the PL intensity exhibited a remarkable enhancement if the SiQDs were treated with water. With HF treatment, the PL peak position showed a blue-shift to 680 nm, and was recovered after subsequent exposure to air. Si-O-H complexes were suggested to be responsible for this red luminescence. The irreversible decrease of PL intensity due to oxygen adsorption was speculated to be caused by the modification of chemical bonds on the surface. In the case of nitrogen adsorption, the PL change was attributed to the surface charging during adsorption.

  10. Cause-effect analysis: improvement of a first year engineering students' calculus teaching model

    Science.gov (United States)

    van der Hoff, Quay; Harding, Ansie

    2017-01-01

    This study focuses on the mathematics department at a South African university and in particular on teaching of calculus to first year engineering students. The paper reports on a cause-effect analysis, often used for business improvement. The cause-effect analysis indicates that there are many factors that impact on secondary school teaching of mathematics, factors that the tertiary sector has no control over. The analysis also indicates the undesirable issues that are at the root of impeding success in the calculus module. Most important is that students are not encouraged to become independent thinkers from an early age. This triggers problems in follow-up courses where students are expected to have learned to deal with the work load and understanding of certain concepts. A new model was designed to lessen the impact of these undesirable issues.

  11. Cause and effect analysis by fuzzy relational equations and a genetic algorithm

    International Nuclear Information System (INIS)

    Rotshtein, Alexander P.; Posner, Morton; Rakytyanska, Hanna B.

    2006-01-01

    This paper proposes using a genetic algorithm as a tool to solve the fault diagnosis problem. The fault diagnosis problem is based on a cause and effect analysis which is formally described by fuzzy relations. Fuzzy relations are formed on the basis of expert assessments. Application of expert fuzzy relations to restore and identify the causes through the observed effects requires the solution to a system of fuzzy relational equations. In this study this search for a solution amounts to solving a corresponding optimization problem. An optimization algorithm is based on the application of genetic operations of crossover, mutation and selection. The genetic algorithm suggested here represents an application in expert systems of fault diagnosis and quality control

  12. Random safety auditing, root cause analysis, failure mode and effects analysis.

    Science.gov (United States)

    Ursprung, Robert; Gray, James

    2010-03-01

    Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Radiotherapy high energy surface dose measurements: effects of chamber polarity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: The effects of chamber polarity have been investigated for the measurement of 6MV and 18MV x-ray surface dose using a parallel plate ionization chamber. Results have shown that a significant difference in measured ionization is recorded between to polarities at 6MV and 18MV at the phantom surface. A polarity ratio ranging from 1 062 to 1 005 is seen for 6MV x-rays at the phantom surface for field sizes 5cm x 5cm to 40cm x 40cm when comparing positive to negative polarity. These ratios range from 1.024 to 1.004 for 18MV x-rays with the same field sizes. When these charge reading are compared to the D max readings of the same polarity it is found that these polarity effects are minimal for the calculation of percentage dose results with variations being less than 1% of maximum. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  14. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  15. Immunostimulatory Potential of β-Lactoglobulin Preparations: Effects Caused by Endotoxin Contamination

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Bovetto, L.; Fritsche, R.

    2003-01-01

    Background: The immunomodulating potential residing in cow's milk proteins is currently receiving increasing attention because of growing interest in functional foods and the complex problem of cow's milk allergy. One of the major cow's milk allergens, whey protein beta-lactoglobulin, has...... the immunomodulatory activity. Eventually, the immunostimulatory effect was found to be caused by endotoxin contamination.Conclusion: These results identify endotoxin as the main immunostimulatory component present in some commercial beta-lactoglobulin preparations. Moreover, the present study makes it evident...

  16. Trustworthiness of magnetic storms effect on biological and man caused processes

    International Nuclear Information System (INIS)

    Kozin, I.D.; Fedulina, I.N.; Sokolova, O.I.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    It is shown that relative variations of geomagnetic field components at the middle latitudes do not exceeds 1 % even during strong magnetic storms, and changes of a field vector angle are less than 1 degree. It is supposed that such changes can not effect life organism functioning, including human, as well as working of electricity transmission lines and other technological equipment. Different causes occurring during magnetic storms may be responsible for that. (author)

  17. Industrial PM2.5 cause pulmonary adverse effect through RhoA/ROCK pathway.

    Science.gov (United States)

    Yan, Junyan; Lai, Chia-Hsiang; Lung, Shih-Chun Candice; Chen, Chongjun; Wang, Wen-Cheng; Huang, Pin-I; Lin, Chia-Hua

    2017-12-01

    According to the Chinese Ministry of Health, industrial pollution-induced health impacts have been the leading cause of death in China. While industrial fine particulate matter (PM 2.5 ) is associated with adverse health effects, the major action mechanisms of different compositions of PM 2.5 are currently unclear. In this study, we treated normal human lung epithelial BEAS-2B cells with industrial organic and water-soluble PM 2.5 extracts under daily alveolar deposition dose to elucidate the molecular mechanisms underlying adverse pulmonary effects induced by PM 2.5 , including oxidative damage, inflammatory response, lung epithelial barrier dysfunction, and the recruitment of macrophages. We found that water-soluble PM 2.5 extracts caused more severe cytotoxic effects on BEAS-2B cells compared with that of organic extracts. Both organic and water-soluble PM 2.5 extracts induced activation of the RhoA/ROCK pathway. Inflammatory response, epithelial barrier dysfunction, and the activation of NF-кB caused by both PM 2.5 extracts were attenuated by ROCK inhibitor Y-27632. This indicated that both PM 2.5 extracts could cause damage to epithelial cells through RhoA/ROCK-dependent NF-кB activation. Furthermore, the upregulation of macrophage adhesion induced by both PM 2.5 extracts was also attenuated by Y-27632 in a co-culture model of macrophages and the epithelial cells. Therefore, our results support that industrial PM 2.5 extracts-induced activation of the RhoA/ROCK-dependent NF-кB pathway induces pulmonary adverse effect. Thus, pharmacological inhibition of ROCK activation might have therapeutic potential in preventing lung disease associated with PM 2.5 . Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Causes, effects and management of conflict among educators in the Mafikeng District / Simon Kelepile Manyedi

    OpenAIRE

    Manyedi, Simon Kelepile

    2006-01-01

    The purpose of this study is to investigate the causes, effects and management of conflict among school based educators. The dissertation acknowledge the existence of conflict in every human interaction. Conflict in organizations should be managed systematically. An appropriate approach in conflict management should aim at enhancing the benefits of conflict. The study aimed at determining whether site-managers possess the essential skill of managing healthy conflict while de...

