Solvents level dipole moments.
Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E
2011-11-03
The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule.
Dipole moments associated with edge atoms; a comparative study on stepped Pt, Au and W surfaces
International Nuclear Information System (INIS)
Besocke, K.; Krahl-Urban, B.; Wagner, H.
1977-01-01
Work function measurements have been performed on stepped Pt and Au surfaces with (111) terraces and on W surfaces with (110) terraces. In each case the work function decreases linearly with increasing step density and depends on the step orientation. The work function changes are attributed to dipole moments associated with the step edges. The dipole moments per unit step length are larger for open edge structures than for densely packed ones. The dipole moments for Pt are about twice as large as for Au and W. (Auth.)
Electric dipole moments reconsidered
International Nuclear Information System (INIS)
Rupertsberger, H.
1989-01-01
The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)
Marciano, William J
2010-01-01
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o
Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex
2013-08-15
The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.
Particle electric dipole-moments
Energy Technology Data Exchange (ETDEWEB)
Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)
1997-04-01
The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.
International Nuclear Information System (INIS)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-01-01
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.
2008-12-01
A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.
Muon Dipole Moment Experiments Interpretation and Prospects
Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael
2001-01-01
We examine the prospects for discovering new physics through muon dipole moments. The current deviation in $g_{\\mu}-2$ may be due entirely to the muon's {\\em electric} dipole moment. We note that the precession frequency in the proposed BNL muon EDM experiment is also subject to a similar ambiguity, but this can be resolved by up-down asymmetry measurements. We then review the theoretical expectations for the muon's electric dipole moment in supersymmetric models.
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt
The neutron electric dipole moment
International Nuclear Information System (INIS)
He, X.G.; McKellar, B.H.J.; Pakvasa, S.
1989-01-01
A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs
Measurement of the neutron electric dipole moment
International Nuclear Information System (INIS)
Dress, W.B.; Perrin, P.; Miller, P.D.; Pendlebury, J.M.; Ramsey, N.F.
1975-01-01
Experiments have been performed in view of improving the accuracy in measuring the electric dipole moment of the neutron (EDM). This EDM is written as eD where e is the electron charge and D the dipole length. The analysis of the data indicates that /D/ 24 cm with 90% confidence [fr
Toroidal Dipole Moment of a Massless Neutrino
International Nuclear Information System (INIS)
Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes
2009-01-01
We obtain the toroidal dipole moment of a massless neutrino τ v l M using the results for the anapole moment of a massless Dirac neutrino a v l D , which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2) L x U(1) Y .
Dipole moment dark matter at the LHC
Energy Technology Data Exchange (ETDEWEB)
Barger, Vernon [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Keung, Wai-Yee [Department of Physics, University of Illinois at Chicago, IL 60607 (United States); Marfatia, Danny, E-mail: marfatia@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Tseng, Po-Yan [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)
2012-10-22
Monojet and monophoton final states with large missing transverse energy (E/{sub T}) are important for dark matter (DM) searches at colliders. We present analytic expressions for the differential cross sections for the parton-level processes, qq{sup Macron }(qg){yields}g(q){chi}{chi}{sup Macron} and qq{sup Macron }{yields}{gamma}{chi}{chi}{sup Macron }, for a neutral DM particle with a magnetic dipole moment (MDM) or an electric dipole moment (EDM). We collectively call such DM candidates dipole moment dark matter (DMDM). We also provide monojet cross sections for scalar, vector and axial-vector interactions. We then use ATLAS/CMS monojet+E/{sub T} data and CMS monophoton+E/{sub T} data to constrain DMDM. We find that 7 TeV LHC bounds on the MDM DM-proton scattering cross section are about six orders of magnitude weaker than on the conventional spin-independent cross section.
Kalugina, Yulia N.; Roy, Pierre-Nicholas
2017-12-01
We present a five-dimensional potential energy surface (PES) for the HF@C60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C60 molecules are considered rigid with bond length rHF = 0.9255 Å (gas phase ground rovibrational state geometry). The C60 geometry is of Ih symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C60, and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C60 and obtain good agreement with experiment.
Electric dipole moment of light nuclei
Energy Technology Data Exchange (ETDEWEB)
Gibson, Benjamin [Los Alamos National Laboratory; Afnan, I R [Los Alamos National Laboratory
2010-01-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu [Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com [Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345 (United States)
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
International Nuclear Information System (INIS)
Kedziora, G.S.; Shavitt, I.
1997-01-01
Potential energy and dipole moment surfaces for the water molecule have been generated by multireference singles-and-doubles configuration interaction calculations using a large basis set of the averaged-atomic-natural-orbital type and a six-orbital-six-electron complete-active-space reference space. The surfaces are suitable for modeling vibrational transitions up to about 11000cm -1 above the ground state. A truncated singular-value decomposition method has been used to fit the surfaces. This fitting method is numerically stable and is a useful tool for examining the effectiveness of various fitting function forms in reproducing the calculated surface points and in extrapolating beyond these points. The fitted surfaces have been used for variational calculations of the 30 lowest band origins and the corresponding band intensities for transitions from the ground vibrational state. With a few exceptions, the results compare well with other calculations and with experimental data. copyright 1997 American Institute of Physics
Effective gluon operators and neutron dipole moment
International Nuclear Information System (INIS)
Bigi, I.; Ural'tsev, N.G.
1991-01-01
The role of the purely gluon CP odd six-dimension effective arising in various CP-breaking models is discussed. This operators of most interest in the nonminimal Higgs sector models, the right W models and supersymmetric theories, where it may induce the neutron dipole moment at the level of the experimental restriction. The method for evaluating the magnitude d n is proposed and the reasons are given in favor that the original Weiberg's estimate based on the naive Dimensional Analysis is overdone significantly. The Peccei -Quinn mechanism, impact on the magnitude of d n , which generally may be very essential, is discussed
International Nuclear Information System (INIS)
Avishai, Y.; Fabre de la Ripelle, M.
1986-01-01
The contribution of a CP-nonconserving nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated in view of a recent proposal for its experimental detection. We use two models of CP-nonconserving interactions in combination with a Reid soft-core strong nucleon-nucleon interaction. In the Kobayashi-Maskawa model of CP nonconservation the order of magnitude is 10 -30 eX while the presence of the theta term in the QCD Langrangian contributes an order of magnitude 10 -16 theta-bar e cm
Neutron Electric Dipole Moment on the Lattice
Directory of Open Access Journals (Sweden)
Yoon Boram
2018-01-01
Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Neutron Electric Dipole Moment on the Lattice
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan
2018-03-01
For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Electric dipole moment: theory and experiments
International Nuclear Information System (INIS)
Hinds, E.
2002-01-01
There are 2 motivations for studying electric dipole moments (EDM): 1) EDM is deeply connected to CP violation (since it violates T symmetry) and to the matter-antimatter asymmetry of the universe, and 2) EDM is effectively zero in standard model but big enough to measure in non-standard models and serves as a direct test of physics beyond the standard model. In this series of slides the author reviews various experiments concerning EDM: the mercury EDM experiment, the neutron EDM experiment, the thallium EDM experiment and the ytterbium EDM experiment, and considers the implications of their results on supersymmetry
EDM: Neutron electric dipole moment measurement
Directory of Open Access Journals (Sweden)
Peter Fierlinger
2016-02-01
Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.
Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.
2014-01-01
A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.
Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments
Ellis, John; Pilaftsis, Apostolos
2011-01-01
The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.
Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan
2017-06-01
We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130
Exotic fermions and electric dipole moments
International Nuclear Information System (INIS)
Joshipura, A.S.
1991-01-01
The contributions of mirror fermions to the electric dipole moments (EDM's) of leptons and neutrons are studied using the available limits on the mixing of the relevant fermions to their mirror partners. These limits imply EDM's several orders of magnitude larger than the current experimental bounds in the case of the electron and the neutron if the relevant CP-violating phases are not unnaturally small. If these phases are large, then the bounds on the EDM's can be used to improve upon the limits on mixing between the ordinary (f) and the mirror (F) fermions. In the specific case of the latter mixing angle being given by (m f /M F ) 1/2 , one can obtain the electron and the neutron EDM's close to experimental bounds
The status of the electric dipole moment of the neutron
International Nuclear Information System (INIS)
Grimus, W.
1990-01-01
The electric dipole moment of particles in quantum mechanics and quantum field theory is discussed. Furthermore, calculations of the neutron electric dipole moment in the standard model and several of its low-energy extensions are reviewed. 47 refs., 7 figs. (Author)
Electric Dipole Moments in the MSSM Reloaded
Ellis, Jonathan Richard; Pilaftsis, Apostolos
2008-01-01
We present a detailed study of the Thallium, neutron, Mercury and deuteron electric dipole moments (EDMs) in the CP-violating Minimal Supersymmetric extension of the Standard Model (MSSM). We take into account the complete set of one-loop graphs, the dominant Higgs-mediated two-loop diagrams, the complete CP-odd dimension-six Weinberg operator and the Higgs-mediated four-fermion operators. We improve upon earlier calculations by including the resummation effects due to CP-violating Higgs-boson mixing and to threshold corrections to the Yukawa couplings of all up- and down-type quarks and charged leptons. As an application of our study, we analyse the EDM constraints on the CPX, trimixing and Maximally CP- and Minimally Flavour-Violating (MCPMFV) scenarios. Cancellations may occur among the CP-violating contributions to the three measured EDMs arising from the 6 CP-violating phases in the MCPMFV scenario, leaving open the possibility of relatively large contributions to other CP-violating observables. The anal...
Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro
2017-06-01
We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.
Experimental constraint on quark electric dipole moments
Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan
2018-04-01
The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.
Looking for permanent electric dipole moment
International Nuclear Information System (INIS)
Sakemi, Yasuhiro
2007-01-01
Exploration of the permanent electric dipole moment (EDM) is one of the important ways to promote the research of fundamental symmetries and interactions. In this paper the progress of the exploration up to the present is overviewed and then the present status and expectation in future of the experiment using cooled unstable atoms which is the hopeful method to measure electron EDM is presented. At first the physical meaning of the CPT symmetry breaking is introduced and the upper limit of EDM of electron, muon, tau, proton, neutron, Λ hyperon and 199 Hg are tabulated. It is explained how EDM appears in the theory beyond the standard model, the supersymmetry model e.g. The on-going experiments of EDM exploration of neutrons, nuclei, electrons, molecules and charged particles are briefly reviewed. Finally the experiment to use the Bose-Einstein condensation (BEC) to produce ultra low temperature of nK range by using the laser to cool down radioactive element is presented. Since the amplification of EDM is expected to be large in heavy unstable atoms, francium isotopes which are obtained by heavy ion fusion of 197 Au target bombarded with 18 O beam are chosen in this experiment. It has been confirmed that Rb can be kept in the instrument for 20 minutes up to the present. Progress toward trapping Fr is under way by optimizing numbers of experimental parameters. Experiments by the groups in foreign countries are overviewed briefly. (S. Funahashi)
Electric dipole moments of light nuclei
Mereghetti, Emanuele
2017-01-01
Electric dipole moments (EDMs) are extremely sensitive probes of physics beyond the Standard Model (SM). A vibrant experimental program is in place, with the goal to improve the existing neutron EDM bound by one/two orders of magnitude, and to test new ideas for the measurement of EDMs of light ions, such as deuteron and helium, at a comparable level. The success of this program, and its implications for physics beyond the SM, relies on the precise calculation of the EDMs in terms of the couplings of CP-violating operators. In light of the non-perturbative nature both of QCD at low energy and of the nuclear interactions, these calculations have proven difficult, and are affected by large theoretical uncertainties. In this talk I will review the progress that in recent years has been achieved on different aspects of the calculation of hadronic and nuclear EDMs. In particular, I will discuss how the interplay between lattice QCD and Chiral Effective Field Theory (EFT) has allowed to reduce a set of hadronic uncertainties. Finally, I will discuss how the measurements of th EDMs of one, two and three nucleon systems can be used to discriminate between various possible mechanisms of time-reversal violation at high energy.
Ocular dominance affects magnitude of dipole moment: An MEG study
Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi
2010-01-01
To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5±6.1 nAm with left-eye stimulation and 16.1±3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of...
Ocular dominance affects magnitude of dipole moment: an MEG study.
Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi
2010-08-23
To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5+/-6.1 nAm with left-eye stimulation and 16.1+/-3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of 18.0+/-5.2 and 21.5+/-2.7 nAm with left-eye and right-eye stimulation of the infero-medial quadrant visual field, respectively. Thus, the dipole moment was higher when the dominant eye was stimulated, which implies that ocular dominance is regulated by the ipsilateral occipital lobe.
Magnetic dipole moments of the heavy tensor mesons in QCD
International Nuclear Information System (INIS)
Aliev, T.M.; Barakat, T.; Savci, M.
2015-01-01
The magnetic dipole moments of the D 2 , and D S 2 , B 2 , and B S 2 heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)
Electric dipole moments of highly excited molecular vibrational states
Theulé, Patrice; Rizzo, Thomas
2005-01-01
In this work, new spectroscopic techniques have been developed to measure electric dipole moments of highly excited rovibrational states of small polyatomic molecules in the gas phase. These techniques make use of lasers arid of microwave synthesizers. They enable one to measure the change on a molecular system caused by applying an external electric field, which is called Stark effect and from this, extract the dipole moment. The first technique, called microwave Stark spectroscopy, makes us...
Valence Topological Charge-Transfer Indices for Dipole Moments
Directory of Open Access Journals (Sweden)
Francisco Torrens
2003-01-01
Full Text Available New valence topological charge-transfer indices are applied to the calculation of dipole moments. The algebraic and vector semisum charge-transfer indices are defined. The combination of the charge-transfer indices allows the estimation of the dipole moments. The model is generalized for molecules with heteroatoms. The ability of the indices for the description of the molecular charge distribution is established by comparing them with the dipole moments of a homologous series of phenyl alcohols. Linear and non-linear correlation models are obtained. The new charge-transfer indices improve the multivariable non-linear regression equations for the dipole moment. When comparing with previous results, the variance decreases 92%. No superposition of the corresponding GkÃ¢Â€Â“Jk and GkV Ã¢Â€Â“ JkV pairs is observed. This diminishes the risk of co-linearity. Inclusion of the oxygen atom in the p-electron system is beneficial for the description of the dipole moment, owing to either the role of the additional p orbitals provided by the heteroatom or the role of steric factors in the p-electron conjugation. Linear and non-linear correlations between the fractal dimension and various descriptors point not only to a homogeneous molecular structure but also to the ability to predict and tailor drug properties.
Theoretical Expectations for the Muon's Electric Dipole Moment
Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael
2001-01-01
We examine the muon's electric dipole moment $\\dmu$ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's {\\em electric} dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on $\\dmu$ to date. This ambiguity could be definitively resolved by the dedicated search for $\\dmu$ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for $\\dmu$ in supersymmetry fall just below the proposed sensitivity. However, non-degeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to $\\dmu$ of order $10^{-22}$ e cm, two orders of magnitude above the sensitivity of the $\\dmu$ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. ...
Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders
DEFF Research Database (Denmark)
Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav
2011-01-01
An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis of metamat......An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...
Vibrationally averaged dipole moments of methane and benzene isotopologues
Energy Technology Data Exchange (ETDEWEB)
Arapiraca, A. F. C. [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG (Brazil); Mohallem, J. R., E-mail: rachid@fisica.ufmg.br [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil)
2016-04-14
DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.
Heavy triplets: electric dipole moments vs. proton decay
Energy Technology Data Exchange (ETDEWEB)
Masina, Isabella; Savoy, Carlos A
2004-01-15
The experimental limit on the electron electric dipole moment constrains the pattern of supersymmetric grand unified theories with right-handed neutrinos. We show that such constraints are already competing with the well known ones derived by the limit on proton lifetime.
Current searches for the electric dipole moment of the neutron
International Nuclear Information System (INIS)
Miranda, P.C.
1985-01-01
The two most sensitive experiments currently searching for a neutron electric dipole moment (ILL, France and LNPI. USSR) ared described. The present upper limit on the neutron EDM is /dsub(n)/ -25 e.cm at the 90% confidence level. An improvement on this limit by about one order of magnitude is expected in the near future. 5 refs.
The neutron electric dipole moment in the cloudy bag model
International Nuclear Information System (INIS)
Morgan, M.A.; Miller, G.A.
1986-01-01
An evaluation of the neutron electric dipole moment (NEDM), using the cloudy bag model (CBM) shows that two CP-violating effects (a quark mass term and a pion-quark interaction) have contributions that are about equal in magnitude, but opposite in sign. This cancellation allows the upper limit on the θ parameter to increase by about an order of magnitude. (orig.)
Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium
Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.
2008-01-01
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to
Simulation of Light Collection for Neutron Electrical Dipole Moment measurement
Ji, Pan; nEDM Collaboration
2017-09-01
nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.
Electric dipole moments of the nucleon and light nuclei
Energy Technology Data Exchange (ETDEWEB)
Wirzba, Andreas
2014-08-15
The electric dipole moments of the nucleon and light ions are discussed and strategies for disentangling the underlying sources of CP violation beyond the Kobayashi–Maskawa quark-mixing mechanism of the Standard Model are indicated. Contribution to “45 years of nuclear theory at Stony Brook: a tribute to Gerald E. Brown”.
Permanent Electric Dipole Moment Search in 129Xe
Grasdijk, Jan; Bluemler, P.; Almendinger, F.; Heil, Werner; Jungmann, Klaus-Peter; Karpuk, S.; Krause, Hans-Joachim; Offenhaeuser, Andreas; Repetto, M.; Schmidt, Ulrich; Sobolev, Y.; Willmann, Lorenz; Zimmer, Stefan
2017-01-01
A permanent electric dipole moment (EDM) implies breakdown of P (parity) and T (time reversal) symmetries. Provided CPT holds, this implies CP violation. Observation of an EDM at achievable experimental sensitivity would provide unambiguous evidence for physics beyond the Standard Model and limits
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
International Nuclear Information System (INIS)
Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.
2014-01-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν ∼< 10 -11 μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound
Do bacteria have an electric permanent dipole moment?
Stoylov, S P; Gyurova, A; Georgieva, R; Danova, S
2008-07-15
In the scientific literature in the last 40 years, some data for the permanent dipole moment and the electric polarizability of Escherichia coli can be found [S.P. Stoylov, Colloid Electro-Optics - Theory, Techniques and Application, Academic Press, London, 1991]. In this paper the data based mainly on electro-optic investigation is considered as much as some dipolophoretic (most often called dielectrophoretic) studies. Serious grounds are found to doubt the conclusions made for the electric dipole moments of bacteria by one of the authors of this paper (SPS) and by some other researchers. This concerns both the permanent dipole moment and the electric charge dependent polarizabilities of E. coli. Here, along with the discussion of the old experimental data, new experimental data are shown for a strain of E. coli HB101. The conclusions from the analysis of the old and the new experimental data is that they do not provide correct evidence for the presence of a permanent dipole moment. It seems that all statements for the existence of electric permanent dipole moment in bacteria [S.P. Stoylov, Colloid Electro-Optics - Theory, Techniques and Application, Academic Press, London, 1991; S.P. Stoylov, S. Sokerov, I. Petkanchin, N. Ibroshev, Dokl. AN URSS 180 (1968) 1165; N.A. Tolstoy, A.A. Spartakov, A.A. Trusov, S.A. Schelkunova, Biofizika 11 (1966) 453; V. Morris, B. Jennings, J. Chem. Soc. Faraday Trans. II 71 (1975) 1948; V. Morris, B. Jennings, J. Colloid Interface Sci. 55 (1978) 313; S.P. Stoylov, V.N. Shilov, S.S. Dukhin, S. Sokerov, I. Petkanchin, in: S.S. Dukhin (Ed.), Electro-optics of Colloids, Naukova Dumka, Kiev, 1977 (in Russian).] based on electro-optic studies are result of incorrect interpretation. Therefore, they should be further ignored.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Energy Technology Data Exchange (ETDEWEB)
Córsico, A.H.; Althaus, L.G. [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Bertolami, M.M. Miller [Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); García-Berro, E., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: kepler@if.ufrgs.br, E-mail: enrique.garcia-berro@upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860, Castelldefels (Spain)
2014-08-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
τ dipole moments via radiative leptonic τ decays
Energy Technology Data Exchange (ETDEWEB)
Eidelman, S. [Budker Institute of Nuclear Physics SB RAS,Novosibirsk 630090 (Russian Federation); Novosibirsk State University,Novosibirsk 630090 (Russian Federation); Epifanov, D. [Budker Institute of Nuclear Physics SB RAS,Novosibirsk 630090 (Russian Federation); Novosibirsk State University,Novosibirsk 630090 (Russian Federation); The University of Tokyo,7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Fael, M. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, CH-3012 Bern (Switzerland); Mercolli, L. [Federal Office of Public Health FOPH,CH-3003 Bern (Switzerland); Passera, M. [INFN - Sezione di Padova,I-35131 Padova (Italy)
2016-03-21
We propose a new method to probe the magnetic and electric dipole moments of the τ lepton using precise measurements of the differential rates of radiative leptonic τ decays at high-luminosity B factories. Possible deviations of these moments from the Standard Model values are analyzed in an effective Lagrangian approach, thus providing model-independent results. Analytic expressions for the relevant non-standard contributions to the differential decay rates are presented. Earlier proposals to probe the τ dipole moments are examined. A detailed feasibility study of our method is performed in the conditions of the Belle and Belle II experiments at the KEKB and Super-KEKB colliders, respectively. This study shows that our approach, applied to the planned full set of Belle II data for radiative leptonic τ decays, has the potential to improve the present experimental bound on the τ anomalous magnetic moment. On the contrary, its foreseen sensitivity is not expected to lower the current experimental limit on the τ electric dipole moment.
Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models
Ilakovac, Amon; Popov, Luka
2014-01-01
We study the anomalous magnetic and electric dipole moments of charged leptons in supersymmetric low-scale seesaw models with right-handed neutrino superfields. We consider a minimally extended framework of minimal supergravity, by assuming that CP violation originates from complex soft SUSY-breaking bilinear and trilinear couplings associated with the right-handed sneutrino sector. We present numerical estimates of the muon anomalous magnetic moment and the electron electric dipole moment (EDM), as functions of key model parameters, such as the Majorana mass scale mN and tan(\\beta). In particular, we find that the contributions of the singlet heavy neutrinos and sneutrinos to the electron EDM are naturally small in this model, of order 10^{-27} - 10^{-28} e cm, and can be probed in the present and future experiments.
Directory of Open Access Journals (Sweden)
Jiade Yuan
2012-01-01
Full Text Available The equivalent dipole-moment method (EDM is extended and applied in the analysis of electromagnetic (EM radiation by arbitrarily shaped microstrip antenna in this paper. The method of moments (MoM is used to solve the volume-surface integral equation (VSIE. A strip model is applied in the treatment of the feeding probe of the microstrip antenna, in which the discretized triangular elements of the excitation source are equivalent as dipole models. The proposed approach is sufficiently versatile in handling arbitrarily shaped microstrip antenna and is easily constructed through a simple procedure. Numerical results are given to demonstrate the accuracy and efficiency of this method.
Rotation Detection Using the Precession of Molecular Electric Dipole Moment
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2017-11-01
We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.
Nucleon electric dipole moments in high-scale supersymmetric models
International Nuclear Information System (INIS)
Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi
2015-01-01
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Extreme black hole with an electric dipole moment
International Nuclear Information System (INIS)
Horowitz, G.T.; Tada, T.
1996-01-01
We construct a new extreme black hole solution in a toroidally compactified heterotic string theory. The black hole saturates the Bogomol close-quote nyi bound, has zero angular momentum, but a nonzero electric dipole moment. It is obtained by starting with a higher-dimensional rotating charged black hole, and compactifying one direction in the plane of rotation. copyright 1996 The American Physical Society
Chromomagnetic dipole moment of the top quark revisited
International Nuclear Information System (INIS)
Martinez, R.; Perez, M.A.; Poveda, N.
2008-01-01
We study the complete one-loop contributions to the chromagnetic dipole moment Δκ of the top quark in the standard model, two Higgs doublet models, topcolor assisted technicolor models, 331 models and extended models with a single extra dimension. We find that the SM predicts Δκ=-0.056 and the predictions of the other models are also consistent with the constraints imposed on Δκ by low-energy precision measurements. (orig.)
Chromomagnetic dipole moment of the top quark revisited
Energy Technology Data Exchange (ETDEWEB)
Martinez, R. [Universidad Nacional, Departamento de Fisica, Bogota (Colombia); Perez, M.A. [Cinvestav - IPN, Departamento de Fisica, Merida (Mexico); Poveda, N. [Universidad Nacional, Departamento de Fisica, Bogota (Colombia); Universidad Pedagogica y Tecnologica de Colombia, Departamento de Fisica, Tunja (Colombia)
2008-01-15
We study the complete one-loop contributions to the chromagnetic dipole moment {delta}{kappa} of the top quark in the standard model, two Higgs doublet models, topcolor assisted technicolor models, 331 models and extended models with a single extra dimension. We find that the SM predicts {delta}{kappa}=-0.056 and the predictions of the other models are also consistent with the constraints imposed on {delta}{kappa} by low-energy precision measurements. (orig.)
Theoretical expectations for the muon's electric dipole moment
International Nuclear Information System (INIS)
Feng, Jonathan L.; Matchev, Konstantin T.; Shadmi, Yael
2001-01-01
We examine the muon's electric dipole moment d μ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's electric dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on d μ to date. This ambiguity could be definitively resolved by the dedicated search for d μ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for d μ in supersymmetry fall just below the proposed sensitivity. However, nondegeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to d μ ∼10 -22 e cm, two orders of magnitude above the sensitivity of the d μ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. We also derive new limits on the amount of flavor violation allowed and demonstrate that approximations previously used to obtain such limits are highly inaccurate in much of parameter space
Electromagnetic moments and electric dipole transitions in carbon isotopes
International Nuclear Information System (INIS)
Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi
2003-01-01
We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value
Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment
Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.
2017-07-01
We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.
Magnetic dipole moments of odd-odd lanthanides
International Nuclear Information System (INIS)
Sharma, S.D.; Gandhi, R.
1988-01-01
Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2011-04-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2014-02-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium
Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.
2008-01-01
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...
Probing CP Violation with the Deuteron Electric Dipole Moment
Lebedev, Oleg; Pospelov, Maxim; Ritz, Adam; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam
2004-01-01
We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.
Electric dipole moment searches using the isotope 129-xenon
Energy Technology Data Exchange (ETDEWEB)
Kuchler, Florian
2014-11-13
Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.
Toroidal Dipole Moment of the Lightest Neutralino in the MSSM
International Nuclear Information System (INIS)
Cabral-Rosetti, L G; Mondragon, M; Perez, E Reyes
2011-01-01
In order to characterize one of the most favored candidates for dark matter, we calculate the anapole form factor of the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM) at the one-loop level. As a Majorana fermion, this particle only shows one electromagnetic property, the toroidal dipole moment, which is directly related to the anapole form factor. We obtain the result analitically in terms of two- and three-points Passarino-Veltman scalar functions and evaluate it for a given spectrum of supersymmetric masses and matrix elements. This work is part of a broader project still in progress.
Brauer, Carolyn S; Craddock, Matthew B; Kilian, Jacob; Grumstrup, Erik M; Orilall, M Christopher; Mo, Yirong; Gao, Jiali; Leopold, Kenneth R
2006-08-24
The Stark effect has been observed in the rotational spectra of several gas-phase amine-hydrogen halide complexes and the following electric dipole moments have been determined: H(3)(15)N-H(35)Cl (4.05865 +/- 0.00095 D), (CH(3))(3)(15)N-H(35)Cl (7.128 +/- 0.012 D), H(3)(15)N-H(79)Br (4.2577 +/- 0.0022 D), and (CH(3))(3)(15)N-H(79)Br (8.397 +/- 0.014 D). Calculations of the binding energies and electric dipole moments for the full set of complexes R(n)()(CH(3))(3)(-)(n)()N-HX (n = 0-3; X = F, Cl, Br) at the MP2/aug-cc-pVDZ level are also reported. The block localized wave function (BLW) energy decomposition method has been used to partition the binding energies into contributions from electrostatic, exchange, distortion, polarization, and charge-transfer terms. Similarly, the calculated dipole moments have been decomposed into distortion, polarization, and charge-transfer components. The complexes studied range from hydrogen-bonded systems to proton-transferred ion pairs, and the total interaction energies vary from 7 to 17 kcal/mol across the series. The individual energy components show a much wider variation than this, but cancellation of terms accounts for the relatively narrow range of net binding energies. For both the hydrogen-bonded complexes and the proton-transferred ion pairs, the electrostatic and exchange terms have magnitudes that increase with the degree of proton transfer but are of opposite sign, leaving most of the net stabilization to arise from polarization and charge transfer. In all of the systems studied, the polarization terms contribute the most to the induced dipole moment, followed by smaller but still significant contributions from charge transfer. A significant contribution to the induced moment of the ion pairs also arises from distortion of the HX monomer.
Anomalous center of mass shift: gravitational dipole moment.
Jeong, Eue Jin
1997-02-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.
Time reversal violating nuclear polarizability and atomic electric dipole moment
International Nuclear Information System (INIS)
Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.
2000-01-01
Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation
Hadronic electric dipole moments in R-parity violating supersymmetry
International Nuclear Information System (INIS)
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Kovalenko, Sergey
2006-01-01
We calculate the electric dipole moments (EDM) of the neutral 199 Hg atom, neutron and deuteron within a generic R-parity violating SUSY model (Re p SUSY) on the basis of a one-pion-exchange model with CP-odd pion-nucleon interactions. We consider two types of the Re p SUSY contributions to the above hadronic EDMs: via the quark chromoelectric dipole moments (CEDM) and CP-violating 4-quark interactions. We demonstrate that the former contributes to all the three studied EDMs while the latter appears only in the nuclear EDMs via the CP-odd nuclear forces. We find that the Re p SUSY induced 4-quark interactions arise at tree level through the sneutrino exchange and involve only s and b quarks. Therefore, their effect in hadronic EDMs is determined by the strange and bottom-quark sea of the nucleon. From the null experimental results on the hadronic EDMs we derive the limits on the imaginary parts of certain products Im(λ ' λ ' *) of the trilinear Re p -couplings and show that the currently best limits come from the 199 Hg EDM experiments. We demonstrate that some of these limits are better than those existing in the literature. We argue that future storage ring experiments on the deuteron EDM are able to improve these limits by several orders of magnitude
Transition Dipole Moments and Transition Probabilities of the CN Radical
Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2018-04-01
This paper studies the transition probabilities of electric dipole transitions between 10 low-lying states of the CN radical. These states are X2Σ+, A2Π, B2Σ+, a4Σ+, b4Π, 14Σ‑, 24Π, 14Δ, 16Σ+, and 16Π. The potential energy curves are calculated using the CASSCF method, which is followed by the icMRCI approach with the Davidson correction. The transition dipole moments between different states are calculated. To improve the accuracy of potential energy curves, core–valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are included. The Franck–Condon factors and Einstein coefficients of emissions are calculated. The radiative lifetimes are determined for the vibrational levels of the A2Π, B2Σ+, b4Π, 14Σ‑, 24Π, 14Δ, and 16Π states. According to the transition probabilities and radiative lifetimes, some guidelines for detecting these states spectroscopically are proposed. The spin–orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The splitting energy in the A2Π state is determined to be 50.99 cm‑1, which compares well with the experimental ones. The potential energy curves, transition dipole moments, spectroscopic parameters, and transition probabilities reported in this paper can be considered to be very reliable. The results obtained here can be used as guidelines for detecting these transitions, in particular those that have not been measured in previous experiments or have not been observed in the Sun, comets, stellar atmospheres, dark interstellar clouds, and diffuse interstellar clouds.
Searches for the electron electric dipole moment and nuclear anapole moments in solids
International Nuclear Information System (INIS)
Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.
2004-01-01
Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results
You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi
2016-01-15
The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.
Determination of the dipole moments of RNAse SA wild type and a basic mutant.
Chari, Ravi; Singh, Shubhadra N; Yadav, Sandeep; Brems, David N; Kalonia, Devendra S
2012-04-01
In this study, we report the effects of acidic to basic residue point mutations (5K) on the dipole moment of RNAse SA at different pHs. Dipole moments were determined by measuring solution capacitance of the wild type (WT) and the 5K mutant with an impedance analyzer. The dipole moments were then (1) compared with theoretically calculated dipole moments, (2) analyzed to determine the effect of the point mutations, and (3) analyzed for their contribution to overall protein-protein interactions (PPI) in solution as quantitated by experimentally derived second virial coefficients. We determined that experimental and calculated dipoles were in reasonable agreement. Differences are likely due to local motions of residue side chains, which are not accounted for by the calculated dipole. We observed that the proteins' dipole moments increase as the pH is shifted further from their isoelectric points and that the wild-type dipole moments were greater than those of the 5K. This is likely due to an increase in the proportion of one charge (either negative or positive) relative to the other. A greater charge disparity corresponded to a larger dipole moment. Finally, the larger dipole moments of the WT resulted in greater attractive overall PPI for that protein as compared to the 5K. Copyright © 2011 Wiley Periodicals, Inc.
Electric dipole moment constraints on minimal electroweak baryogenesis
Huber, S J; Ritz, A; Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam
2007-01-01
We study the simplest generic extension of the Standard Model which allows for conventional electroweak baryogenesis, through the addition of dimension six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.
Contribution from neutrino Yukawa couplings to lepton electric dipole moments
Farzan, Yasaman; Peskin, Michael E.
2004-11-01
To explain the observed neutrino masses through the seesaw mechanism, a supersymmetric generalization of the standard model should include heavy right-handed neutrino supermultiplets. Then the neutrino Yukawa couplings can induce CP violation in the lepton sector. In this paper, we compute the contribution of these CP violating terms to lepton electric dipole moments. We introduce a new formalism that makes use of supersymmetry to expose the Glashow-Iliopoulos-Maiani cancellations. In the region of small tan(β, we find a different result from that given previously by Ellis, Hisano, Raidal, and Shimizu. We confirm the structure found by this group, but with a much smaller overall coefficient. In the region of large tan(β, we recompute the leading term that has been identified by Masina and confirm her result up to minor factors. We discuss the implications of these results for constraints on the Yν.
Toward verification of electroweak baryogenesis by electric dipole moments
Directory of Open Access Journals (Sweden)
Kaori Fuyuto
2016-04-01
Full Text Available We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU and electric dipole moments (EDMs in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.
Towards a new measurement of the neutron electric dipole moment
International Nuclear Information System (INIS)
Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomytov, N.; Kirch, K.; Knecht, A.; Kistryn, S.; Knowles, P.; Kuzniak, M.; Lefort, T.; Naviliat-Cuncic, O.; Pichlmaier, A.; Plonka, C.; Quemener, G.; Rebetez, M.; Rebreyend, D.; Rogel, G.
2006-01-01
Precision measurements of particle electric dipole moments (EDMs) provide extremely sensitive means to search for non-standard mechanisms of T (or CP) violation. For the neutron EDM, the upper limit has been reduced by eight orders of magnitude in 50 years thereby excluding several CP violation scenarios. We report here on a new effort aiming at improving the neutron EDM limit by two orders of magnitude, down to a level of 3 x 10 -28 e.cm. The two central elements of the approach are the use of the higher densities which will be available at the new dedicated spallation UCN source at the Paul Scherrer Institute, and the optimization of the in-vacuum Ramsey resonance technique, with storage chambers at room temperature, to reach new limits of sensitivity.
Neutron electric dipole moment and extension of the standard model
International Nuclear Information System (INIS)
Oshimo, Noriyuki
2001-01-01
A nonvanishing value for the electric dipole moment (EDM) of the neutron is a prominent signature for CP violation. The EDM induced by the Kobayashi-Maskawa mechanism of the standard model (SM) has a small magnitude and its detection will be very difficult. However, since baryon asymmetry of the universe cannot be accounted for by the SM, there should exist some other source of CP violation, which may generate a large magnitude for the EDM. One of the most hopeful candidates for physics beyond the SM is the supersymmetric standard model, which contains such sources of CP violation. This model suggests that the EDM has a magnitude not much smaller than the present experimental bounds. Progress in measuring the EDM provides very interesting information about extension of the SM. (author)
Neutron electric dipole moment in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.
1995-01-01
The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)
Search for the permanent electric dipole moment of 129Xe
Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep
2017-09-01
CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.
Toward verification of electroweak baryogenesis by electric dipole moments
International Nuclear Information System (INIS)
Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun
2016-01-01
We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.
Can measurements of electric dipole moments determine the seesaw parameters?
International Nuclear Information System (INIS)
Demir, Durmus A.; Farzan, Yasaman
2005-01-01
In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments
Pinning down top dipole moments with ultra-boosted tops
Aguilar-Saavedra, Juan A.; Mangano, Michelangelo L.
2015-01-01
We investigate existing and future hadron-collider constraints on the top dipole chromomagnetic and chromoelectric moments, two quantities that are expected to be modified in the presence of new physics. We focus first on recent measurements of the inclusive top pair production cross section at the Tevatron and at the Large Hadron Collider. We then analyse the role of top-antitop events produced at very large invariant masses, in the context of the forthcoming 13-14 TeV runs of the LHC, and at a future 100 TeV proton-proton collider. In this latter case, the selection of semileptonic decays to hard muons allows to tag top quarks boosted to the multi-TeV regime, strongly reducing the QCD backgrounds and leading to a significant improvement in the sensitivity to anomalous top couplings.
Electric dipole moments of light nuclei in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)
2014-07-01
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.
