WorldWideScience

Sample records for surface current distributions

  1. Current Distribution over the Electrode Surface in a Lead-acid Cell during Discharge

    Czech Academy of Sciences Publication Activity Database

    Král, P.; Křivák, P.; Bača, P.; Calábek, M.; Micka, Karel

    2002-01-01

    Roč. 105, č. 1 (2002), s. 34-44 ISSN 0378-7753 R&D Projects: GA ČR GA102/98/1170 Institutional research plan: CEZ:AV0Z4040901 Keywords : grid design * current distribution * lead-acid cell Subject RIV: CG - Electrochemistry Impact factor: 1.777, year: 2002

  2. Current distribution over the electrode surface in a cylindrical VRLA cell during discharge

    Czech Academy of Sciences Publication Activity Database

    Křivák, P.; Bača, P.; Calábek, M.; Micka, Karel; Král, P.

    2006-01-01

    Roč. 154, č. 2 (2006), s. 518-522 ISSN 0378-7753 Grant - others:Advanced Lead-Acid Battery Consortium(ES) N4.2 Institutional research plan: CEZ:AV0Z40400503 Keywords : grid design * current distribution * cylindrical lead-acid cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.521, year: 2006

  3. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  4. Computation of antenna pattern correlation and MIMO performance by means of surface current distribution and spherical wave theory

    Directory of Open Access Journals (Sweden)

    O. Klemp

    2006-01-01

    Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.

  5. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    International Nuclear Information System (INIS)

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-01-01

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance

  6. Current Distribution Mapping for PEMFCs

    International Nuclear Information System (INIS)

    Lilavivat, V.; Shimpalee, S.; Van Zee, J.W.; Xu, H.; Mittelsteadt, C.K.

    2015-01-01

    A developed measurement system for current distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFCs). Currently, there are many issues with the methods to measure current distribution; some of the problems that arise are breaking up the fuel cell component and these measurements are costly. Within this field of work, there is a cost effective method and an easy technique of mapping the current distribution within a fuel cell while not disrupting reactant flow. The physical setup of this method takes a current distribution board and inserts it between an anode flow field plate and a gas diffusion layer. From this layout, the current distribution can be directly measured from the current distribution board. This novel technique can be simply applied to different fuel cell hardware. Further it also can be used in fuel cell stack by inserting multiple current distribution boards into the stack cells. The results from the current distribution measurements and the electrochemical predictions from computational fluid dynamics modeling were used to analyze water transports inside the fuel cell. This developed system can be a basis for a good understanding of optimization for fuel cell design and operation mode

  7. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    International Nuclear Information System (INIS)

    Blodgett, Mark P.; Nagy, Peter B.

    2004-01-01

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small (∼1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation

  8. Current distribution tomography for determination of internal current density distributions

    International Nuclear Information System (INIS)

    Gailey, P.C.

    1993-01-01

    A method is presented for determination of current densities inside a cylindrical object using measurements of the magnetic fields outside the object. The cross section of the object is discretized with the current assumed constant over each defined region. Magnetic fields outside the object are related to the internal current densities through a geometry matrix which can be inverted to yield a solution for the current densities in terms of the measured fields. The primary limitation of this technique results from singularities in the geometry matrix that arise due to cylindrical symmetry of the problem. Methods for circumventing the singularities to obtain information about the distribution of current densities are discussed. This process of current distribution tomography is designed to determine internal body current densities using measurements of the external magnetic field distribution. It is non-invasive, and relatively simple to implement. Although related to a more general study of magnetic imaging which has been used to investigate endogenous currents in the brain and other parts of the body, it is restricted to currents either applied directly or induced by exposure to an external field. The research is related to public concern about the possibility of health effects resulting from exposure to power frequency electric and magnetic fields

  9. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant.

    Science.gov (United States)

    Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac

    2008-07-01

    Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.

  10. Distributed Surface Force

    Science.gov (United States)

    2014-06-01

    to expeditiously run multiple scenarios in a given time frame. There are some disadvantages to using MANA. Most specifically, targeting is limiting...does not invalidate the model results because current weapon systems do not possess this capability. The other major disadvantage to this modeling...Uniform Automata (MANA) Version Four User Manual. Technical Note, Auckland , New Zealand: Defence Technology Agency. Mislick, Gregory, interview by

  11. Current distribution in conducting nanowire networks

    Science.gov (United States)

    Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, Giridhar U.

    2017-07-01

    Conducting nanowire networks find diverse applications in solar cells, touch-screens, transparent heaters, sensors, and various related transparent conducting electrode (TCE) devices. The performances of these devices depend on effective resistance, transmittance, and local current distribution in these networks. Although, there have been rigorous studies addressing resistance and transmittance in TCE, not much attention is paid on studying the distribution of current. Present work addresses this compelling issue of understanding current distribution in TCE networks using analytical as well as Monte-Carlo approaches. We quantified the current carrying backbone region against isolated and dangling regions as a function of wire density (ranging from percolation threshold to many multiples of threshold) and compared the wired connectivity with those obtained from template-based methods. Further, the current distribution in the obtained backbone is studied using Kirchhoff's law, which reveals that a significant fraction of the backbone (which is believed to be an active current component) may not be active for end-to-end current transport due to the formation of intervening circular loops. The study shows that conducting wire based networks possess hot spots (extremely high current carrying regions) which can be potential sources of failure. The fraction of these hot spots is found to decrease with increase in wire density, while they are completely absent in template based networks. Thus, the present work discusses unexplored issues related to current distribution in conducting networks, which are necessary to choose the optimum network for best TCE applications.

  12. Surface current density K: an introduction

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...

  13. Shape estimation of the buried body from the ground surface potential distributions generated by current injection; Tsuryu ni yoru chihyomen den`i bunpu wo riyoshita maizobutsu keijo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Okamoto, Y. [Chiba Institute of Technology, Chiba (Japan); Noguchi, K. [Waseda University, Tokyo (Japan); Teramachi, Y. [University of Industrial Technology, Kanagawa (Japan); Akabane, H.; Agu, M. [Ibaraki University, Ibaraki (Japan)

    1996-10-01

    Ground surface potential distribution generated by current injection was studied to estimate the shape of buried bodies. Since the uniform ground system including a homogeneous buried body is perfectly determined with the surface shape of a buried body and resistivities in/around a buried body, inversion is easy if the surface shape is described with some parameters. N electrodes are arranged in 2-D grid manner on the ground, and two electrodes among them are used for current injection, while the others for measurement of potentials. M times of measurements are repeated while changing combination of electrodes for current injection. The potential distribution measured by the mth electrode pair is represented by N-2 dimensional vectors. The square error between this distribution and calculated one is the function of k parameters on the surface shape and resistivities on a buried body. Both shape and resistivities can be estimated by solving an optimum value problem using the square error as evaluation function. Analysis is easy for a spherical body with 6 unknown parameters, however, it is difficult for more complex bodies than elliptical one or more than two bodies. 5 refs., 9 figs.

  14. Spatial distribution and seasonal variation of four current-use pesticides (CUPs) in air and surface water of the Bohai Sea, China.

    Science.gov (United States)

    Liu, Lin; Tang, Jianhui; Zhong, Guangcai; Zhen, Xiaomei; Pan, Xiaohui; Tian, Chongguo

    2018-04-15

    Current-use pesticides (CUPs) are widely used in agriculture, and some are listed as persistent organic pollutants (POPs) due to their bioaccumulative and toxic properties. China is one of the largest producers and users of pesticides in the world. However, very limited data are available about the environmental fates of CUPs. Four CUPs (trifluralin, chlorothalonil, chlorpyrifos, and dicofol) in surface seawater and low atmospheric samples taken during research cruises on the Bohai Sea in August and December 2016 and February 2017 were analyzed, we added the spring data sampled in May 2012 to the discussion of seasonal variation. In our study, chlorpyrifos was the most abundant CUPs in the gas phase with a mean abundance of 59.06±126.94pgm -3 , and dicofol had the highest concentration dissolved in seawater (mean: 115.94±123.16pgL -1 ). The concentrations of all target compounds were higher during May and August due to intensive use and relatively high temperatures in the spring and summer. Backward trajectories indicated that air masses passing through the eastern coast of the Bohai Sea contained high concentrations of pollutants, while the air masses from the Bohai and Yellow Seas were less polluted. The high concentration of pollutants in seawater was not only influenced by high yields from the source region of production or usage, but also by input from polluted rivers. Volatilization from surface water was found to be an important source of trifluralin and chlorpyrifos in the air. Air-sea gas exchange of chlorothalonil underwent strong net deposition (mean FRs: 51.67), which was driven by higher concentrations in air and indicates that the Bohai Sea acted as a sink for chlorothalonil. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Distribution of primary and secondary currents in sine-generated ...

    African Journals Online (AJOL)

    44 No. 1 January 2018. Published under a Creative Commons Attribution Licence. 118. Distribution of primary and secondary currents in sine-generated bends li He1*. 1Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research,. Chinese ...

  16. Electric fields associated with transient surface currents

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1992-01-01

    The boundary condition to be fulfilled by the potential functions associated with a transient surface current is derived and expressed in terms of generalized orthogonal coordinates. From the analysis, it can be deduced that the use of the method of separation of variables is restricted to three ...

  17. Eddy Current Probe for Surface and Sub-Surface Inspection

    Science.gov (United States)

    Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)

    2014-01-01

    An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.

  18. Spatial and temporal distribution of ionospheric currents-4: altitude ...

    African Journals Online (AJOL)

    (a) The continuous distribution of current density model reproduces the altitude distribution parameters of EEJ current density very well, (b) the altitude distribution parameters of EEJ current density in India and Peru are not significantly different and (c) The altitude distribution parameters of EEJ current density from rockets ...

  19. Transient eddy currents on finite plane and toroidal conducting surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weissenburger, D.W.; Christensen, U.R.

    1979-04-01

    this report applies a previously presented mesh analysis method to calculate transient eddy currents in conducting surfaces. Example calculations are presented for a planar conducting sheet of finite dimensions and also for a toroidal conducting surface which represents the vacuum vessel of the TFTR. For the toroidal sheet, branch inductances are initially calculated by num erically integrating the vector potential function, then the branch matrix is transformed into a mesh matrix. For the flat sheet, an analytic expression is given which enables direct calculation of the mesh inductance matrix. Streamline plots of the eddy current distributions are shown at successive time steps for each example.

  20. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  1. Galaxy Selection and the Surface Brightness Distribution

    Science.gov (United States)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.

    1995-08-01

    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.

  2. Correlation among ESDD, NSDD and leakage current in distribution insulators

    International Nuclear Information System (INIS)

    Montoya, G.; Ramirez, I.; Montoya, J.I.

    2004-01-01

    The maintenance of distribution networks is more effective if the insulation contamination levels are known. The selection of measuring methods of pollution levels is then crucial. The relationship between several evaluation methods of pollution levels and the operating behaviour of several insulator profiles in a polluted zone is described. Laboratory tests were carried out to reproduce pollution levels found in the field. The quantity of non-soluble materials deposited over the insulators' surface affect the magnitude of the leakage current generated over a contaminated insulator. The relationship that defines leakage current with respect to the equivalent salt deposit density (ESDD) level for a specific non-soluble material level is almost linear, from which it is possible to develop a relationship between them for each insulator. (author)

  3. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available Surface current information collected over the Agulhas Current region and derived from the Doppler centroid anomalies of the Advanced Synthetic Aperture Radar (ASAR) are examined. The sources of errors and potential use of the radar surface...

  4. Surface science principles and current applications

    CERN Document Server

    Taglauer, E; Wandelt, K

    1996-01-01

    Modern technologies increasingly rely on low-dimensional physics at interfaces and in thin-films and nano-structures. Surface science holds a key position in providing the experimental methods and theoretical models for a basic understanding of these effects. This book includes case studies and status reports about research topics such as: surface structure determination by tensor-LEED and surface X-ray diffraction; the preparation and detection of low-dimensional electronic surface states; quantitative surface compositional analysis; the dynamics of adsorption and reaction of adsorbates, e.g. kinetic oscillations; the characterization and control of thin-film and multilayer growth including the influence of surfactants; a critical assessment of the surface physics approach to heterogeneous catalysis.

  5. Errors in measurement of current distribution in a superconducting tape

    Science.gov (United States)

    Usak, Pavol

    2011-04-01

    The paper reports on the role of the typical mapping errors in measurement of the lateral sheet current distribution Iy(x) in a superconducting tape. The sheet current is calculated indirectly, from the mapped data of the self magnetic field of the superconducting layer. The field is generated by transport or induced current in a tape. In model calculations examples of the influence of the different types of errors on false shaping of the lateral sheet current profile are given. The field mapping is made outside and over the tape. The lateral profile Bz(x, z) of the magnetic field component, perpendicular to the superconducting layer, is input to the Biot-Savart inverse procedure. In the experiment we have used superconducting tape as a sample and an InSb Hall probe with active surface 20 × 20 µm2 as a magnetic field sensor. We demonstrate the details, together with obstacles and errors encountered in measurement and subsequent evaluation. The demonstrations serve for the reader to be aware of limits in interpretation of the measured data and to overcome the natural barrier in understanding, insight and use of this fruitful method.

  6. Waterfowl in Cuba: Current status and distribution

    Science.gov (United States)

    Blanco Rodríquez, Pedro; Vilella, Francisco; Sánchez Oria, Bárbara

    2014-01-01

    Cuba and its satellite islands represent the largest landmass in the Caribbean archipelago and a major repository of the region’s biodiversity. Approximately 13.4% of the Cuban territory is covered by wetlands, encompassing approximately 1.48 million ha which includes mangroves, flooded savannas, peatlands, freshwater swamp forests and various types of managed wetlands. Here, we synthesise information on the distribution and abundance of waterfowl on the main island of Cuba, excluding the numerous surrounding cays and the Isla de la Juventud (Isle of Youth), and report on band recoveries from wintering waterfowl harvested in Cuba by species and location. Twenty-nine species of waterfowl occur in Cuba, 24 of which are North American migrants. Of the five resident Anatid species, three are of conservation concern: the West Indian Whistling-duck Dendrocygna arborea (globally vulnerable), White-cheeked Pintail Anas bahamensis (regional concern) and Masked Duck Nomonyx dominicus(regional concern). The most abundant species of waterfowl wintering in Cuba include Blue-winged Teal A. discors, Northern Pintail A. acuta, and Northern Shoveler A. clypeata. Waterfowl banded in Canada and the United States and recovered in Cuba included predominantly Blue-winged Teal, American Wigeon and Northern Pintail. Banding sites of recovered birds suggest that most of the waterfowl moving through and wintering in Cuba are from the Atlantic and Mississippi flyways. Threats to wetlands and waterfowl in Cuba include: 1) egg poaching of resident species, 2) illegal hunting of migratory and protected resident species, 3) mangrove deforestation, 4) reservoirs for irrigation, 5) periods of pronounced droughts, and 6) hurricanes. Wetland and waterfowl conservation efforts continue across Cuba’s extensive system of protected areas. Expanding collaborations with international conservation organisations, researchers and governments in North America will enhance protection

  7. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  8. Current distribution across type II superconducting films: a new vortex-free critical state.

    Science.gov (United States)

    Talantsev, E F; Pantoja, A E; Crump, W P; Tallon, J L

    2018-01-29

    The current distribution across the thickness of a current-carrying rectangular film in the Meissner state was established long ago by the London brothers. The distribution across the width is more complicated but was later shown to be highly non-uniform, diverging at the edges. Accordingly, the standard view for type II superconductors is that vortices enter at the edges and, with increasing current, are driven inwards until they self-annihilate at the centre, causing dissipation. This condition is presumed to define the critical current. However we have shown that, under self-field (no external field), the transport critical current is a London surface current where the surface current density equals the critical field divided by λ, across the entire width. The critical current distribution must therefore be uniform. Here we report studies of the current and field distribution across commercial YBa 2 Cu 3 O 7 conductors and confirm the accepted non-uniform distribution at low current but demonstrate a radical crossover to a uniform distribution at critical current. This crossover ends discontinuously at a singularity and calculations quantitatively confirm these results in detail. The onset of self-field dissipation is, unexpectedly, thermodynamic in character and the implied vortex-free critical state seems to require new physics.

  9. Incorporating Skew into RMS Surface Roughness Probability Distribution

    Science.gov (United States)

    Stahl, Mark T.; Stahl, H. Philip.

    2013-01-01

    The standard treatment of RMS surface roughness data is the application of a Gaussian probability distribution. This handling of surface roughness ignores the skew present in the surface and overestimates the most probable RMS of the surface, the mode. Using experimental data we confirm the Gaussian distribution overestimates the mode and application of an asymmetric distribution provides a better fit. Implementing the proposed asymmetric distribution into the optical manufacturing process would reduce the polishing time required to meet surface roughness specifications.

  10. Eddy current analysis by BEM utilizing loop electric and surface magnetic currents as unknowns

    International Nuclear Information System (INIS)

    Ishibashi, Kazuhisa

    2002-01-01

    The surface integral equations whose unknowns are the surface electric and magnetic currents are widely used in eddy current analysis. However, when the skin depth is thick, computational error is increased especially in obtaining electromagnetic fields near the edge of the conductor. In order to obtain the electromagnetic field accurately, we propose an approach to solve surface integral equations utilizing loop electric and surface magnetic currents as unknowns. (Author)

  11. About New Maps of Surface Currents of the World Ocean

    Science.gov (United States)

    Nikitin, O. P.; Kasyanov, S. Yu.