  19. Effects of subfertility cause, smoking and body weight on the success rate of IVF

    OpenAIRE

    Lintsen, A.M.; Jong, P.C.M. Pasker-de; Boer, de, E.J.; Burger, C.W.; Jansen, C.A.; Braat, D.D.; Leeuwen, van, F.E.

    2005-01-01

    Background: We investigated the separate and combined effects of smoking and body mass index (BMI) on the success rate of IVF for couples with different causes of subfertility. Methods: The success rate of IVF was examined in 8457 women. Detailed information on reproduction and lifestyle factors was combined with medical record data on IVF treatment. All IVF clinics in The Netherlands participated in this study. The main outcome measures were live birth rate per first cycle of IVF differentia...

  20. The effect of cleaning substances on the surface of denture base material.

    Science.gov (United States)

    Žilinskas, Juozas; Junevičius, Jonas; Česaitis, Kęstutis; Junevičiūtė, Gabrielė

    2013-12-11

    The aim of this study was to evaluate the effect of substances used for hygienic cleaning of dentures on the surface of the denture base material. Meliodent Heat Cure (Heraeus-Kulzer, Germany) heat-polymerized acrylic resin was used to produce plates with all the characteristics of removable denture bases (subsequently, "plates"). Oral-B Complete toothbrushes of various brush head types were fixed to a device that imitated tooth brushing movements; table salt and baking soda (frequently used by patients to improve tooth brushing results), toothpaste ("Colgate Total"), and water were also applied. Changes in plate surfaces were monitored by measuring surface reflection alterations on spectrometry. Measurements were conducted before the cleaning and at 2 and 6 hours after cleaning. No statistically significant differences were found between the 3 test series. All 3 plates used in the study underwent statistically significant (pbaking soda--the total reflection reduction was 4.82 ± 0.1%; among toothbrushes with toothpaste, the hard-type toothbrush had the greatest reflection-reducing effect--4.6 ± 0.05%, while the toothbrush with table salt inflicted the least damage (3.5 ± 0.16%) due to the presence of rounded crystals between the bristles and the resin surface. Toothbrushes with water had a uniform negative effect on the plate surface - 3.8 9 ± 0.07%. All substances used by the patients caused surface abrasion of the denture base material, which reduced the reflection; a hard toothbrush with toothpaste had the greatest abrasive effect, while soft toothbrushes inflicted the least damage.

  1. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour.

    Science.gov (United States)

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-26

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects.We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model.Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males.

  2. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate

    International Nuclear Information System (INIS)

    Haitao Huang; Sun, Chang Q.; Hing, Peter

    2000-01-01

    The grain size effect of lead zirconate titanate PbZr 1-x Ti x O 3 (PZT, x≥0.6) caused by surface bond contraction has been investigated by using the Landau-Ginsburg-Devonshire (LGD) phenomenological theory. It has been shown that, due to the surface bond contraction, both the Curie temperature and the spontaneous polarization of tetragonal PZT decrease with decreasing grain size. These effects become more significant when the grain size is in the nanometre range. A dielectric anomaly appears with decreasing grain size, which corresponds to a size dependent phase transformation. The ferroelectric critical size below which a loss of ferroelectricity will happen is estimated from the results obtained. (author). Letter-to-the-editor

  3. The effect of radiosterilization on surface properties of polyurethane film

    International Nuclear Information System (INIS)

    Sheikh, N.

    2003-01-01

    In this paper the effect of sterilization method by gamma-ray on structure and cytotoxicity of polyurethane film surface has been investigated. For this purpose reactive urethan prepolymer was synthesized by the reaction between Tdi with a mixture of Peg and castro oil (50/50, w/w). The cured prepolymer films were prepared due to the reaction of reactive prepolymer with air moister under ambient conditions. The polyurethane films were sterilized by gamma-ray (25 kGy). The surface of sterilized polyurethane film was observed by Sem and compared to that of the unsterilized film. Also, the in vitro interaction of fibroblast L 929 cells and sterilized polyurethane film was evaluated. Results showed no signs of cell toxicity

  4. Comparison of the effectiveness of different antimicrobial surface technologies

    Directory of Open Access Journals (Sweden)

    Buhl Sebastian

    2017-09-01

    Full Text Available The risk of infection via microbiologically contaminated surfaces has already been demonstrated by other publications. In this work two different antibacterial surface technologies transition metalloacids (AMiSTec and TiO2/AgNO3 (Health Complete were compared regarding feasibility as well as their advantages and disadvantages. The examination of the antimicrobial activity was assessed according to the JIS Z 2801. We could demonstrate that all of our tested samples showed a strong antimicrobial activity (>log 3 germ reduction in the JIS experiments. Furthermore this strong antibacterial effect could be shown already after <30min incubation and at low light intensity (approx. 300 Lux for the TiO2/AgNO3 samples. Both technologies provide a high potential for an improved infection control for example in a high risk environment like operation rooms or intensive care units.

  5. Electromagnetic controllable surfaces based on trapped-mode effect

    Directory of Open Access Journals (Sweden)

    V. Dmitriev

    2012-10-01

    Full Text Available In this paper we present some recent results of our theoretical investigations of electromagnetically controllable surfaces. These surfaces are designed on the basis of periodic arrays made of metallic inclusions of special form which are placed on a thin substrate of active material (magnetized ferrite or optically active semiconductor. The main peculiarity of the studied structures is their capability to support the trapped-mode resonance which is a result of the antiphase current oscillations in the elements of a periodic cell. Several effects, namely: tuning the position of passband and the linear and nonlinear (bistable transmission switching are considered when an external static magnetic field or optical excitation are applied. Our numerical calculations are fulfilled in both microwave and optical regions.

  6. Surface smoothening effects on growth of diamond films

    Science.gov (United States)

    Reshi, Bilal Ahmad; Kumar, Shyam; Kartha, Moses J.; Varma, Raghava

    2018-04-01

    We have carried out a detailed study of the growth dynamics of the diamond film during initial time on diamond substrates. The diamond films are deposited using Microwave Plasma Chemical Vapor Deposition (MPCVD) method for different times. Surface morphology and its correlation with the number of hours of growth of thin films was invested using atomic force microscopy (AFM). Diamond films have smooth interface with average roughness of 48.6873nm. The initial growth dynamics of the thin film is investigated. Interestingly, it is found that there is a decrease in the surface roughness of the film. Thus a smoothening effect is observed in the grown films. The film enters into the growth regime in the later times. Our results also find application in building diamond detector.

