WorldWideScience

Sample records for surface dental implants

  1. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  2. Nanostructured Surfaces of Dental Implants

    Directory of Open Access Journals (Sweden)

    Stefano Sivolella

    2013-01-01

    Full Text Available The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years.

  3. Surface degradation of nanocrystalline zirconia dental implants

    NARCIS (Netherlands)

    Ocelík, Václav; Schepke, Ulf; Rasoul, Hamid Haji; Cune, Marco S.; De Hosson, Jeff Th M.

    2017-01-01

    Yttria-stabilized zirconia prepared by hot isostatic pressing represents attractive material for biomedical applications. In this work the degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation after one year of clinical use was

  4. Surface Modifications and Their Effects on Titanium Dental Implants

    Science.gov (United States)

    Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097

  5. Impact of Dental Implant Surface Modifications on Osseointegration

    Directory of Open Access Journals (Sweden)

    Ralf Smeets

    2016-01-01

    Full Text Available Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions.

  6. Impact of Dental Implant Surface Modifications on Osseointegration

    Science.gov (United States)

    Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max

    2016-01-01

    Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833

  7. Dental Implant Surgery

    Science.gov (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, surgery, ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, surgery, ...

  8. Microscopic Study of Surface Microtopographic Characteristics of Dental Implants

    Science.gov (United States)

    Sezin, M.; Croharé, L.; Ibañez, J.C.

    2016-01-01

    Objective: To determine and compare the micro topographic characteristics of dental implants submitted to different surface treatments, using scanning electron microscopy (SEM). Materials and Methods: Implants were divided into 7 groups of 3 specimens each, according to the surface treatment used: group 1: Osseotite, BIOMET 3i; group 2: SLA surface, Institut Straumann AG; group 3: Oxalife surface, Tree-Oss implant; group 4: B&W implant surface; group 5: Q-implant surface; group 6: ML implant surface; group 7: RBM surface, Rosterdent implant. The surfaces were examined under SEM (Carl Zeiss FE-SEM-SIGMA). Image Proplus software was used to determine the number and mean diameter of pores per area unit (mm). The data obtained were analyzed with the Mann-Whitney test. A confocal laser microscope (LEXT-OLS4100 Olympus) was used to conduct the comparative study of surface roughness (Ra). Data were analyzed using Tukey's HSD test. Results: The largest average pore diameter calculated in microns was found in group 5 (3.45 µm+/-1.91) while the smallest in group 7 (1.47µm+/-1.29). Significant differences were observed among each one of the groups studied (p<0.05). The largest number of pores/mm2 was found in group 2 (229343) and the smallest number in group 4 (10937). Group 2 showed significant differences regarding the other groups (p<0.05). The greatest roughness (Ra) was observed in group 2 (0.975µm+/-0.115) and the smallest in group 4 (0.304µm+/-0.063). Group 2 was significantly different from the other groups (p<0.05). Conclusion: The micro topography observed in the different groups presented dissimilar and specific features, depending on the chemical treatment used for the surfaces.. PMID:27335615

  9. CO2 laser surface treatment of failed dental implants for re-implantation: an animal study.

    Science.gov (United States)

    Kasraei, Shahin; Torkzaban, Parviz; Shams, Bahar; Hosseinipanah, Seyed Mohammad; Farhadian, Maryam

    2016-07-01

    The aim of the present study was to evaluate the success rate of failed implants re-implanted after surface treatment with CO2 laser. Despite the widespread use of dental implants, there are many incidents of failures. It is believed that lasers can be applied to decontaminate the implant surface without damaging the implant. Ten dental implants that had failed for various reasons other than fracture or surface abrasion were subjected to CO2 laser surface treatment and randomly placed in the maxillae of dogs. Three failed implants were also placed as the negative controls after irrigation with saline solution without laser surface treatment. The stability of the implants was evaluated by the use of the Periotest values (PTVs) on the first day after surgery and at 1, 3, and 6 months post-operatively. The mean PTVs of treated implants increased at the first month interval, indicating a decrease in implant stability due to inflammation followed by healing of the tissue. At 3 and 6 months, the mean PTVs decreased compared to the 1-month interval (P laser surface debridement is associated with a high success rate in terms of implant stability.

  10. Effects of Surface Charges on Dental Implants: Past, Present, and Future

    OpenAIRE

    Cecilia Yan Guo; Jukka Pekka Matinlinna; Alexander Tin Hong Tang

    2012-01-01

    Osseointegration is a major factor influencing the success of dental implantation. To achieve rapid and strong, durable osseointegration, biomaterial researchers have investigated various surface treatment methods for dental subgingival titanium (Ti) implants. This paper focuses on surface-charge modification on the surface of titanium dental implants, which is a relatively new and very promising methodology for improving the implants' osseointegration properties. We give an overview on both ...

  11. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  12. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    International Nuclear Information System (INIS)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R.

    2004-01-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle

  13. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R

    2004-06-30

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 {mu}m, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 {mu}m. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  14. Dental implant surfaces after insertion in bone: an in vitro study in four commercial implant systems.

    Science.gov (United States)

    Deppe, Herbert; Wolff, Carolina; Bauer, Florian; Ruthenberg, Ricarda; Sculean, Anton; Mücke, Thomas

    2017-10-24

    Primary healing of dental implants is influenced by their surface morphology. However, little is known about any alterations in morphology during their insertion. Therefore, the aim of this study was to evaluate the surface morphology of four different implant systems, following their insertion in porcine jaw bones. Four fresh porcine mandible specimens were used. Six new implants of four systems (Ankylos® 4.5 × 14 mm, Frialit Synchro® 4.5 × 15 mm, NobelReplace ® Tapered Groovy RP 4.3 × 13 mm, Straumann SLA® Bone Level 3.3 × 14 mm) were inserted, whereas one implant of each system served as a control. After their removal, implants were cleaned in an ultrasonic bath. All 28 implants were examined quantitatively by 3D confocal microscopy for surface characteristics. In the evaluated zones, implants of the Ankylos, Frialit, and Straumann systems showed mostly a reduction of the mean surface roughness Sa, the maximal surface roughness Sz, and the developed surface area ratio Sdr; Nobel implants showed an increase in these parameters. With respect to all three parameters Sa, Sz, and Sdr, statistical analysis revealed that differences between the four systems were highly significant in the apical region of implants. Controls showed no morphologic alterations. The insertion process had an impact on the surface of all four implant systems. Anodized implant surface modification seems to result in more alterations compared with subtractive surface modifications. Therefore, surgical planning should take into consideration the choice of surface treatment because the characteristics of the implants may be modified during the installation process. The given information is of value for daily implantation practice and the course of osseointegration.

  15. Effect of surface contamination on osseointegration of dental implants surrounded by circumferential bone defects.

    LENUS (Irish Health Repository)

    Mohamed, Seif

    2010-05-01

    This study was designed to evaluate the effect of surface contamination on osseointegration of dental implants surrounded by a circumferential bone defect and to compare osseointegration around Osseotite with that around Nanotite implants.

  16. Non-Destructive Analysis of Basic Surface Characteristics of Titanium Dental Implants Made by Miniature Machining

    Science.gov (United States)

    Babík, Ondrej; Czán, Andrej; Holubják, Jozef; Kameník, Roman; Pilc, Jozef

    2016-12-01

    One of the most best-known characteristic and important requirement of dental implant is made of biomaterials ability to create correct interaction between implant and human body. The most implemented material in manufacturing of dental implants is titanium of different grades of pureness. Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on the successful osseointegration. Among other characteristics of titanium that predetermine ideal biomaterial, it shows a high mechanical strength making precise machining miniature Increasingly difficult. The article is focused on evaluation of the resulting quality, integrity and characteristics of dental implants surface after machining.

  17. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  18. Novel surface coating materials for endodontic dental implant

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, M.H. [Isfahan Univ. of Technology, Materials Engineering Dept., Isfahan (Iran, Islamic Republic of); Mortazavi, V.; Moosavi, S.B. [Isfahan Univ. of Medical Sciences, Faculty of Dentistry, Isfahan (Iran, Islamic Republic of)

    2003-07-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  19. Assessment of Surface Area Characteristics of Dental Implants with Gradual Bioactive Surface Treatment

    Science.gov (United States)

    Czan, Andrej; Babík, Ondrej; Miklos, Matej; Záušková, Lucia; Mezencevová, Viktória

    2017-10-01

    Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on successful osseointegration. Among other characteristics that predetermine titanium of different grades of pureness as ideal biomaterial, titanium shows high mechanical strength making precise miniature machining increasingly difficult. Current titanium-based implants are often anodized due to colour coding. This anodized layer has important functional properties for right usage and also bio-compatibility of dental implants. Physical method of anodizing and usage of anodizing mediums has a significant influence on the surface quality and itself functionality. However, basic requirement of the dental implant with satisfactory properties is quality of machined surface before anodizing. Roughness, for example, is factor affecting of time length of anodizing operation and so whole productivity. The paper is focused on monitoring of surface and area characteristics, such as roughness or surface integrity after different cutting conditions of miniature machining of dental implants and their impact on suitability for creation of satisfactory anodized layer with the correct biocompatible functional properties.

  20. Antimicrobial Effects of Three Different Treatment Modalities on Dental Implant Surfaces.

    Science.gov (United States)

    Larsen, Olav I; Enersen, Morten; Kristoffersen, Anne Karin; Wennerberg, Ann; Bunæs, Dagmar F; Lie, Stein Atle; Leknes, Knut N

    2017-12-01

    Resolution of peri-implant inflammation and re-osseointegration of peri-implantitis affected dental implants seem to be dependent on bacterial decontamination. The aims of the study were to evaluate the antimicrobial effects of 3 different instrumentations on a micro-textured dental implant surface contaminated with an avirulent or a virulent Porphyromonas gingivalis strain and to determine alterations to the implant surface following instrumentation. Forty-five dental implants (Straumann SLA) were allocated to 3 treatment groups: Er:YAG laser, chitosan brush, and titanium curette (10 implants each) and a positive (10 implants) and a negative (5 implants) control. Each treatment group and the positive control were split into subgroups of 5 implants subsequently contaminated with either the avirulent or virulent P. gingivalis strain. The antimicrobial effect of instrumentation was evaluated using checkerboard DNA-DNA hybridization. Implant surface alterations were determined using a light interferometer. Instrumentation significantly reduced the number of attached P. gingivalis ( P implant surface micro-texture. Neither the Er:YAG laser nor the chitosan brush significantly altered the implant surface. The 3 instrumentations appear to have a similar potential to remove P. gingivalis. The titanium curette significantly altered the microstructure of the implant surface.

  1. On-Site Surface Functionalization for Titanium Dental Implant with Nanotopography: Review and Outlook

    Directory of Open Access Journals (Sweden)

    Byung Gyu Kim

    2016-01-01

    Full Text Available Titanium (Ti has been the first choice of material for dental implant due to bonding ability to natural bone and great biocompatibility. Various types of surface roughness modification in nanoscale have been made as promising strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with nanotopography oriented favors in cell attachment, on-site surface functionalization with reproducibility of nanotopography is introduced as next strategy to further enhance cellular bioactivity. Extensive research has been conducted to investigate the potential of nanotopography preserved on-site surface functionalization for Ti dental implant. This review will discuss nonthermal atmospheric pressure plasma, ultraviolet, and low level of laser therapy on Ti dental implant with nanotopography as next generation of surface functionalization due to its abilities to induce superhydrophilicity or biofunctionality without change of nanotopography.

  2. From acid etching treatments to tribocorrosive properties of dental implants: do some experimental results on surface treatments have an influence on the tribocorrosion behaviour of dental implants?

    International Nuclear Information System (INIS)

    Geringer, Jean; Demanget, Nicolas; Pellier, Julie

    2013-01-01

    Surface treatments of dental implants aim at promoting osseointegration, i.e. the anchorage of the metallic part. Titanium-, grade II–V, based material is used as a bulk material for dental implants. For promoting the anchorage of this metallic biomaterial in human jaw, some strategies have been applied for improving the surface state, i.e. roughness, topography and coatings. A case study, experimental study, is described with the method of acid etching on titanium grade 4, CpTi. The main goal is to find the right proportion in a mixture of two acids in order to obtain the best surface state. Finally, a pure theoretical prediction is quite impossible and some experimental investigations are necessary to improve the surface state. The described acid etching is compared with some other acid etching treatments and some coatings available on dental implants. Thus, the discussion is focused on the tribocorrosion behaviour of titanium-based materials. The purpose of the coating is that the lifetime under tribocorrosion is limited. Moreover, the surgery related to the implantation has a huge impact on the stability of dental implants. Thus, the performance of dental implants depends on factors related to surgery (implantation) that are difficult to predict from the biomaterial characteristics. From the tribocorrosion point of view, i.e. during the mastication step, the titanium material is submitted to some deleterious factors that cause the performance of dental implants to decrease. (paper)

  3. From acid etching treatments to tribocorrosive properties of dental implants: do some experimental results on surface treatments have an influence on the tribocorrosion behaviour of dental implants?

    Science.gov (United States)

    Geringer, Jean; Demanget, Nicolas; Pellier, Julie

    2013-10-01

    Surface treatments of dental implants aim at promoting osseointegration, i.e. the anchorage of the metallic part. Titanium-, grade II-V, based material is used as a bulk material for dental implants. For promoting the anchorage of this metallic biomaterial in human jaw, some strategies have been applied for improving the surface state, i.e. roughness, topography and coatings. A case study, experimental study, is described with the method of acid etching on titanium grade 4, CpTi. The main goal is to find the right proportion in a mixture of two acids in order to obtain the best surface state. Finally, a pure theoretical prediction is quite impossible and some experimental investigations are necessary to improve the surface state. The described acid etching is compared with some other acid etching treatments and some coatings available on dental implants. Thus, the discussion is focused on the tribocorrosion behaviour of titanium-based materials. The purpose of the coating is that the lifetime under tribocorrosion is limited. Moreover, the surgery related to the implantation has a huge impact on the stability of dental implants. Thus, the performance of dental implants depends on factors related to surgery (implantation) that are difficult to predict from the biomaterial characteristics. From the tribocorrosion point of view, i.e. during the mastication step, the titanium material is submitted to some deleterious factors that cause the performance of dental implants to decrease.

  4. Advantage Clean & Porous TM new technological methods of surface treatment of dental implants

    Directory of Open Access Journals (Sweden)

    Лев Ильич Винников

    2015-02-01

    Full Text Available The purpose of this study was a comparative analysis of the surfaces of dental implants treated with technological methods SLA and RBM to identify their positive and negative characteristics. Based on these results to develop a new process Clean & Porous surface treatment of dental implants to obtain highly, rough and porous surface, which is characteristic for the technology SLA, and absolutely clean surface characteristic of technology RBM, without their disadvantages (unwarranted complete removal of abrasive particles SLA case and the absence of a clear structure of the surface topography in the case of RBM.The structure and purity of the implant surface Straumann, Alfa-Bio, DIO, Finish Line. studied in micrographs obtained by an electron microscope (SEM at the University of Technion (increase 500,2000,3000. To study the chemical properties of the samples, the method of X-ray energy dispersive spectroscopy (EDS, based on an analysis of its X-ray emission energy spectrum.Comparative analysis of the implant surfaces treated with the methods and RBM SLA showed that despite the reliability of these methods, each of them has certain disadvantages (contamination cases alumina particle surface with sufficient structural SLA and craters on the surface organized RBM. Developed by Finish Line Materials and Processes Ltd new technology of surface treatment of dental implants Clean & PorousTM, combining the best characteristics of the methods of SLA and RBM, possible to obtain a well-structured and absolutely clean surface.The proposed new original method Clean & PorousTM treatment of dental implants meet the criteria (roughness, porosity and surface finish of the implant, which provide an ideal osseointegration. Since osseointegration is a key issue in modern implantology it enables to obtain reliable primary fixation of the implant in the bone. From a clinical point of view it reduces the healing of the implant, as well as creating conditions

  5. Effect of surface contamination on osseointegration of dental implants surrounded by circumferential bone defects.

    Science.gov (United States)

    Mohamed, Seif; Polyzois, Ioannis; Renvert, Stefan; Claffey, Noel

    2010-05-01

    This study was designed to evaluate the effect of surface contamination on osseointegration of dental implants surrounded by a circumferential bone defect and to compare osseointegration around Osseotite with that around Nanotite implants. The premolars on both sides of the mandible in four beagle dogs were extracted. Following 4 months healing, two Nanotite implants and two Osseotite implants were partially inserted in the left side of each mandible. Some threads protruded from the tissues into the oral cavity. Following a 5 week healing period, the implants were removed and the contaminated part of each implant was cleaned. They were then installed to the full implant length on the contra lateral side of the mandibles. The coronal 5 mm of each implant was surrounded by 1 mm circumferential bone defect. Following 12 weeks of healing period, the dogs were sacrificed and biopsies were obtained. Ground sections were prepared for histomorphometric analysis. All implants were associated with direct bone-to-implant contact on the portion of the implant surface contaminated previously and surrounded by bone defect. Nanotite implants performed better than Osseotite implants. The results demonstrated that implant surfaces, which were contaminated previously and were surrounded by bone defects, can osseointegrate.

  6. Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone.

    Science.gov (United States)

    Senna, Plinio; Antoninha Del Bel Cury, Altair; Kates, Stephen; Meirelles, Luiz

    2015-08-01

    Modern dental implants present surface features of distinct dimensions that can be damaged during the insertion procedure into bone. The aims of this study were (1) to quantify by means of roughness parameters the surface damage caused by the insertion procedure of dental implants and (2) to investigate the presence of loose particles at the interface. Three groups of dental implants representing different surface topographies were inserted in fresh cow rib bone blocks. The surface roughness was characterized by interferometry on the same area before and after the insertion. Scanning electron microscopy (SEM)-back-scattered electron detector (BSD) analysis was used to identify loose particles at the interface. The amplitude and hybrid roughness parameters of all three groups were lower after insertion. The surface presenting predominance of peaks (Ssk [skewness] > 0) associated to higher structures (height parameters) presented higher damage associated to more pronounced reduction of material volume. SEM-BSD images revealed loose titanium and aluminum particles at the interface mainly at the crestal cortical bone level. Shearing forces during the insertion procedure alters the surface of dental implants. Loose metal particles can be generated at bone-implant interface especially around surfaces composed mainly by peaks and with increased height parameters. © 2013 Wiley Periodicals, Inc.

  7. Nanotechnology for dental implants.

    Science.gov (United States)

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  8. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  9. Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review

    Directory of Open Access Journals (Sweden)

    Shariq Najeeb

    2015-01-01

    Full Text Available Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.

  10. Recent advances in dental implants

    OpenAIRE

    Hong, Do Gia Khang; Oh, Ji-hyeon

    2017-01-01

    Dental implants are a common treatment for the loss of teeth. This paper summarizes current knowledge on implant surfaces, immediate loading versus conventional loading, short implants, sinus lifting, and custom implants using three-dimensional printing. Most of the implant surface modifications showed good osseointegration results. Regarding biomolecular coatings, which have been recently developed and studied, good results were observed in animal experiments. Immediate loading had similar c...

  11. Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly

    Directory of Open Access Journals (Sweden)

    Quan Shi

    2017-08-01

    Full Text Available In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized.

  12. A review on the wettability of dental implant surfaces I: theoretical and experimental aspects.

    Science.gov (United States)

    Rupp, Frank; Gittens, Rolando A; Scheideler, Lutz; Marmur, Abraham; Boyan, Barbara D; Schwartz, Zvi; Geis-Gerstorfer, Jürgen

    2014-07-01

    The surface wettability of biomaterials determines the biological cascade of events at the biomaterial/host interface. Wettability is modulated by surface characteristics, such as surface chemistry and surface topography. However, the design of current implant surfaces focuses mainly on specific micro- and nanotopographical features, and is still far from predicting the concomitant wetting behavior. There is an increasing interest in understanding the wetting mechanisms of implant surfaces and the role of wettability in the biological response at the implant/bone or implant/soft tissue interface. Fundamental knowledge related to the influence of surface roughness (i.e. a quantification of surface topography) on titanium and titanium alloy surface wettability, and the different associated wetting regimes, can improve our understanding of the role of wettability of rough implant surfaces on the biological outcome. Such an approach has been applied to biomaterial surfaces only in a limited way. Focusing on titanium dental and orthopaedic implants, the present study reviews the current knowledge on the wettability of biomaterial surfaces, encompassing basic and applied aspects that include measurement techniques, thermodynamic aspects of wetting and models predicting topographical and roughness effects on the wetting behavior. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Surface treatment of screw shaped titanium dental implants by high intensity laser pulses

    Science.gov (United States)

    Pető, G.; Karacs, A.; Pászti, Z.; Guczi, L.; Divinyi, T.; Joób, A.

    2002-01-01

    Machined and Al 2O 3 blasted surfaces of screw shaped Ti dental implants were irradiated by 30 ns pulses of Nd:glass laser at 1064 nm wavelength with 0.5-3 J pulse energy. The laser treatment increased the temperature of the Ti surface well above the melting temperature. The resulting ablation of some surface layers was followed by a very rapid solidification. These thermal processes strongly modified the original morphology of the surface and removed the contaminations. The new morphology was characterized by features mostly in ten micron and partly in submicron ranges. The surface composition was the same as the bulk titanium without any segregation. Animal experiments demonstrated that this surface treatment seems to be promising for the improvement of the osseointegration of dental implants.

  14. Improving osseointegration of dental implants.

    Science.gov (United States)

    Elias, Carlos Nelson; Meirelles, Luiz

    2010-03-01

    In the beginning of implantology, the procedures adopted for treating patients were performed in two surgical phases with an interval of 3-6 months. Nowadays, it is possible to insert and load a dental implant in the same surgical procedure. This change is due to several factors, such as improvement of surgical technique, modifications of the implant design, increased quality of implant manufacturing, development of the surgical instruments' quality, careful patient screening and adequate treatment of the implant surface. The clinical results show that adequate treatment of surfaces is crucial for reducing healing time and treating at-risk patients. The surface properties of dental implants can be significantly improved at the manufacturing stage, affecting cells' activity during the healing phase that will ultimately determine the host tissue response, a fundamental requirement for clinical success. This review focuses on different types of dental implant surfaces and the influence of surface characteristics on osseointegration.

  15. A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration.

    Science.gov (United States)

    Shibata, Yo; Tanimoto, Yasuhiro

    2015-01-01

    Titanium is a primary metallic biomaterial used in load-bearing orthopedic or dental implants because of its favorable mechanical properties and osseointegration capability. This article reviews the current status of surface optimization techniques for titanium implants, whether such concepts are in the form of sufficiently evidence-based, and highlights the related experimental tools. A strong emphasis was placed on the enhanced biological responses to titanium implants by modifying the surface finishing process. On this basis, a clear partition of surface chemistry and topography was critical. The intrinsic host tissue response to titanium implants is facilitated by the chemistry or topography of a passive oxide film, although the extent to which the surface characteristics enable rapid osseointegration is still uncertain. Besides the fundamental requirements, such as the promotion of osteogenic differentiation, the titanium implant surface should accelerate wound-healing phenomena prior to bone ingrowth toward the surface. Moreover, because initial bacterial attachment to the implant surface is unavoidable, infection control by surface modification is also an important determinant in reducing surgical failure. A desirable surface-biological relationship often needs to be characterized at the nanoscale by means of advanced technologies. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Surface area analysis of dental implants using micro-computed tomography.

    Science.gov (United States)

    Schicho, Kurt; Kastner, Johann; Klingesberger, Roman; Seemann, Rudolf; Enislidis, Georg; Undt, Gerhard; Wanschitz, Felix; Figl, Michael; Wagner, Arne; Ewers, Rolf

    2007-08-01

    In this study, we present and evaluate a micro-computed tomography (micro-CT)-based method for the calculation of the potential bone/implant contact area (p-BICA) on the surface of dental implants. For seven commercially available implants (Ankylos implant, Brånemark System, Frialit CELLplus, Replace((R)) Select Tapered, Straumann Solid screw, XiVE S CELLplus, 3i Osseotite XP Threaded Miniplant, the p-BICA surface is determined by means of three-dimensional X-ray computed-tomography and computer-based data processing. Measurements were repeated two times, and the stability and repeatability of the measurement method were evaluated. Our analysis revealed a p-BICA of 118 mm(2) for the XiVE S CELLplus implant, 134 mm(2) for the Ankylos, 136 mm(2) for the Frialit CELLplus, 138 mm(2) for the Brånemark System, 139 mm(2) for the Replace((R)), 159 mm(2) for the 3i Osseotite XP and 199 mm(2) for the Straumann Solid screw implant. The measurement method proved to be stable and led to reproducible results. The micro- and macrostructure of dental implants define the surface and the p-BICA. Precise determination of this parameter can be achieved by means of the micro-CT-based method as presented in this study. The value of p-BICA lies in the predictability of industrial design before preclinical and clinical testing. Based on this method, dental implant properties become comparable even if geometrical details are not disclosed by the manufacturer.

  17. Surface treatment of dental implants with high- power pulsed ion beams

    International Nuclear Information System (INIS)

    Shulov, V.A.; Nochovnaya, N.A.; Remnev, G.E.; Ivanov, S.Y.; Lomakin, M.V.

    2001-01-01

    The objective of the present research is development of HPPIB technology for surface processing of compact components with a complex shape. The surface state of the dental implants from titanium alloys before and after irradiation and long time operation was investigated by Auger electron spectroscopy, scanning electron microscopy, X-ray structural analysis, optical metallography methods. It is shown that the homogeneous state in the surface layer of titanium alloys is formed due to the irradiation (carbon ions and protons, energy of ions is equal to 300 keV, density of ion energy in a pulse achieves 1-5 J/cm 2 ). This state is characterized by a low amount of the impurities and a fine dispersion structure formed as a result of high speed crystallization. Thus, HPPIB irradiation of the dental implants leads to formation of developed micro relief and the decrease of impurities content on the surface. As a result, this treatment allows one to achieve a good cohesion between the implants and a body tissue. The latter allows the conclusion that biocompatibility of the dental titanium implants produced by can be improved using HPPIB treatment

  18. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    International Nuclear Information System (INIS)

    Yeo, In-Sung; Min, Seung-Ki; An, Young-Bai

    2010-01-01

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  19. Influence of bioactive material coating of Ti dental implant surfaces on early healing and osseointegration of bone

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, In-Sung [Seoul National University, Seoul (Korea, Republic of); Min, Seung-Ki [Seoul National University Dental Hospital, Seoul (Korea, Republic of); An, Young-Bai [Osstem Implant Co., Ltd., Busan (Korea, Republic of)

    2010-12-15

    The dental implant surface type is one of many factors that determine the long-term clinical success of implant restoration. The implant surface consists of bioinert titanium oxide, but recently coatings with bioactive calcium phosphate ceramics have often been used on Ti implant surfaces. Bio-active surfaces are known to significantly improve the healing time of the human bone around the inserted dental implant. In this study, we characterized two types of coated implant surfaces by scanning electron microscopy, energy dispersive spectrometry, and surface roughness testing. The effect of surface modification on early bone healing was then tested by using the rabbit tibia model to measure bone-to-implant contact ratios and removal torque values. These modified surfaces showed different characteristics in terms of surface topography, chemical composition, and surface roughness. However, no significant differences were found in the bone-to-implant contact and the resistance to removal torque between these surfaces. Both the coated implants may induce similar favorable early bone responses in terms of the early functioning and healing of dental implants even though they differed in their surface characteristics.

  20. AFM-investigation of differently treated Ti-surfaces with respect to their usability for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Wille, Sebastian; Adelung, Rainer [Funktionale Nanomaterialien, Institut fuer Materialwissenschaft, CAU Kiel Kaiserstr. 2 24143 Kiel (Germany); Yang, Bin [Klinik fuer Zahnaerztliche Prothetik, Propaedeutik und Werkstoffkunde, Arnold-Heller-Strasse 16, 24105 Kiel (Germany); Groessner-Schreiber, Birte [Klinik fuer Zahnerhaltungskunde und Parodontologie, Arnold-Heller-Str. 16, 24105 Kiel (Germany)

    2008-07-01

    Microbial adherence to dental implant surfaces is one initiating step in the formation of plaque and is considered to be an important event in the pathogenesis of peri-implant disease. Besides good connective tissue adhesion in the transmucosal part of an implant, titanium implants exposed to the oral cavity require surface modification to inhibit the adherence of oral bacteria. Surface roughness and chemical composition of the implant surface were found to have a significant impact on plaque formation. The aim of the present study was to examine bacterial adherence of differently modified potential implant surfaces. Therefore the surface roughness was decreased and for example a thin ceramic or composite layer of antibacterial material was deposited on abutment surface by sputtering. We analyze the new surface with AFM to control the roughness. For further characterization contact angle measurements were carried out. Biocompatibility and antibacterial effects will be determined in cooperation with the dental clinic at the University Kiel.

  1. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces.

    Science.gov (United States)

    Dohan Ehrenfest, David M; Vazquez, Lydia; Park, Yeong-Joon; Sammartino, Gilberto; Bernard, Jean-Pierre

    2011-10-01

    Dental implants are commonly used in daily practice; however, most surgeons do not really know the characteristics of these biomedical devices they are placing in their patients. The objective of this work is to describe the chemical and morphological characteristics of 14 implant surfaces available on the market and to establish a simple and clear identification (ID) card for all of them, following the classification procedure developed in the Dohan Ehrenfest et al (2010) Codification (DEC) system. Fourteen implant surfaces were characterized: TiUnite (Nobel Biocare), Ospol (Ospol), Kohno HRPS (Sweden & Martina), Osseospeed (AstraTech), Ankylos (Dentsply Friadent), MTX (Zimmer), Promote (Camlog), BTI Interna (Biotechnology Institute), EVL Plus (SERF), Twinkon Ref (Tekka), Ossean (Intra-Lock), NanoTite (Biomet 3I), SLActive (ITI Straumann), Integra-CP/NanoTite (Bicon). Three samples of each implant were analyzed. Superficial chemical composition was analyzed using X-ray photoelectron spectroscopy/electron spectroscopy for chemical analysis, and the 100 nm in-depth profile was established using Auger electron spectroscopy. The microtopography was quantified using light interferometry. The general morphology and nanotopography were evaluated using a field emission-scanning electron microscope. Finally, the characterization code of each surface was established using the DEC system, and the main characteristics of each surface were summarized in a reader-friendly ID card. From a chemical standpoint, of the 14 different surfaces, 10 were based on a commercially pure titanium (grade 2 or 4), 3 on a titanium-aluminum alloy (grade 5 titanium), and one on a calcium phosphate core. Nine surfaces presented different forms of chemical impregnation or discontinuous coating of the titanium core, and 3 surfaces were covered with residual aluminablasting particles. Twelve surfaces presented different degrees of inorganic pollutions, and 2 presented a severe organic pollution

  2. A review on the wettability of dental implant surfaces II: Biological and clinical aspects.

    Science.gov (United States)

    Gittens, Rolando A; Scheideler, Lutz; Rupp, Frank; Hyzy, Sharon L; Geis-Gerstorfer, Jürgen; Schwartz, Zvi; Boyan, Barbara D

    2014-07-01

    Dental and orthopedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects

    Science.gov (United States)

    Gittens, Rolando A.; Scheideler, Lutz; Rupp, Frank; Hyzy, Sharon L.; Geis-Gerstorfer, Jürgen; Schwartz, Zvi; Boyan, Barbara D.

    2014-01-01

    Dental and orthopaedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues. PMID:24709541

  4. Early osseointegration driven by the surface chemistry and wettability of dental implants.

    Science.gov (United States)

    Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Resende, Rodrigo Figueiredo Britto; Calasans-Maia, José; Granjeiro, José Mauro; Calasans-Maia, Mônica Diuana

    2015-01-01

    The objective of this study was to investigate the impact of two different commercially available dental implants on osseointegration. The surfaces were sandblasting and acid etching (Group 1) and sandblasting and acid etching, then maintained in an isotonic solution of 0.9% sodium chloride (Group 2). X-ray photoelectron spectroscopy (XPS) was employed for surface chemistry analysis. Surface morphology and topography was investigated by scanning electron microscopy (SEM) and confocal microscopy (CM), respectively. Contact angle analysis (CAA) was employed for wetting evaluation. Bone-implant-contact (BIC) and bone area fraction occupied (BAFO) analysis were performed on thin sections (30 μm) 14 and 28 days after the installation of 10 implants from each group (n=20) in rabbits' tibias. Statistical analysis was performed by ANOVA at the 95% level of significance considering implantation time and implant surface as independent variables. Group 2 showed 3-fold less carbon on the surface and a markedly enhanced hydrophilicity compared to Group 1 but a similar surface roughness (p>0.05). BIC and BAFO levels in Group 2 at 14 days were similar to those in Group 1 at 28 days. After 28 days of installation, BIC and BAFO measurements of Group 2 were approximately 1.5-fold greater than in Group 1 (pimplants of Group 2 accelerate osseointegration and increase the area of the bone-to-implant interface when compared to those of Group 1.

  5. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    International Nuclear Information System (INIS)

    Çelen, Serap; Özden, Hüseyin

    2012-01-01

    Highlights: ► It is time for that paradigm shift and for an exploration of novel surfaces. ► We developed novel 3D smart surfaces as strain actuators by nanosecond laser pulse energies. ► We analyzed these smart surface morphologies using FEM. ► We estimated their internal stiffness values which play a great role on stress shielding effect. ► We gave the optimum operation parameters. - Abstract: Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser (λ = 1060 nm) with 200–250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  6. In vitro analysis of the influence of surface treatment of dental implants on primary stability

    Directory of Open Access Journals (Sweden)

    Carla Rodrigues Mazzo

    2012-08-01

    Full Text Available Surface treatment interferes with the primary stability of dental implants because it promotes a chemical and micromorphological change on the surface and thus stimulates osseointegration. This study aimed to evaluate the effects of different surface treatments on primary stability by analyzing insertion torque (IT and pullout force (PF. Eight samples of implants with different surface treatments (TS - external hexagon with acid surface treatment; and MS - external hexagon, machined surface, all 3.75 mm in diameter X 11.5 mm in length, were inserted into segments of artificial bones. The IT of each sample was measured by an electronic torquemeter, and then the pullout test was done with a universal testing machine. The results were subjected to ANOVA (p < 0.05, followed by Tukey's test (p < 0.05. The IT results showed no statistically significant difference, since the sizes of the implants used were very similar, and the bone used was not highly resistant. The PF values (N were, respectively, TS = 403.75 ± 189.80 and MS = 276.38 ± 110.05. The implants were shown to be different in terms of the variables of maximum force (F = 4.401, p = 0.0120, elasticity in maximum flexion (F = 3.672, p = 0.024, and relative stiffness (F = 4.60, p = 0.01. In this study, external hexagonal implants with acid surface treatment showed the highest values of pullout strength and better stability, which provide greater indication for their use.

  7. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits

    OpenAIRE

    Scarano, Antonio; Piattelli, Adriano; Quaranta, Alesandro; Lorusso, Felice

    2017-01-01

    Background Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods Calcium-modified (CA) and SLActive surfaces were evaluated and a total of 18 implants ...

  8. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits

    OpenAIRE

    Scarano, Antonio; Piattelli, Adriano; Quaranta, Alesandro; Lorusso, Felice

    2017-01-01

    Background. Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods. Calcium-modified (CA) and SLActive surfaces were evaluated and a total of 18 implant...

  9. Influence of surface modified dental implant abutments on connective tissue attachment: A systematic review.

    Science.gov (United States)

    Blázquez-Hinarejos, Mónica; Ayuso-Montero, Raúl; Jané-Salas, Enric; López-López, José

    2017-08-01

    Determine whether surface modified prosthetic abutments for dental implants influence connective tissue attachment to the implant-abutment system. A systematic review was conducted using the MEDLINE-PubMed database, with two independent reviewers filtering the titles and abstracts. Two reviewers assessed all potentially relevant articles. An assessment was carried out on the level of evidence of the research according to the guidelines of the Oxford Centre for Evidence-Based Medicine (OCEBM). After an initial search, 109 potentially relevant articles were found. After reading the titles and abstracts, 99 articles were excluded because the surface treatment was limited to the implant and not to the abutment, or because different materials were analysed instead of surface treatments; 28 were also duplicate articles. An additional 6 research studies were included that were of interest and were found by reading the references of the included articles. The studies included are: 7 in vitro studies, 5 experimental studies in animals, 2 clinical trials in humans and 2 clinical cases. Surface modification for prosthetic abutments on dental implants can achieve connective tissue attachment to the abutment; however, more studies should be conducted in humans to obtain more and better evidence of these results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants.

    Science.gov (United States)

    Costa-Berenguer, Xavier; García-García, Marta; Sánchez-Torres, Alba; Sanz-Alonso, Mariano; Figueiredo, Rui; Valmaseda-Castellón, Eduard

    2018-01-01

    To assess the effect of implantoplasty on the fracture resistance, surface roughness, and macroscopic morphology of standard diameter (4.1 mm) external connection dental implants. An in vitro study was conducted in 20 screw-shaped titanium dental implants with an external connection. In 10 implants, the threads and surface were removed and polished with high-speed burs (implantoplasty), while the remaining 10 implants were used as controls. The final implant dimensions were recorded. The newly polished surface quality was assessed by scanning electron microscopy (SEM) and by 3D surface roughness analysis using a confocal laser microscope. Finally, all the implants were subjected to a mechanical pressure resistance test. A descriptive analysis of the data was made. Also, Student's t tests were employed to detect differences regarding the compression tests. Implantoplasty was carried out for a mean time of 10 min and 48 s (standard deviation (SD) of 1 min 22 s). Macroscopically, the resulting surface had a smooth appearance, although small titanium shavings and silicon debris were present. The final surface roughness (S a values 0.1 ± 0.02 μm) was significantly lower than that of the original (0.75 ± 0.08 μm S a ) (p = .005). There was minimal reduction in the implant's inner body diameter (0.19 ± 0.03 mm), and no statistically significant differences were found between the test and control implants regarding the maximum resistance force (896 vs 880 N, respectively). Implantoplasty, although technically demanding and time-consuming, does not seem to significantly alter fracture resistance of standard diameter external connection implants. A smooth surface with S a values below 0.1 μm can be obtained through the use of silicon polishers. A larger sample is required to confirm that implantoplasty does not significantly affect the maximum resistance force of standard diameter external connection implants. © 2017 John Wiley & Sons A/S. Published

  11. Surface modification of Ti dental implants by Nd:YVO4 laser irradiation

    International Nuclear Information System (INIS)

    Braga, Francisco J.C.; Marques, Rodrigo F.C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-01-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2 , and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6 O, Ti 3 O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process

  12. Surface modification of Ti dental implants by Nd:YVO 4 laser irradiation

    Science.gov (United States)

    Braga, Francisco J. C.; Marques, Rodrigo F. C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-09-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6O, Ti 3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process.

  13. Surface modification of Ti dental implants by Nd:YVO{sub 4} laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Francisco J.C. [Materials Science and Technology Center, Institute of Energetic and Nuclear Research, Box 11049 (05422-970), Sao Paulo (Brazil); Marques, Rodrigo F.C. [Magnetic Materials and Colloid Group, Institute of Chemistry, Sao Paulo State University, Box 355, Araraquara (Brazil); Filho, Edson de A. [Biomaterials Group, Institute of Chemistry, Sao Paulo State University, Box 355, Araraquara (Brazil); Guastaldi, Antonio C. [Biomaterials Group, Institute of Chemistry, Sao Paulo State University, Box 355, Araraquara (Brazil)], E-mail: guastald@iq.unesp.br

    2007-09-30

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO{sub 2} or TiO{sub 2}, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO{sub 4} in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases {alpha}Ti, {beta}Ti, Ti{sub 6}O, Ti{sub 3}O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process.

  14. Plaque formation on surface modified dental implants. An in vitro study.

    Science.gov (United States)

    Grössner-Schreiber, B; Griepentrog, M; Haustein, I; Müller, W D; Lange, K P; Briedigkeit, H; Göbel, U B

    2001-12-01

    Bacterial adhesion on titanium implant surfaces has a strong influence on healing and long-term outcome of dental implants. Parameters like surface roughness and chemical composition of the implant surface were found to have a significant impact on plaque formation. The purpose of this study was to evaluate the influence of two physical hard coatings on bacterial adhesion in comparison with control surfaces of equivalent roughness. Two members of the oral microflora, Streptococcus mutans and Streptococcus sanguis were used. Commercially pure titanium discs were modified using four different surface treatments: physical vapour deposition (PVD) with either titanium nitride (TiN) or zirconium nitride (ZrN), thermal oxidation and structuring with laser radiation. Polished titanium surfaces were used as controls. Surface topography was examined by SEM and estimation of surface roughness was done using a contact stylus profilometer. Contact angle measurements were carried out to calculate surface energy. Titanium discs were incubated in the respective bacterial cell suspension for one hour and single colonies formed by adhering bacteria were counted by fluorescence microscopy. Contact angle measurements showed no significant differences between the surface modifications. The surface roughness (Ra) of all surfaces examined was between 0.14 and 1.00 microm. A significant reduction of the number of adherent bacteria was observed on inherently stable titanium hard materials such as TiN and ZrN and thermically oxidated titanium surfaces compared to polished titanium. In conclusion, physical modification of titanium implant surfaces such as coating with TiN or ZrN may reduce bacterial adherence and hence improve clinical results.

  15. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  16. Electrochemical Characteristics of Titanium for Dental Implants in Case of the Electroless Surface Modification

    Directory of Open Access Journals (Sweden)

    Klimecka-Tatar D.

    2016-06-01

    Full Text Available In the paper the results of research under effect of electroless phosphate coating of titanium dental implants on potentiokinetic polarization characteristic obtained in artificial saliva were presented. On the basis of electrochemical studies it was concluded that the electroless process of phosphating beneficialy effect on corrosion characteristic of titanium determined in solution simulating the oral cavity. Furthermore, the proposed technique of chemical treatment of titanium surface is conducive to the homogeneous development of the surface, which is extremely important from the point of view of titanium implants biointegration. Phosphating treatment affect on the development of surface geometry, resulting in a slight increase in roughness parameters (Ra, Rz and Rmax. The temperature increase of electroless phosphating treatment promotes the rate of conversion layer formation, whereas the effect of temperature of the chemical treatment efficiency is secondary important at longer exposure times (e.g. 45 minutes.

  17. The experimental research on two-generation BLB dental implants - part I: surface modification and osseointegration.

    Science.gov (United States)

    Yin, Kaifeng; Wang, Zhifeng; Fan, Xin; Bian, Yuanyuan; Guo, Jing; Lan, Jing

    2012-07-01

    The study was designed to evaluate the comparative effect of osseointegration induced by the dental implants of Beijing Leiden Biomaterial (BLB) and BLBIII. The surface properties ofBLBI and BLBIII were studied through thermal field-scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS) and optical profilometer. A total of 36 BLBI and BLBIII implants, with each of the two groups possessing 18, were randomly implanted into the extraction fossa of the mandibular premolar areas of six Beagles. The animals were then executed 2, 4 and 8 weeks after the surgery, which was followed by macroscopic examination and histomorphometric analysis. Typical cloud-form microstructure was found on the surface of BLBI implant, which was distributed widely yet in an irregular way. The surface of BLBIII implant was mainly featured by a highly porous layer. The EDS spectra of BLBI indicated the peaks of calcium (Ca) and phosphorous (P) compatible with apatite phase, while the peaks of Ca, P, oxygen and titanium were incorporated in the BLBIII group. The ratio of Ca and K showed no significant differences in the surface chemical composition of BLBI and BLBIII. Surface microtopographic analysis showed a statistical difference (Pimplant contact (BIC) of BLBIII group presented higher value of statistical significance (P0.05). Micro-arc oxidation (MAO) and electrophoresis deposition (EPD) are able to produce a highly porous layer on the surface of BLBIII, which is characterized by a relatively stable Ca/P ratio similar to that of the hydroxyapatite layer. Therefore, superior and early osseointegration potential was demonstrated in the threaded implants treated by MAO coupling with EPD, rather than the merely cylindrical-shaped ones with plasma-sprayed HA coating layer. © 2011 John Wiley & Sons A/S.

  18. Optimization of dental implantation

    Science.gov (United States)

    Dol, Aleksandr V.; Ivanov, Dmitriy V.

    2017-02-01

    Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.

  19. Influence of surface treatment on osseointegration of dental implants: histological, histomorphometric and radiological analysis in vivo.

    Science.gov (United States)

    Calvo-Guirado, José Luis; Satorres-Nieto, Marta; Aguilar-Salvatierra, Antonio; Delgado-Ruiz, Rafael Arcesio; Maté-Sánchez de Val, José Eduardo; Gargallo-Albiol, Jordi; Gómez-Moreno, Gerardo; Romanos, Georgios E

    2015-03-01

    The aim of this article is to compare the influence of surface treatment on the integration (at 2, 4 and 8 weeks) of 120 dental implants inserted in 60 tibiae of rabbits. Four different surfaces were double-blind tested: blasted, acid-etched and discrete crystal deposition (DCD) (group A); blasted (group B); acid-etched (group C) and blasted and acid-etched (group D). Bone-to-implant contact plus reverse torque and bone level were measured at the time of implant insertion and at 14, 28 and 56 days of healing. Group A showed the highest early and late bone-to-implant contact (BIC) values: 40.8 ± 2.3 % at 14 days decreasing to 27.7 ± 1.1 % after 28 days and 39.4 ± 1.4 % at 56 days. For group B, the average BIC values at 14, 28 and 56 days were 23.34 ± 2.1, 23.77 ± 1.9 and 29.47 ± 1.7 %, respectively. Group C showed a value of 25.72 ± 2.3 % after 14 days of integration, 34.92 ± 2.2 % at 28 days and 32.91 ± 1.6 % at 56 days. Group D showed a BIC value of 32 ± 2.5 % at 14 days, 32.85 ± 1.4 % at 28 days and 34.04 ± 2.3 % at 56 days. In the scanning electron microscopy (SEM) analysis, no statistically significant differences were found. The Ca/P ratio values were 1.762 for surface A, 1.625 for surface B, 1.663 for surface C and finally 1.722 for surface D. Therefore, we conclude that even if there seems to be a tendency to obtain better BIC results with surface A (blasted-etched and covered with hydroxyapatite (HA)), no statistical differences were obtained in this study. The study shows the influence of different implant surfaces in increasing osseointegation for immediate loading implants.

  20. 26-year follow-up of screw-retained fixed dental prostheses supported by machined-surface Brånemark implants: a case report.

    Science.gov (United States)

    Turkyilmaz, Ilser

    2011-01-01

    Rough-surface implants have become very popular during the last 10 years due to greater reported bone-implant-contact and bone volume between implant threads compared to machined-surface implants. The aim of this clinical report is to present the 26-year clinical outcomes of machined-surface implants supporting screw-retained fixed dental prostheses in a 77-year-old woman. A 51-year-old woman received five mandibular and six maxillary implants supporting screw-retained fixed dental prostheses. The original machined-surface regular platform Branemark implants were placed using a two-stage surgical approach. No implants were lost, and average marginal bone levels between the implant platform and the first bone-implant contact for maxillary and mandibular implants were 3.3 +/- 0.6 mm and 1.7 +/- 0.3 mm after 26 years. The following prosthetic complications were recorded during the follow up period; a) broken acrylic denture tooth (four times), b) loose prosthetic screw (three times), c) loose abutment screw (two times). This case report shows that machined-surface dental implants can successfully support screw-retained fixed dental prostheses over 26 years, which makes dental implants an important dental treatment option compared to the traditional prosthetic treatment methods, especially in elderly edentulous patients.

  1. Efficiency of Nanotube Surface-Treated Dental Implants Loaded with Doxycycline on Growth Reduction of Porphyromonas gingivalis.

    Science.gov (United States)

    Ferreira, Cimara Fortes; Babu, Jegdish; Hamlekhan, Azhang; Patel, Sweetu; Shokuhfar, Tolou

    The prevalence of peri-implant infection in patients with dental implants has been shown to range from 28% to 56%. A nanotube-modified implant surface can deliver antibiotics locally and suppress periodontal pathogenic bacterial growth. The aim of this study was to evaluate the deliverability of antibiotics via a nanotube-modified implant. Dental implants with a nanotube surface were fabricated and loaded with doxycycline. Afterward, each dental implant with a nanotube surface was placed into 2-mL tubes, removed from solution, and placed in a fresh solution daily for 28 days. Experimental samples from 1, 2, 4, 16, 24, and 28 days were used for this evaluation. The concentration of doxycycline was measured using spectrophotometric analysis at 273-nm absorbance. The antibacterial effect of doxycycline was evaluated by supplementing Porphyromonas gingivalis (P gingivalis) growth media with the solution collected from the dental implants at the aforementioned time intervals for a period of 48 hours under anaerobic conditions. A bacterial viability assay was used to evaluate P gingivalis growth at 550-nm absorbance. Doxycycline concentration varied from 0.33 to 1.22 μg/mL from day 1 to day 28, respectively. A bacterial viability assay showed the highest P gingivalis growth at day 1 (2 nm) and the lowest at day 4 (0.17 nm), with a gradual reduction from day 1 to day 4 of approximately 87.5%. The subsequent growth pattern was maintained and slightly increased from baseline in approximately 48.3% from day 1 to day 24. The final P gingivalis growth measured at day 28 was 29.4% less than the baseline growth. P gingivalis growth was suppressed in media supplemented with solution collected from dental implants with a nanotube surface loaded with doxycycline during a 28-day time interval.

  2. Recent advances in dental implants.

    Science.gov (United States)

    Hong, Do Gia Khang; Oh, Ji-Hyeon

    2017-12-01

    Dental implants are a common treatment for the loss of teeth. This paper summarizes current knowledge on implant surfaces, immediate loading versus conventional loading, short implants, sinus lifting, and custom implants using three-dimensional printing. Most of the implant surface modifications showed good osseointegration results. Regarding biomolecular coatings, which have been recently developed and studied, good results were observed in animal experiments. Immediate loading had similar clinical outcomes compared to conventional loading and can be used as a successful treatment because it has the advantage of reducing treatment times and providing early function and aesthetics. Short implants showed similar clinical outcomes compared to standard implants. A variety of sinus augmentation techniques, grafting materials, and alternative techniques, such as tilted implants, zygomatic implants, and short implants, can be used. With the development of new technologies in three-dimension and computer-aided design/computer-aided manufacturing (CAD/CAM) customized implants can be used as an alternative to conventional implant designs. However, there are limitations due to the lack of long-term studies or clinical studies. A long-term clinical trial and a more predictive study are needed.

  3. Bone healing with or without platelet-rich plasma around four different dental implant surfaces in beagle dogs.

    Science.gov (United States)

    Streckbein, Philipp; Kleis, Wilfried; Buch, Rainer S R; Hansen, Torsten; Weibrich, Gernot

    2014-08-01

    Surface development is one of the major aims in dental implant engineering. Additive application of substances could possibly improve the new bone formation around dental implants. The present study evaluated the bone reaction on four different implant surfaces with or without platelet-rich plasma (PRP). Four self-tapping titanium screw implants (Brånemark MK III [Nobel Biocare, Göteborg, Sweden], Osseotite [3i, Miami, FL, USA], Xive [Densply Friadent, Mannheim, Germany], and Compress [IGfZ eG, Diez, Germany]) with different surfaces were inserted in each hemimandible of 12 female beagle dogs; the implant positions and the application of PRP were randomized. After intravital fluorochrome staining, sacrifices and biopsies harvesting were performed after 6 weeks (five dogs; one dog died before) and 12 weeks (six dogs) and the respective specimens were analyzed. The only significant difference in bone remodeling was found for the Compress implants with increased bone formation compared with the Brånemark implants at 12 weeks (sign test, p = .03). Comparing the histological and histomorphometric specimens of all other implant surfaces with respect to peri-implant bone remodeling and the resulting bone-implant contact rates (BICRs), no statistically significant differences were seen in the PRP or non-PRP groups (sign test, all p values ≥ .063). This study found no significant differences in the BICR for roughened implant surfaces compared with machined surfaces. In this animal model, the addition of PRP did not demonstrate evidence of faster bone formation or the resulting BICR. © 2013 Wiley Periodicals, Inc.

  4. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces.

    Science.gov (United States)

    Sánchez, M C; Llama-Palacios, A; Fernández, E; Figuero, E; Marín, M J; León, R; Blanc, V; Herrera, D; Sanz, M

    2014-10-01

    The impact of implant surfaces in dental biofilm development is presently unknown. The aim of this investigation was to assess in vitro the development of a complex biofilm model on titanium and zirconium implant surfaces, and to compare it with the same biofilm formed on hydroxyapatite surface. Six standard reference strains were used to develop an in vitro biofilm over sterile titanium, zirconium and hydroxyapatite discs, coated with saliva within the wells of pre-sterilized polystyrene tissue culture plates. The selected species used represent initial (Streptococcus oralis and Actinomyces naeslundii), early (Veillonella parvula), secondary (Fusobacterium nucleatum) and late colonizers (Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans). The developed biofilms (growth time 1 to 120h) were studied with confocal laser scanning microscopy using a vital fluorescence technique and with low-temperature scanning electron microscopy. The number (colony forming units/biofilm) and kinetics of the bacteria within the biofilm were studied with quantitative PCR (qPCR). As outcome variables, the biofilm thickness, the percentage of cell vitality and the number of bacteria were compared using the analysis of variance. The bacteria adhered and matured within the biofilm over the three surfaces with similar dynamics. Different surfaces, however, demonstrated differences both in the thickness, deposition of the extracellular polysaccharide matrix as well as in the organization of the bacterial cells. While the formation and dynamics of an in vitro biofilm model was similar irrespective of the surface of inoculation (hydroxyapatite, titanium or zirconium), there were significant differences in regards to the biofilm thickness and three-dimensional structure. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Dental implants: A review.