    2018-01-01

    Using the example of the surface currents map constructed for the Northern Atlantic on the basis of data of modern observations by means of drifting buoys, it is shown that the previously published maps of ocean surface currents, based on ship drift data, have become outdated and require an update. The influence of the bottom relief on the directions of surface layer currents is shown.

  12. Surface Currents. South Central Indian Ocean

    Science.gov (United States)

    1977-09-01

    8217 lOe 01 0a 0t sil O’ s O i it OS 1 60 03 0 0 t t 3 toita 85 E 9 DISTRIBUTION LIST NAVY PRIVATE & UNIVERSITIES CINCPACFLT (02M) FLORIDA ST. UNIV...e cu r r e t Is d e p ic ted by vector resultants as follows.-* xslts primarily Ollected by the s upplemented qt y Japanese.-1960’ s thr’ough • Ider...o J oootoI %I ,I ., II -, -.a 1 11. ,1 I isI I so Y 3sOa Os44am s I I I ’a 0 1 o a t o0 o.o ’ I, I I, I o , 1’ .114 oa o 111 G a 1 ,Ia I 0oa I 0 1 o

  13. Surface current observatons--Beaufort Sea, 1972

    Science.gov (United States)

    Barnes, Peter; Garlow, Richard

    1975-01-01

    Sediment transport via water and ice in the Beaufort Sea off northern Alaska is related to the movement of the surficial waters. As development proceeds along the north slope of alaska, a knowledge of the potential drift trajectories of water, ice, sediment and pollutants will be needed. In an attempt to better define the probable paths and rates of transport, 4200 surface drift cards were dropped during the U.S. Coast Guard WEBSEC cruise of August and September, 1972. The results of this release are the subject of this report. Because the data presented here will be used primarily by those interested in solving problems of transport, the emphasis has been placed on data presentation rather than a detailed analysis of the circulation. (Sinha-OEIS)

  14. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional...

  15. Electric current distribution of a multiwall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taiwan (China); Chen, Yu-Jyun [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2016-07-15

    The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriers can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.

  16. distribution of euphausiid crustaceans from the agulhas current

    African Journals Online (AJOL)

    may set up a northeasterly counter-current close to the coast and cause local upwelling (aowes. 1950; Darbyshire 1964). The Agulhas Current shows considerable seasonal variation in its rate of flow (Darbyshire. 1964) and ...... detailed study of the biology and distribution of this interesting species in eastern Cape coastal.

  17. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  18. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  19. Transient current distributions in porous zinc electrodes in KOH electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.B.; Yamazaki, Y.; Cook, G.M.; Yao, N.P.

    1981-02-01

    A zero-resistance ammeter circuit with a 10-channel operational amplifier was used to measure the current distribution during a discharge of 10 to 100 mA with simulated zinc porous electrodes in 7.24 M KOH saturated with ZnO. The reaction distribution was found to be highly nonuniform, with 70 to 78% of the charge transfer reaction completed in a depth of 0.01 cm. The high nonuniformity of the initial reaction profile was believed to be due to low conductivity of the electrolyte in the electrode pores. The current distribution changes during passivation of the electrode were experimentally obtained. A mathematical model based upon a macroscope averaging technique was used to predict the time dependence of charge transfer reaction profiles. With mathematical model, current distributions and overpotentials were predicted as a function of time for the segmented zinc electrode discharged at a current of 10 to 100 mA; for these predictions, assumed values of both precipitation rate constants for porous ZnO and diffusion coefficients for hydroxide and zincate ions were used. A gradual decrease in the specific conductivity of the pore electrolyte to 20% of the initial value during discharge yields predictions of current distributions and overpotentials in good agreement with the experimental data. The extent of reduction in the specific conductivity of the pore electrolyte implies a supersaturation of zincate of four times chemical saturation, which was been observed experimentally.At high discharge current (25 to 100 mA), the passivation behavior of the electrode has been simulated. The results of the experiments and mathematical model show that the effective reaction penetration depth is less than 0.02 cm.

  20. The Influence of Wind on HF Radar Surface Current Forecasts

    National Research Council Canada - National Science Library

    De Almeida, Francisco M

    2008-01-01

    The ability to predict surface currents can have a beneficial impact in several activities, such as Search and Rescue and Oil Spill Response, as well as others more purely scientific, operational or economic...

  1. Surface CUrrents from a Diagnostic model (SCUD): Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SCUD data product is an estimate of upper-ocean velocities computed from a diagnostic model (Surface CUrrents from a Diagnostic model). This model makes daily...

  2. Current distribution of the american marten, Martes americana, in California

    Science.gov (United States)

    Thomas E. Kurcera; William J. Zielinski; Reginald H. Barrett

    1996-01-01

    We describe the current distribution of the American marten, Martes americana, in California based on field surveys conducted between 1989 and 1995 that used either sooted track-plates or cameras. The Sierra Nevada marten, M. a. sierrae, occupies much of its historic range from northwestern Shasta County to the southern Sierra...

  3. Concentration polarization, surface currents, and bulk advection in a microchannel

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Peder; Bruus, Henrik

    2014-01-01

    We present a comprehensive analysis of salt transport and overlimiting currents in a microchannel during concentration polarization. We have carried out full numerical simulations of the coupled Poisson-Nernst-Planck-Stokes problem governing the transport and rationalized the behavior of the syst...... as in the limit of negligible surface charge. By including the effects of diffusion and advection in the diffuse part of the electric double layers, we extend a recently published analytical model of overlimiting current due to surface conduction....

  4. Analytical Calculation of Current Distribution in Multistrand Superconducting Cables

    CERN Document Server

    Bottura, L; Fabbri, M G

    2003-01-01

    In recent years the problem of current distribution in multistrand superconducting cables has received increasing attention for large scale superconductivity applications due to its effect on the stability of fusion magnets and the field quality of accelerator magnets. A modelling approach based on distributed parameters has revealed to be very effective in dealing with long cables made of some tens or hundreds of strands. In this paper we present a fully analytical solution equation for a distributed parameters model in cables made of an arbitrary number of strands, whose validity is subjected to symmetry conditions generally satisfied in practical cables. We give in particular analytical formulae of practical use for the estimation of the maximum strand currents, time constants and redistribution lengths as a function of the cable properties and the external voltage source.

  5. Mapping the distribution of malaria: current approaches and future directions

    Science.gov (United States)

    Johnson, Leah R.; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    Mapping the distribution of malaria has received substantial attention because the disease is a major source of illness and mortality in humans, especially in developing countries. It also has a defined temporal and spatial distribution. The distribution of malaria is most influenced by its mosquito vector, which is sensitive to extrinsic environmental factors such as rainfall and temperature. Temperature also affects the development rate of the malaria parasite in the mosquito. Here, we review the range of approaches used to model the distribution of malaria, from spatially explicit to implicit, mechanistic to correlative. Although current methods have significantly improved our understanding of the factors influencing malaria transmission, significant gaps remain, particularly in incorporating nonlinear responses to temperature and temperature variability. We highlight new methods to tackle these gaps and to integrate new data with models.

  6. Modeling and experiments of the adhesion force distribution between particles and a surface.

    Science.gov (United States)

    You, Siming; Wan, Man Pun

    2014-06-17

    Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.

  7. Distribution of electrical stimulation current in a planar multilayer anisotropic tissue.

    Science.gov (United States)

    Mesin, Luca; Merletti, Roberto

    2008-02-01

    This study analytically addresses the problem of neuromuscular electrical stimulation for a planar, multilayer, anisotropic model of a physiological tissue (referred to as volume conductor). Both conductivity and permittivity of the volume conductor are considered, including dispersive properties. The analytical solution is obtained in the 2-D Fourier transform domain, transforming in the planes parallel to the volume conductor surface. The model is efficient in terms of computational cost, as the solution is analytical (only numerical Fourier inversion is needed). It provides the current distribution in a physiological tissue induced by an electrical current delivered at the skin surface. Three representative examples of application of the model are considered. 1) The simulation of stimulation artefact during transcutaneous electrical stimulation and EMG detection. Only the effect of the volume conductor is considered, neglecting the other sources of artefact (such as the capacitive coupling between the stimulating and recording electrodes). 2) The simulation of the electrical current distribution within the muscle and the low-pass filter effect of the volume conductor on sinusoidal stimulation currents with different stimulation frequencies. 3) The estimation of the amplitude modulated current distribution within the muscle for interferential stimulation. The model is devoted to the simulation of neuromuscular stimulation, but the same method could be applied in other fields in which the estimation of the electrical current distribution in a medium induced by the injection of a current from the boundary of the medium is of interest.

  8. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  9. Current distribution between petals in PF-FSJS sample

    International Nuclear Information System (INIS)

    Zani, L.

    2003-01-01

    6 Rogowski coils have been installed on each leg of each of the 12 petals in the PF-FSJS sample (poloidal field - full size joint sample) in order to diagnostic current. It appears that Rogowski signal seem reliable for current distribution analysis (Ampere's law is checked and reproducibility is assured) but there is some limitations for qualitative diagnostics. In the series of transparencies results are detailed for the PU1 position, for both leg and right legs and for various unique-angle shift (Δθ) configurations but only results for 0 < Δθ < -5 are consistent

  10. Flux surface shape and current profile optimization in tokamaks

    International Nuclear Information System (INIS)

    Dobrott, D.R.; Miller, R.L.

    1977-01-01

    Axisymmetric tokamak equilibria of noncircular cross section are analyzed numerically to study the effects of flux surface shape and current profile on ideal and resistive interchange stability. Various current profiles are examined for circles, ellipses, dees, and doublets. A numerical code separately analyzes stability in the neighborhood of the magnetic axis and in the remainder of the plasma using the criteria of Mercier and Glasser, Greene, and Johnson. Results are interpreted in terms of flux surface averaged quantities such as magnetic well, shear, and the spatial variation in the magnetic field energy density over the cross section. The maximum stable β is found to vary significantly with shape and current profile. For current profiles varying linearly with poloidal flux, the highest β's found were for doublets. Finally, an algorithm is presented which optimizes the current profile for circles and dees by making the plasma everywhere marginally stable

  11. A distributed current stimulator ASIC for high density neural stimulation.

    Science.gov (United States)

    Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim

    2016-08-01

    This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.

  12. Prediction of current distribution in a molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, V.; Selman, J.R.; Sammells, A.F.

    1978-01-01

    A mathematical model has been developed to predict the performance of a molten carbonate fuel cell as a function of anode and cathode gas compositions, gas flow rates, and polarization characteristics. The effect of gas flow modes such as crossflow and coflow and the effect of higher pressures on the current distribution are studied. The predicted polarization curves agree well with the experimentally generated polarization curves. Conditions for incorporating a microscopic porous electrode model into the overall model development are briefly outlined.

  13. Mapping the Agulhas Current from space: an assessment of ASAR surface current velocities

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-10-01

    Full Text Available Over 2 years of surface current information collected in the Agulhas Current region and derived from the Doppler centroid anomalies of Envisat’s advanced synthetic aperture radar (ASAR) are examined. The sources of errors and potential use of ASAR...

  14. Discharge current distribution in stratified soil under impulse discharge

    Science.gov (United States)

    Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti

    2017-06-01

    The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.

  15. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    Science.gov (United States)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.

    2007-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  16. The current state of bearing surfaces in total hip replacement.

    Science.gov (United States)

    Rajpura, A; Kendoff, D; Board, T N

    2014-02-01

    We reviewed the literature on the currently available choices of bearing surface in total hip replacement (THR). We present a detailed description of the properties of articulating surfaces review the understanding of the advantages and disadvantages of existing bearing couples. Recent technological developments in the field of polyethylene and ceramics have altered the risk of fracture and the rate of wear, although the use of metal-on-metal bearings has largely fallen out of favour, owing to concerns about reactions to metal debris. As expected, all bearing surface combinations have advantages and disadvantages. A patient-based approach is recommended, balancing the risks of different options against an individual's functional demands.

  17. Surface Current Measurements In Terra Nova Bay By Hf Radar

    Science.gov (United States)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  18. Surface Currents and Winds at the Delaware Bay Mouth

    Energy Technology Data Exchange (ETDEWEB)

    Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

    2011-04-06

    Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

  19. Surface current equilibria from a geometric point of view

    International Nuclear Information System (INIS)

    Kaiser, R.; Salat, A.

    1993-04-01

    This paper addresses the inverse problem of the existence of surface current MHD equilibria in toroidal geometry with vanishing magnetic field inside. Inverse means that the plasma-vacuum interface rather than the external wall or conductors are given and the latter remain to be determined. This makes a reformulation of the problem possible in geometric terms: What toroidal surfaces with analytic parameterization allow a simple analytic covering by geodesics? If such a covering by geodesics (field lines) exists, their orthogonal trajectories (current lines) also form a simple covering and are described by a function satisfying a nonlinear partial differential equation of the Hamilton-Jacobi type whose coefficients are combinations of the metric elements of the surface. All known equilibria - equilibria with zero and infinite rotational transform and the symmetric ones in the case of finite rotational transform - turn out to be solutions of separable cases of that equation and allow a unified description if the toroidal surface is parametrized in the moving trihedral associated with a closed curve. Analogously to volume current equilibria, the only continuous symmetries compatible with separability are plane, helical and axial symmetry. In the nonseparable case numerical evidence is presented for cases with chaotic behaviour of geodesics, thus restricting possible equilibria for these surfaces. For weak deviation from axisymmetry KAM-type behaviour is observed, i.e. destruction of geodesic coverings with a low rational rotational transform and preservation of those with irrational rotational transform. A previous attempt to establish three-dimensional surface current equilibria on the basis of the KAM theorem is rejected as incomplete, and a complete proof of the existence of equilibria in the weakly nonaxisymmetric case, based on the twist theorem for mappings, is given. Finally, for a certain class of strong deviations from axisymmetry an analytic criterion is

  20. Fourier analysis of polar cap electric field and current distributions

    Science.gov (United States)

    Barbosa, D. D.

    1984-01-01

    A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.

  1. Field representation inside arbitrary linear optical media by single surface currents

    NARCIS (Netherlands)

    Hoenders, BJ; Doosje, M; Knoester, J

    2004-01-01

    Recently a novel method has been proposed for the calculation of the scattering of an incoming electromagnetic wave by an arbitrarily shaped photonic crystal. The method rests on the representation of an arbitrary electromagnetic field inside a volume V by a fictitious surface current distribution

  2. Calculation of the self-consistent current distribution and coupling of an RF antenna array

    International Nuclear Information System (INIS)

    Ballico, M.; Puri, S.

    1993-10-01

    A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)

  3. Nearshore surface current patterns in the Tsitsikamma National Park ...

    African Journals Online (AJOL)

    The pattern of surface currents in the Tsitsikamma National Park, South Africa, was studied with holey-sock drogues released in batches of up to four at a time, from 1996 and 1998. Drogues were left to drift for either 6 or 24 h, while recording position and time. The majority of drogue movements were longshore, either ...

  4. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 1. Evaluation of OSCAR ocean surface current product in the tropical Indian Ocean using in situ data. Rajesh Sikhakolli Rashmi Sharma Sujit Basu B S Gohil Abhijit Sarkar K V S R Prasad. Volume 122 Issue 1 February 2013 pp 187-199 ...

  5. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    combined fashion, have contributed to the superior performance of the present algorithm for generat- ing ocean surface current. Validation and error analysis of the OSCAR pro- ..... EC (figure 4) through the appearance of strong semiannual periodicity. The SEC peaks in July, the peak being smoother in OSCAR climatology.

  6. Evaluation of OSCAR ocean surface current product in the tropical ...

    Indian Academy of Sciences (India)

    (Johnson et al. 2007). The OSCAR product is, however, a global product. Thus there is a pressing need to validate this product in the other basins of the world ocean, e.g., in the Indian Ocean. The present study is motivated by this need. In the present study, monthly climatology of OSCAR ocean surface currents in the TIO ...

  7. Effect of recovery time of fault current limiter on over current from distributed generator in micro grid after voltage sag

    Directory of Open Access Journals (Sweden)

    Daisuke Iioka

    2016-01-01

    Full Text Available This paper describes an effect of recovery time of fault current limiter on over current from a micro grid system which is interconnected to a power distribution system. We have assumed that the semi-conductor type fault current limiter is installed between the micro grid system with the synchronous generator and the power distribution system, measured the over current after a voltage sag occurrence in the power distribution system and a recovery of fault current limiter by experiments in our laboratory. Finally, it was found that the introduction of recovery time for fault current limiter after voltage sag is useful for suppressing the over current from the distributed generator.

  8. Origin and evolution of surface spin current in topological insulators

    Science.gov (United States)

    Dankert, André; Bhaskar, Priyamvada; Khokhriakov, Dmitrii; Rodrigues, Isabel H.; Karpiak, Bogdan; Kamalakar, M. Venkata; Charpentier, Sophie; Garate, Ion; Dash, Saroj P.