  7. Effect of radiosynovectomy in patients with inflammatory joint disorders not caused by rheumatoid arthritis

    International Nuclear Information System (INIS)

    Kroeger, S.; Klutmann, S.; Bohuslavizki, K.H.; Clausen, M.; Sawula, J.A.; Brenner, W.; Henze, E.

    1999-01-01

    Aim: Effect of radiosynovectomy (RS) should be evaluated both by subjective and objective parameters in patients with osteoarthritis and in patients with inflammatory joint disorders not caused by rheumatoid arthritis. Methods: A total of 98 joints in 61 patients were investigated. Patients were divided into two groups. The first group included 35 patients with therapy-resistant effusions caused by severe osteoarthritis (46 joints). The second group consisted of 26 patients (52 joints) with ankylosing spondylitis, reactive arthritis, undifferentiated spondylarthropathy, psoriatic arthritis, pigmented villo-nodular synovitis, and recurrent synovitis following surgery. Effect of RS was evaluated by a standardized questionnaire and quantified by T/B-ratios derived from blood pool images prior to and after RS. Results: Within the first patient group suffering from osteoarthritis, 40% showed a good or excellent improvement of clinical symptoms, 51% were unchanged, and in 9% symptoms worsened. Similar results were found in the second patient group. The majority of unchanged results were small finger joints. In contrast, wrist and knee joints showed a better improvement. Good correlation between results of bone scan and patients subjective impression was found in 38% and 67% in the first and the second patient group, respectively. Conclusion: Radiosynovectomy might be an effective treatment in osteoarthritis and inflammatory joint disorders not caused by rheumatoid arthritis. (orig.) [de

  8. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation.

    Science.gov (United States)

    Matsui, Mio; Tanaka, Kosuke; Higashiguchi, Naoki; Okawa, Hisato; Yamada, Yoichi; Tanaka, Ken; Taira, Soichiro; Aoyama, Tomoko; Takanishi, Misaki; Natsume, Chika; Takakura, Yuuki; Fujita, Norihisa; Hashimoto, Takeshi; Fujita, Takashi

    2016-09-01

    Mild exposure to ultraviolet (UV) radiation is also harmful and hazardous to the skin and often causes a photosensitivity disorder accompanied by sunburn. To understand the action of UV on the skin we performed a microarray analysis to isolate UV-sensitive genes. We show here that UV irradiation promoted sunburn and downregulated filaggrin (Flg); fucoxanthin (FX) exerted a protective effect. In vitro analysis showed that UV irradiation of human dermal fibroblasts caused production of intracellular reactive oxygen species (ROS) without cellular toxicity. ROS production was diminished by N-acetylcysteine (NAC) or FX, but not by retinoic acid (RA). In vivo analysis showed that UV irradiation caused sunburn and Flg downregulation, and that FX, but not NAC, RA or clobetasol, exerted a protective effect. FX stimulated Flg promoter activity in a concentration-dependent manner. Flg promoter deletion and chromatin immunoprecipitation analysis showed that caudal type homeo box transcription factor 1 (Cdx1) was a key factor for Flg induction. Cdx1 was also downregulated in UV-exposed skin. Therefore, our data suggested that the protective effects of FX against UV-induced sunburn might be exerted by promotion of skin barrier formation through induction of Flg, unrelated to quenching of ROS or an RA-like action. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation

    Directory of Open Access Journals (Sweden)

    Mio Matsui

    2016-09-01

    Full Text Available Mild exposure to ultraviolet (UV radiation is also harmful and hazardous to the skin and often causes a photosensitivity disorder accompanied by sunburn. To understand the action of UV on the skin we performed a microarray analysis to isolate UV-sensitive genes. We show here that UV irradiation promoted sunburn and downregulated filaggrin (Flg; fucoxanthin (FX exerted a protective effect. In vitro analysis showed that UV irradiation of human dermal fibroblasts caused production of intracellular reactive oxygen species (ROS without cellular toxicity. ROS production was diminished by N-acetylcysteine (NAC or FX, but not by retinoic acid (RA. In vivo analysis showed that UV irradiation caused sunburn and Flg downregulation, and that FX, but not NAC, RA or clobetasol, exerted a protective effect. FX stimulated Flg promoter activity in a concentration-dependent manner. Flg promoter deletion and chromatin immunoprecipitation analysis showed that caudal type homeo box transcription factor 1 (Cdx1 was a key factor for Flg induction. Cdx1 was also downregulated in UV-exposed skin. Therefore, our data suggested that the protective effects of FX against UV-induced sunburn might be exerted by promotion of skin barrier formation through induction of Flg, unrelated to quenching of ROS or an RA-like action.

  10. Climate, water and tourism: causes and effects of droughts associated with urban development and tourism in Benidorm (Spain)

    Science.gov (United States)

    Martínez-Ibarra, Emilio

    2015-05-01

    In this paper, we analyse the relationship between climate, tourism and water in Benidorm (Spain), an international icon of Fordist tourism (mass tourism). In particular, we have studied the causes and effects of the water supply droughts Benidorm has suffered since becoming a major holiday destination. For this purpose, we consulted the local press in Benidorm over the period 1969-2003. Using qualitative and quantitative geographical techniques, we found that the water supply in the area has managed to keep up with rapidly increasing demand, with only occasional imbalances and periods of crisis. We focused in particular on the causes and effects of the water supply crisis of 1978, a moment of great uncertainty in the history of Benidorm as a holiday resort. We also examined the influence of atmospheric conditions on precipitation levels and how these precipitation levels affect the water supply. Our results highlight the importance of intense rainfall episodes associated with easterly winds, which provided large inputs for Benidorm's water supply system (Marina Baja Water Consortium). We also found that the water supply crisis of 1978 resulted in serious economic losses for Benidorm and damaged its image as a holiday destination and that the city is now less vulnerable to variations in the climate, as a result of its search for new water resources (both surface and ground water resources and from other nonconventional sources).

  11. Climate, water and tourism: causes and effects of droughts associated with urban development and tourism in Benidorm (Spain).