    Science.gov (United States)

    Guillaume, B

    2016-12-01

    A high number of patients have one or more missing tooth and it is estimated that one in four American subjects over the age of 74 have lost all their natural teeth. Many options exist to replace missing teeth but dental implants have become one of the most used biomaterial to replace one (or more) missing tooth over the last decades. Contemporary dental implants made with titanium have been proven safe and effective in large series of patients. This review considers the main historical facts concerned with dental implants and present the different critical factors that will ensure a good osseo-integration that will ensure a stable prosthesis anchorage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Nano-microsized modification of the surface morphology and composition of Ti-based dental implants

    Science.gov (United States)

    Joob, Arpad F.; Divinyi, T.; Fazekas, A.; Daroczi, C. S.; Karacs, A.; Peto, G.

    2001-11-01

    It can be concluded that surface treatment with high power Nd laser pulses induces unique morphology with sizes in ten micron and 50 nanometer ranges and being topologically isomorf with the plane. It is clear that the 1-10 micrometer elements do not change strongly the osseintegration compared to the flat surface. On the other hand this surface in 20-50 micrometer range already enhance the osseointegration indicating a strong size dependens. The effect of the nanosized elements can be suggested also because their density has been increased with laser intensity. These two effects can not be separated with available data. It is evident that several questions in connection with laser treatment of surfaces such as first of all the time course of bone formation await further studies. Namely, if microgeometry plays a role in bone formation then the process of osseointegration should be also studied in conjunction with the comparisons of the various surfaces. It is hoped that our future studies can give responses to more questions and the results will contribute to the implementation of novel clinically successful techniques to improve the reliability of dental implants.

  7. Laser Surface Pattering of Titanium for Improving the Biological Performance of Dental Implants.

    Science.gov (United States)

    Zwahr, Christoph; Günther, Denise; Brinkmann, Tina; Gulow, Nikolai; Oswald, Steffen; Grosse Holthaus, Marzellus; Lasagni, Andrés Fabián

    2017-02-01

    Direct laser interference patterning (DLIP) is used to produce periodic line-like patterns on titanium surfaces. An Nd:YAG laser operating at 532 nm wavelength with a pulse duration of 8 ns is used for the laser patterning process. The generated periodic patterns with spatial periods of 5, 10, and 20 µm are produced with energy densities between 0.44 and 2.6 J cm - 2 with a single laser pulse. With variation of energy density, different shapes of the arising topography are observed due to the development of the solidification front of the molten material at the maxima positions. Characterization of the surface chemistry shows that the DLIP treatment enhances the content of nitrogen of the titanium reactive layer from 3.9% up to 23.4%. The structural analysis near the titanium surface shows no changes in microstructure after the laser treatment. Contact angles between 65° and 79° are measured on both structured and turned reference surfaces. Cell viability of human osteoblasts on line-like patterned surfaces after 7 d in cultivation medium is 16% higher compared to the grit-blasted and acid-etched references. Finally, the possibility of patterning complex 3D dental implants is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A 2-year report on maxillary and mandibular fixed partial dentures supported by Astra Tech dental implants. A comparison of 2 implants with different surface textures

    DEFF Research Database (Denmark)

    Karlsson, U; Gotfredsen, K; Olsson, C

    1998-01-01

    In 50 partially edentulous patients, 133 (48 maxillary; 85 mandibular) Astra Tech dental implants of 2 different surface textures (machined; TiO-blasted) were alternately installed, supporting 52 fixed partial dentures (FPDs). Before abutment connection 2 machined implants (1 mandibular; 1...... maxillary) were found to be non-osseointegrated and were replaced. Another implant could not be restored due to a technical complication. Two FPDs were remade because of technical complications, both because of abutment fractures. Thus, after 2 years in function, the cumulative survival rates were 97.......7% and 95.7% for implants and prostheses, respectively. There was no statistically significant difference in survival rate between the 2 types of implants, 100% (TiO-blasted) vs 95.3% (machined), P = 0.24. After 2 years in function, when both jaw and type of implants were combined, the mean (SD) marginal...

  9. Assessment of a chair-side argon-based non-thermal plasma treatment on the surface characteristics and integration of dental implants with textured surfaces.

    Science.gov (United States)

    Teixeira, Hellen S; Marin, Charles; Witek, Lukasz; Freitas, Amilcar; Silva, Nelson R F; Lilin, Thomas; Tovar, Nick; Janal, Malvin N; Coelho, Paulo G

    2012-05-01

    The biomechanical effects of a non-thermal plasma (NTP) treatment, suitable for use in a dental office, on the surface character and integration of a textured dental implant surface in a beagle dog model were evaluated. The experiment compared a control treatment, which presented an alumina-blasted/acid-etched (AB/AE) surface, to two experimental treatments, in which the same AB/AE surface also received NTP treatment for a period of 20 or 60 s per implant quadrant (PLASMA 20' and PLASMA 60' groups, respectively). The surface of each specimen was characterized by electron microscopy and optical interferometry, and surface energy and surface chemistry were determined prior to and after plasma treatment. Two implants of each type were then placed at six bilateral locations in 6 dogs, and allowed to heal for 2 or 4 weeks. Following sacrifice, removal torque was evaluated as a function of animal, implant surface and time in vivo in a mixed model ANOVA. Compared to the CONTROL group, PLASMA 20' and 60' groups presented substantially higher surface energy levels, lower amounts of adsorbed C species and significantly higher torque levels (p=.001). Result indicated that the NTP treatment increased the surface energy and the biomechanical fixation of textured-surface dental implants at early times in vivo. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits

    Directory of Open Access Journals (Sweden)

    Antonio Scarano

    2017-01-01

    Full Text Available Background. Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Methods. Calcium-modified (CA and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Results. Bone-implant contact (BIC at the two-implant surfaces was significantly different in favor of the CA surface at 15 days (p=0.027, while SLActive displayed not significantly higher values at 30 (p=0.51 and 60 days (p=0.061. Conclusion. Both implant surfaces show an intimate interaction with newly formed bone.

  11. Bone Response to Two Dental Implants with Different Sandblasted/Acid-Etched Implant Surfaces: A Histological and Histomorphometrical Study in Rabbits.

    Science.gov (United States)

    Scarano, Antonio; Piattelli, Adriano; Quaranta, Alesandro; Lorusso, Felice

    2017-01-01

    Scientific evidence in the field of implant dentistry of the past 20 years established that titanium rough surfaces have shown improved osseointegration rates. In a majority of dental implants, the surface microroughness was obtained by grit blasting and/or acid etching. The aim of the study was to evaluate in vivo two different highly hydrophilic surfaces at different experimental times. Calcium-modified (CA) and SLActive surfaces were evaluated and a total of 18 implants for each type of surface were positioned into the rabbit articular femoral knee-joint in a split model experiment, and they were evaluated histologically and histomorphometrically at 15, 30, and 60 days of healing. Bone-implant contact (BIC) at the two-implant surfaces was significantly different in favor of the CA surface at 15 days ( p = 0.027), while SLActive displayed not significantly higher values at 30 ( p = 0.51) and 60 days ( p = 0.061). Both implant surfaces show an intimate interaction with newly formed bone.

  12. A new concept of bio-multifunctional nanotubular surfaces for dental implants: tribocorrosion resistant, antibacterial and osteogenic

    OpenAIRE

    Alves, Sofia Afonso

    2017-01-01

    PhD thesis in Biomedical Engineering Dental implant market is continuously growing due to the constant increase in life expectancy and higher concerns on oral hygiene and aesthetics. Titanium-based materials are the most widely used in dental implants due to their superior biocompatibility, mechanical properties, and excellent corrosion resistance. However, despite the high overall success rate of dental implants, a significant number of failures still occur. Implant failure...

  13. Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants

    Directory of Open Access Journals (Sweden)

    Bruno Ramos Chrcanovic

    2012-06-01

    Full Text Available We present a detailed investigation of the surface characteristics of five commercial titanium implants with different surface finishing (double acid etching, anodization and incorporation of Ca/P, acid etching and deposition of Ca/P, hydroxyapatite-blasting, acid etching and Ca/P-blasting produced by five different manufacturers. A set of experimental techniques were employed to study the surface chemical composition and morphology: XPS, XRD, SEM, EDS, and AFM. According to the implat manufacturers, the addition of Ca and P at the implant surface is a main feature of these implants (except the double acid etched implant, which was included for comparative purpose. However, the results showed a great discrepancy on the final amount of these elements on the implant surface, which suggests a different effectiveness of the employed surface finishing methods to fix those elements on the implant surface. Our results show that only the method used by the manufacturer of hydroxyapatite-blasting surface finished implants was efficient to produce a hydroxyapatite coating. This group also showed the highest roughness parameters.

  14. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients.

    Science.gov (United States)

    van Velzen, Frank J J; Ofec, Ronen; Schulten, Engelbert A J M; Ten Bruggenkate, Christiaan M

    2015-10-01

    This prospective cohort study evaluates the 10-year survival and incidence of peri-implant disease at implant and patient level of sandblasted, large grid, and acid-etched titanium dental implants (Straumann, soft tissue level, SLA surface) in fully and partially edentulous patients. Patients who had dental implant surgery in the period between November 1997 and June 2001, with a follow-up of at least 10 years, were investigated for clinical and radiological examination. Among the 506 inserted dental implants in 250 patients, 10-year data regarding the outcome of implants were available for 374 dental implants in 177 patients. In the current study, peri-implantitis was defined as advanced bone loss (≧1.5 mm. postloading) in combination with bleeding on probing. At 10-year follow-up, only one implant was lost (0.3%) 2 months after implant surgery due to insufficient osseointegration. The average bone loss at 10 year postloading was 0.52 mm. Advanced bone loss at 10-year follow-up was present in 35 dental implants (9.8%). Seven percent of the observed dental implants showed bleeding on probing in combination with advanced bone loss and 4.2% when setting the threshold for advanced bone loss at 2.0 mm. Advanced bone loss without bleeding on probing was present in 2.8% of all implants. In this prospective study, the 10-year survival rate at implant and patient level was 99.7% and 99.4%, respectively. Peri-implantitis was present in 7% of the observed dental implants according to the above-mentioned definition of peri-implantitis. This study shows that SLA implants offer predictable long-term results as support in the treatment of fully and partially edentulous patients. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, İstanbul (Turkey); Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr [Adnan Menderes University, Faculty of Engineering, Department of Mechanical Engineering, Aytepe, 09010, Aydin (Turkey); Durakbasa, M. N., E-mail: durakbasa@gmx.at [Department of Interchangeable Manufacturing and Industrial Metrology, Institute for Production Engineering and Laser Technology, Vienna University of Technology, Karlsplatz 13/3113 A-1040 Wien (Austria); Katiboglu, A. B., E-mail: abkatiboglu@hotmail.com [Istanbul University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Istanbul (Turkey)

    2015-03-30

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in

  16. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    Science.gov (United States)

    Bulutsuz, A. G.; Demircioglu, P.; Bogrekci, I.; Durakbasa, M. N.; Katiboglu, A. B.

    2015-03-01

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface

  17. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    International Nuclear Information System (INIS)

    Bulutsuz, A. G.; Demircioglu, P.; Bogrekci, I.; Durakbasa, M. N.; Katiboglu, A. B.

    2015-01-01

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in

  18. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients

    NARCIS (Netherlands)

    van Velzen, F.J.J.; Ofec, R.; Schulten, E.A.J.M.; ten Bruggenkate, C.M.

    2015-01-01

    Purpose This prospective cohort study evaluates the 10-year survival and incidence of peri-implant disease at implant and patient level of sandblasted, large grid, and acid-etched titanium dental implants (Straumann, soft tissue level, SLA surface) in fully and partially edentulous patients.

  19. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients

    NARCIS (Netherlands)

    van Velzen, F.J.J.; Ofec, R.; Schulten, E.A.J.M.; ten Bruggenkate, C.M.

    2015-01-01

    Purpose: This prospective cohort study evaluates the 10-year survival and incidence of peri-implant disease at implant and patient level of sandblasted, large grid, and acid-etched titanium dental implants (Straumann, soft tissue level, SLA surface) in fully and partially edentulous patients.

  20. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers.

    Science.gov (United States)

    Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi

    2018-03-13

    Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. [The impact of dental implants

    NARCIS (Netherlands)

    Meijer, G.J.

    2013-01-01

    The importance of the introduction of dental implants can only be understood when the historical context is clarified. In the past, the main treatment carried out by dentists consisted of filling or, in unfortunate cases, removal of painful teeth. Only since the introduction of dental implants did

  2. PEEK with Reinforced Materials and Modifications for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Fitria Rahmitasari

    2017-12-01

    Full Text Available Polyetheretherketone (PEEK is a semi-crystalline linear polycyclic thermoplastic that has been proposed as a substitute for metals in biomaterials. PEEK can also be applied to dental implant materials as a superstructure, implant abutment, or implant body. This article summarizes the current research on PEEK applications in dental implants, especially for the improvement of PEEK surface and body modifications. Although various benchmark reports on the reinforcement and surface modifications of PEEK are available, few clinical trials using PEEK for dental implant bodies have been published. Controlled clinical trials, especially for the use of PEEK in implant abutment and implant bodies, are necessary.

  3. Dealing with dental implant failures

    Directory of Open Access Journals (Sweden)

    Liran Levin

    2008-06-01

    Full Text Available An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options.When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them.

  4. Time course of surface characteristics of alkali- and heat-treated titanium dental implants during vacuum storage.

    Science.gov (United States)

    Kamo, Michimasa; Kyomoto, Masayuki; Miyaji, Fumiaki

    2017-08-01

    Current efforts to shorten the healing times of life-long dental implants and prevent their fouling by organic impurities have focused on using surface-modification treatments and alternative packaging, respectively. In this study, we investigated the time course of the surface characteristics, including the wettability, a protein-adsorption and apatite-formation abilities, of alkali- and heat-treated (AH-treated) Ti samples during storage in vacuum over a period of 52 weeks. The AH treatment resulted in the formation of a nanometer-scale needle-like rougher surface of the Ti samples. Although the water contact angle of the AH-treated Ti sample increased slightly, it remained as low as approximately 10° even after storage in vacuum for 52 weeks. There was no significant difference in the protein-adsorption and apatite-formation abilities of the AH-treated Ti sample before and after storage. Further, the AH-treated Ti sample exhibited greater protein-adsorption and apatite-formation abilities compared with the untreated one; regardless of the samples stored in vacuum or not. Apatite formed only on the AH-treated Ti surface. Therefore, subjecting Ti dental implants to the AH treatment and storing them in vacuum should help prevent their surfaces from getting contaminated. Further, it is expected that AH-treated Ti dental implants controllably aged during a shelf storage will exhibit high stability and bone-bonding bioactivity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1453-1460, 2017. © 2016 Wiley Periodicals, Inc.

  5. Surface characteristics and bioactivity of a novel natural HA/Zircon nanocomposite coated on dental implants

    NARCIS (Netherlands)

    Karamian, E.; Khandan, A.; Motamedi, M.R.K.; Mirmohammadi, H.

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel

  6. Biofilm and dental implant: The microbial link

    Directory of Open Access Journals (Sweden)

    Sangeeta Dhir

    2013-01-01

    Full Text Available Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discusses the biofilms in relation to the peri-implant region, factors affecting its presence, and the associated treatment to manage this complex microbial colony. Search Methodology: Electronic search of the medline was done with the search words: Implants and biofilms/dental biofilm formation/microbiology at implant abutment interface/surface free energy/roughness and implant, periimplantitis/local drug delivery and dental implant. Hand search across the journals - clinical oral implant research, implant dentistry, journal of dental research, international journal of oral implantology, journal of prosthetic dentistry, perioodntology 2000, journal of periodontology were performed. The articles included in the review comprised of in vivo studies, in vivo (animal and human studies, abstracts, review articles.

  7. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Laranjeira, Marta S; Carvalho, Ângela; Ferraz, Maria Pia; Monteiro, Fernando Jorge; Pelaez-Vargas, Alejandro; Hansford, Derek; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  8. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  9. [Maintenance care for dental implant].

    Science.gov (United States)

    Kamoi, K

    1989-10-01

    Dental implant has tried at the early stage in 19th century recovering an oral function and esthetics. Technological revolutions in biochemical and new materials have developed on the remarkable change in the dental implants, nowadays we call the three generation therapy for dental implantology. There are many kinds of methods and techniques in dental implants, however a lot of troublesome complication on the process of surgical phase, construction of prothodontics and prognosis of maintenance care. In the proceedings of this symposium, I would like to propose you how to manage the maintenance care for various kind of dental implants through the methodology and case presentations. Tendenay and future for dental implants The current outlook of dental implant has increasing supply and demand not only dentists but also patients. According to Japanese Welfare Ministry's report in 1987, average missing teeth over sixty years old generations are approximately 42% in accordance with NIDR (U.S.A.) research. They are missed on ten over teeth in full 28th teeth dentitions owing to dental caries and periodontal diseases. Generally speaking, latent implant patients are occupied on the same possibility of needs for dental implants both Japan and U.S.A. Management of maintenance care The patients hardly recognized the importance of plaque control for the maintenance care in the intraoral condition after implantation. Dentists and dental staffs must be instruct patients for importance of plaque removal and control, because they already had forgotten the habit of teeth cleaning, especially in the edenturous conditions. 1) Concept of establishment in oral hygiene. Motivation and instruction for patients include very important factors in dental implants as well as in periodontal diseases. Patients who could not achieve on good oral hygiene levels obtained no good results in the long term observations. To establish good oral hygiene are how to control supra plaque surrounding tissues

  10. [Osseointegration and dental implants].

    Science.gov (United States)

    Goto, Tetsuya

    2014-02-01

    The concept of osseointegration was developed and the term was coined Dr. Brånemark. Osseointegration is initially defined as the direct structural and functional connection between living bone and surface living bone and the surface of a loadbearing artificial implant, typically made of titanium. Osseointegration required new bone formation around fixture, the healing of implant system is similar to primary bone healing. Bone formation on the titanium surface needs the formation of oxide film, deposition of calcium phosphate, and deposition of the protein. However, osseointegration is not the direct bonding between bone and the titanium surface, there exists an amorphous layer including osteopontin or osteocalcin that osteoblasts use them as a scaffold. In clinical the ratio of bone and implant contacts is called as BIC, and BIC was from 40% to 60% if the osseointegration was obtained. Numerous studies were performed for the surface modification to increase the score of BIC. Recently, surface treatments such as glow discharge, acid-etch, or UV irradiation have been found to be effective for osseointegration. Further modification would be needed to maintain the osseointegration as well as to obtain the osseointegration.

  11. Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro.

    Science.gov (United States)

    Schmidt, Kristina Emily; Auschill, Thorsten Mathias; Heumann, Christian; Frankenberger, Roland; Eick, Sigrun; Sculean, Anton; Arweiler, Nicole Birgit

    2017-04-01

    To evaluate surface characteristics of implants after using different instruments and biofilm formation following instrumentation. Thirty-five commercially available dental implants were embedded into seven plastic models, attached to a phantom head and randomly assigned to seven instrumentation groups: (1) stainless steel (SSC) or (2) titanium curettes (TC); air-polisher using glycine-based (3) perio (PP) or (4) soft (SP) powders or (5) erythritol powder (EP); and an ultrasonic device using (6) stainless steel (PS) or (7) plastic-coated instruments (PI). Half of each implant neck in each group (n = 5) was treated once (30 s), while the other half was left uninstrumented (control). An eighth (8) treatment group used a bur/polisher to smooth two implants (SM). Following instrumentation implants were rinsed (5 ml Ringer's solution), analysed under a scanning electron microscope (SEM) and subjected twice (separately) to bacterial colonization with Streptococcus gordonii (2 h) and a mixed culture (S. gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, Porphyromonas gingivalis and Tannerella forsythia; 24 h). Visual assessment of SEM pictures revealed surface modifications (smoothening to roughening) following instrumentation. These alterations differed between the instrument groups and from the control. Quantitative scoring of the photographs revealed that SSC caused a significantly rougher surface compared to other instruments (P  0.05) were evident between instrumented or control surfaces in either culture. Overall, no significant differences were observed in the surface characteristics (except for SSC) or bacterial colonization based on one-time instrumentation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  13. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  14. Scanning Electron Microscope (SEM) Evaluation of the Interface between a Nanostructured Calcium-Incorporated Dental Implant Surface and the Human Bone.

    Science.gov (United States)

    Mangano, Francesco; Raspanti, Mario; Maghaireh, Hassan; Mangano, Carlo

    2017-12-17

    Purpose . The aim of this scanning electron microscope (SEM) study was to investigate the interface between the bone and a novel nanostructured calcium-incorporated dental implant surface in humans. Methods . A dental implant (Anyridge ® , Megagen Implant Co., Gyeongbuk, South Korea) with a nanostructured calcium-incorporated surface (Xpeed ® , Megagen Implant Co., Gyeongbuk, South Korea), which had been placed a month earlier in a fully healed site of the posterior maxilla (#14) of a 48-year-old female patient, and which had been subjected to immediate functional loading, was removed after a traumatic injury. Despite the violent trauma that caused mobilization of the fixture, its surface appeared to be covered by a firmly attached, intact tissue; therefore, it was subjected to SEM examination. The implant surface of an unused nanostructured calcium-incorporated implant was also observed under SEM, as control. Results . The surface of the unused implant showed a highly-structured texture, carved by irregular, multi-scale hollows reminiscent of a fractal structure. It appeared perfectly clean and devoid of any contamination. The human specimen showed trabecular bone firmly anchored to the implant surface, bridging the screw threads and filling the spaces among them. Conclusions . Within the limits of this human histological report, the sample analyzed showed that the nanostructured calcium-incorporated surface was covered by new bone, one month after placement in the posterior maxilla, under an immediate functional loading protocol.

  15. ADVANCED DENTAL IMPLANT PLACEMENT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Alex M. GREENBERG

    2017-12-01

    Full Text Available The availability of in office Cone Beam CT (CBCT scanners, dental implant planning software, CAD CAM milling, and rapid printing technologies allow for the precise placement of dental implants and immediate prosthetic temporization. These technologies allow for flapless implant placement, or open flap bone reduction for “All on 4” techniques with improved preoperative planning and intraoperative performance. CBCT permits practitioners in an office setting with powerful diagnostic capabilities for the evaluation of bone quality and quantity, as well as dental and osseous pathology essential for better informed dental implant treatment. CBCT provides the convenience of in office imaging and decreased radiation exposure. Rapid printing technologies provide decreased time and high accuracy for bone model and surgical guide fabrication.

  16. Long-term Survival of Straumann Dental Implants with TPS Surfaces: A Retrospective Study with a Follow-up of 12 to 23 Years.

    Science.gov (United States)

    Becker, Stephan T; Beck-Broichsitter, Benedicta E; Rossmann, Christian M; Behrens, Eleonore; Jochens, Arne; Wiltfang, Jörg

    2016-06-01

    The aim of this study was to evaluate the long-term dental implant survival rates of Straumann dental implants in a university hospital environment over 12 to 23 years. A total of 388 Straumann dental implants with titanium-sprayed surfaces (TPS) were inserted in 92 patients between 1988 and 1999 in the Department of Oral and Maxillofacial Surgery of the University Hospital Schleswig-Holstein in Kiel, and they were reevaluated with standardized clinical and radiological exams. Kaplan-Meier analyses were performed for individual factors. Cox proportional hazard regression analysis was used to detect the factors influencing long-term implant failure. The long-term implant survival rate was 88.03% after an observation time of 12.2 to 23.5 years. Cox regression revealed statistically significant influences of the International Team for Implantology (ITI) implantation type (p = .00354) and tobacco smoking (p = .01264) on implant failure. A proportion 82.8% of the patients with implant losses had a medical history of periodontitis. Peri-implantitis was diagnosed in 9.7% of the remaining implants in the long-term survey. This study emphasized the long-term rehabilitation capabilities of Straumann dental implants in complex cases. The survival rates after several years constitute important information for patients, as well as for clinicians, in deciding about different concepts of tooth replacement. Patient-related and technical factors - determined before implant placement - could help to predict the risk of implant loss. © 2015 Wiley Periodicals, Inc.

  17. Impact of Different Implant Surfaces Topographies on Peri-Implant Tissues: An Update of Current Available Data on Dental Implants Retrieved from Human Jaws.

    Science.gov (United States)

    Shibli, Jamil A; Pires, Jefferson T; Piattelli, Adriano; Iezzi, Giovanna; Mangano, Carlo; Mangano, Francesco; de Souza, Sergio L S; Gehrke, Sergio A; Wang, Hom-Lay; Ehrenfest, David M Dohan

    2017-01-01

    The high success range obtained with the implant-supported restorations has improved its applicability on routine of the daily clinical practice. This elevated percentage of success is related to the previous pre-clinical data obtained from animal and in vitro studies that evaluated the impact of implant surface topographies on bone tissue. However, the histological evaluation of human bone tissue is scarce. Therefore, the aim of this review is to depict an actual panorama of the data available on boneto- implant contact (BIC) of retrieved implants from human jaws. Some aspects of implant surface topography as well as systemic conditions as osteoporosis and smoking habit were demonstrated to have a strong impact, suggesting that the data obtained from human bone tissue is still valuable for the better understanding of the osseointegration process. This article also highlighted that most data in humans are difficult to interpret, due to the lack of detailed information about the surfaces found in retrieved implants. Without the definition of the surface characteristics, it is difficult to link exactly the surface patterns to specific clinical observations, and all observations remain de facto incomplete. As a conclusion, data from implants retrieved from human jaws are very important for our understanding, however the studies remain scarce and data is fragmented. This important approach should be improved, completed and developed in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Air Abrasive Disinfection of Implant Surfaces in a Simulated Model of Peri-Implantitis

    Science.gov (United States)

    2016-06-01

    Introduction: Dental implant technology has evolved into a predictable treatment option for the restoration of edentulous sites. However, peri... implantitis is an emerging complication leading to increased morbidity or mortality of osseointegrated implants . The prevalence of peri- implant ... implant surface. The aim of this in vitro study was to evaluate the ability of air-powder abrasion to mechanically decontaminate dental implants in a

  19. Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser

    Energy Technology Data Exchange (ETDEWEB)

    Karacs, A.; Joob Fancsaly, A.; Divinyi, T.; Peto, G.; Kovach, G

    2003-03-03

    Machined dental implants of titanium were blasted with Al{sub 2}O{sub 3} powder of 250 {mu}m particle size. The surface was irradiated in vacuum with a Nd-glass pulsed laser at 1-3 J pulse energies. The morphology of these surfaces was investigated by optical and scanning electron microscopy. The low intensity laser treatment resulted in some new irregularities but we can observe the blasted elements and caves from the original blasted surface too. The blasted elements were washed out and a new surface morphology was induced by the high intensity laser treatment. The osseointegration was determined by measuring the removal torque in the rabbit experiments. The results were referred to the as machined surface. The blasting slightly increased the removal torque. The laser irradiation increased the removal torque significantly, more by a factor of 1.5 compared to the reference at high laser intensity. This shows the influence of the surface morphology on the osseointegration. The combination of the blasting with the laser irradiation is considered a method to determine the morphology optimal for the osseointegration because the pulsed laser irradiation caused modifications of the micrometer sized surface elements and decreases possible surface contamination.

  20. Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser

    International Nuclear Information System (INIS)

    Karacs, A.; Joob Fancsaly, A.; Divinyi, T.; Peto, G.; Kovach, G.

    2003-01-01

    Machined dental implants of titanium were blasted with Al 2 O 3 powder of 250 μm particle size. The surface was irradiated in vacuum with a Nd-glass pulsed laser at 1-3 J pulse energies. The morphology of these surfaces was investigated by optical and scanning electron microscopy. The low intensity laser treatment resulted in some new irregularities but we can observe the blasted elements and caves from the original blasted surface too. The blasted elements were washed out and a new surface morphology was induced by the high intensity laser treatment. The osseointegration was determined by measuring the removal torque in the rabbit experiments. The results were referred to the as machined surface. The blasting slightly increased the removal torque. The laser irradiation increased the removal torque significantly, more by a factor of 1.5 compared to the reference at high laser intensity. This shows the influence of the surface morphology on the osseointegration. The combination of the blasting with the laser irradiation is considered a method to determine the morphology optimal for the osseointegration because the pulsed laser irradiation caused modifications of the micrometer sized surface elements and decreases possible surface contamination

  1. New dental implant selection criterion based on implant design

    OpenAIRE

    El-Anwar, Mohamed I.; El-Zawahry, Mohamed M.; Ibraheem, Eman M.; Nassani, Mohammad Zakaria; ElGabry, Hisham

    2017-01-01

    Objective: A comparative study between threaded and plain dental implant designs was performed to find out a new criterion for dental implant selection. Materials and Methods: Several dental implant designs with a systematic increase in diameter and length were positioned in a cylindrical-shaped bone section and analyzed using finite element method. Four loading types were tested on different dental implant designs; tension of 50 N, compression of 100 N, bending of 20 N, and torque of 2 Nm, t...

  2. Awareness of dental implants among dental patients in Nigeria ...

    African Journals Online (AJOL)

    The aim of this study was to determine the level of awareness of dental implant in Nigerian patients and their willingness to choose dental implant as a tooth replacement option. A survey was conducted among patients presenting for dental treatment in 3 teaching hospitals and private dental clinics in 3 urban cities of ...

  3. Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants.

    Science.gov (United States)

    Karamian, Ebrahim; Khandan, Amirsalar; Motamedi, Mahmood Reza Kalantar; Mirmohammadi, Hesam

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel natural hydroxyapatite/zircon (NHA/zircon) nanobiocomposite, coated on 316L stainless steel (SS) soaked in simulated body fluid (SBF). NHA/zircon nanobiocomposite was fabricated with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon in NHA using ball mill for 20 minutes. The composite mixture was coated on 316L SS using plasma spray method. The results are estimated using the scanning electron microscopy (SEM) observation to evaluate surface morphology, X-ray diffraction (XRD) to analyze phase composition, and transmission electron microscopy (TEM) technique to evaluate the shape and size of prepared NHA. Surfaces roughness tester was performed to characterize the coated nanocomposite samples. The maximum average R a (14.54 μm) was found in the NHA 10 wt.% of zircon coating. In addition, crystallinity (X c ) was measured by XRD data, which indicated the minimum value (X c = 41.1%) for the sample containing 10 wt.% of zircon. Maximum bioactivity occurred in the sample containing 10 wt.% of zircon, which was due to two reasons: first, the maximum roughness and, second, the minimum crystallinity of nanobiocomposite coating.

  4. Fatigue of Dental Implants: Facts and Fallacies

    Directory of Open Access Journals (Sweden)

    Keren Shemtov-Yona

    2016-05-01

    Full Text Available Dental implants experience rare yet problematic mechanical failures such as fracture that are caused, most often, by (time-dependent metal fatigue. This paper surveys basic evidence about fatigue failure, its identification and the implant’s fatigue performance during service. We first discuss the concept of dental implant fatigue, starting with a review of basic concepts related to this failure mechanism. The identification of fatigue failures using scanning electron microscopy follows, to show that this stage is fairly well defined. We reiterate that fatigue failure is related to the implant design and its surface condition, together with the widely varying service conditions. The latter are shown to vary to an extent that precludes devising average or representative conditions. The statistical nature of the fatigue test results is emphasized throughout the survey to illustrate the complexity in evaluating the fatigue behavior of dental implants from a design perspective. Today’s fatigue testing of dental implants is limited to ISO 14801 standard requirements, which ensures certification but does not provide any insight for design purposes due to its limited requirements. We introduce and discuss the random spectrum loading procedure as an alternative to evaluate the implant’s performance under more realistic conditions. The concept is illustrated by random fatigue testing in 0.9% saline solution.

  5. Research on dental implant and its industrialization stage

    Science.gov (United States)

    Dongjoon, Yang; Sukyoung, Kim

    2017-02-01

    Bone cell attachment to Ti implant surfaces is the most concerned issue in the clinical implant dentistry. Many attempts to achieve the fast and strong integration between bone and implant have been tried in many ways, such as selection of materials (for example, Ti, ZrO2), shape design of implant (for example, soft tissue level, bone level, taped or conical, etc), and surface modification of implants (for example, roughed. coated, hybrid), etc. Among them, a major consideration is the surface design of dental implants. The surface with proper structural characteristics promotes or induces the desirable responses of cells and tissues. To obtain such surface which has desirable cell and tissue response, a variety of surface modification techniques has been developed and employed for many years. In this review, the method and trend of surface modification will be introduced and explained in terms of the surface topography and chemistry of dental implants.

  6. Implant surface material, design, and osseointegration.

    Science.gov (United States)

    Ogle, Orrett E

    2015-04-01

    The structural and functional union of the implant with living bone is greatly influenced by the surface properties of the implant. The success of a dental implant depends on the chemical, physical, mechanical, and topographic characteristics of its surface. The influence of surface topography on osseointegration has translated to shorter healing times from implant placement to restoration. This article presents a discussion of surface characteristics and design of implants, which should allow the clinician to better understand osseointegration and information coming from implant manufacturers, allowing for better implant selection. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Porous Titanium for Dental Implant Applications

    Directory of Open Access Journals (Sweden)

    Zena J. Wally

    2015-10-01

    Full Text Available Recently, an increasing amount of research has focused on the biological and mechanical behavior of highly porous structures of metallic biomaterials, as implant materials for dental implants. Particularly, pure titanium and its alloys are typically used due to their outstanding mechanical and biological properties. However, these materials have high stiffness (Young’s modulus in comparison to that of the host bone, which necessitates careful implant design to ensure appropriate distribution of stresses to the adjoining bone, to avoid stress-shielding or overloading, both of which lead to bone resorption. Additionally, many coating and roughening techniques are used to improve cell and bone-bonding to the implant surface. To date, several studies have revealed that porous geometry may be a promising alternative to bulk structures for dental implant applications. This review aims to summarize the evidence in the literature for the importance of porosity in the integration of dental implants with bone tissue and the different fabrication methods currently being investigated. In particular, additive manufacturing shows promise as a technique to control pore size and shape for optimum biological properties.

  8. [Dental implant restoration abutment selection].

    Science.gov (United States)

    Bin, Shi; Hao, Zeng

    2017-04-01

    An increasing number of implant restoration abutment types are produced with the rapid development of dental implantology. Although various abutments can meet different clinical demands, the selection of the appropriate abutment is both difficult and confusing. This article aims to help clinicians select the appropriate abutment by describing abutment design, types, and selection criteria.

  9. Surface texture measurement for dental wear applications

    Science.gov (United States)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  10. Maintenance in dental implants

    Directory of Open Access Journals (Sweden)

    Giselle Póvoa Gomes

    2008-01-01

    Full Text Available In implants, maintenance is a decisive factor for obtaining success when implant supported overdentures and dentures are used. The present stud presents, a clinical case of a patient, a 70 year-old white man, with a completely edentulous mandibular alveolar ridge, severe bone resorption with presence of basal bone only, and absence of vestibule. Initially, treatment consisted of the placement of a mandibular overdenture, supported on three implants in the anterior inter-foramen region, as the left implant was transfixed in the basal bone of 2 to 3 millimeters. Eleven years later, another two implants were placed in the anterior area and an immediate load was performed up to the first molars, for the placement of an implant supported fixed. Throughout the entire treatment, meticulous maintenance was carried out, with follow-up for fourteen years, interrupted by the patient’s death. From the third month after the opening the three implants initially placed, the presence of keratinized mucosa, definition of the vestibule, maturation of the alveolar ridge and bone formation in the mento region were observed. It was concluded that good planning, allied to mastery of the technique and adequate maintenance were the prerequisites necessary for obtaining favorable results, success of the present case, and for the patient to have a better quality of life.

  11. Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruíz, Rafael Arcesio; Gomez Moreno, Gerardo; Aguilar-Salvatierra, Antonio; Markovic, Aleksa; Mate-Sánchez, Jose Eduardo; Calvo-Guirado, José Luis

    2016-11-01

    To measure the lateral surface area of microgrooved zirconia implants, to evaluate the cell geometry and cell density of human fetal osteoblasts seeded on zirconia microgrooved implants, to describe the surface roughness and chemistry, and to evaluate the activity of human fetal osteoblasts seeded on zirconia microgrooved disks. This experimental in vitro study used 62 zirconia implants and 130 zirconia disks. Two experimental groups were created for the implants: 31 non-microgrooved implants (Control) and 31 microgrooved implants (Test); two experimental groups were created for the disks: 65 non-microgrooved disks (Control) and 65 microgrooved disks (Test). The following evaluations of the implants were made: lateral surface area (LSA), cell morphology, and density of human fetal osteoblasts seeded on implant surfaces. On the disks, surface parameters (roughness and chemistry) and cell activity (alkaline phosphatase - ALP and alizarin red - ALZ) were evaluated at 7 and 15 days. LSA was lower for control implants (62.8 mm) compared with test implants (128.74 mm) (P zirconia implants with microgrooves. (ii) The LSA of microgrooved zirconia implants is greater and provides more available surface compared with implants of the same dimensions without microgrooves. (iii) Microgrooves on zirconia implants modify the morphology and guide the size and alignment of human fetal osteoblasts. (iv) Zirconia surfaces with microgrooves of 30 μm width and 70 μm separation between grooves enhance ALP and ALZ expression by human fetal osteoblasts. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Two or three machined vs roughened surface dental implants loaded immediately supporting total fixed prostheses: 1-year results from a randomised controlled trial.

    Science.gov (United States)

    Cannizzaro, Gioacchino; Gastaldi, Giorgio; Gherlone, Enrico; Vinci, Raffaele; Loi, Ignazio; Trullenque-Eriksson, Anna; Esposito, Marco

    both groups losing marginal bone in a statistically significant way (0.35 ± 0.23 mm for machined and 0.42 ± 0.27 mm for roughened surface). These preliminary results suggest that immediately loaded cross-arch prostheses can be supported by only two mandibular or three maxillary dental implants at least up to 1 year post-loading, independently of the type of implant surface used. Longer follow-ups are needed to understand whether one of the two-implant surfaces is preferable.

  13. Dental Implant Surgery

    Science.gov (United States)

    ... more impressions made of your mouth and remaining teeth. These impressions are used to make the crown — your realistic-looking artificial tooth. The crown can't be placed until your jawbone is strong ... and your dental specialist can choose artificial teeth that are either ...

  14. Self-Assembled Monolayers for Dental Implants

    Directory of Open Access Journals (Sweden)

    Sidónio C. Freitas

    2018-01-01

    Full Text Available Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available, combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.

  15. [Survival and success rate of dental implants treated with high intensity laser].

    Science.gov (United States)

    Joób-Fancsaly, Arpád; Divinyi, Tamás; Karacs, Albert; Koncz, Szilvia; Pető, Gábor; Sulyok, Lili

    2015-09-01

    Clinical and radiological evaluations were conducted in patients with high energy Nd : glass laser-treated dental implants. These patients underwent dental implantation surgery between 1997 and 2006. Strict success criteria were used for the examination and analysis of implants. Based on clinical and radiological evaluation, success and survival rates of laser surface treated dental implants were similar to those of sandblasted, acid-etched surface implants frequently reported in the literature. Specific surface morphology and high degree of purity of laser surface treated dental implants ensure excellent osseointegration and a good clinical performance also on the long-term.

  16. Systemic Assessment of Patients Undergoing Dental Implant ...

    African Journals Online (AJOL)

    Background: Procedure‑related and patient‑related factors influence the prognosis of dental implants to a major extent. Hence, we aimed to evaluate and analyze various systemic factors in patients receiving dental implants. Materials and Methods: Fifty‑one patients were included in the study, in which a total of 110 dental ...

  17. Microflora around teeth and dental implants

    Directory of Open Access Journals (Sweden)

    Mohammad Shahabouee

    2012-01-01

    Full Text Available Background: When an implant is exposed to oral cavity, its surface gets colonized by micro-organisms. The aim of this study is to comparatively assess the microbiological parameters in sulci around the teeth and the crowns supported by dental implants. Materials and Methods: In this prospective, cross-sectional study, 34 partially edentulous patients aged between 40 and 50 years with total 50 anterior maxillary single implants with cemented crowns (depth of sulci 0.05. Conclusion: The present study indicated that microflora in implant sulci is similar to the tooth sulci, when the depth of sulci is normal (<4 mm. As a result, implants′ susceptibility to inflammation is the same as teeth.

  18. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

    Science.gov (United States)

    Kirmanidou, Yvoni; Sidira, Margarita; Drosou, Maria-Eleni; Bennani, Vincent; Bakopoulou, Athina; Tsouknidas, Alexander; Michailidis, Nikolaos; Michalakis, Konstantinos

    2016-01-01

    Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world. PMID:26885506

  19. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review

    Directory of Open Access Journals (Sweden)

    Yvoni Kirmanidou

    2016-01-01

    Full Text Available Titanium implants are widely used in the orthopedic and dentistry fields for many decades, for joint arthroplasties, spinal and maxillofacial reconstructions, and dental prostheses. However, despite the quite satisfactory survival rates failures still exist. New Ti-alloys and surface treatments have been developed, in an attempt to overcome those failures. This review provides information about new Ti-alloys that provide better mechanical properties to the implants, such as superelasticity, mechanical strength, and corrosion resistance. Furthermore, in vitro and in vivo studies, which investigate the biocompatibility and cytotoxicity of these new biomaterials, are introduced. In addition, data regarding the bioactivity of new surface treatments and surface topographies on Ti-implants is provided. The aim of this paper is to discuss the current trends, advantages, and disadvantages of new titanium-based biomaterials, fabricated to enhance the quality of life of many patients around the world.

  20. Worldwide Predoctoral Dental Implant Curriculum Survey

    Science.gov (United States)

    Atashrazm, P.; Vallaie, N.; Rahnema, R.; Ansari, H.; Shahab, M. Pour

    2011-01-01

    Objective: Predoctoral dental implant education is included in dental school teaching curricula in most of the developed and some developing countries; however, it was not introduced into undergraduate curriculum of some countries and Iranian dental schools. Our purpose was to investigate the status of the predoctoral dental implant education of dental schools in the world. Materials and Methods: One hundred-thirty five dental schools were randomly selected representing 62 countries divided into two regions. The first region included North America and Europe, and the second region comprised of Asia, South America and Africa. A questionnaire including onset year, lecture hours, lectures available on the internet, required textbooks, department jurisdictions, the year of dental school the course was offered, clinical and laboratory courses, implant systems used surgically and in restorative phase, and type of restorations treated by predoctoral students was mailed electronically to the predoctoral implant dentistry directors. Results: Ninety-two (68%) schools responded; of which 79 (86%) incorporated implant dentistry in their predoctoral teaching curricula, 39 (49%) offered surgical and prosthodontics courses in which students mainly observe. Of these 39 dental schools, 28 (71%) and 11 (29%) dental schools are from the first and second region, respectively. Conclusion: A large percentage of responding schools included implant education in the predoctoral dental curriculum. Onset year of course, topics included in lecture series, lecture hours, faculty to student ratio and practical course vary among schools. Fifty percent of responding dental schools including Iranian dental schools do not have curriculum guidelines for predoctoral implant dentistry. PMID:21998802

  1. Interventions for replacing missing teeth: different types of dental implants.

    Science.gov (United States)

    Esposito, Marco; Ardebili, Yasmin; Worthington, Helen V

    2014-07-22

    Dental implants are available in different materials, shapes and with different surface characteristics. In particular, numerous implant designs and surface modifications have been developed for improving clinical outcome. This is an update of a Cochrane review first published in 2002, and previously updated in 2003, 2005 and 2007. Primary: to compare the clinical effects of different root-formed osseointegrated dental implant types for replacing missing teeth for the following specific comparisons: implants with different surface preparations, but having similar shape and material; implants with different shapes, but having similar surface preparation and material; implants made of different materials, but having similar surface preparation and shape; different implant types differing in surface preparation, shape, material or a combination of these.Secondary: to compare turned and roughened dental implants for occurrence of early implant failure (before prosthetic loading) and occurrence of peri-implantitis. We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 17 January 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 12), MEDLINE via OVID (1946 to 17 January 2014) and EMBASE via OVID (1980 to 17 January 2014). We placed no restrictions on the language or date of publication when searching the electronic databases. We included any randomised controlled trial (RCT) comparing osseointegrated dental implants of different materials, shapes and surface properties having a follow-up in function of at least one year. Outcome measures were success of the implants, radiographic peri-implant marginal bone levels changes and incidence of peri-implantitis. At least two review authors independently conducted screening, risk of bias assessment and data extraction of eligible trials in duplicate. We expressed results using fixed-effect models (if up to three studies were

  2. Dental implant surgery: planning and guidance

    International Nuclear Information System (INIS)

    Lobregt, S.; Schillings, J.J.; Vuurberg, E.

    2001-01-01

    A prototype application has been developed for interactive planning of dental implants on the EasyVision workstation. The user is led step by step via virtual positioning of the implant to the design of a customized drill guide. (orig.)

  3. Dental implant surgery: planning and guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lobregt, S.; Schillings, J.J.; Vuurberg, E. [MIMIT Easy Vision Advanced Development, Philips Medical Systems, Best (Netherlands)

    2001-11-01

    A prototype application has been developed for interactive planning of dental implants on the EasyVision workstation. The user is led step by step via virtual positioning of the implant to the design of a customized drill guide. (orig.)

  4. R&D on dental implants breakage

    Science.gov (United States)

    Croitoru, Sorin Mihai; Popovici, Ion Alexandru

    2017-09-01

    Most used dental implants for human dental prostheses are of two steps type: first step means implantation and, after several months healing and osseointegration, second step is prosthesis fixture. For sure, dental implants and prostheses are meant to last for a lifetime. Still, there are unfortunate cases when dental implants break. This paper studies two steps dental implants breakage and proposes a set of instruments for replacement and restoration of the broken implant. First part of the paper sets the input data of the study: structure of the studied two steps dental implants based on two Romanian patents and values of the loading forces found in practice and specialty papers. In the second part of the paper, using DEFORM 2D™ FEM simulation software, worst case scenarios of loading dental implants are studied in order to determine which zones and components of the dental implant set are affected (broken). Last part of the paper is dedicated to design and presentation of a set for extracting and cutting tools used to restore the broken implant set.

  5. The osseointegration of zirconia dental implants.

    Science.gov (United States)

    Assal, Patrick A

    2013-01-01

    Zirconia is currently extensively used in medicine, especially in orthopedic surgery for various joint replacement appliances. Its outstanding mechanical and chemical properties have made it the "material of choice" for various types of prostheses. Its color in particular makes it a favored material to manufacture dental implants. A literature search through Medline enables one to see zirconia's potential but also to point out and identify its weaknesses. The search shows that zirconia is a biocompatible, osteoconductive material that has the ability to osseointegrate. Its strength of bonding to bone depends on the surface structure of the implant. Although interesting, the studies do not allow for the recommendation of the use of zirconia implants in daily practice. The lack of studies examining the chemical and structural composition of zirconia implants does not allow for a "gold standard" to be established in the implant manufacturing process. Randomized clinical trials (RCT) are urgently needed on surface treatments of zirconia implants intended to achieve the best possible osseointegration.

  6. New dental implant selection criterion based on implant design.

    Science.gov (United States)

    El-Anwar, Mohamed I; El-Zawahry, Mohamed M; Ibraheem, Eman M; Nassani, Mohammad Zakaria; ElGabry, Hisham

    2017-01-01

    A comparative study between threaded and plain dental implant designs was performed to find out a new criterion for dental implant selection. Several dental implant designs with a systematic increase in diameter and length were positioned in a cylindrical-shaped bone section and analyzed using finite element method. Four loading types were tested on different dental implant designs; tension of 50 N, compression of 100 N, bending of 20 N, and torque of 2 Nm, to derive design curves. Better stress distribution on both spongy and cortical bone was noted with an increase in dental implant diameter and length. With the increase in dental implant side area, a stress reduction in the surrounding bones was observed, where threaded dental implants showed better behavior over the plain ones. Increasing value of ratio between dental implant side area and its cross-sectional area reduces stresses transferred to cortical and spongy bones. The use of implants with higher ratio of side area to cross-section area, especially with weak jaw bone, is recommended.

  7. Systemic Assessment of Patients Undergoing Dental Implant ...

    African Journals Online (AJOL)

    These days, dental implants are becoming routinely used as a treatment option for rehabilitation of lost teeth. Conventionally, it is only after the completion of bone healing that the dental implants are loaded into the bone. Bone healing time is approximately 3 months and. 6 months for the mandible and maxilla, respectively.

  8. Immediate CAD/ CAM Custom Fabricated Dental Implants

    Directory of Open Access Journals (Sweden)

    Jafar Kolahi

    2010-11-01

    Full Text Available Introduction: There will almost always be gaps between cylin-drical or screw shaped prefabricated implant surface and funnel-shaped tooth socket when an implant is placed immediately after tooth extraction. Hence expensive and difficult bone grafting is re-quired. A custom fabricated implant will be a pragmatic solution for this limitation.The hypothesis: First step following extraction of a tooth is data capture or scanning via a 3D scan method e.g. coordinate measuring machine or non-contact laser scanners such as triangulation range finder. Second step is reconstruction or modeling via editable CAD (computer-aided design model, allowing us to add retentive holes and correction of implant angle. Third step is fabrication via CAM (computer aided manufacturing followed by plasma cleaning process. Fourth step is insertion of the CAD/CAM custom fabricated one-stage implant in the fresh tooth socket. Optimal time for this step is 24-48 hours after extraction. The custom fabricated implant should not load 3-4 months. Usage of chlorhexidine mouth-rinse or chewing gum twice daily for 2 weeks and, in some cases oral antibiotic is recommended. Evaluation of the hypothesis: Contemporary dental implant system faced with several clinical and anatomical limitations such is low sinuses or nerve bundles. Complex and expensive surgical procedures such as nerve repositioning and sinus lift are frequently required. With custom fabricated implant we can overcome several of these limitations because insertion of custom fabricated implant will perform before alveolar bone recession.

  9. Correction parameters in conventional dental radiography for dental implant

    OpenAIRE

    Yunus, Barunawaty

    2009-01-01

    Background: Radiographic imaging as a supportive diagnostic tool is the essential component in treatment planning for dental implant. It help dentist to access target area of implant due to recommendation of many inventions in making radiographic imaging previously. Along with the progress of science and technology, the increasing demand of easier and simpler treatment method, a modern radiographic diagnostic for dental implant is needed. In fact, Makassar, especially in Faculty of Dentistry ...

  10. Dental-Implantate und ihre Werkstoffe

    Science.gov (United States)

    Newesely, Heinrich

    1983-07-01

    Some new trends in materials for dental implants, which also effect in the operative techniques and implant design, are described. Advantages and shortcomings of the different material types are exemplified and correlated with their bioinert resp. bioactive functions. The practical interest in metallic implants focussed in titanium resp. oxide ceramics in the ceramic field, whereas the special goal of implant research follows from the improvement of the bioactive principle with loaded calcium phosphate implants.

  11. Mecanobiología de la interfase hueso-implante dental Mechanobiology of bone-dental implant interphase

    Directory of Open Access Journals (Sweden)

    Juan Carlos Vanegas Acosta

    2010-03-01

    Full Text Available La osteointegración es la conexión estructural y funcional entre el hueso y un implante. Cuando un implante se inserta en el hueso, se crea la denominada interfase hueso-implante, una zona de unión entre la superficie del biomaterial del implante y el hueso circundante. La cicatrización de esta interfase depende de las condiciones biológicas del hueso, las características de diseño del implante y la distribución de cargas entre hueso e implante. En este artículo se hace una revisión del proceso de cicatrización de la interfase hueso-implante para el caso de un implante dental. El objetivo es describir la secuencia de eventos biológicos iniciados con la lesión causada por la inserción del implante y que concluyen con la formación de nuevo hueso en la interfase. Esta descripción incluye una novedosa clasificación de los fenómenos mecánicos que intervienen durante el proceso de cicatrización de los tejidos lesionados. Esta descripción mecanobiológica de la interfase hueso-implante dental se utiliza para determinar las características más relevantes a tener en cuenta en la formulación de un modelo matemático de la osteointegración de implantes dentales.The osteointegration is the structural and functional connection between bone and implant. When an implant is inserted in bone, it creates the so-called bone-implant interphase, a joint zone between implant biomaterial surface and the surrounding bone. The healing of this interphase depends on bone biological conditions, characteristic of implant design and the distribution of loads between bone and implant. The aim of present article is to review of healing process of bone-implant interphase for a dental implant and also to describe the sequence of biological events beginning with lesion caused by implant insertion and leading to the formation of a new bone in the interphase. This description includes a novel classification of mechanical phenomena present in the healing

  12. Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells

    Science.gov (United States)

    Mick, Enrico

    2014-01-01

    Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants. PMID:25295270

  13. Surface modifications of dental ceramic implants with different glass solder matrices: in vitro analyses with human primary osteoblasts and epithelial cells.