    2018-03-01

    The Dirac surface states of topological insulators offer a unique possibility for creating spin polarized charge currents due to the spin-momentum locking. Here we demonstrate that the control over the bulk and surface contribution is crucial to maximize the charge-to-spin conversion efficiency. We observe an enhancement of the spin signal due to surface-dominated spin polarization while freezing out the bulk conductivity in semiconducting Bi1.5Sb0.5Te1.7Se1.3 below 100 K . Detailed measurements up to room temperature exhibit a strong reduction of the magnetoresistance signal between 2 and100 K , which we attribute to the thermal excitation of bulk carriers and to the electron-phonon coupling in the surface states. The presence and dominance of this effect up to room temperature is promising for spintronic science and technology.

  9. DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Miyazaki, Shingo; Kasuya, Syohei; Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi

    2014-01-01

    Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.

  10. Surface Area Distribution Descriptor for object matching

    Directory of Open Access Journals (Sweden)

    Mohamed F. Gafar

    2010-07-01

    Full Text Available Matching 3D objects by their similarity is a fundamental problem in computer vision, computer graphics and many other fields. The main challenge in object matching is to find a suitable shape representation that can be used to accurately and quickly discriminate between similar and dissimilar shapes. In this paper we present a new volumetric descriptor to represent 3D objects. The proposed descriptor is used to match objects under rigid transformations including uniform scaling. The descriptor represents the object by dividing it into shells, acquiring the area distribution of the object through those shells. The computed areas are normalised to make the descriptor scale-invariant in addition to rotation and translation invariant. The effectiveness and stability of the proposed descriptor to noise and variant sampling density as well as the effectiveness of the similarity measures are analysed and demonstrated through experimental results.

  11. Modelling of electrochemical reactors with bio polar electrodes. Prediction of the current distributions

    International Nuclear Information System (INIS)

    HenquIn, E. R; Bisang, J. M

    2005-01-01

    A simplified mathematical model to calculate the current distributions in bipolar electrochemical reactors is proposed.The current distributions are deduced from a combination of the voltage balance in the reactor with a voltage balance including the electrolyte inlet and outlet.Thus, equations to predict the effect of geometric and operational variables on the current distributions at the electrodes are reported.The parameters acting upon the current distributions were lumped into two dimensionless variables and their effects on the current distributions are discussed.The primary current distributions are obtained as a limiting case.Comparisons between calculated and experimental primary current distributions are reported

  12. Global pyrogeography: the current and future distribution of wildfire.

    Directory of Open Access Journals (Sweden)

    Meg A Krawchuk

    Full Text Available Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade. We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research

  13. Global pyrogeography: the current and future distribution of wildfire.

    Science.gov (United States)

    Krawchuk, Meg A; Moritz, Max A; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global

  14. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives.

    Science.gov (United States)

    Pengo, Paolo; Şologan, Maria; Pasquato, Lucia; Guida, Filomena; Pacor, Sabrina; Tossi, Alessandro; Stellacci, Francesco; Marson, Domenico; Boccardo, Silvia; Pricl, Sabrina; Posocco, Paola

    2017-12-01

    Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.

  15. Ka-band Doppler Scatterometer for Measurements of Ocean Vector Winds and Surface Currents

    Data.gov (United States)

    National Aeronautics and Space Administration — Ocean surface currents impact heat transport, surface momentum and gas fluxes, ocean productivity and marine biological communities. Ocean currents also have social...

  16. Surface waves on currents with arbitrary vertical shear

    Science.gov (United States)

    Smeltzer, Benjamin K.; Ellingsen, Simen Å.

    2017-04-01

    We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of depth-varying magnitude using a piecewise linear approximation and develop a robust numerical framework for practical calculation. The method has been much used in the past for the case of waves propagating along the same axis as the background current, and we herein extend and apply it to problems with an arbitrary angle between the wave propagation and current directions. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving a broad range of wave vectors, such as ship waves and Cauchy-Poisson initial value problems. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile and demonstrate qualitative differences in the wake patterns between concave down and concave up profiles when compared to a constant shear profile with equal depth-averaged vorticity. We also discuss the nature of additional solutions to the dispersion relation when using the piecewise-linear model. These are vorticity waves, drifting vortical structures which are artifacts of the piecewise model. They are absent for a smooth profile and are spurious in the present context.

  17. Temperature distribution on the MEA surface of a PEMFC with serpentine channel flow bed

    Science.gov (United States)

    Wang, Maohai; Guo, Hang; Ma, Chongfang

    Knowledge of the temperature distribution on the membrane electrode assembly (MEA) surface and heat transfer processes inside a proton exchange membrane fuel cell (PEMFC) is helpful to improvement of cell reliability, durability and performance. The temperature fields on the surface of MEA fixed inside a proton exchange membrane fuel cell with a serpentine channel flow bed were measured by infrared imaging technology under non-humidification conditions. The temperature distributions over the MEA surface under whole channel region were achieved. The experimental results show that the downstream temperatures are higher than the upstream. The hot region on the MEA surface is easy to locate from the infrared temperature image. The mean temperature on the MEA surface and the cell temperature both increase with the current density. Higher current density makes the non-uniformity of temperature distribution on the MEA surface worse. The loading time significantly affects the temperature distribution. Compared with the electrical performance of the cell, the MEA's temperatures need much more time to reach stable. The results indicate that isothermal assumption is not appropriate for a modeling of PEMFCs, and monitoring the temperature of external surface of the flow field plate or end plate cannot supply accurate reference to control the temperatures on MEA surface.

  18. Doubly localized surface plasmon resonance in bimodally distributed silver nanoparticles.

    Science.gov (United States)

    Ranjan, M

    2012-06-01

    Growth of bimodally distributed silver nanoparticles using sequential physical vapour deposition (PVD) is reported. Growth conditions of nanoparticles are defined in the following three steps: In the first step, nanoparticles are grown at a heated substrate and then exposed to atmosphere, in the second step, nanoparticles are vacuum annealed and finally re-deposition of silver is performed in the third step. This special way of deposition leads to the formation of bimodally distributed nanoparticles. It has been investigated that by changing the deposition time, different sets of bimodally distributed nanoparticles can be grown. Localized surface plasmon resonance (LSPR) of such bimodally distributed nanoparticles generates double plasmon resonance peaks with overlapped absorption spectra. Double plasmon resonance peaks provide a quick indication of the existence of two sets of nanoparticles. LSPR spectra of such bimodally distributed nanoparticles could be modeled with double Lorentz oscillator model. Inclusion of double Lorentz oscillator model indicates that there exist two sets of non-interacting nanoparticles resonating at different plasma frequencies. It is also reported that silver nanoparticles grown at a heated substrate, again attain the new shape while being exposed to atmosphere, followed by vacuum annealing at the same temperature. This is because of physisorption of oxygen at the silver surface and change in surface free energy. The re-shaping due to the adsorbed oxygen on the surface is responsible for bimodal size distribution of nanoparticles.

  19. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    Science.gov (United States)

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this

  20. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    Science.gov (United States)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  1. Spot distribution and fast surface evolution on Vega

    Science.gov (United States)

    Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.

    2017-11-01

    Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.

  2. Pesticides distribution in surface waters and sediments of lotic and ...

    African Journals Online (AJOL)

    An investigation on the availability and distribution of Lindane (HCHs) and Total organochlorine phosphate (TOCP) in the surface waters and sediments of selected water bodies in Agbede wetlands was carried out from December, 2012 to May, 2014 in order to cover seasonal trends in both matrixes. A Gas Chromatograph ...

  3. Surface water assessment on the influence of space distribution on ...

    African Journals Online (AJOL)

    In this work, the influence of space distribution on physico-chemical parameters of refinery effluent discharge has been studied, using treated effluent water discharged from the Port Harcourt Refinery Company (PHRC) into the Ekerekana Creek in Okrika as reference. Samples were collected at surface level from the ...

  4. 26 CFR 1.651(a)-2 - Income required to be distributed currently.

    Science.gov (United States)

    2010-04-01

    ... year of its receipt by the trust, the income of the trust is not required to be distributed currently... (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Trusts Which Distribute Current Income Only § 1.651(a)-2 Income required to be distributed currently. (a) The determination of whether trust income is required to...

  5. Probability Distribution Function of the Upper Equatorial Pacific Current Speeds

    National Research Council Canada - National Science Library

    Chu, Peter C

    2005-01-01

    ...), constructed from hourly ADCP data (1990-2007) at six stations for the Tropical Atmosphere Ocean project satisfies the two-parameter Weibull distribution reasonably well with different characteristics between El Nino and La Nina events...

  6. High resolution laser beam induced current focusing for photoactive surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Lorenzo, C. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain)]. E-mail: concha.fernandez@uca.es; Poce-Fatou, J.A. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain); Alcantara, R. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain); Navas, J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain); Martin, J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Cadiz, Apartado de Correos 40, 11510 Puerto Real, Cadiz (Spain)

    2006-12-15

    The micro-characterization of several surface properties of the solar cells can be accomplished using high-resolution laser beam induced current images. For obtaining these images, a very precise laser beam focusing on the photoactive surface is required. For this purpose, a methodology for obtaining the best focalization associated to the maximum of a peak curve has been developed. In this paper, a data set, obtained from the inner photoconversion properties of the system, has been evaluated with three different numerical analysis techniques: (a) derivative (b) length and (c) Fourier Transform, in order to get the finest possible peak distribution. Then, an amount of 13 analytical peak curves using the Levenberg Marquardt algorithm to find the best curve that adjusts the data distribution have been analyzed.

  7. Spatially-Resolved Beam Current and Charge-State Distributions for the NEXT Ion Engine

    Science.gov (United States)

    Pollard, James E.; Diamant, Kevin D.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Plume characterization tests with the 36-cm NEXT ion engine are being performed at The Aerospace Corporation using engineering-model and prototype-model thrusters. We have examined the beam current density and xenon charge-state distribution as functions of position on the accel grid. To measure the current density ratio j++/j+, a collimated Eprobe was rotated through the plume with the probe oriented normal to the accel electrode surface at a distance of 82 cm. The beam current density jb versus radial position was measured with a miniature planar probe at 3 cm from the accel. Combining the j++/j+ and jb data yielded the ratio of total Xe+2 current to total Xe+1 current (J++/J+) at forty operating points in the standard throttle table. The production of Xe+2 and Xe+3 was measured as a function of propellant utilization to support performance and lifetime predictions for an extended throttle table. The angular dependence of jb was measured at intermediate and far-field distances to assist with plume modeling and to evaluate the thrust loss due to beam divergence. Thrust correction factors were derived from the total doubles-to-singles current ratio and from the far-field divergence data

  8. Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces

    Science.gov (United States)

    Stanford, Bret K.

    2015-01-01

    This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements.

  9. Current distribution of the fisher, Martes pennanti, in California

    Science.gov (United States)

    William J. Zielinski; Thomas E. Kucera; Reginald H. Barrett

    1995-01-01

    We describe the 1989-1994 distribution of the fisher, Martes pennanti, in California based on results of detection surveys that used either sooted track-plates or cameras. Fishers were detected in two regions of the state: the northwest and the southern Sierra Nevada. Despite considerable survey effort, neither fisher tracks nor photographs were...

  10. Steps towards the universal direct current distribution system

    NARCIS (Netherlands)

    Mackay, L.J.

    2018-01-01

    The traditional ac power system is challenged by emerging distributed renewable energy sources and an increase in installed load capacity, e.g., electric vehicles. Most of these new resources use inherently dc as do more and more appliances. This poses the question, if they should still be connected

  11. Current Electric Distribution Network Operation and Grid Tariffs

    DEFF Research Database (Denmark)

    Wu, Qiuwei

    2012-01-01

    The aim of EcoGridEU task 1.4 is to extend the real‐time price approach with an integrated optimization of the distribution system operation. This will be achieved by extending the basic real‐time market concept with local location‐dependant prices that reflect the grid operation, especially the ...

  12. The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface

    Science.gov (United States)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen

    2015-01-01

    The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.

  13. Three-dimensional rail-current distribution near the armature of simple, square-bore, two-rail railguns

    International Nuclear Information System (INIS)

    Beno, J.H.

    1991-01-01

    In this paper vector potential is solved as a three dimensional, boundary value problem for a conductor geometry consisting of square-bore railgun rails and a stationary armature. Conductors are infinitely conducting and perfect contact is assumed between rails and the armature. From the vector potential solution, surface current distribution is inferred

  14. Distribution of primary and secondary currents in sine-generated ...

    African Journals Online (AJOL)

    The influences of curvaturedriven and topography-driven secondary currents on the redistribution of primary flow in sine-generated meandering channels were examined by CCHE2D. The model is calibrated using data measured in two sets of laboratory experiments including flat-bed flow and mobile-bed flow. Analysis ...

  15. Current knowledge about the hydrophilic and nanostructured SLActive surface

    Directory of Open Access Journals (Sweden)

    Wennerberg A

    2011-09-01

    Full Text Available Ann Wennerberg1,2, Silvia Galli2, Tomas Albrektsson2,31Department of Prosthodontics, Malmö University, Malmö, 2Department of Biomaterials, Gothenburg University, Gothenburg, 3Department of Materials Science and Technology, Malmö University, SwedenAbstract: This review summarizes the present documentation for the SLActive surface, a hydrophilic and nanostructured surface produced by Straumann Company in Switzerland, and covers the results from 15 in vitro, 17 in vivo, and 16 clinical studies. The SLActive surface is a development of the large grit-blasted and acid-etched SLA surface, and is further processed to a high degree of hydrophilicity. In general, the in vitro and in vivo studies of the SLActive surface demonstrate a stronger cell and bone tissue response than for the predecessor, the SLA surface, produced by the same company. However, in most studies, this difference disappears after 6–8 weeks. In the clinical studies, a stronger bone response was reported for the SLActive surface during the early healing phase when compared with the SLA surface. However, the later biological response was quite similar for the two surfaces and both demonstrated very good clinical results.Keywords: SLActive, surface, in vitro, in vivo, clinical results

  16. Error Resilience in Current Distributed Video Coding Architectures

    Directory of Open Access Journals (Sweden)

    Tonoli Claudia

    2009-01-01

    Full Text Available In distributed video coding the signal prediction is shifted at the decoder side, giving therefore most of the computational complexity burden at the receiver. Moreover, since no prediction loop exists before transmission, an intrinsic robustness to transmission errors has been claimed. This work evaluates and compares the error resilience performance of two distributed video coding architectures. In particular, we have considered a video codec based on the Stanford architecture (DISCOVER codec and a video codec based on the PRISM architecture. Specifically, an accurate temporal and rate/distortion based evaluation of the effects of the transmission errors for both the considered DVC architectures has been performed and discussed. These approaches have been also compared with H.264/AVC, in both cases of no error protection, and simple FEC error protection. Our evaluations have highlighted in all cases a strong dependence of the behavior of the various codecs to the content of the considered video sequence. In particular, PRISM seems to be particularly well suited for low-motion sequences, whereas DISCOVER provides better performance in the other cases.

  17. Australian shellfish ecosystems: Past distribution, current status and future direction.

    Science.gov (United States)

    Gillies, Chris L; McLeod, Ian M; Alleway, Heidi K; Cook, Peter; Crawford, Christine; Creighton, Colin; Diggles, Ben; Ford, John; Hamer, Paul; Heller-Wagner, Gideon; Lebrault, Emma; Le Port, Agnès; Russell, Kylie; Sheaves, Marcus; Warnock, Bryn

    2018-01-01

    We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia's two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia's shellfish ecosystems.

  18. Australian shellfish ecosystems: Past distribution, current status and future direction.

    Directory of Open Access Journals (Sweden)

    Chris L Gillies

    Full Text Available We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia's two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia's shellfish ecosystems.

  19. Australian shellfish ecosystems: Past distribution, current status and future direction

    Science.gov (United States)

    Gillies, Chris L.; McLeod, Ian M.; Alleway, Heidi K.; Cook, Peter; Crawford, Christine; Creighton, Colin; Diggles, Ben; Ford, John; Hamer, Paul; Heller-Wagner, Gideon; Lebrault, Emma; Le Port, Agnès; Russell, Kylie; Sheaves, Marcus; Warnock, Bryn

    2018-01-01

    We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia’s two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia’s shellfish ecosystems. PMID:29444143

  20. Proposal of numerical model for current distribution analysis in high temperature superconducting parallel conductor

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Akira; Fukui, Satoshi; Sato, Takao; Yamaguchi, Mitsugi

    2004-10-01

    A numerical model to calculate current density distribution in a parallel conductor assembled by multiple high temperature superconducting tapes was proposed. The numerical calculations on the current distribution in the parallel conductor of three high-temperature superconducting tapes were performed by using the developed model. The numerical results showed that the current density distribution in the parallel conductor were affected by the tape arrangement in the conductor.

  1. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications

    NARCIS (Netherlands)

    Swartjes, J. J. T. M.; Sharma, P. K.; van Kooten, T. G.; van der Mei, H. C.; Mahmoudi, M.; Busscher, H. J.; Rochford, E. T. J.

    2015-01-01

    Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence

  2. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    Science.gov (United States)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  3. Marine oil degrading bacteria related to oil inputs and surface currents in the western Caribbean Sea

    International Nuclear Information System (INIS)

    Lizarraga-Partida, M.L.; Vicuna, F.B.I.; Chang, I.W.