    Science.gov (United States)

    Martínez-Ibarra, Emilio

    2015-05-01

    In this paper, we analyse the relationship between climate, tourism and water in Benidorm (Spain), an international icon of Fordist tourism (mass tourism). In particular, we have studied the causes and effects of the water supply droughts Benidorm has suffered since becoming a major holiday destination. For this purpose, we consulted the local press in Benidorm over the period 1969-2003. Using qualitative and quantitative geographical techniques, we found that the water supply in the area has managed to keep up with rapidly increasing demand, with only occasional imbalances and periods of crisis. We focused in particular on the causes and effects of the water supply crisis of 1978, a moment of great uncertainty in the history of Benidorm as a holiday resort. We also examined the influence of atmospheric conditions on precipitation levels and how these precipitation levels affect the water supply. Our results highlight the importance of intense rainfall episodes associated with easterly winds, which provided large inputs for Benidorm's water supply system (Marina Baja Water Consortium). We also found that the water supply crisis of 1978 resulted in serious economic losses for Benidorm and damaged its image as a holiday destination and that the city is now less vulnerable to variations in the climate, as a result of its search for new water resources (both surface and ground water resources and from other nonconventional sources).

  12. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  13. A possible recovery of the near-surface wind speed in Eastern China during winter after 2000 and the potential causes

    Science.gov (United States)

    Zha, Jinlin; Wu, Jian; Zhao, Deming; Tang, Jianping

    2018-04-01

    A lasting decrease in the near-surface wind speed (SWS) in China has been revealed, but a following short-term strengthening in the SWS was rarely noted. In this paper, the daily mean SWS observed datasets from 328 measurement stations in Eastern China during the period 1981-2011 were used to investigate the facts and causes of the observed short-term strengthening in winter SWS in recent decades. The major results are summarized as follows: the SWS showed a significant decrease in the last 30 years, but a short-term strengthening in SWS was observed during the winter since 2000 in Eastern China. The SWS in Eastern China showed a significant decrease of - 0.11 m s-1 decade-1 from 1981 to 1999, followed by a weak increase of 0.0008 m s-1 decade-1 from 2000 to 2011. The short-term strengthening in the SWS since 2000 was mainly induced by the changes of the pressure-gradient force (PGF), which could be attributed to the changes of the sea-level pressure (SLP) in the region (51°-69.75° N, 51.75°-111.75° E). Furthermore, the changes of the PGF during the two periods of 1981-1999 and 2000-2011 were consistent with those of the SLP in the region (51°-69.75° N, 51.75°-111.75° E). The correlation coefficient between PGF and SLP was 0.32 and 0.66 during the period 1981-1999 and 2000-2011, respectively. Therefore, the effects of the changes in SLP over the region (51°-69.75° N, 51.75°-111.75° E) on changes of SWS in the Eastern China should be significant.

  14. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  15. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Veerkamp, C.J.; Alkemade, Rob; Leemans, Rik

    2015-01-01

    Over one billion people's livelihoods depend on dry rangelands through livestock grazing and agriculture. Livestock grazing and other management activities can cause soil erosion, increase surface runoff and reduce water availability. We studied the effects of different management regimes on soil

  16. Interaction between Allee effects caused by organism-environment feedback and by other ecological mechanisms.

    Directory of Open Access Journals (Sweden)

    Lijuan Qin

    Full Text Available Understanding Allee effect has crucial importance for ecological conservation and management because it is strongly related to population extinction. Due to various ecological mechanisms accounting for Allee effect, it is necessary to study the influence of multiple Allee effects on the dynamics and persistence of population. We here focus on organism-environment feedback which can incur strong, weak, and fatal Allee effect (AE-by-OEF, and further examine their interaction with the Allee effects caused by other ecological mechanisms (AE-by-OM. The results show that multiple Allee effects largely increase the extinction risk of population either due to the enlargement of Allee threshold or the change of inherent characteristic of Allee effect, and such an increase will be enhanced dramatically with increasing the strength of individual Allee effects. Our simulations explicitly considering spatial structure also demonstrate that local interaction among habitat patches can greatly mitigate such superimposed Allee effects as well as individual Allee effect. This implies that spatially structurized habitat could play an important role in ecological conservation and management.

  17. Interaction between Allee effects caused by organism-environment feedback and by other ecological mechanisms.

    Science.gov (United States)

    Qin, Lijuan; Zhang, Feng; Wang, Wanxiong; Song, Weixin

    2017-01-01

    Understanding Allee effect has crucial importance for ecological conservation and management because it is strongly related to population extinction. Due to various ecological mechanisms accounting for Allee effect, it is necessary to study the influence of multiple Allee effects on the dynamics and persistence of population. We here focus on organism-environment feedback which can incur strong, weak, and fatal Allee effect (AE-by-OEF), and further examine their interaction with the Allee effects caused by other ecological mechanisms (AE-by-OM). The results show that multiple Allee effects largely increase the extinction risk of population either due to the enlargement of Allee threshold or the change of inherent characteristic of Allee effect, and such an increase will be enhanced dramatically with increasing the strength of individual Allee effects. Our simulations explicitly considering spatial structure also demonstrate that local interaction among habitat patches can greatly mitigate such superimposed Allee effects as well as individual Allee effect. This implies that spatially structurized habitat could play an important role in ecological conservation and management.

  18. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    Science.gov (United States)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  19. Effect of Collagen Matrix Saturation on the Surface Free Energy of Dentin using Different Agents.

    Science.gov (United States)

    de Almeida, Leopoldina de Fátima Dantas; Souza, Samilly Evangelista; Sampaio, Aline Araújo; Cavalcanti, Yuri Wanderley; da Silva, Wander José; Del Bel Cur, Altair A; Hebling, Josimeri

    2015-07-01

    The surface free energy of conditioned-dentin is one of the factors that interfere with monomeric infiltration of the interfibrillar spaces. Saturation of the tooth matrix with different substances may modulate this energy and, consequently, the wettability of the dentin. To evaluate the influence of different substances used to saturate conditioned-dentin on surface free energy (SFE) of this substrate. Dentin blocks (4 × 7 × 1 mm, n = 6/ group), obtained from the roots of bovine incisors, were etched using phosphoric acid for 15 seconds, rinsed and gently dried. The surfaces were treated for 60 seconds with: ultra-purified water (H20-control); ethanol (EtOH), acetone (ACT), chlorhexidine (CHX), ethylenediaminetetraacetic acid (EDTA); or sodium hypochlorite (NaOCl). The tooth surfaces were once again dried with absorbent paper and prepared for SFE evaluation using three standards: water, formamide and bromonaphthalene. Analysis of variance (ANOVA) and Dunnet's tests (a = 0.05) were applied to the data. Ethylenediaminetetraacetic acid was the only substance that caused a change to the contact angle for the standards water and formamide, while only EtOH influenced the angles formed between formamide and the dentin surface. None of the substances exerted a significant effect for bromonaphtha-lene. In comparison to the control, only EDTA and NaOCl altered both polar components of the SFE. Total SFE was increased by saturation of the collagen matrix by EDTA and reduced when NaOCl was used. Saturation of the collagen matrix by EDTA and EtOH changed the surface free energy of the dentin. In addition, the use of NaOCl negatively interfered with the properties evaluated. The increase of surface free energy and wettability of the dentin surface would allow higher penetration of the the adhesive system, which would be of importance to the clinical success of resin-dentin union.