    Science.gov (United States)

    Markhoff, Jana; Mick, Enrico; Mitrovic, Aurica; Pasold, Juliane; Wegner, Katharina; Bader, Rainer

    2014-01-01

    Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.

  14. Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jana Markhoff

    2014-01-01

    Full Text Available Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP and aluminum toughened zirconia (ATZ were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.

  15. Relation between bruxism and dental implants

    OpenAIRE

    TORCATO,Leonardo Bueno; ZUIM,Paulo Renato Junqueira; BRANDINI,Daniela Atili; FALCÓN-ANTENUCCI,Rosse Mary

    2014-01-01

    OBJECTIVE: The aim of this study was to gather information and discuss the predictability of implant-supported prostheses in patients with bruxism by performing a literature review.METHODS: In order to select the studies included in this review, a detailed search was performed in PubMed and Medlinedatabases, using the following key words: bruxism, dental implants, implant supported prosthesis, and dental restoration failure. Items that were included are: case reports, randomized controlled tr...

  16. Worldwide Predoctoral Dental Implant Curriculum Survey

    Directory of Open Access Journals (Sweden)

    P. Atashrazm

    2011-03-01

    Full Text Available Objective: Predoctoral dental implant education is included in dental school teaching curricula in most of the developed and some developing countries; however, it was not introduced into undergraduate curriculum of some countries and Iranian dental schools. Our purpose was to investigate the status of the predoctoral dental implant education of dental schools in the world.Materials and Methods: One hundred-thirty five dental schools were randomly selected representing 62 countries divided into two regions. The first region included North America and Europe, and the second region comprised of Asia, South America and Africa. A questionnaire including onset year, lecture hours, lectures available on the internet, required textbooks, department jurisdictions, the year of dental school the course was offered, clinical and laboratory courses, implant systems used surgically and in restorative phase, and type of restorations treated by predoctoral students was mailed electronically to the predoctoral implant dentistry directors.Results: Ninety-two (68% schools responded; of which 79 (86% incorporated implant dentistry in their predoctoral teaching curricula, 39 (49% offered surgical and prosthodontics courses in which students mainly observe. Of these 39 dental schools,28 (71% and 11 (29% dental schools are from the first and second region, respectively.Conclusion: A large percentage of responding schools included implant education in the predoctoral dental curriculum. Onset year of course, topics included in lecture series, lecture hours, faculty to student ratio and practical course vary among schools. Fifty percent of responding dental schools including Iranian dental schools do not have curriculum guidelines for predoctoral implant dentistry.

  17. Posterior partially edentulous jaws, planning a rehabilitation with dental implants

    Science.gov (United States)

    Monteiro, Douglas R; Silva, Emily V F; Pellizzer, Eduardo P; Filho, Osvaldo Magro; Goiato, Marcelo C

    2015-01-01

    AIM: To discuss important characteristics of the use of dental implants in posterior quadrants and the rehabilitation planning. METHODS: An electronic search of English articles was conducted on MEDLINE (PubMed) from 1990 up to the period of March 2014. The key terms were dental implants and posterior jaws, dental implants/treatment planning and posterior maxilla, and dental implants/treatment planning and posterior mandible. No exclusion criteria were used for the initial search. Clinical trials, randomized and non randomized studies, classical and comparative studies, multicenter studies, in vitro and in vivo studies, case reports, longitudinal studies and reviews of the literature were included in this review. RESULTS: One hundred and fifty-two articles met the inclusion criteria of treatment planning of dental implants in posterior jaw and were read in their entirety. The selected articles were categorized with respect to their context on space for restoration, anatomic considerations (bone quantity and density), radiographic techniques, implant selection (number, position, diameter and surface), tilted and pterygoid implants, short implants, occlusal considerations, and success rates of implants placed in the posterior region. The results derived from the review process were described under several different topic headings to give readers a clear overview of the literature. In general, it was observed that the use of dental implants in posterior region requires a careful treatment plan. It is important that the practitioner has knowledge about the theme to evaluate the treatment parameters. CONCLUSION: The use of implants to restore the posterior arch presents many challenges and requires a detailed treatment planning. PMID:25610852

  18. Biocompatible implant surface treatments

    Directory of Open Access Journals (Sweden)

    Bikash Pattanaik

    2012-01-01

    Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  19. In vitro comparison of two titanium dental implant surface treatments: 3M™ESPE™ MDIs versus Ankylos®.

    Science.gov (United States)

    Dhaliwal, Jagjit Singh; Marulanda, Juliana; Li, Jingjing; Alebrahim, Sharifa; Feine, Jocelyne Sheila; Murshed, Monzur

    2017-12-01

    An ideal implant should have a surface that is conducive to osseointegration. In vitro cell culture studies using disks made of same materials and surface as of implants may provide useful information on the events occurring at the implant-tissue interface. In the current study, we tested the hypothesis that there is no difference in the proliferation and differentiation capacities of osteoblastic cells when cultured on titanium disks mimicking the surface of 3M™ESPE™ MDIs or standard (Ankylos®) implants. Cells were grown on disks made of the same materials and with same surface texture as those of the original implants. Disks were sterilized and coated with 2% gelatin solution prior to the cell culture experiments. C2C12 pluripotent cells treated with 300 ng/ml bone morphogenetic protein 2 BMP-2 and a stably transfected C2C12 cell line expressing BMP2 were used as models for osteogenic cells. The Hoechst 33258-stained nuclei were counted to assay cell proliferation, while alkaline phosphatase (ALPL) immunostaining was performed to investigate osteogenic differentiation. MC3T3-E1 cells were cultured as model osteoblasts. The cells were differentiated and assayed for proliferation and metabolic activities by Hoechst 33258 staining and Alamar blue reduction assays, respectively. Additionally, cultures were stained by calcein to investigate their mineral deposition properties. Electron microscopy showed greater degree of roughness on the MDI surfaces. Nuclear counting showed significantly higher number of C2C12 cells on the MDI surface. Although immunostaining detected higher number of ALPL-positive cells, it was not significant when normalized by cell numbers. The number of MC3T3-E1 cells was also higher on the MDI surface, and accordingly, these cultures showed higher Alamar blue reduction. Finally, calcein staining revealed that the MC3T3-E1 cells grown on MDI surfaces deposited more minerals. Although both implant surfaces are conducive for osteoblastic cell

  20. Osseoperception in Dental Implants: A Systematic Review.

    Science.gov (United States)

    Mishra, Sunil Kumar; Chowdhary, Ramesh; Chrcanovic, Bruno Ramos; Brånemark, Per-Ingvar

    2016-04-01

    Replacement of lost teeth has significant functional and psychosocial effects. The capability of osseointegrated dental implants to transmit a certain amount of sensibility is still unclear. The phenomenon of developing a certain amount of tactile sensibility through osseointegrated dental implants is called osseoperception. The aim of this article is to evaluate the available literature to find osseoperception associated with dental implants. To identify suitable literature, an electronic search was performed using Medline and PubMed database. Articles published in English and articles whose abstract is available in English were included. The articles included in the review were based on osseoperception, tactile sensation, and neurophysiological mechanoreceptors in relation to dental implants. Articles on peri-implantitis and infection-related sensitivity were not included. Review articles without the original data were excluded, although references to potentially pertinent articles were noted for further follow-up. The phenomenon of osseoperception remains a matter of debate, so the search strategy mainly focused on articles on osseoperception and tactile sensibility of dental implants. This review presents the histological, neurophysiological, and psychophysical evidence of osseoperception and also the role of mechanoreceptors in osseoperception. The literature on osseoperception in dental implants is very scarce. The initial literature search resulted in 90 articles, of which 81 articles that fulfilled the inclusion criteria were included in this systematic review. Patients restored with implant-supported prostheses reported improved tactile and motor function when compared with patients wearing complete dentures. © 2016 by the American College of Prosthodontists.

  1. Finite element analysis (FEA) of dental implant fixture for mechanical stability and rapid osseointegration

    Science.gov (United States)

    Tabassum, Shafia; Murtaza, Ahmar; Ali, Hasan; Uddin, Zia Mohy; Zehra, Syedah Sadaf

    2017-10-01

    For rapid osseointegration of dental implant fixtures, various surface treatments including plasma spraying, hydroxyapatite coating, acid-etching, and surface grooving are used. However undesirable effects such as chemical modifications, loss of mechanical properties, prolonged processing times and post production treatment steps are often associated with these techniques. The osseointegration rate of the dental implants can be promoted by increasing the surface area of the dental implant, thus increasing the bone cells - implant material contact and allow bone tissues to grow rapidly. Additive Manufacturing (AM) techniques can be used to fabricate dental implant fixtures with desirable surface area in a single step manufacturing process. AM allows the use of Computer Aided Designing (CAD) for customised rapid prototyping of components with precise control over geometry. In this study, the dental implant fixture that replaces the tooth root was designed on commercially available software COMSOL. Nickel - titanium alloy was selected as build materials for dental implant. The geometry of the dental fixture was varied by changing the interspacing distance (thread pitch) and number of threads to increase the total surface area. Three different microstructures were introduced on the surface of dental implant. The designed models were used to examine the effect of changing geometries on the total surface area. Finite Element Analysis (FEA) was performed to investigate the effect of changing geometries on the mechanical properties of the dental implant fixtures using stress analysis.

  2. A new testing protocol for zirconia dental implants.

    Science.gov (United States)

    Sanon, Clarisse; Chevalier, Jérôme; Douillard, Thierry; Cattani-Lorente, Maria; Scherrer, Susanne S; Gremillard, Laurent

    2015-01-01

    Based on the current lack of standards concerning zirconia dental implants, we aim at developing a protocol to validate their functionality and safety prior their clinical use. The protocol is designed to account for the specific brittle nature of ceramics and the specific behavior of zirconia in terms of phase transformation. Several types of zirconia dental implants with different surface textures (porous, alveolar, rough) were assessed. The implants were first characterized in their as-received state by Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB), X-Ray Diffraction (XRD). Fracture tests following a method adapted from ISO 14801 were conducted to evaluate their initial mechanical properties. Accelerated aging was performed on the implants, and XRD monoclinic content measured directly at their surface instead of using polished samples as in ISO 13356. The implants were then characterized again after aging. Implants with an alveolar surface presented large defects. The protocol shows that such defects compromise the long-term mechanical properties. Implants with a porous surface exhibited sufficient strength but a significant sensitivity to aging. Even if associated to micro cracking clearly observed by FIB, aging did not decrease mechanical strength of the implants. As each dental implant company has its own process, all zirconia implants may behave differently, even if the starting powder is the same. Especially, surface modifications have a large influence on strength and aging resistance, which is not taken into account by the current standards. Protocols adapted from this work could be useful. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Antimicrobial coatings for implant surfaces

    OpenAIRE

    Brunetto, Priscilla S.; Fromm, Katharina M.

    2008-01-01

    Body-foreign materials are used more and more frequently in our lives: joint implants (hips, knees, fingers, etc.), catheters, pacemakers, dental and aesthetic implants, etc. The increasing numbers of patients requiring such implants also raises the absolute numbers of implant-related infections. Thus, it is known that body-foreign materials are prone to bacterial adhesion and subsequent biofilm formation, either via bacterial debris on implant materials, infections during implantation or, la...

  4. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study.

    Science.gov (United States)

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2016-11-01

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This in vitro study aims at providing the experimental basis for possible use of diode laser (λ 808 nm) in the treatment of peri-implantitis. Staphylococcus aureus biofilm was grown for 48 h on titanium discs with porous surface corresponding to the bone-implant interface and then irradiated with a diode laser (λ 808 nm) in noncontact mode with airflow cooling for 1 min using a Ø 600-μm fiber. Setting parameters were 2 W (400 J/cm 2 ) for continuous wave mode; 22 μJ, 20 kHz, 7 μs (88 J/cm 2 ) for pulsed wave mode. Bactericidal effect was evaluated using fluorescence microscopy and counting the residual colony-forming units. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, the titanium discs were coated with Escherichia coli lipopolysaccharide (LPS), laser-irradiated and seeded with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Diode laser irradiation in both continuous and pulsed modes induced a statistically significant reduction of viable bacteria and nitrite levels. These results indicate that in addition to its bactericidal effect laser irradiation can also inhibit LPS-induced macrophage activation and thus blunt the inflammatory response. The λ 808-nm diode laser emerges as a valuable tool for decontamination/detoxification of the titanium implant surface and may be used in the treatment of peri-implantitis.

  5. Augmentation of keratinized gingiva around dental implants.

    Science.gov (United States)

    Kissa, J; El Kholti, W; Laalou, Y; El Farouki, M

    2017-06-01

    To date, there is no general consensus with respect to the amount of soft-tissue volume needed for esthetic and functional purposes on the buccal aspect of dental implants. Numerous studies have investigated the relationship between the width of keratinized mucosa and the health of peri-implant tissues. Our purpose was to discuss about the necessity of keratinized tissue to maintain the peri-implant health and to report clinical efficacy of different techniques used to increase the keratinized tissue around dental implants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Imunohistological aspects of the tissue around dental implants

    Science.gov (United States)

    Nimigean, Victor; Nimigean, Vanda R.; Sǎlǎvǎstru, Dan I.; Moraru, Simona; BuÅ£incu, Lavinia; Ivaşcu, Roxana V.; Poll, Alexandru

    2016-03-01

    Objectives: study of soft and hard tissues around implants. Material and methods: For the immunohistochemical and histological study of the implant/soft tissue interface, we examined pieces of peri-implant mucosa harvested from 35 patients. The implant/bone interface was assessed using histologic and histomorphometric examination of hard tissues around unloaded, early loaded or delayed loaded dental implants with pre-established design, with a sandblasted and acid-etched surface, placed both in extraction sockets, or after bone healing following tooth removal. This study was performed on 9 common race dogs. Results: The histological study of the implant/soft tissue interface showed regenerative modifications and moderate chronic subepithelial inflammatory reactions. Immunohistochemical evaluation of the soft tissue biopsies revealed the presence of specific immunocompetent cells and proteins of the matrix metalloproteinase (MMP) expression. Bone-implants contacts were more obvious in the apical half of the implants and at the edges of the threads, than between them. A mature, lamelliform bone containing lacunae with osteocytes and lack of connective tissue were noticed around implants that were late placed and loaded. The new-formed bone was also abundant in the crestal zone, not only in the apical part of the implants. Conclusions: A thorough understanding of the microstructure of dental implant/soft and hard tissue interface will improve the longevity of osseointegrated implants.

  7. Occlusal considerations for dental implant restorations.

    Science.gov (United States)

    Bergmann, Ranier H

    2014-01-01

    When placed, dental implants are put into an ever-changing oral environment in which teeth can continue to migrate. Yet, the implants themselves are ankylosed. This can lead to occlusal instability. Teeth may continue to erupt, leaving the implants in infraocclusion. Teeth may move mesially away from an implant, requiring modification to close an open contact point. Friction in the connection between teeth and implants can lead to intrusion of teeth and damage to the periodontal attachment apparatus. Implant occlusion with shallow incisal guidance minimizes lateral and tipping forces. Cross-arch stabilization allows the best distribution of occlusal forces. The choice of restorative materials influences long-term occlusal stability.

  8. The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies.

    Science.gov (United States)

    Kamel, Marina Salah; Khosa, Amardeep; Tawse-Smith, Andrew; Leichter, Jonathan

    2014-11-01

    The aim of this narrative review was to critically evaluate in vitro studies assessing the efficacy of lasers in the bacterial decontamination of titanium implant surfaces. The MEDLINE, Web of Knowledge and Embase electronic databases were used to search for articles relating to the use of lasers in the bacterial decontamination of titanium specimen surfaces using predetermined search statements. Clinical studies, case reports, case series, review articles and animal models were excluded. Study selection was carried out independently and then cross-checked by two authors through abstract viewing. Eighteen articles were selected for full-text analysis. Erbium-doped yttrium-aluminium-garnet lasers had a wide range of powers capable of inducing bacterial decontamination. While carbon dioxide and gallium-aluminium-arsenide diode lasers demonstrated the ability to produce bacterial decontamination, the bacterial sensitivity to each varied depending on the species involved. There is no concensus on the laser type or settings that are optimal for bacterial decontamination of titanium implant surfaces as studies employ various test specimens, contamination methodologies, irradiation settings and protocols, and outcome measures resulting in limited study comparability. More investigations are required to provide guidelines for the use of laser therapy in the decontamination of implant surfaces.

  9. Enhancing osseointegration using surface-modified titanium implants

    Science.gov (United States)

    Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.; Haggard, W.; Ong, J.

    2006-07-01

    Osseointegrated dental implants are used to replace missing teeth. The success of implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. This review discusses the enhancement of osseointegration by means of anodized microporous titanium surfaces, functionally macroporous graded titanium coatings, nanoscale titanium surfaces, and different bioactive factors.

  10. Diagnostic Imaging for Dental Implant Therapy

    Directory of Open Access Journals (Sweden)

    Aishwarya Nagarajan

    2014-01-01

    Full Text Available Dental implant is a device made of alloplastic (foreign material implanted into the jaw bone beneath the mucosal layer to support a fixed or removable dental prosthesis. Dental implants are gaining immense popularity and wide acceptance because they not only replace lost teeth but also provide permanent restorations that do not interfere with oral function or speech or compromise the self-esteem of a patient. Appropriate treatment planning for replacement of lost teeth is required and imaging plays a pivotal role to ensure a satisfactory outcome. The development of pre-surgical imaging techniques and surgical templates helps the dentist place the implants with relative ease. This article focuses on various types of imaging modalities that have a pivotal role in implant therapy.

  11. Risks and Benefits of Probing Around Natural Teeth and Dental Implants.

    Science.gov (United States)

    Froum, Stuart J; Wang, Wendy C W

    2018-01-01

    Periodontal probing around natural teeth and dental implants remains an efficient and non-invasive method to diagnose loss of attachment, determine presence of diseases, monitor marginal recession, and evaluate positive treatment outcomes. Risks of probing around natural teeth and dental implants include inaccurate measurements, bacteria inoculation, spread of disease, and damage to the implant surface. Improper probing can lead to undiagnosed or overdiagnosed diseases. Some clinicians have questioned the value versus the risk of probing around implants. This article discusses the risks and advantages of probing around teeth and dental implants and suggests methods of probing intended to enable more accurate evaluation of periodontal and peri-implant conditions.

  12. A study of osseointegrated dental implants following cremation.

    Science.gov (United States)

    Berketa, J W; James, H; Langlois, N E I; Richards, L C

    2014-06-01

    The comparison of dental morphology and restorative work for human identification has been well documented. This case study involved documentation of osseointegrated and clinically restored dental implants following cremation. The mandible and the maxilla were excised from a head containing implants and cremated. The remains were retrieved, digital and radiographic images were taken and elemental analysis undertaken. The brand of implants was identified utilizing web based search engines. A prosthodontist, known to commonly use this implant system, was approached to ascertain possibilities that matched the data given. Following cremation the implants were identified and a prosthodontist was able to identify the deceased. Two implants in the maxilla had dehiscences on their buccal surfaces, which could not be detected by periapical radiographs. Dental implants osseointegrated and restored with a prosthetic superstructure were recognizable following severe incineration. It was possible to trace back the identity of the unknown victim to a prosthodontist. Bone dehiscences discovered in this study highlighted how two-dimensional radiographs may not reveal lack of bone support. © 2014 Australian Dental Association.

  13. Treatment of protruding osseo integrated dental implant

    Directory of Open Access Journals (Sweden)

    Buddula Aravind

    2010-01-01

    Full Text Available Titanium dental implants have been used in the treatment of partial or complete edentulism. The height and width of the residual alveolus and surrounding anatomical structures can determine the proper position and path of insertion of dental implants. The following case report describes the treatment of a malpositioned osseo integrated dental implant with an apex perforating the buccal cortex of alveolar bone. A 61-year-old male was referred by his local dentist for the chief complaint of a swelling at site of tooth 14 where an implant was present. Intraoral clinical examination revealed an implant supported porcelain fused to metal crown replacing the maxillary right first premolar. A peri-apical radiograph of the implant revealed no signs of peri-implant bone loss or radiolucency. Surgical exploration and modification of the protruding implant. The area healed uneventfully without the need of explantation of the implant in site of tooth 14. We felt that the conservative treatment provided was prudent and treatment of choice and anticipate that the implant will most likely continue to function for a lifetime.

  14. 21 CFR 872.3980 - Endosseous dental implant accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant accessories. 872.3980... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3980 Endosseous dental implant accessories. (a) Identification. Endosseous dental implant accessories are manually powered devices intended...

  15. 21 CFR 872.3630 - Endosseous dental implant abutment.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...

  16. 21 CFR 872.3640 - Endosseous dental implant.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant. 872.3640 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3640 Endosseous dental implant. (a) Identification. An endosseous dental implant is a device made of a material such as titanium or titanium alloy, that...

  17. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    also dictates to the surgeon about the implant body placement that offers the best ... surgical template. The requirements are more relevant than the. Surgical Templates for Dental Implant Positioning;. Current Knowledge and Clinical Perspectives. Mohammed Zaheer Kola ..... A risk of damage to vital anatomical structures.

  18. Dental implants: A boon to dentistry

    Directory of Open Access Journals (Sweden)

    B H Sripathi Rao

    2015-01-01

    Full Text Available The development and use of implants is one of the biggest advances in dentistry in the last few decades. It has helped to give many solutions to tooth loss as well as maxillo facial prosthetics. This article traces the history and evolution of dental implants.

  19. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    Branemark was one of the initial pioneers who applied scientifically based research techniques to develop an endosseous implant that forms an immobile connection with bone. The need for a dental implant to completely address multiple physical and biological factors imposes tremendous constraints on the surgical and ...

  20. Dental Implants in Patients with Sjogren's Syndrome

    NARCIS (Netherlands)

    Korfage, Anke; Raghoebar, Gerry M; Arends, Suzanne; Meiners, Petra M; Visser, Anita; Kroese, Frans Gm; Bootsma, Hendrika; Vissink, Arjan

    2016-01-01

    Background: Limited evidence is available for applying dental implants in Sjogren's syndrome (SS) patients. Purpose: This study aims to retrospectively assess clinical outcome of implant therapy in a cohort of well-classified patients with SS. Materials and Methods: All SS patients attending the

  1. [Comperative study of implant surface characteristics].

    Science.gov (United States)

    Katona, Bernadett; Daróczi, Lajos; Jenei, Attila; Bakó, József; Hegedus, Csaba

    2013-12-01

    The osseointegration between the implant and its' bone environment is very important. The implants shall meet the following requirements: biocompatibility, rigidity, resistance against corrosion and technical producibility. In our present study surface morphology and material characteristics of different implants (Denti Bone Level, Denti Zirconium C, Bionika CorticaL, Straumann SLA, Straumann SLA Active, Dentsply Ankylos and Biotech Kontact implant) were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The possible surface alterations caused by the manufacturing technology were also investigated. During grit-blasting the implants' surface is blasted with hard ceramic particles (titanium oxide, alumina, calcium phosphate). Properties of blasting material are critical because the osseointegration of dental implants should not be hampered. The physical and chemical features of blasting particles could importantly affect the produced surfaces of implants. Titanium surfaces with micro pits are created after immersion in mixtures of strong acids. On surfaces after dual acid-etching procedures the crosslinking between fibrin and osteogenetic cells could be enhanced therefore bone formation could be directly facilitated on the surface of the implant. Nowadays there are a number of surface modification techniques available. These can be used as a single method or in combination with each other. The effect of the two most commonly used surface modifications (acid-etching and grit-blasting) on different implants are demonstrated in our investigation.

  2. Status of surface treatment in endosseous implant: A literary overview

    Directory of Open Access Journals (Sweden)

    Gupta Ankur

    2010-01-01

    Full Text Available The attachment of cells to titanium surfaces is an important phenomenon in the area of clinical implant dentistry. A major consideration in designing implants has been to produce surfaces that promote desirable responses in the cells and tissues. To achieve these requirements, the titanium implant surface can be modified in various ways. This review mainly focuses on the surface topography of dental implants currently in use, emphasizing the association of reported variables with biological outcome.

  3. Soft tissue integration versus early biofilm formation on different dental implant materials

    NARCIS (Netherlands)

    Zhao, Bingran; van der Mei, Henderina; Subbiahdoss, Guruprakash; de Vries, Joop; Rustema-Abbing, Minie; Kuijer, Roel; Busscher, Henk J.; Qu-Ren, Yijin

    OBJECTIVE: Dental implants anchor in bone through a tight fit and osseo-integratable properties of the implant surfaces, while a protective soft tissue seal around the implants neck is needed to prevent bacterial destruction of the bone-implant interface. This tissue seal needs to form in the

  4. Niobium based coatings for dental implants

    International Nuclear Information System (INIS)

    Ramirez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J.

    2011-01-01

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb 2 O 5 (a-Nb 2 O 5 ), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  5. Comparison of the Effect of Three Abutment-implant Connections on Stress Distribution at the Internal Surface of Dental Implants: A Finite Element Analysis

    Science.gov (United States)

    Raoofi, Saeed; Khademi, Maryam; Amid, Reza; Kadkhodazadeh, Mahdi; Movahhedi, Mohammad Reza

    2013-01-01

    Background and aims. The aim of this study was to determine the stress patterns within an implant and the effect of different types of connections on load transfer. Materials and methods. Three different types of implant-abutment connections were selected for this study. Sample A: 1.5-mm deep internal hex corresponding to a lead-in bevel; sample B: a tri-channel internal connection; and sample C: in-ternal Morse taper with 110 degrees of tapering and 6 anti-rotational grooves. Four types of loading conditions were simu-lated in a finite element model, with the maximum von Mises stress set as output variables. Results. The maximum stress concentration at the inner surface of the fixtures was higher than the stress value in bone in all of the samples. Stress values in sample B were the lowest amongst all of the models. Any alterations in the amount and direction of the 100-N axial load resulted in an increase in fixture surfaces stress. Overall, the highest amount of stress (112 MPa) was detected in sample C at the inner surface of the fixture under a non-axial load of 300 N. Conclusion. Stress concentration decreased when the internal surface area increased. Creating three or six stops in the internal surface of the fixtures resulted in a decrease in stress. PMID:24082983

  6. Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant

    Directory of Open Access Journals (Sweden)

    Ravikumar Ramakrishnaiah

    2017-05-01

    Full Text Available The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic™ and Magics™, the designed implant was directly manufactured by layering technique using ARCAM A2™ electron beam melting system by employing medical grade Ti–6Al–4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration.

  7. A comparative study of the effectiveness of early and delayed loading of short tissue-level dental implants with hydrophilic surfaces placed in the posterior section of the mandible-A preliminary study.

    Science.gov (United States)

    Makowiecki, Arkadiusz; Botzenhart, Ute; Seeliger, Julia; Heinemann, Friedhelm; Biocev, Peter; Dominiak, Marzena

    2017-07-01

    The objective of the present study was to compare the primary and secondary stability of tissue-level short dental titanium implants with polished necks and hydrophilic surfaces of two different designs and manufacturers. The first implant system used (SPI ® ELEMENT RC INICELL titanium implants, Thommen Medical AG, Grenchen, Switzerland), allowed functional loading 6 weeks after its placement, whereas the second implant system (RN SLActiv ® tissue-level titanium implants, Straumann GmbH, Fribourg, Germany), was loaded after 15 weeks. The degree of primary and secondary stability was determined using an Osstell ISQ measuring device. Marginal bone loss (MBL) was evaluated radiographically 12 and 24 weeks after implantation and the Wachtel's healing index as well as the patient's satisfaction with the treatment was registered on a VAS scale. The intergroup comparison revealed significant differences in terms of primary stability as well as differences in MBL 3 months after the procedure, but no significant differences could be found after 6 months and for secondary stability. The primary stability was significantly higher for Thommen ® compared to Straumann ® implants. Insertion of short dental implants with a hydrophilic conditioned surface significantly shortens patient treatment time. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    International Nuclear Information System (INIS)

    Brajkovic, Denis; Antonijevic, Djordje; Milovanovic, Petar; Kisic, Danilo; Zelic, Ksenija; Djuric, Marija; Rakocevic, Zlatko

    2014-01-01

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  9. Surface characterization of the cement for retention of implant supported dental prostheses: In vitro evaluation of cement roughness and surface free energy

    Energy Technology Data Exchange (ETDEWEB)

    Brajkovic, Denis [Clinic for Dentistry, Department of Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac (Serbia); Antonijevic, Djordje; Milovanovic, Petar [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Kisic, Danilo [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia); Zelic, Ksenija; Djuric, Marija [Laboratory for Anthropology, Institute of Anatomy, School of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade (Serbia); Rakocevic, Zlatko, E-mail: zlatkora@vinca.rs [Laboratory for Atomic Physics, Institute of Nuclear Sciences “Vinca”, University of Belgrade, Belgrade (Serbia)

    2014-08-30

    Graphical abstract: - Highlights: • Surface free energy and surface roughness influence bacterial adhesion. • Bacterial colonization causes periimplantitis and implant loss. • Zinc-based, glass-ionomers and resin-cements were investigated. • Glass-ionomers-cements present the lowest values of surface free energy and roughness. • Glass-ionomer-cements surface properties result with reduced bacterial adhesion. - Abstract: Background: Material surface free energy and surface roughness strongly influence the bacterial adhesion in oral cavity. The aim of this study was to analyze these two parameters in various commercial luting agents used for cementation of implant restorations. Materials and methods: Zinc-based, glass-ionomers, resin modified glass-ionomer and resin-cements were investigated. Contact angle and surface free energy were measured by contact angle analyzer using Image J software program. Materials’ average roughness and fractal dimension were calculated based on Atomic Force Microscope topography images. Results: Zinc phosphate cements presented significantly higher total surface free energy and significantly lower dispersive component of surface free energy compared to other groups, while resin-cements showed significantly lower polar component than other groups. The surface roughness and fractal dimension values were statistically the highest in the zinc phosphate cements and the lowest for the glass-ionomers cements. Conclusion: Glass-ionomers-cements presented lower values of surface free energy and surface roughness than zinc phosphate and resin cements, indicating that their surfaces are less prone to biofilm adhesion. Practical implications: Within limitations of an in vitro trial, our results indicate that glass-ionomers-cements could be the cements of choice for fixation of cement retained implant restorations due to superior surface properties compared to zinc phosphate and resin cements, which may result in reduced plaque formation

  10. Correction parameters in conventional dental radiography for dental implant

    Directory of Open Access Journals (Sweden)

    Barunawaty Yunus

    2009-12-01

    Full Text Available Background: Radiographic imaging as a supportive diagnostic tool is the essential component in treatment planning for dental implant. It help dentist to access target area of implant due to recommendation of many inventions in making radiographic imaging previously. Along with the progress of science and technology, the increasing demand of easier and simpler treatment method, a modern radiographic diagnostic for dental implant is needed. In fact, Makassar, especially in Faculty of Dentistry Hasanuddin University, has only a conventional dental radiography. Researcher wants to optimize the equipment that is used to obtain parameters of the jaw that has been corrected to get accurate dental implant. Purpose: This study aimed to see the difference of radiographic imaging of dental implant size which is going to be placed in patient before and after correction. Method: The type of research is analytical observational with cross sectional design. Sampling method is non random sampling. The amount of samples is 30 people, male and female, aged 20–50 years old. The correction value is evaluated from the parameter result of width, height, and thick of the jaw that were corrected with a metal ball by using conventional dental radiography to see the accuracy. Data is analyzed using SPSS 14 for Windows program with T-test analysis. Result: The result that is obtained by T-Test analysis results with significant value which p<0.05 in the width and height of panoramic radiography technique, the width and height of periapical radiography technique, and the thick of occlusal radiography technique before and after correction. Conclusion: It can be concluded that there is a significant difference before and after the results of panoramic, periapical, and occlusal radiography is corrected.

  11. Methods to measure stability of dental implants

    Directory of Open Access Journals (Sweden)

    Shruti Digholkar

    2014-01-01

    Full Text Available Dental implant treatment is an excellent option for prosthetic restoration that is associated with high success rates. Implant stability is essential for a good outcome. The clinical assessment of osseointegration is based on mechanical stability rather than histological criteria, considering primary stability (absence of mobility in bone bed after implant insertion and secondary stability (bone formation and remodeling at implant-bone interface. However, due to the invasive nature of the histological methods various other methods have been proposed: Radiographs, the surgeon′s perception, Insertion torque (cutting torque analysis, seating torque, reverse torque testing, percussion testing, impact hammer method, pulsed oscillation waveform, implant mobility checker, Periotest, resonance frequency analysis. This review focuses on the methods currently available for the evaluation of implant stability.

  12. Knowledge of Risks Associated with Dental Implants Failure

    OpenAIRE

    Al-Dwairi ZN; Abu-Al Haija MA

    2015-01-01

    Purpose: This paper presents the results of a survey of dentists practicing implant dentistry regarding their knowledge of risk factors that they considered to be important for predicting dental implant failure. Materials and Methods: A pilot-tested questionnaire was distributed to 100 dentists known to practice implant dentistry. The questionnaire enquired about speciality, qualifications, dental implant experience in addition to knowledge of factors that could lead to dental implants fai...

  13. An Overview of the Mechanical Integrity of Dental Implants

    Science.gov (United States)

    Shemtov-Yona, Keren; Rittel, Daniel

    2015-01-01

    With the growing use of dental implants, the incidence of implants' failures grows. Late treatment complications, after reaching full osseointegration and functionality, include mechanical failures, such as fracture of the implant and its components. Those complications are deemed severe in dentistry, albeit being usually considered as rare, and therefore seldom addressed in the clinical literature. The introduction of dental implants into clinical practice fostered a wealth of research on their biological aspects. By contrast, mechanical strength and reliability issues were seldom investigated in the open literature, so that most of the information to date remains essentially with the manufacturers. Over the years, implants have gone through major changes regarding the material, the design, and the surface characteristics aimed at improving osseointegration. Did those changes improve the implants' mechanical performance? This review article surveys the state-of-the-art literature about implants' mechanical reliability, identifying the known causes for fracture, while outlining the current knowledge-gaps. Recent results on various aspects of the mechanical integrity and failure of implants are presented and discussed next. The paper ends by a general discussion and suggestions for future research, outlining the importance of mechanical considerations for the improvement of their future performance. PMID:26583117

  14. El tratamiento con implantes dentales postextracción Treatment with postextraction dental implants

    OpenAIRE

    E. Velasco Ortega; J. Pato Mourelo; J.M. Lorrio Castro; J.M. Cruz Valiño; M. Poyato Ferrera

    2007-01-01

    Introducción. El objetivo del presente estudio era mostrar los resultados de del tratamiento con implantes dentales insertados inmediatamente después de la extracción. Métodos. 22 pacientes con pérdida dental unitaria, parcial o total fueron tratados con 82 implantes Microdent® con superficie con chorreado de arena y grabada con ácidos. Todos los implantes fueron insertados inmediatamente después de la extracción correspondiente. Los implantes fueron cargados después de un periodo de cicatriz...

  15. Nanotechnology Approaches for Better Dental Implants

    Science.gov (United States)

    Tomsia, Antoni P.; Launey, Maximilien E.; Lee, Janice S.; Mankani, Mahesh H.; Wegst, Ulrike G.K.; Saiz, Eduardo

    2011-01-01

    The combined requirements imposed by the enormous scale and overall complexity of designing new implants or complete organ regeneration are well beyond the reach of present technology in many dimensions, including nanoscale, as we do not yet have the basic knowledge required to achieve these goals. The need for a synthetic implant to address multiple physical and biological factors imposes tremendous constraints on the choice of suitable materials. There is a strong belief that nanoscale materials will produce a new generation of implant materials with high efficiency, low cost, and high volume. The nanoscale in materials processing is truly a new frontier. Metallic dental implants have been successfully used for decades but they have serious shortcomings related to their osseointegration and the fact that their mechanical properties do not match those of bone. This paper reviews recent advances in the fabrication of novel coatings and nanopatterning of dental implants. It also provides a general summary of the state of the art in dental implant science and describes possible advantages of nanotechnology for further improvements. The ultimate goal is to produce materials and therapies that will bring state-of-the-art technology to the bedside and improve quality of life and current standards of care. PMID:21464998

  16. Mechanical and Spectroscopic Analysis of Retrieved/Failed Dental Implants

    Directory of Open Access Journals (Sweden)

    Umer Daood

    2017-11-01

    Full Text Available The purpose of this study was to examine surface alterations and bone formation on the surface of failed dental implants (Straumann [ST] and TiUnite [TiUn] removed due to any biological reason. In addition, failure analysis was performed to test mechanical properties. Dental implants (n = 38 from two manufacturers were collected and subjected to chemical cleaning. The presence of newly formed hydroxyapatite bone around failed implants was evaluated using micro-Raman spectroscopy. Scanning electron microscopy was used to identify surface defects. Mechanical testing was performed using a Minneapolis servo-hydraulic system (MTS along with indentation using a universal testing machine and average values were recorded. A statistical analysis of mechanical properties was done using an unpaired t test, and correlation between observed defects was evaluated using Chi-square (p = 0.05. Apatite-formation was evident in both implants, but was found qualitatively more in the ST group. No significant difference was found in indentation between the two groups (p > 0.05. The percentage of “no defects” was significantly lower in the ST group (71%. Crack-like and full-crack defects were observed in 49% and 39% of TiUn. The ST group showed 11,061 cycles to failure as compared with 10,021 cycles in the TiUnite group. Implant failure mechanisms are complex with a combination of mechanical and biological reasons and these factors are variable with different implant systems.

  17. State of the Art of Short Dental Implants: A Systematic Review of the Literature

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Pinholt, Else Marie

    2012-01-01

    of this study was systematically to evaluate publications concerning short dental implants defined as an implant with a length of =8 mm installed in the maxilla or in the mandible with special reference to implant type, survival rate, location of implant site, and observation time. Materials and Methods......: A Medline and a hand search were conducted to identify studies concerning short dental implants of length =8 mm published between 1992 and October 2009. The articles included in this study report data on implant length =8 mm, implant surface, registered region of installment, observation time, single tooth......Background: Short implants (=8 mm) are manufactured for use in atrophic regions of the jaws. As implant length in many studies has been proven to play a major role in implant survival it is indicated to evaluate survival of short implants in the present literature. Purpose: The purpose...

  18. Radiographic Bone Density around Dental Implants with Surface Modification by Laser Ablation followed by Hydroxyapatite Coating: A Study in Rabbit Tibiae

    DEFF Research Database (Denmark)

    Cazelato, Tiago; Spin-Neto, Rubens; Morais, J

    Surface chemistry seems to affect peri-implant bone healing, increasing bone-to-implant contact and biological andmechanical properties. The present study aim to assess the radiographic bone density around implants with different surface treatment, comparing a surface treated by laser ablation...... followed by hydroxyapatite coating with a surface that was oxide-blasted followed by acid etching. On this study twenty-four rabbits received two implants in each tibia, an oxide-blasted + acid-etched (ATS) and a hydroxyapatite-coated (HAP) implant. Radiographs of the implants were recorded after 4, 8......, and 12 weeks of healing (8 animals in each healing period), and bone density was assessed in regions of interest (ROI) in cortical and cancellous bone adjacent to the implant using the shade of grey in the bone ROIs compared to a reference ROI in each image (a ratio was calculated: bone ROI/reference ROI...

  19. Niobium based coatings for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G., E-mail: enggiova@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Facultad de Quimica, Departamento de Ingenieria Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Arzate, H. [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, Mexico D.F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Olaya, J.J. [Unidad de Materiales, Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Cra. 30 45-03 Bogota (Colombia)

    2011-01-15

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb{sub 2}O{sub 5} (a-Nb{sub 2}O{sub 5}), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  20. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M.; Gil, Francisco Javier; Boyd, Steven K.; Rodríguez, Daniel

    2016-01-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  1. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    Science.gov (United States)

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration. © International & American Associations for Dental Research 2016.

  2. Comparative Clinical Study of Conventional Dental Implants and Mini Dental Implants for Mandibular Overdentures: A Randomized Clinical Trial.

    Science.gov (United States)

    Aunmeungtong, Weerapan; Kumchai, Thongnard; Strietzel, Frank P; Reichart, Peter A; Khongkhunthian, Pathawee

    2017-04-01

    Dental implant-retained overdentures have been chosen as the treatment of choice for complete mandibular removable dentures. Dental implants, such as mini dental implants, and components for retaining overdentures, are commercially available. However, comparative clinical studies comparing mini dental implants and conventional dental implants using different attachment for implant-retained overdentures have not been well documented. To compare the clinical outcomes of using two mini dental implants with Equator ® attachments, four mini dental implants with Equator attachments, or two conventional dental implants with ball attachments, by means of a randomized clinical trial. Sixty patients received implant-retained mandibular overdentures in the interforaminal region. The patients were divided into three groups. In Groups 1 and 2, two and four mini dental implants, respectively, were placed and immediately loaded by overdentures, using Equator ® attachments. In Group 3, conventional implants were placed. After osseointegration, the implants were loaded by overdentures, using ball attachments. The study distribution was randomized and double-blinded. Outcome measures included changes in radiological peri-implant bone level from surgery to 12 months postinsertion, prosthodontic complications and patient satisfaction. The cumulative survival rate in the three clinical groups after one year was 100%. There was no significant difference (p dental implants with Equator attachments. However, there was a significant difference in marginal bone loss and patient satisfaction between those receiving mini dental implants with Equator attachments and conventional dental implants with ball attachments. The marginal bone resorption in Group 3 was significantly higher than in Groups 1 and 2 (p dental implants can be immediately used successfully for retaining lower complete dentures, as shown after a 1-year follow up. © 2016 Wiley Periodicals, Inc.

  3. Short dental implants: an emerging concept in implant treatment.

    Science.gov (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  4. Surgical Templates for Dental Implant Positioning; Current ...

    African Journals Online (AJOL)

    to the surgeon the implant body placement that offers the best combination of (1) support for the repetitive forces of occlusion, (2) esthetics, (3) hygiene requirements.[2,3]. Literature evidenced various methods of fabrication for the surgical template. The requirements are more relevant than the. Surgical Templates for Dental ...

  5. Development and Applications of Porous Tantalum Trabecular Metal Enhanced Titanium Dental Implants

    Science.gov (United States)

    Bencharit, Sompop; Byrd, Warren C.; Altarawneh, Sandra; Hosseini, Bashir; Leong, Austin; Reside, Glenn; Morelli, Thiago; Offenbacher, Steven

    2013-01-01

    Statement of Problem Porous tantalum trabecular metal has recently been incorporated in titanium dental implants as a new form of implant surface enhancement. However, there is little information on the applications of this material in implant dentistry. Methods We, therefore review the current literature on the basic science and clinical uses of this material. Results Porous tantalum metal is used to improve the contact between osseous structure and dental implants; and therefore presumably facilitate osseointegration. Success of porous tantalum metal in orthopedic implants led to the incorporation of porous tantalum metal in the design of root-from endosseous titanium implants. The porous tantalum three-dimensional enhancement of titanium dental implant surface allows for combining bone ongrowth together with bone ingrowth, or osseoincorporation. While little is known about the biological aspect of the porous tantalum in the oral cavity, there seems to be several possible advantages of this implant design. This article reviews the biological aspects of porous tantalum enhanced titanium dental implants, in particular the effects of anatomical consideration and oral environment to implant designs. Conclusions We propose here possible clinical situations and applications for this type of dental implant. Advantages and disadvantages of the implants as well as needed future clinical studies are discussed. PMID:23527899

  6. Soft tissue wound healing around teeth and dental implants.

    Science.gov (United States)

    Sculean, Anton; Gruber, Reinhard; Bosshardt, Dieter D

    2014-04-01

    To provide an overview on the biology and soft tissue wound healing around teeth and dental implants. This narrative review focuses on cell biology and histology of soft tissue wounds around natural teeth and dental implants. The available data indicate that: (a) Oral wounds follow a similar pattern. (b) The tissue specificities of the gingival, alveolar and palatal mucosa appear to be innately and not necessarily functionally determined. (c) The granulation tissue originating from the periodontal ligament or from connective tissue originally covered by keratinized epithelium has the potential to induce keratinization. However, it also appears that deep palatal connective tissue may not have the same potential to induce keratinization as the palatal connective tissue originating from an immediately subepithelial area. (d) Epithelial healing following non-surgical and surgical periodontal therapy appears to be completed after a period of 7–14 days. Structural integrity of a maturing wound between a denuded root surface and a soft tissue flap is achieved at approximately 14-days post-surgery. (e) The formation of the biological width and maturation of the barrier function around transmucosal implants requires 6–8 weeks of healing. (f) The established peri-implant soft connective tissue resembles a scar tissue in composition, fibre orientation, and vasculature. (g) The peri-implant junctional epithelium may reach a greater final length under certain conditions such as implants placed into fresh extraction sockets versus conventional implant procedures in healed sites. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Immediate loading of dental implants: review of the literature.

    Science.gov (United States)

    Joshi, Nikhil; Joshi, Mahasweta; Angadi, Prabhakar

    2011-01-01

    This study was conducted with the objective of examining and elaborating on the latest trends in the immediate loading of dental implants. It reviewed the materials and different techniques employed in immediate/early loading of implants in studies published since 2008. Articles were selected on the basis of a PubMed search that included controlled clinical studies of immediate loading of dental implants from the year 2008 onward. The inclusion criteria were a minimum of 10 patients in each group and a clinical follow-up period of at least 1 year. The technique of immediately loaded implants has become more predictable; researchers are exploring novel ways of employing the technique with fewer implants, zygomatic implants, and surface modification of implants. The prosthetic phase of immediate loading also has been simplified. In particular, the results of immediate loading in the maxilla have become more predictable and the selection criteria of patients and location for immediate loading have become more liberal, as envisaged in this review.

  8. Short dental implants in the posterior maxilla: a review of the literature.

    Science.gov (United States)

    Esfahrood, Zeinab Rezaei; Ahmadi, Loghman; Karami, Elahe; Asghari, Shima

    2017-04-01

    The purpose of this study was to perform a literature review of short implants in the posterior maxilla and to assess the influence of different factors on implant success rate. A comprehensive search was conducted to retrieve articles published from 2004 to 2015 using short dental implants with lengths less than 10 mm in the posterior maxilla with at least one year of follow-up. Twenty-four of 253 papers were selected, reviewed, and produced the following results. (1) The initial survival rate of short implants in the posterior maxilla was not related to implant width, surface, or design; however, the cumulative success rate of rough-surface short implants was higher than that of machined-surface implants especially in performance of edentulous dental implants of length short dental implants may be an alternative approach with fewer biological complications. (3) The increased crown-to-implant (C/I) ratio and occlusal table (OT) values in short dental implants with favorable occlusal loading do not seem to cause peri-implant bone loss. Higher C/I ratio does not produce any negative influence on implant success. (4) Some approaches that decrease the stress in posterior short implants use an implant designed to increase bone-implant contact surface area, providing the patient with a mutually protected or canine guidance occlusion and splinting implants together with no cantilever load. The survival rate of short implants in the posterior edentulous maxilla is high, and applying short implants under strict clinical protocols seems to be a safe and predictable technique.

  9. Design Improvement of Dental Implant-Based on Bone Remodelling

    OpenAIRE

    Solehuddin Shuib; Koay Boon Aik; Zainul Ahmad Rajion

    2016-01-01

    There are many types of mechanical failure on the dental implant. In this project, the failure that needs to take into consideration is the bone resorption on the dental implant. Human bone has its ability to remodel after the implantation. As the dental implant is installed into the bone, the bone will detect and change the bone structure to achieve new biomechanical environment. This phenomenon is known as bone remodeling. The objective of the project is to improve the ...

  10. Stress Analysis on the Bone Around Five Different Dental Implants

    Science.gov (United States)

    2001-10-25

    STRESS ANALYSIS ON THE BONE AROUND FIVE DIFFERENT DENTAL IMPLANTS S. M. Rajaai, S. Khorrami-mehr School of mechanical Engineering Iran... implant , which is an effective criterion in osseointegration . In this paper, stress analysis has been conducted on the bone by applying finite element...method. A comparison has been performed among different models of dental implant fixtures. Keywords- Dental Implant , Root Form, Cylinder Form, Step

  11. 30-Year Outcomes of Dental Implants Supporting Mandibular Fixed Dental Prostheses: A Retrospective Review of 4 Cases.

    Science.gov (United States)

    Turkyilmaz, Ilser; Tözüm, Tolga F

    2015-10-01

    The aim of this study was to present the 30-year outcomes of 28 implants supporting mandibular screw-retained fixed dental prostheses (FDPs). Dental charts of the 4 patients were carefully reviewed, and it was noticed that they received 28 implants and 5 screw-retained FDPs in 1983 and 1984. The chief concerns raised by these patients were poor retention of their complete dentures and decreased masticatory function at the time of treatment planning. Each dental care they received was recorded in the last 30 years. Implant survival, radiographic, and prosthodontic examinations were performed. No implants were lost after 30 years, giving the implant a survival rate of 100%. The average marginal bone level was 2.6 ± 0.5 mm at the last recall appointment. Of the 5 FDPs delivered, 1 needed replacement, indicating a prosthesis survival rate of 80%. The patients needed 21 repairs such as replacement of denture teeth/gold screws and hard relining, and 19 adjustments such as occlusal adjustments and acrylic resin contouring, over 30 years. This clinical report shows that machined-surface dental implants can successfully support screw-retained fixed dental prostheses for over 30 years, making dental implants an important dental treatment alternative compared to the traditional prosthetic treatment methods.

  12. Immediately loaded machined versus rough surface dental implants in edentulous jaws: One-year postloading results of a pilot randomised controlled trial.

    Science.gov (United States)

    Esposito, Marco; Felice, Pietro; Barausse, Carlo; Pistilli, Roberto; Grandi, Giovanni; Simion, Massimo

    2015-01-01

    To compare the effectiveness of immediately loaded total prostheses supported by implants with a roughened surface versus implants with a machined/turned surface. Fifty edentulous or to-be-rendered edentulous patients requiring an implant-supported cross-arch prosthesis, were randomised either to receive four to eight implants with a roughened surface (25 patients) or with a machined/turned surface (25 patients). Provisional metal-reinforced acrylic prostheses were delivered 48 h after implant placement. Provisional prostheses were replaced after 4 months, by definitive screw-retained metal-resin cross-arch restorations. Outcome measures were prosthesis and implant failures, any complications and peri-implant marginal bone level changes. Patients were followed 1 year after loading. One year after loading no patient dropped out. No prosthesis failed, but two machined implants were found to be mobile at definitive impression taking in 1 patient (Fisher's exact test: P = 0.312; difference in proportions = 4%; 95% Cl: -10 to 18). No complications occurred. Both groups presented a significant peri-implant marginal bone loss at 1 year after loading (P < 0.0001), -0.64 ± 0.20 mm for rough implants and -0.68 ± 0.23 mm for turned implants, respectively, with no statistically significant differences between the two groups (P = 0.482; mean difference = 0.04 mm; 95% Cl: -0.17 to 0.25). Up to 1 year after immediate loading, both implant surfaces provided good and similar results, however, the only two implants which failed early in the same patient had a machined surface. These preliminary results must be confirmed by larger trials with longer follow-ups.

  13. Role of Imaging in Dental Implants

    Directory of Open Access Journals (Sweden)

    Divya Kalra

    2010-01-01

    Full Text Available Dental implants have become an accepted form of permanent tooth replacement. Nearly all implants currently being placed are of the osseointegrated type. These typically consist of three parts: a fixture, an abutment and a screw or threaded rod. The fixture, usually composed of titanium, can be placed in either a surgically created site in the alveolar ridge or a fresh extraction socket. Diagnostic imaging can play an important role in evaluating patients with such implants. Useful imaging studies include plain panoramic radiography, computed tomography, and computer-reformatted cross-sectional, panoramic, and three-dimensional imaging. Advanced imaging studies can be used to determine the suitability of implant placement, appropriate sites for implant placement, the size of the implant that can be placed, and the need for preimplantation ridge surgery. Postoperatively, advanced imaging studies can show failure of an endosseous implant to osseointegrate, improper placement of an implant, and violation of important structures. This paper gives a brief insight into the various imaging modalities, which have been applied in implantology.

  14. Application of Plasma Sprayed Zirconia Coating in Dental Implant: Study in Implant.

    Science.gov (United States)

    Huang, Zhengfei; Wang, Zhifeng; Li, Chuanhua; Yin, Kaifeng; Hao, Dan; Lan, Jing

    2018-01-05

    The aim was to investigate the osseointegration of a novel coating-plasma-sprayed nanostructured zirconia (NSZ) in dental implant. Nanostructured zirconia coating on non-thread titanium implant was prepared by plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo, nanostructured zirconia-coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by removal torque (RTQ) test. The osseointegration was observed by scanning electron microscopy (SEM), micro computed tomography (Micro CT) and histological analyses. Quantified parameters were calculated, including removal torque, Bone Volume to Tissue Volume (BV/TV), Trabecular Thickness (Tb. Th), Trabecular Number (Tb. N), Trabecular Separation/Spacing (Tb. Sp), and Bone-Implant contact (BIC) percentage. The statistical differences were detected by two-tail Mann-Whitney U test (SPSS 20.0). The surface roughness (1.58µm) and wettability (54.61°) of nanostructured zirconia coated implant was more suitable than those of titanium implant (0.598µm and 74.38°) for osseointegration and hierarchical surface morphology could be seen on zirconia coating. The histological analyses showed that zirconia coated implant induced earlier and more condensed bone formation than titanium implant at 2 and 4 weeks. Quantified parameters showed the significant differences between these two groups at early healing period, but the differences between these two groups decreased with the increase of healing period. All these results demonstrated that plasma sprayed zirconia coated implant induced better bone formation than titanium implant at early stage.