    1990-01-01

    The distribution of oil degrading bacteria (ODB) and its ratios to viable heterotrophic bacteria (CFU) and direct counts (AODC) were examined in relation to the surface currents of the western Caribbean Sea. High ODB/CFU and ODB/AODC ratios were found, suggesting that chronic sources of hydrocarbons in the region may have a larger impact than those in the southern Gulf of Mexico, where previous studies have been performed. It was concluded that, in western Caribbean waters, the distribution of oil degrading bacteria, or its ratios to CFU or AODC, could be useful indicators of chronic oil inputs originating at the east of the Caribbean Sea, as well as their motions afterwards. (author)

  4. Ride control of surface effect ships using distributed control

    Directory of Open Access Journals (Sweden)

    Asgeir J. Sørensen

    1994-04-01

    Full Text Available A ride control system for active damping of heave and pitch accelerations of Surface Effect Ships (SES is presented. It is demonstrated that distributed effects that are due to a spatially varying pressure in the air cushion result in significant vertical vibrations in low and moderate sea states. In order to achieve a high quality human comfort and crew workability it is necessary to reduce these vibrations using a control system which accounts for distributed effects due to spatial pressure variations in the air cushion. A mathematical model of the process is presented, and collocated sensor and actuator pairs are used. The process stability is ensured using a controller with appropriate passivity properties. Sensor and actuator location is also discussed. The performance of the ride control system is shown by power spectra of the vertical accelerations obtained from full scale experiments with a 35 m SES.

  5. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  6. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications.

    Science.gov (United States)

    Swartjes, J J T M; Sharma, P K; van Kooten, T G; van der Mei, H C; Mahmoudi, M; Busscher, H J; Rochford, E T J

    2015-01-01

    Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence of antibiotic resistant bacterial strains. Effective antimicrobial surface coatings can be based on an anti-adhesive principle that prevents bacteria to adhere, or on bactericidal strategies, killing organisms either before or after contact is made with the surface. Many strategies, however, implement a multifunctional approach that incorporates both of these mechanisms. For anti-adhesive strategies, the use of polymer chains, or hydrogels is preferred, although recently a new class of super-hydrophobic surfaces has been described which demonstrate improved anti-adhesive activity. In addition, bacterial killing can be achieved using antimicrobial peptides, antibiotics, chitosan or enzymes directly bound, tethered through spacer-molecules or encased in biodegradable matrices, nanoparticles and quaternary ammonium compounds. Notwithstanding the ubiquitous nature of the problem of microbial colonization of material surfaces, this review focuses on the recent developments in antimicrobial surface coatings with respect to biomaterial implants and devices. In this biomedical arena, to rank the different coating strategies in order of increasing efficacy is impossible, since this depends on the clinical application aimed for and whether expectations are short- or long term. Considering that the era of antibiotics to control infectious biofilms will eventually come to an end, the future for biofilm control on biomaterial implants and devices is likely with surface-associated modifications that are non-antibiotic related.

  7. Characterizing the surface circulation in Ebro Delta (NW Mediterranean) with HF radar and modeled current data

    Science.gov (United States)

    Lorente, P.; Piedracoba, S.; Sotillo, M. G.; Aznar, R.; Amo-Balandron, A.; Pascual, A.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2016-11-01

    Quality-controlled current observations from a High Frequency radar (HFR) network deployed in the Ebro River Delta (NW Mediterranean) were combined with outputs from IBI operational ocean forecasting system in order to comprehensively portray the ocean state and its variability during 2014. Accurate HFR data were used as benchmark for a rigorous validation of the Iberia-Biscay-Ireland (IBI) regional system, routinely operated in the frame of the Copernicus Marine Environment Monitoring Service (CMEMS). The analysis of skill metrics and monthly averaged current maps showed that IBI reasonably captured the prevailing dynamic features of the coastal circulation previously observed by the HFR, according to the moderate resemblance found in circulation patterns and the spatial distribution of eddy kinetic energy. The model skill assessment was completed with an exploration of dominant modes of spatiotemporal variability. The EOF analysis confirmed that the modeled surface current field evolved both in space and time according to three significantly dominant modes of variability which accounted for the 49.2% of the total variance, in close agreement with the results obtained for HFR (46.1%). The response of the subtidal surface current field to prevailing wind regime in the study area was examined in terms of induced circulation structures and immediacy of reaction by performing a conditional averaging approach and a time-lagged vector correlation analysis, respectively. This observations-model synergistic strategy has proved to be valid to operationally monitor the complex coastal circulation in Ebro Delta despite the observed model drawbacks in terms of reduced energy content in surface currents and some inaccuracies in the wind-driven low frequency response. This integrated methodology aids to improve the prognostic capabilities of IBI ocean forecasting system and also to facilitate high-stakes decision-making for coastal management in the Ebro River Delta marine

  8. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  9. Crack problem in superconducting cylinder with exponential distribution of critical-current density

    Science.gov (United States)

    Zhao, Yufeng; Xu, Chi; Shi, Liang

    2018-04-01

    The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.

  10. Research of the Ion Current Density Influence on the Glass-Ceramics Surface Defects Forming under Ion-Beam Processing

    Directory of Open Access Journals (Sweden)

    V. G. Pozdnyakov

    2015-01-01

    Full Text Available Development of modern optics is primarily determined by manufacturing accuracy of the working surfaces of optical parts. Therefore, at the last stage of manufacturing optical parts the ion-beam treatment is applied. This method uses spraying the high-energy ions of heavy gases on the surface of a solid body. After an intense ion treatment there are microscopic defects, resembling chips, on the surface of polycrystalline glass. The aim of this work is to study distribution of the surface density of defects by sizes, depending on the density of ion current.Accelerator with an anode layer and a focused ion beam was used as an ion source. The accelerator worked on argon and created ion beam with Gaussian distribution of current density along the radius. The excess positive charge of the ion beam was compensated owing to ionization of residual gas. To eliminate the influence of slow ions with peripheral regions of the ion beam, the etching was performed through a circular aperture with a diameter of 40 mm.Surface treatment of the sample was carried out at the discharge voltage of 3800 V and current of 50 mA for 30 min. The maximum ion current density on the sample surface was 20.2 A/m2 and a power density was of 5.4·104 W/m2 .Distribution of defects by size was measured in three areas of the treated surface corresponding to different densities of ion current, namely: 20.2 A/m2 , 11.3A/m2 , and 3.4 A/m2 . Their number per area unit defines a density of defects.The results show that with increasing ion current density the density of defects on the surface of polycrystalline glass decreases. Thus a view of distribution function of defect density according to size is changed: density of small defects is reduced, and density of large ones increases. Also with increasing ion current density is observed an increase in the size of defects: a 6 times increase of the average size of defects results in 1.6 times increasing ion current density.These data will

  11. AC loss analysis of a HTS coil with parallel superconducting tapes of unbalanced current distribution

    International Nuclear Information System (INIS)

    Lee, S.; Byun, S.; Kim, W.; Choi, K.; Lee, H.

    2007-01-01

    Considering the current capacities of the HTS tapes recently being developed, it is inevitable to use these HTS tapes in parallel in order to apply them to power transformers. But non-uniform distributions of current and large AC losses are major problems in a HTS coil with parallel superconducting tapes. Many parallel HTS tapes have been fabricated and tested so far. The results showed that we had to transpose each tape in order to reduce AC losses and have uniform distributions of current. But the measurement of the current distribution process has been quite difficult not only in the case of the parallel HTS tapes but also in the case of the coil with parallel HTS tapes. In our study, we investigated the effect of current distribution on the AC losses in parallel HTS tapes and coils with parallel superconducting tapes. The current distribution in parallel HTS tapes could be measured with small Hall sensors, the dependence of AC losses and critical current on the current distribution was analyzed. We fabricated a parallel HTS tape and HTS coil with the transposed parallel HTS tapes for an application of a power transformer. The performance of non-uniform current distribution in the parallel HTS wires is worse than that of a uniform one

  12. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  13. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  14. Current status of the near surface repository in Romania

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Rotaru, I.

    2000-01-01

    The radioactive waste management at the Cernavoda NPP is based on collection, pretreatment and storage of all solid wastes. The disposal of operational and decommissioning wastes has been evaluated, based on the results of a research and development programme. A near surface disposal facility was selected and a siting process was implemented. The status of this project and its prospective are discussed in the paper. (author)

  15. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically...

  16. Deepwater Horizon - Estimating surface oil volume distribution in real time

    Science.gov (United States)

    Lehr, B.; Simecek-Beatty, D.; Leifer, I.

    2011-12-01

    Spill responders to the Deepwater Horizon (DWH) oil spill required both the relative spatial distribution and total oil volume of the surface oil. The former was needed on a daily basis to plan and direct local surface recovery and treatment operations. The latter was needed less frequently to provide information for strategic response planning. Unfortunately, the standard spill observation methods were inadequate for an oil spill this size, and new, experimental, methods, were not ready to meet the operational demands of near real-time results. Traditional surface oil estimation tools for large spills include satellite-based sensors to define the spatial extent (but not thickness) of the oil, complemented with trained observers in small aircraft, sometimes supplemented by active or passive remote sensing equipment, to determine surface percent coverage of the 'thick' part of the slick, where the vast majority of the surface oil exists. These tools were also applied to DWH in the early days of the spill but the shear size of the spill prevented synoptic information of the surface slick through the use small aircraft. Also, satellite images of the spill, while large in number, varied considerably in image quality, requiring skilled interpretation of them to identify oil and eliminate false positives. Qualified staff to perform this task were soon in short supply. However, large spills are often events that overcome organizational inertia to the use of new technology. Two prime examples in DWH were the application of hyper-spectral scans from a high-altitude aircraft and more traditional fixed-wing aircraft using multi-spectral scans processed by use of a neural network to determine, respectively, absolute or relative oil thickness. But, with new technology, come new challenges. The hyper-spectral instrument required special viewing conditions that were not present on a daily basis and analysis infrastructure to process the data that was not available at the command

  17. Distributed Secondary Control for DC Microgrid Applications with Enhanced Current Sharing Accuracy

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai

    2013-01-01

    are used locally as the distributed secondary controllers in each converter to enhance the current sharing accuracy and restore the dc bus voltage simultaneously. All the controllers are realized locally and the LBC system is only used for changing the data of dc voltage and current. Thus, a decentralized......, a distributed secondary control method is proposed. Droop control is employed as the primary control method for load current sharing. Meanwhile, the dc output voltage and current in each module is transferred to the others by the low bandwidth communication (LBC) network. Average voltage and current controllers...

  18. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    Science.gov (United States)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  19. Environmental conditioning on uranium surface distribution in the tropical region

    International Nuclear Information System (INIS)

    Silva, Heitor Evangelista da; Licinio, Marcus V.S.; Miranda, Marcio R.

    2001-01-01

    Based on a high resolution aerogammaspectrometer survey over the State of Rio de Janeiro, it is presented an associative study of equivalent uranium concentration and environmental parameters. The aspects considered in this study included geological domains like Sandys, Gnaisses, Granites, Xists; soils domains like Organic and Alluvial ones, Litolic, Glei, Podzolic, Red-yellow, Latossolo, Planossolo, Red bruizem, Cambissolo, Hidromorphic Podzol, Yellow latossolo; geomorphology (Coast Plains and River Accumulation Land, Coast Tabulators, Pomba-Muriae Rivers Spread Depression, Northern Mantiqueira, main Hills and Coastal Rock Massifs, Steep slopes and Reverses of Serra do Mar Mountain Range ,Serra dos Orgaos Mountain Range and Bocaina Tablelands), Paraiba do Sul Crests Alignment, Medium Paraiba do Sul Depression); influence of mean annual rain intensity and hydrographical categories were also evaluated. Geoprocessing of each environmental data base at the same cartographical base of uranium surface distribution was the basic methodology employed. (author)

  20. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    International Nuclear Information System (INIS)

    Sugiyama, K.; Tanabe, T.; Skinner, C.H.; Gentile, C.A.

    2004-01-01

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles

  1. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    Science.gov (United States)

    Tallouli, M.; Shyshkin, O.; Yamaguchi, S.

    2017-07-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  2. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    International Nuclear Information System (INIS)

    Tallouli, M; Yamaguchi, S.; Shyshkin, O.

    2017-01-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  3. Polarized parton distributions from charged-current deep-inelastic scattering and future neutrino factories

    CERN Document Server

    Forte, Stefano; Ridolfi, G; Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni

    2001-01-01

    We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Delta q-Delta qbar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure.

  4. Polarized parton distributions from charged-current deep-inelastic scattering and future neutrino factories

    International Nuclear Information System (INIS)

    Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni

    2001-01-01

    We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading-order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading-order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Δq-Δq-bar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure

  5. Heterogeneous and Evolving Distributions of Pluto's Volatile Surface Ices

    Science.gov (United States)

    Grundy, William M.; Olkin, C. B.; Young, L. A.; Buie, M. W.; Young, E. F.

    2013-10-01

    We report observations of Pluto's 0.8 to 2.4 µm reflectance spectrum with IRTF/SpeX on 70 nights over the 13 years from 2001 to 2013. The spectra show numerous vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Pluto's surface. These absorptions are modulated by the planet's 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Pluto's anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90° from the longitude of maximum CO and N2 absorption. In addition to the diurnal/longitudinal variations, the spectra show longer term trends. On decadal timescales, Pluto's stronger CH4 absorption bands have deepened, while the amplitude of their diurnal variation has diminished, consistent with additional CH4 absorption by high northern latitude regions rotating into view as the sub-Earth latitude moves north (as defined by the system's angular momentum vector). Unlike the CH4 absorptions, Pluto's CO and N2 absorptions are declining over time, suggesting more equatorial or southerly distributions of those species. The authors gratefully thank the staff of IRTF for their tremendous assistance over the dozen+ years of this project. The work was funded in part by NSF grants AST-0407214 and AST-0085614 and NASA grants NAG5-4210 and NAG5-12516.

  6. Impact of vegetation growth on urban surface temperature distribution

    International Nuclear Information System (INIS)

    Buyadi, S N A; Mohd, W M N W; Misni, A

    2014-01-01

    Earlier studies have indicated that, the temperature distribution in the urban area is significantly warmer than its surrounding suburban areas. The process of urbanization has created urban heat island (UHI). As a city expands, trees are cut down to accommodate commercial development, industrial areas, roads, and suburban growth. Trees or green areas normally play a vital role in mitigating the UHI effects especially in regulating high temperature in saturated urban areas. This study attempts to assess the effects of vegetation growth on land surface temperature (LST) distribution in urban areas. An area within the City of Shah Alam, Selangor has been selected as the study area. Land use/land cover and LST maps of two different dates are generated from Landsat 5 TM images of the year 1991 and 2009. Only five major land cover classes are considered in this study. Mono-window algorithm is used to generate the LST maps. Landsat 5 TM images are also used to generate the NDVI maps. Results from this study have shown that there are significant land use changes within the study area. Although the conversion of green areas into residential and commercial areas significantly increase the LST, matured trees will help to mitigate the effects of UHI

  7. Phonon Surface Scattering and Thermal Energy Distribution in Superlattices.

    Science.gov (United States)

    Kothari, Kartik; Maldovan, Martin

    2017-07-17

    Thermal transport at small length scales has attracted significant attention in recent years and various experimental and theoretical methods have been developed to establish the reduced thermal conductivity. The fundamental understanding of how phonons move and the physical mechanisms behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond thermal conductivity calculations and provide a rigorous and comprehensive physical description of thermal phonon transport in superlattices by solving the Boltzmann transport equation and using the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-surface interactions. We show that thermal transport in superlattices can be divided in two different heat transport modes having different physical properties at small length scales: layer-restricted and extended heat modes. We study how interface conditions, periodicity, and composition can be used to manipulate the distribution of thermal energy flow among such layer-restricted and extended heat modes. From predicted frequency and mean free path spectra of superlattices, we also investigate the existence of wave effects. The results and insights in this paper advance the fundamental understanding of heat transport in superlattices and the prospects of rationally designing thermal systems with tailored phonon transport properties.

  8. Model inverse calculation of current distributions in the cross-section of a superconducting cable

    International Nuclear Information System (INIS)

    Usak, P.; Sastry, P.V.P.S.S.; Schwartz, J.

    2006-01-01

    The solution of an inverse problem for magnetic field mapping, and the related current distribution in the cross-section of a superconducting cable are generally not unique. Nevertheless, for many natural configurations of a transport current distribution in the cross-section of a superconducting cable, the resulting magnetic field can be used for the reconstruction of a current distribution even in the presence of noise to a degree. We show it using several examples. To perform the inverse calculation, the Tichonov method of regularization was successfully applied. The approach was applied for superconducting cables, but its application is general

  9. Current status of surface water pollution in Punjab

    International Nuclear Information System (INIS)

    Bashir, M.T.; Ghauri, Moin-ud-Din

    2001-01-01

    Eleven years investigations (1988-99) on river Ravi revealed that U.C. canal with a capacity of 220 m/sup 3//s at the tail and Q.B. Link canal with capacity of 410 m/sup 3//s are mainly responsible for higher flows during dry season. A decreasing trend has been observed in the DO levels indicating increasing pollution. An increasing trend has been observed in BOD, SS, TDS and Indicators. Even with the discharge of pollution from U.C. canal, Hudiara Nullah and Lahore city BOD at Balkoi was unexpectedly low. Problems confronting environment engineers regarding surface water pollution control has been highlighted and their solutions has been recommended. (author)

  10. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  11. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    Science.gov (United States)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  12. Ocean Surface Current Vectors from MODIS Terra/Aqua Sea Surface Temperature Image Pairs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellites that record imagery of the same sea surface area, at times separated by a few hours, can be used to estimate ocean surface velocity fields based on the...