  20. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  1. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  2. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  3. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  4. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing; Mi, W. B.; Aboljadayel, Razan; Zhang, Bei; Zhang, Q.; Gonzalez Barba, Priscila; Manchon, Aurelien; Zhang, Xixiang

    2012-01-01

    . By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced

  5. Ride control of surface effect ships using distributed control

    Directory of Open Access Journals (Sweden)

    Asgeir J. Sørensen

    1994-04-01

    Full Text Available A ride control system for active damping of heave and pitch accelerations of Surface Effect Ships (SES is presented. It is demonstrated that distributed effects that are due to a spatially varying pressure in the air cushion result in significant vertical vibrations in low and moderate sea states. In order to achieve a high quality human comfort and crew workability it is necessary to reduce these vibrations using a control system which accounts for distributed effects due to spatial pressure variations in the air cushion. A mathematical model of the process is presented, and collocated sensor and actuator pairs are used. The process stability is ensured using a controller with appropriate passivity properties. Sensor and actuator location is also discussed. The performance of the ride control system is shown by power spectra of the vertical accelerations obtained from full scale experiments with a 35 m SES.

  6. Memory effects in nonadiabatic molecular dynamics at metal surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state...... energy of the oscillator. We then compare the result of Langevin dynamics in a harmonic potential with a perturbative master equation approach and show that the Langevin equation gives a better description in the nonperturbative range of high temperatures and large friction. Unlike the master equation......, this approach is readily extended to anharmonic potentials. Using density functional theory, we calculate representative Langevin trajectories for associative desorption of N-2 from Ru(0001) and find that memory effects lower the dissipation of energy. Finally, we propose an ab initio scheme to calculate...

  7. Effect of Surface Blasting on Subway Tunnels- A Parametric Study

    Directory of Open Access Journals (Sweden)

    Hossein Entezari Zarch

    2017-01-01

    Full Text Available During wars and crises, the underground tunnels are used as a safe space. Therefore, the stability and safety of them under a blast is of particular importance. In this paper, the Finite Difference Method has been used to study the influence of the change in geotechnical parameters and depth on surface blasting on subway tunnels. Results showed that increasing the internal friction angle, modulus of elasticity and cohesion of the soil reduced the effects of blast loads on the vertical displacement and bending moment in the center of tunnel crown. Furthermore, the results showed that increasing the depth of the tunnel reduced the effects of blast loading. Comparing all parameters collectively showed that the increase in the modulus of elasticity of the soil and depth of the tunnel is the most effective in reducing the influence of the blast loads on the vertical displacement and bending moment of the tunnel crown, respectively.

  8. The surface roughness effect on the performance of supersonic ejectors

    Science.gov (United States)

    Brezgin, D. V.; Aronson, K. E.; Mazzelli, F.; Milazzo, A.

    2017-07-01

    The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the "critical roughness height" for the given boundary conditions and ejector's geometry, the ejector switches to the "off-design" mode and its performance decreases considerably.

  9. Effect of reflective surfaces on a greenhouse lettuce crop

    Energy Technology Data Exchange (ETDEWEB)

    Warman, P.R.; Mayhew, W.J.

    1979-01-01

    The Canadian greenhouse industry is an important segment of horticultural production, providing employment for thousands of people. Continuing increases in the costs of conventional fuel supplies, however, has placed the industry in some jeopardy since the cost of heating during the winter months is also escalating. In response to this problem the Brace Research Institute has developed a single roofed greenhouse designed to capture and store the sun's energy, and to increase the amount of downward solar radiation inside the greenhouse through the use of specularly-reflecting back and side walls. The research investigated the effect of a reflective surface on plant growth, development, and nutritional uptake during fall and the early months of winter. The inside walls of the greenhouse were lined with aluminized polyester to act as a reflective surface and flat black roofing felt paper to provide a non-reflecting surface. Grand Rapids Forcing lettuce was planted from seed into a peat-vermiculite bed and total solar radiation was monitored on the horizontal. Over the duration of the experiment, the reflective side of the greenhouse received more than twice as much solar radiation as the non-reflective side leading to significantly larger plant yields on the reflective side. There were no significant differences in the uptake of the plant macronutrients, N, P, K, Ca, and Mg.

  10. The need for investigations to elucidate causes and effects of abnormal uterine bleeding.

    Science.gov (United States)

    Munro, Malcolm G; Heikinheimo, Oskari; Haththotuwa, Rohana; Tank, Jaydeep D; Fraser, Ian S

    2011-09-01

    This article describes a modern perspective on the basic investigations for abnormal uterine bleeding (AUB) in low-resource settings compared with a much more detailed approach for high-resource settings, bearing in mind issues of effectiveness and cost effectiveness. AUB includes any one or more of several symptoms, and it should be evaluated for the characteristics of the woman's specific bleeding pattern, her "complaint" and the presence of other symptoms (especially pain), the impact on several aspects of body functioning and lifestyle, and the underlying cause(s), especially cancer. Ideally, the evaluation is comprehensive, considering each of the potential etiological domains defined by the International Federation of Gynecology and Obstetrics PALM-COEIN system for the classification of causes. However, the detail of the questions and the extent of investigations will be significantly influenced by the technologies available and the time allotted for a consultation. In general, investigations should be performed only if they will make a material difference to the management approaches that can be offered. This should be an important consideration when a range of costly high-technology tests is accessible or when certain tests only have limited availability. © Thieme Medical Publishers.

  11. Strong correlation effects on surfaces of topological insulators via holography

    Science.gov (United States)

    Seo, Yunseok; Song, Geunho; Sin, Sang-Jin

    2017-07-01

    We investigate the effects of strong correlation on the surface state of a topological insulator (TI). We argue that electrons in the regime of crossover from weak antilocalization to weak localization are strongly correlated, and calculate the magnetotransport coefficients of TIs using the gauge-gravity principle. Then, we examine the magnetoconductivity (MC) formula and find excellent agreement with the data of chrome-doped Bi2Te3 in the crossover regime. We also find that the cusplike peak in MC at low doping is absent, which is natural since quasiparticles disappear due to the strong correlation.