  15. A retrospective study on related factors affecting the survival rate of dental implants

    Science.gov (United States)

    Kang, Jeong-Kyung; Lee, Ki; Lee, Yong-Sang; Park, Pil-Kyoo

    2011-01-01

    PURPOSE The aim of this retrospective study is to analyze the relationship between local factors and survival rate of dental implant which had been installed and restored in Seoul Veterans Hospital dental center for past 10 years. And when the relationship is found out, it could be helpful to predict the prognosis of dental implants. MATERIALS AND METHODS A retrospective study of patients receiving root-shaped screw-type dental implants placed from January 2000 to December 2009 was conducted. 6385 implants were placed in 3755 patients. The following data were collected from the dental records and radiographs: patient's age, gender, implant type and surface, length, diameter, location of implant placement, bone quality, prosthesis type. The correlations between these data and survival rate were analyzed. Statistical analysis was performed with the use of Kaplan-Meier analysis, Chi-square test and odds ratio. RESULTS In all, 6385 implants were placed in 3755 patients (3120 male, 635 female; mean age 65 ± 10.58 years). 108 implants failed and the cumulative survival rate was 96.33%. There were significant differences in age, implant type and surface, length, location and prosthesis type (P.05). CONCLUSION Related factors such as age, implant type, length, location and prosthesis type had a significant effect on the implant survival. PMID:22259704

  16. Osseoperception: active tactile sensibility of osseointegrated dental implants.

    Science.gov (United States)

    Enkling, Norbert; Utz, Karl Heinz; Bayer, Stefan; Stern, Regina Mericske

    2010-01-01

    The phenomenon of developing a certain tactile sensibility through osseointegrated dental implants is called osseoperception. Active tactile sensibility can be tested by having the subject bite on test bodies. The aim of the study was to describe the active tactile sensibility of single-tooth implants based on the 50% value and the slope of the sensibility curve at the 50% value. Sixty-two subjects with single-tooth implants with natural opposing teeth were included in the study. In a computer-assisted and randomized way, copper foils of varying thickness (0 to 200 Μm) were placed inter?occlusally between the single-tooth implant and the natural opposing tooth, and the active tactile perception was studied according to the psychophysical method of constant stimuli and statistically evaluated by logistic regression. Tactile perception of the implants at the 50% value estimated by logistic regression was 20.2 ± 10.9 Μm on average, and the slope was 29 ± 15. Regarding implant surface structure, significant differences were observed. The sandblasted and acid-etched surface was significantly more sensitive than the titanium plasma-sprayed surface, and the machined surface was similar to the titanium plasma-sprayed surface. Active tactile sensibility of implants with natural antagonistic teeth is very similar to that of teeth, but the slope of the tactile sensibility curve is flatter. Significant differences in tactile sensibility as a function of different implant surfaces may indicate that receptors near the implant form the basis of osseoperception.

  17. Do preoperative antibiotics prevent dental implant complications?

    Science.gov (United States)

    Balevi, Ben

    2008-01-01

    The Cochrane Oral Health Group's Trials Registry, the Cochrane Central Register of Controlled Trials, Medline and Embase were consulted to find relevant work. Searches were made by hand of numerous journals pertinent to oral implantology. There were no language restrictions. Randomised controlled clinical trials (RCT) with a followup of at least 3 months were chosen. Outcome measures were prosthesis failures, implant failures, postoperative infections and adverse events (gastrointestinal, hypersensitivity, etc.). Two reviewers independently assessed the quality and extracted relevant data from included studies. The estimated effect of the intervention was expressed as a risk ratio together with its 95% confidence interval (CI). Numbers-needed-to-treat (NNT) were calculated from numbers of patients affected by implant failures. Meta-analysis was done only if there were studies with similar comparisons that reported the same outcome measure. Significance of any discrepancies between studies was assessed by means of the Cochran's test for heterogeneity and the I2 statistic. Only two RCT met the inclusion criteria. Meta-analysis of these two trials showed a statistically significantly higher number of patients experiencing implant failures in the group not receiving antibiotics (relative risk, 0.22; 95% CI, 0.06-0.86). The NNT to prevent one patient having an implant failure is 25 (95%CI, 13-100), based on a patient implant failure rate of 6% in people not receiving antibiotics. The following outcomes were not statistically significantly linked with implant failure: prosthesis failure, postoperative infection and adverse events (eg, gastrointestinal effects, hypersensitivity). There is some evidence suggesting that 2 g of amoxicillin given orally 1 h preoperatively significantly reduces failures of dental implants placed in ordinary conditions. It remains unclear whether postoperative antibiotics are beneficial, and which is the most effective antibiotic. One dose of

  18. Public perceptions of dental implants: a qualitative study.

    Science.gov (United States)

    Wang, Guihua; Gao, Xiaoli; Lo, Edward C M

    2015-07-01

    Dental implants have become a popular option for treating partially dentate or edentulous patients. Information on dental implants is widely available in the public domain and is disseminated through industries and dental practitioners at various levels/disciplines. This qualitative study aimed to evaluate the public's information acquisition and their perceptions of dental implants and the effects of these on their care-seeking and decision making. A purposive sample of 28 adults were recruited to join six focus groups. To be eligible, one must be 35-64 years of age, had never been engaged in dentally related jobs, had at least one missing tooth, and had heard about dental implant but never received dental implant or entered into any dental consultation regarding dental implants. All of the focus groups discussions were transcribed verbatim and subjected to thematic content analysis following a grounded theory approach. Participants acquired information on dental implants through various means, such as patient information boards, printed advertisements, social media, and personal connections. They expected dental implants to restore the patients' appearance, functions, and quality of life to absolute normality. They regarded dental implants as a panacea for all cases of missing teeth, overestimated their functions and longevity, and underestimated the expertise needed to carry out the clinical procedures. They were deterred from seeking dental implant treatment by the high price, invasive procedures, risks, and complications. Members of the public were exposed to information of varying quality and had some unrealistic expectations regarding dental implants. Such perceptions may shape their care-seeking behaviours and decision-making processes in one way or another. The views and experiences gathered in this qualitative study could assist clinicians to better understand the public's perspectives, facilitate constructive patient-dentist communication, and contribute

  19. The feasibility of immediately loading dental implants in edentulous jaws

    OpenAIRE

    Henningsen, Anders; Smeets, Ralf; Wahidi, Aria; Kluwe, Lan; Kornmann, Frank; Heiland, Max; Gerlach, Till

    2016-01-01

    Purpose Immediate loading of dental implants has been proved to be feasible in partially edentulous jaws. The purpose of this retrospective investigation was to assess the feasibility of immediately loading dental implants in fully edentulous jaws. Methods A total of 24 patients aged between 53 and 89 years received a total of 154 implants in their edentulous maxillae or mandibles. Among the implants, 45 were set in fresh extracted sockets and 109 in consolidated alveolar bones. The implants ...

  20. Dental implants in medically complex patients-a retrospective study.

    Science.gov (United States)

    Manor, Yifat; Simon, Roy; Haim, Doron; Garfunkel, Adi; Moses, Ofer

    2017-03-01

    Dental implant insertion for oral rehabilitation is a worldwide procedure for healthy and medically compromised patients. The impact of systemic disease risks on the outcome of implant therapy is unclear, since there are few if any published randomized controlled trials (RCTs). The objective of this study is to investigate the rate of complications and failures following dental implantation in medically compromised patients in order to elucidate risk factors and prevent them. A retrospective cohort study was conducted from patient files treated with dental implantation between the years 2008-2014. The study group consisted of medically complex patients while the control group consisted of healthy patients. Preoperative, intraoperative, and post operative clinical details were retrieved from patients' files. The survival rate and the success rate of the dental implants were evaluated clinically and radiographically. A total of 204 patients (1003 dental implants) were included in the research, in the study group, 93 patients with 528 dental implants and in the control group, 111 patients with 475 dental implants. No significant differences were found between the groups regarding implant failures or complications. The failure rate of dental implants among the patients was 11.8 % in the study group and 16.2 % in the control group (P = 0.04). It was found that patients with a higher number of implants (mean 6.8) had failures compared with patients with a lower number of implants (mean 4.2) regardless of their health status (P dental implantation in medically complex patients and in healthy patients. Medically complex patients can undergo dental implantation. There are similar rates of complications and failures of dental implants in medically complex patients and in healthy patients.

  1. Cost-Effectiveness of Dental Implants: A Utility Analysis.

    Science.gov (United States)

    Jacobson, J.; And Others

    1990-01-01

    A measure of dental patients' values and preferences was used to assess attitudes of 92 edentulous patients receiving implant and other dental reconstructive therapies. The implant group tended to be younger and better educated and to rate implant reconstruction as more desirable than the nonimplant denture group. (DB)

  2. Dental implant superstructures by superplastic forming

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, R.V.; Garriga-Majo, D.; Soo, S.; Pagliaria, D. [Kings Coll., London (United Kingdom). Dept. of Dental Biomaterials Science; Juszczyk, A.S.; Walter, J.D. [Kings Coll., London (United Kingdom). Dept. of Prosthetic Dentistry

    2001-07-01

    A novel application of superplastic forming is described for the production of fixed-bridge dental implant superstructures. Finite element analysis (FEA) has shown that Ti-6Al-4V sheet would be a suitable candidate material for the design of a fixed-bridge dental implant superstructure. Traditionally superstructures are cast in gold alloy onto pre-machined gold alloy cylinders but castings are often quite bulky and 25% of castings do not fit accurately (1) which means that sectioning and soldering is required to obtain a fit that is clinically acceptable and will not prejudice the integrity of the commercially pure cp-titanium implants osseointegrated with the bone. Superplastic forming is shown to be a forming technique that would allow the production of strong, light-weight components of thin section with low residual stress that could be suitable for such applications. Considerable cost savings over traditional dental techniques can be achieved using a low-cost ceramic die material. The properties of these die materials are optimised so that suitable components can be produced. Satisfactory hot strength is demonstrated and thermal properties are matched to those of the titanium alloy for accurate fit of the prosthesis. (orig.)

  3. Decontamination methods using a dental water jet and dental floss for microthreaded implant fixtures in regenerative periimplantitis treatment.

    Science.gov (United States)

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Chung, Chong-Pyoung; Seol, Yang-Jo

    2015-06-01

    This study evaluated decontamination methods using a dental water jet and dental floss on microthreaded implants for regenerative periimplantitis therapy. In 6 beagle dogs, experimental periimplantitis was induced, and decontamination procedures, including manual saline irrigation (control group), saline irrigation using a dental water jet (group 1) and saline irrigation using a dental water jet with dental flossing (group 2), were performed. After in situ decontamination procedures, some of the implant fixtures (n = 4 per group) were retrieved for analysis by SEM, whereas other fixtures (n = 4 per group) underwent regenerative therapy. After 3 months of healing, the animals were killed. The SEM examination indicated that decontamination of the implant surfaces was the most effective in group 2, with no changes in implant surface morphology. The histological examination also revealed that group 2 achieved significantly greater amounts of newly formed bone (6.75 ± 2.19 mm; P = 0.018), reosseointegration (1.88 ± 1.79 mm; P = 0.038), and vertical bone fill (26.69 ± 18.42%; P = 0.039). Decontamination using a dental water jet and dental floss on microthreaded implants showed positive mechanical debridement effects and positive bone regeneration effects.

  4. Interim Prosthesis Options for Dental Implants.

    Science.gov (United States)

    Siadat, Hakimeh; Alikhasi, Marzieh; Beyabanaki, Elaheh

    2017-06-01

    Dental implants have become a popular treatment modality for replacing missing teeth. In this regard, the importance of restoring patients with function during the implant healing period has grown in recent decades. Esthetic concerns, especially in the anterior region of the maxilla, should also be considered until the definitive restoration is delivered. Another indication for such restorations is maintenance of the space required for esthetic and functional definitive restorations in cases where the implant site is surrounded by natural teeth. Numerous articles have described different types of interim prostheses and their fabrication techniques. This article aims to briefly discuss all types of implant-related interim prostheses by different classification including provisional timing (before implant placement, after implant placement in unloading and loading periods), materials, and techniques used for making the restorations, the type of interim prosthesis retention, and definitive restoration. Furthermore, the abutment torque for such restorations and methods for transferring the soft tissue from interim to definitive prostheses are addressed. © 2015 by the American College of Prosthodontists.

  5. Correlation between radiographic analysis of alveolar bone density around dental implant and resonance frequency of dental implant

    Science.gov (United States)

    Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.

    2017-08-01

    The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.

  6. Antibacterial and Bioactive Coatings on Titanium Implant Surfaces

    OpenAIRE

    Aranya, Anupama Kulkarni; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z.; Zhang, Yu; Saxena, Deepak

    2017-01-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP and FZn-CaP and incubated f...

  7. Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens : a co-culture study in vitro

    NARCIS (Netherlands)

    Zhao, Bingran; van der Mei, Henny C; Rustema-Abbing, Minie; Busscher, Henk J; Ren, Yijin

    2015-01-01

    Sub-gingival anaerobic pathogens can colonize an implant surface to compromise osseointegration of dental implants once the soft tissue seal around the neck of an implant is broken. In vitro evaluations of implant materials are usually done in monoculture studies involving either tissue integration

  8. Evaluating mechanical properties and degradation of YTZP dental implants

    International Nuclear Information System (INIS)

    Sevilla, Pablo; Sandino, Clara; Arciniegas, Milena; Martinez-Gomis, Jordi; Peraire, Maria; Gil, Francisco Javier

    2010-01-01

    Lately new biomedical grade yttria stabilized zirconia (YTZP) dental implants have appeared in the implantology market. This material has better aesthetical properties than conventional titanium used for implants but long term behaviour of these new implants is not yet well known. The aim of this paper is to quantify the mechanical response of YTZP dental implants previously degraded under different time conditions and compare the toughness and fatigue strength with titanium implants. Mechanical response has been studied by means of mechanical testing following the ISO 14801 for Standards for dental implants and by finite element analysis. Accelerated hydrothermal degradation has been achieved by means of water vapour and studied by X-ray diffraction and nanoindentation tests. The results show that the degradation suffered by YTZP dental implants will not have a significant effect on the mechanical behaviour. Otherwise the fracture toughness of YTZP ceramics is still insufficient in certain implantation conditions.

  9. In vitro biological outcome of laser application for modification or processing of titanium dental implants.

    Science.gov (United States)

    Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat

    2017-07-01

    There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.

  10. A Comparison of Mechanical Tetracycline Disinfection of Osseotite and Nanotite Implant Surfaces in a Simulated Model of Peri-implantitis

    Science.gov (United States)

    2013-08-14

    osseointegrated   dental   implants .   J  Periodontol  1999;  70:  131...contamination  on   osseointegration  of   dental   implants  surrounded  by  circumferential  bone  defects.  Clin  Oral   Implants  Res...surface  complexities  of   dental   implants  enhance  the  risk  for  peri-­‐ implant

  11. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV Bone: An Overview

    Directory of Open Access Journals (Sweden)

    Hamdan S. Alghamdi

    2018-01-01

    Full Text Available Nowadays, dental implants have become more common treatment for replacing missing teeth and aim to improve chewing efficiency, physical health, and esthetics. The favorable clinical performance of dental implants has been attributed to their firm osseointegration, as introduced by Brånemark in 1965. Although the survival rate of dental implants over a 10-year observation has been reported to be higher than 90% in totally edentulous jaws, the clinical outcome of implant treatment is challenged in compromised (bone conditions, as are frequently present in elderly people. The biomechanical characteristics of bone in aged patients do not offer proper stability to implants, being similar to type-IV bone (Lekholm & Zarb classification, in which a decreased clinical fixation of implants has been clearly demonstrated. However, the search for improved osseointegration has continued forward for the new evolution of modern dental implants. This represents a continuum of developments spanning more than 20 years of research on implant related-factors including surgical techniques, implant design, and surface properties. The methods to enhance osseointegration of dental implants in low quality (type-IV bone are described in a general manner in this review.

  12. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview.

    Science.gov (United States)

    Alghamdi, Hamdan S

    2018-01-13

    Nowadays, dental implants have become more common treatment for replacing missing teeth and aim to improve chewing efficiency, physical health, and esthetics. The favorable clinical performance of dental implants has been attributed to their firm osseointegration, as introduced by Brånemark in 1965. Although the survival rate of dental implants over a 10-year observation has been reported to be higher than 90% in totally edentulous jaws, the clinical outcome of implant treatment is challenged in compromised (bone) conditions, as are frequently present in elderly people. The biomechanical characteristics of bone in aged patients do not offer proper stability to implants, being similar to type-IV bone (Lekholm & Zarb classification), in which a decreased clinical fixation of implants has been clearly demonstrated. However, the search for improved osseointegration has continued forward for the new evolution of modern dental implants. This represents a continuum of developments spanning more than 20 years of research on implant related-factors including surgical techniques, implant design, and surface properties. The methods to enhance osseointegration of dental implants in low quality (type-IV) bone are described in a general manner in this review.

  13. The medically compromised patient: Are dental implants a feasible option?

    Science.gov (United States)

    Vissink, A; Spijkervet, Fkl; Raghoebar, G M

    2018-03-01

    In healthy subjects, dental implants have evolved to be a common therapy to solve problems related to stability and retention of dentures as well as to replace failing teeth. Although dental implants are applied in medically compromised patients, it is often not well known whether this therapy is also feasible in these patients, whether the risk of implant failure and developing peri-implantitis is increased, and what specific preventive measures, if any, have to be taken when applying dental implants in these patients. Generally speaking, as was the conclusion by the leading review of Diz, Scully, and Sanz on placement of dental implants in medically compromised patients (J Dent, 41, 2013, 195), in a few disorders implant survival may be lower, and the risk of a compromised peri-implant health and its related complications be greater, but the degree of systemic disease control outweighs the nature of the disorder rather than the risk accompanying dental implant treatment. So, as dental implant treatment is accompanied by significant functional benefits and improved oral health-related quality of life, dental implant therapy is a feasible treatment in almost any medically compromised patient when the required preventive measures are taken and follow-up care is at a high level. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Effects of selected factors on the osseointegration of dental implants

    OpenAIRE

    Piotr Koszuta; Agnieszka Grafka; Agnieszka Koszuta; Maciej Łopucki; Jolanta Szymańska

    2015-01-01

    Introduction : Osseointegration of dental implants with the maxillary and/or mandibular bone is the basis for implant prosthetic treatment. The aim of the study was to assess the influence of the patients’ gender, age, and in the case of women, their menopausal status (before menopause/after menopause/during hormone replacement therapy) on the osseointegration of dental implants. Material and methods : The study evaluated the bone loss after implant loading and the success rate of the pr...

  15. Histomorphometric analysis of the osseointegration of four different implant surfaces in the femoral epiphyses of rabbits.

    NARCIS (Netherlands)

    Guehennec, L. Le; Goyenvalle, E.; Lopez, M.A.; Weiss, P.; Amouriq, Y.; Layrolle, P.

    2008-01-01

    OBJECTIVES: The surface properties of titanium dental implants are key parameters for rapid and intimate bone-implant contact. The osseointegration of four implant surfaces was studied in the femoral epiphyses of rabbits. MATERIAL AND METHODS: Titanium implants were either grit-blasted with alumina

  16. Osseointegration of dental implants in Macaca fascicularis

    Science.gov (United States)

    Dewi, R. S.; Odang, R. W.; Odelia, L.

    2017-08-01

    Osseointegration is an important factor in determining the success of a dental implant. It can be assessed from the osseointegration that occurs between the implant and the bone. The implant stability is determined by the osseous support at the implant-bone interface, which is commonly evaluated by histomorphometric analysis. This study aimed to evaluate whether the osseointegration level measured by a Low Resonance Frequency Analyzer (LRFA) gave results as good as those obtained by histomorphometric examination. Six male Macaca fascicularis were used in this study. In each animal, two types of loading were performed: immediate and delayed loading. Clinical examination and LRFA measurement were performed to determine osseointegration at the first and second weeks and at the first, second, third, and fourth months. After four months, histomorphometric examination was performed. The relationship between the histomorphometric examination and LRFA measurement was compared using the Pearson correlation coefficient. There was no significant difference in the osseointegration between immediate loading and delayed loading (p > 0.05) The bone-implant contact percentage in the first group did not differ significantly from that in the second group. Statistical analysis showed that there was a strong correlation between LRFA measurement and histomorphometric examination. Osseointegration could be evaluated through LRFA measurement as well as through histomorphometric examination.

  17. Osseointegration of standard and mini dental implants: a histomorphometric comparison.

    Science.gov (United States)

    Dhaliwal, Jagjit S; Albuquerque, Rubens F; Murshed, Monzur; Feine, Jocelyne S

    2017-12-01

    Mini dental implants (MDIs) are becoming increasingly popular for rehabilitation of edentulous patients because of their several advantages. However, there is a lack of evidence on the osseointegration potential of the MDIs. The objective of the study was to histomorphometrically evaluate and compare bone apposition on the surface of MDIs and standard implants in a rabbit model. Nine New Zealand white rabbits were used for the study to meet statistical criteria for adequate power. Total 18 3M ™ ESPE ™ MDIs and 18 standard implants (Ankylos ® Friadent, Dentsply) were inserted randomly into the tibia of rabbits (four implants per rabbit); animals were sacrificed after a 6-week healing period. The specimens were retrieved en bloc and preserved in 10% formaldehyde solution. Specimens were prepared for embedding in a light cure acrylic resin (Technovit 9100). The most central sagittal histological sections (30-40 μm thick) were obtained using a Leica SP 1600 saw microtome. After staining, the Leica DM2000 microscope was used, the images were captured using Olympus DP72 camera and associated software. Bone implant contact (BIC) was measured using Infinity Analyze software. All implants were osseointegrated. Histologic measures show mineralized bone matrix in intimate contact with the implant surface in both groups. The median BIC was 57.5% (IQR 9.0) in the MDI group and 55.0% (IQR 4.5) in the control group (P > 0.05, Mann-Whitney test). There were no statistical differences in osseointegration at 6 weeks between MDIs and standard implants in rabbit tibias. Based on these results, it is concluded that osseointegration of MDIs is similar to that of standard implants.

  18. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  19. Comparison of Implant Stability Before Prosthetic Loading of Two Dental Implant Systems

    OpenAIRE

    Lagdive, Sanjay Balaji; Lagdive, Sushma Sanjay

    2013-01-01

    Dental implantology is the state of the art technique to replace missing teeth. Implant stability of implant jeopardizes its longevity and success of treatment. This study evaluates the implant stability of implant before and after 4 months of the implant placement, but before prosthetically loading it. Ten two-stage implants of Life care and Nobel Biocare dental implants were placed in 20 patients. Digital OPG was taken on the day of implant placement. After 4 months, at the time of second s...

  20. Short dental implants: A scoping review of the literature for patients with head and neck cancer.

    Science.gov (United States)

    Edher, Faraj; Nguyen, Caroline T

    2017-09-16

    Dental implants can be essential in the rehabilitation of various cancer defects, but their ideal placement can be complicated by the limited dimensions of the available host bone. Surgical interventions developed to increase the amount of bone are not all predictable or successful and can sometimes be contraindicated. Short dental implants have been suggested as an alternative option in sites where longer implants are not possible. Whether they provide a successful treatment option is unclear. The purpose of this study was to review the literature on short dental implants and assess whether they are a viable definitive treatment option for rehabilitating cancer patients with deficient bone. A scoping review of the literature was performed, including a search of established periodontal textbooks for articles on short dental implants combined with a search of PubMed, MEDLINE, EMBASE, Web of Science, and Cochrane Database of Systematic Reviews. A search for all literature published before June 2016 was based on the following keywords: ['dental implants' OR 'dental implantation, endosseous' OR 'dental prosthesis, implant supported'] AND [short]. The minimum acceptable implant length has been considered to be 6 mm. The survival rates of short implants varied between 74% and 96% at 5 years, depending on factors such as the quality of the patient's bone, primary stability of the implant, clinician's learning curve, and implant surface. Short implants can achieve results similar to those of longer implants in augmented bone and offer a treatment alternative that could reduce the need for invasive surgery and associated morbidity and be safer and more economical. Short dental implants (6 mm to 8 mm) can be used successfully to support single or multiple fixed reconstructions or overdentures in atrophic maxillae and mandibles. The use of short dental implants lessens the need for advanced and complicated surgical bone augmentation procedures, which reduces complications

  1. Transmission of acoustic emission in bones, implants and dental materials.

    Science.gov (United States)

    Ossi, Zannar; Abdou, Wael; Reuben, Robert L; Ibbetson, Richard J

    2013-11-01

    There is considerable interest in using acoustic emission (AE) and ultrasound to assess the quality of implant-bone interfaces and to monitor for micro-damage leading to loosening. However, remarkably little work has been done on the transmission of ultrasonic waves though the physical and biological structures involved. The aim of this in vitro study is to assess any differences in transmission between various dental materials and bovine rib bones with various degrees of hydration. Two types of tests have been carried out using pencil lead breaks as a standard AE source. The first set of tests was configured to assess the surface propagation of AE on various synthetic materials compared with fresh bovine rib bone. The second is a set of transmission tests on fresh, dried and hydrated bones each fitted with dental implants with various degrees of fixity, which includes components due to bone and interface transmission. The results indicate that transmission through glass ionomer cement is closest to the bone. This would suggest that complete osseointegration could potentially be simulated using such cement. The transmission of AE energy through bone was found to be dependent on its degree of hydration. It was also found that perfusing samples of fresh bone with water led to an increase in transmitted energy, but this appeared to affect transmission across the interface more than transmission through the bone. These findings have implications not only for implant interface inspection but also for passive AE monitoring of implants.

  2. Implant stability and marginal bone level of microgrooved zirconia dental implants: A 3-month experimental study on dogs

    Directory of Open Access Journals (Sweden)

    Delgado-Ruíz Rafael Arcesio

    2014-01-01

    Full Text Available Background/Aim. The modification of implant surfaces could affect mechanical implant stability as well as dynamics and quality of peri-implant bone healing. The aim of this 3-month experimental study in dogs was to investigate implant stability, marginal bone levels and bone tissue response to zirconia dental implants with two laser-micro-grooved intraosseous surfaces in comparison with nongrooved sandblasted zirconia and sandblasted, high-temperature etched titanium implants. Methods. Implant surface characterization was performed using optical interferometric profilometry and energy dispersive X-ray spectroscopy. A total of 96 implants (4 mm in diameter and 10 mm in length were inserted randomly in both sides of the lower jaw of 12 Fox Hound dogs divided into groups of 24 each: the control (titanium, the group A (sandblasted zirconia, the group B (sandblasted zirconia plus microgrooved neck and the group C (sandblasted zirconia plus all microgrooved. All the implants were immediately loaded. Insertion torque, periotest values, radiographic crestal bone level and removal torque were recorded during the 3-month follow-up. Qualitative scanning electon micro-scope (SEM analysis of the bone-implant interfaces of each group was performed. Results. Insertion torque values were higher in the group C and control implants (p the control > the group B > the group A (p the control > the group B > the group A (p < 0.05. SEM showed that implant surfaces of the groups B and C had an extra bone growth inside the microgrooves that corresponded to the shape and direction of the microgrooves. Conclusion. The addition of micro-grooves to the entire intraosseous surface of zirconia dental implants enhances primary and secondary implant stability, promotes bone tissue ingrowth and preserves crestal bone levels.

  3. Marketing dental implants: a step-by-step approach.

    Science.gov (United States)

    Schwab, D P

    1995-03-01

    Introducing dental implants into a practice requires planning and commitment. Part of the planning process is learning new clinical skills, but another essential component is developing a marketing approach. The author offers a seven-step plan for adding dental implants to your repertoire.

  4. Oral rehabilitation with dental implants in oligodontia patients

    NARCIS (Netherlands)

    Finnema, KJ; Raghoebar, GM; Meijer, HJA; Vissink, A

    2005-01-01

    Purpose: The aim of this retrospective report was to evaluate the treatment outcome of oral rehabilitation with dental implants in oligodontia patients. Materials and Methods: Thirteen oligodontia patients treated with dental implants were examined clinically and radiographically (follow-up 3 +/- 2

  5. Microcomputed tomography-based assessment of retrieved dental implants

    NARCIS (Netherlands)

    Narra, N.; Antalainen, A.K.; Zipprich, H.; Sándor, G.K.; Wolff, J.

    2015-01-01

    Purpose: The aim of this study was to demonstrate the potential of microcomputed tomography (micro-CT) technology in the assessment of retrieved dental implants. Cases are presented to illustrate the value of micro-CT imaging techniques in determining possible mechanical causes for dental implant

  6. The medically compromised patient : Are dental implants a feasible option?

    NARCIS (Netherlands)

    Vissink, A; Spijkervet, Fkl; Raghoebar, G M

    2018-01-01

    In healthy subjects, dental implants have evolved to be a common therapy to solve problems related to stability and retention of dentures as well as to replace failing teeth. Although dental implants are applied in medically compromised patients, it is often not well known whether this therapy is

  7. Microcomputed Tomography-Based Assessment of Retrieved Dental Implants

    NARCIS (Netherlands)

    Narra, N.; Antalainen, A.K.; Zipprich, H.; Sandor, G.K.; Wolff, J.

    2015-01-01

    PURPOSE: The aim of this study was to demonstrate the potential of microcomputed tomography (micro-CT) technology in the assessment of retrieved dental implants. Cases are presented to illustrate the value of micro-CT imaging techniques in determining possible mechanical causes for dental implant

  8. Finite element analysis of the stress distributions in peri-implant bone in modified and standard-threaded dental implants

    Directory of Open Access Journals (Sweden)

    Serkan Dundar

    2016-01-01

    Full Text Available The aim of this study was to examine the stress distributions with three different loads in two different geometric and threaded types of dental implants by finite element analysis. For this purpose, two different implant models, Nobel Replace and Nobel Active (Nobel Biocare, Zurich, Switzerland, which are currently used in clinical cases, were constructed by using ANSYS Workbench 12.1. The stress distributions on components of the implant system under three different static loadings were analysed for the two models. The maximum stress values that occurred in all components were observed in FIII (300 N. The maximum stress values occurred in FIII (300 N when the Nobel Replace implant is used, whereas the lowest ones, in the case of FI (150 N loading in the Nobel Active implant. In all models, the maximum tensions were observed to be in the neck region of the implants. Increasing the connection between the implant and the bone surface may allow more uniform distribution of the forces of the dental implant and may protect the bone around the implant. Thus, the implant could remain in the mouth for longer periods. Variable-thread tapered implants can increase the implant and bone contact.

  9. Short dental implants versus standard dental implants placed in the posterior jaws: A systematic review and meta-analysis.

    Science.gov (United States)

    Lemos, Cleidiel Aparecido Araujo; Ferro-Alves, Marcio Luiz; Okamoto, Roberta; Mendonça, Marcos Rogério; Pellizzer, Eduardo Piza

    2016-04-01

    The purpose of the present systematic review and meta-analysis was to compare short implants (equal or less than 8mm) versus standard implants (larger than 8mm) placed in posterior regions of maxilla and mandible, evaluating survival rates of implants, marginal bone loss, complications and prosthesis failures. This review has been registered at PROSPERO under the number CRD42015016588. Main search terms were used in combination: dental implant, short implant, short dental implants, short dental implants posterior, short dental implants maxilla, and short dental implants mandible. An electronic search for data published up until September/2015 was undertaken using the PubMed/Medline, Embase and The Cochrane Library databases. Eligibility criteria included clinical human studies, randomized controlled trials and/or prospective studies, which evaluated short implants in comparison to standard implants in the same study. The search identified 1460 references, after inclusion criteria 13 studies were assessed for eligibility. A total of 1269 patients, who had received a total of 2631 dental implants. The results showed that there was no significant difference of implants survival (P=.24; RR:1.35; CI: 0.82-2.22), marginal bone loss (P=.06; MD: -0.20; CI: -0.41 to 0.00), complications (P=.08; RR:0.54; CI: 0.27-1.09) and prosthesis failures (P=.92; RR:0.96; CI: 0.44-2.09). Short implants are considered a predictable treatment for posterior jaws. However, short implants with length less than 8 mm (4-7 mm) should be used with caution because they present greater risks to failures compared to standard implants. Short implants are frequently placed in the posterior area in order to avoid complementary surgical procedures. However, clinicians need to be aware that short implants with length less than 8mm present greater risk of failures. Copyright © 2016. Published by Elsevier Ltd.

  10. Monitoring bone morphogenetic protein-2 and -7, soluble receptor activator of nuclear factor-κB ligand and osteoprotegerin levels in the peri-implant sulcular fluid during the osseointegration of hydrophilic-modified sandblasted acid-etched and sandblasted acid-etched surface dental implants.

    Science.gov (United States)

    Dolanmaz, D; Saglam, M; Inan, O; Dundar, N; Alniacık, G; Gursoy Trak, B; Kocak, E; Hakki, S S

    2015-02-01

    The implant surface plays a major role in the biological response to titanium dental implants. The aim of this study was to investigate levels of soluble receptor activator of nuclear factor-κB ligand (sRANKL), osteoprotegerin (OPG), bone morphogenetic protein-2 (BMP-2) and -7 (BMP-7) in the peri-implant crevicular fluid (PICF) of different implants during the osseointegration period. Forty-seven patients (22 females and 25 males, mean age 47.34 ± 10.11) were included in this study. Forty-seven implants from two implant systems (group A1 (sandblasted acid-etched [SLA]-16), group A2 (hydrophilic-modified SLA [SLActive]-16), and group B (sandblasted acid-etched [SLA]-15) were placed using standard surgical protocols. PICF samples, plaque index, gingival index and probing depth measurements were obtained at 1 and 3 mo after surgery. PICF levels of sRANKL, OPG, BMP-2/-7 were analyzed by ELISA. No complications were observed during the healing period. No significant differences were observed in the PICF levels of sRANKL, OPG, BMP-2 and BMP-7 for all groups at any time point (p > 0.05). A significant decrease was observed in BMP-2 levels in group A1 (p implants reflects the degree of peri-implant inflammation, rather than differences in the implant surfaces. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Dental floss as a possible risk for the development of peri-implant disease: an observational study of 10 cases.

    Science.gov (United States)

    van Velzen, Frank J J; Lang, Niklaus P; Schulten, Engelbert A J M; Ten Bruggenkate, Christiaan M

    2016-05-01

    To report on a possible relationship between the use of dental floss or superfloss and the development of peri-implantitis. Ten patients with progressive peri-implantitis with an intensive oral hygiene protocol, which consisted of extensive professional supra- and submucosal cleaning, and not responding to this therapy were scheduled for examination. Plaque and bleeding indices and probing depth measurements were assessed, and radiographic examination was performed every two years. In all ten cases, remnants of dental floss were found around the neck and coronal part of a dental implant. After careful removal of these floss remnants and implant cleansing, a significant improvement in the peri-implant conditions in nine of ten cases was noted. In one case, peri-implant probing depth decreased substantially. However, bleeding on probing was still present. In vitro testing yielded that the application of various types of dental floss on the exposed rough implant surfaces may easily lead to tearing of floss fibers. This may result in the deposition of floss remnants on rough implant surfaces, which, in turn, may lead to the development of plaque-related peri-implant inflammation and, subsequently, bone loss. In case of exposed rough surfaces of the dental implant, the peri-implant conditions may be jeopardized by the application of dental floss, and hence, the utilization of interproximal brushes or toothpicks may be preferred for daily home care practices. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Nano-crystalline diamond-coated titanium dental implants - a histomorphometric study in adult domestic pigs.

    Science.gov (United States)

    Metzler, Philipp; von Wilmowsky, Cornelius; Stadlinger, Bernd; Zemann, Wolfgang; Schlegel, Karl Andreas; Rosiwal, Stephan; Rupprecht, Stephan

    2013-09-01

    Promising biomaterial characteristics of diamond-coatings in biomedicine have been described in the literature. However, there is a lack of knowledge about implant osseointegration of this surface modification compared to the currently used sandblasted acid-etched Ti-Al6-V4 implants. The aim of this study was to investigate the osseointegration of microwave plasma-chemical-vapour deposition (MWP-CVD) diamond-coated Ti-Al6-V4 dental implants after healing periods of 2 and 5 months. Twenty-four MWP-CVD diamond-coated and 24 un-coated dental titanium-alloy implants (Ankylos(®)) were placed in the frontal skull of eight adult domestic pigs. To evaluate the effects of the nano-structured surfaces on bone formation, a histomorphometric analysis was performed after 2 and 5 months of implant healing. Histomorphometry analysed the bone-to-implant contact (BIC). No significant difference in BIC for the diamond-coated implants in comparison to reference implants could be observed for both healing periods. Scanning electron microscopy revealed an adequate interface between the bone and the diamond surface. No delamination or particle-dissociation due to shearing forces could be detected. In this study, diamond-coated dental titanium-alloy implants and sandblasted acid-etched implants showed a comparable degree of osseointegration. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Investigation of the Effects of Abutment and Implant Length on Stability of Short Dental Implants

    Directory of Open Access Journals (Sweden)

    Eda OZYILMAZ

    2015-01-01

    Full Text Available The use of dental implants to solve different problems in dentistry has been growing rapidly. The success rates of dental implants are also very important for patients. Depending on the bone level of patients, short dental implants are very popular and widely used by many dentists. Although many dentists are using short dental implants frequently, It can be guessed that there can be stability problems because of crown to implant ratios. In this study, it is aimed to find out the effects of dental implant and abutment lengths on stability of short dental implants. 3 different short dental implant design made with the use of Solidworks 2013. Abutment lengths were 3,5 mm, 4 mm, 4,5 mm, 5 mm and implant lengths were 5 mm, 6 mm, 7 mm for each model. Human mandible model is transferred from Computed Tomography. Then, each implant model is mounted to modeled mandible and Finite Element Analysis is performed for each model. In order to see the effects of implant number on stability, we performed same analysis by placing 4 implants to the mandible

  14. Accuracy of digital impression in dental implants: A literature review

    OpenAIRE

    Sudabe Kulivand; Maryam Moslemion

    2016-01-01

    Restoration of dental implants remains one of the most challenging aspects of implant dentistry. Although it is not clear whether prosthetic misfit could affect osseointegration, mechanical complications of implant-supported prostheses can be avoided by achieving a good passive fit between the framework and the implants. Passive fit is a difficult concept to define. Obtaining absolute passive fit of the prosthetic framework on implants has been reported to be nearly impossible. Because of ...

  15. Idiopathic facial pain related with dental implantation

    Directory of Open Access Journals (Sweden)

    Tae-Geon Kwon

    2016-06-01

    Full Text Available Chronic pain after dental implantation is rare but difficult issue for the implant practitioner. Patients with chronic pain who had been performed previous implant surgery or related surgical intervention sometimes accompany with psychological problem and difficult to adequately manage. According to the International Classification of Headache Disorders (ICHD 3rd eds, Cepalagia 2013, painful neuropathies and other facial pains are subdivided into the 12 subcategories; 13.1. Trigeminal neuralgia; 13.2 Glossopharyngeal neuralgia; 13.3 Nervus intermedius (facial nerve neuralgia; 13.4 Occipital neuralgia; 13.5 Optic neuritis; 13.6 Headache attributed to ischaemic ocular motor nerve palsy; 13.7 Tolosa-Hunt syndrome; 13.8 Paratrigeminal oculo-sympathetic (Raeder’s syndrome; 13.9 Recurrent painful ophthalmoplegic neuropathy; 13.10 Burning Mouth Syndrome (BMS; 13.11 Persistent Idiopathic Facial Pain (PIFP; 13.12 Central neuropathic pain. Chronic orofacial pain after dental implant surgery can be largely into the two main categories that can be frequently encountered in clinical basis ; 1 Neuropathic pain, 2 Idiopathic pain. If there is no direct evidence of the nerve injury related with the implant surgery, the clinician need to consider the central cause of pain instead of the peripheral cause of the pain. There might be several possibilities; 1 Anaesthesia dolorosa, 2 Central post-stroke pain, 3 Facial pain attributed to multiple sclerosis, 4 Persistent idiopathic facial pain (PIFP, 5 Burning mouth syndrome. In this presentation, Persistent idiopathic facial pain (PIFP, the disease entity that can be frequently encountered in the clinic would be discussed. Persistent idiopathic facial pain (PIFP can be defined as “persistent facial and/or oral pain, with varying presentations but recurring daily for more than 2 hours per day over more than 3 months, in the absence of clinical neurological deficit”. ‘Atypical’ pain is a diagnosis of

  16. Computer-guided implant planning using a preexisting removable partial dental prosthesis.

    Science.gov (United States)

    Kim, Jong-Eun; Shim, June-Sung

    2017-01-01

    Converting a conventional removable partial dental prosthesis (RPDP) into an implant-assisted removable partial dental prosthesis (IARPDP) may be facilitated by using data from the intaglio surface of the RPDP for proper implant placement. This procedure can be done by connecting the data from the intaglio surface of the RPDP to the residual ridge data of the cone beam computed tomography scan with implant planning software. However, although a misplaced implant under an RPDP can cause various complications, as yet, no technique has connected the information on a patient's existing RPDP to the implant planning software. This article presents computer-guided implant planning, using a patient's existing RPDP. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions.

    Science.gov (United States)

    Bosshardt, Dieter D; Chappuis, Vivianne; Buser, Daniel

    2017-02-01

    Bone healing around dental implants follows the pattern and sequence of intramembraneous osteogenesis with formation of woven bone first of all followed later by formation of parallel-fibered and lamellar bone. Bone apposition onto the implant surface starts earlier in trabecular bone than in compact bone. While the first new bone may be found on the implant surface around 1 week after installation, bone remodeling starts at between 6 and 12 weeks and continues throughout life. Bone remodeling also involves the bone-implant interface, thus transiently exposing portions of the implant surface. Surface modifications creating micro-rough implant surfaces accelerate the osseointegration process of titanium implants, as demonstrated in numerous animal experiments. Sandblasting followed by acid-etching may currently be regarded as the gold standard technique to create micro-rough surfaces. Chemical surface modifications, resulting in higher hydrophilicity, further increase the speed of osseointegration of titanium and titanium-zirconium implants in both animals and humans. Surface modifications of zirconia and alumina-toughened zirconia implants also have an influence on the speed of osseointegration, and some implant types reach high bone-to-implant contact values in animals. Although often discussed independently of each other, surface characteristics, such as topography and chemistry, are virtually inseparable. Contemporary, well-documented implant systems with micro-rough implant surfaces, placed by properly trained and experienced clinicians, demonstrate high long-term survival rates. Nevertheless, implant failures do occur. A low percentage of implants are diagnosed with peri-implantitis after 10 years in function. In addition, a low number of implants seem to be lost for primarily reasons other than biofilm-induced infection. Patient factors, such as medications interfering with the immune system and bone cells, may be an element contributing to continuous bone

  18. NUMERICAL ANALYSIS OF THE EFFECT OF IMPLANT GEOMETRY TO STRESS DISTRIBUTIONS OF DENTAL IMPLANT SYSTEM

    OpenAIRE

    topkaya, tolga; solmaz, murat yavuz; dündar, serkan; Eltas, Abubekir

    2015-01-01

    ABSTRACT Purpose: The success of dental implants is related to the quality, quantity of local bones, implant design and surgical technique. Implant diameter and length are accepted as key factors. Present work focuses to investigate the effect of titanium implant geometry to stress distributions in implant system.Materials and Methods: For this purpose three different implant models which are currently being used in clinical cases constructed by using ANSYS Workbench 12.1. The stress distribu...

  19. Subgingival microbiome in patients with healthy and ailing dental implants.

    Science.gov (United States)

    Zheng, Hui; Xu, Lixin; Wang, Zicheng; Li, Lianshuo; Zhang, Jieni; Zhang, Qian; Chen, Ting; Lin, Jiuxiang; Chen, Feng

    2015-06-16

    Dental implants are commonly used to replace missing teeth. However, the dysbiotic polymicrobial communities of peri-implant sites are responsible for peri-implant diseases, such as peri-implant mucositis and peri-implantitis. In this study, we analyzed the microbial characteristics of oral plaque from peri-implant pockets or sulci of healthy implants (n = 10), peri-implant mucositis (n = 8) and peri-implantitis (n = 6) sites using pyrosequencing of the 16S rRNA gene. An increase in microbial diversity was observed in subgingival sites of ailing implants, compared with healthy implants. Microbial co-occurrence analysis revealed that periodontal pathogens, such as Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, were clustered into modules in the peri-implant mucositis network. Putative pathogens associated with peri-implantitis were present at a moderate relative abundance in peri-implant mucositis, suggesting that peri-implant mucositis an important early transitional phase during the development of peri-implantitis. Furthermore, the relative abundance of Eubacterium was increased at peri-implantitis locations, and co-occurrence analysis revealed that Eubacterium minutum was correlated with Prevotella intermedia in peri-implantitis sites, which suggests the association of Eubacterium with peri-implantitis. This study indicates that periodontal pathogens may play important roles in the shifting of healthy implant status to peri-implant disease.

  20. Antibiotic use at dental implant placement.

    Science.gov (United States)

    Veitz-Keenan, Analia; Keenan, James R

    2015-06-01

    Cochrane Oral Health Groups Trial Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via OVID and EMBASE via OVID. Databases were searched with no language or date restrictions. Two authors independently reviewed the titles and the abstracts for inclusion. Disagreements were resolved by discussion. If needed, a third author was consulted. Included were randomised clinical trials with a follow-up of at least three months which evaluated the use of prophylactic antibiotic compared to no antibiotic or a placebo and examined different antibiotics of different doses and durations in patients undergoing dental implant placement. The outcomes were implant failure (considered as implant mobility, removal of implant due to bone loss or infection) and prosthesis failure (prosthesis could not be placed). Standard Cochrane methodology procedures were followed. Risk of bias was completed independently and in duplicate by two review authors. Results were expressed as risk ratios (RRs) using a random-effects model for dichotomous outcomes with 95% confidence intervals (CI). The statistical unit was the participant and not the prosthesis or implant. Heterogeneity including both clinical and methodological factors was investigated. Six randomised clinical trials with 1162 participants were identified for the review. Three trials compared 2 g of preoperative amoxicillin versus placebo (927 participants). One trial compared 3 g of preoperative amoxicillin versus placebo (55 participants). Another trial compared 1 g of preoperative amoxicillin plus 500 mg four times a day for two days versus no antibiotic (80 participants). An additional trial compared four groups: (1) 2 g of preoperative amoxicillin; (2) 2 g of preoperative amoxicillin plus 1 g twice a day for seven days; (3) 1 g of postoperative amoxicillin twice a day for seven days and (4) no antibiotics (100 participants). The overall body of the evidence was considered moderate.The meta-analysis of the

  1. Knowledge and attitude of elderly persons towards dental implants.

    Science.gov (United States)

    Müller, Frauke; Salem, Kamel; Barbezat, Cindy; Herrmann, François R; Schimmel, Martin

    2012-06-01

    Despite their unrivalled place in restorative treatment, dental implants are still scarcely used in elderly patients. The aim of this survey was therefore to identify potential barriers for accepting an implant treatment. Participants were recruited from a geriatric hospital, two long-term-care facilities and a private clinic. The final study sample comprised 92 persons, 61 women and 31 men with an average age of 81.2 ± 8.0 years. In a semi-structured interview, the participants' knowledge of implants and attitude towards a hypothetical treatment with dental implants were evaluated. Twenty-seven participants had never heard of dental implants, and another 13 participants could not describe them. The strongest apprehensions against implants were cost, lack of perceived necessity and old age. Univariate and multiple linear regression analysis identified being women, type and quality of denture, having little knowledge on implants and being hospitalised as the risk factors for refusing implants. However, old age as such was not associated with a negative attitude. The acceptance of dental implants in the elderly population might be increased by providing further information and promoting oral health in general. Regardless of the age, dental implants should be placed when patients are still in good health and live independently. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  2. The Impact of Incorporating Antimicrobials into Implant Surfaces.

    Science.gov (United States)

    Hickok, N J; Shapiro, I M; Chen, A F

    2018-01-01

    With the increase in numbers of joint replacements, spinal surgeries, and dental implantations, there is an urgent need to combat implant-associated infection. In addition to stringent sterile techniques, an efficacious way to prevent this destructive complication is to create new implants with antimicrobial properties. Specifically, these implants must be active in the dental implant environment where the implant is bathed in the glycoprotein-rich salivary fluids that enhance bacterial adhesion, and propagation, and biofilm formation. However, in designing an antimicrobial surface, a balance must be struck between antimicrobial activity and the need for the implant to interact with the bone environment. Three types of surfaces have been designed to combat biofilm formation, while attempting to maintain osseous interactions: 1) structured surfaces where topography, usually at the nanoscale, decreases bacterial adhesion sufficiently to retard establishment of infection; 2) surfaces that actively elute antimicrobials to avert bacterial adhesion and promote killing; and 3) surfaces containing permanently bonded agents that generate antimicrobial surfaces that prevent long-term bacterial adhesion. Both topographical and elution surfaces exhibit varying, albeit limited, antimicrobial activity in vitro. With respect to covalent coupling, we present studies on the ability of the permanent antimicrobial surfaces to kill organisms while fostering osseointegration. All approaches have significant drawbacks with respect to stability and efficacy, but the permanent surfaces may have an edge in creating a long-term antibacterial environment.

  3. Temporal sequence of hard and soft tissue healing around titanium dental implants.

    Science.gov (United States)

    Salvi, Giovanni E; Bosshardt, Dieter D; Lang, Niklaus P; Abrahamsson, Ingemar; Berglundh, Tord; Lindhe, Jan; Ivanovski, Saso; Donos, Nikos

    2015-06-01

    The objective of the present review was to summarize the evidence available on the temporal sequence of hard and soft tissue healing around titanium dental implants in animal models and in humans. A search was undertaken to find animal and human studies reporting on the temporal dynamics of hard and soft tissue integration of titanium dental implants. Moreover, the influence of implant surface roughness and chemistry on the molecular mechanisms associated with osseointegration was also investigated. The findings indicated that the integration of titanium dental implants into hard and soft tissue represents the result of a complex cascade of biological events initiated by the surgical intervention. Implant placement into alveolar bone induces a cascade of healing events starting with clot formation and continuing with the maturation of bone in contact with the implant surface. From a genetic point of view, osseointegration is associated with a decrease in inflammation and an increase in osteogenesis-, angiogenesis- and neurogenesis-associated gene expression during the early stages of wound healing. The attachment and maturation of the soft tissue complex (i.e. epithelium and connective tissue) to implants becomes established 6-8 weeks following surgery. Based on the findings of the present review it can be concluded that improved understanding of the mechanisms associated with osseointegration will provide leads and targets for strategies aimed at enhancing the clinical performance of titanium dental implants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Implant Supported Fixed Dental Prostheses Using a New Monotype Zirconia Implant—A Case Report

    Science.gov (United States)

    Roehling, Stefan; Ghazal, Georges; Borer, Thomas; Thieringer, Florian; Gahlert, Michael

    2015-01-01

    Currently, titanium or specific titanium alloys are the most often used materials for the fabrication of dental implants. Many studies have confirmed the osseointegrative capacity and clinical long-term performance of moderately rough titanium implants. However, disadvantages have also been reported with regard to peri-implant infections and the titanium metal properties. Tooth colored ceramic implants have attracted the interest of clinicians since the end of the 1960s. Initially, alumina was used for the fabrication of ceramic implants; however, due to the poor biomechanical properties, alumina implants are not commercially available any more. Since end of the 1990s, zirconia has been established in dentistry due to its superior biomechanical properties compared to other oxide ceramics such as alumina. Currently, zirconia is the material of choice for the fabrication of ceramic implants. Zirconia implants show superior biocompatibility compared to titanium and other metals. Additionally, it has been reported that zirconia implants with a micro-rough surface topography show at least a comparable osseointegrative capacity and similar clinical survival rates to moderately rough titanium implants. The present case reports a fixed implant-supported reconstruction of a large edentulous space with compromised local bone conditions using new monotype zirconia dental implants with a micro-rough surface topography.

  5. Implant Supported Fixed Dental Prostheses Using a New Monotype Zirconia Implant—A Case Report

    Directory of Open Access Journals (Sweden)

    Stefan Roehling

    2015-09-01

    Full Text Available Currently, titanium or specific titanium alloys are the most often used materials for the fabrication of dental implants. Many studies have confirmed the osseointegrative capacity and clinical long-term performance of moderately rough titanium implants. However, disadvantages have also been reported with regard to peri-implant infections and the titanium metal properties. Tooth colored ceramic implants have attracted the interest of clinicians since the end of the 1960s. Initially, alumina was used for the fabrication of ceramic implants; however, due to the poor biomechanical properties, alumina implants are not commercially available any more. Since end of the 1990s, zirconia has been established in dentistry due to its superior biomechanical properties compared to other oxide ceramics such as alumina. Currently, zirconia is the material of choice for the fabrication of ceramic implants. Zirconia implants show superior biocompatibility compared to titanium and other metals. Additionally, it has been reported that zirconia implants with a micro-rough surface topography show at least a comparable osseointegrative capacity and similar clinical survival rates to moderately rough titanium implants. The present case reports a fixed implant-supported reconstruction of a large edentulous space with compromised local bone conditions using new monotype zirconia dental implants with a micro-rough surface topography.