  13. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  14. System Impacts from Interconnection of Distributed Resources: Current Status and Identification of Needs for Further Development

    Energy Technology Data Exchange (ETDEWEB)

    Basso, T. S.

    2009-01-01

    This report documents and evaluates system impacts from the interconnection of distributed resources to transmission and distribution systems, including a focus on renewable distributed resource technologies. The report also identifies system impact-resolution approaches and actions, including extensions of existing approaches. Lastly, the report documents the current challenges and examines what is needed to gain a clearer understanding of what to pursue to better avoid or address system impact issues.

  15. Atlas of current and potential future distributions of common trees of the eastern United States

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad; Betsy J. Hale; Elaine Kennedy Sutherland

    1999-01-01

    This atlas documents the current and possible future distribution of 80 common tree species in the Eastern United States and gives detailed information on environmental characteristics defining these distributions. Also included are outlines of life history characteristics and summary statistics for these species. Much of the data are derived from Forest Inventory and...

  16. On the Electromagnetic Momentum of Static Charge and Steady Current Distributions

    Science.gov (United States)

    Gsponer, Andre

    2007-01-01

    Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…

  17. Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders

    Science.gov (United States)

    Alvarez, A.; Chiggiato, J.; Schroeder, K.

    2013-04-01

    Integrating the observations gathered by different platforms into a unique physical picture of the environment is a fundamental aspect of networked ocean observing systems. These are constituted by a spatially distributed set of sensors and platforms that simultaneously monitor a given ocean region. Remote sensing from satellites is an integral part of present ocean observing systems. Due to their autonomy, mobility and controllability, underwater gliders are envisioned to play a significant role in the development of networked ocean observatories. Exploiting synergism between remote sensing and underwater gliders is expected to result on a better characterization of the marine environment than using these observational sources individually. This study investigates a methodology to estimate the three dimensional distribution of geostrophic currents resulting from merging satellite altimetry and in situ samples gathered by a fleet of Slocum gliders. Specifically, the approach computes the volumetric or three dimensional distribution of absolute dynamic height (ADH) that minimizes the total energy of the system while being close to in situ observations and matching the absolute dynamic topography (ADT) observed from satellite at the sea surface. A three dimensional finite element technique is employed to solve the minimization problem. The methodology is validated making use of the dataset collected during the field experiment called Rapid Environmental Picture-2010 (REP-10) carried out by the NATO Undersea Research Center-NURC during August 2010. A marine region off-shore La Spezia (northwest coast of Italy) was sampled by a fleet of three coastal Slocum gliders. Results indicate that the geostrophic current field estimated from gliders and altimetry significantly improves the estimates obtained using only the data gathered by the glider fleet.

  18. Mesogranulation and the Solar Surface Magnetic Field Distribution

    Science.gov (United States)

    Yelles Chaouche, L.; Moreno-Insertis, F.; Martínez Pillet, V.; Wiegelmann, T.; Bonet, J. A.; Knölker, M.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Barthol, P.; Gandorfer, A.; Schmidt, W.; Solanki, S. K.

    2011-02-01

    The relation of the solar surface magnetic field with mesogranular cells is studied using high spatial (≈100 km) and temporal (≈30 s) resolution data obtained with the IMaX instrument on board SUNRISE. First, mesogranular cells are identified using Lagrange tracers (corks) based on horizontal velocity fields obtained through local correlation tracking. After ≈20 minutes of integration, the tracers delineate a sharp mesogranular network with lanes of width below about 280 km. The preferential location of magnetic elements in mesogranular cells is tested quantitatively. Roughly 85% of pixels with magnetic field higher than 100 G are located in the near neighborhood of mesogranular lanes. Magnetic flux is therefore concentrated in mesogranular lanes rather than intergranular ones. Second, magnetic field extrapolations are performed to obtain field lines anchored in the observed flux elements. This analysis, therefore, is independent of the horizontal flows determined in the first part. A probability density function (PDF) is calculated for the distribution of distances between the footpoints of individual magnetic field lines. The PDF has an exponential shape at scales between 1 and 10 Mm, with a constant characteristic decay distance, indicating the absence of preferred convection scales in the mesogranular range. Our results support the view that mesogranulation is not an intrinsic convective scale (in the sense that it is not a primary energy-injection scale of solar convection), but also give quantitative confirmation that, nevertheless, the magnetic elements are preferentially found along mesogranular lanes.

  19. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.

  20. Modeling of the electron distribution based on bremsstrahlung emission during lower hybrid current drive on PLT

    International Nuclear Information System (INIS)

    Stevens, J.E.; von Goeler, S.; Bernabei, S.

    1985-03-01

    Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed

  1. Validation of HF Radar ocean surface currents in the Ibiza Channel using lagrangian drifters, moored current meter and underwater gliders

    Science.gov (United States)

    Lana, Arancha; Fernández, Vicente; Orfila, Alejandro; Troupin, Charles; Tintoré, Joaquín

    2015-04-01

    SOCIB High Frequency (HF) radar is one component of a multi-platform system located in the Balearic Islands and made up of Lagrangian platforms (profilers and drifting buoys), fixed stations (sea-level, weather, mooring and coastal), beach monitoring (camera), gliders, a research vessel as well as an ocean forecast system (waves and hydrodynamics). The HF radar system overlooks the Ibiza Channel, known as a 'choke point" where Atlantic and Mediterranean water masses interact and where meridional exchanges of water mass properties between the Balearic and the Algerian sub-basins take place. In order to determine the reliability of surface velocity measurements in this area, a quality assessment of the HF Radar is essential. We present the results of several validation experiments performed in the Ibiza Channel in 2013 and 2014. Of particular interest is an experiment started in September 2014 when a set of 13 surface drifters with different shapes and drogue lengths were released in the area covered by the HF radar. The drifter trajectories can be examined following the SOCIB Deployment Application (DAPP): http://apps.socib.es/dapp. Additionally, a 1-year long time series of surface currents obtained from a moored surface current-meter located in the Ibiza Channel, inside the area covered by the HF radar, was also used as a useful complementary validation exercise. Direct comparison between both radial surface currents from each radar station and total derived velocities against drifters and moored current meter velocities provides an assessment of the HF radar data quality at different temporal periods and geographical areas. Statistics from these comparisons give good correlation and low root-mean-square deviation. The results will be discussed for different months, geographical areas and types of surface drifters and wind exposure. Moreover, autonomous underwater glider constitutes an additional source of information for the validation of the observed velocity

  2. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  3. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  4. Protection Principle for a DC Distribution System with a Resistive Superconductive Fault Current Limiter

    Directory of Open Access Journals (Sweden)

    Shimin Xue

    2015-05-01

    Full Text Available A DC distribution system, which is suitable for access to distributed power generation and DC loads, is one of the development directions in power systems. Furthermore, it could greatly improve the energy efficiency and reduce the loss of power transportation. The huge short circuit current is always a great threat to the safety of the components, especially the capacitors and diodes. A resistive superconductive fault current limiter (SFCL, which could respond quickly once a fault happens and limit the fault current to a relatively low level, becomes a good solution to this problem. In this paper, the operational principle of the resistive SFCL is introduced first, and then, the DC short-circuit fault characteristic of the DC distribution system with the SFCL is analyzed and the effectiveness of the SFCL verified. In order to realize the selectivity of the protection in the DC distribution system with SFCL, a new transient current protection principle based on Ip (the peak value of the current and tp (the transient time that the current takes to reach its peak value is proposed. Finally, a model of a 10-kV DC distribution system with an SFCL is established and simulated in PSCAD/METDC. Simulation results have demonstrated the validity of the analysis and protection principle.

  5. Eddy current density asymmetric distribution of damper bars in bulb tubular turbine generator

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo

    2017-09-01

    Full Text Available The major reasons that cause the damage of damper bars in the leeward side are found in this paper. It provides a route for the structure optimization design of a hydro generator. Firstly, capacity of a 24 MW bulb tubular turbine generator is taken as an example in this paper. The transient electromagnetic field model is established, and the correctness of the model is verified by the comparison of experimental results and simulation data. Secondly, when the generator is operated at rated condition, the eddy current density distributions of damper bars are studied. And the asymmetric phenomenon of the eddy current density on damper bars is discovered. The change laws of the eddy currents in damper bars are determined through further analysis. Thirdly, through the study of eddy current distributions under different conditions, it is confirmed that the stator slots and armature reaction are the main factors to affect the asymmetric distribution of the eddy current in damper bars. Finally, the studies of the magnetic density distribution and theoretical analysis revealed the asymmetric distribution mechanism of eddy current density.

  6. Numerical Calculation of Neoclassical Distribution Functions and Current Profiles in Low Collisionality, Axisymmetric Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    B.C. Lyons, S.C. Jardin, and J.J. Ramos

    2012-06-28

    A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which Ψ defines a flux surface, θ is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ . The Rosenbluth potentials, φ and ψ, which define the integral part of the collision operator, are expanded in Legendre series in cos χ , where χ is the pitch angle, Fourier series in cos θ , and finite elements in v . At each ψ , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).

  7. DISTRIBUTED EXTERNAL SURFACE HARDENING OF CAR DESIGN BY WINDING

    Directory of Open Access Journals (Sweden)

    O. V. Fomin

    2017-04-01

    Full Text Available Purpose. The paper involves coverage of features and results of the research conducted by the authors to determine the feasibility and establishment of pre-stressed-strained state of freight cars by winding in order to improve their strength characteristics. It is also necessary to present the theoretical justification for the effectiveness of the application of this method for car designs and an appropriate example for the tank-car. Methodology. The conducted study is based on an analysis of known works on the subject, mathematical justification and computer modeling. At the calculations of rolling stock components contemporary conventional techniques were used. Findings. Authors found that the winding method for pre-stressed-strained state is effective and appropriate for use in the construction of railway rolling stock and, in particular freight cars. Freight car designs with the pre-stressed-strained state are characterized by a number of strength advantages, among which there is an improvement of the work on the perception of operational loads and resource conservation. Originality. For the first time it is proposed the improvement of bearing capacity of freight car constructions through the creation of its component in the directed stress-strained state. It is also for the first time proposed the use of distributed external surface hardening by the method of winding to create a pre-stress-strained state of structural components of freight cars. The methods for winding designs of freight cars and their implementation were considered. Practical value. The studies developed a number of technical solutions for improving the design of freight cars and tank-container, which has been patented. Corresponding solutions for the tank-car are partially presented. Practical implementation of such solutions will significantly improve the technical, economic and operational performances of car designs.

  8. Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler

    Energy Technology Data Exchange (ETDEWEB)

    Corkery, Robert; Baefver, Linda; Davidsson, Kent; Feiler, Adam

    2012-02-15

    Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nano structures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made

  9. A probabilistic method for the estimation of ocean surface currents from short time series of HF radar data

    Science.gov (United States)

    Guérin, Charles-Antoine; Grilli, Stéphan T.

    2018-01-01

    We present a new method for inverting ocean surface currents from beam-forming HF radar data. In contrast with the classical method, which inverts radial currents based on shifts of the main Bragg line in the radar Doppler spectrum, the method works in the temporal domain and inverts currents from the amplitude modulation of the I and Q radar time series. Based on this principle, we propose a Maximum Likelihood approach, which can be combined with a Bayesian inference method assuming a prior current distribution, to infer values of the radial surface currents. We assess the method performance by using synthetic radar signal as well as field data, and systematically comparing results with those of the Doppler method. The new method is found advantageous for its robustness to noise at long range, its ability to accommodate shorter time series, and the possibility to use a priori information to improve the estimates. Limitations are related to current sign errors at far-ranges and biased estimates for small current values and very short samples. We apply the new technique to a data set from a typical 13.5 MHz WERA radar, acquired off of Vancouver Island, BC, and show that it can potentially improve standard synoptic current mapping.

  10. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS

    Directory of Open Access Journals (Sweden)

    Saurav Z. K. Sajib

    2017-01-01

    Full Text Available New methods for in vivo mapping of brain responses during deep brain stimulation (DBS are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  11. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    Science.gov (United States)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  12. Current distribution and losses inside a superconducting multiwire composite submitted to a variable magnetic field

    International Nuclear Information System (INIS)

    Ciazynski, D.

    1985-11-01

    The work performed concerns essentially the current saturation effect of superconducting filaments part of a composite, on current distribution and losses, created by a varying magnetic field, transverse to the composite. Induced current and losses created in the composite are first studied in an homogeneous medium. The theoretical resolution is then made from Maxwell equations and characteristic equations of the medium. Then, from the homogeneous model a complete system of equations is got for four cases: the steady state conditions (constant induced current) for a composite not carrying currents; the non-homogeneous composites in the same conditions; the third case is about influence of carried current in steady-state conditions, and finally the transient regime. A method of numerical solution allows to calculate currents and losses dissipated inside the composite. In every case, an experimental study completes the theoretical studies [fr

  13. Direct observation of the current distribution in thin superconducting strips using magneto-optic imaging

    International Nuclear Information System (INIS)

    Johansen, T.H.; Baziljevich, M.; Bratsberg, H.; Galperin, Y.; Lindelof, P.E.; Shen, Y.; Vase, P.

    1996-01-01

    Magneto-optic imaging was used for a detailed study of the flux and current distribution of a long thin strip of YBa 2 Cu 3 O 7-δ placed in a perpendicular external magnetic field. The inverse magnetic problem, i.e., that of deriving from a field map the underlying current distribution, is formulated and solved for the strip geometry. Applying the inversion to the magneto-optically found field map we find on a model-independent basis the current distribution across the strip to be in remarkable agreement with the profile predicted by the Bean model. The paper also presents results on the behavior of the Bi-doped YIG film with in-plane anisotropy which we use as field indicator, explaining why previous measurements of flux density profiles have displayed surprisingly large deviations from the expected behavior. copyright 1996 The American Physical Society

  14. Concentration distributions of thoron and radon near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Katase, Akira [Tohwa Univ., Fukuoka (Japan). Faculty of Engineering

    1996-12-01

    One dimensional diffusion model with a constant diffusion coefficient is applied to the thoron concentration distributions in air above the ground. The experimental distributions are well described by the exponential function obtained from the model. Diffusion coefficients and thoron exhalation rates are estimated from the measured distributions, which are the average values for three months. The present values of thoron exhalation are however several times as small as those measured by other researchers. (author)

  15. About the Coupling Factor Influence on the Ground Fault Current Distribution on Overhead Transmission Lines

    Directory of Open Access Journals (Sweden)

    VINTAN, M.

    2010-05-01

    Full Text Available A phase-to-ground fault occurring on a transmission line divides the line into two sections, each extending from the fault towards one end of the line. These two sections of the line may be considered infinite if some certain conditions are met; otherwise, they must be regarded as finite. This paper treats the case when those two sections of the line are both very long and allows the determination of the ground fault current distribution in power networks. The influence of the coupling factor between the faulted phase and the ground wire on the ground fault current distribution is studied.

  16. Multipole lenses with implicit poles and with harmonic distribution of current density in a coil

    International Nuclear Information System (INIS)

    Skachkov, V.S.

    1984-01-01

    General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed

  17. X-ray evaluation of residual stress distributions within surface machined layer generated by surface machining and sequential welding

    International Nuclear Information System (INIS)

    Taniguchi, Yuu; Okano, Shigetaka; Mochizuki, Masahito

    2017-01-01

    The excessive tensile residual stress generated by welding after surface machining may be an important factor to cause stress corrosion cracking (SCC) in nuclear power plants. Therefore we need to understand and control the residual stress distribution appropriately. In this study, residual stress distributions within surface machined layer generated by surface machining and sequential welding were evaluated by X-ray diffraction method. Depth directional distributions were also investigated by electrolytic polishing. In addition, to consider the effect of work hardened layer on the residual stress distributions, we also measured full width at half maximum (FWHM) obtained from X-ray diffraction. Testing material was a low-carbon austenitic stainless steel type SUS316L. Test specimens were prepared by surface machining with different cutting conditions. Then, bead-on-plate welding under the same welding condition was carried out on the test specimens with different surface machined layer. As a result, the tensile residual stress generated by surface machining increased with increasing cutting speed and showed nearly uniform distributions on the surface. Furthermore, the tensile residual stress drastically decreased with increasing measurement depth within surface machined layer. Then, the residual stress approached 0 MPa after the compressive value showed. FWHM also decreased drastically with increasing measurement depth and almost constant value from a certain depth, which was almost equal regardless of the machining condition, within surface machined layer in all specimens. After welding, the transverse distribution of the longitudinal residual stress varied in the area apart from the weld center according to machining conditions and had a maximum value in heat affected zone. The magnitude of the maximum residual stress was almost equal regardless of the machining condition and decreased with increasing measurement depth within surface machined layer. Finally, the

  18. Orobanche flava (Orobanchaceae in Poland: current distribution, taxonomy, hosts and plant communities

    Directory of Open Access Journals (Sweden)

    Piwowarczyk Renata

    2014-06-01

    Full Text Available Orobanche flava is a species of Central European mountain ranges, mainly the Alps and Carpathian Mts. The paper presents the current distribution of O. flava in Poland based on a critical revision of herbarium and literature data as well as results of field investigations conducted between 1999 and 2014. The distribution of species is centered in southern Poland, mainly in the Carpathian Mts., and, sporadically, in the Sudeten Mts. The distribution of O. flava in Poland is mapped. The taxonomy, biology, and ecology are also discussed.