Review of the electric dipole moment of light nuclei
Yamanaka, Nodoka
In this paper, we summarize the theoretical development on the electric dipole moment (CEDM) of light nuclei. We first describe the nucleon level CP violation and its parametrization. We then present the results of calculations of the EDM of light nuclei in the ab initio approach and in the cluster model. The analysis of the effect of several models beyond standard model (CBSM) is presented together with the prospects for its discovery. The advantage of the EDM of light nuclei is focused in the point of view of the many-body physics. The evaluations of the nuclear EDM generated by the θ-term and by the CP phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are also reviewed.
Electric dipole moments as probes of new physics
Pospelov, M; Pospelov, Maxim; Ritz, Adam
2005-01-01
We review several aspects of flavour-diagonal CP violation, focussing on the role played by the electric dipole moments (EDMs) of leptons, nucleons, atoms and molecules, which consitute the source of several stringent constraints on new CP-violating physics. We dwell specifically on the calculational aspects of applying the hadronic EDM constraints, reviewing in detail the application of QCD sum-rules to the calculation of nucleon EDMs and CP-odd pion-nucleon couplings. We also consider the current status of EDMs in the Standard Model, and on the ensuing constraints on the underlying sources of CP-violation in physics beyond the Standard Model, focussing on weak-scale supersymmetry.
Even larger contributions to the neutron electric dipole moment
International Nuclear Information System (INIS)
Rujula, A. de; Gavela, M.B.; Vegas, F.J.
1990-01-01
Constraints on theories of CP-violation, from limits on the neutron electric dipole moment, and mediated by a CP-odd three-gluon operator, are current best sellers. We introduce novel CP-odd operators involving one photon and three gluons. We find that effects mediated by these operators result on bounds on supersymmetry an order of magnitude more stringent than earlier results: they are the tightest known bounds. For left-right models we derive richer limits than previously found. We also recalculate the anomalous dimensions of the three-gluon operator and find them to be minus those originally used; this weakens considerably its strictures on theory, though it still mediates the dominant effect in multi-Higgs models. (orig.)
Magnitude, direction and location of the resultant dipole moment of the pig heart.
Hodgkin, B C; Nelson, C V; Angelakos, E T
1976-04-01
Vectorcardiograms were obtained from 50 young domestic pigs using the Nelson lead system. Compensation for body size and shape is achieved and the resultant dipole moment magnitude reflects heart size. A strong relationship was found between heart size and maximum magnitude. Dipole moment magnitude increased as four pigs increased from five to ten weeks of age. The dipole moment during QRS is considered in light of known pig heart excitation pattern. Dipole locations during QRS, calculated by computer solution of the Gabor-Nelson equations, were in agreement with heart location and excitation data.
Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments
International Nuclear Information System (INIS)
Mekhfi, Mustapha
2008-01-01
We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment
Determination of the dipole moment of OCS with a microwave absorption cavity
Dijkerman, H.A.; Ruitenberg, G.
The electric dipole moment of OCS has been measured with a resonance cavity as a Stark absorption cell. The result: μOCS = 0.7149 ± 0.0003. Debye agrees well with the dipole moment data obtained with an electric resonance beam experiment.
Energy Technology Data Exchange (ETDEWEB)
Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de [Institut für Physikalische Chemie, Heinrich-Heine-Universität, D-40225 Düsseldorf (Germany); Meerts, W. Leo, E-mail: leo.meerts@science.ru.nl [Institute for Molecules and Materials, Radboud University, NL-6525 AS Nijmegen (Netherlands)
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.
Stochastic resonance in a surface dipole
Energy Technology Data Exchange (ETDEWEB)
Heinsalu, E., E-mail: els@ifisc.uib-csic.es [IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), E-07122 Palma de Mallorca (Spain); National Institute of Chemical Physics and Biophysics, Raevala 10, 15042 Tallinn (Estonia); Patriarca, M. [IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), E-07122 Palma de Mallorca (Spain); National Institute of Chemical Physics and Biophysics, Raevala 10, 15042 Tallinn (Estonia); Marchesoni, F. [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy)
2010-10-05
The dynamics of a neutral dipole diffusing on a one-dimensional symmetric periodic substrate is numerically investigated in the presence of an ac electric field. It is observed that the amplitude of the forced oscillations of the dipole can be enhanced by tuning the noise strength, i.e., the substrate temperature. Such a manifestation of stochastic resonance turns out to be extremely sensitive to the mechanical properties of the dipole. This phenomenon has immediate applications in surface physics and nanodevice technology.
Detecting a heavy neutrino electric dipole moment at the LHC
Directory of Open Access Journals (Sweden)
Marc Sher
2018-02-01
Full Text Available The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM, then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10−17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10−17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5–1000 GeV for integrated luminosities of 300 and 3000 fb−1 at the LHC.
Electric dipole moments in the MSSM at large tan β
International Nuclear Information System (INIS)
Demir, D.; Olive, K.A.; Pospelov, M.; Ritz, A.
2003-11-01
Within the minimal supersymmetric standard model (MSSM), the large tan β regime can lead to important modifications in the pattern of CP-violating sources contributing to low energy electric dipole moments (EDMs). In particular, four-fermion CP-violating interactions induced by Higgs exchange should be accounted for alongside the constituent EDMs of quarks and electrons. To this end, we present a comprehensive analysis of three low energy EDM observables - namely the EDMs of thallium, mercury and the neutron - at large tan β, in terms of one- and two-loop contributions to the constituent EDMs and four-fermion interactions. We concentrate on the constrained MSSM as well as the MSSM with non-universal Higgs masses, and include the CP-violating phases of μ and A. Our results indicate that the atomic EDMs receive significant corrections from four-fermion operators, especially when Im(A) is the only CP-violating source, whereas the neutron EDM remains relatively insensitive to these effects. As a consequence, in a large portion of the parameter space, one cannot infer a separate bound on the electron EDM via the experimental constraint on the thallium EDM. Furthermore, we find that the electron EDM can be greatly reduced due to the destructive interference of one- and two-loop contributions with the latter being dominated by virtual staus. (orig.)
Cancellation mechanism in the predictions of electric dipole moments
Bian, Ligong; Chen, Ning
2017-06-01
The interpretation of the baryon asymmetry of the Universe necessitates the C P violation beyond the Standard Model (SM). We present a general cancellation mechanism in the theoretical predictions of the electron electric dipole moments (EDM), quark chromo-EDMs, and Weinberg operators. A relative large C P violation in the Higgs sector is allowed by the current electron EDM constraint released by the ACME collaboration in 2013, and the recent 199Hg EDM experiment. The cancellation mechanism can be induced by the mass splitting of heavy Higgs bosons around ˜O (0.1 - 1 ) GeV , and the extent of the mass degeneracy determines the magnitude of the C P -violating phase. We explicate this point by investigating the C P -violating two-Higgs-doublet model and the minimal supersymmetric Standard Model. The cancellation mechanism is general when there are C P violation and mixing in the Higgs sector of new physics models. The C P -violating phases in this scenario can be excluded or detected by the projected 225Ra EDM experiments with precision reaching ˜10-28 e .cm , as well as the future colliders.
Model dependence of the 2H electric dipole moment
International Nuclear Information System (INIS)
Afnan, I. R.; Gibson, B. F.
2010-01-01
Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the 3 P 1 channel, the latter being sensitive to the off-shell behavior of the 3 P 1 amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the 2 H EDM until such time as a measurement better than 10% is obtained.
Limits on CP nonconserving interactions from electric dipole moments
International Nuclear Information System (INIS)
Haxton, W.C.
1994-01-01
I discuss bounds on CP-nonconserving (CPNC) and parity-nonconserving (PNC) hadronic interactions that result from measurements of atomic electric dipole moments. In most models of hadronic CPNC, the nuclear edm arises primarily from the polarization of the ground state by the CPNC PNC NN interaction, rather than from the edms of valence nucleons. When the atom is placed in an external field, the nucleus is fully shielded apart from nuclear finite size effects and relativistic corrections arising from hyperfine interactions, so that careful atomic calculations must be performed to deduce the residual sensitivity to the nuclear edm. I describe these shielding effects qualitatively, and present results from more detailed calculations. Atomic limits, when translated into effective bounds on the neutron edm, have now reached sensitivities that are comparable to direct neutron edm limits. I also discuss limits that can be extracted on CPNC parity-conserving (PC) hadronic interactions. Such interactions can generate atomic edms when combined with weak radiative corrections
Lepton electric dipole moment and strong CP violation
Ghosh, Diptimoy; Sato, Ryosuke
2018-02-01
Contribution of the strong CP angle, θ bar , to the Wilson Coefficients of electron and muon electric dipole moment (EDM) operators are discussed. Previously, θ bar contribution to the electron EDM operator was calculated by Choi and Hong [1]. However, the effect of CP-violating three meson coupling was missing in [1]. We include this missing contribution for the first time in the literature, and reevaluate the Wilson coefficients of the lepton EDM operator. We obtain de = - (2.2 - 8.6) ×10-28 θ bar e-cm which is 15-70% of the result obtained in [1]. We also estimated the muon EDM as dμ = - (0.5 - 1.8) ×10-25 θ bar e-cm. Using | θ bar | ≲10-10 suggested by the neutron EDM measurements, we obtain |de | ≲ 8.6 ×10-38e-cm and |dμ | ≲ 1.8 ×10-35e-cm. The θ bar contribution to the muon EDM is much below the sensitivities of the current and near future experiments. Our result shows that the θ bar contribution to de,μ can be larger than the CKM contributions by many orders of magnitude.
Detecting a heavy neutrino electric dipole moment at the LHC
Sher, Marc; Stevens, Justin R.
2018-02-01
The milliQan Collaboration has proposed to search for millicharged particles by looking for very weakly ionizing tracks in a detector installed in a cavern near the CMS experiment at the LHC. We note that another form of exotica can also yield weakly ionizing tracks. If a heavy neutrino has an electric dipole moment (EDM), then the milliQan experiment may be sensitive to it as well. In particular, writing the general dimension-5 operator for an EDM with a scale of a TeV and a one-loop factor, one finds a potential EDM as high as a few times 10-17 e-cm, and models exist where it is an order of magnitude higher. Redoing the Bethe calculation of ionization energy loss for an EDM, it is found that the milliQan detector is sensitive to EDMs as small as 10-17 e-cm. Using the production cross-section and analyzing the acceptance of the milliQan detector, we find the expected 95% exclusion and 3σ sensitivity over the range of neutrino masses from 5-1000 GeV for integrated luminosities of 300 and 3000 fb-1 at the LHC.
CP-odd phase correlations and electric dipole moments
International Nuclear Information System (INIS)
Olive, Keith A.; Pospelov, Maxim; Ritz, Adam; Santoso, Yudi
2005-01-01
We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model, the CP-odd invariant related to the soft trilinear A-phase at the grand unified theory (GUT) scale, θ A , induces nontrivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tanβ, and can provide the dominant contribution to the electron EDM induced by θ A . We perform a detailed analysis of the EDM constraints within the constrained minimal supersymmetric standard model, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also illustrate how this reach will expand with results from the next generation of experiments which are currently in development
Strong dependence of ultracold chemical rates on electric dipole moments
International Nuclear Information System (INIS)
Quemener, Goulven; Bohn, John L.
2010-01-01
We use the quantum threshold laws combined with a classical capture model to provide an analytical estimate of the chemical quenching cross sections and rate coefficients of two colliding particles at ultralow temperatures. We apply this quantum threshold model (QT model) to indistinguishable fermionic polar molecules in an electric field. At ultracold temperatures and in weak electric fields, the cross sections and rate coefficients depend only weakly on the electric dipole moment d induced by the electric field. In stronger electric fields, the quenching processes scale as d 4(L+(1/2)) where L>0 is the orbital angular-momentum quantum number between the two colliding particles. For p-wave collisions (L=1) of indistinguishable fermionic polar molecules at ultracold temperatures, the quenching rate thus scales as d 6 . We also apply this model to pure two-dimensional collisions and find that chemical rates vanish as d -4 for ultracold indistinguishable fermions. This model provides a quick and intuitive way to estimate chemical rate coefficients of reactions occuring with high probability.
CP violation: K neutral and electric dipole moment of neutron
International Nuclear Information System (INIS)
Lutz, A.M.
1983-01-01
C.P. violation was first introduced in its theoretical framework: the definition of C.P. standard parameters in K 0 decay phenomenology were reviewed; then the model of Kabayaski Maskawa and the correlations of C.P. violation with other rules (ΔI=1/2) and processes (B decays...) were presented. In particular, the need for precise measurements of epsilon'/epsilon was emphasized and introduced the experimental lecture. After a short review of experimental techniques (K 0 regeneration, K 0 sub(L) - K 0 sub(S) interference), results and limitations of the previous K 0 sub(L) → 2π measurements were recalled. The focus was then put on present experiments, either at the analysis or data taking stage or in prospect, with emphasis on their originalities and physical goals. The example of the CERN experiment was detailed. A third lecture was devoted to the electric dipole moment of the neutron. The implications of such measurement on the strong C.P. violation were stressed and present experiments were presented. Their goals, difficulties and technical achievements and preliminary results were analysed [fr
Development of francium atomic beam for the search of the electron electric dipole moment
Directory of Open Access Journals (Sweden)
Sato Tomoya
2014-03-01
Full Text Available For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the “orthotropic” type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.
Theoretical prediction and impact of fundamental electric dipole moments
International Nuclear Information System (INIS)
Ellis, Sebastian A.R.; Kane, Gordon L.
2016-01-01
The predicted Standard Model (SM) electric dipole moments (EDMs) of electrons and quarks are tiny, providing an important window to observe new physics. Theories beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative phases of terms in the effective Lagrangian of the extended theory, which are generally unknown. Underlying theories, such as string/M-theories compactified to four dimensions, could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory. Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that the phases were predicted to be zero at tree level in the theory at the unification or string scale ∼O(10 16 GeV). Electroweak (EW) scale EDMs still arise via running from the high scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here we extend the earlier work by studying the dependence of the low scale EDMs on the constrained but not fully known fundamental Yukawa couplings. The dominant contribution is from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron EDM should not be found to be larger than about 5×10 −30 e cm, and the neutron EDM should not be larger than about 5×10 −29 e cm. These values are quite a bit smaller than the reported predictions from Split SUSY and typical effective theories, but much larger than the Standard Model prediction. Also, since models with random phases typically give much larger EDMs, it is a significant testable prediction of compactified M-theory that the EDMs should not be above these upper limits. The actual EDMs can be below the limits, so once they are measured they could provide new insight into the fundamental Yukawa couplings of leptons and quarks. We comment also on the role of strong CP violation. EDMs probe fundamental physics near the Planck scale.
International Nuclear Information System (INIS)
England, W.B.
1978-01-01
Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas
Electric dipole moment of the top quark in Higgs-boson-exchange models of CP nonconservation
International Nuclear Information System (INIS)
Soni, A.; Xu, R.M.
1992-01-01
The leading contribution to the electric and the chromoelectric dipole moments of the top quark is calculated in Higgs-boson-exchange models of CP nonconservation. The dipole moments are typically of the order of 10 -20 e cm and 10 -20 g cm, respectively and arise at one-loop order through neutral-Higgs-boson exchange. Several two-loop contributions are estimated to be smaller by about 2 orders of magnitude for the electric case and about 1 order of magnitude smaller for the chromoelectric case. The q 2 dependence of the dipole moment form factor is given for possible application to experimental searches
Study on the dipole moment of asphaltene molecules through dielectric measuring
Zhang, Long Li
2015-01-01
The polarity of asphaltenes influences production, transportation, and refining of heavy oils. However, the dipole moment of asphaltene molecules is difficult to measure due to their complex composition and electromagnetic opaqueness. In this work, we present a convenient and efficient way to determine the dipole moment of asphaltene in solution by dielectric measurements alone without measurement of the refractive index. The dipole moment of n-heptane asphaltenes of Middle East atmospheric residue (MEAR) and Ta-He atmospheric residue (THAR) are measured within the temperature range of -60°C to 20°C. There is one dielectric loss peak in the measured solutions of the two types of asphaltene at the temperatures of -60°C or -40°C, indicating there is one type of dipole in the solution. Furthermore, there are two dielectric loss peaks in the measured solutions of the two kinds of asphaltene when the temperature rises above -5°C, indicating there are two types of dipoles corresponding to the two peaks. This phenomenon indicates that as the temperature increases above -5°C, the asphaltene molecules aggregate and present larger dipole moment values. The dipole moments of MEAR C7-asphaltene aggregates are up to 5 times larger than those before aggregation. On the other hand, the dipole moments of the THAR C7-asphaltene aggregates are only 3 times larger than those before aggregation. It will be demonstrated that this method is capable of simultaneously measuring multi dipoles in one solution, instead of obtaining only the mean dipole moment. In addition, this method can be used with a wide range of concentrations and temperatures.
Gondek, E.; Kityk, I. V.; Danel, A.; Sanetra, J.
2008-06-01
We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1 H-pyrazolo[3,4- b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.
Effects of the magnetic dipole moment of charged vector mesons in their radiative decay distribution
International Nuclear Information System (INIS)
Castro, G.L.; Sanchez, G.T.
1997-01-01
We consider the effects of anomalous magnetic dipole moments of vector mesons in the decay distribution of photons emitted in two-pseudoscalar decays of charged vector mesons. By choosing a kinematical configuration appropriate to isolate these effects from model-dependent and dominant bremsstrahlung contributions, we show that this method can provide a valid alternative for a measurement of the unknown magnetic dipole moments of charged vector mesons. copyright 1997 The American Physical Society
Dipole moment of metallocene precatalyst in ground and excited states
International Nuclear Information System (INIS)
Lukova, G.V.; Vasil'ev, V.P.; Smirnov, V.A.; Milov, A.A.
2008-01-01
Electric dipole momenta of high-emitting metallocene precatalyst, i.e. π-complex of Zr IV (ras-C 6 H 10 (IndH 4 ) 2 ZrCl 2 ) in basic and triplet states in series of diluents have been estimated by the method of spectral shifts and quantum-chemical calculations using the DFT method. The absorption spectra characteristic of charge transfer from the ligand to metal and of zirconocene luminescence depend on the aprotic diluent nature. It is shown that transition from S 0 state to emitting T 1 state entails essential increase in the electric dipole momentum [ru
Magiera, Andrzej
2017-09-01
Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.
On verifying magnetic dipole moment of a magnetic torquer by experiments
Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.
2018-01-01
Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”
Booth, D; Rittenhouse, S T; Yang, J; Sadeghpour, H R; Shaffer, J P
2015-04-03
Permanent electric dipole moments are important for understanding symmetry breaking in molecular physics, control of chemical reactions, and realization of strongly correlated many-body quantum systems. However, large molecular permanent electric dipole moments are challenging to realize experimentally. We report the observation of ultralong-range Rydberg molecules with bond lengths of ~100 nanometers and kilo-Debye permanent electric dipole moments that form when an ultracold ground-state cesium (Cs) atom becomes bound within the electronic cloud of an extended Cs electronic orbit. The electronic character of this hybrid class of "trilobite" molecules is dominated by degenerate Rydberg manifolds, making them difficult to produce by conventional photoassociation. We used detailed coupled-channel calculations to reproduce their properties quantitatively. Our findings may lead to progress in ultracold chemistry and strongly correlated many-body physics. Copyright © 2015, American Association for the Advancement of Science.
Directory of Open Access Journals (Sweden)
V. Fallahi
2013-06-01
Full Text Available In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of the nanoparticle, the induced charge distribution on the nanoparticle surface has been calculated. In our calculations, we have exploited the experimental data obtained by Johnson and Christy for dielectric function.
Magnetic dipole moment of Zb(10610 ) in light-cone QCD
Özdem, U.; Azizi, K.
2018-01-01
The magnetic dipole moment of the exotic Zb(10610 ) state is calculated within the light cone QCD sum rule method using the diquark-antidiquark and molecule interpolating currents. The magnetic dipole moment is obtained as μZb=1.73 ±0.63 μN in diquark-antidiquark picture and μZb=1.59 ±0.58 μN in the molecular case. The obtained results in both pictures together with the results of other theoretical studies on the spectroscopic parameters of the Zb(10610 ) state may be useful in determination of the nature and quark organization of this state.
Accurate measurement of the transition dipole moment of self-assembled quantum dots
DEFF Research Database (Denmark)
Stobbe, Søren; Johansen, Jeppe; Nikolaev, I.S.
2007-01-01
Here we present quantitative measurements of the dipole moment of an ensemble of self-assembled quantum dots employing a modified optical local density of states (LDOS). The LDOS is controlled by varying the distance from the QDs to a semiconductor/air interface.......Here we present quantitative measurements of the dipole moment of an ensemble of self-assembled quantum dots employing a modified optical local density of states (LDOS). The LDOS is controlled by varying the distance from the QDs to a semiconductor/air interface....
New two-loop contribution to electric dipole moment in supersymmetric theories
Chang, Darwin; Pilaftsis, Apostolos; Chang, Darwin; Keung, Wai-Yee; Pilaftsis, Apostolos
1999-01-01
We calculate a new type of two-loop contributions to the electric dipole moments of the electron and neutron in supersymmetric theories. The new contributions are originated from the potential CP violation in the trilinear couplings of the Higgs bosons to the scalar-top or the scalar-bottom quarks. These couplings were previously very weakly constrained. The electric dipole moments are induced through a mechanism analogous to that due to Barr and Zee. We find observable effects for a sizeable portion of the parameter space related to the third generation scalar-quarks in the minimal supersymmetric standard model which cannot be excluded by earlier considerations.
Potential energy and transition dipole moment functions of C2-
Czech Academy of Sciences Publication Activity Database
Šedivcová, Tereza; Špirko, Vladimír
2006-01-01
Roč. 104, 13/14 (2006), s. 1999-2005 ISSN 0026-8976 R&D Projects: GA AV ČR(CZ) IAA400550511; GA MŠk(CZ) LC512; GA ČR(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ab initio calculation * transition moments * potential energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.690, year: 2006
On the electric dipole moments of small sodium clusters from different theoretical approaches
Energy Technology Data Exchange (ETDEWEB)
Aguado, Andres, E-mail: aguado@metodos.fam.cie.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Universidad de Valladolid (Spain); Vega, Andres, E-mail: vega@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain); Balbas, Luis Carlos, E-mail: balbas@fta.uva.es [Departamento de Fisica Teorica, Atomica, y Optica, Universidad de Valladolid (Spain)
2012-05-03
Graphical abstract: The dipole moments and polarizabilities of a few isomers of sodium clusters of selected sizes (n = 13, 14, 16) are calculated using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Highlights: Black-Right-Pointing-Pointer Dipole moment and polarizability of sodium clusters from DFT and ab initio methods. Black-Right-Pointing-Pointer New van der Waals selfconsistent implementation of non-local dispersion interactions. Black-Right-Pointing-Pointer New starting isomeric geometries from extensive search of global minimum structures. Black-Right-Pointing-Pointer Good agreement with recent experiments at cryogenic temperatures. - Abstract: The dipole moments of Na{sub n} clusters in the size range 10 < n < 20, recently measured at very low temperature (20 K), are much smaller than predicted by standard density functional methods. On the other hand, the calculated static dipole polarizabilities in that range of sizes deviate non-systematically from the measured ones, depending on the employed first principles approach. In this work we calculate the dipole moments and polarizabilities of a few isomers of Na{sub n} clusters of selected sizes (n = 13, 14, 16), obtained recently through an extensive unbiased search of the global minimum structures, and using density functional theory methods as well as ab initio MP2, CASSCF, and MR-CI methods. Among the density functional approaches, we consider the usual local density and generalized gradient approximations, as well as a recent van der Waals self-consistent functional accounting for non-local dispersion interactions. Both non-local pseudopotentials and all-electron implementations are employed and compared in order to assess the possible
Microwave spectrum, structure, dipole moment, and barrier to internal rotation of methylthioethyne
Engelsen, D. den
1967-01-01
The microwave absorption spectrum is reported as well as rotational constants, dipole moment components, and centrifugal distortion constants of methylthioethyne. The spectra of two isotopic species of methylthioethyne were measured, namely, HCC---32SCH3 and HCC---34SCH3; the determination of the
Measurement of the zero-field magnetic dipole moment of magnetizable colloidal silica spheres
Claesson, E.M.; Erne, B.H.; Bakelaar, I.A.; Kuipers, B.W.M.; Philipse, A.P.
2007-01-01
The magnetic properties of dispersions of magnetic silica microspheres have been investigated by measuring the magnetization curves and the complex magnetic susceptibility as a function of frequency and field amplitude. The silica spheres appear to have a net permanent magnetic dipole moment, even
A multiferroic material to search for the permanent electric dipole moment of the electron
Czech Academy of Sciences Publication Activity Database
Rushchanskii, K.Z.; Kamba, Stanislav; Goian, Veronica; Vaněk, Přemysl; Savinov, Maxim; Prokleška, J.; Nuzhnyy, Dmitry; Knížek, Karel; Laufek, F.; Eckel, S.; Lamoreaux, S.K.; Sushkov, A.; Ležaič, M.; Spaldin, N.A.
2010-01-01
Roč. 9, č. 8 (2010), s. 649-654 ISSN 1476-1122 R&D Projects: GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : multiferroics * electric dipole moment of the electron * dielectric and magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 29.897, year: 2010
Comparison of experimental and theoretical dipole moment derivatives of PF3
International Nuclear Information System (INIS)
Bruns, R.E.; Bassi, A.B.M.S.
1977-01-01
Inconsistencies in the reported experimental and theoretical values of the dipole moment derivatives in the E symmetry species of PF 3 are pointed out and corrected. The revised values imply that the charge distortions for PF 3 are identical in sense to those reported for other fluorine-containing molecules [pt
Relics of short distance effects for the neutron electric dipole moment
International Nuclear Information System (INIS)
Eeg, J.O.
1982-12-01
The Feynman diagrams which dominate the estimates of the electric dipole moment of the neutron with Kobayashi-Maskawa CP violation are considered. The extracted long distance contributions and the relics of short distance contributions are shown to be complementary and of the same magnitude, resulting in mod(Dsub(n)/e) approximately = (10 - 31 - 10 - 30 ) cm. (Auth.)
What is the value of the neutron electric dipole moment in the Kobayashi-Maskawa model
International Nuclear Information System (INIS)
Khriplovich, I.B.; Zhitnitsky, A.R.
1982-01-01
A new mechanism is considered due to which the neutron electric dipole moment Dsub(n) aries in the Kobayashi-Maskawa model. This mechanism leads to the estimate Dsub(n) approx. equal to 2 x 10 -32 e cm, by two orders of magnitude larger than the contributions considered previously. (orig.)
Large contribution to the neutron electric dipole moment from a dimension six four quark operator
International Nuclear Information System (INIS)
He, Xiaogang; McKellar, B.
1992-01-01
In this paper the contribution of a dimension six four quark operator (Q q ) to the neutron electric dipole moment was studied. It was found that this contribution dominates over other contributions by at least one order of magnitude in Left-Right symmetric models and two orders of magnitude in di-quark scalar models. 10 refs., 1 fig
The standard model prediction for the electric dipole moment of the electron
International Nuclear Information System (INIS)
Hoogeveen, F.
1990-01-01
The electric dipole moment of the electron is calculated within the standard model with three generations of quarks. Depending on the values of some unknown parameters like the top quark mass and the CP-violating phase δ in the Kobayashi-Maskawa matrix, its value is of the order of magnitude of 2x10 -38 vertical strokeevertical stroke cm. (orig.)
Unraveling models of CP violation through electric dipole moments of light nuclei
Dekens, W.; Vries, J. de; Bsaisou, J.; Bernreuther, W.; Hanhart, C.; Meißner, Ulf-G; Nogga, A.; Wirzba, A.
2014-01-01
We show that the proposed measurements of the electric dipole moments of light nuclei in storage rings would put strong constraints on models of flavor-diagonal CP violation. Our analysis is exemplified by a comparison of the Standard Model including the QCD theta term, the minimal left-right
Electric dipole moments of light nuclei from chiral effective field theory
de Vries, J.; Higa, R.; Liu, C. -P.; Mereghetti, E.; Stetcu, I.; Timmermans, R. G. E.; van Kolck, U.
2011-01-01
We set up the framework for the calculation of electric dipole moments (EDMs) of light nuclei using the systematic expansion provided by chiral effective field theory (EFT). We take into account parity (P) and timer-reversal (T) violation which, at the quark-gluon level, originates from the QCD
β-Decay and the electric dipole moment: Searches for time-reversal ...
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... -Decay and the electric dipole moment: Searches for time-reversal violation in radioactive nuclei and atoms. H W Wilschut U Dammalapati D J Van Der Hoek K Jungmann W Kruithof C J G Onderwater B Santra P D Shidling L Willmann. Physics with Radioactive Ion Beams Volume 75 Issue 1 July 2010 pp ...
Conservation of a helix-stabilizing dipole moment in the PP-fold family of regulatory peptides
DEFF Research Database (Denmark)
Bjørnholm, B; Jørgensen, Flemming Steen; Schwartz, T W
1993-01-01
of the electrostatic properties of five representative members of the PP-fold family of peptides (human neuropeptide Y, human peptide YY, human pancreatic polypeptide, avian PP, and lamprey peptide methionine tyrosine) shows that this characteristic charge clustering gives rise to a common dipole moment of 325-450 D...... directed from the beta-turn region toward the receptor-binding region. This overall dipole moment is antiparallel to the dipole moment of the alpha-helix caused by alignment of the peptide dipoles parallel to the helix. Calculations of the stabilization energy for this antiparallel dipole moment...... forces alone when the screening effect is considered. This energy is of the same order of magnitude as the enthalpy change for the unfolding of avian PP (approximately 30 kcal/mol), strongly indicating that the charge-dipole interactions are of significant importance for the stability of the three...
A new experimental limit on the electric dipole moment of the electron
International Nuclear Information System (INIS)
Carlberg, C.; Gould, H.; Abdullah, K.; Commins, E.D.; Ross, S.B.; California Univ., Berkeley, CA
1990-12-01
We describe a search for the electric dipole moment d e of the electron, carried out with 205 Tl atoms in the ground state. The experiment makes use of the separated-oscillating-field magnetic-resonance method, laser state selection, fluorescence detection, and two counter-propagating atomic beams. Very careful attention is paid to systematic effects. The result for the atomic electric dipole moment is d a = (1.6 ± 5.0) x 10 -24 e cm. If we assume the theoretical ratio d a /d e = -600, this yields d e = (-2.7 ± 8.3) x 10 -27 e cm. 17 refs., 7 figs., 1 tab
Large tau and tau neutrino electric dipole moments in models with vectorlike multiplets
International Nuclear Information System (INIS)
Ibrahim, Tarek; Nath, Pran
2010-01-01
It is shown that the electric dipole moment of the τ lepton several orders of magnitude larger than predicted by the standard model can be generated from mixings in models with vectorlike mutiplets. The electric dipole moment (EDM) of the τ lepton arises from loops involving the exchange of the W, the charginos, the neutralinos, the sleptons, the mirror leptons, and the mirror sleptons. The EDM of the Dirac τ neutrino is also computed from loops involving the exchange of the W, the charginos, the mirror leptons, and the mirror sleptons. A numerical analysis is presented, and it is shown that the EDMs of the τ lepton and the τ neutrino which lie just a couple of orders of magnitude below the sensitivity of the current experiment can be achieved. Thus the predictions of the model are testable in an improved experiment on the EDM of the τ and the τ neutrino.
A storage ring experiment to detect a proton electric dipole moment
Energy Technology Data Exchange (ETDEWEB)
Anastassopoulos, V. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Andrianov, S. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Baartman, R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3, Canada; Baessler, S. [Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA; Bai, M. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Benante, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Berz, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Blaskiewicz, M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Bowcock, T. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Brown, K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Casey, B. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Conte, M. [Physics Department and INFN Section of Genoa, 16146 Genoa, Italy; Crnkovic, J. D. [Brookhaven National Laboratory, Upton, New York 11973, USA; D’Imperio, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fanourakis, G. [Institute of Nuclear and Particle Physics NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece; Fedotov, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Fierlinger, P. [Technical University München, Physikdepartment and Excellence-Cluster “Universe,” Garching, Germany; Fischer, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Gaisser, M. O. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Giomataris, Y. [CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex, France; Grosse-Perdekamp, M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; Guidoboni, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Hacıömeroğlu, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Hoffstaetter, G. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Huang, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Incagli, M. [Physics Department, University and INFN Pisa, Pisa, Italy; Ivanov, A. [Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia; Kawall, D. [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA; Kim, Y. I. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; King, B. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Koop, I. A. [Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia; Lazarus, D. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lebedev, V. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Lee, M. J. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, S. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Lee, Y. H. [Korea Research Institute of Standards and Science, Daejeon 34141, South Korea; Lehrach, A. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Lenisa, P. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Levi Sandri, P. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Luccio, A. U. [Brookhaven National Laboratory, Upton, New York 11973, USA; Lyapin, A. [Royal Holloway, University of London, Egham, Surrey, United Kingdom; MacKay, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Maier, R. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Makino, K. [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA; Malitsky, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Marciano, W. J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meng, W. [Brookhaven National Laboratory, Upton, New York 11973, USA; Meot, F. [Brookhaven National Laboratory, Upton, New York 11973, USA; Metodiev, E. M. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Harvard College, Harvard University, Cambridge, Massachusetts 02138, USA; Miceli, L. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Moricciani, D. [Dipartimento di Fisica dell’Univ. di Roma “Tor Vergata” and INFN Sezione di Roma Tor Vergata, Rome, Italy; Morse, W. M. [Brookhaven National Laboratory, Upton, New York 11973, USA; Nagaitsev, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Nayak, S. K. [Brookhaven National Laboratory, Upton, New York 11973, USA; Orlov, Y. F. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Ozben, C. S. [Istanbul Technical University, Istanbul 34469, Turkey; Park, S. T. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pesce, A. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Petrakou, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Pile, P. [Brookhaven National Laboratory, Upton, New York 11973, USA; Podobedov, B. [Brookhaven National Laboratory, Upton, New York 11973, USA; Polychronakos, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Pretz, J. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Ptitsyn, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Ramberg, E. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973, USA; Rathmann, F. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Rescia, S. [Brookhaven National Laboratory, Upton, New York 11973, USA; Roser, T. [Brookhaven National Laboratory, Upton, New York 11973, USA; Kamal Sayed, H. [Brookhaven National Laboratory, Upton, New York 11973, USA; Semertzidis, Y. K. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; Senichev, Y. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Sidorin, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Silenko, A. [Joint Institute for Nuclear Research, Dubna, Moscow region, Russia; Research Institute for Nuclear Problems of Belarusian State University, Minsk, Belarus; Simos, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Stahl, A. [RWTH Aachen University and JARA-Fame, III. Physikalisches Institut B, Physikzentrum, 52056 Aachen, Germany; Stephenson, E. J. [Indiana University Center for Spacetime Symmetries, Bloomington, Indiana 47405, USA; Ströher, H. [Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany; Syphers, M. J. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA; Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA; Talman, J. [Brookhaven National Laboratory, Upton, New York 11973, USA; Talman, R. M. [Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA; Tishchenko, V. [Brookhaven National Laboratory, Upton, New York 11973, USA; Touramanis, C. [Department of Physics, University of Liverpool, Liverpool, United Kingdom; Tsoupas, N. [Brookhaven National Laboratory, Upton, New York 11973, USA; Venanzoni, G. [Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Rome, Italy; Vetter, K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; Vlassis, S. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece; Won, E. [Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea; Physics Department, Korea University, Seoul 02841, South Korea; Zavattini, G. [University of Ferrara, INFN of Ferrara, Ferrara, Italy; Zelenski, A. [Brookhaven National Laboratory, Upton, New York 11973, USA; Zioutas, K. [Department of Physics, University of Patras, 26500 Rio-Patras, Greece
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}e\\cdot$cm by using polarized "magic" momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.
rf Wien filter in an electric dipole moment storage ring: The ``partially frozen spin'' effect
Morse, William M.; Orlov, Yuri F.; Semertzidis, Yannis K.
2013-11-01
An rf Wien filter (WF) can be used in a storage ring to measure a particle’s electric dipole moment (EDM). If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.
arXiv Electromagnetic dipole moments of charged baryons with bent crystals at the LHC
Bagli, E.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.
2017-12-05
We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.
Electromagnetic dipole moments of charged baryons with bent crystals at the LHC
Energy Technology Data Exchange (ETDEWEB)
Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A. [Universita di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy); Cavoto, G. [' ' Sapienza' ' Universita di Roma, Rome (Italy); INFN, Sezione di Roma (Italy); Henry, L.; Martinez Vidal, F.; Ruiz Vidal, J. [IFIC, Universitat de Valencia-CSIC, Valencia (Spain); Marangotto, D. [Universita di Milano, Milan (Italy); INFN, Sezione di Milano (Italy); Merli, A.; Neri, N. [Universita di Milano, Milan (Italy); CERN, Geneva (Switzerland); INFN, Sezione di Milano (Italy)
2017-12-15
We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector. (orig.)
Relaxed geometries and dipole moments of positron complexes with diatomic molecules
Energy Technology Data Exchange (ETDEWEB)
Assafrao, Denise; Mohallem, Jose R, E-mail: rachid@fisica.ufmg.b [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)
2010-01-01
Relaxed geometries and dipole moments of diatomic molecules interacting with a slow positron are reported as functions of the positron distance to the more electronegative atom. A molecular model for the complex that allows applications to large systems is used. The electron population on the positron is proposed as a weighting function to calculate the average quantities. Results show Self-Consistent-Field quality or better.