  6. Surface changes of implants after laser irradiation

    Science.gov (United States)

    Rechmann, Peter; Sadegh, Hamid M. M.; Goldin, Dan S.; Hennig, Thomas

    1999-05-01

    Periimplantitis is one of the major factors for the loss of dental implants. Due to the minor defense ability of the tissue surrounding the implant compared to natural teeth treatment of periimplantitis in the early stage is very important. Reducing bacteria with a laser might be the most successful step in therapy of periimplantitis. Aim of the study was to observe changes in surface morphology of seven different implants after irradiation with three different lasers. Two kinds of flat round samles were prepared by the manufacturers either identical to the body surface or to the cervical area of the corresponding implants. The samples were irradiated using different power settings. The lasers used were a CO2 laser (Uni Laser 450P, ASAH Medico Denmark; fiber guided, wavelength 10.6 μm, max. average power 8.3 W, "soft-pulse" and cw) an Er:YAG laser (KaVo Key Laser II, wavelength 2.94 μm, pulse duration 250-500μs, pulse energy 60-500 mJ, pulse repetition rate 1-15 Hz, focus diameter 620 μm, air-water cooling; Biberach, Germany; a frequency doubled Alexandrite laser (laboratory prototype, q-switched, fiber guided, wavelength 377 nm, pulse duration 1 μs, pulse repetition rate 30 Hz, water cooling). After irradiation the implant surfaces were investigated with a Scanning Electron Microscope. Ablation thresholds were determined. After CO2 laser irradiation no changes in surface morphology were observed whereas using the pulsed Er:YAG laser or frequency doubled Alexandrite laser even at low energies loss of integrity or melting of the surface was observed. The changes in surface morphology seem to depend very strongly on the type of surface coating.

  7. Dental implant practice among Hong Kong general dental practitioners in 2004 and 2008.

    Science.gov (United States)

    Ng, Philip Chi-Hong; Pow, Edmond Ho-Nang; Ching, Sik-Hong; Lo, Edward Chin-Man; Chow, Tak-Wah

    2011-02-01

    To describe the dental implant practice profile of Hong Kong general dental practitioners in 2008 and the trend since 2004. A self-administered questionnaire was mailed to 630 dentists through systematic sampling of registered dentists. A total of 290 completed questionnaires were returned (response rate, 53%). Implant dentistry was practiced by 61% of the respondents. The survey also revealed that 84% of those respondents who own their private practice performed implant dentistry. About half of the dentists (49%) who performed implant dentistry placed or restored 5 or more implants per quarter. Among those dentists not practicing implant dentistry, the majority (85%) were interested in attending continuing education courses in dental implantology. There has been a significant increase in the number of general dental practitioners practicing implant dentistry in Hong Kong since 2004. By 2008, more than half of the general dental practitioners (61%) are practicing implant dentistry. Most of them not practicing implant dentistry expressed a desire to learn more about dental implants. This survey revealed a high demand for continuing professional development in implant dentistry in Hong Kong.

  8. BISPHOSPHONATE-RELATED OSTEONECROSIS OF THE JAW AND DENTAL IMPLANTS

    Directory of Open Access Journals (Sweden)

    Ala Hassan A. Qamheya

    2016-01-01

    Full Text Available Bisphosphonate (BP is one of the possible riskfactors in the osteonecrosis of the jaw (ON J. Surgical interventions during or after the course of treatment by using BPs may expose the patient under this risk. Animal studies, human studies, case reports, and systematic reviews are used to show the relationship between the use of bisphosphonates and dental implants. In this review data about bisphosphonaterelated osteonecrosis of the jaw (BRON J: incidence, prevention and treatment modalities for the patients who are scheduled for dental implant treatment plan and who have been already treated by dental implants will be investigated. Various views for the relationship between dental implants and bisphosphonates will be analyzed depending on the multifactors: duration, route of uptake, dosage of the drug and patient’s other medications that affect the effects of bisphosphonate. All patients treated with this drug must be informed about the risk of implant loss or possibility of osteonecrosis.

  9. Application of uniform design to improve dental implant system.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei

    2015-01-01

    This paper introduces the application of uniform experimental design to improve dental implant systems subjected to dynamic loads. The dynamic micromotion of the Zimmer dental implant system is calculated and illustrated by explicit dynamic finite element analysis. Endogenous and exogenous factors influence the success rate of dental implant systems. Endogenous factors include: bone density, cortical bone thickness and osseointegration. Exogenous factors include: thread pitch, thread depth, diameter of implant neck and body size. A dental implant system with a crest module was selected to simulate micromotion distribution and stress behavior under dynamic loads using conventional and proposed methods. Finally, the design which caused minimum micromotion was chosen as the optimal design model. The micromotion of the improved model is 36.42 μm, with an improvement is 15.34% as compared to the original model.

  10. Survival of short dental implants for treatment of posterior partial edentulism: a systematic review.

    Science.gov (United States)

    Atieh, Mohammad A; Zadeh, Homayoun; Stanford, Clark M; Cooper, Lyndon F

    2012-01-01

    Dental implant therapy for posterior partial edentulism may utilize short implants. The advantages of short implants include the ability to avoid the additional surgical procedures that would be required to place longer implants. The aim of this study was to systematically review studies concerning dental implants of ≤ 8.5 mm placed in the posterior maxilla and/or mandible to support fixed restorations. English-language articles published between 1992 and May 2011 were identified electronically and by hand search of the PubMed, Embase, and Cochrane libraries. Data were extracted and compared statistically. Forest plots were generated to compare outcomes of short versus long implants. An initial screening of 1,354 studies led to direct evaluation of 401 articles. Of these, 33 met the research criteria: 5 randomized clinical studies; 16 prospective, nonrandomized, noncontrolled studies; 12 retrospective, nonrandomized studies; and 1 study with both prospective and retrospective data. These studies indicated that there is no significant difference in the reported survival of short versus long implants. Failure of 59 of 2,573 short implants at 1 year was recorded, with 71% of them failing before loading. Only 101 short implants were followed for 5 years. The initial survival rate for short implants for posterior partial edentulism is high and not related to implant surface, design, or width. Short implants may constitute a viable alternative to longer implants, which may often require additional augmentation procedures.

  11. Comparing Short Dental Implants to Standard Dental Implants: Protocol for a Systematic Review.

    Science.gov (United States)

    Rokn, Amir Reza; Keshtkar, Abbasali; Monzavi, Abbas; Hashemi, Kazem; Bitaraf, Tahereh

    2018-01-18

    Short dental implants have been proposed as a simpler, cheaper, and faster alternative for the rehabilitation of atrophic edentulous areas to avoid the disadvantages of surgical techniques for increasing bone volume. This review will compare short implants (4 to 8 mm) to standard implants (larger than 8 mm) in edentulous jaws, evaluating on the basis of marginal bone loss (MBL), survival rate, complications, and prosthesis failure. We will electronically search for randomized controlled trials comparing short dental implants to standard dental implants in the following databases: PubMed, Web of Science, EMBASE, Scopus, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov with English language restrictions. We will manually search the reference lists of relevant reviews and the included articles in this review. The following journals will also be searched: European Journal of Oral Implantology, Clinical Oral Implants Research, and Clinical Implant Dentistry and Related Research. Two reviewers will independently perform the study selection, data extraction and quality assessment (using the Cochrane Collaboration tool) of included studies. All meta-analysis procedures including appropriate effect size combination, sub-group analysis, meta-regression, assessing publication or reporting bias will be performed using Stata (Statacorp, TEXAS) version 12.1. Short implant effectiveness will be assessed using the mean difference of MBL in terms of weighted mean difference (WMD) and standardized mean difference (SMD) using Cohen's method. The combined effect size measures in addition to the related 95% confidence intervals will be estimated by a fixed effect model. The heterogeneity of the related effect size will be assessed using a Q Cochrane test and I2 measure. The MBL will be presented by a standardized mean difference with a 95% confidence interval. The survival rate of implants, prostheses failures, and complications will be reported using a risk

  12. Comparing Short Dental Implants to Standard Dental Implants: Protocol for a Systematic Review

    Science.gov (United States)

    Rokn, Amir Reza; Keshtkar, Abbasali; Monzavi, Abbas; Hashemi, Kazem

    2018-01-01

    Background Short dental implants have been proposed as a simpler, cheaper, and faster alternative for the rehabilitation of atrophic edentulous areas to avoid the disadvantages of surgical techniques for increasing bone volume. Objective This review will compare short implants (4 to 8 mm) to standard implants (larger than 8 mm) in edentulous jaws, evaluating on the basis of marginal bone loss (MBL), survival rate, complications, and prosthesis failure. Methods We will electronically search for randomized controlled trials comparing short dental implants to standard dental implants in the following databases: PubMed, Web of Science, EMBASE, Scopus, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov with English language restrictions. We will manually search the reference lists of relevant reviews and the included articles in this review. The following journals will also be searched: European Journal of Oral Implantology, Clinical Oral Implants Research, and Clinical Implant Dentistry and Related Research. Two reviewers will independently perform the study selection, data extraction and quality assessment (using the Cochrane Collaboration tool) of included studies. All meta-analysis procedures including appropriate effect size combination, sub-group analysis, meta-regression, assessing publication or reporting bias will be performed using Stata (Statacorp, TEXAS) version 12.1. Results Short implant effectiveness will be assessed using the mean difference of MBL in terms of weighted mean difference (WMD) and standardized mean difference (SMD) using Cohen’s method. The combined effect size measures in addition to the related 95% confidence intervals will be estimated by a fixed effect model. The heterogeneity of the related effect size will be assessed using a Q Cochrane test and I2 measure. The MBL will be presented by a standardized mean difference with a 95% confidence interval. The survival rate of implants, prostheses failures, and

  13. Epithelial attachment and downgrowth on dental implant abutments--a comprehensive review.

    Science.gov (United States)

    Iglhaut, Gerhard; Schwarz, Frank; Winter, Robert R; Mihatovic, Ilja; Stimmelmayr, Michael; Schliephake, Henning

    2014-01-01

    The soft tissues around dental implants are enlarged compared with the gingiva because of the longer junctional epithelium and the hemidesmosonal attachments are fewer, suggestive of a poorer quality attachment. Inflammatory infiltrates caused by bacterial colonization of the implant-abutment interface are thought to be one of the factors causing epithelial downgrowth and subsequent peri-implant bone loss. Gold alloys and dental ceramics as well as the contamination of the implant surface with amino alcohols, appear to promote epithelial downgrowth. Physical manipulaton of the abutment surfaces, including concave abutment designs, platform switching, and microgrooved surfaces are believed to inhibit epithelial downgrowth and minimizes bone loss at the implant shoulder. This paper reviews the factors that are believed to influence the migration of epithelial attachment the dental implant and abutment surfaces. Exploration of innovative computer-aided design/computer-aided manufacturing-based concepts such as "one abutment-one time" and their effect on epithelial downgrowth are discussed. Based on the review of current literature, the authors recommend inserting definitive abutments at the time of surgical uncovering. To implement this concept, registration of the implant position should to be taken at the time of surgical implant placement. © 2014 Wiley Periodicals, Inc.

  14. Is old age a risk factor for dental implants?

    Directory of Open Access Journals (Sweden)

    Kazunori Ikebe

    2009-05-01

    Full Text Available Patient's condition is distinctly different among individuals especially in the elderly. Dental implant failure seems to be a multi-factorial problem; therefore, it is unclear that aging itself is a risk factor for the placement of implants. This review reorders and discusses age-related risk factors for the success of dental implants. In dental implant treatment, chronological age by itself is suggested as one of the risk factors for success, but it would not be a contraindication. In general, reserved capacity of bone and soft tissue make it possible to establish osseointegration in the long run. Rather than aging itself, the specific nature of the disease process, such as osteoporosis or diabetes, and local bone quality and quantity at the implant site, mostly related to aging, are more important for successful dental implant treatment. This review revealed a shortage of published data for the survival and success of dental implants in older patients. More studies useful for evidence-based decision making are needed to assess the survival and success of dental implants for aged patients with a compromised condition.

  15. Coating with artificial matrices from collagen and sulfated hyaluronan influences the osseointegration of dental implants.

    Science.gov (United States)

    Schulz, Matthias C; Korn, Paula; Stadlinger, Bernd; Range, Ursula; Möller, Stephanie; Becher, Jana; Schnabelrauch, Matthias; Mai, Ronald; Scharnweber, Dieter; Eckelt, Uwe; Hintze, Vera

    2014-01-01

    Dental implants are an established therapy for oral rehabilitation. High success rates are achieved in healthy bone, however, these rates decrease in compromised host bone. Coating of dental implants with components of the extracellular matrix is a promising approach to enhance osseointegration in compromised peri-implant bone. Dental titanium implants were coated with an artificial extracellular matrix (aECM) consisting of collagen type I and either one of two regioselectively low sulfated hyaluronan (sHA) derivatives (coll/sHA1Δ6s and coll/sHA1) and compared to commercial pure titanium implants (control). After extraction of the premolar teeth, 36 implants were inserted into the maxilla of 6 miniature pigs (6 implants per maxilla). The healing periods were 4 and 8 weeks, respectively. After animal sacrifice, the samples were evaluated histomorphologically and histomorphometrically. All surface states led to a sufficient implant osseointegration after 4 and 8 weeks. Inflammatory or foreign body reactions could not be observed. After 4 weeks of healing, implants coated with coll/sHA1Δ6s showed the highest bone implant contact (BIC; coll/sHA1Δ6s: 45.4%; coll/sHA1: 42.2%; control: 42.3%). After 8 weeks, a decrease of BIC could be observed for coll/sHA1Δ6s and controls (coll/sHA1Δ6s: 37.3%; control: 31.7 %). For implants coated with coll/sHA1, the bone implant contact increased (coll/sHA1: 50.8%). Statistically significant differences could not be observed. Within the limits of the current study, aECM coatings containing low sHA increase peri-implant bone formation around dental implants in maxillary bone compared to controls in the early healing period.

  16. Retrospective analysis of 56 edentulous dental arches restored with 344 single-stage implants using an immediate loading fixed provisional protocol: statistical predictors of implant failure.

    Science.gov (United States)

    Kinsel, Richard P; Liss, Mindy

    2007-01-01

    The purpose of this retrospective study was to evaluate the effects of implant dimensions, surface treatment, location in the dental arch, numbers of supporting implant abutments, surgical technique, and generally recognized risk factors on the survival of a series of single-stage Straumann dental implants placed into edentulous arches using an immediate loading protocol. Each patient received between 4 and 18 implants in one or both dental arches. Periapical radiographs were obtained over a 2- to 10-year follow-up period to evaluate crestal bone loss following insertion of the definitive metal-ceramic fixed prostheses. Univariate tests for failure rates as a function of age ( or = 60 years), gender, smoking, bone grafting, dental arch, surface type, anterior versus posterior, number of implants per arch, and surgical technique were made using Fisher exact tests. The Cochran-Armitage test for trend was used to evaluate the presence of a linear trend in failure rates regarding implant length and implant diameter. Logistic regression modeling was used to determine which, if any, of the aforementioned factors would predict patient and implant failure. A significance criterion of P = .05 was utilized. Data were collected for 344 single-stage implants placed into 56 edentulous arches (39 maxillae and 17 mandibles) of 43 patients and immediately loaded with a 1-piece provisional fixed prosthesis. A total of 16 implants failed to successfully integrate, for a survival rate of 95.3%. Increased rates of failure were associated with reduced implant length, placement in the posterior region of the jaw, increased implant diameter, and surface treatment. Implant length emerged as the sole significant predictor of implant failure. In this retrospective analysis of 56 consecutively treated edentulous arches with multiple single-stage dental implants loaded immediately, reduced implant length was the sole significant predictor of failure.

  17. Straightforward Case of Dental Implant in General Dentistry

    Directory of Open Access Journals (Sweden)

    Aji P. Tjikman

    2013-07-01

    Full Text Available Dental implant has become a fast developing and dynamic field in dental practice. It is acknowledged as a predictable treatment modality with high clinical success rates. Conventional fixed prostheses are no longer considered to be the first choice of treatment for replacing a missing tooth. Despite the increasing number of patients requesting dental implant treatments, there are only some clinicians who are offering implant therapy in their daily practice. The International team for Implantology described a straightforward case as a simple case such as implant placements in adquate soft and hard tissue conditions and single-tooth restorations in a non-aesthetic zone. A review of the current literature discussed the implementation of implant dentistry in universities worldwide into their curriculum for both undergraduate and postgraduate programs in general dentistry. The European consensus in implant dentistry education concluded that it is desirable to include the surgical technique for implant placement for straightforward cases into the dental curriculum. The levels and limitations to which the various aspects of implant dentistry and related skills are taught to be determined by the academic community. This review aimed at promoting awareness amongst dental practitioners and institutions in Indonesia of the shifting treatment paradigm in the maangement of a missing tooth. Hence clinicians will be able to include implant dentistry in the treatment planning of their patients and also undertake a significant part in the execution of such treatments.

  18. Prefabricated fibula free flap with dental implants for mandibular reconstruction.

    Science.gov (United States)

    Pauchet, D; Pigot, J-L; Chabolle, F; Bach, C-A

    2018-03-02

    Free fibula transplant is routinely used for mandibular reconstruction in head and neck cancer. Dental rehabilitation, the objective of mandibular reconstruction, requires the use of dental implants as supports for fixed or removable dentures. Positioning of fibular bone grafts and implants determines implant osseointegration and the possibilities of dental rehabilitation. Prefabrication of a fibula free flap with dental implants prior to harvesting as a free flap can promote implant osseointegration. The position of the implants must then be precisely planned. Virtual surgery and computer-assisted design and prefabrication techniques are used to plan the reconstruction and then reproduce this planning by means of tailored fibula and mandible cutting guides, thereby ensuring correct positioning of fibular bone fragments and implants. The prefabricated fibula free flap technique requires two surgical procedures (prefabrication and flap transfer) and precise preoperative planning. Prefabricated fibula free flap with dental implants, by improving the quality of osseointegration of the implants before flap transfer, extends the possibilities of prosthetic rehabilitation in complex secondary mandibular reconstructions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Surface microhardening by ion implantation

    International Nuclear Information System (INIS)

    Singh, Amarjit

    1986-01-01

    The paper discusses the process and the underlying mechanism of surface microhardening by implanting suitable energetic ions in materials like 4145 steel, 304 stainless steel, aluminium and its 2024-T351 alloy. It has been observed that boron and nitrogen implantation in materials like 4145 steel and 304 stainless steel can produce a significant increase in surface hardness. Moreover the increase can be further enhanced with suitable overlay coatings such as aluminium (Al), Titanium (Ti) and carbon (C). The surface hardening due to implantation is attributed to precipitation hardening or the formation of stable/metastable phase or both. The effect of lithium implantation in aluminium and its alloy on microhardness with increasing ion dose and ion beam energy is also discussed. (author)

  20. Antibiotic prophylaxis for dental implant placement?

    Science.gov (United States)

    Keenan, James R; Veitz-Keenan, Analia

    2015-06-01

    Electronic searches without time or language restrictions were performed in PubMed, Web of Science and the Cochrane Oral Health Group trials Register. A vast manual search was done in many dental implant-related journals. Reference lists were scanned for possible additional studies. Ongoing clinical trials were also searched. Titles and abstracts of the reports identified were read independently by the three authors. Disagreements were resolved by discussion. Rejected studies were recorded with the reasons for exclusion. The inclusion criteria included clinical human studies, either randomised or not, comparing the implant failure/survival rates in any group of patients receiving antibiotic prophylaxis versus not receiving antibiotics prior to implant placement. Case reports and non-human studies were excluded. Implant failure was considered as complete loss of the implant. Data were extracted by the authors. Study risk of bias was assessed. Implant failure and post-operative infection were the outcomes measured, both dichotomous outcomes. Results were expressed using fixed or a random effect model depending on the heterogeneity calculated using an I(2) statistical test. The estimate of relative effect was expressed in risk ratio (RR) with 95% confidence interval. Number needed to treat (NNT) was calculated and sensitivity analysis was performed to detect differences among the studies considered to have high a risk of bias. Fourteen trials were included in the review and evaluated a total of 14,872 implants. Of the fourteen studies included in the review eight were randomised clinical trials, four were controlled clinical trials and two were retrospective studies. Seven studies had both patients and operators/outcome assessors blinded to the tested intervention. Nine studies had short follow-ups; six of them with a follow-up of four months, one of five months and two of six months.The antibiotic regimen was variable: seven studies did not use post-op antibiotics in

  1. Effects of selected factors on the osseointegration of dental implants.

    Science.gov (United States)

    Koszuta, Piotr; Grafka, Agnieszka; Koszuta, Agnieszka; Łopucki, Maciej; Szymańska, Jolanta

    2015-09-01

    Osseointegration of dental implants with the maxillary and/or mandibular bone is the basis for implant prosthetic treatment. The aim of the study was to assess the influence of the patients' gender, age, and in the case of women, their menopausal status (before menopause/after menopause/during hormone replacement therapy) on the osseointegration of dental implants. The study evaluated the bone loss after implant loading and the success rate of the procedure in 71 women and 30 men. In the postmenopausal group, 20 (28.1%) women were receiving hormone replacement therapy. The implants used in the treatment of the studied patients were the two-phase dental implants. The extent of bone loss was estimated by comparing the post-implantation radiographs and the post-loading ones. The implantation procedure was entirely successful in 81 patients (80.2%). The patients' age, gender and menopausal status did not significantly affect the implantation procedure success rate or bone loss (p > 0.05). A correlation between bone loss and hormone replacement therapy (p = 0.002) was found. The hormone replacement therapy contributes to a greater peri-implant bone loss. The patients receiving hormone replacement therapy who consider replacement of missing teeth with implants should be informed about a greater risk of osseointegration failure, which may affect the success of implant therapy.

  2. Is Dental Implantation Indicated in Patients with Oral Mucosal Diseases

    Directory of Open Access Journals (Sweden)

    Kalogirou Eleni-Marina

    2017-07-01

    Full Text Available Background/Aim: Dental implants are a reliable treatment choice for rehabilitation of healthy patients as well as subjects with several systemic conditions. Patients with oral mucosal diseases often exhibit oral mucosal fragility and dryness, erosions, blisters, ulcers or microstomia that complicate the use of removable dentures and emphasize the need for dental implants. The aim of the current study is to review the pertinent literature regarding the dental implantation prospects for patients with oral mucosal diseases. Material and Method: The English literature was searched through PubMed and Google Scholar electronic databases with key words: dental implants, oral mucosal diseases, oral lichen planus (OLP, epidermolysis bullosa (EB, Sjögren’s syndrome (SS, cicatricial pemphigoid, bullous pemphigoid, pemphigus vulgaris, scleroderma/systemic sclerosis, lupus erythematosus, leukoplakia, oral potentially malignant disorders, oral premalignant lesions, oral cancer and oral squamous cell carcinoma (SCC. Results: Literature review revealed dental implantation in patients with OLP (14 articles, EB (11 articles, pemphigus vulgaris (1 article, SS (14 articles, systemic sclerosis (11 articles, systemic lupus erythematosus (3 articles and oral SCC development associated with leukoplakia (5 articles. No articles regarding dental implants in patients with pemphigoid or leukoplakia without SCC development were identified. Most articles were case-reports, while only a few retrospective, prospective or observational studies were identified. Conclusions: Dental implants represent an acceptable treatment option with a high success rate in patients with chronic mucocutaneous and autoimmune diseases with oral manifestations, such as OLP, SS, EB and systemic sclerosis. Patients with oral possibly malignant disorders should be closely monitored to rule out the development of periimplant malignancy. Further studies with long follow-up, clinical and radiographic

  3. The relationship between panoramic indices and dental implant failure

    International Nuclear Information System (INIS)

    Cho, Hyun Jung; Yi, Won Jin; Heo, Min Suk; Lee, Jin Koo; Lee, Sam Sun; Choi, Soon Chul; An, Chang Hyeon

    2004-01-01

    Several panoramic indices have been suggested to assess bone quality from the morphology and width of mandibular cortex on panoramic radiography. The purpose of this study was to compare dental implant failure group with control group in panoramic mandibular index (PMI), mandibular cortical index (MCI), and gonion index (GI) and to determine the effect of these panoramic indices on dental implant failure. A case-control study was designed. Test group (n = 42) consisted of the patients who had their implants extracted because of peri-implantitis. Control group (n = 139) consisted of the patients who retained their implants over one year without any pathologic changes and had been followed up periodically. They had dental implants installed in their mandibles without bone augmentation surgery from 1991 to 2001. The following measures were collected for each patients: 1) PMI, MCI, and GI were measured twice at one-week interval on preoperative panoramic views; and 2) age, sex, implant length, implant type, installed location, occluding dentition state, and complication were investigated from the chart record. The PMI showed moderate level of repeatability. The intra-observer agreement of MCI and GI were good. There was statistically significant difference in PMI between two groups. There were significant different patterns of distribution of MCI and GI between two groups. Among the panoramic indices, PMI and MCI showed significant correlation with dental implant failure. Panoramic indices can be used as reference data in estimating bone quality of edentulous patients who are to have implants installed in their mandibles.

  4. Resonance frequency analysis of 208 Straumann dental implants during the healing period.

    Science.gov (United States)

    Guler, Ahmet Umut; Sumer, Mahmut; Duran, Ibrahim; Sandikci, Elif Ozen; Telcioglu, Nazife Tuba

    2013-04-01

    The most important prerequisite for the success of an osseointegrated dental implant is achievement and maintenance of implant stability. The aim of the study was to measure the 208 Straumann dental implant stability quotient (ISQ) values during the osseointegration period and determine the factors that affect implant stability. A total of 164 of the implants inserted were standard surface, and 44 of them were SLActive surface. To determine implant stability as ISQ values, measurements were performed at the stage of implant placement and healing periods by the Osstell mentor. The ISQ value ranges showed a significant increase during the healing period. Except for the initial measurement, the posterior maxilla had the lowest ISQ values, and there was no significant difference among anterior mandible, posterior mandible, and anterior maxilla (P .05). The second measurement was significantly higher in men compared with women (P < .05). The second measurement was significantly higher than the others at 4.8 mm, and for the final measurement, there were no significant differences between 4.8 and 4.1 mm, which were higher than 3.3 mm (P < .05). When comparing sandblasted, large-grit, acid-etched (SLA) and SLActive surface implants, there were no significant differences for insertion measurements, but for second measurements, SLActive was significantly higher (P = 0), and for the final measurement, there was no significant difference. It appears that repeated ISQ measurements of a specific implant have some diagnostic benefit, and the factors that affect implant stability during the healing period are presented.

  5. The Relationship between Biofilm and Physical-Chemical Properties of Implant Abutment Materials for Successful Dental Implants

    Directory of Open Access Journals (Sweden)

    Erica Dorigatti de Avila

    2014-05-01

    Full Text Available The aim of this review was to investigate the relationship between biofilm and peri-implant disease, with an emphasis on the types of implant abutment surfaces. Individuals with periodontal disease typically have a large amount of pathogenic microorganisms in the periodontal pocket. If the individuals lose their teeth, these microorganisms remain viable inside the mouth and can directly influence peri-implant microbiota. Metal implants offer a suitable solution, but similarly, these remaining bacteria can adhere on abutment implant surfaces, induce peri-implantitis causing potential destruction of the alveolar bone near to the implant threads and cause the subsequent loss of the implant. Studies have demonstrated differences in biofilm formation on dental materials and these variations can be associated with both physical and chemical characteristics of the surfaces. In the case of partially edentulous patients affected by periodontal disease, the ideal type of implant abutments utilized should be one that adheres the least or negligible amounts of periodontopathogenic bacteria. Therefore, it is of clinically relevance to know how the bacteria behave on different types of surfaces in order to develop new materials and/or new types of treatment surfaces, which will reduce or inhibit adhesion of pathogenic microorganisms, and, thus, restrict the use of the abutments with indication propensity for bacterial adhesion.

  6. Implantes dentales en pacientes adultos postrauma dentoalveolar. Estudio descriptivo

    Directory of Open Access Journals (Sweden)

    Edgardo González

    2016-04-01

    Conclusiones: En este estudio se presenta un protocolo establecido y se establece la necesidad de un diagnóstico detallado para planificar la rehabilitación mediante implantes dentales posterior a un trauma con un equipo multidisciplinario.

  7. Image-guided navigation system for placing dental implants.

    Science.gov (United States)

    Casap, Nardy; Wexler, Alon; Lustmann, Joshua

    2004-10-01

    Navigation-guided surgery has recently been introduced into various surgical disciplines, including oral and maxillofacial surgery. Since the advent of dental implants, dental computed tomography (CT) scans have been used as a diagnostic tool for preoperative planning, but not as part of the surgical phase. This article explains the principles of computer-assisted surgery and describes the use of a computer-guided navigation system in dental implantology. The system uses preoperative dental CT scans for planning and as an integral part of the surgical procedure. This system allows continuous intraoperative coordination of the implantation phase with the preoperative plan, optimizing the accuracy of implant surgery. Deviations from the planned location of the implants are minimal. Several cases are discussed.

  8. Paranasal sinus complications caused by dental implants and complementary procedures.

    Science.gov (United States)

    Segal, N; Woldenberg, I; Puterman, M

    2009-01-01

    To describe the paranasal complications that may occur after dental implantation. A literature search was performed in order to review currently available information about the complications of dental implantations and complementary procedures. The use of dental implants has gained great popularity due to their convenience, natural look, and better speech and chewing efficiency, as well as their potential to slow and even stop jawbone atrophy. Nevertheless, an increasing number of publications have drawn attention to the possible complications of the procedure for the paranasal sinuses. Both short-term and long-term complications have been described that should be familiar to otolaryngologists. Although the procedure is performed by dentists, dental implantations may also have a major impact on the paranasal sinuses. Complications may necessitate the knowledge and cooperation of both dentists and otolaryngologists.

  9. The feasibility of immediately loading dental implants in edentulous jaws

    Science.gov (United States)

    2016-01-01

    Purpose Immediate loading of dental implants has been proved to be feasible in partially edentulous jaws. The purpose of this retrospective investigation was to assess the feasibility of immediately loading dental implants in fully edentulous jaws. Methods A total of 24 patients aged between 53 and 89 years received a total of 154 implants in their edentulous maxillae or mandibles. Among the implants, 45 were set in fresh extracted sockets and 109 in consolidated alveolar bones. The implants were provisionally managed with chair-side made provisional resin bridges and exposed to immediate loading. Implants were followed up for 1–8 years, including radiographic imaging. Marginal bone levels were evaluated based on radiographic imaging. Results A total of 148 out of the 154 implants survived over the follow-up period of 1 to 8 years, giving a survival rate of 96%. The time or region of the implantation, the pre-implant augmentation, and the length and diameter of the implants had no statistically significant influence on the survival or the success rate. The marginal bone level remained stable with only minimal loss of 0.3 mm after 60 months of loading. Conclusions Within the limitations of this study, immediate loading is feasible for dental implants in edentulous jaws. PMID:27588213

  10. [Clinical application of individualized three-dimensional printing implant template in multi-tooth dental implantation].

    Science.gov (United States)

    Wang, Lie; Chen, Zhi-Yuan; Liu, Rong; Zeng, Hao

    2017-08-01

    To study the value and satisfaction of three-dimensional printing implant template and conventional implant template in multi-tooth dental implantation. Thirty cases (83 teeth) with missing teeth needing to be implanted were randomly divided into conventional implant template group (CIT group, 15 cases, 42 teeth) and 3D printing implant template group (TDPIT group, 15 cases, 41 teeth). Patients in CIT group were operated by using conventional implant template, while patients in TDPIT group were operated by using three-dimensional printing implant template. The differences of implant neck and tip deviation, implant angle deviation and angle satisfaction between the two groups were compared. The difference of probing depth and bone resorption of implant were compared 1 year after operation between the two groups. The difference of success rate and satisfaction of dental implantation were compared 1 year after operation between the two groups. SPSS19.0 software package was used for statistical analysis. The deviation direction of the neck and the tip in disto-mesial, bucco-palatal, vertical direction and angle of implants in disto-mesial and bucco-palatal direction in TDPIT group were significantly lower than in CIT group (P0.05). The difference of the cumulative success rate in dental implantation at 3 months and 6 months between the two groups were not significant (P>0.05), but the cumulative success rate of TDPIT group was significantly higher than CIT group at 9 months and 1 year (90.48% vs 100%,P=0.043). The patients' satisfaction rate of dental implantation in TDPIT group was significantly higher than in CIT group (86.67% vs 53.33%, P=0.046). Using three-dimensional printing implant template can obtain better accuracy of implant, higher implant success rate and better patients' satisfaction than using conventional implant template. It is suitable for clinical application.

  11. Dental Implant Stability Analysis and Investigating the Influence of Efective Factors on Bone-Implant Contact Applying Frictional Model of Contact

    Directory of Open Access Journals (Sweden)

    Atefi E

    2011-12-01

    Full Text Available Background and Aims: Relative displacement of the implant with respect to bone and quality of bone-implant contact play critical roles in the dental implant stability. The goal of this study was to investigate the dental implant stability using non-linear finite elements method. Therefore, bone-implant relative displacement due to applied force to the implant was calculated, and then an appropriate factor for defining quality of bone-implant contact was presented.Materials and Methods: In order to develop a three dimensional model and compare the results with clinical studies, computed tomography (CT scan data of a rabbit tibia was considered as a base. The model was exported to ABAQUS 6.9-1 to be analyzed using nonlinear finite elements method. Dynamic analysis was done on the model using the proper boundary condition and dynamic loads.Results: Force-displacement curves in bone-implant interface were nonlinear. Friction coefficient, which is a criterion for implant stability and relative displacement, approximately became doubled as the vertical contact force was halved. However, the friction coefficient decreased with reduction of coulomb frictional coefficient.Conclusion: Friction coefficient, which is calculated upon force-displacement curves, could be considered as a criterion to evaluate the dental implant stability. Decrease of the vertical contact force and also using rough surfaces improved the quality of bone-implant contact and stability of dental implant.

  12. Imaging of dental implant osseointegration using optical coherent tomography

    Science.gov (United States)

    Ionita, I.; Reisen, P.

    2009-02-01

    Investigation of initial implant stability with different dental implant designs is an important task to obtain good quality dental implants. Failure of a dental implant is often related to failure to osseointegrate correctly. Optical Coherent Tomography is a competitive non-invasive method of osseointegration investigation. FD-OCT with Swept Source was used to obtain 3-D image of the peri-implant tissue (soft and hard) in the case of mandible fixed screw. 1350 nm centered laser source give better images than 850 nm laser source for hard tissue imaging. Present work suggests that Optical Coherent Tomography is a proper technique to obtain the image of the contact tissue-metal screw. OCT images are useful to evaluate optical properties of bone tissues.

  13. Bone Inflammation, Bone Infection and Dental Implants Failure: Histological and Cytological Aspects Related to Cement Excess

    Science.gov (United States)

    Tatullo, Marco; Marrelli, Massimo; Mastrangelo, Filiberto; Gherlone, Enrico

    2017-01-01

    Background: Dental implant failure can recognize several causes and many of them are quite preventable with the right knowledge of some clinical critical factors. Aim of this paper is to investigate about the histological aspects related to dental implants failure in such cases related to cement excess, how such histological picture can increase the risk of bacterial infections and how the different type of cement can interact with osteoblasts in-vitro. Methods: We randomly selected 5 patients with a diagnosis of dental implant failure requiring to be surgically removed: in all patients was observed an excess of dental cement around the failed implants. Histological investigations were performed of the perimplant bone. Cell culture of purchased human Osteoblasts was performed in order to evaluate cell proliferation and cell morphology at 3 time points among 3 cement types and a control surface. Results: Dental cement has been related to a pathognomonic histological picture with a foreign body reaction and many areas with black particles inside macrophage cells. Finally, cell culture on different dental cements resulted in a lower osteoblasts survival rate. Conclusions: It is appropriate that the dentist puts a small amount of dental cement in the prosthetic crown, so to avoid the clinical alterations related to the excess of cement. PMID:28529868

  14. CLINICAL CONSIDERATIONS OF DENTAL IMPLANT SYSTEM IN IMMEDIATE LOADING IMPLANT CASES

    Directory of Open Access Journals (Sweden)

    Carolina Damayanti Marpaung

    2015-06-01

    Full Text Available Immediate loading of dental implant has been researched intensively in the development of Branemark’s early concept of 2 stages implant placement. This was embarked from both patients and practiitioner’s convenience towards a simpler protocol and shorter time frame. Many recent researchers later found that micromotions derived from occlusal loading for a certain degree, instead of resulting a fibrous tissue encapsulation, can enhance the osseointegration process. Dental Implant system enhancement towards maximizing the primary stability held a key factor in Branemark’s concept development. Surgical protocol and implant design was found to give a significant contribution to the prognosis of immediate-loading implants.

  15. Implant Education Programs in North American Dental Schools.

    Science.gov (United States)

    Arbree, Nancy S.; Chapman, Robert J.

    1991-01-01

    A survey of 52 dental schools found that dental implant techniques were taught in 34 pre- and 34 postdoctoral curricula, involving mostly prosthodontics and oral surgery departments, with periodontology departments lagging behind. Most predoctoral programs did not have research involvement. Cooperation among specialties is recommended over implant…

  16. Interference of electrical dental equipment with implantable cardioverter-defibrillators

    NARCIS (Netherlands)

    Brand, H. S.; Entjes, M. L.; Nieuw Amerongen, A. V.; van der Hoeff, E. V.; Schrama, T. A. M.

    2007-01-01

    To determine whether electromagnetic interference with implantable cardioverter-defibrilllators (ICDs) occurs during the use of electrical dental equipment. Ten different electrical dental devices were tested for their ability to interfere with the function of three types of ICDs at different

  17. Surface engineering by ion implantation

    International Nuclear Information System (INIS)

    Nielsen, Bjarne Roger

    1995-01-01

    Awidespread commercial applica tion iof particle accelerators is for ion implantation. Accelerator beams are used for ion implantation into metals, alloying a thin surface layer with foreign atoms to concentrations impossible to achieve by thermal processes, making for dramatic improvements in hardness and in resistance to wear and corrosion. Traditional hardening processes require high temperatures causing deformation; ion implantation on the other hand is a ''cold process'', treating the finished product. The ionimplanted layer is integrated in the substrate, avoiding the risk of cracking and delamination from normal coating processes. Surface properties may be ''engineered'' independently of those of the bulk material; the process does not use environmentally hazardous materials such as chromium in the surface coating. The typical implantation dose required for the optimum surface properties of metals is around 2 x 10 17 ion/cm 2 , a hundred times the typical doses for semiconductor processing. When surface areas of more than a few square centimetres have to be treated, the implanter must therefore be able to produce high beam currents (5 to 10 mA) to obtain an acceptable treatment time. Ion species used include nitrogen, boron, carbon, titanium, chromium and tantalum, and beam energies range from 50 to 200 keV. Since most components are three dimensional, it must be possible to rotate and tilt them in the beam, and control beam position over a large area. Examples of industrial applications are: - surface treatment of prostheses (hip and knee joints) to reduce wear of the moving parts, using biocompatible materials; - ion implantation into high speed ball bearings to protect against the aqueous corrosion in jet engines (important for service helicopters on oil rigs); - hardening of metal forming and cutting tools; - reduction of corrosive wear of plastic moulding tools, which are expensive to produce

  18. Significant improvement of the osseointegration of zirconia dental implants by HS-LEIS analysis

    International Nuclear Information System (INIS)

    Beekmans, H.; Breitenstein, D.; Brongersma, H.H.; Ridder, M. de; Tromp, Th.J.

    2010-01-01

    The use of sintered yttria stabilized zirconia dental implants is a recent development. After initial successes with these new implants a pattern of erratic results emerged. Reliable osseointegration would not always occur. High-sensitivity low energy ion scattering (HS-LEIS) is used to investigate both virgin and rejected implants. The surfaces of the implant are found to be covered with both an organic and inorganic contamination layer. Sterilization does not remove this contamination. Using LEIS as analytic tool a new cleaning process has been developed. Since this cleaning process is in use, the failure rate has dropped to a very low value.

  19. Significant improvement of the osseointegration of zirconia dental implants by HS-LEIS analysis

    Science.gov (United States)

    Beekmans, H.; Breitenstein, D.; Brongersma, H. H.; de Ridder, M.; Tromp, Th. J.

    2010-06-01

    The use of sintered yttria stabilized zirconia dental implants is a recent development. After initial successes with these new implants a pattern of erratic results emerged. Reliable osseointegration would not always occur. High-sensitivity low energy ion scattering (HS-LEIS) is used to investigate both virgin and rejected implants. The surfaces of the implant are found to be covered with both an organic and inorganic contamination layer. Sterilization does not remove this contamination. Using LEIS as analytic tool a new cleaning process has been developed. Since this cleaning process is in use, the failure rate has dropped to a very low value.

  20. Significant improvement of the osseointegration of zirconia dental implants by HS-LEIS analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beekmans, H. [Schoutenbosje 11, 1251 LE Laren (Netherlands); Breitenstein, D. [Tascon GmbH, Heisenbergstr. 15, 48149 Muenster (Germany); Brongersma, H.H., E-mail: H.H.Brongersma@tue.n [Tascon GmbH, Heisenbergstr. 15, 48149 Muenster (Germany); Calipso B.V., P.O. Box 513, 5600 MB Eindhoven (Netherlands); ION-TOF GmbH, Heisenbergstr. 15, 48149 Muenster (Germany); Ridder, M. de [Calipso B.V., P.O. Box 513, 5600 MB Eindhoven (Netherlands); Tromp, Th.J. [Juralaan 13, 5691 JC Son en Breugel (Netherlands)

    2010-06-15

    The use of sintered yttria stabilized zirconia dental implants is a recent development. After initial successes with these new implants a pattern of erratic results emerged. Reliable osseointegration would not always occur. High-sensitivity low energy ion scattering (HS-LEIS) is used to investigate both virgin and rejected implants. The surfaces of the implant are found to be covered with both an organic and inorganic contamination layer. Sterilization does not remove this contamination. Using LEIS as analytic tool a new cleaning process has been developed. Since this cleaning process is in use, the failure rate has dropped to a very low value.

  1. Efficacy of Octacalcium Phosphate Collagen Composite for Titanium Dental Implants in Dogs

    Directory of Open Access Journals (Sweden)

    Tadashi Kawai

    2018-02-01

    Full Text Available Background: Previous studies showed that octacalcium (OCP collagen composite (OCP/Col can be used to repair human jaw bone defects without any associated abnormalities. The present study investigated whether OCP/Col could be applied to dental implant treatment using a dog tooth extraction socket model. Methods: The premolars of dogs were extracted; each extraction socket was extended, and titanium dental implants were placed in each socket. OCP/Col was inserted in the space around a titanium dental implant. Autologous bone was used to fill the other sockets, while the untreated socket (i.e., no bone substitute material served as a control. Three months after the operation, these specimens were analyzed for the osseointegration of each bone substitute material with the surface of the titanium dental implant. Results: In histomorphometric analyses, the peri-implant bone areas (BA% and bone-implant contact (BIC% were measured. There was no difference in BA% or BIC% between OCP/Col and autologous bone. Conclusion: These results suggested that OCP/Col could be used for implant treatment as a bone substitute.

  2. Efficacy of Octacalcium Phosphate Collagen Composite for Titanium Dental Implants in Dogs

    Science.gov (United States)

    Kawai, Tadashi; Matsui, Keiko; Ezoe, Yushi; Kajii, Fumihiko; Suzuki, Osamu; Takahashi, Tetsu; Kamakura, Shinji

    2018-01-01

    Background: Previous studies showed that octacalcium (OCP) collagen composite (OCP/Col) can be used to repair human jaw bone defects without any associated abnormalities. The present study investigated whether OCP/Col could be applied to dental implant treatment using a dog tooth extraction socket model. Methods: The premolars of dogs were extracted; each extraction socket was extended, and titanium dental implants were placed in each socket. OCP/Col was inserted in the space around a titanium dental implant. Autologous bone was used to fill the other sockets, while the untreated socket (i.e., no bone substitute material) served as a control. Three months after the operation, these specimens were analyzed for the osseointegration of each bone substitute material with the surface of the titanium dental implant. Results: In histomorphometric analyses, the peri-implant bone areas (BA%) and bone-implant contact (BIC%) were measured. There was no difference in BA% or BIC% between OCP/Col and autologous bone. Conclusion: These results suggested that OCP/Col could be used for implant treatment as a bone substitute. PMID:29393874

  3. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants.

    Science.gov (United States)

    Yu, Yiqiang; Jin, Guodong; Xue, Yang; Wang, Donghui; Liu, Xuanyong; Sun, Jiao

    2017-02-01

    In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn 2+ and Mg 2+ concentrations in rBMSCs by promoting the influx of Zn 2+ and Mg 2+ and inhibiting the outflow of Zn 2+ , and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg 2+ ions from Zn/Mg-PIII increased Mg 2+ influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential

  4. Bio-activated titanium surface utilizable for mimetic bone implantation in dentistry—Part III: Surface characteristics and bone implant contact formation

    Science.gov (United States)

    Strnad, Jakub; Strnad, Zdeněk; Šesták, Jaroslav; Urban, Karel; Povýšil, Ctibor

    2007-05-01

    This study was carried out to quantify the effect of an alkali-modified surface on the bone implant interface formation during healing using an animal model. A total of 24 screw-shaped, self-tapping, (c.p.) titanium dental implants, divided into test group B—implants with alkali-modified surface (Bio surface) and control group M—implants with turned, machined surface, were inserted without pre-tapping in the tibiae of three beagle dogs. The animals were sacrificed after 2, 5 and 12 weeks and the bone implant contact (BIC%) was evaluated histometrically. The surface characteristics that differed between the implant surfaces, i.e. specific surface area, contact angle, may represent factors that influence the rate of osseointegration and the secondary implant stability. The alkali-treated surface enhances the BIC formation during the first 2 5 weeks of healing compared to the turned, machined surface.

  5. Differences in knowledge related to dental implants between patients with and without a treatment history of dental implants.

    Science.gov (United States)

    Ken, Yukawa; Tachikawa, Noriko; Kasugai, Shohei

    2017-09-01

    This aim of this study was to investigate the differences between patients with and without a treatment history of dental implants by use of a questionnaire survey in order to determine the information that is required for patients undergoing dental implants. The questionnaires were given to 4512 patients who visited the Tokyo Medical and Dental University Hospital for oral implants between January 2012 and December 2014, and 2972 (66%) valid questionnaires were collected. There were 857 patients with a treatment history of dental implants and 2115 patients without. "Preservation of an adjacent tooth" was the reason that 32% of these patients chose implant therapy, and the patients without treatment history were significantly higher than the patients with one. Significantly, more patients without a treatment history of dental implants selected the after-effects of surgery and pain after surgery as their main concerns for implant therapy compared to those with a treatment history. In the question "Pain after surgery," the patients without treatment history did not know significantly lower than the patients with one. Patients without a treatment history of dental implants placed more importance on the preservation of healthy teeth. Because patients, in particular those without a treatment history of dental implants, are anxious about surgery, we should provide them with more information on treatment than we already do and explain the risks of treatment to them. To keep the credence between doctors and patients, informed consent and patient education on treatment are six important concerns. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Assessment of the Survival of Dental Implants in Irradiated Jaws ...

    African Journals Online (AJOL)

    producing xerostomia, mucositis, and altering the healing process in irradiated tissues. Dental implants avoid these ... to radiotherapy for treatment of cancer have reduced healing capacity due to progressive fibrosis of ..... in irradiated and non-irradiated minipig alveolar bone: An experimental study. Clin Oral Implants Res ...

  7. Assessment of the survival of dental implants in irradiated jaws ...

    African Journals Online (AJOL)

    Background: In patients undergoing head and neck surgery for various pathologic conditions, implants are one of the best restorative options and are increasing widely used. Therefore, we evaluated the success of dental implants in the irradiated jaws of patients following treatment of oral cancer oral cancer treated patients ...

  8. Dental Implant Patients and Their Satisfaction with Treatment.

    Science.gov (United States)

    Tawares, Mary; And Others

    1990-01-01

    The study developed a profile of dental implant patients from 38 private practices to document characteristics of endosseous implant recipients of the past 10 years. Data were then analyzed using multivariate techniques to examine the relationship between these characteristics and patient-reported outcomes. Patients tended to have high incomes and…

  9. In-vivo study of hydroxyiapatite-coated dental implants

    Science.gov (United States)

    Dostalova, Tatjana; Jelinek, Miroslav; Himmlova, Lucia; Grivas, Christos

    1997-12-01

    In vivo experimental results of hydroxyapatite coated real dental prostheses in unloaded conditions are presented. Implants were covered by method of laser ablation. Coated and reference prostheses were implanted into jaw of minipigs. Osseointegration and quality of new bone formation were studied.

  10. Antibiotics in dental implants: A review of literature

    Directory of Open Access Journals (Sweden)

    Hemchand Surapaneni

    2016-01-01

    Full Text Available The routine use of antibiotics in oral implant treatment seems to be widespread. The pre- or post-operative use of antibiotics in conjunction with implant surgery and its correlation with failure and success rates are poorly documented in the literature. The debate regarding overprescription of antibiotics raises the need for a critical evaluation of proper antibiotic coverage in association with implant treatment. The benefits of prophylactic antibiotics are well-recognized in dentistry. However, their routine use in the placement of endosseous dental implants remains controversial. The purpose of this review is to know the efficacy of antibiotic prophylaxis in implant dentistry.

  11. Can degradation products released from dental implants affect peri-implant tissues?

    Science.gov (United States)

    Noronha Oliveira, M; Schunemann, W V H; Mathew, M T; Henriques, B; Magini, R S; Teughels, W; Souza, J C M

    2018-02-01

    This study aimed to assess the literature available on the effects, on peri-implant tissues, of degradation products released from dental implants as a consequence of therapeutic treatment for peri-implantitis and/or of wear-corrosion of titanium. A literature review of the PubMed medline database was performed up to December 31, 2016. The following search terms were used: "titanium wear and dental implant"; "titanium corrosion and dental implant"; "bio-tribocorrosion"; "peri-implantitis"; "treatment of peri-implantitis"; "titanium particles release and dental implant"; and "titanium ion release and dental implant". The keywords were applied to the database in different combinations without limits of time period or type of work. In addition, the reference lists of relevant articles were searched for further studies. Seventy-nine relevant scientific articles on the topic were retrieved. The results showed that pro-inflammatory cytokines, infiltration of inflammatory response cells and activation of the osteoclasts activity are stimulated in peri-implant tissues in the presence of metal particles and ions. Moreover, degenerative changes were reported in macrophages and neutrophils that phagocytosed titanium microparticles, and mutations occurred in human cells cultured in medium containing titanium-based nanoparticles. Debris released from the degradation of dental implants has cytotoxic and genotoxic potential for peri-implant tissues. Thus, the amount and physicochemical properties of the degradation products determine the magnitude of the detrimental effect on peri-implant tissues. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Dental extraction, immediate placement of dental implants, and immediate function.

    Science.gov (United States)

    Jensen, Ole T

    2015-05-01

    Immediate function requires adequate implant stability. Immediate function requires prosthetic stability, particularly when multiple implants are loaded. Factors to consider for immediate implants into extraction sites are thickness of socket walls, thickness of gingival drape, optimal position of the implant, and patient factors such as hygiene and smoking cessation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Usage of demineralized bone powder in dental implant surgery

    International Nuclear Information System (INIS)

    Chang Joon Yim

    1999-01-01

    While there is much concern in the dental community about the risk of disease transfer with processed bone a] iografts, there has never been a case of disease transfer with DFDB. Exclusionary techniques and chemical processing of the allogeneic bone has rendered these grafts safe for human implantation. The literature indicates that there has been considerable interest in the biology and applied science of osteoinduction. The accumulated evidence supports the concept of cartilage and bone cell differentiation induced by a unique bone motphogenetic protein (BMP). Currently clinical usage has been focused on the alveolar bone defects associated with the dental implant surgery, which has become one of the most important areas in dental outpatient clinic. Increased application of the endosseous dental implant system results in a lot of demands to regenerate the alveolar bone defects around the dental implants. Anderegg et al.(1991) reported the excellent results from the combination of DFDB powder and expanded PTFE (polytetrafluorethylene) membranes. Since 1980 the author experienced the human DFDB powders for the oral and maxillofacial surgery and the dental implant surgery. Yim and Kim(1993) evaluated 93 surgical sites where DFDB was used and found 96.7% of success rates at re-entry surgery. Mellonig and Triplett (1993) reported 97% of success rates, and Gelb (1993) obtained 98% of success rates. Fugazzotto (1994) placed 59 dental implants at the time of sinus lifts with the composite graft of DFDB and resorbable tricalcium phosphate and none of implants was lost on uncovering and only one was lost while functioning. Yim (1994) placed 44 dental implants at the time of sinus lifts with DFDB, and none of implants was lost on uncovering. Zinner and Small (1996) placed 215 dental implants at the time of sinus lifts (52 sinuses) with the composite graft of DFDB, and other materials, 3 implants of which were failed on uncovering. To date, maxillary sinus lift graft with

  14. THE INFLUENCE OF SYSTEMIC MEDICATIONS ON OSSEOINTEGRATION OF DENTAL IMPLANTS.

    Science.gov (United States)

    Ouanounou, Aviv; Hassanpour, Siavash; Glogauer, Michael

    2016-04-01

    Dental implants are routinely used to treat edentulism. Their success depends on osseointegration, the direct functional and structural interlocking of implant and bone. The osseointegration mechanism is similar to bone remodeling and healing. Thus, chronic use of systemic medications that can interfere with bone turnover and healing may affect osseointegration, resulting in premature implant loss. The aim of this narrative review is to analyze the reported effects of systemic medications on osseointegration.