  19. Nutrient supply, surface currents, and plankton dynamics predict zooplankton hotspots in coastal upwelling systems

    Science.gov (United States)

    Messié, Monique; Chavez, Francisco P.

    2017-09-01

    A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.

  20. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia

    Science.gov (United States)

    Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.

  1. The diversity and distribution of fungi on residential surfaces.

    Directory of Open Access Journals (Sweden)

    Rachel I Adams

    Full Text Available The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. "Weedy" genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents' foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea. Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear - to varying degrees - to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins

  2. Operational surface currents derived from satellite altimeters and scatterometers; Pilot Study for the Tropical Pacific

    Science.gov (United States)

    Lagerloef, G.

    1 and diagnose model errors. Another immediate application of these data relates to fisheries management and ma- rine wildlife research in the region. Movements of several species of sea turtle in the tropical region are being tracked by satellite with System Argos. Results show that some turtle tracks follow meandering portions of the North Equatorial Current and North Equatorial Counter Current. The surface current data allow researchers to exam- ine the oceanography of the habitat these turtles are using, for example, and evaluate to what extent they are using the equatorial currents and regions of surface convergence. Findings indicate that different species/stocks use different habitats. Some forage at or near the surface at convergences and others forage sub-surface away from currents (Polovina et al., 2002). References: Bonjean, F. and G.S.E. Lagerloef, 2002: Diagnostic model and analysis of the surface currents in the Tropical Pacific Ocean, J. Phys. Oceanogr., In press. Lagerloef,G.S.E., G.Mitchum, R.Lukas and P.Niiler, 1999: Tropical Pacific near sur- face currents estimated from altimeter, wind and drifter data, J. Geophys. Res., 104, 23,313-23,326. Polovina, J. J., G. H. Balazs, E. A Howell, D. M. Parker, M. P. Seki, and P. H. Dutton, 2002. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr., In Review.

  3. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models with different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  4. Observation and modeling of tide- and wind-induced surface currents in Galway Bay

    Directory of Open Access Journals (Sweden)

    Lei REN

    2015-10-01

    Full Text Available A high-frequency radar system has been deployed in Galway Bay, a semi-enclosed bay on the west coast of Ireland. The system provides surface currents with fine spatial resolution every hour. Prior to its use for model validation, the accuracy of the radar data was verified through comparison with measurements from acoustic Doppler current profilers (ADCPs and a good correlation between time series of surface current speeds and directions obtained from radar data and ADCP data. Since Galway Bay is located on the coast of the Atlantic Ocean, it is subject to relatively windy conditions, and surface currents are therefore strongly wind-driven. With a view to assimilating the radar data for forecasting purposes, a three-dimensional numerical model of Galway Bay, the Environmental Fluid Dynamics Code (EFDC, was developed based on a terrain-following vertical (sigma coordinate system. This study shows that the performance and accuracy of the numerical model, particularly with regard to tide- and wind-induced surface currents, are sensitive to the vertical layer structure. Results of five models using different layer structures are presented and compared with radar measurements. A variable vertical structure with thin layers at the bottom and the surface and thicker layers in the middle of the water column was found to be the optimal layer structure for reproduction of tide- and wind-induced surface currents. This structure ensures that wind shear can properly propagate from the surface layer to the sub-surface layers, thereby ensuring that wind forcing is not overdamped by tidal forcing. The vertical layer structure affects not only the velocities at the surface layer but also the velocities further down in the water column.

  5. Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height

    International Nuclear Information System (INIS)

    Guo-Ping, Ru; Rong, Yu; Yu-Long, Jiang; Gang, Ruan

    2010-01-01

    This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-V-T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage V j , excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, V j needs to be smaller than the barrier height ø. With proper scheme of series resistance connection where the condition of V j > ø is guaranteed, I-V-T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V-T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Polarized parton distributions from charged-current deep-inelastic scattering

    International Nuclear Information System (INIS)

    Ridolfi, G

    2003-01-01

    We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure

  7. Magnetic Mapping of Current Distributions in Two-Dimensional Electronic Devices

    Science.gov (United States)

    1988-09-01

    Nashville, TN September, 1988 Aacession For 9NTIS GRA&I DTIC TAB go" Una nounced Justification By Distribut ion / Availability CodesA Y-- Ivai and/or Dist... Biomagnetism and Non-Destructive Testing," Hypres, Inc., Elmsford, NY, June, 1988. "High Resolution SQUID Magnetometry for Current Imaging: Applications to

  8. Global distribution of Earth's surface shortwave radiation budget

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2005-01-01

    Full Text Available The monthly mean shortwave (SW radiation budget at the Earth's surface (SRB was computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984 to 2000, using a radiative transfer model accounting for the key physical parameters that determine the surface SRB, and long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2. The model input data were supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR and European Center for Medium Range Weather Forecasts (ECMWF Global Reanalysis projects, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model surface radiative fluxes were validated against surface measurements from 22 stations of the Baseline Surface Radiation Network (BSRN covering the years 1992-2000, and from 700 stations of the Global Energy Balance Archive (GEBA, covering the period 1984-2000. The model is in good agreement with BSRN and GEBA, with a negative bias of 14 and 6.5 Wm-2, respectively. The model is able to reproduce interesting features of the seasonal and geographical variation of the surface SW fluxes at global scale. Based on the 17-year average model results, the global mean SW downward surface radiation (DSR is equal to 171.6 Wm-2, whereas the net downward (or absorbed surface SW radiation is equal to 149.4 Wm-2, values that correspond to 50.2 and 43.7% of the incoming SW radiation at the top of the Earth's atmosphere. These values involve a long-term surface albedo equal to 12.9%. Significant increasing trends in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm-2, respectively, over the 1984-2000 period (equivalent to 2.4 and 2.2 Wm-2 per decade, indicating an increasing surface solar radiative heating. This surface SW radiative heating is primarily attributed to clouds, especially low-level, and secondarily to

  9. Current distribution and conductance quantization in the integer quantum Hall regime

    CERN Document Server

    Cresti, A; Grosso, G; Parravicini, G P

    2003-01-01

    Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)

  10. The current duration design for estimating the time to pregnancy distribution

    DEFF Research Database (Denmark)

    Gasbarra, Dario; Arjas, Elja; Vehtari, Aki

    2015-01-01

    This paper was inspired by the studies of Niels Keiding and co-authors on estimating the waiting time-to-pregnancy (TTP) distribution, and in particular on using the current duration design in that context. In this design, a cross-sectional sample of women is collected from those who are currently...... times are only rarely selected into the sample of current durations, and this renders their estimation unstable. We introduce here a Bayesian method for this estimation problem, prove its asymptotic consistency, and compare the method to some variants of the non-parametric maximum likelihood estimators...

  11. Measurement of electrical current density distribution in a simple head phantom with magnetic resonance imaging

    Science.gov (United States)

    Gamba, Humberto R.; Bayford, Richard; Holder, David

    1999-01-01

    Knowledge of the influence of the human skull on the electrical current (d.c.) distribution within the brain tissue could prove useful in measuring impedance changes inside the human head. These changes can be related to physiological functions. The studies presented in this paper examine the current density distribution in a simple phantom consisting of a saline filled tank (to simulate scalp and brain) and a ring made of dental grade plaster of Paris (to simulate the human skull). Images of the distribution of the d.c. density of the phantom with and without the plaster of Paris ring were produced using a magnetic resonance imaging technique. These images indicate that the skull is likely to produce a more uniform d.c. density within the brain.

  12. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.

    Science.gov (United States)

    Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B

    2010-12-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.

  13. Determination of current distribution in EM gun armature by least square fitting of BDOT coil voltage

    International Nuclear Information System (INIS)

    Cobb, K.K.

    1987-01-01

    The analysis of the voltage induced on small induction (BDOT) coils has been one of the most rewarding methods of inferring the characteristics of the Electromagnetic (EM) Launcher Armature. A closed form mathematical model has been derived which gives the voltage induced on BDOT coils in terms of parameters describing the current distribution in the plasma armature. The model was derived by integrating the coil magnetic field contributions (using the Biot-Savart equation for the field due to a current element) over the current elements contained in the armature model. The rate of change of the field flux linking the coil gives the coil voltage. The parameters in the model allow the plasma to expand or contract with acceleration, to have varying total current, and to have an arbitrary functional geometrical distribution of current along the axis of the launcher. The closed form solution requires the assumption that the current in the plasma is made up of sheets with flow being perpendicular to the rails and the current amplitude being a function of the distance from the projectile base only. Simple predictions from the model giving the approximate position of the projectile base correlate well with optical measurements

  14. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    Science.gov (United States)

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  15. Cloud Masking and Surface Temperature Distribution in the Polar Regions Using AVHRR and other Satellite Data

    Science.gov (United States)

    Comiso, Joey C.

    1995-01-01

    Surface temperature is one of the key variables associated with weather and climate. Accurate measurements of surface air temperatures are routinely made in meteorological stations around the world. Also, satellite data have been used to produce synoptic global temperature distributions. However, not much attention has been paid on temperature distributions in the polar regions. In the polar regions, the number of stations is very sparse. Because of adverse weather conditions and general inaccessibility, surface field measurements are also limited. Furthermore, accurate retrievals from satellite data in the region have been difficult to make because of persistent cloudiness and ambiguities in the discrimination of clouds from snow or ice. Surface temperature observations are required in the polar regions for air-sea-ice interaction studies, especially in the calculation of heat, salinity, and humidity fluxes. They are also useful in identifying areas of melt or meltponding within the sea ice pack and the ice sheets and in the calculation of emissivities of these surfaces. Moreover, the polar regions are unique in that they are the sites of temperature extremes, the location of which is difficult to identify without a global monitoring system. Furthermore, the regions may provide an early signal to a potential climate change because such signal is expected to be amplified in the region due to feedback effects. In cloud free areas, the thermal channels from infrared systems provide surface temperatures at relatively good accuracies. Previous capabilities include the use of the Temperature Humidity Infrared Radiometer (THIR) onboard the Nimbus-7 satellite which was launched in 1978. Current capabilities include the use of the Advance Very High Resolution Radiometer (AVHRR) aboard NOAA satellites. Together, these two systems cover a span of 16 years of thermal infrared data. Techniques for retrieving surface temperatures with these sensors in the polar regions have

  16. Effect of the surface film electric resistance on eddy current detectability of surface cracks in Alloy 600 tubes

    International Nuclear Information System (INIS)

    Saario, T.; Paine, J.P.N.

    1995-01-01

    The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique

  17. Increased critical current and improved magnetic field response of BSCCO material by surface diffusion of silver

    International Nuclear Information System (INIS)

    Negm, Y.Z.; Zimmerman, G.O.; Powers, R.E.; Eckhardt, K.A.

    1994-01-01

    The authors have developed a procedure of increasing the critical current of BSCCO ceramic superconducting material, the value of the critical current is increased by 30%. Moreover the degradation of the critical current with the applied magnetic field had been decreased. The procedure consists of applying a thin layer of silver to the surface of the conductor. The details of the procedure and the improved performance are discussed. This procedure has great significance for any future application of HTSC materials where high current carrying capacity is necessary. It will therefore be important in the application of HTSC materials to SSC high current leads

  18. Analytical derivation of charge relaxation time distribution in transistor from current noise spectrum using inverse integral transformation method

    Science.gov (United States)

    Yatabe, Zenji; Inoue, Shinya; Asubar, Joel T.; Kasai, Seiya

    2018-03-01

    An analytical technique is proposed to reveal the relaxation time distribution of dynamic charge events using the current noise spectrum of a transistor, by applying an inverse integral transformation to the McWhorter model. In the proposed method, the continuous relaxation-time distribution function G(τ) can be analytically derived from the noise spectra S(ω) without a spectrum deconvolution. The feasibility of the proposed method is demonstrated by characterizing the charge dynamics of tetraphenylporphyrin molecules dispersed on the surface of a GaAs-based nanowire field-effect transistor. Our analysis successfully verified the time constant of the molecule-related dynamic charge events and effects of photo-excitation.

  19. A study on current density distribution reproduction by bounded-eigenfunction expansion for a tokamak plasma

    International Nuclear Information System (INIS)

    Kurihara, Kenichi

    1997-11-01

    Plasma current density distribution is one of the most important controlled variables to determine plasma performance of energy confinement and stability in a tokamak. However, its reproduction by using magnetic measurements solely is recognized to yield an ill-posed problem. A method to presume the formulas giving profiles of plasma pressure and current has been adopted to regularize the ill-posedness, and hence it has been reported the current density distribution can be reproduced as a solution of Grad-Shafranov equation within a certain accuracy. In order to investigate its strict reproducibility from magnetic measurements in this inverse problem, a new method of 'bounded-eigenfunction expansion' is introduced, and it was found that the reproducibility directly corresponds to the independence of a series of the special function. The results from various investigations in an aspect of applied mathematics concerning this inverse problem are presented in detail. (author)

  20. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    International Nuclear Information System (INIS)

    Zhang, PengFei; Qiu, Aici; Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian

    2016-01-01

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10 21 /cm 3 ), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  1. An improved current control scheme for grid-connected DG unit based distribution system harmonic compensation

    DEFF Research Database (Denmark)

    He, Jinwei; Wei Li, Yun; Wang, Xiongfei

    2013-01-01

    In order to utilize DG unit interfacing converters to actively compensate distribution system harmonics, this paper proposes an enhanced current control approach. It seamlessly integrates system harmonic mitigation capabilities with the primary DG power generation function. As the proposed current...... the fundamental current reference. The proposed power control scheme effectively eliminates the impacts of steady-state fundamental current tracking errors in the DG units. Thus, an accurate power control is realized even when the harmonic compensation functions are activated. Experimental results from a single...... controller has two well decoupled control branches to independently control fundamental and harmonic DG currents, phase-locked loops (PLL) and system harmonic component extractions can be avoided during system harmonic compensation. Moreover, a closed-loop power control scheme is also employed to derive...

  2. Direct Current Smart Micro-grids for Distributed Generation with Renewable Sources

    Directory of Open Access Journals (Sweden)

    Renato RIZZO

    2013-06-01

    Full Text Available The wide diffusion of renewable energy sources encourage the distribution of electrical energy by the so called Distributed Generation, where large power plants are substituted by small-scale environmentally friendly technologies. Moreover micro-grids are considered which concept assumes a cluster of loads and micro-sources operating as a single controllable system that provides both power and heat to its local area. This influences the operation of distributed generation. This research paper deals with the distributed generation evolution, considering the technologies for generation from renewable sources, up to the smart micro-grids, i.e. in domestic applications where direct current micro-grids are considered and smart micro-grid concept is introduced.

  3. Surface potential effects in low-energy current image diffraction patterns observed on the Al(001) surface

    International Nuclear Information System (INIS)

    Fine structure observed in high-resolution low-energy electron diffraction (LEED) measurements near the energy threshold for emergence of new beams has been attributed to surface barrier effects. Recently, the surface barrier has been suggested as the source of the fine structure observed in current image diffraction (CID) patterns obtained by rastering the primary beam across an Al(001) crystal surface at a constant energy. This suggestion was based on kinematic arguments which correlated the emergence angle for a new electron beam with the observed structure in the CID pattern. In this work, the angular dependence of the elastic component of the total crystal reflectivity is calculated at constant energy. The calculations are based on full dynamical theories such as used in LEED but incorporating different surface barrier models to account for the saturating image potential. The results are compared with the experimental CID results

  4. Surface Mass Balance Distributions: Downscaling of Coarse Climates to drive Ice Sheet Models realistically

    Science.gov (United States)

    Rodehacke, Christian; Mottram, Ruth; Langen, Peter; Madsen, Marianne; Yang, Shuting; Boberg, Fredrik; Christensen, Jens

    2017-04-01

    The surface mass balance (SMB) is the most import boundary conditions for the state of glaciers and ice sheets. Hence its representation in numerical model simulations is of highest interest for glacier, ice cap and ice sheet modeling efforts. While descent SMB distributions of the current climate could be interfered with the help of various observation techniques and platforms, its construction for older past and future climates relies on input from spatially coarse resolved global climate models or reconstructions. These coarse SMB estimates with a footprint in the order of 100 km could hardly resolve the marginal ablations zones where the Greenland ice sheets, for instance, loses snow and ice. We present a downscaling method that is based on the physical calculation of the surface mass and energy balance. By the consequent application of universal and computationally cheap parameterizations we get an astonishing good representation of the SMB distribution including its marginal ablation zone. However the method has its limitations; for example wrong accumulation rates due to an insufficient precipitation field leaves its imprint on the SMB distribution. Also the still not satisfactory description of the bare ice albedo, in particular, in parts of Greenland is a challenge. We inspect our Greenland SMB fields' for various forcings and compare them with some widely used reference fields in the community to highlight the weakness and strength of our approach. We use the ERA-Interim reanalyzes period starting in 1979 directly as well as dynamically downscaled by our regional climate model HIRHAM (5 km resolution). Also SMB distributions obtained from the climate model EC-Earth with a resolution of T159 (approx. 125 km resolution in Greenland) are used either directly or downscaled with our regional climate model HIRHAM. Model-based End-of-the-century SMB estimates give an outlook of the future.