A storage ring experiment to detect a proton electric dipole moment.
Anastassopoulos, V; Andrianov, S; Baartman, R; Baessler, S; Bai, M; Benante, J; Berz, M; Blaskiewicz, M; Bowcock, T; Brown, K; Casey, B; Conte, M; Crnkovic, J D; D'Imperio, N; Fanourakis, G; Fedotov, A; Fierlinger, P; Fischer, W; Gaisser, M O; Giomataris, Y; Grosse-Perdekamp, M; Guidoboni, G; Hacıömeroğlu, S; Hoffstaetter, G; Huang, H; Incagli, M; Ivanov, A; Kawall, D; Kim, Y I; King, B; Koop, I A; Lazarus, D M; Lebedev, V; Lee, M J; Lee, S; Lee, Y H; Lehrach, A; Lenisa, P; Levi Sandri, P; Luccio, A U; Lyapin, A; MacKay, W; Maier, R; Makino, K; Malitsky, N; Marciano, W J; Meng, W; Meot, F; Metodiev, E M; Miceli, L; Moricciani, D; Morse, W M; Nagaitsev, S; Nayak, S K; Orlov, Y F; Ozben, C S; Park, S T; Pesce, A; Petrakou, E; Pile, P; Podobedov, B; Polychronakos, V; Pretz, J; Ptitsyn, V; Ramberg, E; Raparia, D; Rathmann, F; Rescia, S; Roser, T; Kamal Sayed, H; Semertzidis, Y K; Senichev, Y; Sidorin, A; Silenko, A; Simos, N; Stahl, A; Stephenson, E J; Ströher, H; Syphers, M J; Talman, J; Talman, R M; Tishchenko, V; Touramanis, C; Tsoupas, N; Venanzoni, G; Vetter, K; Vlassis, S; Won, E; Zavattini, G; Zelenski, A; Zioutas, K
2016-11-01
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10 -29 e ⋅ cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV.
Kulkarni, Anita; Filippone, Bradley; Slutsky, Simon; Swank, Christopher; Carr, Robert; Osthelder, Charles; Biswas, Aritra; Molina, Daniel
2016-09-01
Over the last several decades, physicists have been measuring the neutron electric dipole moment (nEDM) with greater and greater sensitivity. The latest experiment we are developing will have 100 times more sensitivity than the previous leading experiment. A nonzero nEDM could, among other consequences, explain the presence of more matter than antimatter in the universe. To measure the nEDM with high accuracy, it is necessary to have a very uniform magnetic field inside the detector since non-uniformities can create false signals via the geometric phase effect. One way to improve field uniformity is to add superconducting lead endcaps to the detector, which constrain the fields at their surfaces to be parallel to them. Here, we test how the endcaps improve field uniformity by measuring the magnetic field at various points in a 1/3-scale experimental volume, inferring what the field must be at all other points, and calculating gradients in the field. This knowledge could help guide further steps needed to improve field uniformity and characterize limitations to the sensitivity of nEDM measurements for the full-scale experiment. Rose Hills Foundation, National Science Foundation Grant 1506459, and Department of Energy.
Ab initio calculation of vibrational dipole moment matrix elements. Pt.1
International Nuclear Information System (INIS)
Cantarella, E.; Culot, F.; Lievin, J.
1992-01-01
This paper is the first part of a series devoted to the ab initio calculation of some vibrational properties helpful in the interpretation of high resolution spectroscopy, atmospherical and astrophysical data. An ab initio method of calculation of the vibrational transition energies and dipole moment matrix elements is described and analyzed. The main features of this method are the resolution of both electronic and vibrational problems by analytical variational techniques and the representation of the potential energy and dipole moment hypersurfaces as Taylor's series expansions in normal coordinates up to the fourth order. The dipole moment matrix elements are then evaluated by simple analytical formulae. In this first paper, some of the approximations inherent to the methodology are systematically analyzed on the basis of results obtained for diatomic molecules (BeH, HF, NH and NO) with a comparison to experimental and other theoretical results found in the literature. The dependence on the results of the effects of electrical and mechanical anharmonicities, electron correlation and basis set dependencies are investigated. The applicability of the method to small polyatomic systems is discussed in the second paper of this series, on the basis of test calculations on the water molecule
Dipole moments of the τ lepton as a sensitive probe for physics beyond the standard model
International Nuclear Information System (INIS)
Mahanta, U.
1996-01-01
CP-violating dipole moments of leptons vanish at least to three loop order and are estimated to be (m l /MeV)x1.6x10 -40 ecm in the standard model (SM), where m l is the mass of the lepton. However, they can receive potentially large contributions in some beyond the SM scenarios and this makes them very sensitive probes of new physics. In this article we show that a nonuniversal interaction, involving leptoquarks to the quark-lepton pair of the third generation through helicity-unsuppressed couplings of the order of ordinary gauge couplings, can generate electric and weak dipole moments of the order of 10 -19 ecm for the τ lepton. This is greater than pure supersymmetric (SUSY) and left-right (LR) contributions by almost three orders of magnitude. It is also greater than the mirror fermionic contribution by an order of magnitude. The measurements of d τ z and d τ γ at CERN LEP, SLC, and TCF are expected to reach sensitivities of 10 -18 ecm and 10 -19 ecm, respectively, in the near future. The observation of a nonvanishing dipole moment of τ at these facilities would, therefore, strongly favor superstring-inspired light leptoquark-mediated interactions, over pure SUSY or LR interactions and perhaps also mirror-generated mixings without some sort of quark-lepton unification as its origin. copyright 1996 The American Physical Society
Higgs-Mediated Electric Dipole Moments in the MSSM An Application to Baryogenesis and Higgs Searches
Pilaftsis, Apostolos
2002-01-01
We perform a comprehensive study of the dominant two- and higher-loop contributions to the Tl(205), neutron and muon electric dipole moments induced by Higgs bosons, third-generation quarks and squarks, charginos and gluinos in the Minimal Supersymmetric Standard Model (MSSM). We find that strong correlations exist among the contributing CP-violating operators, for large stop, gluino and chargino phases, and for a wide range of values of \\tan\\beta and charged Higgs-boson masses, giving rise to large suppressions of the Tl(205) and neutron electric dipole moments below their present experimental limits. Based on this observation, we discuss the constraints that the nonobservation of electric dipole moments imposes on the radiatively-generated CP-violating Higgs sector and on the mechanism of electroweak baryogenesis in the MSSM. We improve previously suggested benchmark scenarios of maximal CP violation for analyzing direct searches of CP-violating MSSM Higgs-bosons at high-energy colliders, and stress the imp...
The effect of the charge density on the dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.; Germano, J.S.E.
1986-01-01
The results of the calculation, using the Variational Cellular Method (VCM), of the electric dipole moment of several diatomic molecules are improved. In previous calculations, the electronic charge density was treated like a spherically symmetric function in the inscribed sphere within each cell and as being the same constant value for all intercellular regions. Since the results obtained with such an approximation have not been satisfactory, an improved approximation for the charge density in the intercellular regions is needed. It is considered that the charge density is still constant outside the inscribed sphere but with different values in each intercellular region. A new expression for the dipole moment is obtained, and applied to the diatomic molecules HF, CO, BF and CS. In addition, the corresponding dipole moment curves, potential energy curves and spectroscopic constants are calculated taking into consideration our approximation and the traditional approximation for the charge density. The results of the two models are compared with each other and with experimental results for all the molecules considered. (Author) [pt
Studies of electric dipole moments in the octupole collective regions of heavy Radiums and Bariums
Hoff, P; Kaczarowski, R
2002-01-01
%IS386 %title\\ \\It is proposed to study the electric dipole moments in the regions of octupole collective Ra-Th and Ba-Ce nuclei by means of Advanced Time-Delayed (ATD) $\\beta\\gamma\\gamma(t)$ method with a primary goal to provide new and critical data on the properties of E1 moments. The proposal focuses on the nuclei of $^{225,226,229}$Ra, $^{229,233}$Th and $^{149,150}$Ba.\\ \\The ATD $\\beta\\gamma\\gamma$(t) method was first tested at ISOLDE as part of the IS322 study of Fr-Ra nuclei at the limits of octupole deformation region. The results have greatly increased the knowledge of electric dipole moments in the region and demonstrated that new and unique research capabilities in this field are now available at ISOLDE. Based on the experience and new systematics, we propose a specialized study with the aim to determine the missing key aspects of the E1 moment systematics. We propose : \\begin{enumerate}[a)] \\item to measure the lifetimes of the 1$_{1}^{-}$ and 3$_{1}^{-}$ states in $^{226}$Ra with $\\sim$15\\% prec...
Kumar, Sanjay; Kapoor, Vinita; Bansal, Ritu; Tandon, H. C.
2018-03-01
The absorption and fluorescence characteristics of biologically active flavone derivatives 6-Hydroxy-7,3‧,4‧,5‧-tetramethoxyflavone (6HTMF) and 7-Hydroxy-6,3‧,4‧,5‧-tetramethoxyflavone (7HTMF) are studied at room temperature (298 K) in solvents of different polarities. Excited state dipole moments of these compounds have been determined using the solvatochromic shift method based on the microscopic solvent polarity parameter ETN . Dipole moments in excited state were found to be higher than those in the ground state in both the molecules. A reasonable agreement has been observed between experimental and theoretically calculated dipole moments (using AM1 method). Slightly large value of ground and excited state dipole moments of 7HTMF than 6HTMF are in conformity with predicted electrostatic potential maps. Our results would be helpful in understanding use of these compounds as tunable dye lasers, optical brighteners and biosensors.
DEFF Research Database (Denmark)
Madsen, G.K.H.; Krebs, Frederik C; Lebech, B.
2000-01-01
The electron density distribution of the molecular pyroelectric material phosphangulene has been studied by multipolar modeling of X-ray diffraction data. The "in-crystal" molecular dipole moment has been evaluated to 4.7 D corresponding to a 42% dipole moment enhancement compared with the dipole...... moment measured in a chloroform solution. It is substantiated that the estimated standard deviation of the dipole moment is about 0.8 D. The standard uncertainty (s.u.) of the derived dipole moment has been derived by splitting the dataset into three independent datasets. A novel method for obtaining...
International Nuclear Information System (INIS)
Freedman, M.S.; Peshkin, M.; Ringo, G.R.; Dombeck, T.W.
1989-08-01
The use of an ultracold neutron interferometer incorporating an electrostatic accelerator having a strong electric field gradient to accelerate neutrons by their possible electric dipole moment is proposed as a method of measuring the neutron electric dipole moment. The method appears to have the possibility of extending the sensitivity of the measurement by several orders of magnitude, perhaps to 10 -30 e-cm. 9 refs., 3 figs
International Nuclear Information System (INIS)
Krawczyk, Stanislaw; Jazurek, Beata; Luchowski, Rafal; Wiacek, Dariusz
2006-01-01
Electroabsorption spectra of all-trans, 13-cis and 15-cis isomers of carotenoids violaxanthin and β-carotene frozen in organic solvents were analysed in terms of changes in permanent dipole moment, Δμ, and in the linear polarizability, Δα, on electronic excitation. The spectral range investigated covered the two carotenoid absorption bands in the VIS and UV, known to originate from differently oriented transition dipole moments. In contrast with the collinearity of the apparent Δμ with Δα in the lowest-energy allowed (VIS) transition 1A g - ->1B u + , the axis of the largest polarizability change in the UV transition 1A g - ->1A g + (''cis band'') was found to make a large angle with the transition moment, while the direction of Δμ appears to be much closer to it. These data support the view that Δμ's inferred from electrochromic spectra of carotenoids are apparent and are not induced by the local matrix field in the solvent cavity, but merely result from conformational modulation of molecular polarizability
Energy Technology Data Exchange (ETDEWEB)
Obaid, R. [Institut für Theoretische Chemie, Universität Wien, Währinger Straße 17, 1090 Vienna (Austria); Applied Chemistry Department, Palestine Polytechnic University, Hebron, Palestine (Country Unknown); Leibscher, M., E-mail: monika.leibscher@itp.uni-hannover.de [Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany)
2015-02-14
We present a molecular symmetry analysis of electronic states and transition dipole moments for molecules which undergo large amplitude intramolecular torsions. The method is based on the correlation between the point group of the molecule at highly symmetric configurations and the molecular symmetry group. As an example, we determine the global irreducible representations of the electronic states and transition dipole moments for the quinodimethane derivative 2-[4-(cyclopenta-2,4-dien-1-ylidene)cyclohexa-2,5-dien-1-ylidene]-2H-1, 3-dioxole for which two torsional degrees of freedom can be activated upon photo-excitation and construct the resulting symmetry adapted transition dipole functions.
Effects of the Neutrino B-term on SLepton Mixing and Electric Dipole Moments
Energy Technology Data Exchange (ETDEWEB)
Farzan, Y
2003-10-10
The supersymmetric standard model with right-handed neutrino supermultiplets generically contains a soft supersymmetry breaking mass term: {delta}L = 1/2B{sub {nu}}M{tilde {nu}}{sub R}{tilde {nu}}{sub R}. The authors call this operator the ''neutrino B-term''. We show that the neutrino B-term can give the dominant effects from the neutrino sector to lepton flavor violating processes and to lepton electric dipole moments.
Search for electric dipole moment in 129Xe atom using active nuclear spin maser
Directory of Open Access Journals (Sweden)
Ichikawa Y.
2014-03-01
Full Text Available An experimental search for an electric dipole moment in the diamagnetic atom 129Xe is in progress through the precision measurement of spin precession frequency using an active nuclear spin maser. A 3He comagnetometer has been incorporated into the active spin maser system in order to cancel out the long-term drifts in the external magnetic field. Also, a double-cell geometry has been adopted in order to suppress the frequency shifts due to interaction with polarized Rb atoms. The first EDM measurement with the 129Xe active spin maser and the 3He comagnetometer has been conducted.
Effect of dipole moments on orientation and alignment of a bounded molecule
Lumb, Sonia; Lumb, Shalini; Sen, K. D.; Prasad, Vinod
2017-06-01
A diatomic molecule modeled by Shifted Deng-Fan (SDF) oscillator potential and restricted to a small region of space has been considered. Energy spectra and radial matrix elements have been calculated using an accurate nine-point finite difference method. Orientation and alignment is generally studied by taking into account only the permanent dipole moment of the molecule. However, in this work, dependence of these properties on the actual set of matrix elements has been explored. A comparative study of the two has been presented. Effect of boundary radius and applied field strength has also been studied.
Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron
Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Petrik, E. S.; Spaun, B.
2014-01-01
The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d_e, in the range of 10^(−27) to 10^(−30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S) that is also asymmetric under T. Using the p...
The electric dipole moment of the neutron in the left-right supersymmetric model
International Nuclear Information System (INIS)
Frank, M.
1999-01-01
We calculate the neutron electric dipole moment (EDM) in the left-right supersymmetric model, including one-loop contributions from the chargino, the neutralino and the gluino diagrams. We discuss the dependence of the EDM on the phases of the model, as well as on the mass parameters in the left and right sectors. The neutron EDM imposes different conditions on the supersymmetric spectrum from either the electron EDM, or the neutron EDM in the minimal supersymmetric standard model. The neutron EDM may be a clue to an extended gauge structure in supersymmetry. (author)
Study By Spin Tracking of A Storage Ring For Deuteron Electric Dipole Moment
International Nuclear Information System (INIS)
Lin, F.; Malitsky, N. D.; Luccio, A. U.; Morse, W. M.; Semertzidis, Y. K.; Onderwater, C. J. G.; Orlov, Y. F.
2009-01-01
Spin tracking of polarized deuterons for a proposed experiment to measure a possible Electric Dipole Moment (EDM) of the deuteron was done by using the codes UAL and SPINK. In the experiment the direction of spin polarization will be frozen using crossed electric and magnetic fields. Systematics, in particular the effects of non-linearities of the lattice on a beam with finite emittance and energy spread, have been extensively simulated and the effect of sextuple corrections to increase the spin coherence time has been studied.
Status of the Berkeley search for the electron electric dipole moment in thallium 205
International Nuclear Information System (INIS)
Ross, S.B.; Commins, E.D.
1993-01-01
This experiment employs two counterpropagating atomic beams in a uniform magnetic field B, laser optical pumping for state selection and analysis, two separated rf fields for magnetic resonance, and an electric field E between the rf regions. The signal is fluorescence in the second optical pumping region, and the signature of a finite electric dipole moment is an asymmetry in the signal proportional to E sm-bullet B. The two counterpropagating atomic beams are used to reduce by orders of magnitude a possible systematic effect due to precession of the atomic magnetic moment in a motional magnetic field Exv/c, and the small residual is dealt with by a variety of auxiliary measurements. Careful analysis of other possible systematics is also carded out. Since publication of our first results in Nov. 1990, we have improved our detection sensitivity, reduced noise, and further isolated a number of possible systematic effects. Now results will be presented
Electronic structure of the BaO molecule with dipole moments and ro-vibrational calculations
Khatib, Mohamed; Korek, Mahmoud
2018-03-01
The twenty-three low-lying electronic states (singlet and triplet) of the BaO molecule have been studied by using an ab initio method. These electronic states have been investigated by using the Complete Active Apace Self-Consistent Field (CASSCF) followed by multi-reference configuration interaction (MRCI + Q) with Davidson correction. The potential energy curves, the internuclear distance Re, the harmonic frequency ωe, the rotational constant Be, the electronic energy with respect to the ground state Te and the static and transition dipole moment have been investigated. The Einstein spontaneous and induced emission coefficients A21 and B21ω as well as the spontaneous radiative lifetime τspon, emission wavelength λ21 and oscillator strength f21 have been calculated by using the transition dipole moment between some doublet electronic states. The calculation of the eigenvalues Ev, the rotational constant Bv, the centrifugal distortion constant Dv, and the abscissas of the turning points Rmin and Rmax have been done by using the canonical functions approach. A very good agreement is shown by comparing the values of our work to those found in the literature for many electronic states. Eighteen new electronic states have been studied here for the first time.
Lattice calculation of electric dipole moments and form factors of the nucleon
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
Corrected electrostatic model for dipoles adsorbed on a metal surface
Energy Technology Data Exchange (ETDEWEB)
Maschhoff, B.L.; Cowin, J.P. (Enviornmental and Molecular Science Laboratory, Pacific Northwest Laboratories Box 999 MS K2-14, Richland, Washington 99352 (United States))
1994-11-01
We present a dipole--dipole interaction model for polar molecules vertically adsorbed on a idealized metal surface in an approximate analytic form suitable for estimating the coverage dependence of the work function, binding energies, and thermal desorption activation energies. In contrast to previous treatments, we have included all contributions to the interaction energy within the dipole model, such as the internal polarization energy and the coverage dependence of the self-image interaction with the metal. We show that these can contribute significantly to the total interaction energy. We present formulae for both point and extended dipole cases.
An examination of dipole moment variations for 0-2 Ma
Ziegler, L. B.; Constable, C.
2009-12-01
Large numbers of Relative Paleomagnetic field Intensity (RPI) and Absolute Paleointensity (API) data have been used to study variations in Earth's magnetic field strength on million year timescales. We examine the behavior of the geomagnetic field and its time derivative in the PADM2M global model of Paleomagnetic Axial Dipole Moment variations for the past 2 Myr, and in a suite of increasingly smoothed time-varying models that are effectively low-pass filtered versions of the original. PADM2M is constructed using a maximum likelihood (ML) estimation technique that efficiently uses almost 5000 individual API data and 89 sedimentary RPI records of variable lengths and sedimentation rates to produce a calibrated, continuous, time-varying model of PADM. Time variations in PADM2M are parametrized by cubic B-splines. The regularized model robustly resolves features at timescales longer than 10 kyr and shows the expected paleointensity lows at field reversals and excursions. Asymmetries in dipole moment growth and decay rates have been previously noted around reversals in individual records and in the SINT2000 VADM model. The spline temporal parameterization in PADM2M combined with our modeling strategy readily allows derivative calculations at various temporal resolutions, so that we can quantify these effects. For versions in which periods shorter than 40kyr are heavily damped there is a clear asymmetry in the statistical distributions for growth versus decay of the dipole field: average growth rate is about 20% larger than the decay rate, and peak growth values are approximately twice as large. These differences are not limited to times when the field is reversing, suggesting that the asymmetry may reflect fundamental physical processes underlying the paleosecular variation. The longer decay cycle might suggest episodic periods of subcritical dynamo activity, followed by transient episodes of strong convection as envisaged in Backus's (1958) early demonstration of a
The effect of dipole moment of analytes on the response of phthalocyanıne thin films
Özdemir, Okan; Mısırlıoǧlu, Banu Süngü; Altındal, Ahmet
2016-03-01
The effects of dipole moment of the analyte molecules on the response characteristics of bis(pentafluorophenyl)methoxyl substituted phthalocyanine thin film are explored to understand the details of molecular interactions of analytes with the sensor surface which lead to charge depletion and the chemiresistive effect. The concentration dependence of dc conductivity is measured to investigate the adress the response of the Pc film. It was found that the speed of the response is dominated by the polarity of the analytes. Four kinetic models, the first-order equation, the Elovich model, the second-order equation and the Ritchie's equation were selected to follow the adsorption process. The rate constants, equilibrium capacities and related correlation coefficients for each kinetic model were calculated and discussed. The second-order equation was the best of the various kinetic models studied to describe the adsorption kinetic of VOC vapours on Pc film, as evidenced by the highest correlation coefficients.
Cosmogenic 10Be signature of geomagnetic dipole moment variations over the last 2 Ma
Simon, Q.; Thouveny, N.; Bourlès, D. L.; Valet, J. P.; Bassinot, F. C.; Savranskaia, T.; Duvivier, A.; Choy, S.; Gacem, L.; Villedieu, A.
2017-12-01
Long-term variations of the geomagnetic dipole moment (GDM) during periods of stable polarity and in transitional states (reversals and excursions) provide key information for understanding the geodynamo regime. Authigenic 10Be/9Be ratios (Be-ratio, proxy of atmospheric 10Be production) from marine sedimentary cores give independent and additional insights on the evolution of the geomagnetic intensity, completing information from absolute and relative paleointensity (RPI) records. Here we present new Be-ratio results obtained on several marine cores from the North Atlantic, Indian and Pacific Oceans which permit to extent into the Matuyama chron our previous 10Be-derived GDM reconstructions (Simon et al., 2016 JGR 121). Stratigraphic offsets measured between Be-ratio peaks and the corresponding RPI minima in each studied cores are assigned to (post-) detrital remanent magnetization (pDRM) effects leading to magnetization locking-in delays varying from 0 to 16 cm (up to 12 ka). All these results were compiled in order to obtain a continuous Be-ratio record covering the last 2 Ma. 10Be overproduction episodes triggered by geomagnetic dipole moment lows (GDL) linked to polarity reversals and excursions confirm the global control exerted by the GDM on cosmogenic radionuclides production. A dipole moment reconstruction derived from the Be-ratio stack (BeDiMo2Ma) was calibrated using absolute paleointensity data. This independent record completes the available paleomagnetic RPI records and permits: 1) to confront and increase the robustness and precision of GDM reconstructions; and, 2) to better constrain geomagnetic field instabilities during the mid- to late- Matuyama chron. Our new 10Be derived inventory is fully compatible with the GDL series linked to polarity reversals (Matuyama-Brunhes transition, Jaramillo and Olduvai boundaries), geomagnetic events (Cobb Mountain, Réunion) and Brunhes' excursions (e.g. Laschamp, Blake, Iceland-Basin, Big Lost). It further
International Nuclear Information System (INIS)
Silenko, A.Ya.
2007-01-01
Analysis of the problem of taking into account the Earth's rotation in a search for the electric dipole moment (EDM) of the neutron in experiments with ultracold neutrons and in a diffractional experiment is fulfilled. Taking into account the Earth's rotation in the diffractional experiment gives an exactly calculated correction which is negligible as compared with the accuracy reached at present time. In the experiments with ultracold neutrons, the correction is greater than the systematical error and the exact calculation of it needs further investigation. In this connection, further developments of diffractional method would considerably promote progress in the search for the electric dipole moment of the neutron
The search for permanent electric dipole moments, in particular for the one of the neutron
CERN. Geneva
2010-01-01
Nonzero permanent electric dipole moments (EDM) of fundamental systems like particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new CP violating phases which often lead to the prediciton of larger EDM. EDM searches in different systems are complementary and various efforts worldwide are underway, but no finite value could be established yet. An improved search for the EDM of the neutron requires, among other things, much better statistics. At PSI, we are presently commissioning a new high intensity source of ultracold neutrons. At the same time, with an international collaboration, we are setting up for a new measurement of the ...
A novel approach to measure the electric dipole moment of the isotope 129-Xe
Directory of Open Access Journals (Sweden)
Kuchler F.
2014-03-01
Full Text Available Permanent electric dipole moments (EDM of fundamental systems are promising systems to find new CP violation beyond the Standard Model. Our EDM experiment is based on hyper-polarized liquid xenon droplets of sub-millimeter size on a micro-fabricated structure, placed in a low-field NMR setup. Implementation of rotating electric fields enables a conceptually new EDM measurement technique, allowing thorough investigation of systematic effects. Still, a Ramsey-type spin precession experiment with static electric field can be realized at similar sensitivity within the same setup. Employing superconducting pick-up coils and highly sensitive LTc-SQUIDs, a large array of independent measurements can be performed simultaneously. With our approach we aim to finally increase the sensitivity on the EDM of 129Xe by more than three orders of magnitude.
The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment
Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.
2017-12-01
Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.
The Contribution from Neutrino Yukawa Couplings to Lepton Electric Dipole Moments
Energy Technology Data Exchange (ETDEWEB)
Farzan, Y
2004-05-24
To explain the observed neutrino masses through the seesaw mechanism, a supersymmetric generalization of the Standard Model should include heavy right-handed neutrino supermultiplets. Then the neutrino Yukawa couplings can induce CP violation in the lepton sector. In this paper, we compute the contribution of these CP violating terms to lepton electric dipole moments. We introduce a new formalism that makes use of supersymmetry to expose the GIM cancellations. In the region of small tan {beta}, we find a different result from that given previously by Ellis, Hisano, Raidal, and Shimizu. We confirm the structure found by this group, but with a much smaller overall coefficient. In the region of large tan {beta}, we recompute the leading term that has been identified by Masina and confirm her result up to minor factors. We discuss the implications of these results for constraints on the Y{sub v}.
Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms
Energy Technology Data Exchange (ETDEWEB)
Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.
2007-04-05
A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.
Vovusha, Hakkim
2018-02-08
The interfaces in 2D hybrids of graphene and h-BN provide interesting possibilities of adsorbing and manipulating atomic and molecular entities. In this paper, with the aid of density functional theory, we demonstrate the adsorption characteristics of DNA nucleobases at different interfaces of 2D hybrid nanoflakes of graphene and h-BN. The interfaces provide stronger binding to the nucleobases in comparison to pure graphene and h-BN nanoflakes. It is also revealed that the individual dipole moments of the nucleobases and nanoflakes dictate the orientation of the nucleobases at the interfaces of the hybrid structures. The results of our study point towards a possible route to selectively control the orientation of individual molecules in biosensors.
Absorption of electromagnetic field energy by superfluid system of atoms with electric dipole moment
International Nuclear Information System (INIS)
Poluektov, Yu.M.
2014-01-01
The modified Gross-Pitaevskii equation which takes into account relaxation and interaction with alternating electromagnetic field is used to consider the absorption of electromagnetic field energy by a superfluid system on the assumption that the atoms has intrinsic dipole moment. It is shown that the absorption may be of a resonant behavior only if the dispersion curves of the electromagnetic wave and the excitations of the superfluid system intersect. It is remarkable that such a situation is possible if the superfluid system has a branch of excitations with the energy gap at low momenta. The experiments on absorption of microwaves in superfluid helium are interpreted as evidence of existence of such gap excitations. A possible modification of the excitation spectrum of superfluid helium in the presence of excitation branch with energy gap is dis-cussed qualitatively
On the theory of pyro- and ferroelectrics: Dipole moment density and polarization
Belyavskii, V. I.; Gorbatsevich, A. A.
2017-04-01
The physical origin of the ambiguity related to the dependence of the polarization on the choice of the unit cell in a crystal is established in the framework of classical electrodynamics. It is shown that the electric polarization of a crystal is determined not only by the charge distribution in the unit cell (dipole moment density) but also by the microscopic mechanism of symmetry breaking in the polar phase. An approach to the calculation of the polarization invariant with respect to the choice of the unit cell is suggested. It is demonstrated that the dependence of the polarization on the mechanism of formation of the polar phase exists in the "modern topological theory" of polarization too.
Ang, Daniel; Demille, David; Doyle, John; Gabrielse, Gerald; Haefner, Jonathan; Lasner, Zack; Meisenhelder, Cole; Panda, Cristian; West, Adam; West, Elizabeth
2017-04-01
The search for the electron electric dipole moment (eEDM) is a powerful probe of fundamental physics beyond the Standard Model. In 2014, the first generation of the ACME experiment set the most stringent upper limit on the eEDM of |de | < 1 ×10-28 e . cm by means of measuring spin precession in a beam of thorium monoxide. Since then, we have implemented various improvements, such as STIRAP preparation of the experimental H state, rotational cooling, optimized apparatus geometry, and enhanced detection efficency, boosting our signal by a factor of about 400. We have also devised means to reduce the leading systematics we found in the Generation I experiment. We describe the recent progress in taking data using our Generation II apparatus and our ongoing efforts to investigate various systematics. NSF Grant 1404146.
The 2H Electric Dipole Moment in a Separable Potential Approach
Directory of Open Access Journals (Sweden)
Afnan I.R.
2010-04-01
Full Text Available Measurement of the electric dipole moment (EDM of 2H or of 3He may well come prior to the coveted measurement of the neutron EDM. Exact model calculations for the deuteron are feasible, and we explore here the model dependence of such deuteron EDM calculations. We investigate in a separable potential approach the relationship of the full model calculation to the plane wave approximation, correct an error in an early potential model result, and examine the tensor force aspects of the model results as well as the eﬀect of the short range repulsion found in the realistic, contemporary potential model calculations of Liu and Timmermans. We conclude that, because one-pion exchange dominates the EDM calculation, separable potential model calculations should provide an adequate picture of the 2H EDM until better than 10% measurements are achieved.
International Nuclear Information System (INIS)
Hisano, Junji; Nagai, Minoru; Paradisi, Paride
2009-01-01
The standard model predictions for the hadronic and leptonic electric dipole moments (EDMs) are considerably far from the present experimental resolutions; thus, the EDMs represent very clean probes of new physics effects. Especially, within supersymmetric frameworks with flavor-violating soft terms, large and potentially visible effects to the EDMs are typically expected. In this work, we systematically evaluate the predictions for the EDMs at the beyond leading order. In fact, we show that beyond-leading-order contributions to the EDMs dominate over the leading-order effects in large regions of the supersymmetric parameter space. Hence, their inclusion in the evaluation of the EDMs is unavoidable. As an example, we show the relevance of beyond-leading-order effects to the EDMs for a supersymmetric SU(5) model with right-handed neutrinos.
Tang, Cheng; Zhang, Teng; Weiss, David S.
2018-03-01
We explore ways to use the ability to measure the populations of individual magnetic sublevels to improve the sensitivity of magnetic field measurements and measurements of atomic electric dipole moments (EDMs). When atoms are initialized in the m =0 magnetic sublevel, the shot-noise-limited uncertainty of these measurements is 1 /√{2 F (F +1 ) } smaller than that of a Larmor precession measurement. When the populations in the even (or odd) magnetic sublevels are combined, we show that these measurements are independent of the tensor Stark shift and the second order Zeeman shift. We discuss the complicating effect of a transverse magnetic field and show that when the ratio of the tensor Stark shift to the transverse magnetic field is sufficiently large, an EDM measurement with atoms initialized in the superposition of the stretched states can reach the optimal sensitivity.
Neutron electric dipole moment from supersymmetric anomalous W-boson coupling
International Nuclear Information System (INIS)
Kadoyoshi, T.; Oshimo, N.
1997-01-01
In the supersymmetric standard model (SSM) the W boson could have a nonvanishing electric dipole moment (EDM) through a one-loop diagram mediated by the charginos and neutralinos. Then the W-boson EDM induces the EDMs of the neutron and the electron. We discuss these EDMs, taking into consideration the constraints from the neutron and electron EDMs at the one-loop level induced by the charginos and squarks or sleptons. It is shown that the neutron and the electron could, respectively, have EDMs of the order of 10 -26 ecm and 10 -27 ecm, solely owing to the W-boson EDM. Since these EDMs do not depend on the values of the SSM parameters for the squark or slepton sector, they provide less ambiguous predictions for CP violation in the SSM. copyright 1997 The American Physical Society
Neutron electric dipole moment in the instanton vacuum: Quenched versus unquenched simulations
International Nuclear Information System (INIS)
Faccioli, P.; Guadagnoli, D.; Simula, S.
2004-01-01
We investigate the role played by the fermionic determinant in the evaluation of the CP-violating neutron electric dipole moment (EDM) adopting the Instanton Liquid Model. Significant differences between quenched and unquenched calculations are found. In the case of unquenched simulations the neutron EDM decreases linearly with the quark mass and is expected to vanish in the chiral limit. On the contrary, within the quenched approximation, the neutron EDM increases as the quark mass decreases and is expected to diverge as 1/m N f in the chiral limit. We argue that such a qualitatively different behavior is a parameter-free, semiclassical prediction and occurs because the neutron EDM is sensitive to the topological structure of the vacuum. The present analysis suggests that quenched and unquenched lattice QCD simulations of the neutron EDM as well as of other observables governed by topology might show up important differences in the quark mass dependence for m q QCD
International Nuclear Information System (INIS)
Helaine, Victor
2014-01-01
In the framework of the neutron Electric Dipole Moment (nEDM) experiment at the Paul Scherrer Institut (Switzerland), this thesis deals with the development of a new system of spin analysis. The goal here is to simultaneously detect the two spin components of ultracold neutrons in order to increase the number of detected neutrons and therefore lower the nEDM statistical error. Such a system has been designed using Geant4-UCN simulations, built at LPC Caen and then tested as part of the experiment. In parallel to this work, the 2013 nEDM data taken at PSI have been analysed. Finally, methods to recover magnetic observables of first interest to control nEDM systematic errors have been studied and possible improvements are proposed. (author) [fr
International Nuclear Information System (INIS)
Artru, X.; Fayolle, D.
2001-01-01
For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed
Dipole moments of the tau neutrino via the process e e−→ ννγ in a ...
Indian Academy of Sciences (India)
The limits on the anomalous magnetic and electric dipole moments of the through the reaction + - → ¯ at the 1-pole, and in the framework of a 331 model are obtained. The results are based on the data reported by the L3 Collaboration at LEP. We find that the bounds are almost independent of the mixing ...
van Rijssel, Jozef; Kuipers, Bonny W M; Erne, Ben
2015-01-01
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal
Jiao, Chongjun
2011-01-21
Doubly and triply linked porphyrin-perylene monoimides 3 and 4, with extraordinary stability, large dipole moments, and strong near IR absorption, were prepared by means of one-pot oxidative cyclodehydrogenation promoted by FeCl 3. © 2010 American Chemical Society.
On the magnitude of electric dipole moment of a neutron in the Weinberg CP-violation model
International Nuclear Information System (INIS)
Ansel'm, A.A.; Bunakov, V.E.; Gudkov, V.P.; Ural'tsev, N.G.
1984-01-01
It is shown, that the magnitude of the electric dipole moment of an neutron in the Weinberg CP-violation model is determined by the interaction with neutral Higgs bosons and it exceeds the existing experimental limit by two or three orders
Dipole moments of the tau neutrino via the process e e−→ ννγ in a ...
Indian Academy of Sciences (India)
... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 79; Issue 4. Dipole moments of the tau neutrino via the process + - → ¯ in a 331 model. A Gutiérrz-Rodríguez. Poster Presentations Volume 79 Issue 4 October 2012 pp ...
International Nuclear Information System (INIS)
Noda, Yukio; Kiyanagi, Ryoji; Mochida, Tomoyuki; Sugawara, Tadashi
2006-01-01
Hydrogen bond nature of MeHPLN and BrHPLN is studied using x-ray and neutron diffraction technique. We found that electric dipole moment of hydrogen atom plays an important role for the phase transition, and proton tunneling model is confirmed on this isolated hydrogen bond system. (author)
International Nuclear Information System (INIS)
Rijssel, Jos van; Kuipers, Bonny W.M.; Erné, Ben H.
2015-01-01
High-frequency applications of magnetic nanoparticles, such as therapeutic hyperthermia and magnetic particle imaging, are sensitive to nanoparticle size and dipole moment. Usually, it is assumed that magnetic nanoparticles with a log-normal distribution of the physical size also have a log-normal distribution of the magnetic dipole moment. Here, we test this assumption for different types of superparamagnetic iron oxide nanoparticles in the 5–20 nm range, by multimodal fitting of magnetization curves using the MINORIM inversion method. The particles are studied while in dilute colloidal dispersion in a liquid, thereby preventing hysteresis and diminishing the effects of magnetic anisotropy on the interpretation of the magnetization curves. For two different types of well crystallized particles, the magnetic distribution is indeed log-normal, as expected from the physical size distribution. However, two other types of particles, with twinning defects or inhomogeneous oxide phases, are found to have a bimodal magnetic distribution. Our qualitative explanation is that relatively low fields are sufficient to begin aligning the particles in the liquid on the basis of their net dipole moment, whereas higher fields are required to align the smaller domains or less magnetic phases inside the particles. - Highlights: • Multimodal fits of dilute ferrofluids reveal when the particles are multidomain. • No a priori shape of the distribution is assumed by the MINORIM inversion method. • Well crystallized particles have log-normal TEM and magnetic size distributions. • Defective particles can combine a monomodal size and a bimodal dipole moment
Chackerian, C., Jr.