  15. In vivo osseointegration of dental implants with an antimicrobial peptide coating.

    Science.gov (United States)

    Chen, X; Zhou, X C; Liu, S; Wu, R F; Aparicio, C; Wu, J Y

    2017-05-01

    This study aimed to evaluate the in vivo osseointegration of implants with hydrophobic antimicrobial GL13K-peptide coating in rabbit femoral condyles by micro-CT and histological analysis. Six male Japanese Rabbits (4 months old and weighing 2.5 kg each) were included in this study. Twelve implants (3.75 mm wide, 7 mm long) were randomly distributed in two groups, with six implants in the experimental group coated with GL13K peptide and six implants in the control group without surface coating. Each implant in the test and the control group was randomly implanted in the left or right side of femoral condyles. On one side randomly-selected of the femur, each rabbit received a drill that was left without implant as control for the natural healing of bone. After 3 weeks of healing radiographic evaluation of the implant sites was taken. After 6 weeks of healing, rabbits were sacrificed for evaluation of the short-term osseointegration of the dental implants using digital radiography, micro-CT and histology analysis. To perform evaluation of osseointegration, implant location and group was double blinded for surgeon and histology/radiology researcher. Two rabbits died of wound infection in sites with non-coated implants 2 weeks after surgery. Thus, at least four rabbits per group survived after 6 weeks of healing. The wounds healed without suppuration and inflammation. No implant was loose after 6 weeks of healing. Radiography observations showed good osseointegration after 3 and 6 weeks postoperatively, which proved that the tissues followed a natural healing process. Micro-CT reconstruction and analysis showed that there was no statistically significant difference (P > 0.05) in volume of bone around the implant between implants coated with GL13K peptide and implants without coating. Histomorphometric analysis also showed that the mineralized bone area was no statistically different (P > 0.05) between implants coated with GL13K peptide and

  16. Allergy related to dental implant and its clinical significance

    Directory of Open Access Journals (Sweden)

    Chaturvedi TP

    2013-08-01

    Full Text Available TP ChaturvediFaculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IndiaAbstract: The oral cavity provides an ideal and unique environment for study of biological processes involving metallic dental aids. Dental materials within the mouth interact continually with physiological fluids. Oral tissues are exposed to a veritable bombardment of both chemical and physical stimuli as well as the metabolism of many species of bacteria; yet, for the most part, oral tissues remain healthy. The pH of saliva varies from 5.2 to 7.8. Teeth, restorations, or any prosthesis including dental implants in the oral cavity have to function in one of the most inhospitable environments in the human body. They are subject to larger temperature and pH variations than most other parts of the body. Corrosion, the graded degradation of materials by electrochemical attack, is of concern particularly when dental implants are placed in the hostile electrolytic environment provided by the human mouth. Allergic reactions may occur from the presence of ions produced from the corrosion of implants. The present article describes various manifestations of allergic reactions due to implant material in the oral cavity.Keywords: dental implant, allergy, titanium, corrosion

  17. Recubrimientos antibacterianos basados en silicio para implantes dentales

    OpenAIRE

    Pallá Rubio, Beatriz

    2016-01-01

    232 p. El uso de implantes dentales en odontología está tan extendido hoy en día, que ya nadie discute su relevancia. Su tasa de éxitos es elevada (debido al criterio de selección de pacientes), si bien un porcentaje cercano al 10% de los implantes debe ser eliminado, por problemas de osteointegración, o por la aparición de infecciones, considerándose esto último hoy en día, la principal causa del fallo de los implantes dentales. Sin embargo, una gran parte de la investigación destinada a ...

  18. Prevention of Orthopaedic Implant Infection in Patients Undergoing Dental Procedures.

    Science.gov (United States)

    Watters, William; Rethman, Michael P; Hanson, Nicholas Buck; Abt, Elliot; Anderson, Paul A; Carroll, Karen C; Futrell, Harry C; Garvin, Kevin; Glenn, Stephen O; Hellstein, John; Hewlett, Angela; Kolessar, David; Moucha, Calin; O'Donnell, Richard J; O'Toole, John E; Osmon, Douglas R; Evans, Richard Parker; Rinella, Anthony; Steinberg, Mark J; Goldberg, Michael; Ristic, Helen; Boyer, Kevin; Sluka, Patrick; Martin, William Robert; Cummins, Deborah S; Song, Sharon; Woznica, Anne; Gross, Leeaht

    2013-03-01

    The Prevention of Orthopaedic Implant Infection in Patients Undergoing Dental Procedures evidence-based clinical practice guideline was codeveloped by the American Academy of Orthopaedic Surgeons (AAOS) and the American Dental Association. This guideline replaces the previous AAOS Information Statement, "Antibiotic Prophylaxis in Bacteremia in Patients With Joint Replacement," published in 2009. Based on the best current evidence and a systematic review of published studies, three recommendations have been created to guide clinical practice in the prevention of orthopaedic implant infections in patients undergoing dental procedures. The first recommendation is graded as Limited; this recommendation proposes that the practitioner consider changing the long-standing practice of routinely prescribing prophylactic antibiotic for patients with orthopaedic implants who undergo dental procedures. The second, graded as Inconclusive, addresses the use of oral topical antimicrobials in the prevention of periprosthetic joint infections. The third recommendation, a Consensus statement, addresses the maintenance of good oral hygiene.

  19. [Current dental implant design and its clinical importance].

    Science.gov (United States)

    Ye, Lin

    2017-02-01

    The development of clinical implant dentistry was intensively affected by dental implant design improvement and innovation, which brought about new concept, even milestone-like changes of clinical protocol. The current improvements of dental implant design and their clinical importance could be highlighted as followings: 1) The implant apical design influences the implant preliminary stability in immediate implant. The apical 3-5 mm design of implant makes implant stable in immediate implant, because this part would be screwed into alveolar bone through fresh socket, the other part of implant could not be tightly screwed in the socket because of smaller implant diameter. Implant apical form, screw design, self-taping of apical part would be essential for immediate implant. 2) The enough preliminary stability of implant makes immediate prosthesis possible. When osseointegration does not occur, the implant stability comes from a mechanical anchorage, which depends on implant form, screw thread and self-taping design. 3) Implant neck design may have influence for soft tissue recession in esthetic zone. The implant with large shoulder would not be selected for the esthetic area. The platform design may be more favorable in the area. 4) The connection design between implant and abutment is thought a very important structure in implant long-term stability. Moose taper and "tube in tube" were well documented structure design in 20-year clinical practice in Peking University. 5) In last 15 years, the plenty studies showed the platform design of implant had positive influence in implant marginal bone level. Whatever in single implant restoration or multi-implant prosthesis. 6) The digital technology makes clinical work more precise and high-tech. This would be a trend in implant dentistry. New generation of chair-side digital computer-aided design/computer-aided manufacturing makes immediate prosthesis without conventional impression possible. 7) New abutment design have

  20. Evaluation of the effects of different sand particles that used in dental implant roughened for osseointegration.

    Science.gov (United States)

    Yurttutan, Mehmet Emre; Keskin, Ahmet

    2018-03-20

    Successful dental implant treatment is directly related to osseointegration. In achieving osseointegration, the surface property of the implant is of great importance. Sandblasting is the most commonly used basic method for modifying the surface. Many companies use different sand particles for surface roughening and claim their sand is the best. This leads clinicians to mix their minds in product selection. In this study, we tried to find the appropriate sand material by working objectively without praising any brand. We believe that the results of the study will help clinicians choose the right dental implant. In this study, machined-surfaced implants and implants sandblasted with Aluminum oxide (Al 2 O 3 ), Titanium dioxide (TiO 2 ) and Silicon dioxide (SiO 2 ) were compared via biomechanical testing. For the study, four 2 year-old sheep, weighing 45 kilograms (kg), were used. Eight implants (Al 2 O 3 , TiO 2 , and SiO 2 sandblasted implants and machined-surfaced implants), each with different surface characteristics, were inserted into the bilateral tibia of each sheep under general anesthesia. Results of the initial Resonance Frequency Analysis (RFA) were recorded just after implant insertion. The sheep were then randomly divided into two groups, each with 2 sheep, to undergo either a 1-month or a 3-month assessment. At the end of the designated evaluation period, RFA and removal torque tests were performed. Although there were no statistically significant differences between the groups, the implants sandblasted with Al 2 O 3 showed a higher Implant Stability Quotient (ISQ) and removal torque value at the end of the 1st and 3rd month. In short, the results of the study demonstrate that Aluminum oxide is superior to other sand particles.

  1. Cooling profile following prosthetic preparation of 1-piece dental implants.

    Science.gov (United States)

    Cohen, Omer; Gabay, Eran; Machtei, Eli E

    2010-01-01

    The aim of this study was to evaluate the effect of water irrigation on heat dissipation kinetics following abutment preparation of 1-piece dental implants. UNO 1-piece dental implants were mounted on Plexiglas apparatus clamping the implant at the collar. T-type thermocouple was attached to the first thread of the implant and recorded thermal changes at 100 millisecond intervals. Implants were prepared using highspeed dental turbine at 400,000 RPM with a coarse diamond bur. Once temperature reached 47 degrees C, abutment preparation was discontinued. Thirty implants were divided into 2 groups. Group A: Passive cooling without water irrigation. Group B: Cooling with turbine's water spray adjacent to the implant (30 mL/min). The following parameters were measured: T47 (time from peak temperature to 47 degrees C), T50%, T75% (time until the temperature amplitude decayed by 50% and 75%, respectively), dTemp50%/dt decay, and dTemp75%/dt decay (cooling rate measured at 50% and 75% of amplitude decay, respectively). Water spray irrigation significantly reduced T47 (1.37+/-0.29 seconds vs 19.97+/-3.06 seconds, Pspray irrigation also increased cooling capacity ninefold: dTemp50%/dt decay (4.14+/-0.61 degrees C/s vs 0.48+/-0.06 degrees C/s, Pspray adjacent to the abutment following the cessation of implant preparation might prove beneficial for rapid cooling of the implant.

  2. Osseointegration of dental implants in patients with and without radiotherapy

    International Nuclear Information System (INIS)

    Wagner, W.; Esser, E.; Ostkamp, K.

    1998-01-01

    Between 1987 and 1997, 275 dental implants were inserted in the mandibles of 63 patients with squamous cell carcinoma of the lower oropharyngeal level following a radical surgical procedure. Thirty-five of these patients had been preirradiated with a complete dose of 60 Gy. In a retrospective analysis we have reviewed the data of these patients for age, sex, localization of the implants, irradiation, interval of implantation and interval of the abutment operation. Thus far, the median follow-up time is 65 months. The 5-year success rate for all implants was 97.9%. We found that radiotherapy, age, sex, localization of implantation or the interval between the end of the tumor therapy and the time of implantation did not have any significant influence on osseointegration or loss of osseointegration. Only the time interval between implantation and the abutment operation was recorded to be of any great significance (p=0.0001). No augmentation in the osteoradionecrosis rate could be recorded after dental implantation (1.6%), which leads us to conclude that radiotherapy (60 Gy) in patients with head and neck cancers should not be regarded as a contraindication for dental implantation. (orig.)

  3. New innovative method relating guided surgery to dental implant placement.

    Science.gov (United States)

    Fauroux, M-A; De Boutray, M; Malthiéry, E; Torres, J-H

    2018-02-20

    Companies selling dental implant guided systems mostly offer similar surgical guides. The purpose of this paper is to present an innovative-guided surgery system which originality lies in its guidance device, and to report the author's experience in using this system for dental implant surgery. Two parallel tubes on either side of the drilling axis guide the successive drills and the implant placement. As a result of the lateral guidance, there is no friction of the drills on the surgical guide, which would damage it or contaminate the drilling hole with particles torn out from the guide. No radiological guide is needed during the radiographic examination stage. No successive diameter reduction tubes are requested. This guide can be used for all brands of implants. In our experience, 67 implants (31 titanium and 36 zircon implants) were placed in 35 patients with guided surgery system. Multiple clinical cases were treated with this system: 'one-stage' or a 'two-stage' surgical protocol, with flap and flapless surgical techniques, and with delayed or immediate loading. Clinical cases treated revealed good implant placement with planning. The widely open design of this guide allows irrigation and practitioner's sight control under conditions comparable to those of operations performed without surgical guide. This dental implant guided system appears to be a significant advance in the field of implant surgical guides. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Osseointegration of dental implants in patients with and without radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, W. [Paracelsus-Strahlenklinik, Osnabrueck (Germany); Esser, E.; Ostkamp, K. [Staedtische Kliniken Osnabrueck (Germany)

    1998-12-31

    Between 1987 and 1997, 275 dental implants were inserted in the mandibles of 63 patients with squamous cell carcinoma of the lower oropharyngeal level following a radical surgical procedure. Thirty-five of these patients had been preirradiated with a complete dose of 60 Gy. In a retrospective analysis we have reviewed the data of these patients for age, sex, localization of the implants, irradiation, interval of implantation and interval of the abutment operation. Thus far, the median follow-up time is 65 months. The 5-year success rate for all implants was 97.9%. We found that radiotherapy, age, sex, localization of implantation or the interval between the end of the tumor therapy and the time of implantation did not have any significant influence on osseointegration or loss of osseointegration. Only the time interval between implantation and the abutment operation was recorded to be of any great significance (p=0.0001). No augmentation in the osteoradionecrosis rate could be recorded after dental implantation (1.6%), which leads us to conclude that radiotherapy (60 Gy) in patients with head and neck cancers should not be regarded as a contraindication for dental implantation. (orig.)

  5. Success rate of short dental implants supporting single crowns and fixed bridges.

    Science.gov (United States)

    Malmstrom, Hans; Gupta, Bhumija; Ghanem, Alexis; Cacciato, Rita; Ren, Yanfang; Romanos, Georgios E

    2016-09-01

    Bone grafts (sinus lift and/or ridge augmentation) may become an obstacle for some patients who desire implant treatment. The objective of this study was to evaluate the success of six- and eight-millimeters rough surface design short dental implants, for up to 2 years in function, when compared to conventional length (11 mm) implants. A total of 25.6-, 20.8- and 35.11-mm length implants were placed and restored in 30 subjects (11 males, 19 females) between the age of 22 and 80, following a standard protocol. Implant mobility, crestal bone loss as well as periodontal parameters were evaluated immediately after restoration placement, at 6, 12 and 24 months. There was one failure of one 6-mm implant during the healing phase and one restorative failure. The median crestal bone loss at 24 months was 0.45 mm for the 6-mm implants, 0.55 mm for the 8 mm implants and 0.65 mm for the 11-mm implants. The success rate for 6-mm implants was 97% and for 8-mm and 11-mm implants 100%. Based on this preliminary data, we conclude that rough surface design short dental implants (6 and 8 mm in length) have similar success rate when compared to 11-mm implants. Long-term data with larger number of implants and subjects are needed to confirm these results. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Biological aspects of dental implant; Current knowledge and perspectives in oral implantology

    Directory of Open Access Journals (Sweden)

    Sukant Sahoo

    2013-01-01

    Full Text Available The utilization of dental implants became a scientifically accepted treatment modality for the rehabilitation of fully and partially edentulous patients. The evolution of dental implants has completely changed dentistry. Implants can offer a number of benefits, from improved esthetics, to reducing bone loss, to improving denture retention for edentulous patients. Branemark et al., was the first person to examined submerged titanium implants with a machined surface in dogs and later called this procedure as osseointegration, which is now defined as "A direct structural and functional connection between ordered, living bone and the surface of a load-bearing implant." Commercially pure titanium is recognized today as a material of choice, since it is characterized by excellent biological and also good mechanical properties. In this comprehensive review, authors have sought to explore various biological aspects of dental implant as pertinent to clinical procedure so as to provide research foundation for the establishment of suitable strategies that can assist in successful implant therapy.

  7. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study.

    Science.gov (United States)

    Mueller, Cornelia Katharina; Solcher, Philipp; Peisker, Andrè; Mtsariashvilli, Maia; Schlegel, Karl Andreas; Hildebrand, Gerhard; Rost, Juergen; Liefeith, Klaus; Chen, Jiang; Schultze-Mosgau, Stefan

    2013-07-01

    It was the aim of this study to analyze the influence of implant design and surface topography on the osseointegration of dental zirconium implants. Six different implant designs were tested in the study. Nine or 10 test implants were inserted in the frontal skull in each of 10 miniature pigs. Biopsies were harvested after 2 and 4 months and subjected to microradiography. No significant differences between titanium and zirconium were found regarding the microradiographically detected bone-implant contact (BIC). Cylindric zirconium implants showed a higher BIC at the 2-month follow-up than conic zirconium implants. Among zirconium implants, those with an intermediate Ra value showed a significantly higher BIC compared with low and high Ra implants 4 months after surgery. Regarding osseointegration, titanium and zirconium showed equal properties. Cylindric implant design and intermediate surface roughness seemed to enhance osseointegration. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Dental implants for severely atrophied jaws due to ectodermal dysplasia

    Directory of Open Access Journals (Sweden)

    Preetha Balaji

    2015-01-01

    Full Text Available The aim was to present the successful esthetical and functional rehabilitation of partial anodontia in a case of severe ectodermal dysplasia with complete atrophy of the jaws. A 17-year-old male with Class III malocclusion with partial anodontia sought dental implant treatment. His expectation was that of Class I occlusion. The challenge in the case was to match the expectation, reality, and the clinical possibilities. Ridge augmentation was performed with a combination of rib graft and recombinant human bone morphogenetic protein-2. Simultaneously, 6 implants (Nobel Biocare™ - Tapered Groovy were placed in maxillary arch and 10 in the mandible. Simultaneous placement ensured faster and better osseointegration though a mild compromise of the primary stability was observed initially. After adequate healing, Customized Zirconia Procera™ system was used to build the framework. Zirconia crown was cemented to the framework. Radiological and clinical evidence of osseointegration was observed in all 16 dental implants. Successful conversion of Class III to Class I occlusion was achieved with the combination of preprosthetic alveolar ridge augmentation, Procera™ Implant Bridge system. Abnormal angulations and or placement of dental implants would result in failure of the implant. Hence conversion of Class III to Class I occlusion needs complete and complex treatment planning so that the entire masticatory apparatus is sufficiently remodeled. Planning should consider the resultant vectors that would otherwise result in failure of framework or compromise the secondary stability of the dental implant during function. A successful case of rehabilitation of complex partial anodontia is presented.

  9. Electromechanical impedance method to assess dental implant stability

    Science.gov (United States)

    Tabrizi, Aydin; Rizzo, Piervincenzo; Ochs, Mark W.

    2012-11-01

    The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone-implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant-bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity.

  10. Dental Implants and General Dental Practitioners of Nepal: A study of existing knowledge and need for further education

    Directory of Open Access Journals (Sweden)

    Bhageshwar Dhami

    2017-03-01

    Full Text Available Background & Objectives: The use of dental implants in partially or completely edentulous patients has proved effective and an accepted treatment modality with predictable long-term success. Dental implants are becoming a popular choice for replacing the missing teeth because of increased awareness about implants both in dentists and patients. The objective of the study was to assess the basic knowledge and education about dental implants among general dental practitioners (GDPs of Nepal.Materials & Methods:  A cross sectional questionnaire was carried out among 110 GDPs which consist of twenty questions that were divided into three categories; first with some basic knowledge in implant dentistry, second with clinical knowledge of dental implants and third with dental implant education and training.Results: Out of 110 GDPs, 72.7% had basic knowledge about implant dentistry and 65.5% were not aware about advance surgical procedures like sinus lift and guided bone regeneration. All the GDPs were positive regarding more training and education in dental implants and 95.5% of them would like to incorporate dental implant treatment in their practice in future. Conclusion: GDPs should have adequate knowledge and training of dental implants which can be incorporated at undergraduate or post doctoral level so that they are skilled to provide quality dental implant therapy to their patients confidently.

  11. Survival of dental implants placed in sites of previously failed implants.

    Science.gov (United States)

    Chrcanovic, Bruno R; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann

    2017-11-01

    To assess the survival of dental implants placed in sites of previously failed implants and to explore the possible factors that might affect the outcome of this reimplantation procedure. Patients that had failed dental implants, which were replaced with the same implant type at the same site, were included. Descriptive statistics were used to describe the patients and implants; survival analysis was also performed. The effect of systemic, environmental, and local factors on the survival of the reoperated implants was evaluated. 175 of 10,096 implants in 98 patients were replaced by another implant at the same location (159, 14, and 2 implants at second, third, and fourth surgeries, respectively). Newly replaced implants were generally of similar diameter but of shorter length compared to the previously placed fixtures. A statistically significant greater percentage of lost implants were placed in sites with low bone quantity. There was a statistically significant difference (P = 0.032) in the survival rates between implants that were inserted for the first time (94%) and implants that replaced the ones lost (73%). There was a statistically higher failure rate of the reoperated implants for patients taking antidepressants and antithrombotic agents. Dental implants replacing failed implants had lower survival rates than the rates reported for the previous attempts of implant placement. It is suggested that a site-specific negative effect may possibly be associated with this phenomenon, as well as the intake of antidepressants and antithrombotic agents. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Electrochemical disinfection of dental implants--a proof of concept.

    Directory of Open Access Journals (Sweden)

    Dirk Mohn

    Full Text Available BACKGROUND: Peri-implantitis has gained significant clinical attention in recent years. This disease is an inflammatory reaction to microorganisms around dental implants. Due to the limited accessibility, non-invasive antimicrobial strategies are of high interest. An unexpected approach to implant disinfection may evolve from electrolysis. Given the electrical conductivity of titanium implants, alkalinity or active oxidants can be generated in body fluids. We investigated the use of dental titanium implants as electrodes for the local generation of disinfectants. Our hypothesis was that electrolysis can reduce viable counts of adhering bacteria, and that this reduction should be greater if active oxidative species are generated. METHODOLOGY/PRINCIPAL FINDINGS: As model systems, dental implants, covered with a mono-species biofilm of Escherichia coli C43, were placed in photographic gelatin prepared with physiological saline. Implants were treated by a continuous current of 0-10 mA for 15 minutes. The reduction of viable counts was investigated on cathodes and anodes. In separate experiments, the local change in pH was visualized using color indicators embedded in the gelatin. Oxidative species were qualitatively detected by potassium iodide-starch paper. The in situ generated alkaline environment around cathodic implants caused a reduction of up to 2 orders of magnitude in viable E. coli counts. On anodic implants, in contrast to cathodic counterparts, oxidative species were detected. Here, a current of merely 7.5 mA caused complete kill of the bacteria. CONCLUSIONS/SIGNIFICANCE: This laboratory study shows that electrochemical treatment may provide access to a new way to decontaminate dental implants in situ.

  13. Management of dental implant complications among general dental practitioners in Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Nasser Mansour Assery

    2018-01-01

    Conclusion: Dentists who participated in dental implantology workshops had a higher tendency to answer correctly compared to dentists who were given didactic courses in their undergraduate studies in issues associated with hands-on training. This shows that hands-on training in the undergraduate studies would result in a better understanding of dental implants, its complications, and management.

  14. Dental amalgam implantation and thyroid autoimmunity.

    Science.gov (United States)

    Kisakol, G

    2014-01-01

    Mercury was heavily studied as a factor in the autoimmune processes. We aimed to observe whether mercury of amalgam is associated with Hashimoto disease. 363 patients with Hashimoto's thyroiditis and 365 control subjects were included in to the study. Amalgam fillings were checked by the physician. 363 (49.9 %) patients and 365 (50.1 %) healthy controls were included into the study. Hashimoto's thyroiditis was diagnosed with thyroid hormones, antithyroid antibody levels, and ultrasonographic findings. Control subjects were selected from patients with no known autoimmune diseases. They were controlled with ultrasonography, as well as antibody titers. None of them had Hashimoto's thyroiditis. Sex distribution of the study population was following: 319 (87.9 %) female, 44 (12.1 %) male in the patient group and 277 (75.9 %) male and 88 (24.1 %) female in healthy control subjects, respectively. Mean free T4 values for Hashimoto's thyroiditis and healthy control group were 15.30±0.76, 17.30±0.96 pmol/L and mean TSH values for Hashimoto's thyroiditis and healthy control group were 9.29±20.79, 1.20±0.32 uIU/ml. Frequency of dental amalgam implantation in patients with Hashimoto's thyroiditis was not statistically significantly different from healthy controls (p=186) (t=-1.324) CONCLUSIONS: Some studies identified mercury of amalgam as responsible for autoimmune thyroiditis. We studied whether amalgam fillings are more frequent in Hashimoto's thyroiditis patients and whether it is a causative factor for Hashimoto's thyroiditis. Statistical analysis revealed that there is no relation of amalgam with Hashimoto's thyroiditis (Tab. 1, Ref. 34).

  15. Electromechanical impedance method to assess dental implant stability

    International Nuclear Information System (INIS)

    Tabrizi, Aydin; Rizzo, Piervincenzo; Ochs, Mark W

    2012-01-01

    The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone–implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare ® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant–bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity. (paper)

  16. Cytocompatibility, cytotoxicity and genotoxicity analysis of dental implants

    International Nuclear Information System (INIS)

    M, Reigosa; V, Labarta; G, Molinari; D, Bernales

    2007-01-01

    Several types of materials are frequently used for dental prostheses in dental medicine. Different treatments with titanium are the most used. The aim of the present study was to analyze by means of cytotoxicity and cytocompatibility techniques the capacity of dental implants to integrate to the bone tissue. Cultures of UMR 106 cell line derived from an osteosarcoma were used for bioassays mainly because they show many of the properties of osteoblasts. Dental implant samples provided by B and W company were compared with others of recognized trademarks. The first ones contain ASTM titanium (8348 GR2) with acid printing. Cytotoxicity was analyzed by means of lysosome activity, using the neutral red technique and alkaline phosphatase enzyme activity. Cell variability was determined by means of the acridine ethidium-orange bromide technique. One-way ANOVA and Bonferroni and Duncan post-ANOVA tests were used for the statistical analysis. The assays did not show significant differences among the dental implants analyzed. Our findings show that the dental prostheses studied present high biocompatibility, quantified by the bioassays performed. The techniques employed revealed that they can be a useful tool for the analysis of other materials for dental medicine use

  17. Air atmospheric-pressure plasma-jet treatment enhances the attachment of human gingival fibroblasts for early peri-implant soft tissue seals on titanium dental implant abutments.

    Science.gov (United States)

    Lee, Jung-Hwan; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-01-01

    Although dental implants are commonly used for tooth restoration, there is a lack of studies of treatment regimens for preventing extra-oral infection and decreasing osseointegration failures by establishing early peri-implant soft tissue seals on titanium dental implant abutments. In this study, air atmospheric-pressure plasma-jet (AAPPJ) treatment was applied to titanium disks to assay the potential for early peri-implant soft tissue seals on titanium dental implant abutment. After titanium disks were treated with AAPPJ for 10 s at 250, 500, 1000 and 1500 sccm, surface analysis was performed; the control group received air only or no treatment. Human gingival fibroblasts (HGF) were seeded onto the specimens for evaluating cell attachment and proliferation and adherent-cell morphology was visualized via confocal microscopy. In AAPPJ-treated specimens, the water contact angle decreased according to increased flow rate. Oxygen composition increased in XPS, but no topographical changes were detected. The effect of AAPPJ treatment at 1000 sccm was apparent 2 mm from the treated spot, with a 20% increase in early cell attachment and proliferation. Adherent HGF on AAPPJ-treated specimens displayed a stretched phenotype with more vinculin formation than the control group. Within the limitations of this study, the results indicate that AAPPJ treatment may enhance the early attachment and proliferation of HGF for establishing early peri-implant soft tissue seals on titanium dental implant abutments with possible favorable effects of osseointegration of dental implant.

  18. Overview of Nanoparticle Coating of Dental Implants for Enhanced Osseointegration and Antimicrobial Purposes.

    Science.gov (United States)

    Parnia, Feridoun; Yazdani, Javad; Javaherzadeh, Vahid; Maleki Dizaj, Solmaz

    2017-01-01

    Nanomaterials are suitable candidates for coating of titanium based (Ti-based) dental implants due to their unique properties. The objective of this article is to summarize the application of nanoparticles as Ti-based implant coating materials in order to control and improve the implant success rate with focus on enhanced osseointegration and antimicrobial purposes. This review was conducted using electronic databases and MeSH keywords to detect associated scientific literature published in English. The reviewed articles exhibited that a significant progress in research has occurred in the case of nanomaterial-based coatings for dental implants. Coating of Ti surfaces with nanoparticles can improve soft tissue integration and osteogeneration that leads to improved fixation of implants. Furthermore, osteoconductive nanoparticles induce a chemical bond with bone to attain good biological fixation for implants. Surface modification of implants using antibacterial properties can also decrease the potential for infection, and certainly, present improve clinical outcomes. Considering the reported success, more clinically and in vivo information on the nanoparticle-based implant coatings will add to the successful application of the device in the clinic. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  19. Assessment of Myeloperoxidase and Nitric Levels around Dental Implants and Natural Teeth as a Marker of Inflammation: A Comparative Study.

    Science.gov (United States)

    Kulkarni, Gayithri H; Jadhav, Prashant; Kulkarni, Kiran; Shinde, Sachin V; Patil, Yojana B; Kumar, Manish

    2016-11-01

    Dental implants form the mainstay of dental treatment involving rehabilitation of missing teeth. One of the major concerns for the clinicians doing dental implants is the postsurgical failure of dental implants. Success of dental implants is dependent upon the skills of the surgeon and the amount and quality of the bone remaining at the edentulous area where dental implant has to be placed. Myeloperoxidase (MPO) and nitrites are few of the enzymes and molecules which are said to be altered in inflammation. However, their exact role in the inflammatory processes around natural tooth and dental implant is still unclear. Hence we comparatively evaluated the levels of MPO and nitrites in the areas around the dental implants and natural teeth. The present study comprises 42 patients who underwent prosthetic rehabilitation by dental implants from 2011 to 2014. Depth of probing value (DP), score of plaque index (SPI), gingival index (GI), and index of gingival bleeding time (GBT) were evaluated for the assessment of the periimplant soft tissue changes. Assessment of inflammation around the dental implant surface and around natural tooth was done based on the readings of these parameters. For the measurement of the MPO levels, spectrophotometric MPO assay was used. All the results were analyzed by Statistical Package for the Social Sciences (SPSS) software. The mean plaque index values were 1.56 and 0.97 in periodontitis cases of natural teeth and inflamed cases of dental implants respectively. While comparing mean plaque index, mean probing depth, and mean gingival bleeding index in between the two groups, significant difference was obtained. Mean MPO concentration in periodontitis and gingivitis cases in natural teeth were 0.683 and 0.875 U/μL, while in inflamed dental implant cases, the mean value was 0.622 U/μL. While comparing the total MPO levels, total nitrite levels, and total nitrite concentration in between two study groups, significant difference was obtained

  20. Fractographic analysis of fractured dental implant components

    Directory of Open Access Journals (Sweden)

    Chih-Ling Chang

    2013-03-01

    Conclusion: To avoid implant fracture, certain underlying mechanical risk factors should be noted such as patients with a habit of bruxism, bridgework with a cantilever design, or two implants installed in a line in the posterior mandible.

  1. Implant surfaces and interface processes.

    Science.gov (United States)

    Kasemo, B; Gold, J

    1999-06-01

    The past decades and current R&D of biomaterials and medical implants show some general trends. One major trend is an increased degree of functionalization of the material surface, better to meet the demands of the biological host system. While the biomaterials of the past and those in current use are essentially bulk materials (metals, ceramics, polymers) or special compounds (bioglasses), possibly with some additional coating (e.g., hydroxyapatite), the current R&D on surface modifications points toward much more complex and multifunctional surfaces for the future. Such surface modifications can be divided into three classes, one aiming toward an optimized three-dimensional physical microarchitecture of the surface (pore size distributions, "roughness", etc.), the second one focusing on the (bio) chemical properties of surface coatings and impregnations (ion release, multi-layer coatings, coatings with biomolecules, controlled drug release, etc.), and the third one dealing with the viscoelastic properties (or more generally the micromechanical properties) of material surfaces. These properties are expected to affect the interfacial processes cooperatively, i.e., there are likely synergistic effects between and among them: The surface is "recognized" by the biological system through the combined chemical and topographic pattern of the surface, and the viscoelastic properties. In this presentation, the development indicated above is discussed briefly, and current R&D in this area is illustrated with a number of examples from our own research. The latter include micro- and nanofabrication of surface patterns and topographies by the use of laser machining, photolithographic techniques, and electron beam and colloidal lithographies to produce controlled structures on implant surfaces in the size range 10 nm to 100 microns. Examples of biochemical modifications include mono- or lipid membranes and protein coatings on different surfaces. A new method to evaluate, e

  2. Implant Insertion Torque: Its Role in Achieving Primary Stability of Restorable Dental Implants.

    Science.gov (United States)

    Greenstein, Gary; Cavallaro, John

    2017-02-01

    A literature review was conducted to determine the role of insertion torque in attaining primary stability of dental implants. The review is comprised of articles that discussed the amount of torque needed to achieve primary implant stability in healed ridges and fresh extraction sockets prior to immediate implant loading. Studies were appraised that addressed the effects of minimum and maximum forces that can be used to successfully place implants. The minimum torque that can be employed to attain primary stability is undefined. Forces ≥30 Ncm are routinely used to place implants into healed ridges and fresh extraction sockets prior to immediate loading of implants. Increased insertion torque (≥50 Ncm) reduces micromotion and does not appear to damage bone. In general, the healing process after implant insertion provides a degree of biologic stability that is similar whether implants are placed with high or low initial insertion torque. Primary stability is desirable when placing implants, but the absence of micromotion is what facilitates predictable implant osseointegration. Increased insertion torque helps achieve primary stability by reducing implant micromotion. Furthermore, tactile information provided by the first surgical twist drill can aid in selecting the initial insertion torque to achieve predictable stability of inserted dental implants.

  3. A systematic review on marginal bone loss around short dental implants (implant-supported fixed prostheses.

    Science.gov (United States)

    Monje, Alberto; Suarez, Fernando; Galindo-Moreno, Pablo; García-Nogales, Agustín; Fu, Jia-Hui; Wang, Hom-Lay

    2014-10-01

    This systematic review aimed to evaluate the effect of implant length on peri-implant marginal bone loss (MBL) and its associated influencing factors. An electronic search of the PubMed and MEDLINE databases for relevant studies published in English from November 2006 to July 2012 was performed by one examiner (AM). Selected studies were randomized clinical trials, human experimental clinical trials or prospective studies (e.g., cohort as well as case series) with a clear aim of investigating marginal bone loss of short dental implants (implant length." Additionally, a subgroup analysis, by means of a random-effect one-way ANOVA model, comparing mean MBL values at different levels of each factor ("type of connection" and "type of prostheses") was also performed. The meta-regression of mean MBL on the moderator "implant length" was found to be insignificant (P = 0.633). Therefore, it could not be concluded that implant length had an effect on peri-implant MBL. In addition, standardized differences in mean MBL on the subgroups short (implants, as determined by the meta-analysis (random-effect model), were found to be statistically insignificant (P = 0.222). Within limitations of the present systematic review, it could be concluded that short dental implants (implant MBL as standard implants (≥ 10 mm) for implant-supported fixed prostheses. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Evaluation of Strain Distribution Patterns in Bone around One and Two Dental Implant Supported Overdenture by Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    M. Khoshhal

    2016-01-01

    Full Text Available Introduction & Objective: This finite elements study for the first time has investigated the pattern of strain distribution in bone around dental implants in one and two implant supported overdenture treatment planning in protrusive and laterusive movements, in order to choose the best plan biomechanically. Materials & Methods: To simulate the dental- implant and the bone, with Catia software, Jaws 3-D design was designed and 100 Newton forces were applied to dental implant models in protrusive and laterusive movements. Results: In the design of one implant, the highest amount of strain was observed in laterusive movement in the third cervical and buccal (4097 &epsilonµ and in the design of two implants the highest amount of strain in protrusive movement was observed in the apical third of the lingual surface of the bone around the implant (2435&epsilonµ and in laterusive movement in the apical fifth of lingual and buccal surface of bone around the implant (1668 &epsilonµ. Conclusions: The results of this study revealed that the strain and stress in the single implant design is more than two implants design. These results suggest the use of single implants in patients with minimal chewing force and in occlusion with minimal lateral force. Sci J Hamadan Univ Med Sci . 2016; 22 (4 :293-299

  5. Immediate placement of dental implants in the mandible

    OpenAIRE

    Gurkar Haraswarupa Puttaraju; Paranjyothi Magadi Visveswariah

    2013-01-01

    This case describes extraction of teeth in the mandibular arch, i.e., 41 42 43 44 45 51 52 53 54 55 56 57 58 (grade two mobility), followed by immediate placement of four dental implants (3i biomet), two in the 45 55 region and two dental implants in 12 21 region. A prefabricated provisional mandibular denture was immediately placed. The purpose of immediate placement was to aid the patient resume his professional duties the next day itself along with esthetic and functional comfort, psycholo...

  6. Immediate placement of dental implants in the mandible.

    Science.gov (United States)

    Puttaraju, Gurkar Haraswarupa; Visveswariah, Paranjyothi Magadi

    2013-07-01

    This case describes extraction of teeth in the mandibular arch, i.e., 41 42 43 44 45 51 52 53 54 55 56 57 58 (grade two mobility), followed by immediate placement of four dental implants (3i biomet), two in the 45 55 region and two dental implants in 12 21 region. A prefabricated provisional mandibular denture was immediately placed. The purpose of immediate placement was to aid the patient resume his professional duties the next day itself along with esthetic and functional comfort, psychological well-being and most importantly preserving the remaining tissue in a healthy condition.

  7. Immediate placement of dental implants in the mandible

    Directory of Open Access Journals (Sweden)

    Gurkar Haraswarupa Puttaraju

    2013-01-01

    Full Text Available This case describes extraction of teeth in the mandibular arch, i.e., 41 42 43 44 45 51 52 53 54 55 56 57 58 (grade two mobility, followed by immediate placement of four dental implants (3i biomet, two in the 45 55 region and two dental implants in 12 21 region. A prefabricated provisional mandibular denture was immediately placed. The purpose of immediate placement was to aid the patient resume his professional duties the next day itself along with esthetic and functional comfort, psychological well-being and most importantly preserving the remaining tissue in a healthy condition.

  8. Osseointegration of dental implants installed without mechanical engagement: a histometric analysis in dogs.

    Science.gov (United States)

    Jung, Ui-Won; Kim, Sungtae; Kim, Young-Hee; Cha, Jae-Kook; Lee, In-Seop; Choi, Seong-Ho

    2012-11-01

    The purpose of this study was to elucidate the healing pattern of sand-blasted, large grid, acid-etched (SLA)-surfaced implants at two healing periods in a model that represents loosened implants (LIs) installed without mechanical engagement. Five mongrel dogs were used, in which 20 dental implants were prepared. The implants were divided into two groups according to the absence or presence of initial mechanical engagement: LIs) and control, respectively. An oversized drill was used to prepare the implant area for the LI group. The implants were allowed to heal for 4 or 8 weeks. After the healing period, the experimental animals were sacrificed and block sections were obtained for histological analysis and histometric measurements. All implants were in intimate contact with the host bone and were without any inflammation after both 4 and 8 weeks of healing. While the mean amount of bone-to-implant contact (BIC) was constant in the control group, it tended to increase in the LI group with increasing healing period. However, neither BIC nor bone density differed significantly between the groups or with the healing period. From the results of the study, it can be conjectured that the submerged and unloaded SLA-surfaced implants could result in successful osseointegration, even if the mechanical engagement was not obtained at placement of the implants. © 2011 John Wiley & Sons A/S.

  9. The influence of crown-to-implant ratio on marginal bone levels around splinted short dental implants: A radiological and clincial short term analysis.

    Science.gov (United States)

    Hingsammer, Lukas; Watzek, Georg; Pommer, Bernhard

    2017-12-01

    The amount of marginal bone resorption around dental implants is considered to have a significant impact on implant stability as well as implant survival rates. The aim of this prospective study was to investigate the influence of prosthetic as well as patient specific factors on marginal bone loss around short dental implants. Seventy-six implants, which supported splinted crowns were included for investigation. All implants were from the same type and had an intraosseous length of 6.5 mm and a diameter of 4.0 mm. Twenty implants were additionally splinted onto longer ones. Measurements of marginal bone loss were performed at a mean of 12.38 months after prosthetic loading and the mean follow-up for clinical evaluation was 20.52 months. Overall two implant failures were recorded, revealing a survival rate of 97.3%. Marginal bone resorption around 72 short implants measured 0.71 mm (SD: 0.74 mm) and was found to have a strong correlation with calculated Crown-to-Implant ratio (r = .71; P implant surface area, location, position, bone quality, and insertion torque did not influence peri-implant bone loss after one year of loading. Within the limitations of the study, it is suggested that Crown-to-Implant ratios should not exceed 1.7 to avoid increased early marginal bone loss. © 2017 Wiley Periodicals, Inc.

  10. Fibronectin-Grafted Titanium Dental Implants: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Yu-Chi Chang

    2016-01-01

    Full Text Available Modification of the physiochemical properties of titanium surfaces using glow discharge plasma (GDP and fibronectin coating has been shown to enhance the surface hydrophilicity, surface roughness, cell adhesion, migration, and proliferation. This in vivo study aimed to evaluate the bone integration efficacy of a biologically modified implant surface. Two different surface-modified implants (Ar-GDP and GDP-fib were placed in the mandibular premolar area of six beagle dogs for 2–8 weeks. Three techniques [histologic evaluation, resonance frequency analysis (RFA, and microcomputed tomography (micro-CT evaluation] were used to detect the implant stability and bone-implant contact. The implant stability quotient values of GDP-fib implants were significantly greater than the Ar-GDP implants at 2 and 4 weeks (P<0.01. The bone volume/total volume ratio of GDP-fib implants was greater than the Ar-GDP implants in micro-CT evaluation. A high positive correlation was observed between RFA and micro-CT measurements. At 2 weeks, osteoblasts were seen to line the implant surface, and multinuclear osteoclasts could be seen on the surface of old parent bone. After 8 weeks, a majority of the space in the wound chamber appeared to be replaced by bone. Enhancement of the stability of biologically modified implants was proved by the results of RFA, micro-CT, and histological analysis. This enhanced stability may help fasten treatment and be clinically beneficial.

  11. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    Science.gov (United States)

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and

  12. Laminin coatings on implant surfaces promote osseointegration: Fact or fiction?

    Science.gov (United States)

    Javed, Fawad; Al Amri, Mohammad D; Kellesarian, Sergio Varela; Al-Askar, Mansour; Al-Kheraif, Abdulaziz A; Romanos, Georgios E

    2016-08-01

    To our knowledge from indexed literature, the role of laminins in the expression of osteogenic biomarkers and osseointegration enhancement has not been systematically reviewed. The aim of the present systematic review was to assess the role of laminin coatings on implant surfaces in promoting osseointegration. To address the focused question, "Do laminin coatings on implant surfaces influence osseointegration?", indexed databases were searched from 1965 up to and including November 2015 using various combination of the following keywords: "Bone to implant contact"; "implant"; "laminins"; and "osseointegration". Letters to the Editor, case-reports/case-series, historic reviews, and commentaries were excluded. The pattern of the present systematic review was customized to primarily summarize the pertinent data. Nine studies were included. Six studies were prospective and were performed in animals and 5 studies were in vitro. Results from 8 studies showed that laminin coatings enhanced new bone formation around implants and/or bone-to-implant contact. One study showed that laminin coated implants surfaces did not improve osseointegration. On experimental grounds, laminin coatings seem to enhance osteogenic biomarkers expression and/or osseointegration; however, from a clinical perspective, further randomized control trials are needed to assess the role of laminin coatings in promoting osseointegration around dental implants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Effects of diabetes on the osseointegration of dental implants

    OpenAIRE

    Mellado Valero, Ana; Ferrer García, Juan Carlos; Herrera Ballester, Agustín; Labaig Rueda, Carlos

    2007-01-01

    The increased prevalence of diabetes mellitus has become a public health problem. Hyperglycaemia entails a rise in the morbidity and mortality of these patients. Although a direct relationship with periodontal disease has already been shown, little is known about the results of dental implants in diabetics. The present paper reviews the bibliography linking the effect of diabetes on the osseointegration of implants and the healing of soft tissue. In experimental models of diabetes, a redu...

  14. Biomechanical analysis and comparison of 12 dental implant systems using 3D finite element study.

    Science.gov (United States)

    Liang, Rui; Guo, Weihua; Qiao, Xiangchen; Wen, Hailin; Yu, Mei; Tang, Wei; Liu, Lei; Wei, Yongtao; Tian, Weidong

    2015-01-01

    Finite element analysis plays an important role in dental implant design. The objective of this study was to show the effect of the overall geometry of dental implants on their biomechanics after implantation. In this study, 12 dental implants, with the same length, diameter and screw design, were simulated from different implant systems. Numerical model of right mandibular incisor bone segment was generated from CT data. The von-Mises stress distributions and the total deformation distributions under vertical/lateral load were compared for each implant by scores ranking method. The implants with cylindrical shapes had highest scores. Results indicated that cylindrical shape represented better geometry over taper implant. This study is helpful in choosing the optimal dental implant for clinical application and also contributes to individual implant design. Our study could also provide reference for choice and modification of dental implant in any other insertion sites and bone qualities.

  15. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants.

    Science.gov (United States)

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew G; Pajarinen, Jukka; Goodman, Stuart B; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C

    2016-03-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 h, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bite force and dental implant treatment: a short review

    Directory of Open Access Journals (Sweden)

    Flanagan D

    2017-06-01

    Full Text Available Dennis Flanagan1,2 1Department of Dental Medicine, Implantology LUdeS Foundation, Ricasoli, Malta; 2Private Practice, Willimantic, CT, USA Abstract: Dental implants are placed endosseously, and the bone is the ultimate bearer of the occlusal load. Patients are not uniform in the maximum bite force they can generate. The occlusal biting load in the posterior jaw is usually about three times of that found in the anterior. It is possible for supporting implants to be overloaded by the patients’ biting force, resulting in bone loss and failure of the fixture. Bite force measurement may be an important parameter when planning dental implant treatment. Some patients can generate extreme biting loads that may cause a luxation of the fixture and subsequent loss of osseointegration. A patient with low biting force may be able to have a successful long-term outcome even with poor anatomical bone qualities. Patients with a high bite force capability may have an increased risk for late component fracture or implant failure. There is no correlation of any bite force value that would indicate any overload of a given implant in a given osseous site. Nonetheless, after bite force measurement, a qualitative judgement may be made by the clinician for the selection of an implant diameter and length and prosthetic design. Keywords: occlusal load, newtons, oral function, force, sensor, software

  17. Reconstruction of attached soft tissue around dental implants by acelluar dermal matrix grafts and resin splint

    Science.gov (United States)

    Liu, Changying; Su, Yucheng; Tan, Baosheng; Ma, Pan; Wu, Gaoyi; Li, Jun; Geng, Wei

    2014-01-01

    Objectives: The purpose of this study was to recommend a new method using acellular dermal matrix graft and resin splint to reconstruct the attached soft tissue around dental implants in patients with maxillofacial defects. Materials and methods: Total 8 patients (3 male and 5 female patients) diagnosed with maxillofacial defects and dentition defects caused by tumors, fractures or edentulous jaw, were selected for this study. Dental implants were routinely implanted at the edentulous area. Acellular dermal matrix heterografts and resin splint were used to increase the attached soft tissue. The width of attached gingiva in the labial or buccal surface at edentulous area was measured before surgical procedures and after the completion of superstructures. Paired t-test was applied to assess the change of quantitative variables. All tests were 2-tailed, and P implants could be reconstructed one month after the completion of surgical procedures, and the epithelial cuff around the implant neck established very well. The width of attached gingival tissue in the patients increased significantly from a mean of 0.61 ± 0.75 mm to 6.25 ± 1.04 mm. The patients were fully satisfied with the esthetic and functional results achieved. Conclusions: The acellular dermal matrix graft could be used to increase the attached gingiva around dental implants in these patients with maxillofacial defects. The resin splint could facilitate the healing of graft. PMID:25663964

  18. Fracaso en los implantes dentales: Fibrointegración. Reporte de caso clínico

    Directory of Open Access Journals (Sweden)

    Iris Luz Santís Chamorro

    2014-06-01

    Full Text Available  ResumenLa rehabilitación con implantes dentales en los pacientes con edentulismo parcial o total posee amplias indicaciones que se ven limitadas por factores anatómicos y biológicos. La oseointegración surge como un hecho descubierto entre la adaptación biológica del hueso a la superficie del titanio del implante (interfase hueso-implante por lo que se afirma que el motivo de fracaso de la mayoría de los sistemas de implantes es que éstos se encapsulen en un tejido de cicatrización fibroso (fibrointegración mal diferenciado lo que crea movilidad, que lleva a reacciones en la mucosa y finalmente a la pérdida. El objetivo del presente artículo es promover la presentación de casos clínicos de pacientes con fracaso de implantes dentales, con el ánimo de esclarecer las posibles causas y los factores coadyuvantes de dicho fracaso, y así mejorar los resultados en implantología. (Duazary 2008; 115-120AbstractThe rehabilitation with dental implants in the patients with partial absence or total of teeth possesses extensive indications that are seen limited by biological and anatomical factors. The oseointegration arises like a discovered fact among the biological adaptation of the bone to the surface of the titanic of the implant (interface bone-implant for which it is affirmed that the motive of failure of the majority of the systems of implants is that these it self envelop in a scar formation of fibrous tissue (Fibrointegration badly differentiated what creates mobility, that carries to reactions in the mucous membrane and finally to the loss. The objective of the present article is to promote the presentation of patients' clinical cases with failure of dental implants, with the intention of clarifying the possible reasons and the helping factors of the above mentioned failure, and this way to improve the results in implantology.Key Words: Fibrointegration; oseointegration; dentals implants; interface; implants failure.

  19. New methods for oral rehabilitation with the dental implant

    International Nuclear Information System (INIS)

    Chang Joon Yim; Marx, R.E.

    1999-01-01

    Now autogenous bone and allogeneic bone implants offer a wide variety of surgical options to surgeons in the advanced dental implant surgery, whether its used separately or in combination. The surgeons are able to make judicious and fruitful choices, only with a thorough knowledge of the basic biological principles and skillful techniques. Further development of the new materials or new techniques in bone grafts has enabled the clinicians to repair even the most difficult bony defects successfully during dental implant surgery. Currently, researchers' and clinicians' interests were focused on the various growth factors such as PDGF, TGF-beta or BMPs. Platelets has been known as a source of PDGF and TGF-beta. Current technique of autogenous cancellous cellular bone graft mixed with the patient's own concentrated platelet rich plasma(PRP) gel has been developed. Several recombinant human BMP(rh-BMP)s has been studied for human clinical trial in a variety of bone defect cases related to the dental implants and FDA approval. Some showed favorable results. Rh-BMP7 was clinically tried to fill the space defects after lifting the Schneiderian membrane in the maxillary sinus of the patient. In several months dental implants were successfully placed at the edentulous maxillae where the maxillary sinus defects has been filled with rh-BMP will be discussed. The authors will introduce the basic ideas, basic histological study and the current techniques of bone grafts mixed with autogenous platelet concentrates gel and its clinical cases applied for the dental implant surgery. The idea of 'tent pole' technique was applied for the severely atrophic mandible and the results were predictable

  20. Histologic and histomorphometric behavior of microgrooved zirconia dental implants with immediate loading.

    Science.gov (United States)

    Delgado-Ruiz, Rafael Arcesio; Calvo-Guirado, Jose Luis; Abboud, Marcus; Ramirez-Fernandez, Maria Piedad; Maté-Sánchez de Val, José Eduardo; Mate-Sanchez, Jose Eduardo; Negri, Bruno; Rothamel, Daniel

    2014-12-01

    The study aims to assess the total soft tissue (ST) width, crestal bone level (CBL), bone-to-implant contact (BIC), and bone density (BD) for zirconia implants textured with microgrooved surfaces and immediately loaded. This study included 51 implants; one implant from each study group was retained for surface characterization. The 48 remaining implants were inserted randomly in premolar areas of both sides of the healed edentulous lower jaws of foxhound dogs. They were divided into three groups of 16: control (titanium); test A (zirconia), and test B (microgrooved zirconia). The implants were splinted and covered with an acrylic bridge. A split-mouth design was used and immediate occlusal loading was applied on one side, while the other side did not have occlusal contact. ST, CBL, BIC, and BD were evaluated after 3 months. The effects of immediate loading on these parameters were analyzed. All the implants were osseointegrated. ST was established at 3 months with mean values of 2.9 ± 0.4 mm for all groups. No differences were appreciated between loaded and unloaded sides regarding ST (p > .05). CBL showed a mean of 1.2 ± 0.3 mm for all groups without differences between loaded and unloaded sides (p > .05). BIC percentages were significantly higher for loaded all-microgrooved implants (p implants (p loaded implants than unloaded. Within the limitations of the present study, it may be concluded that for zirconia dental implants with microgrooved surfaces and immediate loading, the thickness of STs remains stable resulting in 3 mm mean biologic width, that crestal bone preservation is related to insertion depth, and that higher BIC percentages and increased BD around implants microgrooved over the entire intraosseous area may be expected at 3 months following implant insertion and immediate loading. © 2013 Wiley Periodicals, Inc.