  5. Imaging of current distributions in superconducting thin film structures; Abbildung von Stromverteilungen in supraleitenden Duennfilmstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Doenitz, D.

    2006-10-31

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference

  6. Humidity distribution affected by freely exposed water surfaces

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Popok, Vladimir

    2014-01-01

    Accurate models for the water vapor flux at a water-air interface are required in various scientific, reliability and civil engineering aspects. Here, a study of humidity distribution in a container with air and freely exposed water is presented. A model predicting a spatial distribution and time...... evolution of relative humidity based on statistical rate theory and computational fluid dynamics is developed. In our approach we use short-term steady-state steps to simulate the slowly evolving evaporation in the system. Experiments demonstrate considerably good agreement with the computer modeling...

  7. Prediction of residual stress distributions due to surface machining and welding and crack growth simulation under residual stress distribution

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito

    2011-01-01

    Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.

  8. Historical range, current distribution, and conservation status of the Swift Fox, Vulpes velox, in North America

    Science.gov (United States)

    Sovada, Marsha A.; Woodward, Robert O.; Igl, Lawrence D.

    2009-01-01

    The Swift Fox (Vulpes velox) was once common in the shortgrass and mixed-grass prairies of the Great Plains of North America. The species' abundance declined and its distribution retracted following European settlement of the plains. By the late 1800s, the species had been largely extirpated from the northern portion of its historical range, and its populations were acutely depleted elsewhere. Swift Fox populations have naturally recovered somewhat since the 1950s, but overall abundance and distribution remain below historical levels. In a 1995 assessment of the species' status under the US Endangered Species Act, the US Fish and Wildlife Service concluded that a designation of threatened or endangered was warranted, but the species was "precluded from listing by higher listing priorities." A major revelation of the 1995 assessment was the recognition that information useful for determining population status was limited. Fundamental information was missing, including an accurate estimate of the species' distribution before European settlement and an estimate of the species' current distribution and trends. The objectives of this paper are to fill those gaps in knowledge. Historical records were compiled and, in combination with knowledge of the habitat requirements of the species, the historical range of the Swift Fox is estimated to be approximately 1.5 million km2. Using data collected between 2001 and 2006, the species' current distribution is estimated to be about 44% of its historical range in the United States and 3% in Canada. Under current land use, approximately 39% of the species' historical range contains grassland habitats with very good potential for Swift Fox occupation and another 10% supports grasslands with characteristics that are less preferred (e.g., a sparse shrub component or taller stature) but still suitable. Additionally, land use on at least 25% of the historical range supports dryland farming, which can be suitable for Swift Fox

  9. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping.

    Science.gov (United States)

    Pearse, Alexander J; Gillette, Eleanor; Lee, Sang Bok; Rubloff, Gary W

    2016-07-28

    Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures.

  10. Experimental results of current distribution in Rutherford-type LHC cables

    CERN Document Server

    Verweij, A P

    2000-01-01

    Current distribution among the wires of multi-strand superconducting cables is an important item for accelerator magnets. A non-uniform distribution could cause additional field distortions in the magnet bore and can as well be one of the reasons of premature quenching. Since two years electrical measurements on superconducting Rutherford-type cables are performed at CERN as part of the reception tests for the Large Hadron Collider (LHC). Cable samples of 2.4 m length are tested at currents up to 32 kA, temperatures around 1.9 and 4.3 K, and fields up to 10 T, applied perpendicularly as well as parallel to the broad face of the cable. Last year, an array of 24 Hall probes was installed in the test set-up in order to measure the self-field of the cable samples along one cable pitch. Each of the probes measures the local field generated by the current in the strands close by, and the results of the all probes reflect therefore the distribution of the strand currents. Experiments are done varying the applied fie...

  11. Influence of electropolishing current densities on sulfur generation at niobium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P.V., E-mail: tyagipv@ornl.gov [The Graduate University for Advanced Studies, Tsukuba, Ibaraki (Japan); Nishiwaki, M.; Noguchi, T.; Sawabe, M.; Saeki, T.; Hayano, H.; Kato, S. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2013-11-15

    We report the effect of different current densities on sulfur generation at Nb surface in the electropolishing (EP) with aged electrolyte. In this regard, we conducted a series of electropolishing (EP) experiments in aged EP electrolyte with high (≈50 mA/cm{sup 2}) and low (≈30 mA/cm{sup 2}) current densities on Nb surfaces. The experiments were carried out both for laboratory coupons and a real Nb single cell cavity with six witness samples located at three typical positions (equator, iris and beam pipe). Sample's surfaces were investigated by XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). The surface analysis showed that the EP with a high current density produced a huge amount of sulfate/sulfite particles at Nb surface whereas the EP with a low current density was very helpful to mitigate sulfate/sulfite at Nb surface in both the experiments.

  12. Orobanche caryophyllacea Sm. (Orobanchaceae in Poland: current distribution, taxonomy, plant communities and hosts

    Directory of Open Access Journals (Sweden)

    Renata Piwowarczyk

    2014-09-01

    Full Text Available The paper presents the current distribution of Orobanche caryophyllacea Sm. in Poland based on a critical revision of herbarium and literature data as well as the results of my field studies. The majority of localities are in south and south-eastern Poland: Małopolska Upland, Lublin Upland, Roztocze, Przemyśl Foothills, Pieniny Mts, rarely in the valleys of the Lower Vistula and Oder rivers or Wolin island. The distribution map in Poland is included. The taxonomy, biology and ecology of the species are discussed.

  13. Angular distribution of the bremsstrahlung emission during lower-hybrid current drive on PLT

    International Nuclear Information System (INIS)

    von Goeler, S.; Stevens, J.; Bernabei, S.

    1985-06-01

    The bremsstrahlung emission from the PLT tokamak during lower-hybrid current drive has been measured as a function of angle between the magnetic field and the emission direction. The emission is peaked strongly in the forward direction, indicating a strong anisotropy of the electron-velocity distribution. The data demonstrate the existence of a nearly flat tail of the velocity distribution, which extends out to approximately 500 keV and which is interpreted as the plateau created by Landau damping of the lower-hybrid waves

  14. Mechanistic variables can enhance predictive models of endotherm distributions: The American pika under current, past, and future climates

    Science.gov (United States)

    Mathewson, Paul; Moyer-Horner, Lucas; Beever, Erik; Briscoe, Natalie; Kearney, Michael T.; Yahn, Jeremiah; Porter, Warren P.

    2017-01-01

    How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8–19% less habitat loss in response to annual temperature increases of ~3–5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  15. Improved Model for Increased Surface Recombination Current in Irradiated Bipolar Junction Transistors

    Science.gov (United States)

    Barnaby, H. J.; Vermeire, B.; Campola, M. J.

    2015-08-01

    Current gain degradation in irradiated bipolar junction transistors is primarily due to excess base current caused by enhanced carrier recombination in the emitter-base space-charge region (SCR). Radiation-induced traps at the interface between silicon and the bipolar base oxide facilitate the recombination process primarily above the sensitive emitter-base junction. This leads to an increase in surface recombination current in the SCR, which is a non-ideal component of the BJT's base current characteristic under active bias conditions. In this paper, we derive a precise analytical model for surface recombination current that captures bias dependencies typically omitted from traditional models. This improved model is validated by comparisons to these traditional approaches.

  16. Pesticides in surface waters: distribution, trends, and governing factors

    Science.gov (United States)

    Larson, Steven J.; Capel, Paul D.; Majewski, Michael

    1997-01-01

    Pesticde use in agriculture and non-agriculture settings has increased dramatically over the last several decades. Concern about adverse effects on the environment and human health has spurred an enormous amount of research into their environmental behavior and fate. Pesticides in Surface Waters presents a comprehensive summary of this research. This book evaluates published studies that focus on measuring pesticide concentration. The studies chosen include peer reviewed scientific literature, government reports, laboratory studies, and those using microcosms and artificial streams and ponds. The authors used this information to develop their overview of pesticide contamination of surface waters. The exhaustive compilation of data along with the fundamental science make this book essential for those involved in pesticide use, environmental protection, water quality, and human or ecological risk assessment. Pesticides in Surface Waters covers the results of actual studies, sources of pesticides to surface water, fate and transport, and environmental significance. Hundreds of data-packed tables, maps, charts, and drawings illustrate the key points, making research and application easy and cost effective.

  17. The effect of surface albedo and grain size distribution on ...

    African Journals Online (AJOL)

    Sand dams are very useful in arid and semi arid lands (ASALs) as facilities for water storage and conservation. Soils in ASALs are mainly sandy and major water loss is by evaporation and infiltration. This study investigated the effect of sand media characteristics, specifically surface albedo, grain size and stratification on ...

  18. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  19. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  20. Distribution of small channels on the Martian surface

    Science.gov (United States)

    Pieri, D.

    1976-01-01

    The distribution of small channels on Mars has been mapped from Mariner 9 images at the 1:5,000,000 scale. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (about 1 km) to about 10 km. The greatest density of small channels occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (about 100 m) imply a major episode of small-channel formation early in Martian geologic history.

  1. SQUID Measurements of the Magnetic Field Distribution from Ionic Currents in Plants

    Science.gov (United States)

    Jazbinsek, Vojko; Thiel, Gerhard; Zorec, Robert; Mueller, Wolfgang; Baudenbacher, Franz; Fong, Luis; Holzer, Jenny; Wikswo, John; Trontelj, Zvonko

    2001-03-01

    SQUIDs, the most sensitive magnetic flux sensor, are often a useful tool in the biophysical and biomedical research. Our aim was to use a multi-channel SQUID system and a SQUID microscope in a magnetically shielded room to obtain the noninvasive information on (i) ionic currents in green algae Chara corallina under either electric field excitation or illumination with visible light, and (ii) injury-induced ionic currents in the higher-developed plant Vicia faba. For the green algae Chara corallina, we found that the action potential spread with the velocity of 3-4 cm/s, that the intracellular current was up to 1 μ A and that the magnetic field distribution was altered by the ifluence of light. For the wounded bean plant Vicia faba, the measured magnetic field distribution adjacent to the injury demonstrated that the injury-related ionic current decays with τ of 10 min. These results demonstrate the value od SQUID-based measuring systems for noninvasive research of ionic currents in the slowest cells and living tissues in nature.

  2. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.

    Science.gov (United States)

    Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming

    2017-07-01

    To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  3. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor

    Directory of Open Access Journals (Sweden)

    Huayu Zhang

    2017-07-01

    Full Text Available To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor, magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  4. The distribution of star formation and metals in the low surface brightness galaxy UGC 628

    Science.gov (United States)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.

    2015-09-01

    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.

  5. Temperature effect of irradiated target surface on distribution of nanoparticles formed by implantation

    CERN Document Server

    Stepanov, A L; Popok, V N

    2001-01-01

    The composition layers, containing the metal nanoparticles, synthesized thorough implantation of the Ag sup + ions with the energy of 60 keV and the dose of 3 x 10 sup 1 sup 6 ion/cm sup 2 into the sodium-calcium silicate glass by the ion current of 3 mu A/cm sup 2 and the sublayer temperature of 35 deg C are studied. The obtained implantation results are analyzed in dependence on the temperature effects, developing for the glass samples of various thickness. The data on the silver distribution, the metal nanoparticles formation and growth by depth are obtained from the optical reflection spectra. It is demonstrated that minor changes in the surface temperature of the irradiated glass sublayer lead to noticeable diversities in the regularities of the nanoparticles formation in the sample volume

  6. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander; Wippermann, Klaus [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy Research, IEF-3: Fuel Cells; Sanders, Tilman [RWTH Aachen (DE). Inst. for Power Electronics and Electrical Drives (ISEA); Arlt, Tobias [Helmholtz Centre Berlin (Germany). Inst. for Applied Materials

    2010-07-01

    Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions. Spatial resolutions in the order of some tens of micrometers at the full test cell area are achieved. This offers the possibility to study practice-oriented, large stack cells with an active area of several hundred cm{sup 2} as well as specially designed, small test cells with an area of some cm{sup 2}. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of local fluid distribution and local performance [1, 2]. The knowledge of this interdependency is essential to optimise the water management and performance respecting a homogeneous fluid, current and temperature distribution and to achieve high performance and durability of DMFCs. (orig.)

  7. Attenuation, phase velocity and current density distribution in high critical temperature superconducting planar transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Cabon, B.; Vu Dinh, T.; Chilo, J. [URA CNRS 833, Grenoble (France). Lab. d`Electromagnetisme

    1995-05-01

    Electromagnetic calculation of propagation parameters for high {Tc} superconductive coplanar and microstrip transmission lines is presented. Calculations are performed by a nodal circuit simulator (SPICE), with possibility of direct interfacing with CAE standards. The results are in good agreement with data obtained with a full-wave analysis and CPU time is much smaller than in standard MW applications. Then, current density distributions are shown.

  8. Predicting the potential distribution in China of Euwallacea fornicates (Eichhoff) under current and future climate conditions.

    Science.gov (United States)

    Ge, Xuezhen; Jiang, Chao; Chen, Linghong; Qiu, Shuang; Zhao, Yuxiang; Wang, Tao; Zong, Shixiang

    2017-04-19

    Euwallacea fornicatus (Eichhoff) is an important forest pest that has caused serious damage in America and Vietnam. In 2014, it attacked forests of Acer trialatum in the Yunnan province of China, creating concern in China's Forestry Bureau. We used the CLIMEX model to predict and compare the potential distribution for E. fornicates in China under current (1981-2010) and projected climate conditions (2011-2040) using one scenario (RCP8.5) and one global climate model (GCM), CSIRO-Mk3-6-0. Under both current and future climate conditions, the model predicted E. fornicates to be mainly distributed in the south of China. Comparing distributions under both climate conditions showed that the area of potential distribution was projected to increase (mainly because of an increase in favourable habitat) and shift to the north. Our results help clarify the potential effect of climate change on the range of this forest pest and provide a reference and guide to facilitate its control in China.

  9. Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings

    Science.gov (United States)

    Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun

    2018-03-01

    Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.

  10. Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-04-01

    Full Text Available We study what effect a possible surface conductivity of Mercury has on the closure of magnetospheric currents by making six runs with a quasi-neutral hybrid simulation. The runs are otherwise identical but use different synthetic conductivity models: run 1 has a fully conducting planet, run 2 has a poorly conducting planet ( m and runs 3-6 have one of the hemispheres either in the dawn-dusk or day-night directions, conducting well, the other one being conducting poorly. Although the surface conductivity is not known from observations, educated guesses easily give such conductivity values that magnetospheric currents may close partly within the planet, and as the conductivity depends heavily on the mineral composition of the surface, the possibility of significant horizontal variations cannot be easily excluded. The simulation results show that strong horizontal variations may produce modest magnetospheric asymmetries. Beyond the hybrid simulation, we also briefly discuss the possibility that in the nightside there may be a lack of surface electrons to carry downward current, which may act as a further source of surface-related magnetospheric asymmetry. Key words. Magnetospheric physics (planetary magnetospheres; current systems; solar wind-magnetosphere interactions.6

  11. Dependence of the Onset of the Runaway Greenhouse Effect on the Latitudinal Surface Water Distribution of Earth-Like Planets

    Science.gov (United States)

    Kodama, T.; Nitta, A.; Genda, H.; Takao, Y.; O'ishi, R.; Abe-Ouchi, A.; Abe, Y.

    2018-02-01

    Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We considered a 1 bar atmosphere whose composition is similar to the current Earth's atmosphere with a zonally uniform distribution of surface water. As previous studies have already showed, we also recognized two climate regimes: the land planet regime, which has dry low-latitude and wet high-latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.

  12. Plasmon Modulation Spectroscopy of Noble Metals to Reveal the Distribution of the Fermi Surface Electrons in the Conduction Band

    Directory of Open Access Journals (Sweden)

    Kentaro Takagi

    2017-12-01

    Full Text Available To directly access the dynamics of electron distribution near the Fermi-surface after plasmon excitation, pump-probe spectroscopy was performed by pumping plasmons on noble-metal films and probing the interband transition. Spectral change in the interband transitions is sensitive to the electron distribution near the Fermi-surface, because it involves the d valence-band to the conduction band transitions and should reflect the k-space distribution dynamics of electrons. For the continuous-wave pump and probe experiment, the plasmon modulation spectra are found to differ from both the current modulation and temperature difference spectra, possibly reflecting signatures of the plasmon wave function. For the femtosecond-pulse pump and probe experiment, the transient spectra agree well with the known spectra upon the excitation of the respective electrons resulting from plasmon relaxation, probably because the lifetime of plasmons is shorter than the pulse duration.