1976-01-01
The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.
Mukherjee, Debashis; Sahoo, B. K.; Nataraj, H. S.; Das, B. P.
2009-01-01
A relativistic many-body theory for the electric dipole moment (EDM) of paramagnetic atoms arising from the electric dipole moment of the electron is presented and implemented. The relativistic coupled-cluster method with single and double excitations (RCCSD) using the Dirac-Coulomb Hamiltonian and
Energy Technology Data Exchange (ETDEWEB)
Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-10-15
We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Azizi, K. [Middle East Technical University, Physics Department, Ankara (Turkey)
2009-05-15
Due to the very short lifetime of the {delta} baryons, a direct measurement on the electromagnetic moments of these systems is almost impossible in the experiment and can only be done indirectly. Although only for the magnetic dipole moments of {delta}{sup ++} and {delta}{sup +} systems there are some experimental data, the theoretical, phenomenological and lattice calculations could play crucial role. In the present work, the magnetic dipole ({mu}{sub {delta}}), electric quadrupole (Q{sub {delta}}) and magnetic octupole (O{sub {delta}}) moments of these baryons are computed within the light cone QCD sum rules. The results are compared with the predictions of the other phenomenological approaches, lattice QCD and existing experimental data. (orig.)
International Nuclear Information System (INIS)
Novales-Sanchez, H.; Toscano, J. J.
2008-01-01
The one-loop contribution of the two CP-violating components of the WWγ vertex, κ-tilde γ W μ + W ν - F-tilde μν and (λ-tilde γ /m W 2 )W μν + W ρ -ν F-tilde ρμ , on the electric dipole moment (EDM) of fermions is calculated using dimensional regularization and its impact at low energies reexamined in the light of the decoupling theorem. The Ward identities satisfied by these couplings are derived by adopting a SU L (2)xU Y (1)-invariant approach and their implications in radiative corrections discussed. Previous results on κ-tilde γ , whose bound is updated to |κ-tilde γ | -5 , are reproduced, but disagreement with those existing for λ-tilde γ is found. In particular, the upper bound |λ-tilde γ | -2 is found from the limit on the neutron EDM, which is more than 2 orders of magnitude less stringent than that of previous results. It is argued that this difference between the κ-tilde γ and λ-tilde γ bounds is the one that might be expected in accordance with the decoupling theorem. This argument is reinforced by analyzing carefully the low-energy behavior of the loop functions. The upper bounds on the W EDM, |d W | -21 e·cm, and the magnetic quadrupole moment, |Q-tilde W | -36 e·cm 2 , are derived. The EDM of the second and third families of quarks and charged leptons are estimated. In particular, EDM as large as 10 -20 e·cm and 10 -21 e·cm are found for the t and b quarks, respectively
Improvements to the YbF electron electric dipole moment experiment
Sauer, B. E.; Rabey, I. M.; Devlin, J. A.; Tarbutt, M. R.; Ho, C. J.; Hinds, E. A.
2017-04-01
The standard model of particle physics predicts that the permanent electric dipole moment (EDM) of the electron is very nearly zero. Many extensions to the standard model predict an electron EDM just below current experimental limits. We are currently working to improve the sensitivity of the Imperial College YbF experiment. We have implemented combined laser-radiofrequency pumping techniques which both increase the number of molecules which participate in the EDM experiment and also increase the probability of detection. Combined, these techniques give nearly two orders of magnitude increase in the experimental sensitivity. At this enhanced sensitivity magnetic effects which were negligible become important. We have developed a new way to construct the electrodes for electric field plates which minimizes the effect of magnetic Johnson noise. The new YbF experiment is expected to comparable in sensitivity to the most sensitive measurements of the electron EDM to date. We will also discuss laser cooling techniques which promise an even larger increase in sensitivity.
Order of magnitude smaller limit on the electric dipole moment of the electron.
Baron, J; Campbell, W C; DeMille, D; Doyle, J M; Gabrielse, G; Gurevich, Y V; Hess, P W; Hutzler, N R; Kirilov, E; Kozyryev, I; O'Leary, B R; Panda, C D; Parsons, M F; Petrik, E S; Spaun, B; Vutha, A C; West, A D
2014-01-17
The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d(e), in the range of 10(-27) to 10(-30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S(→)) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d(e) = (-2.1 ± 3.7stat ± 2.5syst) × 10(-29) e·cm. This corresponds to an upper limit of |d(e)| < 8.7 × 10(-29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.
A new experiment to measure the electric dipole moment of the neutron?
International Nuclear Information System (INIS)
Lamoreaux, Steve; Cooper, Martin; Greene, Geoffrey; Penttilae, Seppo; Espy, Michelle; Marek, Larry; Tupa, Dale; Krause, Robert; Doyle, John; Golub, Robert
1997-01-01
For nearly fifty years, the limits on the electric dipole moment of the neutron have provided information of great importance in our understanding of the fundamental symmetries of nature. Current experiments using bottled Ultra Cold Neutrons (UCN) provide the best experimental limits on the neutron EDM. While modest improvements may be expected by extension of current methods, major reductions in the experimental error appear unlikely due to statistical sensitivity and systematic effects. This situation is unfortunate as several theoretical notions (supersymmetry and the origin of the baryon asymmetry) suggest a magnitude for the neutron EDM which may be only one or two orders of magnitude below the current limit. Recently, Golub and Lamoreaux (1) have suggested a new method for the measurement of the neutron EDM that uses a novel feature of the interaction between low energy neutron and superfluid 4 He to provide a very high density of UCN in an experimental volume. The proposed method also promises a significant reduction in the dominant systematic effect using a polarized 3 He co-magnetometer in the same volume. Their careful analysis suggests that an improvement of two orders of magnitude in the uncertainty of the neutron EDM may be possible. A review of the current experimental situation is given and the prospects for the realization of such a new experiment are discussed
A new experiment to measure the electric dipole moment of the neutron?
International Nuclear Information System (INIS)
Lamoreaux, S.; Cooper, M.; Greene, G.; Penttilae, S.; Espy, M.; Marek, L.; Tupa, D.; Krause, R.; Doyle, J.; Golub, R.
1997-01-01
For nearly fifty years, the limits on the electric dipole moment of the neutron have provided information of great importance in our understanding of the fundamental symmetries of nature. Current experiments using bottled Ultra Cold Neutrons (UCN) provide the best experimental limits on the neutron EDM. While modest improvements may be expected by extension of current methods, major reductions in the experimental error appear unlikely due to statistical sensitivity and systematic effects. This situation is unfortunate as several theoretical notions (supersymmetry and the origin of the baryon asymmetry) suggest a magnitude for the neutron EDM which may be only one or two orders of magnitude below the current limit. Recently, Golub and Lamoreaux (1) have suggested a new method for the measurement of the neutron EDM that uses a novel feature of the interaction between low energy neutron and superfluid 4 He to provide a very high density of UCN in an experimental volume. The proposed method also promises a significant reduction in the dominant systematic effect using a polarized 3 He co-magnetometer in the same volume. Their careful analysis suggests that an improvement of two orders of magnitude in the uncertainty of the neutron EDM may be possible. A review of the current experimental situation is given and the prospects for the realization of such a new experiment are discussed. copyright 1997 American Institute of Physics
Order of Magnitude Smaller Limit on the Electron's Electron Dipole Moment
Gabrielse, Gerald
2014-05-01
Proposed extensions to the Standard Model of particle physics typically predict that the electron would naturally have a small but potentially measurable electric dipole moment (EDM). The Standard Model, known to be incomplete, instead predicts that the electron EDM is much too small to measure. The ACME collaboration used the enormous electric field that electrons experience within a ThO molecule, the unique structure of this molecule, and a cryogenic buffer gas beam of molecules to search for an electron EDM. The new search was sensitive enough to detect an EDM that is ten times smaller than the previously measured upper limit - well within the range of predictions from various proposed extensions to the Standard Model. We did not detect such an EDM, however. Instead, we set a new upper limit on the electron EDM at a 90% confidence limit, | de | < 8 . 7 × 10-29 , making use of the effective electric field calculated for ThO. The new limit stringently constrains the parameters of proposed extensions to the Standard Model to values that predict an electron EDM smaller than the new limit. The TeV energy scale being probed is comparable to that being investigated at CERN's Large Hadron Collider (LHC). Supported by the AMO program of the NSF.
The search for electric dipole moments of light ions in storage rings
Rathmann, Frank; Saleev, Artem; Nikolaev, N. N.; Jedi; srEdm Collaborations
2013-07-01
The Standard Model (SM) of Particle Physics is not capable of accounting for the apparent matter-antimatter asymmetry of our universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and reducing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches for proton and deuteron EDMs bear the potential to reach sensitivities beyond 10-29 e·cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [1], while the newly founded Jülich-based JEDI collaboration [2] is pursuing an approach using a combined electric-magnetic lattice, which shall provide access to the EDMs of protons, deuterons, and 3He ions in the same machine. In addition, JEDI has recently proposed making a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters.
Search for electric dipole moments of light ions in storage rings
Rathmann, F.; Saleev, A.; Nikolaev, N. N.
2014-01-01
The Standard Model (SM) of Particle Physics is not capable to account for the apparent matterantimatter asymmetry of our Universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal ( T) and parity ( P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and pushing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches of proton and deuteron EDMs bear the potential to reach sensitivities beyond 10-29 e cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [2], while the newly found Julich-based JEDI collaboration [1] is pursuing an approach using a combined electric-magnetic lattice which shall provide access to the EDMs of protons, deuterons, and 3He ions in the same machine. In addition, JEDI has recently proposed to perform a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters.
International Nuclear Information System (INIS)
LaBarge, M.S.; Hillig, K.W. II; Kuczkowski, R.L.; Cremer, D.
1986-01-01
The rotational spectra of six isotopic species of trans-difluoroethylene ozonide (trans-3,5-difluoro-1,2,4-trioxolane) were assigned. These included the parent species, the single- and double-substituted deuterium species, the double 18 O/sub p/, the triple 18 O, and and 13 C species. The spectrum consisted of b-type transitions with a 10:6 intensity alternation. The electric dipole moment was determined from Stark effect measurements to be μ/sub b/ = 0.994 (5) D. These results support an average structure having an O/sub p/-O/sub p/ twist ring conformation with C 2 symmetry and diaxial fluorine substituents. The shortening of the C-O/sub p/ bonds (1.368 A) relative to the C-O/sub c/ bonds (1.401 A) is very apparent in this member of the fluoroozonide series. Ab initio calculations were performed at the HG/6-31G/sup */ level and analyzed in terms of electron density distributions. Experimental and theoretical results are rationalized in terms of anomeric interactions with the peroxy oxygen atoms
Electric dipole moments in the MSSM at large tanβ
International Nuclear Information System (INIS)
Demir, Durmus; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam
2004-01-01
Within the minimal supersymmetric standard model (MSSM), the large tanβ regime can lead to important modifications in the pattern of CP-violating sources contributing to low energy electric dipole moments (EDMs). In particular, four-fermion CP-violating interactions induced by Higgs exchange should be accounted for alongside the constituent EDMs of quarks and electrons. To this end, we present a comprehensive analysis of three low energy EDM observables - namely the EDMs of thallium, mercury and the neutron - at large tanβ, in terms of one- and two-loop contributions to the constituent EDMs and four-fermion interactions. We concentrate on the constrained MSSM as well as the MSSM with non universal Higgs masses, and include the CP-violating phases of μ and A. Our results indicate that the atomic EDMs receive significant corrections from four-fermion operators, especially when Im(A) is the only CP-violating source, whereas the neutron EDM remains relatively insensitive to these effects. As a consequence, in a large portion of the parameter space, one cannot infer a separate bound on the electron EDM via the experimental constraint on the thallium EDM. Furthermore, we find that the electron EDM can be greatly reduced due to the destructive interference of one- and two-loop contributions with the latter being dominated by virtual status
A Revised Experimental Upper Limit on the Electric Dipole Moment of the Neutron
Pendlebury, J M; Ayres, N J; Baker, C A; Ban, G; Bison, G; Bodek, K; Burghoff, M; Geltenbort, P; Green, K; Griffith, W C; van der Grinten, M; Grujic, Z D; Harris, P G; Helaine, V; Iaydjiev, P; Ivanov, S N; Kasprzak, M; Kermaidic, Y; Kirch, K; Koch, H-C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemiere, Y; May, D J R; Musgrave, M; Musgrave, M; Naviliat-Cuncic, O; Piegsa, F M; Pignol, G; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Richardson, J D; Ries, D; Roccia, S; Rozpedzik, D; Schnabel, A; Schmidt-Wellenburg, P; Severijns, N; Shiers, D; Thorne, J A; Weis, A; Winston, O J; Wursten, E; Zejma, J; Zsigmond, G
2015-01-01
We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons (UCN); an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of $d_\\mathrm{n} = -0.21 \\pm 1.82 \\times10^{-26}$ $e$cm, which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of $3.0 \\times10^{-26}$ $e$cm (90% CL) or $ 3.6 \\times10^{-26}$ $e$cm (95% CL). This paper is dedicated by the remaining authors to the memory of Prof. J. Michael Pendlebury.
International Nuclear Information System (INIS)
Ibrahim, Tarek; Nath, Pran
2010-01-01
The electric dipole moment (EDM) of the top quark is calculated in a model with a vector like multiplet which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the EDM of the top in this class of models is computed. The top EDM arises from loops involving the exchange of the W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vector like multiplet and their superpartners. The analysis of the EDM of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the top EDM could be close to 10 -19 ecm consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size 10 -19 ecm could be accessible in collider experiments such as the International Linear Collider.
Nuclear electric dipole moment with relativistic effects in Xe and Hg atoms
International Nuclear Information System (INIS)
Oshima, Sachiko; Fujita, Takehisa; Asaga, Tomoko
2007-01-01
The atomic electric dipole moment (EDM) is evaluated by considering the relativistic effects as well as nuclear finite size effects in Xe and Hg atomic systems. Due to Schiff's theorem, the first order perturbation energy of EDM is canceled out by the second order perturbation energy for the point nucleus. The nuclear finite size effects arising from the intermediate atomic excitations may be finite for deformed nucleus but it is extremely small. The finite size contribution of the intermediate nuclear excitations in the second order perturbation energy is completely canceled by the third order perturbation energy. As the results, the finite contribution to the atomic EDM comes from the first order perturbation energy of relativistic effects, and it amounts to around 0.3 and 0.4 percents of the neutron EDM d n for Xe and Hg, respectively, though the calculations are carried out with a simplified single-particle nuclear model. From this relation in Hg atomic system, we can extract the neutron EDM which is found to be just comparable with the direct neutron EDM measurement
The search for electric dipole moments of light ions in storage rings
International Nuclear Information System (INIS)
Rathmann, Frank; Saleev, Artem; Nikolaev, N N
2013-01-01
The Standard Model (SM) of Particle Physics is not capable of accounting for the apparent matter-antimatter asymmetry of our universe. Physics beyond the SM is required and is searched for by (i) employing highest energies (e.g., at LHC), and (ii) striving for ultimate precision and sensitivity (e.g., in the search for electric dipole moments (EDMs)). Permanent EDMs of particles violate both time reversal (T) and parity (P) invariance, and are via the CPT-theorem also CP-violating. Finding an EDM would be a strong indication for physics beyond the SM, and reducing upper limits further provides crucial tests for any corresponding theoretical model, e.g., SUSY. Direct searches for proton and deuteron EDMs bear the potential to reach sensitivities beyond 10 −29 e·cm. For an all-electric proton storage ring, this goal is pursued by the US-based srEDM collaboration [1], while the newly founded Jülich-based JEDI collaboration [2] is pursuing an approach using a combined electric-magnetic lattice, which shall provide access to the EDMs of protons, deuterons, and 3 He ions in the same machine. In addition, JEDI has recently proposed making a direct measurement of the proton and/or deuteron EDM at COSY using resonant techniques involving Wien filters
Search for a permanent electric-dipole moment using atomic indium
International Nuclear Information System (INIS)
Sahoo, B. K.; Pandey, R.; Das, B. P.
2011-01-01
We propose indium (In) as a possible candidate for observing the permanent electric dipole moment (EDM) arising from violations of parity (P) and time-reversal (T) symmetries. This atom has been laser cooled and therefore the measurement of its EDM has the potential of improving on the current best EDM limit for a paramagnetic atom, which comes from thallium. We report the results of our calculations of the EDM enhancement factor due to the electron EDM and the ratio of the atomic EDM to the electron-nucleus scalar-pseudoscalar (S-PS) interaction coupling constant in In within the framework of the relativistic coupled cluster theory. It might be possible to get new limits for the electron EDM and the S-PS CP-violating coupling constant by combining the results of our calculations with the measured value of the EDM of In when it is available. These limits could have important implications for the standard model (SM) of particle physics.
Noble Gas Leak Detector for Use in the SNS Neutron Electric Dipole Moment Experiment
Barrow, Chad; Huffman, Paul; Leung, Kent; Korobkina, Ekaterina; White, Christian; nEDM Collaboration Collaboration
2017-09-01
Common practice for leak-checking high vacuum systems uses helium as the probing gas. However, helium may permeate some materials at room temperature, making leak characterization difficult. The experiment to find a permanent electric dipole moment of the neutron (nEDM), to be conducted at Oak Ridge National Laboratories, will employ a large volume of liquid helium housed by such a helium-permeable composite material. It is desirable to construct a leak detector that can employ alternative test gases. The purpose of this experiment is to create a leak detector that can quantify the argon gas flux in a high vacuum environment and interpret this flux as a leak-rate. This apparatus will be used to check the nEDM volumes for leaks at room temperature before cooling down to cryogenic temperatures. Our leak detector uses a residual gas analyzer and a vacuum pumping station to characterize the gas present in an evacuated volume. The introduction of argon gas into the system is interpreted as a leak-rate into the volume. The device has been calibrated with NIST certified calibrated leaks and the machine's sensitivity has been calculated using background gas analysis. As a result of the device construction and software programming, we are able to leak-check composite and polyamide volumes This work was supported in part by the US Department of Energy under Grant No. DE-FG02-97ER41042.
International Nuclear Information System (INIS)
Kozlov, A.N.; Nikitenko, Yu.V.; Taran, Yu.V.
1980-01-01
A two-cascade magnetic field stabilizer of installation for the measurement of neutron electrjcal dipole moment (EDM) using ultracold neutrons has been constructed and tested. Quantum cesium magnetometers (QCM) with optical pumping placed inside a ferromagnetic screen were used as primary convertors of the magnetic field. A stabilization coefficient of 4x10 5 in a bandwidth of 10 -3 -3x10 -3 Hz in the presence of magnetic noise of an amplitude up to 50 nT was obtained using QCM with Ssub(Z)-signal in the inner and outer cascades having transfer ratios of 300 and 600, respectively. Mean square amplitude of magnetic field fluctuations was below 0.O5 pT. Stabilization in a wider frequency band was performed using QCM with Ssub(Z)-signal in the inner cascade and QCM with Ssub(X)-signal in the outer cascade. In particular, the mean square amplitude of magnetic field fluctuations within a bandwidth of 0.1-1 Hz and 1-10 Hz was below 1 nT and 15 nT respectively
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC; Gardner, Susan; /Kentucky U.; Hwang, Dae Sung; /Sejong U.
2006-01-11
We consider the electric dipole form factor, F{sub 3}(q{sup 2}), as well as the Dirac and Pauli form factors, F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}), of the nucleon in the light-front formalism. We derive an exact formula for F{sub 3}(q{sup 2}) to complement those known for F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F{sub 2}(q{sup 2}) and F{sub 3}(q{sup 2}), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, {kappa}{sup n} {approx} -{kappa}{sup p}.
Harrison, James F
2008-03-21
The dipole and quadrupole moment functions of the hydrogen halides are calculated using a large polarized basis and correlated wavefunctions and compared to experiment and previous calculations. These functions are analyzed in terms of local moments constructed using the Hirshfeld method. The dipole moment is the sum of the functions q(H)R+mu(H) and mu(X) with q(H) being the charge on the hydrogen atom, R the internuclear separation, mu(H) and mu(X) the atomic dipoles on the hydrogen and halogen atoms. We find that q(H)R+mu(H) is always positive and has a maximum at bond lengths larger than the equilibrium. In HF, mu(F) is slightly positive at the maximum in q(H)R+mu(H) and has little effect on the resultant maximum in the dipole moment function (DMF). mu(Cl), mu(Br), and mu(I), on the other hand, are increasingly more negative at the maximum of q(H)R+mu(H) and have a profound effect on the width of the maximum of the resulting DMF, successively broadening it and completely eliminating it at HI. The quadrupole moment function (QMF) (with the halogen as origin) is given by Theta(HX)=Theta(HX) (proto)+deltaTheta(X)+deltaTheta(H)+2mu(H)R+q(H)R(2), where Theta(HX) (proto) is the quadrupole moment of the separated atoms (the halogen in this instance) and deltaTheta(X)+deltaTheta(H) the change in the in situ quadrupole moments of the halogen and hydrogen atoms. The maximum in the QMF and its slope at equilibrium are determined essentially by 2mu(H)R+q(H)R(2), which is known once the DMF is known. deltaTheta(X)+deltaTheta(H) is always negative while Theta(HX) (proto) is positive, so one can approximate the molecular quadrupole moment to within 10% as Theta(HX)>Theta(HX) (proto)+2mu(H)R+q(H)R(2).
Haldar, Soumyajyoti
2014-05-09
In this work, we have studied the chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy defects (monovacancy to correlated vacancies with six missing C atoms) in a graphene sheet by ab initio density functional calculations combined with Hubbard U corrections for correlated Fe-d electrons. It is found that the vacancy formation energies are lowered in the presence of Fe, indicating an easier destruction of the graphene sheet. Due to strong chemical interactions between Fe clusters and vacancies, a complex distribution of magnetic moments appear on the distorted Fe clusters which results in reduced averaged magnetic moments compared to the free clusters. In addition to that, we have calculated spin-dipole moments and magnetic anisotropy energies. The calculated spin-dipole moments arising from anisotropic spin density distributions vary between positive and negative values, yielding increased or decreased effective moments. Depending on the cluster geometry, the easy axis of magnetization of the Fe clusters shows in-plane or out-of-plane behavior.
rf Wien filter in an electric dipole moment storage ring: The “partially frozen spin” effect
Directory of Open Access Journals (Sweden)
William M. Morse
2013-11-01
Full Text Available An rf Wien filter (WF can be used in a storage ring to measure a particle’s electric dipole moment (EDM. If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.
rf Wien filter in an electric dipole moment storage ring: The “partially frozen spin” effect
William M. Morse; Yuri F. Orlov; Yannis K. Semertzidis
2013-01-01
An rf Wien filter (WF) can be used in a storage ring to measure a particle’s electric dipole moment (EDM). If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.
Dipole moments of the tau neutrino via the process e e − → ν¯νγ in a ...
Indian Academy of Sciences (India)
2012-10-03
Oct 3, 2012 ... Facultad de Física, Universidad Autónoma de Zacatecas, Apartado Postal C-580, 98060,. Zacatecas, México. E-mail: alexgu@fisica.uaz.edu.mx. Abstract. The limits on the anomalous magnetic and electric dipole moments of the ντ through the reaction e+e− → ν¯νγ at the Z1-pole, and in the framework of a ...
Large contribution to the neutron electric dipole moment from a dimension-six four-quark operator
International Nuclear Information System (INIS)
He, X.; McKellar, B.
1993-01-01
In this paper we study the contribution of a dimension-six four-quark operator to the neutron electric dipole moment. We find that this contribution dominates over the one-loop contributions due to W L- WR mixing by at least one order of magnitude in left-right-symmetric models, and in diquark scalar models this contribution is two orders of magnitude larger than other contributions
Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.
Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N
2017-12-12
London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the
Using Nice-Ohvms Lineshapes to Study Relaxation Rates and Transition Dipole Moments
Hodges, James N.; McCall, Benjamin J.
2016-06-01
Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS) is a successful technique that we have developed to sensitively, precisely, and accurately record transitions of molecular ions. It has been used exclusively as a method for precise transition frequency measurement via saturation and fitting of the resultant Lamb dips. NICE-OHVMS has been employed to improve the uncertainties on H_3^+, CH_5^+, HeH^+, and OH^+, reducing the transition frequency uncertainties by two orders of magnitude. Because NICE-OHVMS is a saturation technique, this provides a unique opportunity to access information about the ratio of the transition dipole moment to the relaxation rate of the transition. This can be done in two ways, either through comparison of Lamb dip depth to the transition profile or comparison of the absorption intensity and dispersion intensity. Due to the complexity of the modulation scheme, there are many parameters that affect the apparent intensity of the recorded lineshape. A complete understanding of the lineshape is required to make the measurements of interest. Here we present a model that accounts for the heterodyne modulation and velocity modulation, assuming that the fundamental lineshape is represented by a Voigt profile. Fits to data are made and interpreted in order to extract the saturation parameter. K.N. Crabtree et al., Chem. Phys. Lett. 551, 1 (2012). J.N. Hodges et al., J. Chem. Phys. 139, 164201 (2013). A.J. Perry et al., J. Mol. Spectrosc. 317, 71 (2015). A.J. Perry et al., J. Chem. Phys. 141, 101101 (2014). C.R. Marcus et al., Astrophys. J. 817, 138 (2016).
Constraints of chromoelectric dipole moments to natural SUSY type sfermion spectrum
Maekawa, Nobuhiro; Muramatsu, Yu; Shigekami, Yoshihiro
2017-06-01
We investigate the lower bounds of sfermion masses from the constraints of chromoelectric dipole moments (CEDMs) in the natural SUSY-type sfermion mass spectrum, in which stop mass mt ˜ is much smaller than the other sfermion masses m0. The natural SUSY-type sfermion mass spectrum has been studied since the supersymmetric (SUSY) flavor-changing neutral currents (FCNC) are suppressed because of large sfermion masses of the first two generations, and the weak scale is stabilized because of the light stop. However, this type of sfermion mass spectrum is severely constrained by CEDM, because the light stop contributions to the up quark CEDM are not decoupled in the limit m0→∞ , while the down quark CEDM is decoupled in the limit. It is important that the constraints are severe even if SUSY-breaking parameters (and Higgsino mass) are taken to be real because complex diagonalizing matrices of Yukawa matrices, which are from complex Yukawa couplings, generate nonvanishing C P phases in off-diagonal elements of sfermion mass matrices. We calculate the CEDM of up and down quarks numerically in the minimal SUSY standard model, and give the lower bounds for stop mass and the other sfermion masses. We show that the lower bound of stop mass becomes 7 TeV to satisfy the CEDM constraints from Hg EDM. The result is not acceptable if the weak scale stability is considered seriously. We show that if the up-type Yukawa couplings are taken to be real at the grand unification scale, the CEDM constraints are satisfied even if mt ˜˜1 TeV .
DeYonker, Nathan J; Charbonnet, Katherine A; Alexander, William A
2016-07-21
Accurate computational estimates of fundamental physical properties can be used as inputs in the myriad of extant models employed to predict toxicity, transport, and fate of contaminants. However, as molecular complexity of contaminants increases, it becomes increasingly difficult to determine the magnitude of the errors introduced by ignoring the 3D conformational space averaging within group-additivity and semi-empirical approaches. The importance of considering 3D molecular structure is exemplified for the dipole moments of cis and trans isomers of (4-methylcyclohexyl)methanol (4-MCHM). When 10 000 gallons of 4-MCHM was spilled into the Elk River in January 2014, a lack of toxicological data and environmental partitioning coefficients hindered the immediate protection of human health and the local water supply in West Virginia, USA. Post-spill analysis of the contaminants suggested that the cis and trans isomers had observably different partitioning coefficients and solubility, and thus differing environmental fates. Obtaining high-quality dipole moments using ab initio quantum chemical methods for the isomeric pair was crucial in validating their experimental differences in solubility [Environ. Sci. Technol. Lett., 2015, 2, 127]. The use of first principles electronic structure theory is further explored here to obtain accurate conformer relative energies and dipole moments of cis- and trans-4-MCHM. Overall, the MP2 aug-cc-pVDZ level of theory affords the best balance between accuracy and computational cost.
International Nuclear Information System (INIS)
Ramos, A.F.; Pyper, N.C.; Malli, G.L.
1988-01-01
Ab initio Dirac-Fock (DF) and nonrelativistic-limit (NRL) wave functions and dipole moments are calculated to investigate the bonding characteristics and the relativistic effects in the systems HgH + , TlH, PbH + , and BiH. The dipole moment of AuH is evaluated using the DF self-consistent field and relativistic configuration-interaction wave functions obtained by G. L. Malli and N. C. Pyper [Proc. R. Soc. London, Ser. A 407, 377 (1986)]. Contour plots of relativistic molecular orbital densities and difference density maps are presented to illustrate the arrangement of electronic charge in these systems. It is found that the 5d orbitals are involved in the bonding of HgH + , whereas they do not play a significant role in TlH and PbH + . The relativistic calculations predict HgH + , TlH, and PbH + to be bound. The nonrelativistic-limit wave functions predict HgH + and BiH to be unbound but TlH and PbH + to be bound. It is also found that the calculated dipole moments using the DF and the NRL wave functions for these heavy systems differ significantly in magnitude, and in some cases even in the sign
Chang, Chia-Feng; Hung, P. Q.; Nugroho, Chrisna Setyo; Tran, Van Que; Yuan, Tzu-Chiang
2018-03-01
The electric dipole moment of the electron is studied in detail in an extended mirror fermion model with the following unique features of (a) right-handed neutrinos are non-sterile and have masses at the electroweak scale, and (b) a horizontal symmetry of the tetrahedral group is used in the lepton and scalar sectors. We study the constraint on the parameter space of the model imposed by the latest ACME experimental limit on electron electric dipole moment. Other low energy experimental observables such as the anomalous magnetic dipole moment of the muon, charged lepton flavor violating processes like muon decays into electron plus photon and muon-to-electron conversion in titanium, gold and lead are also considered in our analysis for comparison. In addition to the well-known CP violating Dirac and Majorana phases in the neutrino mixing matrix, the dependence of additional phases of the new Yukawa couplings in the model is studied in detail for all these low energy observables.
Energy Technology Data Exchange (ETDEWEB)
Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)
2017-05-15
A general theoretical description of a magnetic resonance is presented. This description is necessary for a detailed analysis of spin dynamics in electric-dipole-moment experiments in storage rings. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are obtained for an arbitrary initial polarization. These formulas are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance with allowance for both rotating fields. A general quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is shown. Quasimagnetic resonances for particles and nuclei moving in noncontinuous perturbing fields of accelerators and storage rings are considered. Distinguishing features of quasimagnetic resonances in storage ring electric-dipole-moment experiments are investigated in detail. The exact formulas for the effect caused by the electric dipole moment are derived. The difference between the resonance effects conditioned by the rf electric-field flipper and the rf Wien filter is found and is calculated for the first time. The existence of this difference is crucial for the establishment of a consent between analytical derivations and computer simulations and for checking spin tracking programs. The main systematical errors are considered. (orig.)
SQUIDs as detectors in a new experiment to measure the neutron electric dipole moment
International Nuclear Information System (INIS)
Espy, M.A.; Cooper, M.; Lamoreaux, S.; Kraus, R.H. Jr.; Matlachov, A.; Ruminer, P.
1998-01-01
A new experiment has been proposed at Los Alamos National Laboratory to measure the neutron electric dipole moment (EDM) to 4x10 -28 ecm, a factor of 250 times better than the current experimental limit. Such a measure of the neutron EDM would challenge the theories of supersymmetry and time reversal violation as the origin of the observed cosmological asymmetry in the ratio of baryons to antibaryons. One possible design for this new experiment includes the use of LTC SQUIDs coupled to large (∼100 cm 2 ) pick-up coils to measure the precision frequency of the spin-polarized 3 He atoms that act as polarizer, spin analyzer, detector, and magnetometer for the ultra-cold neutrons used in the experiment. The method of directly measuring the 3 He precession signal eliminates the need for very uniform magnetic fields (a major source of systematic error in these types of experiments). It is estimated that a flux of ∼2x10 -16 Tm 2 (0.1 Φ 0 ) will be coupled into the pick-up coils. To achieve the required signal-to-noise ratio one must have a flux resolution of dΦ SQ = 2x10 -6 Φ 0 /√Hz at 10 Hz. While this is close to the sensitivity available in commercial devices, the effects of coupling to such a large pick-up coil and flux noise from other sources in the experiment still need to be understood. To determine the feasibility of using SQUIDs in such an application the authors designed and built a superconducting test cell, which simulates major features of the proposed EDM experiment, and they developed a two-SQUID readout system that will reduce SQUID noise in the experiment. They present an overview of the EDM experiment with SQUIDs, estimations of required SQUID parameters and experimental considerations. The authors also present the measured performance of a single magnetometer in the test cell as well as the performance of the two SQUID readout technique
Electric Dipole Moments of Light Nuclei and the Implications for CP Violation
International Nuclear Information System (INIS)
Gibson, B.F.; Afnan, I.R.
2013-01-01
A definitive measurement of an electric dipole moment (EDM) would likely imply new physics beyond the standard model. Although the standard model strong interaction term could theoretically produce an EDM of any size, that it is constrained by the current neutron EDM limit to be some 10 orders of magnitude smaller than 1 suggests that the electroweak sector and CP violation will be the source of a measurable EDM. The weak interaction standard model EDM is itself orders of magnitude smaller than contemporary experiments can measure. Direct measurement of the neutron EDM lies in the next decade; measurement of the proton EDM could well come first. A BNL proposal for an electrostatic storage ring measurement lies in the offing. Unless the EDM proves to be an isoscalar, one will need other measurements to separate the isoscalar, isovector, and isotensor components. Measurement of a nuclear EDM will be required: 2 H, 3 H, or 3 He being the simplest nuclear systems. A storage ring measurement of the triton EDM could be accomplished in a manner analogous to that proposed for the proton. However, the deuteron EDM measurement offers certain advantages, even though the experiment would be more complex, involving electric and magnetic fields, than that required for the proton and triton. The COSY facility in the Forschungszentrum Juelich is almost an ideal facility to house such an experiment; one could also measure in the same ring the EDM for the proton and He. The deuteron is the one nucleus for which exact model calculations can easily be performed. We briefly explore the model dependence of deuteron EDM calculations. Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variations in the nucleon–nucleon interaction, including contemporary potential models, and we explore the dependence upon intermediate state multiple scattering in the 3 P 1 channel. We investigate the tensor force contribution to the model
Li, Rui; Gan, Ye; Song, Qun Liang; Zhu, Zhi Hong; Shi, Jingsheng; Yang, Hongbin; Wang, Wei; Chen, Peng; Li, Chang Ming
2010-08-01
Bacteriorhodopsin-embedded purple membrane (bR-PM) is one of the most promising biomaterials for various bioelectronics applications. In this work, we demonstrate that a dipole bio-originated from bR-PM can bidirectionally mediate the performance of a bottom-contact TiO2 nanowire field effect transistor (FET) for performance improvement. When negative gate voltage is applied, both transfer and output characteristics of the TiO2 nanowire FET are enhanced by the bR-PM modification, resulting in a hole mobility increased by a factor of 2. The effect of the number of the deposited bR-PM layers on the normalized ΔID of the FET suggests that the additional electric field generated by the dipole moment natively existing in bR-PM actually boosts the performance of the TiO2 nanowires FET.
Serafin, Michal M; Peebles, Sean A
2008-02-21
Rotational spectra for the normal and four isotopically substituted species of the 1:1 complex between methyl fluoride (H3CF) and carbonyl sulfide (OCS) have been measured using Fourier-transform microwave spectroscopy in the 5-16 GHz frequency region. The observed spectra fit well to a semirigid Watson Hamiltonian, and an analysis of the rotational constants has allowed a structure to be determined for this complex. The dipole moment vectors of the H3CF and OCS monomers are aligned approximately antiparallel with a C...C separation of 3.75(3) A and with an ab plane of symmetry. The values of the Pcc planar moments were found to be considerably different from the expected rigid values for all isotopologues. An estimate of approximately 14.5(50) cm-1 for the internal rotation barrier of the CH3 group with respect to the framework of the complex has been made using the Pcc values for the H3CF-OCS and D3CF-OCS isotopic species. Two structures, very close in energy and approximately related by a 60 degrees rotation about the C3 axis of the methyl fluoride, were identified by ab initio calculations at the MP2/6-311++G(2d,2p) level and provide reasonable agreement with the experimental rotational constants and dipole moment components.
International Nuclear Information System (INIS)
Lamoreaux, S.K.
1999-01-01
A simple formulation for calculating the magnetic field external to an extended nonpermeable conducting body due to thermal current fluctuations within the body is developed, and is applied to a recent experimental search for the atomic electric-dipole moment (EDM) of 199 Hg. It is shown that the thermal fluctuation field is only slightly smaller in magnitude than other noise sources in that experiment. The formulation is extended to permeable bodies, and the implications for general EDM experiments are discussed. copyright 1999 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Slim, J. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Gebel, R. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Heberling, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); Hinder, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Hölscher, D. [Institute of High-Frequency Technology, RWTH Aachen University, 52074 Aachen (Germany); Lehrach, A. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, 52056 Aachen (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Lorentz, B. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); Mey, S. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); III. Physikalisches Institut B, RWTH Aachen University, 52074 Aachen (Germany); Nass, A.; Rathmann, F. [Institute of Nuclear Physics (IKP), Forschungszentrum Jülich, 52428 Jülich (Germany); and others
2016-08-21
The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1–2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.