  12. Assessing the effects of a road surfacing cartel in Switzerland

    OpenAIRE

    Hüschelrath, Kai; Leheyda, Nina; Beschorner, Patrick Frank Ernst

    2009-01-01

    The paper assesses the impact of the detection of a hard-core cartel in the Swiss market for road surfacing on post-cartel competition. In addition to an investigation of supply-side factors, demand-side factors, and market prices, the paper also derives estimates of the economic effects of the decision. The results indicate that the detection of the cartel may have led to short-term price reductions; however, the persistent collusion-friendly industry structure forecloses larger and durable ...

  13. Helium effects on tungsten surface morphology and deuterium retention

    International Nuclear Information System (INIS)

    Ueda, Y.; Peng, H.Y.; Lee, H.T.; Ohno, N.; Kajita, S.; Yoshida, N.; Doerner, R.; De Temmerman, G.; Alimov, V.; Wright, G.

    2013-01-01

    Recent experimental results on tungsten surface morphology, especially nano-structure (fuzz), induced by helium plasma exposure at temperatures between 1000 K and 2000 K are reviewed. This structure was firstly reported in 2006. In this review, most of experimental results reported so far including characteristics and formation conditions of the nano-structure in both linear plasma devices and magnetic confinement devices, erosion and arcing by steady-state plasma exposure and ELM-like pulsed heat or pulsed plasma exposure by a laser and a plasma gun are summarized. In addition, He effects on D retention under simultaneous D/He irradiation on tungsten are presented

  14. Effect of Moving Surface on NACA 63218 Aerodynamic Performance

    Directory of Open Access Journals (Sweden)

    Yahiaoui Tayeb

    2015-01-01

    Full Text Available The main subject of this work is the numerical study control of flow separation on a NACA 63218 airfoil by using moving surface. Different numerical cases are considered: the first one is the numerical simulation of non-modified airfoil NACA 63218 according at different angle of attack and the second one a set of moving cylinder is placed on leading edge of the airfoil. The rotational velocity of the cylinder is varied to establish the effect of momentum injection on modified airfoil aerodynamic performances. The turbulence is modeled by two equations k-epsilon model.

  15. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi; Chen, Ping-Hei

    2012-01-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography

  16. Workplace aggression as cause and effect: Emergency nurses' experiences of working fatigued.

    Science.gov (United States)

    Wolf, Lisa A; Perhats, Cydne; Delao, Altair M; Clark, Paul R

    2017-07-01

    Emergency nursing requires acute attention to detail to provide safe and effective care to potentially unstable or critically ill patients; this requirement may be significantly impaired by physical and mental fatigue. There is a lack of evidence regarding the effects of fatigue caused by factors other than a sleep deficit (e.g., emotional exhaustion). Fatigue affects nurses' ability to work safely in the emergency care setting and potentially impacts their health and quality of life outside of work. This was the qualitative arm of a mixed methods study; we used a qualitative exploratory design with focus group data from a sample of 16 emergency nurses. Themes were identified using an inductive approach to content analysis. The following themes were identified: "It's a weight on your back;" "Competitive nursing;" "It's never enough;" "You have to get away;" and "Engagement as a solution." Our participants reported high levels of fatigue, which compromised patient care, had a negative effect on their personal lives, and created a toxic unit environment. They reported lateral violence as both the cause and effect of mental and emotional fatigue, suggesting that unit culture affects nurses and the patients they care for. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  18. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    Science.gov (United States)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  19. Apocynin prevents vascular effects caused by chronic exposure to low concentrations of mercury.

    Directory of Open Access Journals (Sweden)

    Danize A Rizzetti

    Full Text Available UNLABELLED: Mercury increases the risk of cardiovascular disease and oxidative stress and alters vascular reactivity. This metal elicits endothelial dysfunction causing decreased NO bioavailability via increased oxidative stress and contractile prostanoid production. NADPH oxidase is the major source of reactive oxygen species (ROS in the vasculature. Our aim was to investigate whether treatment with apocynin, an NADPH oxidase inhibitor, prevents the vascular effects caused by chronic intoxication with low concentrations of mercury. Three-month-old male Wistar rats were treated for 30 days with a intramuscular injections (i.m. of saline; b HgCl(2 (i.m. 1(st dose: 4.6 µg/kg, subsequent doses: 0.07 µg/kg/day; c Apocynin (1.5 mM in drinking water plus saline i.m.; and d Apocynin plus HgCl(2. The mercury treatment resulted in 1 an increased aortic vasoconstrictor response to phenylephrine and reduced endothelium-dependent responses to acetylcholine; 2 the increased involvement of ROS and vasoconstrictor prostanoids in response to phenylephrine, whereas the endothelial NO modulation of such responses was reduced; and 3 the reduced activity of aortic superoxide dismutase (SOD and glutathione peroxidase (GPx and increased plasma malondialdehyde (MDA levels. Treatment with apocynin partially prevented the increased phenylephrine responses and reduced the endothelial dysfunction elicited by mercury treatment. In addition, apocynin treatment increased the NO modulation of vasoconstrictor responses and aortic SOD activity and reduced plasma MDA levels without affecting the increased participation of vasoconstrictor prostanoids observed in aortic segments from mercury-treated rats. CONCLUSIONS: Mercury increases the vasoconstrictor response to phenylephrine by reducing NO bioavailability and increasing the involvement of ROS and constrictor prostanoids. Apocynin protects the vessel from the deleterious effects caused by NADPH oxidase, but not from those

  20. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    Science.gov (United States)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  1. The effect of smoking on the ocular surface and the precorneal tear film

    Directory of Open Access Journals (Sweden)

    Jyothi Thomas

    2012-04-01

    Full Text Available BackgroundSmoking, both active and passive, creates a plethora ofhealth‐related problems, which primarily affect thecardiovascular and respiratory systems. There is very littleevidence on the effects of tobacco smoke on the eye,especially regarding anterior ocular surface relatedpathology. This study was undertaken to determine theeffects of smoking on the ocular surface and the tear film insmokers.MethodsA total of 51 (102 eyes smokers and 50 (100 eyes age‐ andgender‐matched healthy non‐smokers were included in thisstudy. The ocular surface was evaluated by measuring tearfilm break‐up time, surface staining with fluorescein, andcorneal and conjunctival sensitivities, and by completing theSchirmer’s II test. Data was analysed using StatisticalPackage for Social Sciences (SPSS version 11.5. A p valueless than 0.05 was considered statistically significant.ResultsThe smoker group had significantly lower tear film break‐uptime, and corneal and conjunctival sensitivity than the nonsmokergroup. Punctate staining was significantly higher inthe smoker group than the non‐smoker group. There wasno statistically significant difference in Schirmer’s II testresults between the smoker and non‐smoker group.ConclusionSmoking caused adverse effects on the precorneal tear filmand there was strong association between smoking and tearfilm instability. Although a causative relationship could notbe determined, there is a need for further longitudinalstudies.