  1. Medication-Related Osteonecrosis of the Jaw Around Dental Implants: Implant Surgery-Triggered or Implant Presence-Triggered Osteonecrosis?

    Science.gov (United States)

    Giovannacci, Ilaria; Meleti, Marco; Manfredi, Maddalena; Mortellaro, Carmen; Greco Lucchina, Alberta; Bonanini, Mauro; Vescovi, Paolo

    2016-05-01

    Dentoalveolar surgery including tooth extractions and dental implants placement is considered the major risk factor for developing medication-related osteonecrosis of the jaw (MRONJ).In this study, a patient series of MRONJ around dental implants were carefully analyzed to describe the findings and to assess the possible risk factors. Fifteen patients with peri-implant bone osteonecrosis were selected out of a group of 250 patients (6%). Patients were divided into 2 groups according to the temporal relationship. Group 1 (G1)-necrosis immediately after implant placement (from 2 to 10 months) and defined as "implant surgery-triggered" MRONJ. Group 2-necrosis distant (from 1 to 15 years) from implant placement and defined as "implant presence-triggered" MRONJ. Epidemiological and pharmacological variables were recorded as well as specific data about osteonecrosis and dental implants. G1 included 6 patients: 5 (83.4%) treated with oral bisphosphonates (BPs) for osteoporosis and 1 (16.6%) with intravenous BPs for breast cancer. Mean duration of BP therapy (BPT) was 83.7 months. G2 included 9 patients: 8 patients (88.89%) treated with intravenous BPs for malignant disease and 1 (11.11%) with oral BPs for osteoporosis. Data confirms that not only surgical insertion of dental implants is a potential risk factor for the development of osteonecrosis but also the presence itself of the implant into the bone can be associated with this disease. Therefore, it is necessary to inform of the increased risk for MRONJ also the patients who have already osteointegrated implants and are going to start the BPT.The risk is lower for patients receiving oral BPs but it exists and seems to be higher if the implant is located in the posterior areas, if the duration of BPT is more than 3 years and if the patient is under corticosteroid therapy.

  2. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    Directory of Open Access Journals (Sweden)

    Amirreza Shayganpour

    2015-11-01

    Full Text Available Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities.

  3. Pulsed laser-induced micro-and nanosized morphology and composition of titanium dental implants

    Science.gov (United States)

    Joób-Fancsaly, Á.; Divinyi, T.; Fazekas, Á.; Daroczi, Cs; Karacs, A.; Petõ, G.

    2002-10-01

    The surface morphology of machined screw-shaped titanium dental implants was modified by pulsed irradiation with an Nd glass laser. This method supplied very different surface elements in nanometer and micrometer ranges identified with scanning electron microscopy and atomic force microscopy as well. The surface composition was unchanged during these treatments. A rabbit experiment was carried out to investigate the direct bone contact (osseointegration) which was characterized by the removal torque of the implants. The 50 nm and 10-50 µm sized droplike elements were formed from the machined flat surface by the laser irradiation depending on the laser intensity. The osseointegration was enhanced by the increase of the density of nanosized elements and by the size of the microsized elements, showing the importance of this surface morphology in the direct bone-implant contact.

  4. Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration

    DEFF Research Database (Denmark)

    Neldam, Camilla Albeck; Lauridsen, Torsten; Rack, Alexander

    2015-01-01

    The purpose of this study was to describe a refined method using high-resolution synchrotron radiation microtomography (SRmicro-CT) to evaluate osseointegration and peri-implant bone volume fraction after titanium dental implant insertion. SRmicro-CT is considered gold standard evaluating bone...... microarchitecture. Its high resolution, high contrast, and excellent high signal-to-noise-ratio all contribute to the highest spatial resolutions achievable today. Using SRmicro-CT at a voxel size of 5 μm in an experimental goat mandible model, the peri-implant bone volume fraction was found to quickly increase...... to 50% as the radial distance from the implant surface increased, and levelled out to approximately 80% at a distance of 400 μm. This method has been successful in depicting the bone and cavities in three dimensions thereby enabling us to give a more precise answer to the fraction of the bone-to-implant...

  5. Immunohistochemical evaluation: The effects of propolis on osseointegration of dental implants in rabbit′s tibia

    Directory of Open Access Journals (Sweden)

    Bushra Habeeb Al-Molla

    2014-01-01

    Full Text Available Background: Dental implant is an artificial tooth root-fixed into the jaws to hold a replacement tooth or bridge. Functional surface modifications by organic material such as propolis coating seem to enhance early peri-implant bone formation, enhancing the initial cell attachment. The aim of the study was to study the expression of osteocalcin (OC and type I collagen (COLL1 as bone formation markers in propolis-coated and -uncoated implant in interval periods (1, 2, 4, and 6 weeks. Materials and Methods: Commercially pure titanium (cpTi implants, coated with propolis protein, were placed in the tibias of 40 New Zealand white rabbits, histological and immunohistochemical tests for detection of expression of OC and COLL1were performed on all the implants of both control and experimental groups for (1, 2, 4, and 6 weeks healing intervals. Results: Histological finding for coated titanium implant with propolis illustrated an early bone formation, mineralization, and maturation in comparison to control. Immunohistochemical finding showed that positive reaction for OC and COLL1 was expressed by osteoblast cells at implants coated with propolis, indicating that bone formation and maturation was accelerated by adding biological materials as a modification modality of implant surface. Conclusion: The present study concludes that coating of implants with propolis showed increment in osseointegration in short interval period.

  6. Immediate dental implant placement in the aesthetic zone

    NARCIS (Netherlands)

    Slagter, Kirsten Willemijn

    2016-01-01

    After pulling a tooth when aesthetics play a role, there is a tendency to place a dental implant immediately after pulling the tooth, preferably in combination with a temporary crown. This tendency is probably related to evolving society factors, with more demanding patients and a wish for an

  7. Antibacterial and bioactive coatings on titanium implant surfaces.

    Science.gov (United States)

    Kulkarni Aranya, Anupama; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z; Zhang, Yu; Saxena, Deepak

    2017-08-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP, and FZn-CaP and incubated for 24 h. Negative control was uncoated Ti discs. Coated surfaces were characterized using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Antibacterial properties were tested using Porphyromonas gingivalis because of its strong association with periodontal and peri-implant infections. Bacterial adhesion and colonization were studied at different timepoints. The coated surfaces had compositional characteristics similar to that of bone mineral and they inhibited the growth, colonization and adherence of P. gingivalis, resulted in reduced thickness of biofilms and bacterial inhibition in the culture medium as compared to the positive and negative controls (p  0.05). It has been previously demonstrated that these coatings have excellent in vitro bioactivity (formed carbonate hydroxyapatite when immersed in a simulated body fluid). Such coatings can enhance osseointegration and prevent infection in implants, thereby improving the success rates of implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2218-2227, 2017. © 2017 Wiley Periodicals, Inc.

  8. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study

    Directory of Open Access Journals (Sweden)

    James Tedesco

    2017-01-01

    Full Text Available In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed (n = 12 and conventional stainless steel conical (n = 4 implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

  9. Osseointegration of a 3D Printed Stemmed Titanium Dental Implant: A Pilot Study.

    Science.gov (United States)

    Tedesco, James; Lee, Bryan E J; Lin, Alex Y W; Binkley, Dakota M; Delaney, Kathleen H; Kwiecien, Jacek M; Grandfield, Kathryn

    2017-01-01

    In this pilot study, a 3D printed Grade V titanium dental implant with a novel dual-stemmed design was investigated for its biocompatibility in vivo. Both dual-stemmed ( n  = 12) and conventional stainless steel conical ( n  = 4) implants were inserted into the tibial metaphysis of New Zealand white rabbits for 3 and 12 weeks and then retrieved with the surrounding bone, fixed, dehydrated, and embedded into epoxy resin. The implants were analyzed using correlative histology, microcomputed tomography, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The histological presence of multinucleated osteoclasts and cuboidal osteoblasts revealed active bone remodeling in the stemmed implant starting at 3 weeks and by 12 weeks in the conventional implant. Bone-implant contact values indicated that the stemmed implants supported bone growth along the implant from the coronal crest at both 3- and 12-week time periods and showed bone growth into microporosities of the 3D printed surface after 12 weeks. In some cases, new bone formation was noted in between the stems of the device. Conventional implants showed mechanical interlocking but did have indications of stress cracking and bone debris. This study demonstrates the comparable biocompatibility of these 3D printed stemmed implants in rabbits up to 12 weeks.

  10. Dental Implant Thread Design and the Consequences on Long-Term Marginal Bone Loss.

    Science.gov (United States)

    Ormianer, Zeev; Matalon, Shlomo; Block, Jonathan; Kohen, Jerry

    2016-08-01

    The aim of this study was to present the implant macrostructure effect on marginal bone loss using 3 dental implant thread designs with differences in thread pitch, lead, and helix angle. All implants used were sourced from the same company and had the same microstructured surface. This is a nonrandomized, retrospective, double-blind study. Data were collected by an independent Tel Aviv University group from a general practitioner's private practice patient records. In total, 1361 implants met the inclusion criteria representing the 3 types of implants macrostructure. Overall survival rate was 96.3% with 50 implants failing (3.7%) out of a total of 1361 implants. Survival rates for the 3 groups were: group A 96.6%, group B 95.9%, and in group C 100%. Average bone loss for groups A, B, and C were 2.02 (±1.70) mm, 2.10 (±1.73) mm, and 1.90 (±1.40) mm, respectively. Pairwise comparisons revealed that less bone loss occurred in group A compared with group B (P = 0.036). Favorable long-term bone loss results were found in implants with a larger pitch, deeper apical threads, and a narrower implant core. One-piece V-thread design implants demonstrated 100% survival rate.

  11. A residual granuloma in association with a dental implant.

    Science.gov (United States)

    McCracken, Michael S; Chavali, Ramakiran V; Al-Naief, Nasser Said; Eleazer, Paul D

    2012-04-01

    At times, dental implants are placed into sites with a history of periapical pathology. Sometimes the infection is active, and other times the tooth may have been extracted years before implant placement. In either case, the possibility exists for long-term residual cysts or infections that can negatively impact the prognosis of the implant. In this case report, an implant is placed into a healed mandibular ridge several months after extraction of the tooth. A radiolucency was noted on routine radiographic examination 2 years later. Surgical inspection and histology revealed a periapical granuloma with acute and chronic inflammatory cells. After surgical curettage of the site, the patient healed without complication. Implants may develop apical pathology as a result of a preexisting long-term residual infection.

  12. Antibacterial effect of doxycycline-coated dental abutment surfaces

    International Nuclear Information System (INIS)

    Xing, Rui; Tiainen, Hanna; Shabestari, Maziar; Lyngstadaas, Ståle P; Haugen, Håvard J; Witsø, Ingun L; Lönn-Stensrud, Jessica; Jugowiec, Dawid

    2015-01-01

    Biofilm formation on dental abutment may lead to peri-implant mucositis and subsequent peri-implantitis. These cases are clinically treated with antibiotics such as doxycycline (Doxy). Here we used an electrochemical method of cathodic polarization to coat Doxy onto the outer surface of a dental abutment material. The Doxy-coated surface showed a burst release in phosphate-buffered saline during the first 24 h. However, a significant amount of Doxy remained on the surface for at least 2 weeks especially on a 5 mA–3 h sample with a higher Doxy amount, suggesting both an initial and a long-term bacteriostatic potential of the coated surface. Surface chemistry was analyzed by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. Surface topography was evaluated by field emission scanning electron microscopy and blue-light profilometry. Longer polarization time from 1 h to 5 h and higher current density from 1 to 15 mA cm −2 resulted in a higher amount of Doxy on the surface. The surface was covered by a layer of Doxy less than 100 nm without significant changes in surface topography. The antibacterial property of the Doxy-coated surface was analyzed by biofilm and planktonic growth assays using Staphylococcus epidermidis. Doxy-coated samples reduced both biofilm accumulation and planktonic growth in broth culture, and also inhibited bacterial growth on agar plates. The antibacterial effect was stronger for samples of 5 mA–3 h coated with a higher amount of Doxy compared to that of 1 mA–1 h. Accordingly, an abutment surface coated with Doxy has potential for preventing bacterial colonization when exposed to the oral cavity. Doxy-coating could be a viable way to control peri-implant mucositis and prevent its progression into peri-implantitis. (paper)

  13. Development of binary and ternary titanium alloys for dental implants.

    Science.gov (United States)

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-11-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system.

    Science.gov (United States)

    Kitagawa, Tsuyoshi; Tanimoto, Yasuhiro; Odaki, Misako; Nemoto, Kimiya; Aida, Masahiro

    2005-11-01

    The objective of this study was to investigate the influence of implant/abutment joint designs on abutment screw loosening in a dental implant system, using nonlinear dynamic analysis of the finite element method (FEM). This finite element simulation study used two dental implant systems: the Ankylos implant system (Degusa Dental, Hanau, German) with a taper joint (taper joint-type model), and the Bränemark implant system (Nobel Biocare, Gothenburg, Sweden) with an external hex joint (external hex joint-type model). The nonlinear dynamic analysis was performed using three-dimensional finite element analysis. In comparing the movement of the taper type-joint model and external hex type-joint model, it was found that the external hex type-joint model had greater movement than the taper type-joint model. The external hex joint-type model showed rotation movement, whereas the movement of the taper joint-type model showed no rotation. It was concluded that the nonlinear dynamic analysis used in this study clearly demonstrated the differences in rotation of components in dental implant systems with taper or external hex joints. Copyright (c) 2005 Wiley Periodicals, Inc.

  15. Assessment and Evaluation of Quality of Life (OHRQoL) of Patients with Dental Implants Using the Oral Health Impact Profile (OHIP-14) - A Clinical Study.

    Science.gov (United States)

    Alzarea, Bader K

    2016-04-01

    Peri-implant tissue health is a requisite for success of dental implant therapy. Plaque accumulation leads to initiation of gingivitis around natural teeth and peri-implantitis around dental implants. Peri-implantitis around dental implants may result in implant placement failure. For obtaining long-term success, timely assessment of dental implant site is mandatory. To assess and evaluate Quality of Life (OHRQoL) of individuals with dental implants using the Oral Health Impact Profile (OHIP-14). Total 92 patients were evaluated for assessment of the health of peri-implant tissues by recording, Plaque Index (PI), Probing Pocket Depth (PD), Bleeding On Probing (BOP) and Probing Attachment Level (PAL) as compared to contra-lateral natural teeth (control). In the same patients Quality of Life Assessment was done by utilizing Oral Health Impact Profile Index (OHIP-14). The mean plaque index around natural teeth was more compared to implants and it was statistically significant. Other three dimensions mean bleeding on probing; mean probing attachment level and mean pocket depth around both natural teeth and implant surfaces was found to be not statistically significant. OHIP-14 revealed that patients with dental implants were satisfied with their Oral Health-Related Quality of Life (OHRQoL). Similar inflammatory conditions are present around both natural teeth and implant prostheses as suggested by results of mean plaque index, mean bleeding on probing, mean pocket depth and mean probing attachment level, hence reinforcing the periodontal health maintenance both prior to and after incorporation of dental implants. Influence of implant prostheses on patient's oral health related quality of life (as depicted by OHIP-14) and patients' perceptions and expectations may guide the clinician in providing the best implant services.

  16. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs

    Science.gov (United States)

    Qiao, Shichong; Cao, Huiliang; Zhao, Xu; Lo, Hueiwen; Zhuang, Longfei; Gu, Yingxin; Shi, Junyu; Liu, Xuanyong; Lai, Hongchang

    2015-01-01

    Dental implants with proper antibacterial ability as well as ideal osseointegration are being actively pursued. The antimicrobial ability of titanium implants can be significantly enhanced via modification with silver nanoparticles (Ag NPs). However, the high mobility of Ag NPs results in their potential cytotoxicity. The silver plasma immersion ion-implantation (Ag-PIII) technique may remedy the defect. Accordingly, Ag-PIII technique was employed in this study in an attempt to reduce the mobility of Ag NPs and enhance osseointegration of sandblasted and acid-etched (SLA) dental implants. Briefly, 48 dental implants, divided equally into one control and three test groups (further treated by Ag-PIII technique with three different implantation parameters), were inserted in the mandibles of six Labrador dogs. Scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry were used to investigate the surface topography, chemical states, and silver release of SLA- and Ag-PIII-treated titanium dental implants. The implant stability quotient examination, Microcomputed tomography evaluation, histological observations, and histomorphometric analysis were performed to assess the osseointegration effect in vivo. The results demonstrated that normal soft tissue healing around dental implants was observed in all the groups, whereas the implant stability quotient values in Ag-PIII groups were higher than that in the SLA group. In addition, all the Ag-PIII groups, compared to the SLA-group, exhibited enhanced new bone formation, bone mineral density, and trabecular pattern. With regard to osteogenic indicators, the implants treated with Ag-PIII for 30 minutes and 60 minutes, with the diameter of the Ag NPs ranging from 5–25 nm, were better than those treated with Ag-PIII for 90 minutes, with the Ag NPs diameter out of that range. These results suggest that Ag-PIII technique can reduce the mobility of Ag NPs and

  17. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    F. Mangano

    2014-01-01

    Full Text Available Statement of Problem. Direct metal laser sintering (DMLS is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs; to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  18. A Review of Titanium Zirconium (TiZr Alloys for Use in Endosseous Dental Implants

    Directory of Open Access Journals (Sweden)

    Michel Dard

    2012-08-01

    Full Text Available Dental implants made from binary titanium-zirconium (TiZr alloys have shown promise as a high strength, yet biocompatible alternative to pure titanium, particularly for applications requiring small diameter implants. The aim of this review is to summarize existing literature reporting on the use of binary TiZr alloys for endosseous dental implant applications as tested in vitro, in animals and clinically. And furthermore to show that TiZr is “at least as good as” pure titanium in terms of biocompatibility and osseointergration. From the twelve papers that met the inclusion criteria, the current literature confirms that TiZr alloys produce small diameter implants with a strength up to 40% higher than conventional, cold-worked, grade IV titanium implants, and with a corrosion resistance and biocompatibility that is at least as good as pure titanium. The surface structure of TiZr is compatible with established surface treatments proven to aid in the osseointegration of titanium implants. Furthermore, binary TiZr alloys have been shown to achieve good osseointegration and high success rates both in animal and in clinical studies.

  19. Mechanism and Clinical Properties of StemBios Cell Therapy: Induction of Early Osseointegration in Novel Dental Implants.

    Science.gov (United States)

    Weng, Chao-Chia; Ou, Keng-Liang; Wu, Chia-Yu; Huang, Yen-Heng; Wang, James; Yen, Yun; Cheng, Han-Yi; Lin, Yun-Ho

    To examine early bone tissue healing in dental implants incorporating StemBios cell therapy. SLAffinity samples were examined by scanning electron microscopy and atomic force microscopy. The clinical trial comprised 11 patients, who each received a dental implant in the mandible. Only one of these 11 patients received StemBios cell therapy in combination with the dental implant. The patients continued to be observed over a 4-month period after implantation using computed tomography and resonance frequency analysis. It was found that StemBios cell therapy promoted bone tissue healing in the case of the treated dental implant. The data indicated that stress altered more smoothly and declined faster in the patient who received the StemBios cell therapy than those without StemBios cell therapy over 4 months. A dental implant with SLAffinity surface treatment, in combination with StemBios cell therapy, significantly promoted bone tissue healing, especially at early osseointegration compared with that of implants without StemBios cell therapy when monitored over a 4-month period.

  20. Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview

    OpenAIRE

    Hamdan S. Alghamdi

    2018-01-01

    Nowadays, dental implants have become more common treatment for replacing missing teeth and aim to improve chewing efficiency, physical health, and esthetics. The favorable clinical performance of dental implants has been attributed to their firm osseointegration, as introduced by Brånemark in 1965. Although the survival rate of dental implants over a 10-year observation has been reported to be higher than 90% in totally edentulous jaws, the clinical outcome of implant treatment is challenged...

  1. The issue of corrosion in dental implants: a review.

    Science.gov (United States)

    Olmedo, Daniel G; Tasat, Déborah R; Duffó, Gustavo; Guglielmotti, Maria B; Cabrini, Rómulo L

    2009-01-01

    Pure titanium or titanium alloys, and to a lesser extent, zirconium, are metals that are often used in direct contact with host tissues. These metallic biomaterials are highly reactive, and on exposure to fluid media or air, quickly develop a layer of titanium dioxide (TiO2) or zirconium dioxide (ZrO2). This layer of dioxide forms a boundary at the interface between the biological medium and the metal structure, determining the degree of biocompatibility and the biological response of the implant. Corrosion is the deterioration a metal undergoes as a result of the surrounding medium (electrochemical attack), which causes the release of ions into the microenvironment. No metal or alloy is entirely inert in vivo. Corrosion phenomena at the interlace are particularly important in the evolution of both dental and orthopedic implants and one of the possible causes of implant failure after initial success. This paper comprises a review of literature and presents results of our laboratory experiments related to the study of corrosion, with special emphasis on dental implants. In situ degradation of a metallic implant is undesirable because it alters the structural integrity of the implant. The issue of corrosion is not limited to a local problem because the particles pmduced as a result could migrate to distant sites, whose evolution would require further studies.

  2. Fatigue failure of dental implants in simulated intraoral media.

    Science.gov (United States)

    Shemtov-Yona, K; Rittel, D

    2016-09-01

    Metallic dental implants are exposed to various intraoral environments and repetitive loads during service. Relatively few studies have systematically addressed the potential influence of the environment on the mechanical integrity of the implants, which is therefore the subject of this study. Four media (groups) were selected for room temperature testing, namely dry air, saliva substitute, same with 250ppm of fluoride, and saline solution (0.9%). Monolithic Ti-6Al-4V implants were loaded until fracture, using random spectrum loading. The study reveals that the only aggressive medium of all is the saline solution, as it shortens significantly the spectrum fatigue life of the implants. The quantitative scanning electron fractographic analysis indicates that all the tested implants grew fatigue cracks of similar lengths prior to catastrophic fracture. However, the average crack growth rate in the saline medium was found to largely exceed that in other media, suggesting a decreased fracture toughness. The notion of a characteristic timescale for environmental degradation was proposed to explain the results of our spectrum tests that blend randomly low and high cycle fatigue. Random spectrum fatigue testing is powerful technique to assess and compare the mechanical performance of dental implants for various designs and/or environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Design optimization of a radial functionally graded dental implant.

    Science.gov (United States)

    Ichim, Paul I; Hu, Xiaozhi; Bazen, Jennifer J; Yi, Wei

    2016-01-01

    In this work, we use FEA to test the hypothesis that a low-modulus coating of a cylindrical zirconia dental implant would reduce the stresses in the peri-implant bone and we use design optimization and the rule of mixture to estimate the elastic modulus and the porosity of the coating that provides optimal stress shielding. We show that a low-modulus coating of a dental implant significantly reduces the maximum stresses in the peri-implant bone without affecting the average stresses thus creating a potentially favorable biomechanical environment. Our results suggest that a resilient coating is capable of reducing the maximum compressive and tensile stresses in the peri-implant bone by up to 50% and the average stresses in the peri-implant bone by up to 15%. We further show that a transitional gradient between the high-modulus core and the low-modulus coating is not necessary and for a considered zirconia/HA composite the optimal thickness of the coating is 100 µ with its optimal elastic at the lowest value considered of 45 GPa. © 2015 Wiley Periodicals, Inc.

  4. Outcomes of implants and restorations placed in general dental practices

    Science.gov (United States)

    Da Silva, John D.; Kazimiroff, Julie; Papas, Athena; Curro, Frederick A.; Thompson, Van P.; Vena, Donald A.; Wu, Hongyu; Collie, Damon; Craig, Ronald G.

    2017-01-01

    implants, 20 (2.2 percent) had restorations replaced or judged as needing to be replaced. The majority of P-Is and patients were satisfied with the esthetic outcomes for both the implant and restoration. Conclusions These results suggest that implant survival and success rates in general dental practices may be lower than those reported in studies conducted in academic or specialty settings. Practical Implications The results of this study, generated in the private general practice setting, add to the evidence base to facilitate implant treatment planning. PMID:24982276

  5. Immediate loading of dental implants in the edentulous maxilla.

    Science.gov (United States)

    Eccellente, Tammaro; Piombino, Michele; Piattelli, Adriano; D'Alimonte, Emanuela; Perrotti, Vittoria; Iezzi, Giovanna

    2011-04-01

    Immediate loading of dental implants in the edentulous mandible has proven to be an effective, reliable, and predictable procedure. There is little long-term data available on similar treatments in the edentulous maxilla. The aim of the present study was to clinically evaluate edentulous maxilla rehabilitation with removable prostheses supported by the Ankylos SynCone (Dentsply-Friadent) system. The treatment method was based on immediate loading of four implants in the completely edentulous maxilla. A total of 180 implants were inserted in 45 patients. Dentures were placed on and retained by prefabricated conical crowns that were inserted into the existing denture base by direct intraoral polymerization immediately after surgery and supported by corresponding conical primary implant abutments. During the observation period, two implants (1.11%) were removed due to the lack of osseointegration. One implant was removed due to peri-implantitis, and one other (0.55%) implant was removed because of a fracture after 6 months of function. The overall implant survival rate was 97.77%, while the prosthesis survival rate was 100%. Swelling or suppuration was not observed. After a total observation period of 26.7 months (range 12 to 54 months), all implants had healthy peri-implant soft tissue that showed low values of clinical parameters. Only seven implants (3.97%) presented a sulcus bleeding index of 3. This method facilitates edentulous maxilla rehabilitation with removable prostheses. The conical crown concept presented resulted in stable complete-denture retention, reduced denture base, and improved oral hygiene.

  6. Bisphosphonates and dental implants: A meta-analysis.

    Science.gov (United States)

    Chrcanovic, Bruno Ramos; Albrektsson, Tomas; Wennerberg, Ann

    2016-04-01

    To test the null hypothesis of no difference in the implant failure rates, marginal bone loss, and postoperative infection for patients receiving or not receiving bisphosphonates, against the alternative hypothesis of a difference. An electronic search was undertaken in October 2015 in PubMed/Medline, Web of Science, and Embase, plus hand-searching and databases of clinical trials. Eligibility criteria included clinical human studies, either randomized or not. A total of 18 publications were included in the review. Concerning implant failure, the meta-analysis found a risk ratio of 1.73 (95% confidence interval [CI] 1.21-2.48, P = .003) for patients taking bisphosphonates, when compared to patients not taking the medicament. The probability of an implant failure in patients taking bisphosphonates was estimated to be 1.5% (0.015, 95% CI 0.006- 0.023, standard error [SE] 0.004, P bisphosphonates may affect the marginal bone loss of dental implants, due to a limited number of studies reporting this outcome. Due to a lack of sufficient information, meta-analysis for the outcome "postoperative infection" was not performed. The results of the present study cannot suggest that the insertion of dental implants in patients taking BPs affects the implant failure rates, due to a limited number of published studies, all characterized by a low level of specificity, and most of them dealing with a limited number of cases without a proper control group. Therefore, the real effect of BPs on the osseointegration and survival of dental implants is still not well established.

  7. Survival rate of short and long dental implants in chilean population.

    Directory of Open Access Journals (Sweden)

    Gisaku Kuramochi

    2012-12-01

    Full Text Available The use of short dental implants is often related with lower survival rates than the larger ones. However recent studies have reported dissimilar results. Aim of this study is to evaluate survival of long and short implants over a period of 12 years. Methods: Survival study of a retrospective cohort in a sample of 78 consecutively treated edentulous individuals each ones with long and short implants between 1997 and 2009, following the Branemark protocol, 548 implants were inserted (Branemark System, 396 long (>10mm with a diameter of 3.75 to 4.0mm and 152 short implants (<8.5mm with a diameter of 3.75 to 4.0mm. In 377 implants, the surface was machined and oxidized at 171. Data analysis was performed with SPSS 15.0 software. And p<0.05 was considered significant. Results: The survival rate for short implants was 77%, while for long implants was 94.9%. And the comparison between them by means the Mantel & Cox test was significant. Conclusions: Apparently implant length is related to survival. Prospective studies should focus on identifying risk factors for failure of osseointegration.

  8. Management of Patients with Orthopaedic Implants Undergoing Dental Procedures.

    Science.gov (United States)

    Quinn, Robert H; Murray, Jayson N; Pezold, Ryan; Sevarino, Kaitlyn S

    2017-07-01

    The American Academy of Orthopaedic Surgeons, in collaboration with the American Dental Association, has developed Appropriate Use Criteria (AUC) for the Management of Patients with Orthopaedic Implants Undergoing Dental Procedures. Evidence-based information, in conjunction with the clinical expertise of physicians, was used to develop the criteria to improve patient care and obtain best outcomes while considering the subtleties and distinctions necessary in making clinical decisions. The Management of Patients with Orthopaedic Implants Undergoing Dental Procedures AUC clinical patient scenarios were derived from indications of patients with orthopaedic implants presenting for dental procedures, as well as from current evidence-based clinical practice guidelines and supporting literature to identify the appropriateness of the use of prophylactic antibiotics. The 64 patient scenarios and 1 treatment were developed by the writing panel, a group of clinicians who are specialists in this AUC topic. Next, a separate, multidisciplinary, voting panel (made up of specialists and nonspecialists) rated the appropriateness of treatment of each patient scenario using a 9-point scale to designate a treatment as Appropriate (median rating, 7 to 9), May Be Appropriate (median rating, 4 to 6), or Rarely Appropriate (median rating, 1 to 3).

  9. Biomechanical Behavior of the Dental Implant Macrodesign.

    Science.gov (United States)

    Lima de Andrade, Camila; Carvalho, Marco Aurélio; Bordin, Dimorvan; da Silva, Wander José; Del Bel Cury, Altair Antoninha; Sotto-Maior, Bruno Salles

    The aim of this study was to evaluate the influence of implant macrodesign when using different types of collar and thread designs on stress/strain distributions in a maxillary bone site. Six groups were obtained from the combination of two collar designs (smooth and microthread) and three thread shapes (square, trapezoidal, and triangular) in external hexagon implants (4 × 10 mm) supporting a single zirconia crown in the maxillary first molar region. A 200-N axial occlusal load was applied to the crown, and measurements were made of the von Mises stress (σ vM ) for the implant, and tensile stress (σ max ), shear stress (τ max ), and strain (ε max ) for the surrounding bone using tridimensional finite element analysis. The main effects of each level of the two factors investigated (collar and thread designs) were evaluated by one-way analysis of variance (ANOVA) at a 5% significance level. Collar design was the main factor of influence on von Mises stress in the implant and stresses/strain in the cortical bone, while thread design was the main factor of influence on stresses in the trabecular bone (P design able to produce more favorable stress/strain distribution was the microthreaded design for the cortical bone. For the trabecular bone, the triangular thread shape had the lowest stresses and strain values among the square and trapezoidal implants. Stress/strain distribution patterns were influenced by collar design in the implant and cortical bone, and by thread design in the trabecular bone. Microthreads and triangular thread-shape designs presented improved biomechanical behavior in posterior maxillary bone when compared with the smooth collar design and trapezoidal and square-shaped threads.

  10. Bioinspired micro/nano fabrication on dental implant-bone interface

    Science.gov (United States)

    Wang, Feng; Shi, Liang; He, Wen-Xi; Han, Dong; Yan, Yan; Niu, Zhong-Ying; Shi, Sheng-Gen

    2013-01-01

    Pioneering research suggests fabricating a biomimetic interface with multiscaled surfacial architecture can greatly improve biomaterials' function and property. According to this inspiration, we chiefly single out and analyze the natural hierarchical micro/nano structure in rat's alveolar bone. Then, a combined hierarchical structure, i.e. micro-pits interlaced self-assemble TiO2 nanotubes of several tens of nanometers on dental implant's surface is developed. The as-prepared surface showed that hundreds of self-assembled TiO2 nanotubes were tightly arrayed with a diameter range of 30-50 nm, similar to collagen fibers within rat's mandible (60-80 nm). Meanwhile, this hierarchical micro/nano surface can provide a larger surface energy and roughness, a preferable hydrophilicity, a more adaptive mechanical property and adhesion work, a better bioactivity and biocompatibity, a superior attachment and growth of osteoblasts as compared to the smooth and purely micro-treated counterparts. The results indicated that this bioinspired micro/nano fabrication on dental implant-bone interface can be potentially applied in the update of dental implant in patients' clinical therapy and provide a new strategy for fabricating other osteocompatible materials.

  11. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss.

    Science.gov (United States)

    Insua, Angel; Monje, Alberto; Wang, Hom-Lay; Miron, Richard J

    2017-07-01

    Despite the growing number of publications in the field of implant dentistry, there are limited studies to date investigating the biology and metabolism of bone healing around dental implants and their implications in peri-implant marginal bone loss. The aim of this review article is to provide a thorough understanding of the biological events taking place during osseointegration and the subsequent early and late phases of bone remodeling around dental implants. An update on the coupling mechanism occurring during bone resorption-bone remodeling is provided, focused on the relevance of the osteocytes, bone lining cells and immune cells during bone maintenance. An electronic and manual literature search was conducted by three independent reviewers in several databases, including MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Cochrane Oral Health Group Trials Register databases for articles up to September 2016 with no language restriction. Local bone metabolism is subject to signals from systemic calcium-phosphate homeostasis and bone remodeling. Three areas of interest were reviewed due to recent reported compromises in bone healing including the putative effects of (1) cholesterol, (2) hyperlipidemia, and (3) low vitamin D intake. Moreover, the prominent influence of osteocytes and immune cells is discussed as being key regulators during dental implant osseointegration and maintenance. These cells are of crucial importance in the presence of biofilm accumulation and their associated byproducts that leads to hard and soft tissue breakdown; the so called peri-implantitis. Factors that could negatively impact osteoclastogenesis or osteal macrophage activation should be monitored in future research including implant placement/torque protocols, bone characteristics, as well as meticulous maintenance programs to favor osseointegration and future long-term stability and success of dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res

  12. Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants.

    Science.gov (United States)

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-05-06

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20%±10.89%) was much greater than those of machined (33.58%±8.63%), SLA (58.47%±12.89), or ANO Ti (59.62%±18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  13. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    Directory of Open Access Journals (Sweden)

    Mu-Hyon Kim

    2015-05-01

    Full Text Available The authors describe a new type of titanium (Ti implant as a Modi-anodized (ANO Ti implant, the surface of which was treated by sandblasting, acid etching (SLA, and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control, SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC of Modi-ANO Ti (74.20% ± 10.89% was much greater than those of machined (33.58% ± 8.63%, SLA (58.47% ± 12.89, or ANO Ti (59.62% ± 18.30%. In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  14. Computerized axial tomography : the tool in osseointegrated dental implants

    International Nuclear Information System (INIS)

    Fernandez-Lopez, Otton

    2002-01-01

    Failure rates in rehabilitations with osseointegrated implants are handled through appropriate radiographic preoperative planning. The appropriate length of the implant without running the risk of a perforation of vital structures, has been determined by a radiographic diagnosis. Computerized and conventional axial tomography have proved to be invaluable elements for pre-surgical evaluation. A radiologic guidance is elaborated to perform a computerized axial tomography (CT) of maxillary bones in totally edentulous patients. Surgical guides are constructed from a wax-up emanated from the information of the CT. The CT has proven to be an radiographic indispensable element to achieve the surgical-prosthetic success in osseointegrated dental implants. The CT has allowed the realization of a precise wax-up for making of surgical guide and a precise temporary prostheses in positioning of osseointegrated implants, with the consequent saving time and money for the rehabilitator and patient [es

  15. Are short dental implants (<10 mm) effective? a meta-analysis on prospective clinical trials.

    Science.gov (United States)

    Monje, Alberto; Chan, Hsun-Liang; Fu, Jia-Hui; Suarez, Fernando; Galindo-Moreno, Pablo; Wang, Hom-Lay

    2013-07-01

    This study aims to compare the survival rate of short (implants under functional loading. An electronic literature search using PubMed and Medline databases was conducted. Prospective clinical human trials, published in English from January 1997 to July 2011, that examined dental implants of implants, implant dimensions, implant locations, types of prostheses, follow-up periods, and implant survival rates. Kaplan-Meier survival estimates and the hazard rates were analyzed and compared between short and standard implants. Thirteen studies were selected, examining 1,955 dental implants, of which 914 were short implants. Short dental implants had an estimated survival rate of 88.1% at 168 months, when standard dental implants had a similar estimated survival rate of 86.7% (P = 0.254). The peak failure rate of short dental implants was found to occur between 4 and 6 years of function. This occurred at an earlier time point compared with standard dental implants, where the peak failure rate occurred between 6 and 8 years of function. This study shows that in the long term, implants of implants. However, they fail at an earlier stage compared with standard implants.

  16. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Munar, Melvin L.; Ishikawa, Kunio

    2015-01-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl 2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant

  17. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling, E-mail: shixingling1985@hotmail.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Munar, Melvin L.; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl{sub 2} solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant.

  18. Microbiological and Morphological Analysis of Dental Implants Removed for Incomplete Osseointegration

    OpenAIRE

    Passariello, C.; Berlutti, F.; Selan, L.; Amodeo, C.; Comodi-Ballanti, M. R.; Serafino, L.; Thaller, M. C.

    2011-01-01

    Dental implants may share both severe infection and incomplete osseointegration in the absence of obvious clinical signs of infection. While microbiological data have been collected on peri-implant infections, no previous studies have investigated microbiologically incompletely osseointegrated implants. This paper presents microbiological and scanning electron microscopy observations on 30 implants showing incomplete osseointegration. All the 30 implants were colonised by bacterial species th...

  19. Association between implant apex and sinus floor in posterior maxilla dental implantation: A three-dimensional finite element analysis

    Science.gov (United States)

    YAN, XU; ZHANG, XINWEN; CHI, WEICHAO; AI, HONGJUN; WU, LIN

    2015-01-01

    The aim of the present study was to evaluate the effect of the association between the implant apex and the sinus floor in posterior maxilla dental implantation by means of three-dimensional (3D) finite element (FE) analysis. Ten 3D FE models of a posterior maxillary region with a sinus membrane and different heights of alveolar ridge with different thicknesses of sinus floor cortical bone were constructed according to anatomical data of the sinus area. Six models were constructed with the same thickness of crestal cortical bone and a 1-mm thick sinus floor cortical bone, but differing heights of alveolar ridge (between 10 and 14 mm). The four models of the second group were similar (11-mm-high alveolar ridge and 1-mm-thick crestal cortical bone) but with a changing thickness of sinus floor cortical bone (between 0.5 and 2.0 mm). The standard implant model based on the Nobel Biocare® implant system was created by computer-aided design (CAD) software and assembled into the models. The materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. The maximum von Mises stress, stress distribution, implant displacement and resonance frequencies were calculated using CAD software. The von Mises stress was concentrated on the surface of the crestal cortical bone around the implant neck with the exception of that for the bicortical implantation. For immediate loading, when the implant apex broke into or through the sinus cortical bone, the maximum displacements of the implant, particularly at the implant apex, were smaller than those in the other groups. With increasing depth of the implant apex in the sinus floor cortical bone, the maximum displacements decreased and the implant axial resonance frequencies presented a linear upward tendency, but buccolingual resonance frequencies were hardly affected. This FE study on the association between implant apex and sinus floor showed that having the implant apex in contact with, piercing

  20. Compliance with Supportive Periodontal Treatment in Patients with Dental Implants.

    Science.gov (United States)

    Hu, Kai-Fang; Lin, Ying-Chu; Ho, Kun-Yen; Chou, Yu-Hsiang

    The need for dental implants is increasing, and supportive periodontal treatment can achieve long-term success and prevent peri-implantitis. Contributing factors to noncompliance with long-term scheduled supportive periodontal treatment remain unclear. To investigate whether demographic and clinical characteristics are associated with noncompliance, the authors analyzed data for patients who had received dental implants. The authors recruited patients participating in a supportive periodontal treatment program after receiving permanent prostheses on implants placed from 2005 to 2013. Demographic data and dental treatment histories were collected. Compliance was defined as a record of participation in a standard supportive periodontal treatment program for at least 1 year. The chi-square test, log-rank test, Kaplan-Meier survival curve, and Cox proportional hazards model were used for statistical analysis. The study included 120 patients (259 implants, 60% compliance). The two groups (compliant and noncompliant) differed significantly in frequency distributions for sex (P = .0017), educational level (P = .0325), and histories of substance use (P = .0016), periodontitis (P = .0005), and root planing or flap surgery (P = .0002). The Kaplan-Meier survival curves and log-rank test showed that increases in cumulative continuation rates were significantly associated with male sex (P = .0025); body mass index ≥ 24 kg/m² (P = .0093); and a history of periodontitis (P implant placement, root planing or flap surgery was the crucial factor in determining compliance with supportive periodontal treatment. However, well-designed large-scale studies with a larger sample size are needed to confirm the findings of this study.

  1. Evaluation of possible prognostic factors for the success, survival, and failure of dental implants.

    Science.gov (United States)

    Geckili, Onur; Bilhan, Hakan; Geckili, Esma; Cilingir, Altug; Mumcu, Emre; Bural, Canan

    2014-02-01

    To analyze the prognostic factors that are associated with the success, survival, and failure rates of dental implants. Data including implant sizes, insertion time, implant location, and prosthetic treatment of 1656 implants have been collected, and the association of these factors with success, survival, and failure of implants was analyzed. The success rate was lower for short and maxillary implants. The failure rate of maxillary implants exceeded that of mandibular implants, and the failure rate of implants that were placed in the maxillary anterior region was significantly higher than other regions. The failure rates of implants that were placed 5 years ago or more were higher than those that were placed later. Anterior maxilla is more critical for implant loss than other sites. Implants in the anterior mandible show better success compared with other locations, and longer implants show better success rates. The learning curve of the clinician influences survival and success rates of dental implants.

  2. The clinical significance of keratinized gingiva around dental implants.

    Science.gov (United States)

    Greenstein, Gary; Cavallaro, John

    2011-10-01

    Whether or not keratinized tissue is needed around dental implants to maintain peri-implant health is a controversial subject. To clarify this issue a search was conducted for clinical trials that appraised the significance ofkeratinized gingiva (KG) around teeth and dental implants. A critical assessment of the data revealed that the literature is replete with studies that contradict one another with respect to the need for KG as it relates to survivability of implants, gingival response to plaque, inflammation, probing depths, recession, and loss of bone. When groups of patients with and without KG were compared with respect to various clinical parameters, a statistically significant better result in the presence of KG could be interpreted to indicate that having KG is advantageous. However, quantitative differences between groups with and without KG were usually very small. Overall, the data was interpreted to indicate that some patients may need augmentation of keratinized tissue to maintain peri-implant health. Ultimately, the decision to augment KG is a judgment call that needs to be made by the treating clinician, because there are not enough data to facilitate development of definitive guidelines relevant to this subject. Apparently, the need for KG is patient specific, and at present there is no method to reliably predict who would benefit from tissue augmentation.

  3. Ion beam sputter modification of the surface morphology of biological implants

    Science.gov (United States)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  4. In vitro bioactivity test of real dental implants according to ISO 23317

    Czech Academy of Sciences Publication Activity Database

    Kolafová, M.; Št’ovíček, J.; Strnad, J.; Zemek, Josef; Dybal, Jiří

    2017-01-01

    Roč. 32, č. 6 (2017), s. 1221-1230 ISSN 0882-2786 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : dental implants * n vitro bioactivity * ISO 23317 * SBF * surface treatment Subject RIV: BM - Solid Matter Physics ; Magnetism; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Polymer science (UMCH-V) Impact factor: 2.263, year: 2016

  5. Oral rehabilitation of segmental mandibulectomy patient with osseointegrated dental implant

    Directory of Open Access Journals (Sweden)

    Archana Singh

    2014-01-01

    Full Text Available Surgical management of oral cancer lesions results in explicit aesthetic and functional disfigurement, including facial deformity, loss of hard and soft tissue, impaired speech, swallowing and mastication, which modify the patient′s self-image and quality-of-life. Recent advances in head and neck reconstruction techniques and dental implant based prosthetic rehabilitation may significantly improve the quality-of-life and self-esteem for such post-surgery patients. This clinical report describes rehabilitation of oral cancer patient having segmental mandibulectomy with implant-supported fixed partial denture.

  6. Noninvasive method for retrieval of broken dental implant abutment screw

    Directory of Open Access Journals (Sweden)

    Jagadish Reddy Gooty

    2014-01-01

    Full Text Available Dental implants made of titanium for replacement of missing teeth are widely used because of ease of technical procedure and high success rate, but are not free of complications and may fail. Fracturing of the prosthetic screw continues to be a problem in restorative practice and great challenge to remove the fractured screw conservatively. This case report describes and demonstrates the technique of using an ultrasonic scaler in the removal of the fracture screw fragment as a noninvasive method without damaging the hex of implants.

  7. Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Directory of Open Access Journals (Sweden)

    Marco Franchi

    2004-01-01

    Full Text Available This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks and complete healing period (3 months. Thirty endosseous titanium implants (conic screws with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM. The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA, both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant

  8. The Key Points of Maintenance Therapy for Dental Implants: A Literature Review.

    Science.gov (United States)

    Pirc, Miha; Dragan, Irina F

    2017-04-01

    Dental implants require lifelong maintenance and care. Success is defined by biologic factors (presence of inflamed soft tissues surrounding dental implants and radiographic changes in the crestal bone levels) and mechanical factors (stability of the implant fixture and implant supported restoration, etc). Most implant failures are initiated by incipient stages of inflammatory processes, which lead to peri-mucositis and peri-implantitis. The evidence regarding the value of maintenance protocol regarding implants is sparse compared with the one for teeth. This article addresses the existing literature on processes for oral hygiene for implant care.

  9. Characterization of titanium surfaces for dental implants with inorganic contaminant Caracterização de superfícies de titânio para implantes dentários com contaminante inorgânico

    Directory of Open Access Journals (Sweden)

    Marilia Garcia Diniz

    2005-06-01

    Full Text Available The aim of this research was to characterize titanium surfaces blasted with aluminum oxide (Al2O3 particles using the KS 400 digital image processing program. Samples of grade II titanium plates were submitted to blasting processes using particles of Al2O3, and treated with a hydrofluoric acid-based solution. Three digital images from each sample surface were obtained using Scanning Electron Microscopy, and half-quantitative chemical analyses were subsequently performed using Electron Dispersive Spectroscopy (EDS. In addition, parameters related to the alumina phase, such as the concentration level, the area and perimeter of the particles and their circular form factor were measured using KS 400. The mechanical/chemical treatment caused depressions up to 10 µm on homogeneous surfaces. Although the chemical attack significantly removed the alumina phase, residual particles could still be identified by the EDS. The average area occupied by the alumina phase on the samples surfaces was 469.32 (± 284.98 µm², the particle average perimeter was 81.61 (± 27.68 µm, and the mean circular form factor was 0.60 (± 0.05. Characterizing the titanium surface is essential in the evaluation of the material manufacturing process because the presence of residual aluminum particles may have deleterious effects on the formation of the osseous/implant tissue.O objetivo deste trabalho foi caracterizar parâmetros relativos a superfícies de titânio submetidas a jateamento com partículas de óxido de alumínio (alumina - Al2O3 por meio de análise e processamento digital de imagem no programa KS 400 (Carl Zeiss, Oberkochen, Alemanha. Amostras de titânio grau 2 foram jateadas com Al2O3 e submetidas a tratamento químico com soluções à base de ácido fluorídrico. Três imagens digitais das superfícies de amostras distintas foram obtidas em microscópio eletrônico de varredura. Análises químicas foram realizadas por espectroscopia por dispersão de

  10. Surface disorder production during plasma immersion implantation

    NARCIS (Netherlands)

    Lohner, T.; Khanh, N.Q.; Petrik, P.; Biro, L.P.; Fried, M.; Pinter, I.; Lehnert, W.; Frey, L.; Ryssel, H.; Wentink, D.J.; Gyulai, J.

    1998-01-01

    Comparative investigations were performed using high-depth-resolution Rutherford backscattering (RBS) combined with channeling, spectroellipsometry (SE) and atomic force microscopy (AFM) to analyze surface disorder and surface roughness formed during plasma immersion implantation of silicon (100)

  11. Progressive plateau root form dental implant osseointegration: A human retrieval study.

    Science.gov (United States)

    Gil, Luiz F; Suzuki, Marcelo; Janal, Malvin N; Tovar, Nick; Marin, Charles; Granato, Rodrigo; Bonfante, Estevam A; Jimbo, Ryo; Gil, Jose N; Coelho, Paulo G

    2015-08-01

    Although preclinical and sparse human histology retrieval studies have shown that the interface between implant and bone is constantly remodeling, no human retrieval database has been developed to determine the effect of functional loading time and other clinical/implant design variables on osseointegration. The present study tested the hypothesis that bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) increase over functional loading time around dental implants. Due to prosthetic retreatment reasons, 93 human implant retrievals from the same manufacturer (Bicon LLC, Boston, MA, USA) were obtained over a period of approximately 15 years. The retrieved implants were under functional loading from 120 days to ∼18 years and were histomorphologic/metrically evaluated. BIC/BAFO were assessed as a function of multiple independent variables: implant surface type, diameter, length, jaw (maxilla/mandible), region (anterior/posterior), and time of functional loading. The results showed that both BIC and BAFO increased over time independently of implant design/clinical variables, supporting the postulated hypothesis. © 2014 Wiley Periodicals, Inc.

  12. An overview of characteristics of registered studies on dental implants.

    Science.gov (United States)

    Gajendrareddy, Praveenkumar; Elangovan, Satheesh; Rampa, Sankeerth; Allareddy, Veeratrishul; Lee, Min Kyeong; Nalliah, Romesh P; Allareddy, Veerasathpurush

    2014-09-01

    Clinical trials serve as the empirical basis for clinical decision making. The objective of the current study is to provide an overview of clinical trials examining dental implant outcomes. All registered studies on Dental Implants were selected for analysis. The clinicaltrials.gov website was used to query the characteristics of registered studies. The search term used was dental implants. As of the study conduct date (01/01/2014), a total of 205 studies on dental implants were registered. These included 168 interventional and 37 observational studies. Results were available for only 14 studies. All observational studies and 98.8% of interventional studies included both male and female subjects. Close to 60% of studies had sample sizes between 1 and 50. NIH was listed as funding source in only 5 interventional studies and 3 observational studies. 80% of interventional studies were randomized. However, double masking was reported in only 15% of interventional studies with majority being open labeled. ClinicalTrials.gov registry was created with the intention of increasing the transparency of conducted or ongoing clinical studies and to minimize publication bias commonly seen with industry-sponsored studies. Results of the current study showed that a predominating number of registered studies are funded by industry and other sources, very few registered studies have made their results public, and the ClinicalTrials.gov registry does not provide sufficient information on the quality of study design and thus precluding the public and researchers to judge on the quality of registered studies and publication bias. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review

    Science.gov (United States)

    Pieralli, S; Kohal, R J; Jung, R E; Vach, K; Spies, B C

    2017-01-01

    To determine the survival rate and marginal bone loss (MBL) of zirconia dental implants restored with single crowns or fixed dental prostheses. An electronic search was conducted up to November 2015 (without any restriction regarding the publication time) through the databases MEDLINE (PubMed), Cochrane Library, and EMBASE to identify randomized controlled clinical trials and prospective clinical trials including >15 patients. Primary outcomes were survival rate and MBL. Furthermore, the influence of several covariates on MBL was evaluated. Qualitative assessment and statistical analyses were performed. This review was conducted according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for systematic reviews. With the applied search strategy, 4,196 titles could be identified. After a screening procedure, 2 randomized controlled clinical trials and 7 prospective clinical trials remained for analyses. In these trials, a total of 326 patients received 398 implants. The follow-up ranged from 12 to 60 mo. Implant loss was mostly reported within the first year, especially within the healing period. Thereafter, nearly constant survival curves could be observed. Therefore, separate meta-analyses were performed for the first and subsequent years, resulting in an implant survival rate of 95.6% (95% confidence interval: 93.3% to 97.9%) after 12 mo and, thereafter, an expected decrease of 0.05% per year (0.25% after 5 y). Additionally, a meta-analysis was conducted for the mean MBL after 12 mo, resulting in 0.79 mm (95% confidence interval: 0.73 to 0.86 mm). Implant bulk material and design, restoration type, and the application of minor augmentation procedures during surgery, as well as the modes of temporization and loading, had no statistically significant influence on MBL. The short-term cumulative survival rates and the MBL of zirconia implants in the presented systematic review are promising. However, additional data are still

  14. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  15. The Ultrastructural Relationship Between Osteocytes and Dental Implants Following Osseointegration.