Slim, J.; Gebel, R.; Heberling, D.; Hinder, F.; Hölscher, D.; Lehrach, A.; Lorentz, B.; Mey, S.; Nass, A.; Rathmann, F.; Reifferscheidt, L.; Soltner, H.; Straatmann, H.; Trinkel, F.; Wolters, J.
2016-08-01
The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1-2 MHz at the COoler SYnchrotron COSY at Jülich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.
International Nuclear Information System (INIS)
Grifols, J.A.
1987-01-01
We discuss the electric dipole moments (EDM) of fermions generated by CP-violating phases associated to the new Yukawa couplings involving heavy matter E 6 fields predicted in the framework of superstring theories. While for neutron and electron it is not strictly necessary to resort to a superstring scenario to get a substantial EDM, in the neutrino case a sizeable EDM is a distinctive feature of the superstring. We thus focus on the neutrino EDM and discuss its relevance for the solution of the solar neutrino problem. (orig.)
International Nuclear Information System (INIS)
Haxton, W.C.; Hoering, A.; Musolf, M.J.; Old Dominion Univ., Norfolk, VA
1994-01-01
We deduce constraints on time-reversal-noninvariant (TRNI), parity-conserving (PC) hadronic interactions from nucleon, nuclear, and atomic electric dipole moment (edm) limits. Such interactions generate edm's through weak radiative corrections. We consider long-ranged mechanisms, i.e., those mediated by meson exchanges in contrast to short-range two-loop mechanisms. We find that the ratio of typical TRNI. PC nuclear matrix elements to those of the strong interaction are approx-lt 10 -5 , a limit about two orders of magnitude more stringent than those from direct detailed balance studies of such interactions
Talman, Richard M.; Talman, John D.
2015-07-01
There has been much recent interest in directly measuring the electric dipole moments (EDM) of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of "frozen spin" particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV "electron analog" ring at Brookhaven National Laboratory in 1954; it can also be referred to as the "AGS analog" ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS) proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through "transition" with the newly invented alternating gradient proton ring design.) By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to "resurrect" the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of "archeological physics" to reconstitute the detailed electron analog lattice design from a 1991 retrospective report by Plotkin as well
Electric dipole moments of light nuclei in chiral effective field theory
International Nuclear Information System (INIS)
Bsaisou, Jan
2014-01-01
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ had >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ QCD ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ QCD in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive Dimensional
Electric dipole moments of light nuclei in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, Jan
2014-04-25
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP violation from the complex phase of the Cabibbo-Kobayashi-Maskawa matrix in the Standard Model predicts EDMs that are experimentally inaccessible in the foreseeable future. The θ-term of Quantum Chromodynamics (QCD) and extensions of the Standard Model such as supersymmetry and multi-Higgs scenarios comprise P- and T-violating interactions which are capable of inducing significantly larger EDMs. The extensions of the Standard Model give rise to a set of effective non-renormalizable operators of canonical dimension six at energies Λ{sub had} >or similar 1 GeV when the heavy degrees of freedom are integrated out. The effective dimension-six operators are known as the quark EDM, the quark-chromo EDM, four-quark left-right operator, the gluon-chromo EDM and the four-quark operator. Starting from the QCD θ-term and this set of P- and T-violating effective dimension-six operators, we present a scheme to derive the induced effective Lagrangians at energies below Λ{sub QCD} ∝ 200 MeV within the framework of Chiral Perturbation Theory (ChPT) for two quark flavors in the formulation of Gasser and Leutwyler. The differences among the sources of P and T violation manifest themselves at energies below Λ{sub QCD} in specific hierarchies of coupling constants of P- and T-violating vertices. We compute the relevant coupling constants of P- and T-violating hadronic vertices which are induced by the QCD θ-term with well-defined uncertainties as functions of the parameter anti θ. The relevant coupling constants induced by the effective dimension-six operators are given as functions of yet unknown Low Energy Constants (LECs) which can not be determined within the framework of ChPT itself. Since the required supplementary input from e.g. Lattice QCD is not yet available, we present Naive
Directory of Open Access Journals (Sweden)
Richard M. Talman
2015-07-01
Full Text Available There has been much recent interest in directly measuring the electric dipole moments (EDM of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of “frozen spin” particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV “electron analog” ring at Brookhaven National Laboratory in 1954; it can also be referred to as the “AGS analog” ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through “transition” with the newly invented alternating gradient proton ring design. By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to “resurrect” the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of “archeological physics” to reconstitute the detailed electron analog lattice design from a
Probing the Absorption and Emission Transition Dipole Moment of DNA Stabilized Silver Nanoclusters
DEFF Research Database (Denmark)
Hooley, Emma Nicole; Carro Temboury, Miguel R.; Vosch, Tom André Jos
2017-01-01
Using single molecule polarization measurements, we investigate the excitation and emission polarization characteristics of DNA stabilized silver nanoclusters (C24-AgNCs). Although small changes in the polarization generally accompany changes to the emission spectrum, the emission and excitation...... transition dipoles tend to be steady over time and aligned in a similar direction, when immobilized in PVA. The emission transition dipole patterns, observed for C24-AgNCs in defocused wide field imaging, match that of a single emitter. The small changes to the polarization and spectral shifting that were...
Gutiérrez-Rodríguez, A; Noriega, Luis; 10.1142/S0217732304014689
2004-01-01
Limits on the anomalous magnetic moment and the electric dipole moment of the tau lepton are calculated through the reaction e/sup + /e/sup -/ to tau /sup +/ tau /sup -/ gamma at the Z/sub 1/-pole and in the framework of a left-right symmetric model. The results are based on the recent data reported by the L3 collaboration at CERN LEP. Due to the stringent limit of the model mixing angle phi , the effect of this angle on the dipole moments is quite small.
Ahmed, E. H.; Qi, P.; Beser, B.; Bai, J.; Field, R. W.; Huennekens, J. P.; Lyyra, A. M.
2008-05-01
The absolute magnitude of the transition dipole moment function μe(R) of the AΣ1u+-XΣ1g+ band system of Na2 was mapped experimentally over a relatively large range of internuclear distance R . The transition dipole moment matrix element of a set of rovibrational transitions between the AΣ1u+ and XΣ1g+ states was measured using the Autler-Townes effect. By employing the R -centroid approximation, or a fit to a polynomial function involving higher order R centroids, μe as a function of the internuclear distance was obtained. These Autler-Townes effect based measurements yield the absolute magnitude of μe , which can be used to test ab initio theoretical transition dipole moment functions or to “normalize” experimental transition moment functions obtained from intensity measurements, which in general give only the relative behavior of μe(R) .
Dual-Comb Spectroscopy of the ν_1+ ν_3 Band of Acetylene: Intensity and Transition Dipole Moment
Iwakuni, Kana; Okubo, Sho; Yamada, Koichi MT; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki
2017-06-01
The ν_1+ν_3 vibration band of ^{12}C_2H_2 is recorded with a homemade dual-comb spectrometer. The spectral resolution and the accuracy of frequency determination are high, and the bandwidth is broad enough to take spectrum of the whole band in one shot. The last remarkable competence enables us to record all the spectral lines under constant experimental conditions. The linewidth and line strength of the P(26) to R(29) transitions are determined by fitting the line profile to Lambert-Beer's law with a Voigt function. In the course of analysis, we found the ortho-para dependence of the pressure-broadening coefficient. This time, we have determined the transition dipole moment of the ν_1+ν_3 band. It is noted that the transition dipole moment determined from the ortho lines agrees with that from the para lines. S. Okubo et al., Applied Physics Express 8, 082402 (2015). K.Iwakuni et al., 71th ISMS, WK15 K. Iwakuni et al., Physical Review Letters 117, 143902 (2016).
Kawski, A.; Kukliński, B.; Bojarski, P.
2006-11-01
The effect of temperature on the absorption spectra of nitrobenzene (NB) and p-nitroaniline (NA) in 1,2-dichloroethane was studied for temperature ranging from 295 K to 378 K and from 296 K to 408 K, respectively. With temperature increase the absorption bands of both compounds are blue shifted, which is caused by the decrease of permittivity ɛ and refractive index n. From the band shifts and by using the Bilot and Kawski theory [ L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621] the dipole moments in the excited singlet state μe = 6.59 D of NB and μe = 13.35 D of NA were determined. The influence of polarizability α, the Onsager cavity radius a and dipole moment in the ground state μg on the determined values of μe are discussed. A comparison of the obtained μe values with those of other authors is given. In the case of p-NA a strong intramolecular charge transfer (ICT) was confirmed.
2007-01-01
GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 ? Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 16th May 2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Proposal to measure the muon electric dipole moment with a compact storage ring at PSI by Dr. Thomas Schietinger, PSI - Villigen In the Standard Model, lepton electric dipole moments (EDM) arise from the CP-violating phase in the CKM matrix at the three-loop level only, resulting in values that are many orders of magnitude below the sensitivity of current and future experiments. Lepton EDMs therefore offer an excellent opportunity to discover unambiguous evidence for new CP-violating phases, as called for by the baryon-antibaryon asymmetry of the universe. The muon EDM is one of the least constrained fundamental properties in elementary particle physics. We propose to utilize the large available flux of polarized muons at PSI to search for a muon EDM ...
Energy Technology Data Exchange (ETDEWEB)
Arroyo-Urena, M.A.; Tavares-Velasco, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Hernandez-Tome, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico City (Mexico)
2017-04-15
We obtain analytical expressions, both in terms of parametric integrals and Passarino-Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the τ lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the t{sub β} parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the τ AMDM is of the order of 10{sup -9}, the real (imaginary) part of its AWMDM is of the order of 10{sup -9} (10{sup -10}). These values seem to be out of the reach of the expected experimental sensitivity of future experiments. (orig.)
Matching pursuit and source deflation for sparse EEG/MEG dipole moment estimation.
Wu, Shun Chi; Swindlehurst, A Lee
2013-08-01
In this paper, we propose novel matching pursuit (MP)-based algorithms for EEG/MEG dipole source localization and parameter estimation for multiple measurement vectors with constant sparsity. The algorithms combine the ideas of MP for sparse signal recovery and source deflation, as employed in estimation via alternating projections. The source-deflated matching pursuit (SDMP) approach mitigates the problem of residual interference inherent in sequential MP-based methods or recursively applied (RAP)-MUSIC. Furthermore, unlike prior methods based on alternating projection, SDMP allows one to efficiently estimate the dipole orientation in addition to its location. Simulations show that the proposed algorithms outperform existing techniques under various conditions, including those with highly correlated sources. Results using real EEG data from auditory experiments are also presented to illustrate the performance of these algorithms.
Energies and electronic dipole moments of the bound vibrational states of HN+2 and DN+2
Czech Academy of Sciences Publication Activity Database
Špirko, Vladimír; Bludský, Ota; Kraemer, W. P.
2008-01-01
Roč. 73, 6/7 (2008), s. 873-897 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550511 Institutional research plan: CEZ:AV0Z40550506 Keywords : potential energy and electric dipole hypersurfaces * density of states and nearest-neighbor level spacing distributions * interstellar ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008
Electric dipole moment of the deuteron in the standard model with NN - ΛN - ΣN coupling
Yamanaka, Nodoka
2017-07-01
We calculate the electric dipole moment (EDM) of the deuteron in the standard model with | ΔS | = 1 interactions by taking into account the NN - ΛN - ΣN channel coupling, which is an important nuclear level systematics. The two-body problem is solved with the Gaussian Expansion Method using the realistic Argonne v18 nuclear force and the YN potential which can reproduce the binding energies of Λ3H, Λ3He, and Λ4He. The | ΔS | = 1 interbaryon potential is modeled by the one-meson exchange process. It is found that the deuteron EDM is modified by less than 10%, and the main contribution to this deviation is due to the polarization of the hyperon-nucleon channels. The effect of the YN interaction is small, and treating ΛN and ΣN channels as free is a good approximation for the EDM of the deuteron.
International Nuclear Information System (INIS)
Jung, Sunghoon; Wells, James D.
2009-01-01
CP violation from physics beyond the standard model may reside in triple boson vertices of the electroweak theory. We review the effective theory description and discuss how CP-violating contributions to these vertices might be discerned by electric dipole moments (EDM) or diboson production at the LHC. Despite triple boson CP-violating interactions entering EDMs only at the two-loop level, we find that EDM experiments are generally more powerful than the diboson processes. To give an example to these general considerations we perform the comparison between EDMs and collider observables within supersymmetric theories that have heavy sfermions, such that substantive EDMs at the one-loop level are disallowed. EDMs generally remain more powerful probes, and next-generation EDM experiments may surpass even the most optimistic assumptions for LHC sensitivities.
Schmidt, V.; Lehrach, A.
2017-07-01
The Jülich Electric Dipole moment Investigations (JEDI) collaboration in Julich is preparing a direct EDM measurement of protons and deuterons first at the storage ring COSY (COoler SYnchrotron) and later at a dedicated storage ring. Ensuring a precise measurement, various beam and spin manipulating effects have to be considered and investigated. A distortion of the closed orbit is one of the major sources for systematic uncertainties. Therefore misalignments of magnets and residual power supply oscillations are simulated using the MAD-X code in order to analyse their effect on the orbit. The underlying model for all simulations includes the dipoles, quadrupoles and sextupoles at COSY as well as the corrector magnets and BPMs (Beam Position Monitors). Since most sextupoles are only used during beam extraction, the sextupole strengths are set to zero resulting in a linear machine. The optics is adjusted in a way that the dispersion is zero in the straight sections. The closed orbit studies are performed for deuterons with a momentum of 970 MeV/c.
Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.
2015-06-01
In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347
Magnetic dipole moment of the doubly closed-shell plus one proton nucleus $^{49}$Sc
Gaulard, C V; Walters, W; Nishimura, K; Muto, S; Bingham, C R
It is proposed to measure the magnetic moment of $^{49}$Sc by the Nuclear Magnetic Resonance on Oriented Nuclei (NMR-ON) method using the NICOLE on-line nuclear orientation facility. $^{49}$Sc is the neutron rich, doubly closed-shell, nucleus $^{48}$Ca plus one proton. Results will be used to deduce the effective g-factors in the $^{48}$Ca region with reference to nuclear structure and meson exchange current effects.
Magnetic dipole moments of High-K isomeric states in Hf isotopes
Walters, W; Nishimura, K; Bingham, C R
2007-01-01
It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.
International Nuclear Information System (INIS)
Escobar, C.O.; Pleites, V.
1983-01-01
We argue that the existence of flavor-changing Higgs-boson couplings in an extended Higgs sector, respecting the experimental bounds on such processes, is sufficient to increase by some orders of magnitude the electric dipole moment of a single quark in the Kobayashi-Maskawa model of CP violation
Magnetic dipole moments of deformed odd-odd nuclei up to 2p-1f shells
International Nuclear Information System (INIS)
Garg, V.P.; Verma, A.K.; Gandhi, R.; Sharma, S.D.
1981-01-01
The expression for magnetic moments for the states comprising ground state configurations of odd-odd nuclei has been simplified by excluding mixing of other nucleonic configurations. This is contrary to Sharma's and Davidson's results which had been obtained by diagonalizing state matrices for a set of parameters using Davidov and Filippov's non-axial rotor model. According to the relative directions of spins of unpaired odd nucleons, the nuclei have been classified under four categories-an exercise not attempted till now. The calculations have been done with various quenching factors depending upon the relative spin orientations of odd nucleons. For most of the nuclei, the results show considerable improvement over those of Gallagher and Moszkowski and of Sharma. (author)
Coupling reduction between dipole antenna elements by using a planar meta-surface
DEFF Research Database (Denmark)
Saenz, Elena; Ederra, Inigo; Gonzalo, Ramon
2009-01-01
The mutual coupling between dipole antenna array elements using a planar meta-surface as superstrate is experimentally investigated. The meta-surface is based on grids of short metal strips and continuous wires. A comparison between the mutual coupling when the dipoles are radiating in free space...
International Nuclear Information System (INIS)
Glendening, E.D.; Feller, D.; Peterson, K.A.; McCullough, E.A. Jr.; Miller, R.J.
1995-01-01
The dipole moment and magnetic hyperfine properties of the A 2 Σ + Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09--1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1--0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree--Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component A iso ( 14 N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40--41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for A iso ( 17 O), the full CI limit (-97±2 MHz) and the UHF-based results (ca.-118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. copyright 1995 American Institute of Physics
Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine
International Nuclear Information System (INIS)
Leal-Quiros, Edbertho; Prelas, Mark
2006-01-01
A novel diagnostic that allows measurement of the magnetic moment μ has been designed. The μ-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The μ-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore μ, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the μ of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range
International Nuclear Information System (INIS)
Zrafi, W; Oujia, B; Gadea, F X
2006-01-01
For nearly all states dissociating below the ionic limit, we perform an adiabatic and diabatic study for 1 Σ + and 3 Σ + electronic states dissociating into Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s and 4f) + H (1s). Furthermore, we present the adiabatic results for the 1-5 1,3 Π and 1-3 1,3 Δ states. The calculations rely on an ab initio pseudopotential, semi-empirical operator core-valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in very good agreement with the available experimental data. Diabatic potentials and dipole moments are analysed, revealing the strong imprint of the ionic state in the 1 Σ + adiabatic states. The H electron affinity correction was accounted for by the use of the efficient diabatization method. This leads to a better agreement with the available experimental data. Experimental suggestions are also given for the higher excited states based on their unusual behaviour
Bian, Ligong; Liu, Tao; Shu, Jing
2015-07-10
We present a class of cancellation conditions for suppressing the total contributions of Barr-Zee diagrams to the electron electric dipole moment (eEDM). Such a cancellation is of particular significance after the new eEDM upper limit was released by the ACME Collaboration, which strongly constrains the allowed magnitude of CP violation in Higgs couplings and hence the feasibility of electroweak baryogenesis (EWBG). Explicitly, if both the CP-odd Higgs-photon-photon (Z boson) and the CP-odd Higgs-electron-positron couplings are turned on, a cancellation may occur either between the contributions of a CP-mixing Higgs boson, with the other Higgs bosons being decoupled, or between the contributions of CP-even and CP-odd Higgs bosons. With a cancellation, large CP violation in the Higgs sector is still allowed, yielding successful EWBG. The reopened parameter regions would be probed by future neutron, mercury EDM measurements, and direct measurements of Higgs CP properties at the Large Hadron Collider Run II and future colliders.
Fromm, Steven
2017-09-01
In an effort to study and improve the optical trapping efficiency of the 225Ra Electric Dipole Moment experiment, a fully parallelized Monte Carlo simulation of the laser cooling and trapping apparatus was created at Argonne National Laboratory and now maintained and upgraded at Michigan State University. The simulation allows us to study optimizations and upgrades without having to use limited quantities of 225Ra (15 day half-life) in experiment's apparatus. It predicts a trapping efficiency that differs from the observed value in the experiment by approximately a factor of thirty. The effects of varying oven geometry, background gas interactions, laboratory magnetic fields, MOT laser beam configurations and laser frequency noise were studied and ruled out as causes of the discrepancy between measured and predicted values of the overall trapping efficiency. Presently, the simulation is being used to help optimize a planned blue slower laser upgrade in the experiment's apparatus, which will increase the overall trapping efficiency by up to two orders of magnitude. This work is supported by Michigan State University, the Director's Research Scholars Program at the National Superconducting Cyclotron Laboratory, and the U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.
Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation
International Nuclear Information System (INIS)
Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong
2013-01-01
Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)
Sound pressure around dipole source above porous surface.
Prezelj, Jurij; Steblaj, Peter; Cudina, Mirko
2014-06-01
A technique for in situ measurements of acoustic properties of a fibrous porous material is proposed in this paper. Proposed technique exploits a directivity pattern of a dipole source in its very near field. Theoretical analysis for the proposed technique is based on the Rayleigh integral with a complex reflection included. Results are compared with results of FEM analysis and show that flow resistivity of a porous material placed in the very near field of the dipole source has significant influence on the sound pressure at its ring. Results provide an excellent starting point for the design of the sensor for sound absorption.
Ghosh, Anuja; Ghosh, Manas
2018-01-01
Present work explores the profiles of polarizability (αp) and electric dipole moment (μ) of impurity doped GaAs quantum dot (QD) under the aegis of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy of the system. Presence of noise has also been invoked to examine how its intervention further tunes αp and μ. Noise term maintains a Gaussian white feature and it has been incorporated to the system through two different roadways; additive and multiplicative. The various facets of influence of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy on αp and μ depend quite delicately on presence/absence of noise and also on the mode through which noise has been administered. The outcomes of the study manifest viable routes to harness the dipole moment and polarizability of doped QD system through the interplay between noise, anisotropy and variable effective mass and dielectric constant of the system.
International Nuclear Information System (INIS)
Kiyanagi, Ryoji; Noda, Yukio; Mochida, Tomoyuki; Sugawara, Tadashi
2007-01-01
The isolated hydrogen-bonded materials, 5-methyl-9-hydroxyphenalenone (MeHPLN) and 5-bromo-9-hydroxyphenalenone (Br-HPLN), were studied by means of X-ray and neutron diffraction methods. It was found that the position of the nucleus of the hydrogen atom in the hydrogen-bond region does not agree with the center of mass of the electron cloud of the hydrogen atom. This leads to a local electronic dipole moment in the hydrogen-bond region. Using the experimentally obtained dipole moment, phase transition temperatures for MeHPLN and BrHPLN were calculated based on a tunneling model. Result shows good agreement with the ones obtained by a dielectric measurement. (author)
Czech Academy of Sciences Publication Activity Database
Paulson, L. O.; Kaminský, Jakub; Anderson, D. T.; Bouř, Petr; Kubelka, J.
2010-01-01
Roč. 6, č. 3 (2010), s. 817-827 ISSN 1549-9618 R&D Projects: GA ČR GA202/07/0732; GA AV ČR IAA400550702 Grant - others:CAREER(US) 0846140; AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : dipole moments * theoretical modelling * vibrational averaging Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.138, year: 2010
Energy Technology Data Exchange (ETDEWEB)
Taran, Yu. V.
1974-12-01
A regime of operation of equipment for measuring the electrical dipole moment (EDM) of a neutron using ultracold neutrons in a storage variant is considered. Two methods of optimizing the equipment are discussed: one based on minimization of the EDM measurement error and the error of a pair of adjacent measurements with different relative orientations of the magnetic and electric fields (cycle error). The practical equivalence of the two approaches is shown for actual situations. (5 figures) (auth)
International Nuclear Information System (INIS)
Antony, M.S.; Britz, J.
1986-01-01
A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison
International Nuclear Information System (INIS)
Dardouri, Riadh; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier
2012-01-01
Graphical abstract: We present the resulting 12 1 Σ + diabatic potential energy curves where they are labeled D 1 for the ionic Li − K + and D 2 to D 12 for other. Highlights: ► Our ab initio study has been conducted for 48 electronic states of LiK molecule. ► We use pseudo-potential for the core and large basis sets for the Rydberg states. ► The calculations rely on ab initio pseudo-potential and full valence CI approaches. ► Diabatic potentials are analyzed, revealing the strong imprint of the ionic 1 Σ + state. - Abstract: For all states dissociating below the ionic limit Li − K + , we perform an adiabatic and diabatic study for 1 Σ + electronic states dissociating into K (4s, 4p, 4d, 5s, 5p, 5d, 6s) + Li (2s, 2p, 3s). Furthermore, we present the adiabatic results for the 1–11 3 Σ, 1–8 1,3 Π and 1–4 1,3 Δ states. The present calculations on the KLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously. The calculations rely on an ab initio pseudo-potential, Core Polarization Potential operators for the core–valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in good agreement with the available experimental data. Diabatic potentials and permanent dipole moments are analyzed, revealing the strong imprint of the ionic state in the 1 Σ + adiabatic states.
Energy Technology Data Exchange (ETDEWEB)
Dardouri, Riadh, E-mail: dardouririad@yahoo.fr [Laboratoire de Physique Quantique, Faculte des Sciences de Monastir, Avenue de l' Environnement, 5019 Monastir (Tunisia); Habli, Hela [Laboratoire de Physique Quantique, Faculte des Sciences de Monastir, Avenue de l' Environnement, 5019 Monastir (Tunisia); Oujia, Brahim; Gadea, Florent Xavier [Laboratoire de Chimie et Physique Quantique, UMR 5626 du CNRS, Universite de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 4 (France)
2012-05-03
Graphical abstract: We present the resulting 12 {sup 1}{Sigma}{sup +} diabatic potential energy curves where they are labeled D{sub 1} for the ionic Li{sup -}K{sup +} and D{sub 2} to D{sub 12} for other. Highlights: Black-Right-Pointing-Pointer Our ab initio study has been conducted for 48 electronic states of LiK molecule. Black-Right-Pointing-Pointer We use pseudo-potential for the core and large basis sets for the Rydberg states. Black-Right-Pointing-Pointer The calculations rely on ab initio pseudo-potential and full valence CI approaches. Black-Right-Pointing-Pointer Diabatic potentials are analyzed, revealing the strong imprint of the ionic {sup 1}{Sigma}{sup +} state. - Abstract: For all states dissociating below the ionic limit Li{sup -}K{sup +}, we perform an adiabatic and diabatic study for {sup 1}{Sigma}{sup +} electronic states dissociating into K (4s, 4p, 4d, 5s, 5p, 5d, 6s) + Li (2s, 2p, 3s). Furthermore, we present the adiabatic results for the 1-11 {sup 3}{Sigma}, 1-8 {sup 1,3}{Pi} and 1-4 {sup 1,3}{Delta} states. The present calculations on the KLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously. The calculations rely on an ab initio pseudo-potential, Core Polarization Potential operators for the core-valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in good agreement with the available experimental data. Diabatic potentials and permanent dipole moments are analyzed, revealing the strong imprint of the ionic state in the {sup 1}{Sigma}{sup +} adiabatic states.
Energy Technology Data Exchange (ETDEWEB)
Vo, Thieu Thi Tien [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Faculty of Chemical Engineering and Food Technology, Ba Ria-Vung Tau University, Vung Tau (Viet Nam); Mahesh, K.P.O. [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lin, Pao-Hung [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Tai, Yian, E-mail: ytai@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)
2017-05-01
Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.
International Nuclear Information System (INIS)
Vo, Thieu Thi Tien; Mahesh, K.P.O.; Lin, Pao-Hung; Tai, Yian
2017-01-01
Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.
Possible displacement of mercury's dipole
International Nuclear Information System (INIS)
Ng, K.H.; Beard, D.B.
1979-01-01
Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged
DEFF Research Database (Denmark)
Ni, X.; Naik, G. V.; Kildishev, A. V.
2011-01-01
Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular-depende......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data.......Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular...
Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.
From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.
International Nuclear Information System (INIS)
Meyer, C.A.
1987-06-01
We have measured the cross section from the bremsstrahlung process π + p → π + pγ for incident pions of energy 299 MeV. We detected the out going pion in the angular range from 55 to 95 0 in the lab, and photons were detected near 240 0 in the lab. We compare this measured cross-section to the MIT theory in order to extract a measurement of the magnetic dipole moment of the Δ ++ (1232), μ/sub Δ/. In order to compare our results with the MIT theory, we have folded the MIT theory into the acceptance of our apparatus. We find that for pion angles between 55 and 75 0 the theory gives us a dipole moment of: 2.3μ/sub p/ 0 we find that the MIT theory predicts a cross-section which is larger than our measured cross-section, and makes it difficult to extract a value of μ/sub Δ/. This over prediction is not understood, but consistent with a similar effect when the MIT theory is fit to previous data. 78 figs., 29 tabs
Abe, M.; Prasannaa, V. S.; Das, B. P.
2018-03-01
Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.
Czech Academy of Sciences Publication Activity Database
Kraemer, W. P.; Špirko, Vladimír
2010-01-01
Roč. 373, č. 3 (2010), s. 170-180 ISSN 0301-0104 R&D Projects: GA AV ČR IAA400550511; GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : potential energy and electric dipole * density of states and nearest-neighbor level * spacing distributions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.017, year: 2010
Okubo, Sho; Iwakuni, Kana; Yamada, Koichi M. T.; Inaba, Hajime; Onae, Atsushi; Hong, Feng-Lei; Sasada, Hiroyuki
2017-11-01
The ν1 +ν3 vibration band of acetylene (C2H2) in the near infrared region was recorded with a dual-comb Fourier-transform spectrometer. We observed 56 transitions from P (26) to R (29) at six different column densities. The integral line intensity was determined for each recorded absorption line by fitting the line profile to Lambert-Beer's law with a Voigt function. Thanks to the outstanding capability of dual-comb spectroscopy to cover a broad spectrum in a relatively short time with high resolution and high frequency precision, we determined the reliable line strength for each ro-vibrational transition as well as the transition dipole moment for this band.
Energy Technology Data Exchange (ETDEWEB)
Assafrao, Denise; Mohallem, Jose R, E-mail: rachid@fisica.ufmg.b [Laboratorio de Atomos e Moleculas Especiais, Departamento de FIsica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG (Brazil)
2010-08-14
The variation in the electric dipole moments of H{sub 2}O, CH{sub 3}F, CH{sub 3}Cl and CH{sub 3}Br as their geometries relax due to interaction with a positron is evaluated. The results are in good agreement with a recently observed empirical dependence of the positron binding energy on molecular properties (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). For binding energies larger than 100 meV relaxation could alter significantly the analysis of the binding, but it is in the prospect of generating effective potentials for positron scattering by molecules that the effect can be more important.
Energy Technology Data Exchange (ETDEWEB)
Lockhart, D.J.; Boxer, S.G.
1987-02-10
The magnitude and direction of the change in dipole moment, ..delta mu.., associated with the Q/sub y/ transition of the dimeric primary electron donor (special pair or P870) in Rhodopseudomonas sphaeroides reaction centers have been measured by Stark spectroscopy at 20 /sup 0/C. The magnitude of ..delta mu.. is found to be f/sup -1/ (10.3 +/- 0.7) D, where f is a correction factor for the local dielectric properties of the protein matrix. With the spherical cavity approximation and an effective local dielectric constant of 2, f = 1.2, and absolute value of ..delta mu.. is 8.6 +/- 0.6 D. Absolute value of ..delta mu.. for the Q/sub y/ transition of the special pair is approximately a factor of 3.4 and 2 greater than for the monomeric bacteriochlorophylls and bacteriopheophytins, respectively, in the reaction center. The angle between ..delta mu.. and the transition dipole moment for excitation of the first singlet electron state of the special pair was found to be 24 +/- 2/sup 0/. The measured values are combined to suggest a physical model in which the lowest excited singlet state of the special pair has substantial charge-transfer character and where charge is separated between the two monomers comprising the dimeric special pair. This leads to the hypothesis that the first charge-separated state in bacterial photosynthesis is formed directly upon photoexcitation. These data provide stringent values for comparison with theoretical calculations of the electronic structure of the chromophores in the reaction center.
Simon, Q.; Thouveny, N.; Bourles, D. L.; Ménabréaz, L.; Valet, J. P.; Valery, G.; Choy, S.
2015-12-01
The atmospheric production rate of cosmogenic nuclides is linked to the geomagnetic dipole moment (GDM) by a non-linear inverse relationship. Large amplitude GDM variations associated with reversals and excursions can potentially be reconstructed using time variation of the cosmogenic beryllium-10 (10Be) production recorded in ocean sediments. Downcore profiles of authigenic 10Be/9Be ratios (proxy of atmospheric 10Be production) in oceanic cores provide independent and additional records of the evolution of the geomagnetic intensity and complete previous information derived from relative paleointensity (RPI). Here are presented new authigenic 10Be/9Be results obtained from cores MD05-2920 and from the top of core MD05-2930 collected in the West Equatorial Pacific Ocean. Completing data of Ménabréaz et al. (2012, 2014), these results provide the first continuous 10Be production rate sedimentary record covering the last 800 ka. Along these cores, authigenic 10Be/9Be ratio peaks are recorded - within methodological errors - at the stratigraphic level of RPI lows. High-resolution chronologies (δ18O-derived) lead to interpret these peaks as successive global 10Be overproduction events triggered by geomagnetic dipole lows present in the PISO-1500 and Sint-2000 stacks. The largest amplitude 10Be production enhancement is synchronous to the very large decrease of the dipole field associated with the last polarity reversal (772 ka). It is consistent in shape and duration with the peak recorded in core MD90-0961 from the Maldive area (Indian Ocean) (Valet et al. 2014). Two significant 10Be production enhancements are coeval with the Laschamp (41 ka) and Icelandic basin (190 ka) excursions, while 10Be production peaks of lower amplitude correlate to other recognized excursions such as the Blake (120 ka), Pringle-Falls (215 ka), Portuguese Margin (290 ka), Big Lost (540 ka) among others. This study provides new data on the amplitude and timing of dipole field variations
Surface Rupture Effects on Earthquake Moment-Area Scaling Relations
Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro
2017-09-01
Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.
Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.
1990-01-01
FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.
Energy Technology Data Exchange (ETDEWEB)
Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)
2017-03-15
The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)
Coupling of Surface and Volume Dipole Oscillations in C60 Molecules
Brack, M.; Winkler, P.; Murthy, M. V. N.
We first give a short review of the "local-current approximation" (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C60 molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode ("surface plasmon") with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a "volume plasmon".
Coupling of surface and volume dipole oscillations in C60 molecules
International Nuclear Information System (INIS)
Brack, M.; Winkler, P.; Murthy, M.V.N.
2008-01-01
We first give a short review of the "local-current approximation" (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C 60 molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode ("surface plasmon") with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a "volume plasmon". (author)
Wang, Qin; Hou, Shunyong; Xu, Liang; Yin, Jianping
2016-02-21
To meet some demands for realizing precise measurements of an electric dipole moment of electron (eEDM) and examining cold collisions or cold chemical physics, we have proposed a novel, versatile electrostatic Stark decelerator with an array of true 3D electric potential wells, which are created by a series of horizontally-oriented, U-shaped electrodes with time-sequence controlling high voltages (± HV) and two guiding electrodes with a constant voltage. We have calculated the 2D electric field distribution, the Stark shifts of the four lowest rotational sub-levels of PbF molecules in the X1(2)Π1/2(v = 0) electronic and vibrational ground states as well as the population in the different rotational levels. We have discussed the 2D longitudinal and transverse phase-space acceptances of PbF molecules in our decelerator. Subsequently, we have simulated the dynamic processes of the decelerated PbF molecules using the 3D Monte-Carlo method, and have found that a supersonic PbF beam with a velocity of 300 m s(-1) can be efficiently slowed to about 5 m s(-1), which will greatly enhance the sensitivities to research a parity violation and measure an eEDM. In addition, we have investigated the dependences of the longitudinal velocity spread, longitudinal temperature and bunching efficiency on both the number of guiding stages and high voltages, and found that after bunching, a cold packet of PbF molecules in the J = 7/2, MΩ = -7/4 state with a longitudinal velocity spread of 0.69 m s(-1) (corresponding to a longitudinal temperature of 2.35 mK) will be produced by our high-efficient decelerator, which will generate a high energy-resolution molecular beam for studying cold collision physics. Finally, our novel decelerator can also be used to efficiently slow NO molecules with a tiny electric dipole moment (EDM) of 0.16 D from 315 m s(-1) to 28 m s(-1). It is clear that our proposed new decelerator has a good slowing performance and experimental feasibility as well as wide
Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.
2018-01-01
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .
International Nuclear Information System (INIS)
Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming
2015-01-01
In this paper, we systematically investigate the electronic structure for the 2 Σ + ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained
Stadnik, Y. V.; Dzuba, V. A.; Flambaum, V. V.
2018-01-01
In the presence of P , T -violating interactions, the exchange of axionlike particles between electrons and nucleons in atoms and molecules induces electric dipole moments (EDMs) of atoms and molecules. We perform calculations of such axion-exchange-induced atomic EDMs using the relativistic Hartree-Fock-Dirac method including electron core polarization corrections. We present analytical estimates to explain the dependence of these induced atomic EDMs on the axion mass and atomic parameters. From the experimental bounds on the EDMs of atoms and molecules, including Cs 133 , Tl 205 , Xe 129 , Hg 199 , Yb 171 F 19 , Hf 180 F+ 19 , and Th 232 O 16 , we constrain the P , T -violating scalar-pseudoscalar nucleon-electron and electron-electron interactions mediated by a generic axionlike particle of arbitrary mass. Our limits improve on existing laboratory bounds from other experiments by many orders of magnitude for ma≳10-2 eV . We also place constraints on C P violation in certain types of relaxion models.
International Nuclear Information System (INIS)
Childs, W.J.; Goodman, L.S.; Nielsen, U.; Pfeufer, V.
1984-01-01
The electronic structure of diatomic molecules is much more complex for open-shell sytems (radicals) than for the normal closed-shell systems, and the development of an adequate theoretical understanding will require a substantial upgrading of experimental knowledge in both quality and quantity. The alkaline-earth monohalide family of radicals, with only a single electron outside closed-shell cores, would appear to be a logical starting point for such studies, and there has been a great increase in work in this area in the last few years in spite of the special difficulties of working with free radicals. As the work of measuring the vibrational and rotational structure of the electronic states has become more complete, attention has turned to study of the much weaker spin-rotation and hyperfine interactions. Within the last three years, these interactions have been studied systematically at high precision in the calcium monohalide family with the molecular-beam, laser-rf double-resonance technique. The same method has now been modified and extended to make possible measurement of the electric-dipole moments of these molecules through observation of the Stark splittings of radiofrequency transitions. It is hoped that when considered together, the several types of data will make it possible to understand the ground-state electronic wave functions of these molecules at least qualitatively. 2 figures
International Nuclear Information System (INIS)
Kraft, Andreas
2012-01-01
The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized 3 He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a 3 He/Cs-test facility was built to investigate the readout of 3 He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes 3 He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. 3 He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.