  2. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  3. Mentally walking through doorways causes forgetting: The location updating effect and imagination.

    Science.gov (United States)

    Lawrence, Zachary; Peterson, Daniel

    2016-01-01

    Researchers have documented an intriguing phenomenon whereby simply walking through a doorway causes forgetting (the location updating effect). The Event Horizon Model is the most commonly cited theory to explain these data. Importantly, this model explains the effect without invoking the importance or reliance upon perceptual information (i.e., seeing oneself pass through the doorway). This generates the intriguing hypothesis that the effect may be demonstrated in participants who simply imagine walking through a doorway. Across two experiments, we explicitly test this hypothesis. Participants familiarised themselves with both real (Experiment 1) and virtual (Experiment 2) environments which served as the setting for their mental walk. They were then provided with an image to remember and were instructed to imagine themselves walking through the previously presented space. In both experiments, when the mental walk required participants to pass through a doorway, more forgetting occurred, consistent with the predictions laid out in the Event Horizon Model.

  4. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  5. Effect of surfaces similarity on contact resistance of fractal rough surfaces under cyclic loading

    Science.gov (United States)

    Gao, Yuanwen; Liu, Limei; Ta, Wurui; Song, Jihua

    2018-03-01

    Although numerous studies have shown that contact resistance depends significantly on roughness and fractal dimension, it remains elusive how they affect contact resistance between rough surfaces. The interface similarity index is first proposed to describe the similarity of the contact surfaces, which gives a good indication of the actual contact area between surfaces. We reveal that the surfaces' similarity be an origin of contact resistance variation. The cyclic loading can increase the contact stiffness, and the contact stiffness increases with the increase of the interface similarity index. These findings explain the mechanism of surface roughness and fractal dimension on contact resistance, and also provide reference for the reliability design of the electrical connection.

  6. Minimal vascular flows cause strong heat sink effects in hepatic radiofrequency ablation ex vivo.

    Science.gov (United States)

    Lehmann, Kai S; Poch, Franz G M; Rieder, Christian; Schenk, Andrea; Stroux, Andrea; Frericks, Bernd B; Gemeinhardt, Ole; Holmer, Christoph; Kreis, Martin E; Ritz, Jörg P; Zurbuchen, Urte

    2016-08-01

    The present paper aims to assess the lower threshold of vascular flow rate on the heat sink effect in bipolar radiofrequency ablation (RFA) ex vivo. Glass tubes (vessels) of 3.4 mm inner diameter were introduced in parallel to bipolar RFA applicators into porcine liver ex vivo. Vessels were perfused with flow rates of 0 to 1,500 ml/min. RFA (30 W power, 15 kJ energy input) was carried out at room temperature and 37°C. Heat sink effects were assessed in RFA cross sections by the decrease in ablation radius, area and by a high-resolution sector planimetry. Flow rates of 1 ml/min already caused a significant cooling effect (P ≤ 0.001). The heat sink effect reached a maximum at 10 ml/min (18.4 mm/s) and remained stable for flow rates up to 1,500 ml/min. Minimal vascular flows of ≥1 ml/min cause a significant heat sink effect in hepatic RFA ex vivo. A lower limit for volumetric flow rate was not found. The maximum of the heat sink effect was reached at a flow rate of 10 ml/min and remained stable for flow rates up to 1,500 ml/min. Hepatic inflow occlusion should be considered in RFA close to hepatic vessels. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  7. Effect of surface roughness and surface modification of indium tin oxide electrode on its potential response to tryptophan

    International Nuclear Information System (INIS)

    Khan, Md. Zaved Hossain; Nakanishi, Takuya; Kuroiwa, Shigeki; Hoshi, Yoichi; Osaka, Tetsuya

    2011-01-01

    Highlights: → We examine factors affecting potential response of ITO electrode to tryptophan. → Surface roughness of ITO electrode affects the stability of its rest potential. → Surface modification is effective for ITO electrode with a certain roughness. → Optimum values of work function exist for potential response of ITO to tryptophan. - Abstract: The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of R a evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with R a values ranging between ∼2 and ∼3 nm but not for those with R a of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.

  8. Differences of Rotavirus Vaccine Effectiveness by Country: Likely Causes and Contributing Factors

    Directory of Open Access Journals (Sweden)

    Ulrich Desselberger

    2017-12-01

    Full Text Available Rotaviruses are a major cause of acute gastroenteritis in infants and young children worldwide and in many other mammalian and avian host species. Since 2006, two live-attenuated rotavirus vaccines, Rotarix® and RotaTeq®, have been licensed in >100 countries and are applied as part of extended program of vaccination (EPI schemes of childhood vaccinations. Whereas the vaccines have been highly effective in high-income countries, they were shown to be considerably less potent in low- and middle-income countries. Rotavirus-associated disease was still the cause of death in >200,000 children of <5 years of age worldwide in 2013, and the mortality is concentrated in countries of sub-Saharan Africa and S.E. Asia. Various factors that have been identified or suggested as being involved in the differences of rotavirus vaccine effectiveness are reviewed here. Recognition of these factors will help to achieve gradual worldwide improvement of rotavirus vaccine effectiveness.

  9. Effect of surface parameter of interband surface mode frequencies of finite diatomic chain

    International Nuclear Information System (INIS)

    Puszkarski, H.

    1982-07-01

    The surface modes of a finite diatomic chain of alternating atoms (M 1 not= M 2 ) are investigated. The surface force constants are assumed to differ from the bulk ones, with the resulting surface parameter a-tilde identical on both ends of the chain. Criteria, governing the existence of interband surface (IBS) modes with frequencies lying in the forbidden gap between acoustical and optical bulk bands for natural (a = 1) as well as non-natural (a not= 1) surface defect, are analysed by the difference equation method. It is found that the IBS modes localize, depending on the value of the surface parameter a, either at the surface of lighter atoms (if a-tilde is positive), or at that of heavier atoms (if a-tilde is negative). Two, one of no IBS modes are found to exist in the chain depending on the relation between the mass ratio and surface parameter - quantities on which the surface localization increment t-tilde depends. If two modes are present (one acoustical and the other optical), their frequencies are disposed symmetrically with respect to the middle of the forbidden gap, provided the surface defect is natural, or asymmetrically - if it is other than natural. If the localization of the IBS mode exceeds a well defined critical value tsub(c), the mode frequency becomes complex, indicating that the mode undergoes a damping. A comparison of the present results and those obtained by Wallis for the diatomic chain with natural surface defect is also given. (author)