    Science.gov (United States)

    Du, Zhibin; Ivanovski, Saso; Hamlet, Stephen M; Feng, Jian Q; Xiao, Yin

    2016-04-01

    Osteocytes, the most abundant cells in bone, have multiple functions, including acting as mechanosensors and regulating mineralization. It is clear that osteocytes influence bone remodeling by controlling the differentiation and activity of osteoblasts and osteoclasts. Determining the relationship between titanium implants and osteocytes may therefore benefit our understanding of the process of osseointegration. The aim of this study was to visualize the ultrastructural relationship between osteocytes and the titanium implant surface following osseointegration in vivo. Titanium implants were placed in the maxillary molar regions of eight female Sprague Dawley rats, 3 months old. The animals were sacrificed 8 weeks after implantation, and undecalcified tissue sections were prepared. Resin-cast samples were subsequently acid-etched with 37% phosphoric acid prior to examination using scanning electron microscopy. Compared with mature bone, where the osteocytes were arranged in an ordered fashion, the osteocytes appeared less organized in the newly formed bone around the titanium implant. Further, a layer of mineralization with few organic components was observed on the implant surface. This study shows for the first time that osteocytes and their dendrites are directly connected with the implant surface. This study shows the direct anchorage of osteocytes via dendritic processes to a titanium implant surface in vivo. This suggests an important regulatory role for osteocytes and their lacunar-canalicular network in maintaining long-term osseointegration. © 2014 Wiley Periodicals, Inc.

  16. Comprehensive rehabilitation using dental implants in generalized aggressive periodontitis.

    Science.gov (United States)

    Ramesh, Asha; Ravi, Sheethalan; Kaarthikeyan, Gurumoorthy

    2017-01-01

    Generalized aggressive periodontitis (GAP) is a debilitating form of the disease and it results in deteriorating effects on the esthetic and functional aspects of the oral cavity. This case report describes the comprehensive rehabilitation of GAP patient using dental implants. The treatment planning involved thorough scaling and root planning (SRP) with oral hygiene instructions. The patient was motivated to adhere to a strict oral hygiene regimen following which periodontal flap surgery employing guided tissue regeneration and bone grafts was performed. Bacterial culture for anaerobic microorganisms was done using a gas pack pre- and postperiodontal treatment to confirm the effectiveness of the periodontal treatment regimen and also to proceed with dental implant placement. The rigorous maintenance program ensured the stability of the periodontium following which immediate placement of dental implants in the maxillary and mandibular anterior region was done. The fixed metal-ceramic prosthesis was fabricated in a step-by-step process and the patient was recalled on a periodic basis over a 3-year follow-up duration. This case is a testimonial to the postperiodontal treatment long-term stability with excellent patient cooperation and strict maintenance protocol.

  17. Comprehensive rehabilitation using dental implants in generalized aggressive periodontitis

    Directory of Open Access Journals (Sweden)

    Asha Ramesh

    2017-01-01

    Full Text Available Generalized aggressive periodontitis (GAP is a debilitating form of the disease and it results in deteriorating effects on the esthetic and functional aspects of the oral cavity. This case report describes the comprehensive rehabilitation of GAP patient using dental implants. The treatment planning involved thorough scaling and root planning (SRP with oral hygiene instructions. The patient was motivated to adhere to a strict oral hygiene regimen following which periodontal flap surgery employing guided tissue regeneration and bone grafts was performed. Bacterial culture for anaerobic microorganisms was done using a gas pack pre- and postperiodontal treatment to confirm the effectiveness of the periodontal treatment regimen and also to proceed with dental implant placement. The rigorous maintenance program ensured the stability of the periodontium following which immediate placement of dental implants in the maxillary and mandibular anterior region was done. The fixed metal-ceramic prosthesis was fabricated in a step-by-step process and the patient was recalled on a periodic basis over a 3-year follow-up duration. This case is a testimonial to the postperiodontal treatment long-term stability with excellent patient cooperation and strict maintenance protocol.

  18. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials.

    Science.gov (United States)

    Abdulkareem, Elham H; Memarzadeh, K; Allaker, R P; Huang, J; Pratten, J; Spratt, D

    2015-12-01

    Dental implants are prone to failure as a result of bacterial biofilm accumulation. Such biofilms are often resistant to traditional antimicrobials and the use of nanoparticles as implant coatings may offer a means to control infection over a prolonged period. The objective of this study was to determine the antibiofilm activity of nanoparticulate coated titanium (Ti) discs using a film fermenter based system. Metal oxide nanoparticles of zinc oxide (nZnO), hydroxyapatite (nHA) and a combination (nZnO+nHA) were coated using electrohydrodynamic deposition onto Ti discs. Using human saliva as an inoculum, biofilms were grown on coated discs for 96 h in a constant depth film fermenter under aerobic conditions with artificial saliva and peri-implant sulcular fluid. Viability assays and biofilm thickness measurements were used to assess antimicrobial activity. Following 96 h, reduced numbers of facultatively anaerobic and Streptococcus spp. on all three nano-coated surfaces were demonstrated. The proportion of non-viable microorganisms was shown to be higher on nZnO and composite (nZnO+nHA) coated surfaces at 96 h compared with nHA coated and uncoated titanium. Biofilm thickness comparison also demonstrated that nZnO and composite coatings to be the most effective. The findings support the use of coating Ti dental implant surfaces with nZnO to provide an antimicrobial function. Current forms of treatment for implant associated infection are often inadequate and may result in chronic infection requiring implant removal and resective/regenerative procedures to restore and reshape supporting tissue. The use of metal oxide nanoparticles to coat implants could provide osteoconductive and antimicrobial functionalities to prevent failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The role of angiogenesis in implant dentistry part I: Review of titanium alloys, surface characteristics and treatments.

    Science.gov (United States)

    Saghiri, M-A; Asatourian, A; Garcia-Godoy, F; Sheibani, N

    2016-07-01

    Angiogenesis plays an important role in osseointegration process by contributing to inflammatory and regenerative phases of surrounding alveolar bone. The present review evaluated the effect of titanium alloys and their surface characteristics including: surface topography (macro, micro, and nano), surface wettability/energy, surface hydrophilicity or hydrophobicity, surface charge, and surface treatments of dental implants on angiogenesis events, which occur during osseointegration period. An electronic search was performed in PubMed, MEDLINE, and EMBASE databases via OVID using the keywords mentioned in the PubMed and MeSH headings regarding the role of angiogenesis in implant dentistry from January 2000-April 2014. Of the 2,691 articles identified in our initial search results, only 30 met the inclusion criteria set for this review. The hydrophilicity and topography of dental implants are the most important and effective surface characteristics in angiogenesis and osteogenesis processes. The surface treatments or modifications of dental implants are mainly directed through the enhancement of biological activity and functionalization in order to promote osteogenesis and angiogenesis, and accelerate the osseointegration procedure. Angiogenesis is of great importance in implant dentistry in a manner that most of the surface characteristics and treatments of dental implants are directed toward creating a more pro-angiogenic surface on dental implants. A number of studies discussed the effect of titanium alloys, dental implant surface characteristic and treatments on agiogenesis process. However, clinical trials and in-vivo studies delineating the mechanisms of dental implants, and their surface characteristics or treatments, action in angiogenesis processes are lagging.

  20. Biocompatibility and anti-microbiological activity characterization of novel coatings for dental implants: A primer for non-biologists

    Science.gov (United States)

    Monsees, Thomas

    2016-08-01

    With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.

  1. Biocompatibility and anti-microbiological activity characterization of novel coatings for dental implants: A primer for non-biologists

    Directory of Open Access Journals (Sweden)

    Thomas K Monsees

    2016-08-01

    Full Text Available With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.

  2. Controlled release of chlorhexidine from a mesoporous silica-containing macroporous titanium dental implant prevents microbial biofilm formation.

    Science.gov (United States)

    De Cremer, K; Braem, A; Gerits, E; De Brucker, K; Vandamme, K; Martens, J A; Michiels, J; Vleugels, J; Cammue, B P; Thevissen, K

    2017-01-11

    Roughened surfaces are increasingly being used for dental implant applications as the enlarged contact area improves bone cell anchorage, thereby facilitating osseointegration. However, the additional surface area also entails a higher risk for the development of biofilm associated infections, an etiologic factor for many dental ailments, including peri-implantitis. To overcome this problem, we designed a dental implant composed of a porous titanium-silica (Ti/SiO2) composite material and containing an internal reservoir that can be loaded with antimicrobial compounds. The composite material consists of a sol-gel derived mesoporous SiO2 diffusion barrier integrated in a macroporous Ti load-bearing structure obtained by powder metallurgical processing. The antimicrobial compounds can diffuse through the porous implant walls, thereby reducing microbial biofilm formation on the implant surface. A continuous release of µM concentrations of chlorhexidine through the Ti/SiO2 composite material was measured, without initial burst effect, over at least 10 days and using a 5 mM chlorhexidine solution in the implant reservoir. Metabolic staining, CFU counting and visualisation by scanning electron microscopy confirmed that Streptococcus mutans biofilm formation on the implant surface was almost completely prevented due to chlorhexidine release (preventive setup). Moreover, we demonstrated efficacy of released chlorhexidine against mature Streptococcus mutans biofilms (curative setup). In conclusion, we provide a proof of concept of the sustained release of chlorhexidine, one of the most widely used oral antiseptics, through the Ti/SiO2 material thereby preventing and eradicating biofilm formation on the surface of the dental implant. In principle, our flexible design allows for the use of any bioactive compound, as discussed.

  3. Ultrastructural study of tissues surrounding replanted teeth and dental implants.

    Science.gov (United States)

    Shioya, Kazuhiro; Sawada, Takashi; Miake, Yasuo; Inoue, Sadayuki; Yanagisawa, Takaaki

    2009-03-01

    The aim of this study was to describe the ultrastructure of the dentogingival border at replanted teeth and implants. Wistar rats (8 weeks old) were divided into groups for replantation and implantation experiments. In the former, the upper right first molars were extracted and then immediately replanted. In the latter, pure titanium implants were used. All tissues were fixed, demineralized and embedded in epoxy resin for ultrastructural observations. One week after replantation, the junctional epithelium was lost, and the oral sulcular epithelium covered the enamel surface. The amount of the epithelium increased in 2 weeks, and resembled the junctional epithelium, and the internal basal lamina and hemidesmosomes were formed in 4 weeks. One week after implantation, peri-implant epithelium was formed, and in 2 and 4 weeks, this epithelium with aggregated connective tissue cells were observed. In 8 weeks, the peri-implant epithelium receded, and aligned special cells with surrounding elongated fibroblasts and bundles of collagen fibers appeared to seal the implant interface. In replantation of the tooth, the internal basal lamina remained at the surface of the enamel of the replanted tooth, which is likely to be related to regeneration of the junctional epithelium and the attachment apparatus at the epithelium-tooth interface. Following implantation, a layer of cells with characteristics of connective tissue cells, but no junctional epithelium and attachment apparatus, was formed to seal the site of the implant.

  4. Associated lesions of peri-implant mucosa in immediate versus delayed loading of dental implants.

    Science.gov (United States)

    Iliescu, Alexandru Andrei; Zurac, Sabina Andrada; Nicolae, Vasile; Iliescu, Mihaela Georgiana; Perlea, Paula

    2017-01-01

    Currently, immediate loading of dental implants is very attractive as a standard protocol for prosthetic restorations in edentulous patients. The aim of this study is to find out the intimate peri-implant mucosa response depending on timing of implant loading, immediate or delayed. Fifty-one screw implants Alpha Bio (Alpha-Bio Tec, Israel) were inserted in 42 partially edentulous patients according to standardized surgical techniques. At six months of loading, samples of peri-implant mucosa were harvested from 27 immediate loaded, respectively 24 delayed loaded implants, and subjected to microscopic examination. Peri-implant mucosa in both loadings revealed a continuous and stable stratified squamous epithelium with moderate acanthosis and slight hyperkeratosis. Severe fibrosis and tendency to scar-like lesions were present mainly in immediate loading. Slight to moderate density of inflammatory chronic cell populations of non-uniform feature was common to both loading protocols. As compared to lymphocytes, higher scores of plasma cells were encountered in immediate loading. In immediate and delayed loading, the peri-implant mucosa as a new generated structure does not reveal different tissue responses. After six month of prosthetic loading, the healthy peri-implant mucosa is compatible with fibrosis and minor chronic inflammatory reactions.

  5. Effects of Dental Implant-abutment Interfaces on the Reliability of Implant Systems

    Directory of Open Access Journals (Sweden)

    Zhang Xiao

    2016-01-01

    Full Text Available In this paper, by analyzing the effects of two different kinds of implant-abutment connection interfaces under the same working condition on the mechanical and fatigue performances of the implant system as well as on the surrounding bones, we intend to study such effects on the reliability of the implants and provide a theoretical basis for the design and clinical application of dental implant systems. For the purpose, we adopt a 3-D modeling method to establish the model, and use FEA (finite element analysis to carry out static mechanic and fatigue analysis on the implant system and its surrounding bones; then we make the two implant systems, and carry out fatigue tests on a dynamic fatigue testing machine to verify the FEA results. After comparing the results from the two different systems, we find that the stress distribution and fatigue safety factor of the system which has deeper axial matching of the taper connection are better than those of the other system, that is to say, between the two major elements of a implant system, the axial length of the connecting taper and the size of the hexagon, the former has greater effects than the latter. When the axial matching is deeper, the stress distribution of the implant system will be better, the fatigue safety factor will be higher, and the implant system will be more reliable.

  6. Mechanical strength and fracture point of a dental implant under certification conditions: A numerical approach by finite element analysis.

    Science.gov (United States)

    de la Rosa Castolo, Guillermo; Guevara Perez, Sonia V; Arnoux, Pierre-Jean; Badih, Laurent; Bonnet, Franck; Behr, Michel

    2017-07-15

    Implant prosthodontics provides high-quality outcomes thanks to recent technological developments and certification procedures such as International Organization for Standardization (ISO) standard 14801. However, these certification tests are costly, and the result is highly uncertain as the influence of design variables (materials and structure) is still unknown. The design process could be significantly improved if the influence of design parameters were identified. The purpose of this in vitro study was to use finite element analysis (FEA) to assess the influence of design parameters on the mechanical performance of an implant in regard to testing conditions of ISO 14801 standard. An endosseous dental implant was loaded under ISO standard 14801 testing conditions by numerical simulation, with 4 parameters evaluated under the following conditions: conditions of the contact surface area between the implant and the loading tool, length of the fixation screw, implant embedding depth, and material used for implant stiffness. FEA was used to compare the force that needed to reach the implant's yield and fracture strength. A dental implant's fracture point can be increased by 41% by improving the contact surface area, by 20% depending on the type of material, by 4% depending on the length of the fixation screw, and by 1.4% by changing the implant embedding depth. FEA made it possible to evaluate 4 performance parameters of a dental implant under ISO standard 14801 conditions. Under these conditions, the contact surface area was found to be the major parameter influencing implant performance. This observation was validated experimentally in a fatigue test under ISO standard 14801 conditions. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Numerical simulation of the remodelling process of trabecular architecture around dental implants.

    Science.gov (United States)

    Wang, Chao; Wang, Lizhen; Liu, Xiaoyu; Fan, Yubo

    2014-01-01

    Dental implants may alter the mechanical environment in the jawbone, thereby causing remodelling and adaptation of the surrounding trabecular bone tissues. To improve the efficacy of dental implant systems, it is necessary to consider the effect of bone remodelling on the performance of the prosthetic systems. In this study, finite element simulations were implemented to predict the evolution of microarchitecture around four implant systems using a previously developed model that combines both adaptive and microdamage-based mechano-sensory mechanisms in bone remodelling process. Changes in the trabecular architecture around dental implants were mainly focused. The simulation results indicate that the orientational and ladder-like architecture around the implants predicted herein is in good agreement with those observed in animal experiments and clinical observations. The proposed algorithms were shown to be effective in simulating the remodelling process of trabecular architecture around dental implant systems. In addition, the architectural features around four typical dental implant systems in alveolar bone were evaluated comparatively.

  8. Analysis and comparison of clutch techniques of two dental implants.

    Science.gov (United States)

    Zonfrillo, Giovanni; Matteoli, Sara; Ciabattini, Andrea; Dolfi, Maurizio; Lorenzini, Lorenzo; Corvi, Andrea

    2014-06-01

    From the clinical point of view, primary implant stability is a fundamental requirement. The aim of the present work was to investigate the primary stability of two types of dental implants, with truncated cone (TC) and cylindrical (CL) geometry, by evaluating their performance by means of pull-out tests. Moreover, several samples were tested by varying surgical preparation method as well as the material where the implant was housed in order to assess whether primary stability could be affected by these factors. A critical load which corresponds to a displacement of 0.2mm in pull-out test was chosen as indicator of the implant primary stability. CL implants had the advantage of requiring lower torques during the installation phase, and thus, applying less local stresses on the bone. Among the housing preparation methods investigated in the present study, the housings realized by using two mill cutters of different diameters for different depths implied higher primary stability for TC implant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study.

    Science.gov (United States)

    Wang, Xiaona; Meng, Xing; Chu, Shunli; Xiang, Xingchen; Liu, Zhenzhen; Zhao, Jinghui; Zhou, Yanmin

    2016-09-01

    This study aimed to evaluate the effects of Ti-Nb-Zr-Ta-Si alloy implants on mineral apposition rate and new BIC contact in rabbits. Twelve Ti-Nb-Zr-Ta-Si alloy implants were fabricated and placed into the right femur sites in six rabbits, and commercially pure titanium implants were used as controls in the left femur. Tetracycline and alizarin red were administered 3 weeks and 1 week before euthanization, respectively. At 4 weeks and 8 weeks after implantation, animals were euthanized, respectively. Surface characterization and implant-bone contact surface analysis were performed by using a scanning electron microscope and an energy dispersive X-ray detector. Mineral apposition rate was evaluated using a confocal laser scanning microscope. Toluidine blue staining was performed on undecalcified sections for histology and histomorphology evaluation. Scanning electron microscope and histomorphology observation revealed a direct contact between implants and bone of all groups. After a healing period of 4 weeks, Ti-Nb-Zr-Ta-Si alloy implants showed significantly higher mineral apposition rate compared to commercially pure titanium implants (P implants and commercially pure titanium implants (P > 0.05) at 8 weeks. No significant difference of bone-to-implant contact was observed between Ti-Nb-Zr-Ta-Si alloy implants and commercially pure titanium implants implants after a healing period of 4 weeks and 8 weeks. This study showed that Ti-Nb-Zr-Ta-Si alloy implants could establish a close direct contact comparedto commercially pure titanium implants implants, improved mineral matrix apposition rate, and may someday be an alternative as a material for dental implants.

  10. Histological and Histomorphometric Evaluation of Zirconia Dental Implants Modified by Femtosecond Laser versus Titanium Implants: An Experimental Study in Fox Hound Dogs.

    Science.gov (United States)

    Calvo-Guirado, Jose Luis; Aguilar-Salvatierra, Antonio; Delgado-Ruiz, Rafael Arcesio; Negri, Bruno; Fernández, María Piedad Ramírez; Maté Sánchez de Val, José Eduardo; Gómez-Moreno, Gerardo; Romanos, Georgios E

    2015-06-01

    This study applied femtosecond laser technology to zirconia dental implants (Bredent GmbH & Co.KG, Senden, Germany) to generate a surface texture of microgrooves over the entire intraosseous surface, analyzing its behavior in an in vivo model in comparison with titanium implants with sandblasted and acid-etched surfaces. The study used six American Fox Hound dogs. Each received four implants per hemi-mandible, making a total of eight implants per animal. The 48 immediate loaded implants were divided into two groups of 24 titanium implants (control group) and 24 zirconia implants (study/test group), distributed randomly. Bone-to-implant contact (BIC) values and crestal resorption were determined at 1 and 3 months, also measuring calcium, phosphorous, and carbon concentrations by means of energy dispersive x-ray. BIC percentages after 30 days were 51.36% for titanium implants and 44.68% for zirconia implants. After 90 days, values increased to 61.73% in titanium and 47.94% in zirconia implants. After 30 days, there was more crestal bone lost in the titanium group (0.77 mm) compared with the zirconia group (0.01 mm). After 90 days, zirconia implants showed greater marginal bone resorption (1.25 mm) compared with the titanium group (0.37 mm). The present study shows that zirconia implants with modified surfaces can produce good osseointegration values when compared with titanium implants in terms of BIC and crestal bone resorption at 1 and 3 months. © 2013 Wiley Periodicals, Inc.

  11. Brånemark and ITI dental implants in the human bone-grafted maxilla: a comparative evaluation

    DEFF Research Database (Denmark)

    Pinholt, Else M

    2003-01-01

    and the patients were followed between 20 and 67 months post implantation. The bone graft was transplanted to add bony volume in the maxillary sinus, the anterior floor of the nose and/or the alveolar ridge. After a healing period of 4(1/2) months, dental implants were inserted and left for healing for 8 months......-treated ITI implants has a significant higher survival rate than machine-surfaced Brånemark implants in autogenous grafted maxillary bone.......The development of new characteristics concerning implant surface makes it interesting to clinically compare different implant systems in the bone-grafted maxilla. The aim of this evaluation was to compare clinical data of a two-staged procedure on the augmented extremely atrophic maxilla using...

  12. Bacterial communities associated with apical periodontitis and dental implant failure

    Science.gov (United States)

    Dingsdag, Simon; Nelson, Stephen; Coleman, Nicholas V.

    2016-01-01

    Background Previously, we demonstrated that bacteria reside in apparently healed alveolar bone, using culture and Sanger sequencing techniques. Bacteria in apparently healed alveolar bone may have a role in peri-implantitis and dental implant failure. Objective To compare bacterial communities associated with apical periodontitis, those colonising a failed implant and alveolar bone with reference biofilm samples from healthy teeth. Methods and results The study consisted of 196 samples collected from 40 patients undergoing routine dental implant insertion or rehabilitation. The bacterial 16S ribosomal DNA sequences were amplified. Samples yielding sufficient polymerase chain reaction product for further molecular analyses were subjected to terminal restriction fragment length polymorphism (T-RFLP; 31 samples) and next generation DNA sequencing (454 GS FLX Titanium; 8 samples). T-RFLP analysis revealed that the bacterial communities in diseased tissues were more similar to each other (p<0.049) than those from the healthy reference samples. Next generation sequencing detected 13 bacterial phyla and 373 putative bacterial species, revealing an increased abundance of Gram-negative [Prevotella, Fusobacterium (p<0.004), Treponema, Veillonellaceae, TG5 (Synergistetes)] bacteria and a decreased abundance of Gram-positive [(Actinomyces, Corynebacterium (p<0.008)] bacteria in the diseased tissue samples (n=5) relative to reference supragingival healthy samples (n=3). Conclusion Increased abundances of Prevotella, Fusobacterium and TG5 (Synergistetes) were associated with apical periodontitis and a failed implant. A larger sample set is needed to confirm these trends and to better define the processes of bacterial pathogenesis in implant failure and apical periodontitis. The application of combined culture-based, microscopic and molecular technique-based approaches is suggested for future studies. PMID:27834171

  13. Bacterial communities associated with apical periodontitis and dental implant failure

    Directory of Open Access Journals (Sweden)

    Simon Dingsdag

    2016-11-01

    Full Text Available Background: Previously, we demonstrated that bacteria reside in apparently healed alveolar bone, using culture and Sanger sequencing techniques. Bacteria in apparently healed alveolar bone may have a role in peri-implantitis and dental implant failure. Objective: To compare bacterial communities associated with apical periodontitis, those colonising a failed implant and alveolar bone with reference biofilm samples from healthy teeth. Methods and results: The study consisted of 196 samples collected from 40 patients undergoing routine dental implant insertion or rehabilitation. The bacterial 16S ribosomal DNA sequences were amplified. Samples yielding sufficient polymerase chain reaction product for further molecular analyses were subjected to terminal restriction fragment length polymorphism (T-RFLP; 31 samples and next generation DNA sequencing (454 GS FLX Titanium; 8 samples. T-RFLP analysis revealed that the bacterial communities in diseased tissues were more similar to each other (p<0.049 than those from the healthy reference samples. Next generation sequencing detected 13 bacterial phyla and 373 putative bacterial species, revealing an increased abundance of Gram-negative [Prevotella, Fusobacterium (p<0.004, Treponema, Veillonellaceae, TG5 (Synergistetes] bacteria and a decreased abundance of Gram-positive [(Actinomyces, Corynebacterium (p<0.008] bacteria in the diseased tissue samples (n=5 relative to reference supragingival healthy samples (n=3. Conclusion: Increased abundances of Prevotella, Fusobacterium and TG5 (Synergistetes were associated with apical periodontitis and a failed implant. A larger sample set is needed to confirm these trends and to better define the processes of bacterial pathogenesis in implant failure and apical periodontitis. The application of combined culture-based, microscopic and molecular technique-based approaches is suggested for future studies.

  14. Fracture analysis of randomized implant-supported fixed dental prostheses.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Mehler, Alex; Clark, Arthur E; Neal, Dan; Anusavice, Kenneth J

    2014-10-01

    Fractures of posterior fixed dental all-ceramic prostheses can be caused by one or more factors including prosthesis design, flaw distribution, direction and magnitude of occlusal loading, nature of supporting infrastructure (tooth root/implant), and presence of adjacent teeth. This clinical study of implant-supported, all-ceramic fixed dental prostheses, determined the effects of (1) presence of a tooth distal to the most distal retainer; (2) prosthesis loading either along the non-load bearing or load bearing areas; (3) presence of excursive contacts or maximum intercuspation contacts in the prosthesis; and (4) magnitude of bite force on the occurrence of veneer ceramic fracture. 89 implant-supported FDPs were randomized as either a three-unit posterior metal-ceramic (Au-Pd-Ag alloy and InLine POM, Ivoclar, Vivadent) FDP or a ceramic-ceramic (ZirCAD and ZirPress, Ivoclar, Vivadent) FDP. Two implants (Osseospeed, Dentsply) and custom abutments (Atlantis, Dentsply) supported these FDPs, which were cemented with resin cement (RelyX Universal Cement). Baseline photographs were made with markings of teeth from maximum intercuspation (MI) and excursive function. Patients were recalled at 6 months and 1-3 years. Fractures were observed, their locations recorded, and images compared with baseline photographs of occlusal contacts. No significant relationship existed between the occurrence of fracture and: (1) the magnitude of bite force; (2) a tooth distal to the most distal retainer; and (3) contacts in load-bearing or non-load-bearing areas. However, there was a significantly higher likelihood of fracture in areas with MI contacts only. Because of the absence of a periodontal ligament, this clinical study demonstrates that there is a need to evaluate occlusion differently with implant-supported prostheses than with natural tooth supported prostheses. Implant supported prostheses should have minimal occlusion and lighter contacts than those supported by natural dentition

  15. An Alumina Toughened Zirconia Composite for Dental Implant Application: In Vivo Animal Results

    Science.gov (United States)

    Schierano, Gianmario; Faga, Maria Giulia; Menicucci, Giulio; Sabione, Cristian; Genova, Tullio; von Degerfeld, Mitzy Mauthe; Peirone, Bruno; Cassenti, Adele; Cassoni, Paola; Carossa, Stefano

    2015-01-01

    Ceramic materials are widely used for biomedical applications because of their remarkable biological and mechanical properties. Composites made of alumina and zirconia are particularly interesting owing to their higher toughness with respect to the monolithic materials. On this basis, the present study is focused on the in vivo behavior of alumina toughened zirconia (ATZ) dental implants treated with a hydrothermal process. A minipig model was implemented to assess the bone healing through histology and mRNA expression at different time points (8, 14, 28, and 56 days). The novel ATZ implant was compared to a titanium clinical standard. The implants were analyzed in terms of microstructure and surface roughness before in vivo tests. The most interesting result deals with a statistically significant higher digital histology index for ATZ implants with respect to titanium standard at 56 days, which is an unprecedented finding, to the authors' knowledge. Even if further investigations are needed before proposing the clinical use in humans, the tested material proved to be a promising candidate among the possible ceramic dental implants. PMID:25945324

  16. Dental implants modified with drug releasing titania nanotubes: therapeutic potential and developmental challenges.

    Science.gov (United States)

    Gulati, Karan; Ivanovski, Sašo

    2017-08-01

    The transmucosal nature of dental implants presents a unique therapeutic challenge, requiring not only rapid establishment and subsequent maintenance of osseointegration, but also the formation of resilient soft tissue integration. Key challenges in achieving long-term success are sub-optimal bone integration in compromised bone conditions and impaired trans-mucosal tissue integration in the presence of a persistent oral microbial biofilm. These challenges can be targeted by employing a drug-releasing implant modification such as TiO 2 nanotubes (TNTs), engineered on titanium surfaces via electrochemical anodization. Areas covered: This review focuses on applications of TNT-based dental implants towards achieving optimal therapeutic efficacy. Firstly, the functions of TNT implants will be explored in terms of their influence on osseointegration, soft tissue integration and immunomodulation. Secondly, the developmental challenges associated with such implants are reviewed including sterilization, stability and toxicity. Expert opinion: The potential of TNTs is yet to be fully explored in the context of the complex oral environment, including appropriate modulation of alveolar bone healing, immune-inflammatory processes, and soft tissue responses. Besides long-term in vivo assessment under masticatory loading conditions, investigating drug-release profiles in vivo and addressing various technical challenges are required to bridge the gap between research and clinical dentistry.

  17. An Alumina Toughened Zirconia Composite for Dental Implant Application: In Vivo Animal Results

    Directory of Open Access Journals (Sweden)

    Gianmario Schierano

    2015-01-01

    Full Text Available Ceramic materials are widely used for biomedical applications because of their remarkable biological and mechanical properties. Composites made of alumina and zirconia are particularly interesting owing to their higher toughness with respect to the monolithic materials. On this basis, the present study is focused on the in vivo behavior of alumina toughened zirconia (ATZ dental implants treated with a hydrothermal process. A minipig model was implemented to assess the bone healing through histology and mRNA expression at different time points (8, 14, 28, and 56 days. The novel ATZ implant was compared to a titanium clinical standard. The implants were analyzed in terms of microstructure and surface roughness before in vivo tests. The most interesting result deals with a statistically significant higher digital histology index for ATZ implants with respect to titanium standard at 56 days, which is an unprecedented finding, to the authors’ knowledge. Even if further investigations are needed before proposing the clinical use in humans, the tested material proved to be a promising candidate among the possible ceramic dental implants.

  18. Clinical and Radiographic Evaluation of Immediate Loaded Dental Implants With Local Application of Melatonin: A Preliminary Randomized Controlled Clinical Trial.

    Science.gov (United States)

    El-Gammal, Mona Y; Salem, Ahmed S; Anees, Mohamed M; Tawfik, Mohamed A

    2016-04-01

    Immediate loading of dental implants in situations where low bone density exist, such as the posterior maxillary region, became possible recently after the introduction of biomimetic agents. This 1-year preliminary clinical trial was carried out to clinically and radiographically evaluate immediate-loaded 1-piece implants with local application of melatonin in the osteotomy site as a biomimetic material. 14 patients with missing maxillary premolars were randomized to receive 14 implants of 1-piece type that were subjected to immediate loading after 2 weeks of initial placement. Group I included 7 implants with acid-etched surface while group II included 7 implants with acid-etched surface combined with local application of melatonin gel at the osteotomy site. Patients were recalled for follow up at 1, 3, 6, and 12 months after loading. All implants were considered successful after 12 months of follow-up. Significant difference (P implant loading when considering the implant stability. At 1 and 3 months there were significant differences in the marginal bone level between the 2 groups. These results suggest that the local application of melatonin at the osteotomy site is associated with good stability and minimal bone resorption. However, more studies for longer follow-up periods are required to confirm the effect of melatonin hormone on osseointegration of dental implants.

  19. Influence of mechanical and chemical surface treatments on the formation of bone-like structure in cpTi for endosseous dental implants

    Science.gov (United States)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2012-10-01

    Commercially pure titanium samples were exposed to grit blasting and acid-alkali treatments to obtain a variety of surface compositions and morphologies. Contact roughness test and microstructural studies were employed to study the surface topography of the samples. The nature and chemical composition of surface phases were evaluated using X-ray diffraction and microanalysis techniques. Selected samples first exposed to in vitro environment were then tested to determine the surface morphology and surface microstructure. Based on the data presented in this work, it is suggested that grit blasting process utilized prior to chemical treatment stage, yields a high quality surface morphology. Such a surface morphology is expected to have superior tribological characteristics after osseointegration. Also, it appeared that the reverse sequence of processing resulted in a better biocompatibility of the product manifested by negligible amount of residual alumina on the sample surface.

  20. A study of the bone healing kinetics of plateau versus screw root design titanium dental implants.

    LENUS (Irish Health Repository)

    Leonard, Gary

    2009-03-01

    This study was designed to compare the bone healing process around plateau root from (PRF) and screw root from (SRF) titanium dental implants over the immediate 12 week healing period post implant placement.

  1. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  2. Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants.

    Science.gov (United States)

    Tamam, Evsen; Turkyilmaz, Ilser

    2014-04-01

    Implant failure is more likely to occur in persons with medically compromising systemic conditions, such as diabetes related to high blood glucose levels and inflammatory diseases related to pH levels lower than those in healthy people. The aim of this study was to investigate the effects of lower pH level and simulated- hyperglycemia on implant corrosion as these effects are critical to biocompatibility and osseointegration. The electrochemical corrosion properties of titanium implants were studied in four different solutions: Ringer's physiological solution at pH = 7.0 and pH = 5.5 and Ringer's physiological solution containing 15 mM dextrose at pH = 7 and pH = 5.5. Corrosion behaviors of dental implants were determined by cyclic polarization test and electrochemical impedance spectroscopy. Surface alterations were studied using a scanning electron microscope. All test electrolytes led to apparent differences in corrosion behavior of the implants. The implants under conditions of test exhibited statistically significant increases in I(corr) from 0.2372 to 1.007 μAcm(-2), corrosion rates from 1.904 to 8.085 mpy, and a decrease in polarization resistances from 304 to 74 Ω. Implants in dextrose-containing solutions were more prone to corrosion than those in Ringer's solutions alone. Increasing the acidity also yielded greater corrosion rates for the dextrose-containing solutions and the solutions without dextrose.

  3. Pansinusitis y afectación intracraneal por implante dental Pansinusitis and intracranial impact of a dental implant

    Directory of Open Access Journals (Sweden)

    Josep Rubio-Palau

    2012-03-01

    Full Text Available Las sinusitis odontógenas son una patología relativamente frecuente causada por infecciones dentales, quistes periapicales así como tras procedimientos bucodentales como una endodoncia, una elevación sinusal o la colocación de un implante. A continuación se presenta un caso extremo de una pansinusitis derecha con fistulización a espacio epidural causada por un implante osteointegrado. Ante la sospecha de una sinusitis maxilar de origen odontogénico se debe iniciar rápidamente un tratamiento antibiótico correcto y un seguimiento estrecho ya que pueden tener consecuencias fatales como la pérdida de un ojo, abscesos cerebrales o incluso la muerte.Odontogenic sinusitis is a relatively common disease caused by dental infections, periapical cysts and oral procedures such as root canal, sinus lift or implant placement. We report an extreme case of a right pansinusitis with an epidural space fistula caused by osseointegrated implants. When maxillary sinusitis of odontogenic origin is suspected, we should quickly start effective antibiotic treatment and monitor the patient closely because odontogenic sinusitis can have serious consequences, such as the loss of an eye, brain abscess or death.

  4. Ion implantation into concave polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Sakudo, N. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan)]. E-mail: sakudo@neptune.kanazawa-it.ac.jp; Shinohara, T. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Amaya, S. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Endo, H. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Okuji, S. [Lintec Corp., 5-14-42 Nishiki-cho, Warabi, Saitama 335-0005 (Japan); Ikenaga, N. [Japan Science and Technology Corp., Nomigun, Ishikawa 923-1121 (Japan)

    2006-01-15

    A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle's inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification.

  5. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces

    International Nuclear Information System (INIS)

    Wang Chengyue; Zhao Baohong; Ai Hongjun; Wang Yiwei

    2008-01-01

    This study examined the biological characteristics of mesenchymal stem cells (MSCs) grown on sand-blasted, large-grit, acid-etched (SLA) surface and hydroxyapatite (HA) coating on the SLA (HA/SLA) surface of titanium dental implants. The HA/SLA surfaces of titanium dental implants were formed by the ion beam assisted deposition (IBAD) method. Rabbit bone marrow derived mesenchymal stem cells cultured in vitro were seeded onto the surface of SLA and HA/SLA; the growth states of MSCs on the two samples were observed by a scanning electron microscope; the proliferation index, alkaline phosphatase (ALP) activity, osteocalcin (OCN) content of MSCs and mRNA relative expression level of osteopontin (opn) were compared between two groups. MSCs were found to be easier to adhere to the HA/SLA surface compared to the SLA surface. At the same time, the ALP activity and the OCN content of MSCs grown on the HA/SLA surface were obviously higher, and the relative expression level of opn mRNA was 4.78 times higher than that on the SLA surface. The HA coating formed by the IBAD method on the SLA surface of titanium dental implants significantly improves proliferation and well-differentiated osteoblastic phenotype of MSCs, which indicates a promising method for the surface modification of titanium dental implants

  6. Multiple teeth replacement with endosseous one-piece yttrium-stabilized zirconia dental implants

    OpenAIRE

    Borgonovo, Andrea Enrico; Fabbri, Alberto; Vavassori, Virna; Censi, Rachele; Maiorana, Carlo

    2012-01-01

    Objectives: The purpose of this study is to clinically and radiographically evaluate survival and success rate of multiple zirconia dental implants positioned in each patient during a follow-up period of at least 12 months up to 48 months. Study Design: Eight patients were treated for multiple edentulism with 29 zirconia dental implants. All implants received immediate temporary restorations and 6 months after surgery were definitively restored. 6 months to 4 years after implant insertion, a ...

  7. The effect of growth factors on the osseointegration of dental implants

    OpenAIRE

    Magalhães, Helena Margarida Assis

    2017-01-01

    Tese de mestrado, Medicina Dentária, Universidade de Lisboa, Faculdade de Medicina Dentária, 2017 Introduction: Dental implants have been an option of treatment commonly used in dentistry. Osseointegration is a measure of implant stability and can be enhanced by increasing the contact of bone to implant. Many strategies such as osteogenic coatings with growth factors have been studied in order to achieve it. Objective: To evaluate the effect of growth factors coating dental implants on the...

  8. Comparative Evaluation of Osseointegration of Dental Endodontic Implants with and without Plasma- Sprayed Hydroxy apatite Coating

    OpenAIRE

    Moosavi SB; Fathi MH. BS; MSC; Feizi Gh; Mortazavi V

    2001-01-01

    Bone osseointegration around dental implant can cause earlier stabilization and fixation of implant and reduce healing time. Hydroxyapatite coating can affect bone osseointegration and enhance its rates. The aim of this study was comparison of osseointegration between plasma sprayed hydroxyapatite coated and uncoated dental implants in cats. Four endodontic implants including, vitallium and two stainless steel with and without hydroxyapatite coating were prepared and placed in mandibular cani...

  9. Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants.

    Science.gov (United States)

    Wood, Natalie J; Jenkinson, Howard F; Davis, Sean A; Mann, Stephen; O'Sullivan, Dominic J; Barbour, Michele E

    2015-06-01

    Dental implants are an increasingly popular solution to missing teeth. Implants are prone to colonisation by pathogenic oral bacteria which can lead to inflammation, destruction of bone and ultimately implant failure. The aim of this study was to investigate the use of chlorhexidine (CHX) hexametaphosphate (HMP) nanoparticles (NPs) with a total CHX concentration equivalent to 5 mM as a coating for dental implants. The CHX HMP NPs had mean diameter 49 nm and composition was confirmed showing presence of both chlorine and phosphorus. The NPs formed micrometer-sized aggregated surface deposits on commercially pure grade II titanium substrates following immersion-coating for 30 s. When CHX HMP NP-coated titanium specimens were immersed in deionised water, sustained release of soluble CHX was observed, both in the absence and presence of a salivary pellicle, for the duration of the study (99 days) without reaching a plateau. Control specimens exposed to a solution of aqueous 25 µM CHX (equivalent to the residual aqueous CHX present with the NPs) did not exhibit CHX release. CHX HMP NP-coated surfaces exhibited antimicrobial efficacy against oral primary colonising bacterium Streptococcus gordonii within 8 h. The antimicrobial efficacy was greater in the presence of an acquired pellicle which is postulated to be due to retention of soluble CHX by the pellicle.

  10. Influence of mechanical and chemical surface treatments on the formation of bone-like structure in cpTi for endosseous dental implants

    International Nuclear Information System (INIS)

    Parsikia, Farhang; Amini, Pupak; Asgari, Sirous

    2012-01-01

    Highlights: ► Acid–alkali process after grit blasting showed optimized surface morphology. ► The reverse sequence yields inferior bioactivity and improved biocompatibility. ► Surface morphology was most uniform after a final grit blasting stage. - Abstract: Commercially pure titanium samples were exposed to grit blasting and acid–alkali treatments to obtain a variety of surface compositions and morphologies. Contact roughness test and microstructural studies were employed to study the surface topography of the samples. The nature and chemical composition of surface phases were evaluated using X-ray diffraction and microanalysis techniques. Selected samples first exposed to in vitro environment were then tested to determine the surface morphology and surface microstructure. Based on the data presented in this work, it is suggested that grit blasting process utilized prior to chemical treatment stage, yields a high quality surface morphology. Such a surface morphology is expected to have superior tribological characteristics after osseointegration. Also, it appeared that the reverse sequence of processing resulted in a better biocompatibility of the product manifested by negligible amount of residual alumina on the sample surface.

  11. Influence of mechanical and chemical surface treatments on the formation of bone-like structure in cpTi for endosseous dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Parsikia, Farhang; Amini, Pupak [Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365-9466 (Iran, Islamic Republic of); Asgari, Sirous, E-mail: sasgari@sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365-9466 (Iran, Islamic Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Acid-alkali process after grit blasting showed optimized surface morphology. Black-Right-Pointing-Pointer The reverse sequence yields inferior bioactivity and improved biocompatibility. Black-Right-Pointing-Pointer Surface morphology was most uniform after a final grit blasting stage. - Abstract: Commercially pure titanium samples were exposed to grit blasting and acid-alkali treatments to obtain a variety of surface compositions and morphologies. Contact roughness test and microstructural studies were employed to study the surface topography of the samples. The nature and chemical composition of surface phases were evaluated using X-ray diffraction and microanalysis techniques. Selected samples first exposed to in vitro environment were then tested to determine the surface morphology and surface microstructure. Based on the data presented in this work, it is suggested that grit blasting process utilized prior to chemical treatment stage, yields a high quality surface morphology. Such a surface morphology is expected to have superior tribological characteristics after osseointegration. Also, it appeared that the reverse sequence of processing resulted in a better biocompatibility of the product manifested by negligible amount of residual alumina on the sample surface.

  12. Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants

    International Nuclear Information System (INIS)

    Ektessabi, A.M.; Otsuka, T.; Tsuboi, Y.; Yokoyama, K.; Albrektsson, T.; Sennerby, L.; Johansson, C.

    1994-01-01

    In the past two decades the utilization of dental and orthopaedic implants in reconstructive surgery has been spread widely. Most of these implants are inserted in the corrosive environment of the human body for long periods of time. The level of dissolution, release, and transport of metal ions as a result of corrosion of these materials are not fully known at present. We report the results of application of micro ion beam PIXE spectroscopy to detect release of titanium from titanium and titanium alloy implants inserted in the tibiae of rabbits for three months. It was found that titanium ions could be detected in the surrounding tissues, with high precision, as a gradient from the implant surface and in higher amounts in the bone tissue as compared with the soft tissues. It is concluded that application of micro ion beam PIXE spectroscopy for detection of metal ion release, and distribution of the released material around the implants with high special resolution and accuracy may be used to further investigate the mechanism of metal release, and the relation between surface micromorphology and corrosion resistance of the implant materials. (author)

  13. Immediate placement of dental implants in the esthetic zone : a systematic review and pooled analysis

    NARCIS (Netherlands)

    Slagter, Kirsten W; den Hartog, Laurens; Bakker, Nicolaas A; Vissink, Arjan; Meijer, Henny J A; Raghoebar, Gerry M

    Background: Research interest on immediate placement of dental implants has shifted from implant survival toward optimal preservation of soft and hard tissues. The aim of this study is to systematically assess the condition of implant survival, peri-implant hard and soft tissue changes, esthetic

  14. Impact of dental implant insertion method on the peri-implant bone tissue: Experimental study

    Directory of Open Access Journals (Sweden)

    Stamatović Novak

    2013-01-01

    Full Text Available Background/Aim. The function of dental implants depends on their stability in bone tissue over extended period of time, i.e. on osseointegration. The process through which osseointegration is achieved depends on several factors, surgical insertion method being one of them. The aim of this study was to histopathologically compare the impact of the surgical method of implant insertion on the peri-implant bone tissue. Methods. The experiment was performed on 9 dogs. Eight weeks following the extraction of lower premolars implants were inserted using the one-stage method on the right mandibular side and two-stage method on the left side. Three months after implantation the animals were sacrificed. Three distinct regions of bone tissue were histopathologically analyzed, the results were scored and compared. Results. In the specimens of one-stage implants increased amount of collagen fibers was found in 5 specimens where tissue necrosis was also observed. Only moderate osteoblastic activity was found in 3 sections. The analysis of bone-to-implant contact region revealed statistically significantly better results regarding the amount of collagen tissue fibers for the implants inserted in the two-stage method (Wa = 59 105, α = 0.05. No necrosis and osteoblastic activity were observed. Conclusion. Better results were achieved by the two-stage method in bone-to-implant contact region regarding the amount of collagen tissue, while the results were identical regarding the osteoblastic activity and bone tissue necrosis. There was no difference between the methods in the bone-implant interface region. In the bone tissue adjacent to the implant the results were identical regarding the amount of collagen tissue, osteoblastic reaction and bone tissue necrosis, while better results were achieved by the two-stage method regarding the number of osteocytes.

  15. Intricate Assessment and Evaluation of Effect of Bruxism on Long-term Survival and Failure of Dental Implants: A Comparative Study.

    Science.gov (United States)

    Yadav, Kajal; Nagpal, Abhishek; Agarwal, S K; Kochhar, Aarti

    2016-08-01

    Dental implants are one of the common lines of treatment used for the treatment of missing tooth. Various risk factors are responsible for the failure of the dental implants and occurrence of postoperative complications. Bruxism is one such factor responsible for the failure of the dental implants. The actual relation between bruxism and dental implants is a subject of long-term controversy. Hence, we carried out this retrospective analysis to assess the complications occurring in dental implants in patients with and without bruxism. The present study included 1100 patients which were treated for rehabilitation by dental implant procedure at 21 dental offices of Ghaziabad (India) from 2004 to 2014. Analyzing the clinical records of the patients along with assessing the photographs of the patients was done for confirming the diagnosis of bruxism. Clinical re-evaluation of the patients, who came back for follow-up, was done to confirm the diagnosis of bruxism. Systemic questionnaires as used by previous workers were used to evaluate the patients about the self-conscience of the condition. Estimation of the mechanical complications was done only in those cases which occurred on the surfaces of the restoration of the dental implants. All the results were analyzed by Statistical Package for Social Sciences (SPSS) software. Student's t-test and Pearson's chi-square test were used to evaluate the level of significance. In both bruxer and non-bruxers, maximum number of dental implants was placed in anterior maxillary region. Significant difference was obtained while comparing the two groups for dimensions of the dental implants used. On comparing the total implant failed cases between bruxers and non-bruxers group, statistically significant result was obtained. Statistically significant difference was obtained while comparing the two study groups based on the health parameters, namely hypertension, diabetes, and smoking habit. Success of dental implant is significantly

  16. Bioactive and thermally compatible glass coating on zirconia dental implants.

    Science.gov (United States)

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. © International & American Associations for Dental

  17. Designing a novel dental root analogue implant using cone beam computed tomography and CAD/CAM technology

    NARCIS (Netherlands)

    Moin, D.A.; Hassan, B.; Mercelis, P.; Wismeijer, D.

    2013-01-01

    Objectives The study aim is to introduce a novel preemptively constructed dental root analogue implant (RAI) based on three-dimensional (3D) root surface models obtained from a cone beam computed tomography (CBCT) scan, computer aided designing and computer aided manufacturing technology. Materials

  18. Studies of the quality of the intraosseous dental implant bed and of thermal effects in implant pathology

    International Nuclear Information System (INIS)

    Wong, K.

    2000-01-01

    Dental implants may offer solutions to problems of tooth loss and removable dentures, avoiding the blighting of sound teeth in conventional bridgework. However, there may be severe problems due to deficient and poor quality host bone, particularly in the maxillary sinus region. The success of particulate irradiated mineralised cancellous allograft (IMCA) in generating new bone in the sinus was analysed using the trephine bone cores removed to create an implant bed. Bone cores were embedded and examined using 3D fluorescence fight microscopy and scanning electron microscopy in the backscattered electron (BSE) mode to study the quantity and the quality [degree of mineralisation] of bone in implant sites. In all graft cases, new bone as immature (woven) or mature (lamellar) bone formed on the surfaces of the allograft. The bone volume fraction was found to be significantly greater within 5 mm height of the host sinus floor. In an extended study, control sinuses grafted with IMCA soaked in saline showed no significant difference to the test side treated with the patient's own serum. IMCA was shown to retain much of its original topographical and morphological characteristics. Biopsy core specimens from other (non-sinus) sites in both maxilla and mandible were treated similarly. The highest mineral density distributions were observed in the mandible, with the lowest in the residual posterior maxilla beneath the sinus floor. A novel quantitative bone quality scale is proposed to include three parameters of bone quality: mineralisation density, bone volume fraction and connectivity. Clinical use of Laser Doppler Flowmetry (LDF) confirmed positive blood flow in grafts, sinus membrane, and oral tissues. A model of heat conduction in dental implants, predicted oral heat to be a possible factor in implant pathology. The effect of temperature on avian osteoclastic resorption in vitro was studied using a volumetric pit assay. Osteoclastic function measured as volumes and depths

  19. Studies of the quality of the intraosseous dental implant bed and of thermal effects in implant pathology

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K

    2000-07-01

    Dental implants may offer solutions to problems of tooth loss and removable dentures, avoiding the blighting of sound teeth in conventional bridgework. However, there may be severe problems due to deficient and poor quality host bone, particularly in the maxillary sinus region. The success of particulate irradiated mineralised cancellous allograft (IMCA) in generating new bone in the sinus was analysed using the trephine bone cores removed to create an implant bed. Bone cores were embedded and examined using 3D fluorescence fight microscopy and scanning electron microscopy in the backscattered electron (BSE) mode to study the quantity and the quality [degree of mineralisation] of bone in implant sites. In all graft cases, new bone as immature (woven) or mature (lamellar) bone formed on the surfaces of the allograft. The bone volume fraction was found to be significantly greater within 5 mm height of the host sinus floor. In an extended study, control sinuses grafted with IMCA soaked in saline showed no significant difference to the test side treated with the patient's own serum. IMCA was shown to retain much of its original topographical and morphological characteristics. Biopsy core specimens from other (non-sinus) sites in both maxilla and mandible were treated similarly. The highest mineral density distributions were observed in the mandible, with the lowest in the residual posterior maxilla beneath the sinus floor. A novel quantitative bone quality scale is proposed to include three parameters of bone quality: mineralisation density, bone volume fraction and connectivity. Clinical use of Laser Doppler Flowmetry (LDF) confirmed positive blood flow in grafts, sinus membrane, and oral tissues. A model of heat conduction in dental implants, predicted oral heat to be a possible factor in implant pathology. The effect of temperature on avian osteoclastic resorption in vitro was studied using a volumetric pit assay. Osteoclastic function measured as volumes and

  20. Implant Survival between Endo-osseous Dental Implants in Immediate Loading, Delayed Loading, and Basal Immediate Loading Dental Implants a 3-Year Follow-up.

    Science.gov (United States)

    Garg, Ritesh; Mishra, Neha; Alexander, Mohan; Gupta, Sunil Kumar

    2017-01-01

    With introduction of the term "ossteointegration of dental implant" by Branemark, advancement in implantology from 1957 to 2017 has come a long way with modification in implant type and in loading time. This study aims to evaluate the survival of endo-osseous immediate loading (IL) implant and basal IL implants in atrophic jaws with objective to compare implant survival in atrophic jaws for full mouth rehabilitation between endo-osseous IL versus endo-osseous delayed loading (DL) versus basal IL during 3-year follow-up. Fifty-two (34 endo-osseous and 18 basal) implants were placed in 4 patients requiring full mouth rehabilitation in atrophic jaws. Case 1: Endo-osseous DL implants in upper and lower arch, Case 2: Endo-osseous IL implants in upper and lower arch, Case 3: Basal IL implant in upper and lower arch, and Case 4: Endo-osseous DL in upper arch and basal IL implant in the lower arch. Intraoperative evaluation was done on the basis of pain (visual analog scale [VAS]), operative time, and initial primary implant stability. Postoperative evaluation was done on pain (VAS), infection, radiographically successful implant (orthopantomogram), and patient satisfaction (Grade 0-10). All cases showed satisfactory results but more amount of intra- and post-operative pain was felt with immediate basal implants. We believe that clinicians should comply with patient requests, and for this reason, we agree with some authors to use minimally invasive techniques and to avoid when possible esthetic or functional problems associated with the use of removable prosthesis after teeth extractions.