International Nuclear Information System (INIS)
Pierre, Edgard
2012-01-01
The work presented in this thesis has been performed within the framework of an experiment located at the Paul Scherrer Institut (PSI) and dedicated to the measurement of the neutron electric dipole moment (nEDM). The expected sensitivity is 10 -27 e cm at the end of 2013. The experiment requires a polarized ultracold neutron (UCN) beam. A new polarizing system, a spin transport device and a spin reversal system have been developed for this purpose. Their study is detailed in this thesis. These systems are currently installed on the experiment. Thanks to magnetic field mappings done on the spectrometer, to magnetic field simulations using the Radia and Maentouch programs and also to Monte-Carlo simulations using the Geant4 software, the efficiency of the device has been calculated. The measured efficiency is 88.5±0.3%, which is slightly less than the expected value of 95%. Furthermore, this preliminary data taken in October 2011 allows the determination of some fundamental parameters of the experiment such as the filling, storage and longitudinal depolarization time constants of the spectrometer. These parameters are promising for the continuation of the experiment. (author) [fr
Multilayer Strip Dipole Antenna Using Stacking Technique and Its Application for Curved Surface
Directory of Open Access Journals (Sweden)
Charinsak Saetiaw
2013-01-01
Full Text Available This paper presents the design of multilayer strip dipole antenna by stacking a flexible copper-clad laminate utilized for curved surface on the cylindrical objects. The designed antenna will reduce the effects of curving based on relative lengths that are changed in each stacking flexible copper-clad laminate layer. Curving is different from each layer of the antenna, so the resonance frequency that resulted from an extended antenna provides better frequency response stability compared to modern antenna when it is curved or attached to cylindrical objects. The frequency of multilayer antenna is designed at 920 MHz for UHF RFID applications.
Chirality Driven by Magnetic Dipole Response for Demultiplexing of Surface Waves
DEFF Research Database (Denmark)
Sinev, Ivan S.; Bogdanov, Andrey A.; Komissarenko, Filipp E.
2017-01-01
Surface electromagnetic waves are characterized by the intrinsic spin-orbit interaction which results in the fascinating spin-momentum locking. Therefore, directional coupling of light to surface waves can be achieved through chiral nanoantennas. Here, we show that dielectric nanoantenna provides...... chiral response with strong spectral dependence due to the interference of electric and magnetic dipole momenta when placed in the vicinity of the metal-air interface. Remarkably, chiral behaviour in the proposed scheme does not require elliptical polarization of the pump beam or the geometric chirality...... of the nanoantenna. We show that the proposed ultracompact and simple dielectric nanoantenna allows for both directional launching of surface plasmon polaritons on a thin gold film and their demultiplexing with a high spectral resolution....
Yang, Shanshan; Su, Yudan; Wu, Qiong; Zhang, Yuanbo; Tian, Chuanshan
Aqueous droplet moving along graphene surface can produce electricity This interesting phenomenon provided environment-friendly means to harvest energy from graphene interface in contact with sea wave or rain droplets. However, microscopically, the nature of charge adsorption at the graphene interface is still unclear. Here, utilizing sum-frequency spectroscopy in combined with measurement of electrical power generation, the origin of charge adsorption on graphene was investigated. It was found that the direct ion-graphene interaction is negligibly small, contrary to the early speculation, but the ordered surface dipole from the supporting substrate, such as PET, is responsible for ion adsorption at the interface. Graphene serves as a conductive layer with mild screening of Coulomb interaction when aqueous droplet slips over the surface. These results pave the way for optimization of energy harvesting efficiency of graphene-based device.
Mayrhofer, Leonhard; Moras, Gianpietro; Mulakaluri, Narasimham; Rajagopalan, Srinivasan; Stevens, Paul A; Moseler, Michael
2016-03-30
Despite the pronounced polarity of C-F bonds, many fluorinated carbon compounds are hydrophobic: a controversial phenomenon known as "polar hydrophobicity". Here, its underlying microscopic mechanisms are explored by ab initio calculations of fluorinated and hydrogenated diamond (111) surfaces interacting with single water molecules. Gradient- and van der Waals-corrected density functional theory simulations reveal that "polar hydrophobicity" of the fully fluorinated surfaces is caused by a negligible surface/water electrostatic interaction. The densely packed C-F surface dipoles generate a short-range electric field that decays within the core repulsion zone of the surface and hence vanishes in regions accessible by adsorbates. As a result, water physisorption on fully F-terminated surfaces is weak (adsorption energies Ead 0.2 eV) that is dominated by electrostatic interactions. The suppression of electrostatic interactions also holds for perfluorinated molecular carbon compounds, thus explaining the prevalent hydrophobicity of fluorocarbons. In general, densely packed polar terminations do not always lead to short-range electric fields. For example, surfaces with substantial electron density spill-out give rise to electric fields with a much slower decay. However, electronic spill-out is limited in F/H-terminated carbon materials. Therefore, our ab initio results can be reproduced and rationalized by a simple classical point-charge model. Consequently, classical force fields can be used to study the wetting of F/H-terminated diamond, revealing a pronounced correlation between adsorption energies of single H2O molecules and water contact angles.
Bukchin, B. G.
1995-08-01
A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials
Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang
2017-11-01
We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.
The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials.
Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang
2017-11-09
We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO 2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.
Czech Academy of Sciences Publication Activity Database
Lübben, J.F.; Baše, Tomáš; Rupper, P.; Künniger, T.; Macháček, Jan; Guimond, S.
2011-01-01
Roč. 354, č. 1 (2011), s. 168-174 ISSN 0021-9797 R&D Projects: GA AV ČR(CZ) IAA400320901 Keywords : Adsorption * Thiolated carboranes * Silver surface * Surface potential * X-ray photoelectron spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011
Theory of the surface dipole layer and of surface tension in liquids of charged particles
International Nuclear Information System (INIS)
Senatore, G.; Tosi, M.P.
1980-01-01
The problem of the surface density profiles and of the surface tension of a two-component liquid of charged particles in equilibrium with its vapour is examined. The exact equilibrium conditions for the profiles are given in terms of the inverse response functions of the inhomogeneous fluid, and alternative exact expressions for the surface tension are derived. The use of a density gradient expansion reduces the problem to knowledge of properties of a homogeneous charged fluid on a uniform neutralizing background, in which the total particle density and the charge density are independent variables. Additional simplifications are discussed for special cases for which a perturbative treatment of the surface charge density profile can be developed, and in particular for nearly symmetric ionic liquids and for simple liquid metals. (author)
Bandoli, Giuliano; Nicolini, Marino; Lumbroso, Henri; Grassi, Antonio; Pappalardo, Giuseppe C.
1987-09-01
N-( p-anisoyl)pyrrolidin-2-one in the crystalline state exhibites a cis— rans conrotatory conformation with NCO and COC ar rotational angles of 33.5° and 38.5° respectively, and the p-methoxy group situated cis to the central carbonyl bond, as shown by X-ray structure analysis. As suggested by dipole moment analysis and MMP2 molecular mechanics calculations, in solution similar conrotatory models hold for both c- and t-subconformers having the p-methoxy group cis or trans to the central carbonyl bond. INDO calculations were also carried out, indicating that both subconformers are equally stable.
Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.
Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo
2017-09-20
Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.
Two dimensional electron gas confined over a spherical surface: Magnetic moment
Energy Technology Data Exchange (ETDEWEB)
Hernando, A; Crespo, P [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P. O. Box 155, Madrid 28230 (Spain) and Dpto. Fisica de Materiales, Universidad Complutense (Spain); Garcia, M A, E-mail: antonio.hernando@adif.es [Instituto de Ceramica y Vidrio, CSIC c/Kelsen, 5 Madrid 28049 (Spain)
2011-04-01
Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10{sup 2} or 10{sup 3} Bohr magnetons.
Magnetic moments in calcium isotopes via a surface-interaction experiment
International Nuclear Information System (INIS)
Niv, Y.; Hass, M.; Zemel, A.; Goldring, G.
1979-01-01
A rotation of the angular correlation of de-excitation γ-rays from 40 Ca and 44 Ca was observed in a tilted foil geometry. The signs and magnitudes of the magnetic moments of the 2 1 + of 44 Ca and of the 3 1 - level of 40 Ca were determined to be g = -0.28+-0.11 and g = +0.52+-0.18, respectively. This experiment provides further information regarding the polarization of deeply bound electronic configurations produced by a surface-interaction mechanism and demonstrates the feasibility of the present technique for measuring signs and magnitudes of magnetic moments of picosecond nuclear levels. (author)
Numerical Calculation of the Correlation Moments of the Sound Field Scattered by a Rough Surface
Baranov, V. F.; Gulin, É. P.
2000-05-01
Numerically calculated two-dimensional correlation moments of the surface-scattered sound field are presented in the form of correlation surfaces and analyzed. The models of three-dimensional anisotropic and two-dimensional quasi-harmonic surface waves are considered. Data are presented on the angular dependence of the space-time correlation domains of the scattered sound field for receivers spaced across the propagation path in both horizontal and vertical directions, as well as on the shapes of the time-frequency and space-frequency correlation domains.
Identification of Hydraulic Fracture Orientation from Ground Surface Using the Seismic Moment Tensor
Directory of Open Access Journals (Sweden)
E.V. Birialtcev
2017-09-01
Full Text Available Microseismic monitoring from ground surface is applied in the development of hard-to-recover reserves, especially in the process of hydraulic fracturing (HF. This paper compares several methods of HF microseismic monitoring from the surface, including diffraction stacking, time reverse modeling, and spectral methods. In (Aki and Richards, 1980 it is shown that signal enhancement from seismic events under correlated noises significantly improves when applying the maximum likelihood method. The maximum likelihood method allows to exclude influence of the correlated noise, and also to estimate the seismic moment tensor from ground surface. Estimation of the seismic moment tensor allows to detect type and orientation of source. Usually, the following source types are identified: “Explosion Point” (EXP, “Tensile Crack” (TC, “Double-Couple” (DC and “Compensated Linear Vector Dipole” (CLVD. The orientation of the hydraulic fracture can be estimated even when there is no obvious asymmetry of the spatial distribution of the cloud of events. The features of full-wave location technology are presented. The paper also reviews an example of microseismic monitoring of hydraulic fracturing when there is no obvious asymmetry of microseismic activity cloud, but due to the estimation of the seismic moment tensor it becomes possible to identify with confidence the dominant direction of the fracture.
Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift
Tkalya, E. V.
2005-01-01
We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...
Multipole moments of water molecules in clusters and ice Ih from first principles calculations
International Nuclear Information System (INIS)
Batista, E.R.; Xantheas, S.S.; Jonsson, H.
1999-01-01
We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics
Moment Tensor Inversion of the 1998 Aiquile Earthquake Using Long-period surface waves
Wang, H.
2016-12-01
On 22nd May 1998 at 04:49(GMT), an earthquake of magnitude Mw = 6.6 struck the Aiquile region of Bolivia, causing 105 deaths and significant damage to the nearby towns of Hoyadas and Pampa Grande. This was the largest shallow earthquake (15 km depth) in Bolivia in over 50 years, and was felt as far Sucre, approximately 100 km away. In this report, a centroid moment tensor (CMT) inversion is carried using body waves and surface waves from 1998 Aiquile earthquake with 1-D and 3-D earth models to obtain the source model parameters and moment tensor, which are the values will be subsequently compared against the Global Centroid Moment Tensor Catalog(GCMT). Also, the excitation kernels could be gained and synthetic data can be created with different earth models. The two method for calculating synthetic seismograms are SPECFEM3D Globe which is based on shear wave mantle model S40RTS and crustal model CRUST 2.0, and AxiSEM which is based on PREM 1-D earth Model. Within the report, the theory behind the CMT inversion was explained and the source parameters gained from the inversion can be used to reveal the tectonics of the source of this earthquake, these information could be helpful in assessing seismic hazard and overall tectonic regime of this region. Furthermore, results of synthetic seismograms and the solution of inversion are going to be used to assess two models.
Liu, Lixia
2013-06-21
When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60 % increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MAIER, R; KANELLAKOPULOS, B; APOSTOLIDIS, C; NUBER, B
1992-01-01
The dielectricity constant and the dipole moment of the 1:1 adducts of the tris(cyclopentadienyl)compounds of the trivalent lanthanoids La to Lu (with exception of the Pm compound) and of the lighter actinoids Th, U, Np, and Pu with tetrahydrofuran, (C5H5)3M(III).THF, were measured and the charge
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.
1998-01-01
The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...
Review of singular potential integrals for method of moments solutions of surface integral equations
Directory of Open Access Journals (Sweden)
A. Tzoulis
2004-01-01
Full Text Available Accurate evaluation of singular potential integrals is essential for successful method of moments (MoM solutions of surface integral equations. In mixed potential formulations for metallic and dielectric scatterers, kernels with 1/R and r1/R singularities must be considered. Several techniques for the treatment of these singularities will be reviewed. The most common approach solves the MoM source integrals analytically for specific observation points, thus regularizing the integral. However, in the case of r1/R a logarithmic singularity remains for which numerical evaluation of the testing integral is still difficult. A recently by Yl¨a-Oijala and Taskinen proposed remedy to this issue is discussed and evaluated within a hybrid finite element – boundary integral technique. Convergence results for the MoM coupling integrals are presented where also higher-order singularity extraction is considered.
Vibrational transition moments of CH4 from first principles
Yurchenko, Sergei N.; Tennyson, Jonathan; Barber, Robert J.; Thiel, Walter
2013-09-01
New nine-dimensional (9D), ab initio electric dipole moment surfaces (DMSs) of methane in its ground electronic state are presented. The DMSs are computed using an explicitly correlated coupled cluster CCSD(T)-F12 method in conjunction with an F12-optimized correlation consistent basis set of the TZ-family. A symmetrized molecular bond representation is used to parameterise these 9D DMSs in terms of sixth-order polynomials. Vibrational transition moments as well as band intensities for a large number of IR-active vibrational bands of 12CH4 are computed by vibrationally averaging the ab initio dipole moment components. The vibrational wavefunctions required for these averages are computed variationally using the program TROVE and a new ‘spectroscopic’ 12CH4 potential energy surface. The new DMSs will be used to produce a hot line list for 12CH4.
Li, X.; Gao, M.
2017-12-01
The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18
Flavor physics of leptons and dipole moments
Energy Technology Data Exchange (ETDEWEB)
Raidal, M.; Kadastik, M.; Kajiyama, Y.; Muntel, M.; Rebane, L. [National Inst. for Chemical Physics and Biophysics, Tallinn (Estonia); Schaaf, A. van der [Physik-Inst. der Univ. Zuerich, Zuerich (Switzerland); Bigi, I. [Univ. of Notre Dame du Lac, Physics Dept., Notre Dame, IN (United States); Mangano, M.L.; Ceccucci, A.; Felcini, M.; Giudice, G.; Lebedev, O.; Masina, I. [CERN, Physics Dept., Geneva (Switzerland); Semertzidis, Y. [Brookhaven National Lab., Upton, NY (United States); Abel, S.; Underwood, T.E.J. [Durham Univ., Inst. for Particle Physics Phenomenology, Durham (United Kingdom); Albino, S. [Univ. of Hamburg, II. Inst. for Theoretical Physics, Hamburg (Germany); Antusch, S.; Biggio, C. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Arganda, E.; Herrero, M.J.; Joaquim, F.R. [Univ. Autonoma de Madrid, Dept. de Fisica Teorica (Spain)]|[IFT/CSIC-UAM, Madrid (Spain); Bajc, B. [J. Stefan Inst., Ljubljana (Slovenia); Banerjee, S.; Roney, J.M. [Univ. of Victoria, Dept. of Physics, Victoria, BC (Canada); Blanke, M. [Max-Planck-Inst. fuer Physik, Muenchen (Germany)]|[TU Munich, Physics Dept., Garching (Germany); Bonivento, W.; Serra, N. [Univ. degli Studi di Cagliari (Italy)]|[INFN Cagliari, Monserrato (Italy); Branco, G.C.; Rebelo, M.N. [CERN, Physics Dept., Geneva (Switzerland)]|[Inst. Superior Tecnico, Dept. de Fisica (Portugal)]|[Centro de Fisica Teorica de Particulas, Lisboa (Portugal); Bryman, D. [Univ. of British Columbia, TRIUMF, Dept. of Physics and Astronomy, Vancouver, BC (Canada); Buras, A.J.; Duling, B.; Poschenrieder, A.; Tarantino, C. [TU Munich, Physics Dept., Garching (Germany); Calibbi, L. [SISSA (Italy)]|[INFN, Sezione di Trieste, Trieste (Italy)]|[Univ. de Valencia-CSIC, Dept. de Fisica Teorica, Burjassot (Spain)]|[Dipt. di Fisica ' G. Galilei' (Italy)]|[INFN, Padova (Italy); Chankowski, P.H. [Univ. of Warsaw, Warsaw (Poland); Davidson, S.; Deandrea, A. [Univ. Lyon-1, IPNL, CNRS, Villeurbanne (France)] [and others
2008-09-15
This chapter of the report of the ''Flavor in the era of the LHC'' Workshop discusses the theoretical, phenomenological and experimental issues related to flavor phenomena in the charged lepton sector and in flavor conserving CP-violating processes. We review the current experimental limits and the main theoretical models for the flavor structure of fundamental particles. We analyze the phenomenological consequences of the available data, setting constraints on explicit models beyond the standard model, presenting benchmarks for the discovery potential of forthcoming measurements both at the LHC and at low energy, and exploring options for possible future experiments. (orig.)
Flavor physics of leptons and dipole moments
Raidal, M.; van der Schaaf, A.; Bigi, I.; Mangano, M. L.; Semertzidis, Y.; Abel, S.; Albino, S.; Antusch, S.; Arganda, E.; Bajc, B.; Banerjee, S.; Biggio, C.; Blanke, M.; Bonivento, W.; Branco, G. C.; Bryman, D.; Buras, A. J.; Calibbi, L.; Ceccucci, A.; Chankowski, P. H.; Davidson, S.; Deandrea, A.; DeMille, D. P.; Deppisch, F.; Diaz, M. A.; Duling, B.; Felcini, M.; Fetscher, W.; Forti, F.; Ghosh, D. K.; Giffels, M.; Giorgi, M. A.; Giudice, G.; Goudzovskij, E.; Han, T.; Harris, P. G.; Herrero, M. J.; Hisano, J.; Holt, R. J.; Huitu, K.; Ibarra, A.; Igonkina, O.; Ilakovac, A.; Imazato, J.; Isidori, G.; Joaquim, F. R.; Kadastik, M.; Kajiyama, Y.; King, S. F.; Kirch, K.; Kozlov, M. G.; Krawczyk, M.; Kress, T.; Lebedev, O.; Lusiani, A.; Ma, E.; Marchiori, G.; Masiero, A.; Masina, I.; Moreau, G.; Mori, T.; Muntel, M.; Neri, N.; Nesti, F.; Onderwater, C. J. G.; Paradisi, P.; Petcov, S. T.; Picariello, M.; Porretti, V.; Poschenrieder, A.; Pospelov, M.; Rebane, L.; Rebelo, M. N.; Ritz, A.; Roberts, L.; Romanino, A.; Roney, J. M.; Rossi, A.; Rueckl, R.; Senjanovic, G.; Serra, N.; Shindou, T.; Takanishi, Y.; Tarantino, C.; Teixeira, A. M.; Torrente-Lujan, E.; Turzynski, K. J.; Underwood, T. E. J.; Vempati, S. K.; Vives, O.
This chapter of the report of the "Flavor in the era of the LHC" Workshop discusses the theoretical, phenomenological and experimental issues related to flavor phenomena in the charged lepton sector and in flavor conserving CP-violating processes. We review the current experimental limits and the
Electric Dipole Moment Measurements with Rare Isotopes
Energy Technology Data Exchange (ETDEWEB)
Chupp, Timothy [Univ. of Michigan, Ann Arbor, MI (United States)
2016-11-11
The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic fields and detecting noble atoms' shapes using lasers will provide new techniques for these measurements and impact a broad range of applications including measurements of the neutron EDM. Harvesting rare isotopes at the future FRIB facility at Michigan State University will provide much stronger sources of the isotopes of radon and radium for future-generation experiments and also provide new isotopes for applications including medicine.
Electric Dipole Moment Measurements with Rare Isotopes
International Nuclear Information System (INIS)
Chupp, Timothy
2016-01-01
The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over. These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic fields and detecting noble atoms' shapes using lasers will provide new techniques for these measurements and impact a broad range of applications including measurements of the neutron EDM. Harvesting rare isotopes at the future FRIB facility at Michigan State University will provide much stronger sources of the isotopes of radon and radium for future-generation experiments and also provide new isotopes for applications including medicine.
Flavor physics of leptons and dipole moments
Raidal, M.; Bigi, I.; Mangano, M.L.; Semertzidis, Yannis K.; Abel, S.; Albino, S.; Antusch, S.; Arganda, E.; Bajc, B.; Banerjee, Swagato; Biggio, C.; Blanke, M.; Bonivento, W.; Branco, G.C.; Bryman, Douglas Andrew; Buras, A.J.; Calibbi, L.; Ceccucci, Augusto; Chankowski, Piotr H.; Davidson, S.; Deandrea, A.; DeMille, D.P.; Deppisch, F.; Diaz, M.; Duling, B.; Felcini, Marta; Fetscher, W.; Ghosh, D.K.; Giffels, M.; Giudice, G.; Goudzovskij, E.; Han, T.; Harris, Philip G.; Herrero, M.J.; Hisano, J.; Holt, Roy J.; Huitu, K.; Ibarra, A.; Igonkina, Olga B.; Ilakovac, A.; Imazato, J.; Isidori, G.; Joaquim, F.R.; Kadastik, M.; Kajiyama, Y.; King, S.F.; Kirch, K.; Kozlov, M.G.; Krawczyk, M.; Kress, Thomas; Lebedev, O.; Lusiani, Alberto; Ma, E.; Marchiori, G.; Masina, I.; Moreau, G.; Mori, T.; Muntel, M.; Nesti, F.; Onderwater, Cornelis J.Gerco; Paradisi, P.; Petcov, S.T.; Picariello, M.; Porretti, V.; Poschenrieder, A.; Pospelov, M.; Rebane, L.; Rebelo, M.N.; Ritz, A.; Roberts, B.Lee; Romanino, A.; Rossi, Anna; Ruckl, R.; Senjanovic, G.; Serra, N.; Shindou, T.; Takanishi, Y.; Tarantino, C.; Teixeira, A.M.; Torrente-Lujan, E.; Turzynski, K.J.; Underwood, TEJ; Vempati, S.K.; Vives, Oscar; Working Group 3 [on Flavour in the Era of the LHC
2008-01-01
This chapter of the report of the "Flavour in the era of the LHC" Workshop discusses the theoretical, phenomenological and experimental issues related to flavour phenomena in the charged lepton sector and in flavour-conserving CP-violating processes. We review the current experimental limits and the main theoretical models for the flavour structure of fundamental particles. We analyze the phenomenological consequences of the available data, setting constraints on explicit models beyond the Standard Model, presenting benchmarks for the discovery potential of forthcoming measurements both at the LHC and at low energy, and exploring options for possible future experiments.
Backfire antennas with dipole elements
DEFF Research Database (Denmark)
Nielsen, Erik Dragø; Pontoppidan, Knud
1970-01-01
A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...
The peculiar acceleration of the Local Group as deduced from the optical and IRAS flux dipoles
International Nuclear Information System (INIS)
Lahav, O.; Lynden-Bell, D.
1988-01-01
The relation between the peculiar acceleration of the Local Group and the surface brightness dipole moments of all-sky optical and IRAS samples is studied. Our revised optical dipole lies within 7 0 of the direction of the Local Group's motion through the Microwave Background Radiation (MBR). The directions of the optical, IRAS and MBR dipoles are all consistent with each other. To analyse the optical dipole we have calculated diameter functions for the UGC and ESO galaxy catalogues from redshift surveys. Most of the optical dipole arises from the Centaurus-Virgo direction and from the 'Local Void' on the opposite side of the sky. The sources of the IRAS dipole are more evenly distributed around the sky. A simple 'shell model', fitted to the variation of the dipoles as a function of flux, suggests that the dipoles arise from galaxies whose recession velocities are smaller than 4000 kms -1 . We find a high Ω 0 value for the IRAS sample and a low one for the optical sample. These results may be reconciled if the optical galaxy distribution is more biased relative to the matter distribution than the IRAS galaxy distribution. (author)
Margoliash, D. J.; Langhoff, P. W.
1983-01-01
The present investigation is concerned with the spectral properties of Bethe surfaces to establish a basis for the formulation of alternatives to the conventional computational approach. The relevant scattering cross sections and closely related Van Hove autocorrelation functions are identified as spectral (Riemann-Stieltjes) integral properties of the corresponding atomic and molecular Bethe surfaces. Evaluation of these properties for hydrogenic targets provides a basis for clarifying the ranges of validity of the static, binary-encounter, and sum-rule approximations to differential and total inelastic cross sections generally employed in place of the correct Born results. A description is provided of moment-theory methods for calculations of the high-energy electron impact-excitation and -ionization cross sections and closely related Van Hove correlation functions of atomic and molecular targets. Attention is given to aspects of the Chebyshev-Stieltjes-Markoff moment theory and the Stieltjes and Chebyshev derivatives.
Jensen, Kevin L.; Finkenstadt, Daniel; Shabaev, Andrew; Lambrakos, Samuel G.; Moody, Nathan A.; Petillo, John J.; Yamaguchi, Hisato; Liu, Fangze
2018-01-01
Recent experimental measurements of a bulk material covered with a small number of graphene layers reported by Yamaguchi et al. [NPJ 2D Mater. Appl. 1, 12 (2017)] (on bialkali) and Liu et al. [Appl. Phys. Lett. 110, 041607 (2017)] (on copper) and the needs of emission models in beam optics codes have lead to substantial changes in a Moments model of photoemission. The changes account for (i) a barrier profile and density of states factor based on density functional theory (DFT) evaluations, (ii) a Drude-Lorentz model of the optical constants and laser penetration depth, and (iii) a transmission probability evaluated by an Airy Transfer Matrix Approach. Importantly, the DFT results lead to a surface barrier profile of a shape similar to both resonant barriers and reflectionless wells: the associated quantum mechanical transmission probabilities are shown to be comparable to those recently required to enable the Moments (and Three Step) model to match experimental data but for reasons very different than the assumption by conventional wisdom that a barrier is responsible. The substantial modifications of the Moments model components, motivated by computational materials methods, are developed. The results prepare the Moments model for use in treating heterostructures and discrete energy level systems (e.g., quantum dots) proposed for decoupling the opposing metrics of performance that undermine the performance of advanced light sources like the x-ray Free Electron Laser. The consequences of the modified components on quantum yield, emittance, and emission models needed by beam optics codes are discussed.
Neutral dipole-dipole dimers: A new field in science
Kosower, Edward M.; Borz, Galina
2018-03-01
Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another
Energy Technology Data Exchange (ETDEWEB)
Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn
2017-07-12
Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.
Energy Technology Data Exchange (ETDEWEB)
Voitylov, V.V.; Spartakov, A.A.; Tolstoi, N.A.; Trusov, A.A.; Boitsova, I.N. [St. Petersburg State Univ. (Russian Federation)
1995-04-01
An electro-optical method of crossed electric fields is proposed for determining constant dipole colloidal particles moments of colloidal particles. Fields of this type make it possible to study the motion of colloidal particles determined exclusively by their constant moments, which substantially improves the measurement accuracy of these moments. This is of particular importance for the investigation of colloidal particles with constant dipole moments less than or comparable to induced dipole moments. For a number of disperse systems, the constant dipole moments per unit area of particles are determined. It is shown that the values of these specific moments are close to each other.
Energy Technology Data Exchange (ETDEWEB)
Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)
2011-10-15
In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang
2016-01-01
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.
Possibility of a new determination of the magnetic moment of the neutron
International Nuclear Information System (INIS)
Miller, P.D.
1974-01-01
In the lecture the development of an electric dipole moment spectrometer for the determination of the magnetic moment of the neutron is described. The possibility of a more accurate determination of the magnetic moment with the apparatus is discussed
Kopferman, H; Massey, H S W
1958-01-01
Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl
Understanding hydrogen bonding and determination of in-crystal dipol
Indian Academy of Sciences (India)
Wintec
asparaginium ion and the picrate in the other complex. We have additionally performed theoretical calcu- lations at the density functional theory (DFT) level to understand the origin of enhancement of the dipole moments in the two systems. Keywords. X-ray diffraction; experimental charge density; hydrogen bonding; dipole ...
Supersymmetric relations among electromagnetic dipole operators
International Nuclear Information System (INIS)
Graesser, Michael; Thomas, Scott
2002-01-01
Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β
Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles
International Nuclear Information System (INIS)
Ashida, Y.; Yamakawa, H.; Usui, H.; Miyake, Y.; Shinohara, I.; Funaki, I.; Nakamura, M.
2014-01-01
We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions r iL calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently
Controllable Nanoparticle Assembly and Actuation with Modified Dipole Potentials in Simulation
Dempster, Joshua
Science at the nanoscale poses several recurring difficulties. How can we control the assembly of objects too small for direct manipulation to be practical? How can we extend that control to in vivo systems so we can make use of nanotechnology in medicine? And how can we recreate the extraordinary capacities of Nature: healing, replication, growth, adaptation, self-regulation? One of the most powerful tools for addressing these challenges is the simple, familiar dipole moment. Since their debut as fuel control devices at NASA in the early sixties, possible applications for dipole suspensions have grown to areas far beyond what their creators envisioned. A multitude of ambitious new medical and mechanical applications make use of dipolar colloids. Dipoles are attractive from a practical standpoint because one can use fields to control not just their orientation and location, but also their mutual interactions. From a physical standpoint, dipoles are compelling as an exceptionally simple form of symmetry-breaking that leads to a variety of complex phenomena. This thesis studies the assembly and control of spherical colloids with a dipolar interaction modified by additional conditions using simulations. Three cases are examined in detail. The first is the case of an electrical dipole moment created by regions of opposite charge density on the surface of a colloid. Here the dipole potential is modified by strong screening. Such a system is interesting as a model for certain proteins in a high-salt solution and suggests possible uses for inverse Janus colloids. The resulting phases have little resemblance to the usual dipole phases and can be controlled with small quantities of homogeneously charged particles. In the second case, superparamagnetic dipoles are linked into chains. Such chains have been realized in a wide variety of experimental schemes. A general theory is developed for the equilibrium shapes of the chains in a precessing field when their endpoints are
Maximilien Brice
2002-01-01
The last of the 3280 dipole magnets from the Large Electron-Positron (LEP) collider is seen on its journey to the surface on 12 February 2002. The LEP era, which began at CERN in 1989 and ended 2000, comes to an end.
Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed
Smith, Glenn S.
2011-01-01
The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…
Kwaadgras, Bas W.; Van Roij, René; Dijkstra, Marjolein
2014-01-01
When calculating the interaction between electric field-induced dipoles, the dipole moments are often taken to be equal to their polarizability multiplied by the external electric field. However, this approach is not exact, since it does not take into account the fact that particles with a dipole
Paul R. Reed; Carol J. Cumber
2000-01-01
In October, 1996 Private Moments, an adult novelty store, opened for business in Huntsville, Texas. Huntsville had no ordinances in place to prevent the opening of this type of business. In fact, the local Small Business Development Center provided guidance and assistance to Edward Delagarza, the founder and owner of Private Moments. Many of the Huntsville citizens, unhappy with the opening of Private Moments, approached the City Council requesting that it be closed immediately and asked for ...
2001-01-01
Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...
Caspers, Friedhelm; Ruggiero, F; Tan, J
1999-01-01
An estimate of the resistive losses in the LHC beam screen is given from cold surface resistance measurements using the shielded pair technique, with particular emphasis on the effect of a high magnetic field. Two different copper coating methods, namely electro-deposition and co-lamination, have been evaluated. Experimental data are compared with theories including the anomalous skin effect and the magneto-resistance effect. It is shown whether the theory underestimates or not the losses depends strongly on the RRR value, on the magnetic field and on the surface characteristics. In the pessimistic case and for nominal machine parameters, the estimated beam-induced resistive wall heating can be as large as 260 mW/m for two circulating beams.
Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.
2017-10-01
We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.
Directory of Open Access Journals (Sweden)
Huamao Huang
2014-01-01
Full Text Available The light output of dipole source in three types of light-emitting diodes (LEDs, including the conventional planar LED, the nanorod LED, and the localized surface plasmon (LSP assisted LED by inserting silver nanoparticles in the gaps between nanorods, was studied by use of two-dimensional finite difference time domain method. The height of nanorod and the size of silver nanoparticles were variables for discussion. Simulation results show that a large height of nanorod induces strong wavelength selectivity, which can be significantly enhanced by LSP. On condition that the height of nanorod is 400 nm, the diameter of silver nanoparticle is 100 nm, and the wavelength is 402.7 nm, the light-output efficiency for LSP assisted LED is enhanced by 190% or 541% as compared to the nanorod counterpart or the planar counterpart, respectively. The space distribution of Poynting vector was present to demonstrate the significant enhancement of light output at the resonant wavelength of LSP.
Benalcazar, Wladimir A.; Bernevig, B. Andrei; Hughes, Taylor L.
2017-12-01
We extend the theory of dipole moments in crystalline insulators to higher multipole moments. As first formulated in Benalcazar et al. [Science 357, 61 (2017), 10.1126/science.aah6442], we show that bulk quadrupole and octupole moments can be realized in crystalline insulators. In this paper, we expand in great detail the theory presented previously [Benalcazar et al., Science 357, 61 (2017), 10.1126/science.aah6442] and extend it to cover associated topological pumping phenomena, and a class of three-dimensional (3D) insulator with chiral hinge states. We start by deriving the boundary properties of continuous classical dielectrics hosting only bulk dipole, quadrupole, or octupole moments. In quantum mechanical crystalline insulators, these higher multipole bulk moments manifest themselves by the presence of boundary-localized moments of lower dimension, in exact correspondence with the electromagnetic theory of classical continuous dielectrics. In the presence of certain symmetries, these moments are quantized, and their boundary signatures are fractionalized. These multipole moments then correspond to new symmetry-protected topological phases. The topological structure of these phases is described by "nested" Wilson loops, which we define. These Wilson loops reflect the bulk-boundary correspondence in a way that makes evident a hierarchical classification of the multipole moments. Just as a varying dipole generates charge pumping, a varying quadrupole generates dipole pumping, and a varying octupole generates quadrupole pumping. For nontrivial adiabatic cycles, the transport of these moments is quantized. An analysis of these interconnected phenomena leads to the conclusion that a new kind of Chern-type insulator exists, which has chiral, hinge-localized modes in 3D. We provide the minimal models for the quantized multipole moments, the nontrivial pumping processes, and the hinge Chern insulator, and describe the topological invariants that protect them.
Dipole operator constraints on composite Higgs models.
König, Matthias; Neubert, Matthias; Straub, David M
Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the [Formula: see text] branching ratio and [Formula: see text]. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and [Formula: see text] or [Formula: see text] flavour symmetries in the strong sector. In models with "wrong-chirality" Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models.
Broadband Dipole-Loop Combined Nanoantenna Fed by Two-Wire Optical Transmission Line
Directory of Open Access Journals (Sweden)
Janilson L. de Souza
2017-01-01
Full Text Available This paper presents a broadband nanoantenna fed by a two-wire optical transmission line (OTL. The antenna is defined by a combination of a dipole and a loop, where only the dipole element is connected to the OTL. The analysis is fulfilled by the linear method of moments with equivalent surface impedance to model the conductors. Firstly, the nanoantenna alone is investigated, where the input impedance, current distribution, reflection coefficient, fractional bandwidth, radiation efficiency, and radiation pattern are analyzed. Then, the input impedance matching of this antenna with the OTL is considered. In this case the current, near field distribution, radiation pattern, and reflection coefficient are calculated for different geometrical parameters. The results show that the loop inserted in the circuit can increase the bandwidth up to 42% and decreases the reflection coefficient in the OTL to −25 dB.
Energy Technology Data Exchange (ETDEWEB)
Kraft, Andreas
2012-12-20
The measurement of the electric dipole moment of the free neutron is directly linked to the question on the accurate determination of the magnetic field conditions inside the nEDM spectrometer. Using in-situ the spin-precession of polarized {sup 3}He, monitored by optically pumped Cs-magnetometers a sensitivity on the femto-tesla-scale can be obtained. At the institute of physics of the University Mainz a {sup 3}He/Cs-test facility was built to investigate the readout of {sup 3}He-spin-precession with a lamp-pumped Cs-magnetometer. Additionally, an ultra-compact and transportable polarizer unit was developed and installed in Mainz, which polarizes {sup 3}He gas up to 55 % of polarization before the compressed gas is delivered to two sandwich magnetometer cells inside the EDM chamber. This theses will present some results of the first successful test of the polarizer unit in January 2012. {sup 3}He was polarized in the ultra compact polarizer unit and transferred via guiding fields into a 4 layer mu-metal shield, where the free spin precession was detected with a lamp pumped Cs-magnetometer.