  10. Study of the Effect of Nanoparticles and Surface Morphology on Reverse Osmosis and Nanofiltration Membrane Productivity

    Directory of Open Access Journals (Sweden)

    Steven J. Duranceau

    2013-08-01

    Full Text Available To evaluate the significance of reverse osmosis (RO and nanofiltration (NF surface morphology on membrane performance, productivity experiments were conducted using flat-sheet membranes and three different nanoparticles, which included SiO2, TiO2 and CeO2. In this study, the productivity rate was markedly influenced by membrane surface morphology. Atomic force microscopy (AFM analysis of membrane surfaces revealed that the higher productivity decline rates associated with polyamide RO membranes as compared to that of a cellulose acetate NF membrane was due to the inherent ridge-and-valley morphology of the active layer. The unique polyamide active layer morphology was directly related to the surface roughness, and was found to contribute to particle accumulation in the valleys causing a higher flux decline than in smoother membranes. Extended RO productivity experiments using laboratory grade water and diluted pretreated seawater were conducted to compare the effect that different nanoparticles had on membrane active layers. Membrane flux decline was not affected by particle type when the feed water was laboratory grade water. On the other hand, membrane productivity was affected by particle type when pretreated diluted seawater served as feed water. It was found that CeO2 addition resulted in the least observable flux decline, followed by SiO2 and TiO2. A productivity simulation was conducted by fitting the monitored flux data into a cake growth rate model, where the model was modified using a finite difference method to incorporate surface thickness variation into the analysis. The ratio of cake growth term (k1 and particle back diffusion term (k2 was compared in between different RO and NF membranes. Results indicated that k2 was less significant for surfaces that exhibited a higher roughness. It was concluded that the valley areas of thin-film membrane surfaces have the ability to capture particles, limiting particle back diffusion.

  11. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  12. Theoretical studies of finite size effects and screening effects caused by a STM tip in Luettinger liquids

    International Nuclear Information System (INIS)

    Guigou, Marine

    2009-01-01

    This thesis takes place in the field of condensed matter. More precisely, we focus on the finite size effects and the screening effects caused by a STM tip in a quantum wire. For that, we use, first, the Luettinger liquid theory, which allows to describe strongly correlated systems and secondly, the Keldysh formalism, which is necessary to treat the out-of-equilibrium systems. For these studies, we consider, the currant, the noise and the conductance. The noise presents a non-Poissonian behaviour, when finite size effects appear. Through the photo-assisted transport, it is shown that those effects hide the effects of the Coulomb interactions. Considering the proximity between the STM tip, used as a probe or as an injector, and a quantum wire, screening effects appear. We can conclude that they play a similar role to those of Coulomb interactions. (author) [fr

  13. Natural Disasters under the Form of Severe Storms in Europe: the Cause-Effect Analysis

    Directory of Open Access Journals (Sweden)

    Virginia Câmpeanu

    2009-07-01

    Full Text Available For more than 100 years, from 1900 to 2008, there were almost 400 storms natural disasters in Europe, 40% of which occurred in the 1990s. The international prognoses for the world weather suggest a tendency toward increasing in frequency and intensity of the severe storms as the climate warms. In these circumstances, for a researcher in the field of Environmental Economics, a natural question occurs, on whether people can contribute to reducing the frequency and the magnitude of severe storms that produce disastreous social and economic effects, by acting on their causes. In researching an answer to support the public policies in the field, a cause-effect analysis applied to Europe might make a contribution to the literature in the field. This especially considering the fact that international literature regarding the factors influencing global warming contains certainties in regard to the natural factors of influence, but declared incertitudes or skepticism in regard to anthropogenic ones. Skepticism, and even tension arised during the international negotiations in Copenhagen (December 2009 in regard to the agreement for limiting global warming, with doubts being raised about the methods used by experts of the International Climate Experts Group (GIEC, and thus the results obtained, which served as a basis for the negotiations. The object of critics was in regard to the form, and at times in regard to the content. It was not about contesting the phenomenon of Global warming during the negotiations, but the methods of calculation. The methodology relies on qualitative (type top down and quantitative (type correlations bottom up cause-effect analysis of the storm disasters in Europe. Based on the instruments used, we proposed a dynamic model of association of the evolution of storm disasters in Europe with anthropogenic factors, with 3 variants. Results: The diagram cause-effect (Ishikawa or fishbone diagram and quantitative correlation of sub

  14. Causes and Effects in Macroeconomics: 2011 Nobel Prize Lecture in Economic Sciences

    Directory of Open Access Journals (Sweden)

    Shlair Abdulkhaleq Al-Zanganee

    2015-12-01

    Full Text Available Noble Laureates Thomas Sargent and Christopher Sims have been granted the 2011 Noble Prize in economic sciences in appreciation of their empirical research on causes and effects in macroeconomics. The controversy on causality in macroeconomics was discussed in both of Sargent’s and Sims’s 2011 Prize lectures. While Sargent attempts to use the economic theory to interpret some historical events in order to gain insights on some contemporary issues, such as sovereign defaults, federal bailouts, and the coordination of monetary and fiscal policies, Sims is emphasizing the importance of large-scale economic models and calling for more research to be done in that area.

  15. Arsenic contamination of underground water in Bangladesh: cause, effect, separation, determination and remedy

    International Nuclear Information System (INIS)

    Ahmed, M.J.

    2003-01-01

    Arsenic contamination of underground water of Bangladesh has become the gravest concern for the lives of millions of people of this land. Probable causes and effects of arsenic contamination of underground water of Bangladesh have been extensively discussed. The extent of current knowledge regarding the specification of arsenic in environmental waters in delineated. A simple, non-extractive, highly sensitive and selective quench photometric methods for the rapid determination of arsenic at trace levels in aqueous medium has been developed. This paper also presents a short review of the technologies used for arsenic removal of underground water in Bangladesh. (author)

  16. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    Science.gov (United States)

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  17. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  18. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  19. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  20. The Universal Causes and Effects of Women's Empowerment for Developing Countries

    OpenAIRE

    Vildö, Lovisa

    2017-01-01

    Women’s empowerment has been thoroughly discussed during the last two decades, yet the research on the components of empowerment on the national level is still lacking. This paper aims to fill that gap by investigating which national causes and effects of women’s empowerment that are generally visible across developing countries. Previous studies on meso- and micro level have shown that an increase in women’s education, an increase in women’s economic independence as well as a strong legal fr...