Cabouat, Baptiste; Sjöstrand, Torbjörn
2018-03-01
Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.
Interaction of counter-streaming plasma flows in dipole magnetic field
Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G
2017-01-01
Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...
Effective magnetic moment of neutrinos in strong magnetic fields
Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
DEFF Research Database (Denmark)
Hastrup, Kirsten Blinkenberg
2017-01-01
as an experiment in real time, where insights gained intersubjectively gradually shape up as knowledge through analysis. This line of thought is brought to bear on a discussion of collaboration between anthropologists, archaeologists, and biologists in North West Greenland. Through actual experiences from...... the field, this article shows how knowledge generated on the edge of one’s familiar disciplinary territory may both expand and intensify the anthropological field. Collaborative moments are seen to make new anthropological insights emerge through the co-presence of several analytical perspectives...
Malagnini, Luca; Dreger, Douglas S.
2016-07-01
Although optimal, computing the moment tensor solution is not always a viable option for the calculation of the size of an earthquake, especially for small events (say, below Mw 2.0). Here we show an alternative approach to the calculation of the moment-rate spectra of small earthquakes, and thus of their scalar moments, that uses a network-based calibration of crustal wave propagation. The method works best when applied to a relatively small crustal volume containing both the seismic sources and the recording sites. In this study we present the calibration of the crustal volume monitored by the High-Resolution Seismic Network (HRSN), along the San Andreas Fault (SAF) at Parkfield. After the quantification of the attenuation parameters within the crustal volume under investigation, we proceed to the spectral correction of the observed Fourier amplitude spectra for the 100 largest events in our data set. Multiple estimates of seismic moment for the all events (1811 events total) are obtained by calculating the ratio of rms-averaged spectral quantities based on the peak values of the ground velocity in the time domain, as they are observed in narrowband-filtered time-series. The mathematical operations allowing the described spectral ratios are obtained from Random Vibration Theory (RVT). Due to the optimal conditions of the HRSN, in terms of signal-to-noise ratios, our network-based calibration allows the accurate calculation of seismic moments down to Mw < 0. However, because the HRSN is equipped only with borehole instruments, we define a frequency-dependent Generalized Free-Surface Effect (GFSE), to be used instead of the usual free-surface constant F = 2. Our spectral corrections at Parkfield need a different GFSE for each side of the SAF, which can be quantified by means of the analysis of synthetic seismograms. The importance of the GFSE of borehole instruments increases for decreasing earthquake's size because for smaller earthquakes the bandwidth available
Dipole-dipole dispersion interactions between neutrons
Babb, James F.; Higa, Renato; Hussein, Mahir S.
2016-01-01
We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the $\\Delta$-resonance ($J^{\\pi}$ = + 3/2, I = 3/2). We found b...
Electromagnetic moments of 22F
Mihara, M.; Matsuta, K.; Komurasaki, J.; Hirano, H.; Nishimura, D.; Momota, S.; Ohtsubo, T.; Izumikawa, T.; Shimbara, Y.; Kubo, T.; Kameda, D.; Zhou, Dongmei; Zheng, Yongnan; Yuan, Daqing; Zhu, Shengyun; Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S.; Nagatomo, T.; Matsumiya, R.; Ishikawa, D.; Fukuda, M.; Minamisono, T.; Nojiri, Y.; Alonso, J. R.; Crebs, G. F.; Symons, T. J. M.
2010-03-01
The magnetic dipole (μ) and electric quadrupole (Q) moments of short-lived nucleus 22F (Iπ=4+, T=4.2s) have been measured for the first time by means of the β-NMR technique. A spin polarized 22F beam was produced through the charge exchange reaction of 22Ne and was implanted into single crysltals of NaF and MgF2 for μ and Q measurements, respectively. As a result, |μ(F22)|=(2.69443±0.00039)μ and |Q(F22)|=(3±2)mb was obtained. These values are well reproduced by the shell model calculations.
MOUTON, LJ; HOF, AL; DEJONGH, HJ; EISMA, WH
1991-01-01
The aim of the study was to analyse the effect of posture on the relation between EMG amplitude and moment of the back muscles in different subjects, in order to gain a better insight into the possibilities of EMG as a means of measuring individual back load. Eight healthy subjects participated in
Measurement of excited state static moments
International Nuclear Information System (INIS)
Sergolle, Henri
Electric quadrupole and magnetic dipole moments are defined from a classical description of the nucleus and a quantum expression is given for the operators. The principal characteristics of the moment interaction with an outer electric or magnetic field are recalled. The study of the perturbed angular distributions of nuclear reaction products allows half-lives of high spin isomer states to be measured (from a few ps to several hours). The decay gamma rays present, under certain conditions, a strong anisotropy; in principle only one detector is sufficient to observe the angular distribution; coincidences are unnecessary and a high counting rate becomes possible. The measurement of the Coulomb excitation probabilities give the electric (dynamic and static) moments and indirectly quadrupolar moments; two techniques are used: the analysis of elastically and inelastically scattered particles and measurement of the deexcitation γ rays in coincidence with the scattered ions. Quadrupole moments can be measured from the precession of the angular distribution [fr
Investigation of electrostatic force and dipole moment effects on ...
African Journals Online (AJOL)
An understanding of static properties of membrane is an essential prelude to the study of movement of molecules within the membrane. In this investigation any molecule has been theoretically investigated through the quantum mechanical calculations.According to the results obtained, the structural optimization of the ...
Lepton electric dipole moments from heavy states Yukawa couplings
Energy Technology Data Exchange (ETDEWEB)
Masina, Isabella E-mail: masina@roma1.infn.it
2003-11-03
In supersymmetric theories the radiative corrections due to heavy states could leave their footprints in the flavour structure of the supersymmetry breaking masses. We investigate whether present and future searches for the muon and electron EDMs could be sensitive to the CP violation and flavour misalignment induced on slepton masses by the radiative corrections due to the right-handed neutrinos of the seesaw model and to the heavy Higgs triplets of SU(5) GUT. When this is the case, limits on the relevant combination of neutrino Yukawa couplings are obtained. Explicit analytical expressions are provided which accounts for the dependencies on the supersymmetric mass parameters.
Search for strange baryon electric dipole moment at LHCb
Lewis, Daniel James
2017-01-01
A search for the EDM of $\\Lambda$ baryons using the LHCb detector is proposed. In order to perform this search, the reconstruction of $\\Lambda$ baryons using T tracks must be possible. This note presents the reconstruction techniques and resolution studies that demonstrate that this is indeed feasible.
Electric dipole moments from Yukawa phases in supersymmetric theories
International Nuclear Information System (INIS)
Romanino, A.; Strumia, A.
1997-01-01
We study quark and electron EDMs generated by Yukawa couplings in supersymmetric models with different gauge groups, using the EDM properties under flavour transformations. In the MSSM (or if soft terms are mediated below the unification scale) the one-loop contributions to the neutron EDM are smaller than in previous computations based on numerical methods, although increasing as tan 3 β. A neutron EDM close to the experimental limits can be generated in SU(5), if tan β is large, through the u-quark EDM d u , proportional to tan 4 β. This effect has to be taken into account also in SO(10) with large tan β, where d u is comparable to the d quark EDM, proportional to tan β. (orig.)
Electric dipole moment and spin supercurrent in superfluid 3He
International Nuclear Information System (INIS)
Mineev, V.P.; Volovik, G.E.
1992-01-01
The SU(2) gauge invariant theory of the relativistic interaction of the electrically neutral superfluid 3 He with electric and magnetic fields is formulated. The spin supercurrent response on the electric field is calculated for this interaction. The comparison with the nonrelativistic flexoelectric effect, arising due to the distortion of the atomic shell by the gradients of the superfluid order parameter, is made. 5 refs
Search for an Electric Dipole Moment (EDM) of 199Hg
Heckel, Blayne
2017-04-01
The observation of a non-zero EDM of an atom or elementary particle, at current levels of experimental sensitivity, would imply CP violation beyond the CKM matrix of the standard model of particle physics. Additional sources of CP violation have been proposed to help explain the excess of matter over anti-matter in our universe and the magnitude of ΘQCD, the strength of CP violation in the strong interaction, remains unknown. We have recently completed a set of measurements on the EDM of 199Hg, sensitive to both new sources of CP violation and ΘQCD. The experiment compares the phase accumulated by precessing Hg spins in vapor cells with electric fields parallel and anti-parallel to a common magnetic field. Our new result represents a factor of 5 improvement over previous results. A description of the EDM experiment, data, systematic error considerations will be presented. This work was supported by NSF Grant No. 1306743 and by the DOE Office of Nuclear Physics under Award No. DE-FG02-97ER41020.
Electric dipole moments of light nuclei from {chi}EFT
Energy Technology Data Exchange (ETDEWEB)
Higa, Renato [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05314-970, Sao Paulo, SP (Brazil)
2013-03-25
I present recent calculations of EDMs of light nuclei using chiral effective field theory techniques. At leading-order, we argue that they can be expressed in terms of six CP-violating low-energy constants. With our expressions, eventual non-zero measurements of EDMs of deuteron, helion, and triton can be combined to disentangle the different sources of CP-violation.
Self-assembly of spherical colloidal particles with off-centered magnetic dipoles
Abrikosov, A.I.; Sacanna, S.; Philipse, A.P.; Linse, P.
2013-01-01
Fluids of spherical colloids possessing an off-centered embedded magnetic dipole were investigated by using Monte Carlo simulations. Systems of colloids with different strengths and directions of the embedded dipole moment confined in a 2D space without and with an external magnetic field applied
Magnetic dipole field in a Schwarzschild metric with non-minimal coupling
International Nuclear Information System (INIS)
Souza, J.G.; Bedran, M.L.; Lesche, B.
1984-01-01
The influence of a non-minimal coupling term of electromagnetism and gravity is studied for a magnetic dipole field in the Schwarzschild metric. It is found that the new coupling term changes the magnetic dipole moment even for small masses. (Author) [pt
Electric dipole, polarizability and structure of cesium chloride clusters with one-excess electron
International Nuclear Information System (INIS)
Jraij, A.; Allouche, A.R.; Rabilloud, F.; Korek, M.; Aubert-Frecon, M.; Rayane, D.; Compagnon, I.; Antoine, R.; Broyer, M.; Dugourd, Ph.
2006-01-01
The measurement of the electric dipole of gas phase one-excess electron Cs n Cl n-1 clusters is reported together with a theoretical ab initio prediction of stable structures, dipole moments and electronic polarizabilities for these species in their ground state. Results are in agreement with NaCl cubic structures
Magnetic dipole interactions in crystals
Johnston, David C.
2016-01-01
The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ⃗i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ̂ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c /a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120∘ AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition
Continuous millennial decrease of the Earth's magnetic axial dipole
Poletti, Wilbor; Biggin, Andrew J.; Trindade, Ricardo I. F.; Hartmann, Gelvam A.; Terra-Nova, Filipe
2018-01-01
Since the establishment of direct estimations of the Earth's magnetic field intensity in the first half of the nineteenth century, a continuous decay of the axial dipole component has been observed and variously speculated to be linked to an imminent reversal of the geomagnetic field. Furthermore, indirect estimations from anthropologically made materials and volcanic derivatives suggest that this decrease began significantly earlier than direct measurements have been available. Here, we carefully reassess the available archaeointensity dataset for the last two millennia, and show a good correspondence between direct (observatory/satellite) and indirect (archaeomagnetic) estimates of the axial dipole moment creating, in effect, a proxy to expand our analysis back in time. Our results suggest a continuous linear decay as the most parsimonious long-term description of the axial dipole variation for the last millennium. We thus suggest that a break in the symmetry of axial dipole moment advective sources occurred approximately 1100 years earlier than previously described. In addition, based on the observed dipole secular variation timescale, we speculate that the weakening of the axial dipole may end soon.
Photon scattering by the giant dipole resonance
International Nuclear Information System (INIS)
Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.
1979-01-01
Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables
Multipole moments using extended coupled cluster method
Joshi, Sayali P.; Vaval, Nayana
2013-05-01
Using analytic extended coupled cluster (ECC) response approach quadrupole moments, dipole-quadrupole polarizabilities and dipole polarizabilities are studied. In the current implementation of the functional we have included all the double linked terms within (CCSD) approximation. These terms will be important for the accurate description of properties at the stretched geometries. We report the properties for carbon monoxide and hydrogen fluoride molecules, as a function of bond distance and compare our results for carbon monoxide with the full CI results. We have also reported the properties of methane, tetrafluoromethane, acetylene, difluoroacetylene, water and ammonia.
Santra, Bodhaditya
2013-01-01
De drie discrete symmetrieën ladingconjugatie (C), pariteit (P) en tijdsomkeer (T) zijn onderdeel van het Standaard Model. Het behoud en de schending van deze symmetrieën leggen een enorme beperking op aan de theorie. De schending van CP kan bestudeerd worden door naar permanente elektrische
Dipole-dipole dispersion interactions between neutrons
Energy Technology Data Exchange (ETDEWEB)
Babb, James F. [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Higa, Renato [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Hussein, Mahir S. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo (Brazil); Departamento de Fisica, Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil)
2017-06-15
We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J{sup π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ∝ 50 fm up to ∝ 10{sup 3} fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed. (orig.)
Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.
2013-09-01
triple-moment sectional (TMS) aerosol dynamics model, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for aerosol processes and properties such as gas-to-particle mass transfer, heterogeneous reaction, and light extinction cross section. The performance of MBHM was evaluated against double-moment sectional (DMS) models with coarse (BIN4) to very fine (BIN256) size resolutions for simulating evolution of particles under simultaneously occurring nucleation, condensation, and coagulation processes (BINx resolution uses x sections to cover the 1 nm to 1 µm size range). Because MBHM gives a physically consistent form of the intrasectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments Mk (k: 0, 2, 3), dMk/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multicategory and/or mixing state) modeling: Primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from 1 to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photochemical age for aerosol mixing state studies.
Neutral fermion possessing by electric and magnetic moments in external electromagnetic field
International Nuclear Information System (INIS)
Khalilov, V.R.
2001-01-01
It is shown that in 2+1 dimensions the Dirac equations for a neutral fermion, specified by electric and magnetic dipole moments, is reduced in the electromagnetic field to the Dirac equation for the charged fermion in the external field, characterized by some pseudovector potential. The neutral fermion charge is determined by its dipole moments. The exact solution is found for the Dirac equation for the massive neutral fermion with magnetic and electric dipole moments in the external electromagnetic plane-wave field. The problem on the neutral fermion vacuum polarization in presence of external electromagnetic fields is considered [ru
Fermi Surfaces of Iron-Pnictide High-Tc Superconductors from the Limit of Local Magnetic Moments
Araujo, Miguel; Sacramento, Pedro; Rodriguez, Jose
2012-02-01
We study a 2-orbital t-J model for an isolated square lattice of iron atoms, which stack up to form an iron-pnictide high-Tc superconductor. The two orbitals in question are the degenerate d±= 3d(x±iy)z ones, which maximize the Hund's Rule coupling. First-neighbor and second-neighbor hopping (t) and Heisenberg exchange (J) are included. A Schwinger-boson-slave-fermion mean-field analysis yields a hidden half metal state in which holes hop through a d+d- spin background without much hopping across orbitals. This state is characterized by an inner and an outer Fermi surface pocket centered at the γ point. The Fermi surface pockets resemble those predicted by band structure calculations that include all five 3d orbitals. By sweeping the Hund's coupling, we also identify a quantum-critical point (QCP) where zero-energy spin-wave excitations exist at the momenta associated with commensurate spin-density-wave (cSDW) order. These low-energy spin-waves result in nested Fermi-surface pockets centered at cSDW momenta. Exact diagonalization of one hole in the 2-orbital t-J model over a 4x4 square lattice yields low-energy spectra that are consistent with the nested Fermi surfaces that are predicted to exist at the QCP.
2004-01-01
The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.
Maximilien Brice
2004-01-01
The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.
Giant Primeval Magnetic Dipoles
Thompson, Christopher
2017-07-01
Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.
Dipole operator constraints on composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Koenig, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Neubert, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Cornell University, Department of Physics, LEPP, Ithaca, NY (United States); Straub, David M. [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany)
2014-07-15
Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipolemoment and observables sensitive to flavour-changing neutral currents, such as the B→ X{sub s}γ branching ratio and ε'/ε. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and U(3){sup 3} or U(2){sup 3} flavour symmetries in the strong sector. In models with ''wrong-chirality'' Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models. (orig.)
International Nuclear Information System (INIS)
Holanda, B A; Cordeiro, R C; Blak, A R
2010-01-01
Dipole defects in gamma irradiated and thermally treated beryl (Be 3 Al 2 Si 6 O 18 ) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.
A big measurement of a small moment
E Sauer, B.; Devlin, J. A.; Rabey, I. M.
2017-07-01
A beam of ThO molecules has been used to make the most precise measurement of the electron’s electric dipole moment (EDM) to date. In their recent paper, the ACME collaboration set out in detail their experimental and data analysis techniques. In a tour-de-force, they explain the many ways in which their apparatus can produce a signal which mimics the EDM and show how these systematic effects are measured and controlled.
Rodriguez, Jose P.; Araujo, Miguel A. N.; Sacramento, Pedro D.
2014-07-01
We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 × 4 × 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d + = 3d(x + iy)z and d - = 3d(x - iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.
Study of magnetic moments of nuclear excited states at TRISTAN
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.; Wolf, A.; Berant, Z.; Gill, R.L.; Kruse, H.
1984-01-01
Measurement of the static magnetic dipole moments of nuclear excited states are of interest since they reveal information on nuclear structure not available by other means. A system has been constructed at the TRISTAN separator to measure magnetic dipole moments of excited states in neutron-rich nuclei using the method of perturbed angular correlations (PAC). High magnetic fields are not available through the use of a superconducting magnet. The capability of the TRISTAN system is discussed and the PAC measuring apparatus is described. Final results from recent g factor measurements at TRISTAN on 4 + states in the N = 82 isotones are discussed in some detail. Studies in progress are briefly outlined
Harmonic moment dynamics in Laplacian growth
Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B.; Swinney, Harry L.
2010-01-01
Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the kth harmonic moment Mk to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dMk/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0 ) are all conserved, in accord with Richardson’s theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.
Assembling Transgender Moments
Greteman, Adam J.
2017-01-01
In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…
FOHI-D: An iterative Hirshfeld procedure including atomic dipoles
Geldof, D.; Krishtal, A.; Blockhuys, F.; Van Alsenoy, C.
2014-04-01
In this work, a new partitioning method based on the FOHI method (fractional occupation Hirshfeld-I method) will be discussed. The new FOHI-D method uses an iterative scheme in which both the atomic charge and atomic dipole are calculated self-consistently. In order to induce the dipole moment on the atom, an electric field is applied during the atomic SCF calculations. Based on two sets of molecules, the atomic charge and intrinsic atomic dipole moment of hydrogen and chlorine atoms are compared using the iterative Hirshfeld (HI) method, the iterative Stockholder atoms (ISA) method, the FOHI method, and the FOHI-D method. The results obtained are further analyzed as a function of the group electronegativity of Boyd et al. [J. Am. Chem. Soc. 110, 4182 (1988); Boyd et al., J. Am. Chem. Soc. 114, 1652 (1992)] and De Proft et al. [J. Phys. Chem. 97, 1826 (1993)]. The molecular electrostatic potential (ESP) based on the HI, ISA, FOHI, and FOHI-D charges is compared with the ab initio ESP. Finally, the effect of adding HI, ISA, FOHI, and FOHI-D atomic dipoles to the multipole expansion as a function of the precision of the ESP is analyzed.
FOHI-D: An iterative Hirshfeld procedure including atomic dipoles
International Nuclear Information System (INIS)
Geldof, D.; Blockhuys, F.; Van Alsenoy, C.; Krishtal, A.
2014-01-01
In this work, a new partitioning method based on the FOHI method (fractional occupation Hirshfeld-I method) will be discussed. The new FOHI-D method uses an iterative scheme in which both the atomic charge and atomic dipole are calculated self-consistently. In order to induce the dipole moment on the atom, an electric field is applied during the atomic SCF calculations. Based on two sets of molecules, the atomic charge and intrinsic atomic dipole moment of hydrogen and chlorine atoms are compared using the iterative Hirshfeld (HI) method, the iterative Stockholder atoms (ISA) method, the FOHI method, and the FOHI-D method. The results obtained are further analyzed as a function of the group electronegativity of Boyd et al. [J. Am. Chem. Soc. 110, 4182 (1988); Boyd et al., J. Am. Chem. Soc. 114, 1652 (1992)] and De Proft et al. [J. Phys. Chem. 97, 1826 (1993)]. The molecular electrostatic potential (ESP) based on the HI, ISA, FOHI, and FOHI-D charges is compared with the ab initio ESP. Finally, the effect of adding HI, ISA, FOHI, and FOHI-D atomic dipoles to the multipole expansion as a function of the precision of the ESP is analyzed
Magnetic dipoles and electric currents
Corbó, Guido; Testa, Massimo
2009-01-01
We discuss several similarities and differences between the concepts of electric and magnetic dipoles. We then consider the relation between the magnetic dipole and a current loop and show that in the limit of a pointlike circuit, their magnetic fields coincide. The presentation is accessible to undergraduate students with a knowledge of the basic ideas of classical electromagnetism.
Dipole vortices in the Great Australian Bight
DEFF Research Database (Denmark)
Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard
2015-01-01
Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB......) with cooler, fresher, oxygen-rich waters offshore. The alternating jets' flowing into the mushrooms were directed mainly northwards and southwards and differed in temperature by only 1.5 degrees C; however, the salinity difference was as much as 0.5, and therefore quite large. The GAB waters were slightly...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...
Energy Technology Data Exchange (ETDEWEB)
Correll, F.D.; Madansky, L.; Hardekopf, R.A.; Sunier, J.W.
1983-08-01
The ground-state magnetic dipole and electric quadrupole moments of the ..beta.. emitter /sup 9/Li (J/sup ..pi../ = (3/2)/sup -/, T/sub 1/2/ = 0.176 s) have been measured for the first time. Polarized /sup 9/Li nuclei were produced in the /sup 7/Li(t,p) reaction, using 5--6 MeV polarized tritons. The recoiling /sup 9/Li nuclei were stopped either in Au foils or in LiNbO/sub 3/ single crystals, and their polarization was detected by measuring the ..beta..-decay asymmetry. Nuclear magnetic resonance techniques were used to depolarize the nuclei, and the resonant frequencies were deduced from changes in the asymmetry. The /sup 9/Li dipole moment was deduced from the measured Larmor frequency in Au; the result, including corrections for diamagnetic shielding and the Knight shift, is Vertical Bar..mu..Vertical Bar = 3.4391(6) ..mu../sub N/. The ratio of the /sup 9/Li quadrupole moment to that of /sup 7/Li was derived from their respective quadrupole couplings in LiNbO/sub 3/; the value is Vertical BarQ( /sup 9/Li)/Q( /sup 7/Li)Vertical Bar = 0. 88 +- 0.18. Both results are in agreement with shell model predictions.
The Measurement of the Muon's Anomalous Magnetic Moment Isn't
Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael
2003-01-01
Recently the Muon (g-2) Collaboration announced a new measurement of the muon's anomalous magnetic moment [hep-ex/0208001]. More precisely, however, what has been measured is the muon's anomalous spin precession frequency. We point out that this receives contributions from both the muon's anomalous magnetic and electric dipole moments, and the reported data and all existing constraints cannot distinguish between the two.
Method of moments in electromagnetics
Gibson, Walton C
2007-01-01
Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t
A Green's function approach to giant-dipole systems
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-01-01
In this work we perform a Green’s function analysis of giant-dipole systems. First, we derive the Green’s functions of different magnetically field-dressed systems, in particular of electronically highly excited atomic species in crossed electric and magnetic fields—so-called giant-dipole states. We determine the dynamical polarizability of atomic giant-dipole states as well as the adiabatic potential energy surfaces of giant-dipole molecules in the framework of the Green’s function approach. Furthermore, we perform an comparative analysis of the latter to an exact diagonalization scheme and show the general divergence behavior of the widely applied Fermi-pseudopotential approach. Finally, we derive the giant-dipole’s regularized Green’s function representation.
Dipoles, unintentional antennas and EMC
Directory of Open Access Journals (Sweden)
Berend Danker
2008-01-01
Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-06-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)
Dipole Map For Divertor Tokamaks
International Nuclear Information System (INIS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2003-01-01
Heat flux impinging on the collector plates of divertor tokamaks can be prodigious. Therefore, the problem of spreading the heat flux on plates is a crucial issue for divertor tokamaks such as ITER. Here we use method of maps /1,2/ to investigate this problem. Magnetic field lines in non-axisymmetric divertor tokamaks are a one and a half degree of freedom Hamiltonian system /1-3/. We represent the unperturbed magnetic topology by the Symmetric Simple Map (SSM) /4/ given by yn+1 = yn + 2kxn - 2k2yn (1 - yn), xn+1 = xn - kyn (1 - yn) - 2k2yn+1 (1 - yn+1). The effects of a current carrying coil placed externally across from X-point is represented by Dipole Map (DP) /4,5/ given by x n+1 = x n + 2δs 3 x n+1 (y n - y s + s/[x n+1 2 + (y n - y s + s) 2 ] 2 ), y n+1 = y n + δs 3 x n+1 ((y n - y s + s) 2 - x n+1 2 /[x n+1 2 + (y n - y s + s) 2 ] 2 ) δ is amplitude of high MN magnetic perturbation, s is the distance of coil from last good surface across from X point, and is the y coordinate of last good surface where it crosses the axis joining X point and O point across from X point. We fix k=0.3 and s = (1/2)|y s |. We calculate the increase in width of stochastic layer and area of footprint of field lines on divertor plate as δ is increased. We also calculate how connection length, toroidal and poloidal circuits and their fractal structures, the number, location and density of hot spots change with δ. Finally, we make conclusions about how the heat flux can be possibly controlled and reduced by applying external magnetic perturbation in divertor tokamaks
Iron ore deposits model using geoelectrical resistivity method with dipole-dipole array
Directory of Open Access Journals (Sweden)
Octova Adree
2017-01-01
Full Text Available Mining industry is an industry with very high risk (losses. In order that mining activities can be run well, then the potential of the Earth’s resources must be known for sure. one of the Earth’s resources of high economic value is the iron ore. Iron ore is rarely found in a free state in nature, it is usually associated with other minerals and exposed randomly. With these properties, iron ore needs to be modeled before doing mining activities in order to avoid large losses. Iron ore deposits can be modeled with geoelectrical resistivity method. Dipole-dipole array will produce good imaging both vertically and laterally. From the measurement results of geoelectrical resistivity with dipole-dipole array will be obtained the value of measuring the current and potential difference. This value will generate into 2D and 3D model of the cross section of the iron ore deposits. One of the areas in West Sumatra has the potential for iron ore. Five lines were applied in this area. The result of cross section got the iron minerals associated with quartzite at 30 meters depth below the surface.
Quasi-adiabatic motion of energetic particles in a dipole magnetic field
International Nuclear Information System (INIS)
Il'in, V.D.; Kuznetsov, S.N.; Yushkov, B.Yu.
1992-01-01
A moving coordinate system for a dipole magnetic field, in which reversible variations of magnetic moment for the range of obvious violations of adiabatic conditions are absent, and the description of magnetic moment violations is relatively simple, is considered. Constructing of a coordinate system, features of the central trajectory, determining its motion, the application range, the main application field and consequences are discussed. 11 refs.; 3 figs
Ion-dipole interactions in concentrated organic electrolytes.
Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel
2003-06-16
An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.
Surface modifications by field induced diffusion.
Directory of Open Access Journals (Sweden)
Martin Olsen
Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.
Strong surface effect on direct bulk flexoelectric response in solids
International Nuclear Information System (INIS)
Yurkov, A. S.; Tagantsev, A. K.
2016-01-01
In the framework of a continuum theory, it is shown that the direct bulk flexoelectric response of a finite sample essentially depends on the surface polarization energy, even in the thermodynamic limit where the body size tends to infinity. It is found that a modification of the surface energy can lead to a change in the polarization response by a factor of two. The origin of the effect is an electric field produced by surface dipoles induced by the strain gradient. The unexpected sensitivity of the polarization response to the surface energy in the thermodynamic limit is conditioned by the fact that the moments of the surface dipoles may scale as the body size
A new dipole index of the salinity anomalies of the tropical Indian Ocean.
Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang
2016-04-07
With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.
1974-01-01
Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.
Fawzy, Wafaa M
2012-01-26
This work presents the first investigation on the intermolecular potential energy surface of the ground electronic state of the O2(-)(2Πg)-H2(1Σg(+)) complex. High level correlated ab initio calculations were carried out using the Hartree-Fock spin-unrestricted coupled cluster singles and doubles including perturbative triples correction [RHF-UCCSD(T)]/aug-cc-pVXZ levels of calculations, where XZ = DZ, TZ, QZ, and 5Z. Results of full geometry optimization and the intermolecular potential energy surface (IPES) calculations show four equivalent minimum energy structures of L-shaped geometry with Cs symmetry at equilibrium along the 2A″ surface of the complex. For these equilibrium minimum energy structures, the most accurate value for the dissociation energy (De) was calculated as 1407.7 cm(-1), which was obtained by extrapolating the counterpoise (CP) corrected De values to the complete basis set (CBS) limit. This global minimum energy structure is stabilized by an ion-induced-dipole hydrogen bond. Detailed investigations of the IPES show that the collinear structure is unstable, while the C2v geometries present saddle points along the 2A″ surface. The barrier height between the two equivalent structures that differs in whether the hydrogen-bonded hydrogen atom is above or below the axis that connects centers of masses of the H2 and O2(-) moieties within the complex was calculated as 70 cm(-1). This suggests that the complex exhibits large amplitude motion. The barrier height to rotation of the H2 moiety by 180° within the complex is 1020 cm(-1). Anharmonic oscillator calculations predicted a strong H-H stretch fundamental transition at 3807 cm(-1). Results of the current work are expected to stimulate further theoretical and experimental investigations on the nature of intermolecular interactions in complexes that contain the superoxide radical and various closed-shell molecules that model atmospheric and biological molecules. These studies are fundamental
Magnetic dipole excitations of the 163Dy nucleus
Zenginerler, Zemine; Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar; Guliyev, Ekber
2014-03-01
In this study some properties of the magnetic dipole excitations of the deformed odd mass 163Dy nucleus were studied by using Quasiparticle-phonon nuclear model (QPNM). The several of the ground-state and low-lying magnetic dipole (M1) mode characteristics were calculated for deformed odd-mass nuclei using a separable Hamiltonian within the QPNM. The M1 excited states, reduced transition probabilities B(M1), the ground-state magnetic properties such as magnetic moment (μ), intrinsic magnetic moment (gK) , effective spin factor (gseff.) are the fundamental characteristics of the odd-mass nucleus and provide key information to understand nuclear structure. The theoretical results were compared with the available experimental data and other theoretical approaches. Calculations show that the spin-spin interaction in this isotopes leads to polarization effect influencing the magnetic moments. Furthermore we found a strong fragmentation of the M1 strength in 163Dy nucleus which was in qualitative agreement with the experimental data. Sakarya University, Project Number: 2012-50-02-007 and Z.Zenginerler acknowledge to TUBITAK-TURKEY 2013, fellowship No: 2219.
Rathjen, C
2002-01-01
A method based on analytical formulas is described to calculate bending moments, stresses, and deformations of vacuum chambers and beam screens in dipole and in quadrupole fields during a magnet quench. Solutions are given for circular and racetrack shaped structures. Without the need of time consuming calculations the solutions enable a quick design and verification of vacuum chambers and beam screens.
International Nuclear Information System (INIS)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-01-01
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments
Energy Technology Data Exchange (ETDEWEB)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.
Moment graphs and representations
DEFF Research Database (Denmark)
Jantzen, Jens Carsten
2012-01-01
Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...
Schmüdgen, Konrad
2017-01-01
This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidime...
Surface Dipole Control of Liquid Crystal Alignment
Czech Academy of Sciences Publication Activity Database
Schwartz, J. J.; Mendoza, A.M.; Wattanatorn, N.; Zhao, Y.; Nguyen, V.T.; Spokoyny, A.M.; Mirkin, CH.A.; Baše, Tomáš; Weiss, P. S.
2016-01-01
Roč. 138, č. 18 (2016), s. 5957-5967 ISSN 0002-7863 Institutional support: RVO:61388980 Keywords : Self-assembled monolayers * Deposited gold-films * Carboranethiol isomers Subject RIV: CA - Inorganic Chemistry Impact factor: 13.858, year: 2016
International Nuclear Information System (INIS)
McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.
1986-01-01
The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature
Multiscale dipole relaxation in dielectric materials
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt
2016-01-01
Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where...
High-Precision Resonant Cavity Beam Position, Emittance and Third-Moment Monitors
Barov, Nikolai; Miller, Roger H; Nantista, Christopher D; Weidemann, A W
2005-01-01
Linear colliders and FEL facilities need fast, nondestructive beam position and profile monitors to facilitate machine tune-up, and for use with feedback control. FAR-TECH, Inc. is developing a resonant cavity diagnostic to simultaneously measure the dipole, quadrupole and sextupole moments of the beam distribution. Measurements of dipole and quadrupole moments at multiple locations yield information about beam orbit and emittance. The sextupole moment can reveal information about beam asymmetry which is useful in diagnosing beam tail deflections caused by short range dipole wakefields. In addition to the resonance enhancement of a single-cell cavity, use of a multi-cell standign-wave structure further enhances signal strength and improves the resolution of the device. An estimated rms beam size resolution is sub micro-meters and beam position is sub nano-meter.
The influence of Indian Ocean Dipole (IOD) on biogeochemistry of ...
Indian Academy of Sciences (India)
nature can be clearly seen in the subsurface due to the large heat capacity of the oceans. This subsur- face dipole can also affect surface CHLA through its influence on nutrients entrainment into the mixed layer. The CHLA showed large spatial vari- ability with low in boxes 2 and 3 compared to the other boxes (figure 4).
Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra
International Nuclear Information System (INIS)
Buckingham, A. David
2014-01-01
Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection
Effect of torsion moment on failure bending moment for circumferentially cracked pipe
International Nuclear Information System (INIS)
Li, Yinsheng; Hasegawa, Kunio; Ida, Wataru; Hoang, Phuong H.; Bezensek, Bostjan
2010-01-01
When a crack is detected in a stainless steel pipe during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in the current codes, the limit load criterion is only provided considering pressure and bending moment. The torsion moment is not considered, although torsion moment does exist in the nuclear power piping system. In this paper, finite element analyses are carried out for stainless steel pipe containing a circumferential surface crack under the combination of bending moment and torsion moment, considering different pipe dimensions and flaw sizes. Based upon the analysis results, a plastic collapse estimation method is proposed considering the existence of the torsion moment and its magnitude, and this method make it possible to evaluate the integrity of the pipe for general loading conditions. (author)
Distribution functions and moments in the theory of coagulation
International Nuclear Information System (INIS)
Pich, J.
1990-04-01
Different distribution functions and their moments used in the Theory of coagulation are summarized and analysed. Relations between the moments of these distribution functions are derived and the physical meaning of individual moments is briefly discussed. The time evolution of the moment of order zero (total number concentration) during the coagulation process is analysed for the general kernel of the Smoluchowski equation. On this basis the time evolution of certain physically important quantities related to this moment such as mean particle size, surface and volume as well as surface concentration is described. Equations for the half time of coagulation for the general collision frequency factor are derived. (orig.) [de
Dynamics of a nonlinear dipole vortex
DEFF Research Database (Denmark)
Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.
1995-01-01
A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganiz...
Descent of the last LHC dipole magnet
Maximilien Brice
2007-01-01
The last of 1746 superconducting magnets is lowered into the LHC tunnel via a specially constructed pit at 12:00 on 26 April. This 15-m long dipole magnet is one of 1232 dipoles positioned around the 27-km circumference of the collider. Dipole magnets produce a magnetic field that bends the particle beams around the circular accelerator.
Dipole and spin-dipole strength distributions in isotopes
Indian Academy of Sciences (India)
Necla Cakmak
2018-01-03
Jan 3, 2018 ... and 14 and the giant resonances in the energy region of. 19–27 MeV were found to be predominantly excited by. L = 1 transition [19]. Also, the angular distributions of double differential cross-section were measured for. 40Ca(p, p ) reaction at 319 MeV [20]. The spin-dipole resonance has a total measured ...
International Nuclear Information System (INIS)
Krivoruchenko, M.I.
1985-01-01
In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model
Directory of Open Access Journals (Sweden)
Trullàs J.
2011-05-01
Full Text Available Molecular dynamics simulations of molten NaI at 995 K have been carried out using polarizable ion models based on rigid ion pair potentials to which the anion induced dipole polarization is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and deformation short-range damping interactions that oppose the electrically induced dipole moments. The structure and self-diffusion results are compared with those obtained by Galamba and Costa Cabral using first principles Hellmann-Feynman molecular dynamics simulations and using classical molecular dynamics of a shell model which allows only the iodide polarization
Magnetic moments of light nuclei within the framework of reduced Hamiltonian method
Deveikis, A
1998-01-01
A new procedure for evaluation of magnetic dipole moments of light atomic nuclei has been developed. The procedure presented obeys the principles of antisymmetry and translational invariance and is based on the reduced Hamiltonian method. The theoretical formulation has been illustrated by calculation of magnetic dipole moments for 2 sup H , 3 sup H , 3 sup H e, 4 sup H e, 5 sup H e, 5 sup L i, 11 sup L i, and 6 sup L i nuclei. The calculations were performed in a complete 0(h/2 pi)omega basis. The obtained results are in good agreement with the experimental data. (author)
On the multipole moments of charge distributions
International Nuclear Information System (INIS)
Khare, P.L.
1977-01-01
There are two different standard methods for showing the equivalence of a charge distribution in a small volume tau surrounding a point O, to the superposition of a monopole, a dipole, a quadrupole and poles of higher moments at the point O: (a) to show that the electrostatic potential due to the charge distribution at an outside point is the same as due to these superposed multipoles (including a monopole). (b) to show that the energy of interaction of an external field with the charge distribution is the same as with the superposed equivalent monopole and multipoles. Neither of these methods gives a physical picture of the equivalence of a charge distribution to the superposition of different multipoles. An attempt is made to interpret in physical terms the emergence of the multipoles of different order, that are equivalent to a charge distribution and to show that the magnitudes of the moments of these multipoles are in agreement with the results of both the approaches (a) and (b). This physical interpretation also helps to understand, in a simple manner, some of the wellknown properties of the multipole moments of atoms and nuclei. (K.B.)
Technology of superconducting accelerator dipoles
International Nuclear Information System (INIS)
Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.
1983-06-01
We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value
Aperture measurements with AC dipole
Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department
2018-01-01
During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible beneﬁts of the new method are discussed.
Dipole induced conductance modulation in chromophore-functionalized single-walled carbon nanotubes
Zhao, Yuanchun; Huang, Changshui; Kim, Myungwoong; Gopalan, Padma; Eriksson, Mark
2013-03-01
Single-walled carbon nanotubes (SWNTs) are highly sensitive to local electrostatic environments, making SWNT field-effect transistors (FETs) of interest for a number of sensor applications and optoelectronic devices. Here we demonstrate a direct correlation between the conduction of SWNTs and their surrounding dipolar environments. We use azobenzene-based dipolar chromophores, Disperse Red 1 (DR1) and its derivatives to functionalize the sidewalls of SWNTs. The chromophores are coupled with a pyrenebutyric group for realizing noncovalent attachment and to attempt to direct their dipole moments. The functionalizing chromophores produce a dipole field that shifts the threshold voltage (Vth) of the nanotube FET. Under light illumination, these molecules isomerize from the ground trans state to the excited cis state, leading to a decrease of their dipole moments. This dipole moment change acts as an additional gate, causing a shift in Vth. Our results provide a new insight into the photogating mechanisms of the nanotube-chromophore hybrid devices, and they reveal the possibility to modulate optoelectronic properties of nanotube-hybrid devices by designing chromophores with required photosensitive features.
Acoustic dispersion in a two-dimensional dipole system
International Nuclear Information System (INIS)
Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter
2008-01-01
We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r 3 potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains
González-Sprinberg, G. A.; Vidal, J.
2017-10-01
The τ lepton magnetic moment theoretical predictions and measurements are reviewed. While it is believed that such a high mass particle is a good candidate to show up new physics, this is not the case up to now. The magnetic moment of elementary fermions, and in particular the anomalous magnetic moment of the electron, had an historical impact both in relativistic quantum mechanics and in quantum field theories. Besides, many new physics models were discarded when confronted with these magnitudes. More recently, the discrepancy of the experiments and the theoretical predictions for the muon anomalous magnetic moment is still an open issue. For the τ lepton, instead, while the theoretical prediction is well known for the standard model and some new physics models, the data are very far of determining even its sign or the first figure. We will discuss the most important theoretical aspects of the τ magnetic moment, and also the current accepted measurements and future perspectives, in particular related to B-factories.
Pseudospin Symmetry and Forbidden Magnetic Dipole and Gamow-Teller Transitions
Ginocchio, Joseph
1999-10-01
Recently it has been shown that pseudospin symmetry has its origins in a relativistic symmetry of the Dirac Hamiltonian[1]. Using this symmetry we relate single - nucleon relativistic magnetic moments of states in a pseudospin doublet to the relativistic magnetic dipole transitions between the states in the doublet, and we relate single - nucleon relativistic Gamow - Teller transitions within states in the doublet. We apply these relationships to the Gamow - Teller transitions from ^39Ca to its mirror nucleus ^39K [2] and to the systematics of forbidden magnetic dipole transitions. 1. J. N. Ginocchio and A. Leviatan Phys. Lett. B 425, 1 (1998). 2. J. N. Ginocchio Phys. Rev. C 59, 2487 (1999).
Energy Technology Data Exchange (ETDEWEB)
Hanks, T.C.; Kanamori, H.
1979-05-10
The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.
Charming CP violation and dipole operators from RS flavor anarchy
Delaunay, Cédric; Kamenik, Jernej F.; Perez, Gilad; Randall, Lisa
2013-01-01
Recently the LHCb collaboration reported evidence for direct CP violation in charm decays. The value is sufficiently large that either substantially enhanced Standard Model contributions or non-Standard Model physics is required to explain it. In the latter case only a limited number of possibilities would be consistent with other existing flavor-changing constraints. We show that warped extra dimensional models that explain the quark spectrum through flavor anarchy can naturally give rise to contributions of the size required to explain the the LHCb result. The D meson asymmetry arises through a sizable CP-violating contribution to a chromomagnetic dipole operator. This happens naturally without introducing inconsistencies with existing constraints in the up quark sector. We discuss some subtleties in the loop calculation that are similar to those in Higgs to γγ. Loop-induced dipole operators in warped scenarios and their composite analogs exhibit non-trivial dependence on the Higgs profile, with the contributions monotonically decreasing when the Higgs is pushed away from the IR brane. We show that the size of the dipole operator quickly saturates as the Higgs profile approaches the IR brane, implying small dependence on the precise details of the Higgs profile when it is quasi IR localized. We also explain why the calculation of the coefficient of the lowest dimension 5D operator is guaranteed to be finite. This is true not only in the charm sector but also with other radiative processes such as electric dipole moments, b → sγ, ɛ '/ ɛ K and μ → eγ. We furthermore discuss the interpretation of this contribution within the framework of partial compositeness in four dimensions and highlight some qualitative differences between the generic result of composite models and that obtained for dynamics that reproduces the warped scenario.
Tilted dipole model for bias-dependent photoluminescence pattern
Fujieda, Ichiro; Suzuki, Daisuke; Masuda, Taishi
2014-12-01
In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission.
Tilted dipole model for bias-dependent photoluminescence pattern
International Nuclear Information System (INIS)
Fujieda, Ichiro; Suzuki, Daisuke; Masuda, Taishi
2014-01-01
In a guest-host system containing elongated dyes and a nematic liquid crystal, both molecules are aligned to each other. An external bias tilts these molecules and the radiation pattern of the system is altered. A model is proposed to describe this bias-dependent photoluminescence patterns. It divides the liquid crystal/dye layer into sub-layers that contain electric dipoles with specific tilt angles. Each sub-layer emits linearly polarized light. Its radiation pattern is toroidal and is determined by the tilt angle. Its intensity is assumed to be proportional to the power of excitation light absorbed by the sub-layer. This is calculated by the Lambert-Beer's Law. The absorption coefficient is assumed to be proportional to the cross-section of the tilted dipole moment, in analogy to the ellipsoid of refractive index, to evaluate the cross-section for each polarized component of the excitation light. Contributions from all the sub-layers are added to give a final expression for the radiation pattern. Self-absorption is neglected. The model is simplified by reducing the number of sub-layers. Analytical expressions are derived for a simple case that consists of a single layer with tilted dipoles sandwiched by two layers with horizontally-aligned dipoles. All the parameters except for the tilt angle can be determined by measuring transmittance of the excitation light. The model roughly reproduces the bias-dependent photoluminescence patterns of a cell containing 0.5 wt. % coumarin 6. It breaks down at large emission angles. Measured spectral changes suggest that the discrepancy is due to self-absorption and re-emission
Dynamical Dipole and Equation of State in N/Z Asymmetric Fusion Reactions
Directory of Open Access Journals (Sweden)
Giaz Agnese
2014-03-01
Full Text Available In heavy ion reactions, in the case of N/Z asymmetry between projectile and target, the process leading to complete fusion is expected to produce pre-equilibrium dipole γ-ray emission. It is generated during the charge equilibration process and it is known as Dynamical Dipole. A new measurement of the dynamical dipole emission was performed by studying 16O + 116Sn at 12 MeV/u. These data, together with those measured at 8.1 MeV/u and 15.6 MeV/u for the same reaction, provide the dependence on the Dynamical Dipole total emission yield with beam energy and they can be compared with theoretical expectations. The experimental results show a weak increase of the Dynamical Dipole total yield with beam energies and are in agreement with the prediction of a theoretical model based on the Boltzmann–Nordheim–Vlasov (BNV approach. The measured trend with beam energy does not confirm the rise and fall behavior previously reported for the same fused compound but with a much higher dipole moment.
RHIC spin flipper AC dipole controller
Energy Technology Data Exchange (ETDEWEB)
Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.
2011-03-28
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.
International Nuclear Information System (INIS)
Vysotsky, M.I.
1990-03-01
I would like to discuss the problem of a neutrino magnetic moment which is of interest since it deals with the probable time anticorrelation of the solar v flux with the Sun magnetic activity. (author). 19 refs, 2 figs, 1 tab
International Nuclear Information System (INIS)
Towner, I.S.; Khanna, F.C.
1984-01-01
Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents
DEFF Research Database (Denmark)
Madsen, T. B.; Swann, A.
2012-01-01
and third Lie algebra Betti numbers are zero. We show that these form a special class of solvable Lie groups and provide a structural characterisation. We provide many examples of multi-moment maps for different geometries and use them to describe manifolds with holonomy contained in G(2) preserved by a two...
Higgins, Chris
2014-01-01
In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
Directory of Open Access Journals (Sweden)
A. Kou
2017-08-01
Full Text Available Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.
2017-07-01
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
AutoDipole - Automated generation of dipole subtraction terms -
Hasegawa, K.; Moch, S.; Uwer, P.
2010-10-01
We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for both massless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. Program summaryProgram title: AutoDipole Catalogue identifier: AEGO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 138 042 No. of bytes in distributed program, including test data, etc.: 1 117 665 Distribution format: tar.gz Programming language: Mathematica and Fortran Computer: Computers running Mathematica (version 7.0) Operating system: The package should work on every Linux system supported by Mathematica. Detailed tests have been performed on Scientific Linux as supported by DESY and CERN and on openSUSE and Debian. RAM: Depending on the complexity of the problem, recommended at least 128 MB RAM Classification: 11.5 External routines: MadGraph (including HELAS library) available under http://madgraph.hep.uiuc.edu/ or http://madgraph.phys.ucl.ac.be/ or http://madgraph.roma2.infn.it/. A copy of the tar file, MG_ME_SA_V4.4.30, is included in the AutoDipole distribution package. Nature of problem: Computation of next-to-leading order QCD corrections to scattering cross sections, regularization of real emission contributions. Solution method: Catani-Seymour subtraction method for massless and massive partons [1,2]; Numerical evaluation of subtracted matrix elements interfaced to MadGraph [3-5] (stand-alone version) using
Coupling between crossed dipole feeds
DEFF Research Database (Denmark)
Andersen, J.; Schjær-Jacobsen, Hans; Lessow, H.
1974-01-01
as a function of orientation and feeding network properties. The antennas are used as feeds for a parabolic reflector, and the effect of coupling on the secondary fields is analyzed. Especially significant is the polarization loss and it may, to some extent, be reduced by a proper choice of feeding network.......Various effects of coupling between crossed-dipole antennas are analyzed and by using an arbitrary feeding network some generality is preserved. With one cross excited and another cross acting as a parasitic loaded antenna, coupling losses and gain and polarization losses are presented...
Numerical Based Linear Model for Dipole Magnets
Energy Technology Data Exchange (ETDEWEB)
Li,Y.; Krinsky, S.; Rehak, M.
2009-05-04
In this paper, we discuss an algorithm for constructing a numerical linear optics model for dipole magnets from a 3D field map. The difference between the numerical model and K. Brown's analytic approach is investigated and clarified. It was found that the optics distortion due to the dipoles' fringe focusing must be properly taken into account to accurately determine the chromaticities. In NSLS-II, there are normal dipoles with 35-mm gap and dipoles for infrared sources with 90-mm gap. This linear model of the dipole magnets is applied to the NSLS-II lattice design to match optics parameters between the DBA cells having dipoles with different gaps.
A skull-based multiple dipole phantom for EEG and MEG studies
Energy Technology Data Exchange (ETDEWEB)
Spencer, M.E.; Leahy, R.M. [University of Southern California, Los Angeles, CA (United States); Mosher, J.C. [Los Alamos National Lab., NM (United States)
1996-07-01
A versatile phantom for use in evaluating forward and inverse methods for MEG and EEG has been designed and is currently being constructed. The phantom consists of three major components: (i) a 32-element cur- rent dipole array, (ii) a PC-controlled dipole driver with 32 isolated channels allowing independent control of each dipole, (iii) spherical and human-skull mounts in which the dipole array is placed. Materials were selected throughout the phantom to produce minimal field distortions and artifacts to enable acquisition of high quality EEG and MEG data. The dipoles are made from a rigid narrow (0.84 mm) stainless steel coax cable. The dipole drivers can be configured as either current or voltage sources, are independently programmable and fully isolated, and are capable of producing arbitrary bipolar waveforms up to a 200 Hz bandwidth. The spherical mount is a single shell sphere filled with conductive gelatin. The human skull mount has three shells: ``brain`` (conducting gelatin), ``skull`` (the skull is impregnated with a low conductivity conducting gelatin), and ``scalp`` (a thin layer of rubber latex mixed with NaCl to achieve a conductivity matched to the brain). The conductivities will be adjusted to achieve approximately an 80:1:80 ratio. Data collected to date from the spherical phantom shows excellent agreement between measured surface potentials and that predicted from theory (27 of the 32 dipoles give better than 99.9% rms fit) and negligible leakage between dipoles. We are currently completing construction of the skull mount.
A method to assess the loss of a dipole antenna for ultra-high-field MRI.
Chen, Gang; Collins, Christopher M; Sodickson, Daniel K; Wiggins, Graham C
2018-03-01
To describe a new bench measurement based on quality (Q) factors to estimate the coil noise relative to the sample noise of dipole antennas at 7 T. Placing a dipole antenna close to a highly conductive sample surrogate (HCSS) greatly reduces radiation loss, and using Q HCSS gives a more accurate estimate of coil resistance than Q unloaded . Instead of using the ratio of unloaded and sample-loaded Q factors, the ratio of HCSS-loaded and sample-loaded Q factors should be used at ultra-high fields. A series of simulations were carried out to analyze the power budget of sample-loaded or HCSS-loaded dipole antennas. Two prototype dipole antennas were also constructed for bench measurements to validate the simulations. Simulations showed that radiation loss was suppressed when the dipole antenna was HCSS-loaded, and coil loss was largely the same as when the dipole was loaded by the sample. Bench measurements also showed good alignment with simulations. Using the ratio Q HCSS /Q loaded gives a good estimate of the coil loss for dipole antennas at 7 T, and provides a convenient bench measurement to predict the body noise dominance of dipole antenna designs. The new approach also applies to conventional surface loop coils at ultra-high fields. Magn Reson Med 79:1773-1780, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
The ALICE muon spectrometer dipole magnet
Maximilien Brice
2005-01-01
The ALICE detector consists of two large magnets, the huge red solenoid which can be seen on the right, and the blue dipole magnet. The solenoid was used for the L3 experiment when LEP was in use between 1989 and 2000, but the dipole has been built especially for the new ALICE detector. The dipole was successfully tested on 14 July 2005 when it ran at the operating current of 6 kiloamps for 24 hours.
A new online database of nuclear electromagnetic moments
Mertzimekis, Theo J.
2017-09-01
Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non-evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.
A new online database of nuclear electromagnetic moments
Directory of Open Access Journals (Sweden)
Mertzimekis Theo J.
2017-01-01
Full Text Available Nuclear electromagnetic (EM moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non–evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.
Reply to “Comment on ‘Axion induced oscillating electric dipole moments’”
Energy Technology Data Exchange (ETDEWEB)
Hill, Christopher T.
2017-03-28
A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.
On the Interface Dipole at the Pentacene−Fullerene Heterojunction: A Theoretical Study
Linares, Mathieu
2010-02-25
The electronic structure at organic/organic interfaces plays a key role, among others, in defining the quantum efficiency of organics-based photovoltaic cells. Here, we perform quantum-chemical and microelectrostatic calculations on molecular aggregates of various sizes and shapes to characterize the interfacial dipole moment at pentacene/C60 heterojunctions. The results show that the interfacial dipole mostly originates in polarization effects due to the asymmetry in the multipolar expansion of the electronic density distribution between the interacting molecules, rather than in a charge transfer from donor to acceptor. The local dipole is found to fluctuate in sign and magnitude over the interface and appears as a sensitive probe of the relative arrangements of the pentacene and C60 molecules (and of the resulting local electrical fields sensed by the molecular units). © 2010 American Chemical Society.
The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order
Energy Technology Data Exchange (ETDEWEB)
Mereghetti, E., E-mail: emanuele@physics.arizona.ed [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States); Vries, J. de [KVI, Theory Group, University of Groningen 9747 AA Groningen (Netherlands); Hockings, W.H. [Department of Mathematics and Natural Sciences, Blue Mountain College, Blue Mountain, MS 38610 (United States); Maekawa, C.M. [Instituto de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande, Campus Carreiros, PO Box 474, 96201-900 Rio Grande, RS (Brazil); Kolck, U. van [Department of Physics, University of Arizona, Tucson, AZ 85721 (United States)
2011-01-24
The electric dipole form factor (EDFF) of the nucleon stemming from the QCD {theta}-bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the {theta}-bar term, the expected lower bound on the deuteron electric dipole moment is |d{sub d}|{>=}1.4.10{sup -4{theta}}-bar e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation-appearing, in particular, in the radius of the form factor-is the pion mass.
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Flusser, Jan
2004-01-01
Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf
Complete moment tensor retrieval for weak events: application to orogenic and volcanic areas
Campus, P.; Suhadolc, P.; Panza, G. F.; Sileny, J.
1996-08-01
Aiming to study the mechanism and time history of weak local events we invert the dominant part of high-frequency seismograms (S and surface waves) by using two methods which implement moment tensor description of the focus. The point-source approximation is applied since we assume that the size of the focus with respect to the minimum wavelength of the analyzed signals is relatively small. Various constraints of the moment tensor are applied to cover local events of different origin - both the tectonic earthquakes and seismic events induced by volcanic activity. In the former case the double-couple constraint is applied, in the latter one a full moment tensor is decomposed into a volumetric part (V), representing volume changes, a compensated linear vector-dipole part (CLVD), describing opening of a fluid-filled lenticular crack, and a double couple part (DC), representing a shear slip. In the full moment tensor inversion the hypocentral depth and structural model may vary within pre-defined intervals. In the orogenic area of Friuli, Northern Italy, both the method looking for a DC only and the procedure implying the complete moment tensor arrive produce a DC mechanism, the orientation of which is consistent with the polarity readings. In the volcanic area of Phlegrean Fields, Southern Italy, the possible existence of fluid motion, which can be associated to volume changes and crack openings has to be taken into account, therefore, we used only the full moment tensor description to analyze several events in the magnitude range from 1.3 to 3. The obtained source durations vary from a few tenths of a second to about two seconds, suggesting that even small events may be characterized by relatively complex rupture history, although some of the retrieved complexities may be an artifact due to lateral inhomogeneities and other unmodelled structural effects. The percentage of the V component was found to be as large as 30% here, while it was negligible in the orogenic
Quadrupole moments measured by nuclear orientation
International Nuclear Information System (INIS)
Bouchta, H.
1985-01-01
Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr
Distributions on unbounded moment spaces and random moment sequences
Dette, Holger; Nagel, Jan
2012-01-01
In this paper we define distributions on moment spaces corresponding to measures on the real line with an unbounded support. We identify these distributions as limiting distributions of random moment vectors defined on compact moment spaces and as distributions corresponding to random spectral measures associated with the Jacobi, Laguerre and Hermite ensemble from random matrix theory. For random vectors on the unbounded moment spaces we prove a central limit theorem where the centering vecto...
Pulsed emission from a rotating off-centred magnetic dipole in vacuum
Kundu, Anu; Pétri, Jérôme
2017-11-01
The topology of the electromagnetic field around neutron stars severely impacts pulsar physics. While most of the works assume a standard centred dipolar magnetic field model, recently some efforts have been made to explain how inclusion of higher multipolar components could drastically change our understanding of these objects. Also, for simplicity, it has always been assumed that the magnetic moment coincides with the geometrical centre of the star. However, lately, a more general picture has been put forward in which the magnetic dipole moment is shifted off from the centre of the star. It has been demonstrated that the rotating off-centred dipole can be expanded into multipolar components. We study the effects of an off-centred rotating dipole on various characteristic emission features of pulsars in vacuum. The reliability of the off-centred case and its consequences on the magnetic field line structure, shape of the polar caps, high-energy and radio emission phase plots and corresponding light curves along with a comparison with the standard centred case are discussed. It has been seen that an off-centred dipole breaks the north-south symmetry and allows for more flexibility in radio and high-energy light-curve fitting and phase lag.
Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!
Radiation forces in the discrete dipole approximation
Hoekstra, A.G.; Frijlink, M.O.; Waters, L.B.F.M.; Sloot, P.M.A.
2001-01-01
The theory of the discrete-dipole approximation (DDA) for light scattering is extended to allow for the calculation of radiation forces on each dipole in the DDA model. Starting with the theory of Draine and Weingartner [Astrophys. J. 470, 551 (1996)] we derive an expression for the radiation force
Iron saturation control in RHIC dipole magnets
International Nuclear Information System (INIS)
Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.
1991-01-01
The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab
Electric dipoles on the Bloch sphere
Vutha, Amar C.
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Giant dipole resonance by many levels theory
International Nuclear Information System (INIS)
Mondaini, R.P.
1977-01-01
The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt
A fluxonium-based artificial molecule with a tunable magnetic moment
Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.
We have designed and measured an engineered artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. An externally applied magnetic flux tunes the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. Work supported by: ARO, ONR, NSF, AFOSR, and YINQE.
Final Report: Levitated Dipole Experiment
Energy Technology Data Exchange (ETDEWEB)
Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m^{-3}. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.
MéNabréAz, L.; BourlèS, D. L.; Thouveny, N.
2012-11-01
Authigenic 10Be/9Be ratios were measured along a sediment core collected in the west equatorial Pacific in order to reconstruct cosmogenic 10Be production variations near the equator, where the geomagnetic modulation is maximum. From 60 to 20 ka, the single significant 10Be production impulse recorded at 41 ka results from the geomagnetic dipole low that triggered the Laschamp excursion. No significant 10Be overproduction signature is recorded at the age of the Mono Lake excursion (˜34 ka). A compilation of authigenic 10Be/9Be records obtained from sediments was averaged over a 1 kyr window and compared with the 1 kyr averaged 10Be flux record of Greenland ice cores. Their remarkable similarity demonstrates that 10Be production is globally modulated by geomagnetic dipole variations and redistributed by atmosphere dynamics. After calibration using absolute values of the virtual dipole moment drawn from paleomagnetic database, the authigenic 10Be/9Be stack allows reconstructing the geomagnetic dipole moment variations over the 20-50 ka time interval. Between 48 and 41 ka, the dipole moment collapsed at a rate of -1.5 × 1022 A m2 kyr-1, which will be an interesting criterion for the assessment of the loss rate of the historical field and the comparison of dipole moment loss prior to excursions and reversals. After a 2 kyr duration of the minimum dipole moment (˜1 × 1022 A m2), a slow increase started at 39 ka, progressively reaching 5 × 1022 A m2 at 20 ka. The absence of a significant dipole moment drop at 34 ka, the age of the Mono lake excursion, suggests that the duration and amplitude of the dipole weakening cannot be compared with that of the Laschamp. This study provides a reliable basis to model the production of radiocarbon and in situ cosmogenic nuclides and to improve the calibration of these dating methods.
High-field dipoles for future accelerators
Energy Technology Data Exchange (ETDEWEB)
Wipf, S.L.
1984-09-01
This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.
Face recognition using Krawtchouk moment
Indian Academy of Sciences (India)
Abstract. Feature extraction is one of the important tasks in face recognition. Moments are widely used feature extractor due to their superior discriminatory power and geometrical invariance. Moments generally capture the global features of the image. This paper proposes Krawtchouk moment for feature extraction in face ...
Face recognition using Krawtchouk moment
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Feature extraction is one of the important tasks in face recognition. Moments are widely used feature extractor due to their superior discriminatory power and geometrical invariance. Moments generally capture the global features of the image. This paper proposes Krawtchouk moment for feature extraction ...
Liu, Shi; Cohen, R. E.
2017-08-01
The role of defects in solids of mixed ionic-covalent bonds such as ferroelectric oxides is complex. Current understanding of defects on ferroelectric properties at the single-defect level remains mostly at the empirical level, and the detailed atomistic mechanisms for many defect-mediated polarization-switching processes have not been convincingly revealed quantum mechanically. We simulate the polarization-electric field (P-E) and strain-electric field (ɛ-E) hysteresis loops for BaTiO3 in the presence of generic defect dipoles with large-scale molecular dynamics and provide a detailed atomistic picture of the defect dipole-enhanced electromechanical coupling. We develop a general first-principles-based atomistic model, enabling a quantitative understanding of the relationship between macroscopic ferroelectric properties and dipolar impurities of different orientations, concentrations, and dipole moments. We find that the collective orientation of dipolar defects relative to the external field is the key microscopic structure feature that strongly affects materials hardening/softening and electromechanical coupling. We show that a small concentration (≈0.1 at. %) of defect dipoles dramatically improves electromechanical responses. This offers the opportunity to improve the performance of inexpensive polycrystalline ferroelectric ceramics through defect dipole engineering for a range of applications including piezoelectric sensors, actuators, and transducers.
Paul Callaghan luminous moments
Callaghan, Paul
2013-01-01
Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa
A search for the electric dipole of the electron
Energy Technology Data Exchange (ETDEWEB)
Abdullah, K.F.
1989-08-01
We report a new upper limit on the electric dipole moment (EDM) of the electron of d{sub e} = 0.1 {plus minus} 3.2 {times} 10{sup {minus}26} e-cm. This precision is one hundred times better than any previously published limit and a factor of two better than that of unofficial reports. Recently there has been a great deal of theoretical interest in the possibility of a non-zero electron EDM. Models such as the left-right-symmetric Standard Model and an off-standard'' model with new heavy neutrinos are constrained by the new limit on d{sub e}. A non-zero electron EDM would violate the time reversal and parity space-time symmetries. T-violation was observed in neutral kaon decay and is still not fully explained by the Standard Model. Our experimental technique involves searching for an energy shift, linear in applied electric field, between the m{sub F} = 1 and m{sub F} = {minus}1 magnetic sublevels of the F=1 hyperfine level of the 6{sup 2}P{sub 1/2} ground state of atomic thallium. If the electron has a non-zero EDM, this thallium state will exhibit an atomic electric dipole moment that is roughly 600 times larger. The energy shift is detected with the technique of magnetic resonance spectroscopy, employing separated oscillating fields, applied to an atomic beam of thallium. In the approach, any relative phase-shift between the m{sub F} = {plus minus}1 components of the F=1 wavefunction acquired by the atom as it travels through an electric field is detected through interference with two separate oscillating magnetic fields located on either side of the electric field. The new level of precision is achieved through several improvements on previous experiments including employment of a vertical apparatus, two opposing atomic beams, and optical pumping for atomic state selection and analysis.
A search for the electric dipole of the electron
International Nuclear Information System (INIS)
Abdullah, K.F.
1989-08-01
We report a new upper limit on the electric dipole moment (EDM) of the electron of d e = 0.1 ± 3.2 x 10 -26 e-cm. This precision is one hundred times better than any previously published limit and a factor of two better than that of unofficial reports. Recently there has been a great deal of theoretical interest in the possibility of a non-zero electron EDM. Models such as the left-right-symmetric Standard Model and an ''off-standard'' model with new heavy neutrinos are constrained by the new limit on d e . A non-zero electron EDM would violate the time reversal and parity space-time symmetries. T-violation was observed in neutral kaon decay and is still not fully explained by the Standard Model. Our experimental technique involves searching for an energy shift, linear in applied electric field, between the m F = 1 and m F = -1 magnetic sublevels of the F=1 hyperfine level of the 6 2 P 1/2 ground state of atomic thallium. If the electron has a non-zero EDM, this thallium state will exhibit an atomic electric dipole moment that is roughly 600 times larger. The energy shift is detected with the technique of magnetic resonance spectroscopy, employing separated oscillating fields, applied to an atomic beam of thallium. In the approach, any relative phase-shift between the m F = ±1 components of the F=1 wavefunction acquired by the atom as it travels through an electric field is detected through interference with two separate oscillating magnetic fields located on either side of the electric field. The new level of precision is achieved through several improvements on previous experiments including employment of a vertical apparatus, two opposing atomic beams, and optical pumping for atomic state selection and analysis
Final Report: Levitated Dipole Experiment
Energy Technology Data Exchange (ETDEWEB)
Kesner, Jay; Mauel, Michael
2013-03-10
Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross
Dipole-Assisted Self-Assembly of Light-Emitting p-nP Needles on Mica
DEFF Research Database (Denmark)
Balzer, Frank; Rubahn, Horst-Günter
2001-01-01
We report on dipole-assisted, self-assembled formation of p-6P and p-5P needles on cleaved and heated mica (0001) surfaces. Low-energy electron diffraction (LEED) reveals that the needles are single crystalline with the (1) face parallel to the surface, consisting of parallel stacks of laying...... molecules oriented along the direction of microscopic dipoles on the mica surface. They have submicrometer cross-sectional dimensions and lengths as large as millimeters. Moreover, due to the strong dipole confinement of individual molecules, the needles form large domains with parallel oriented entities...
Constraints on exotic dipole-dipole couplings between electrons at the micron scale
Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek
2015-05-01
Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.
Lorentz-violating contributions to the nuclear Schiff moment and nuclear EDM
Araujo, Jonas B.; Casana, Rodolfo; Ferreira, Manoel M.
2018-03-01
In the context of an atom endowed with nuclear electric dipole moments (EDM), we consider the effects on the Schiff moment of C P T -even Lorentz-violating (LV) terms that modify the Coulomb potential. First, we study the modifications on the Schiff moment when the nucleus interacts with the electronic cloud by means of a Coulomb potential altered only by the P -even LV components. Next, by supposing the existence of an additional intrinsic LV EDM generated by other LV sources, we assess the corrections to the Schiff moment when the interaction nucleus-electrons runs mediated by a Coulomb potential modified by both the P -odd and P -even LV components. We then use known estimates and EDM measurements to discuss upper bounds on the new Schiff moment components and the possibility of a nuclear EDM component ascribed to LV effects.
SSC collider dipole magnet end mechanical design
Energy Technology Data Exchange (ETDEWEB)
Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M. (Fermi National Accelerator Lab., Batavia, IL (USA)); Leung, K.K. (Superconducting Super Collider Lab., Dallas, TX (USA))
1991-05-01
This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs.
Plasma confinement in a magnetic dipole
International Nuclear Information System (INIS)
Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.
2001-01-01
A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)
Plasma confinement in a magnetic dipole
International Nuclear Information System (INIS)
Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.
1999-01-01
A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)
Superconducting Coil of Po Dipole
1983-01-01
The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.
SELECTION MOMENTS AND GENERALIZED METHOD OF MOMENTS FOR HETEROSKEDASTIC MODELS
Directory of Open Access Journals (Sweden)
Constantin ANGHELACHE
2016-06-01
Full Text Available In this paper, the authors describe the selection methods for moments and the application of the generalized moments method for the heteroskedastic models. The utility of GMM estimators is found in the study of the financial market models. The selection criteria for moments are applied for the efficient estimation of GMM for univariate time series with martingale difference errors, similar to those studied so far by Kuersteiner.
Measurement of nuclear moments and radii by collinear laser spectroscopy
Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S
2002-01-01
%IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...
Limits on the scaling of nucleon magnetic moments in nuclei
International Nuclear Information System (INIS)
Ericson, T.E.O.; State Univ. of New York, Stony Brook; Richter, A.; State Univ. of New York, Stony Brook
1987-01-01
In view of the suggestion that nucleon magnetic moments inside nuclei may be modified due to a rescaling of the nucleon size, we investigate empirically how large such an effect can be. The method is based on a nearly model-independent scaling relation between the axial vector matrix element and the main part of the corresponding magnetic dipole matrix element supplemented by a small and well understood contribution from the one-pion exchange current. Taking the mass A = 3 and 12 systems as examples the upper limit, for such a change of the nucleon magnetic moment inside nuclei is found to be about 2%, considerably smaller than previous estimates in the literature. (orig.)
A class of Fourier integrals based on the electric potential of an elongated dipole.
Skianis, Georgios Aim
2014-01-01
In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain.
Lee, Song Mi; Shin, Sung-Ho; Nah, Junghyo; Lee, Min Hyung
2017-09-01
Appropriate control of energy band bending at the interface between semiconductors and electrolytes are closely related to performance of photoelectrochemical (PEC) water splitting. Dipoles formed near the surface of semiconductors induces energy band bending at the interface. Energy band bending control has been demonstrated by employing charged molecules and piezoelectric materials. However, chemical and piezoelectric approaches have demerit of chemical instability and inducement of instantaneous dipole, respectively. To overcome these problems, we adopted the ferroelectric material for PEC water splitting, where spontaneous dipoles in the material can be oriented by applying external electric field. In this work, we hydrothermally synthesized vanadium (V)-doped ferroelectric ZnO nanosheets and employed to systematically investigate the dipole effect on performance of V-doped ZnO PEC for water oxidation. Consequently, positively polarized V-doped ZnO photoanode exhibits 125% enhanced water splitting efficiency compared to negatively polarized ones due to favorable band bending for carrier transport from semiconductor to water.
Plasmonic functionalities based on detuned electrical dipoles
DEFF Research Database (Denmark)
Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.
2013-01-01
We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...
Kerzig, Christoph; Hoffmann, Matthias; Goez, Martin
2018-02-26
Repair reactions of lipophilic phenoxy radicals by hydrophilic co-antioxidants at model membranes are important for understanding the factors that govern the interactions between radical scavengers in biological systems. By using near-UV photoionization, we have selectively generated the phenoxy radical of the famous antioxidant resveratrol inside anionic (SDS), cationic (DTAC), or neutral (TX-100) micelles, as well as in homogeneous aqueous solution, and have compared its repairs in these media by the water-soluble co-antioxidants ascorbic acid and ascorbate monoanion. With all surfactants, these reactions are dynamic processes at the micelle-water interface. Whereas for the combinations ascorbate monoanion/ ionic micelle the repair rates can be rationalized by the Coulombic interactions, unexpected effects were observed with the neutral ascorbic acid and the charged micelles: for the anionic micelles, this repair is three times faster than in homogeneous solution, and two orders of magnitude faster than for the cationic micelles. Given that the repair by a concerted proton-electron transfer demands a coplanar arrangement of the resveratrol phenoxy centre sticking out into the Stern layer and the co-antioxidant hydroxy moiety approaching from the aqueous bulk, we explain these results by ion-dipole interactions: only at a negatively charged micellar surface does the direction of the large dipole moment of ascorbic acid lead to an orientation favourable for the repair. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Talebi, Nahid; Guo, Surong; van Aken, Peter A.
2018-01-01
Dipole selection rules underpin much of our understanding in characterization of matter and its interaction with external radiation. However, there are several examples where these selection rules simply break down, for which a more sophisticated knowledge of matter becomes necessary. An example, which is increasingly becoming more fascinating, is macroscopic toroidization (density of toroidal dipoles), which is a direct consequence of retardation. In fact, dissimilar to the classical family of electric and magnetic multipoles, which are outcomes of the Taylor expansion of the electromagnetic potentials and sources, toroidal dipoles are obtained by the decomposition of the moment tensors. This review aims to discuss the fundamental and practical aspects of the toroidal multipolar moments in electrodynamics, from its emergence in the expansion set and the electromagnetic field associated with it, the unique characteristics of their interaction with external radiations and other moments, to the recent attempts to realize pronounced toroidal resonances in smart configurations of meta-molecules. Toroidal moments not only exhibit unique features in theory but also have promising technologically relevant applications, such as data storage, electromagnetic-induced transparency, unique magnetic responses and dichroism.
On the neutron electric dipole moment in the Weinberg CP-violation model
International Nuclear Information System (INIS)
Anselm, A.A.; Bunakov, V.E.; Gudkov, V.P.; Uraltsev, N.G.
1985-01-01
The neutron EDM in the Weinberg CP-violation model is shown to be dominated by the neutral Higgs boson interaction and to exceed the present experimental limitations by 2-3 orders of magnitude. (orig.)
International Nuclear Information System (INIS)
Lamoreaux, S.K.
1986-01-01
The nuclear magnetic resonance frequencies of 201 Hg (l = 3/2) and 199 Hg (l = 1.2) were compared in driven optically-pumped atomic light-absorption oscillators to see if the relative frequencies depend on the orientation of the quantization axis in space. The null result obtained (δnu 199 Hg nuclear magnetic resonance frequency in the presence of a reversible electric field of 9 kV/cm. The null result obtained (d/sub A/ < 5e cm) reduces previous limits on possible time-reversal violating interactions in atoms by an order of magnitude