  13. Nonreciprocal Oersted field contribution to the current-induced frequency shift of magnetostatic surface waves

    Science.gov (United States)

    Haidar, Mohammad; Bailleul, Matthieu; Kostylev, Mikhail; Lao, Yuyang

    2014-03-01

    The influence of an electrical current on the propagation of magnetostatic surface waves is investigated in a relatively thick (40 nm) permalloy film both experimentally and theoretically. Contrary to previously studied thinner films where the dominating effect is the current-induced spin-wave Doppler shift, the magnetic field generated by the current (Oersted field) is found to induce a strong nonreciprocal frequency shift which overcompensates the Doppler shift. The measured current-induced frequency shift is in agreement with the developed theory. The theory relates the sign of the frequency shift to the spin-wave modal profiles. The good agreement between the experiment and the theory confirms a recent prediction of a counterintuitive mode localization for magnetostatic surface waves in the dipole-exchange regime.

  14. Internal state distributions of molecules scattering and desorbing from surfaces

    International Nuclear Information System (INIS)

    Auerbach, D.J.

    1983-01-01

    Attempts are made to interpret scattering experiments of NO molecules on Ag(111) where a (rotational) state-specific detector has been used. A model using an anisotropic potential is proposed to explain the observed incoming energy- and angle dependence. The so-called rotational rainbows are explained. It is concluded, that in this way information on intermolecular potentials and the transfer of translational to rotational energy in the dynamics of trapping and sticking of molecules on surfaces can be extracted. (G.Q.)

  15. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  16. Electrical conductivity and electron cyclotron current drive efficiencies for non-circular flux surfaces in tokamaks

    International Nuclear Information System (INIS)

    O'Brien, M.R.

    1989-01-01

    As is well known, the presence of electron trapping can strongly reduce the electrical conductivity and rf current drive efficiencies of tokamak plasmas. For example, the conductivity (in the low collisionality limit) of a flux surface with inverse aspect ratio ε=0.1 is approximately one half of the Spitzer conductivity (σ sp )for uniform magnetic fields. Previous estimates of these effects have assumed that the variation of magnetic field strength around a flux surface is given by the standard form for circular flux surfaces. (author) 11 refs., 4 figs

  17. Observations of the sub-inertial, near-surface East India Coastal Current

    Science.gov (United States)

    Mukhopadhyay, S.; Shankar, D.; Aparna, S. G.; Mukherjee, A.

    2017-09-01

    We present surface current measurements made using two pairs of HF (high-frequency) radars deployed on the east coast of India. The radar data, used in conjunction with data from acoustic Doppler current profiler (ADCP) measurements on the shelf and slope off the Indian east coast, confirm that the East India Coastal Current (EICC) flows poleward as a deep current during February-March. During the summer monsoon, when the EICC flows poleward, and October-December, when the EICC flows equatorward, the current is shallow (ADCP data does not always extend to the surface. Even within the seasons, however, the poleward and equatorward flows show variability at periods of the order of 20-45 days, implying that the EICC direction is the same over the top ∼100 m for short durations. The high spatial resolution of the HF radar data brings out features at scales shorter than those resolved by the altimeter and the high temporal resolution captures short bursts that are not captured in satellite-derived estimates of surface currents. The radar data show that the EICC, which is a boundary current, leaves a strong imprint on the current at the coast. Since the EICC is known to be affected significantly by remote forcing, this correlation between the boundary and nearshore current implies the need to use large-domain models even for simulating the nearshore current. Comparison with a simulation by a state-of-the-art Ocean General Circulation Model, run at a resolution of 0.1 ° × 0.1 ° , shows that the model is able to simulate only the low-frequency variability.

  18. Formation and global distribution of sea-surface microlayers

    Directory of Open Access Journals (Sweden)

    O. Wurl

    2011-01-01

    Full Text Available Results from a study of surfactants in the sea-surface microlayer (SML in different regions of the ocean (subtropical, temperate, polar suggest that this interfacial layer between the ocean and atmosphere covers the ocean's surface to a significant extent. New, experimentally-derived threshold values at which primary production acts as a significant source of natural surfactants to the microlayer are coupled with a wind speed threshold at which the SML is presumed to be disrupted, and the results suggest that surfactant enrichment in the SML is greater in oligotrophic regions of the ocean than in more productive waters. Furthermore, surfactant enrichments persisted at wind speeds of up to 10 m s−1, without any observed depletion above 5 m s−1. This suggests that the SML is stable enough to exist even at the global average wind speed of 6.6 m s−1. Using our observations of the surfactant enrichments at various trophic levels and wind states, global maps of primary production and wind speed allow us to extrapolate the ocean's SML coverage . The maps indicate that wide regions of the Pacific and Atlantic Oceans between 30° N and 30° S may be more significantly covered with SML than north of 30° N and south of 30° S, where higher productivity (spring/summer blooms and wind speeds exceeding 12 m s−1 may prevent extensive SML formation.

  19. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell

    Science.gov (United States)

    Zhang, Guangsheng; Guo, Liejin; Ma, Lizhong; Liu, Hongtan

    Using a specially designed current distribution measurement gasket in anode and thin thermocouples between the catalyst layer and gas diffusion layer (GDL) in cathode, in-plane current and temperature distributions in a proton exchange membrane fuel cell (PEMFC) have been simultaneously measured. Such simultaneous measurements are realized in a commercially available experimental PEMFC. Experiments have been conducted under different air flow rates, different hydrogen flow rates and different operating voltages, and measurement results show that there is a very good correlation between local temperature rise and local current density. Such correlations can be explained and agree well with basic thermodynamic analysis. Measurement results also show that significant difference exists between the temperatures at cathode catalyst layer/GDL interface and that in the center of cathode endplate, which is often taken as the cell operating temperature. Compared with separate measurement of local current density or temperature, simultaneous measurements of both can reveal additional information on reaction irreversibility and various transport phenomena in fuel cells.

  20. Theoretical Analysis of Potential and Current Distributions in Planar Electrodes of Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Taheri, Peyman; Mansouri, Abraham; Yazdanpour, Maryam; Bahrami, Majid

    2014-01-01

    An analytical model is proposed to describe the two-dimensional distribution of potential and current in planar electrodes of pouch-type lithium-ion batteries. A concentration-independent polarization expression, obtained experimentally, is used to mimic the electrochemical performance of the battery. By numerically solving the charge balance equation on each electrode in conjugation with the polarization expression, the battery behavior during constant-current discharge processes is simulated. Our numerical simulations show that reaction current between the electrodes remains approximately uniform during most of the discharge process, in particular, when depth-of-discharge varies from 5% to 85%. This observation suggests to simplify the electrochemical behavior of the battery such that the charge balance equation on each electrode can be solved analytically to obtain closed-form solutions for potential and current density distributions. The analytical model shows fair agreement with numerical data at modest computational cost. The model is applicable for both charge and discharge processes, and its application is demonstrated for a prismatic 20 Ah nickel-manganese-cobalt lithium-ion battery during discharge processes

  1. Variations of thermal electron energy distribution associated with field-aligned currents

    International Nuclear Information System (INIS)

    Oyama, Kohichiro; Fukunishi, Hiroshi; Abe, Takumi; Okuzawa, Takashi; Fujii, Ryoichi.

    1991-01-01

    Relationships between thermal electrons and field aligned currents (FACs) in the auroral region have been investigated using data simultaneously obtained from the Thermal Electron Detector (TED) and the fluxgate magnetometer both onboard the EXOS-D satellite. Several features resulted from the observations are summarized as; (1) At altitudes from 300 to 1,800km, electron temperature in the upward FAC region is higher than that of the neighboring no FAC region by the increment ΔT=1,100-9,500K, while the temperature is lower in the downward FAC region by the decrement -ΔT=500-1,500K. (2) The electron temperature increase in the upward-current region grows with an increase of the FAC density. (3) The thermal electrons do not have Maxwell distribution in the upward-current region at altitudes higher than about 2,000km

  2. Effects of polar field-aligned currents on the distribution of the electric field and current in the middle and low latitudes ionosphere

    International Nuclear Information System (INIS)

    Maekawa, Koichiro

    1978-01-01

    According to the analysis of the magnetic records from the Triad satellite, it has been found that there are two regions of the field-aligned current of magnetospheric origin along the auroral oval; Region 1 in higher latitude and Region 2 in lower latitude. These currents seem to have important effect on the distribution of electric field and current in the ionosphere, in addition to the Sq electric field and current of ionospheric origin. The global current systems generated by the field-aligned current were calculated, using some simplified ionospheric models. The effect of the field-aligned current on the distribution of electric field and current of the ionosphere at middle and low latitudes was investigated. (Yoshimori, M.)

  3. Geomagnetic storms, the Dst ring-current myth and lognormal distributions

    Science.gov (United States)

    Campbell, W.H.

    1996-01-01

    The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with

  4. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  5. Deuterium (2H) Distribution in surface and groundwaters in Brazil

    International Nuclear Information System (INIS)

    Matsui, E.; Azevedo, C.T.

    1980-01-01

    Evaporation and condensation processes cause variation in the relative concentrations of hydrogen and oxygen isotopes. In the case of hydrogen, variations of the order of 350 0 /oo were observed in deuterium concentrations in natural waters. In heavy water production plants, wherever possible, water with high deuterium content should be used in the first stages of the enrichment process. Taking this into consideration, work was carried out on the systematic collection of samples from surface and groundwaters for the analysis of deuterium all over Brasil. Deuterium concentration values were obtained in 458 samples collected at different regions and at different times. This project was developed together with others of hydrological interest, the final objective of which was not to cover all characteristic regions of the country. (Author) [pt

  6. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Surface photometry and mass distributions of spiral galaxies

    International Nuclear Information System (INIS)

    Blackman, C.P.

    1979-01-01

    U, B, V and R surface photometry is presented for the two luminosity class I-II galaxies NGC 1084 and 7331. The reduced profiles of both galaxies have well-defined outer components similar to that described in an earlier paper for NGC 157. The radial variation of M/L has been studied by extrapolating the observed rotation curves. The gross structure and detailed colour and M/L variations for both galaxies are described in terms of the density wave theory of spiral structure, which implies that the rotation curves are not flat at large radii. The outer components of both galaxies are too luminous to form conventional massive haloes. In both galaxies the total luminosity exceeds that expected from their luminosity class. (author)

  8. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.

    2006-01-01

    therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects...... indeed affect the pump performance in a way that we can rationalize by physical arguments....

  9. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  10. Internal oscillating current-sustained RF plasmas: Parameters, stability, and potential for surface engineering

    DEFF Research Database (Denmark)

    Ostrikov, K.; Tsakadze, E.L.; Tsakadze, Z.L.

    2005-01-01

    A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon pl...... applications and surface engineering. (c) 2005 Elsevier B.V. All rights reserved....

  11. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: h.illias@um.edu.my [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2011-06-22

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  12. Effect of attenuation correction on surface amplitude distribution of wind waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Some selected wave profiles recorded using a ship borne wave recorder are analysed to study the effect of attenuation correction on the distribution of the surface amplitudes. A new spectral width parameter is defined to account for wide band...

  13. The Effect of the Leeuwin Current on Offshore Surface Gravity Waves in Southwest Western Australia

    Science.gov (United States)

    Wandres, Moritz; Wijeratne, E. M. S.; Cosoli, Simone; Pattiaratchi, Charitha

    2017-11-01

    The knowledge of regional wave regimes is critical for coastal zone planning, protection, and management. In this study, the influence of the offshore current regime on surface gravity waves on the southwest Western Australian (SWWA) continental shelf was examined. This was achieved by coupling the three dimensional, free surface, terrain-following hydrodynamic Regional Ocean Modelling System (ROMS) and the third generation wave model Simulating WAves Nearshore (SWAN) using the Coupled Ocean-Atmosphere-WaveSediment Transport (COAWST) model. Different representative states of the Leeuwin Current (LC), a strong pole-ward flowing boundary current with a persistent eddy field along the SWWA shelf edge were simulated and used to investigate their influence on different large wave events. The coupled wave-current simulations were compared to wave only simulations, which represented scenarios in the absence of a background current field. Results showed that the LC and the eddy field significantly impact SWWA waves. Significant wave heights increased (decreased) when currents were opposing (aligning with) the incoming wave directions. During a fully developed LC system significant wave heights were altered by up to ±25% and wave directions by up to ±20°. The change in wave direction indicates that the LC may modify nearshore wave dynamics and consequently alter sediment patterns. Operational regional wave forecasts and hindcasts may give flawed predictions if wave-current interaction is not properly accounted for.

  14. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  15. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  16. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    International Nuclear Information System (INIS)

    Luo, Dian; Tang, Guangze; Ma, Xinxin; Gu, Le; Sun, Mingren; Wang, Liqin

    2015-01-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm 2 . Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm 2 ) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation

  17. Sympatric spawning but allopatric distribution of Anguilla japonica and Anguilla marmorata: temperature- and oceanic current-dependent sieving.

    Directory of Open Access Journals (Sweden)

    Yu-San Han

    Full Text Available Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24 °C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them "temperate" and "tropical" eels, respectively.

  18. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2017-01-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz...... scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 10(7) times larger than steady-state currents in conventional STM are used to image...... individual atoms on a silicon surface with 0.3nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 x 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast...

  19. Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection

    Energy Technology Data Exchange (ETDEWEB)

    Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.

  20. Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2014-01-01

    Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.

  1. Current Control and Performance Evaluation of Converter Interfaced Distribution Resources in Grid Connected Mode

    Directory of Open Access Journals (Sweden)

    SINGH Alka

    2012-10-01

    Full Text Available Use of distributed resources is growing in developing countries like India and in developed nations too. The increased acceptance of suchresources is mainly due to their modularity, increased reliability, good power quality and environment friendly operation. These are currently being interfaced to the existing systems using voltage source inverters (VSC’s. The control of such distributed resources is significantly different than the conventional power systems mainly because the VSC’s have no inertia unlike the synchronous generators.This paper deals with the Matlab modeling and design of control aspects of one such distributed source feeding a common load. A grid connected supply is also available. The control algorithm is developed for real and reactive power sharing of the load between thedistributed source and the grid. The developed control scheme is tested for linear (R-L load as well as nonlinear loads. With suitable modifications, the control algorithm can be extended for several distributed resources connected in parallel.

  2. Angular distribution of sputtered atoms from Al-Sn alloy and surface topography

    International Nuclear Information System (INIS)

    Wang Zhenxia; Pan Jisheng; Zhang Jiping; Tao Zhenlan

    1992-01-01

    If an alloy is sputtered the angular distribution of the sputtered atoms can be different for each component. At high ion energies in the range of linear cascade theory, different energy distributions for components of different mass in the solid are predicted. Upon leaving the surface, i.e. overcoming the surface binding energy, these differences should show up in different angular distributions. Differences in the angular distribution are of much practical interest, for example, in thin-film deposition by sputtering and surface analysis by secondary-ion mass spectroscopy and Auger electron spectroscopy. Recently our experimental work has shown that for Fe-W alloy the surface microtopography becomes dominant and determines the shape of the angular distribution of the component. However, with the few experimental results available so far it is too early to draw any general conclusions for the angular distribution of the sputtered constituents. Thus, the aim of this work was to study further the influence of the surface topography on the shape of the angular distribution of sputtered atoms from an Al-Sn alloy. (Author)

  3. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    Science.gov (United States)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  4. Earthquake Energy Distribution along the Earth Surface and Radius

    International Nuclear Information System (INIS)

    Varga, P.; Krumm, F.; Riguzzi, F.; Doglioni, C.; Suele, B.; Wang, K.; Panza, G.F.

    2010-07-01

    The global earthquake catalog of seismic events with M W ≥ 7.0, for the time interval from 1950 to 2007, shows that the depth distribution of earthquake energy release is not uniform. The 90% of the total earthquake energy budget is dissipated in the first ∼30km, whereas most of the residual budget is radiated at the lower boundary of the transition zone (410 km - 660 km), above the upper-lower mantle boundary. The upper border of the transition zone at around 410 km of depth is not marked by significant seismic energy release. This points for a non-dominant role of the slabs in the energy budged of plate tectonics. Earthquake number and energy release, although not well correlated, when analysed with respect to the latitude, show a decrease toward the polar areas. Moreover, the radiated energy has the highest peak close to (±5 o ) the so-called tectonic equator defined by Crespi et al. (2007), which is inclined about 30 o with respect to the geographic equator. At the same time the presence of a clear axial co- ordination of the radiated seismic energy is demonstrated with maxima at latitudes close to critical (±45 o ). This speaks about the presence of external forces that influence seismicity and it is consistent with the fact that Gutenberg-Richter law is linear, for events with M>5, only when the whole Earth's seismicity is considered. These data are consistent with an astronomical control on plate tectonics, i.e., the despinning (slowing of the Earth's angular rotation) of the Earth's rotation caused primarily by the tidal friction due to the Moon. The mutual position of the shallow and ∼660 km deep earthquake energy sources along subduction zones allows us to conclude that they are connected with the same slab along the W-directed subduction zones, but they may rather be disconnected along the opposed E-NE-directed slabs, being the deep seismicity controlled by other mechanisms. (author)

  5. Modelling of current distribution in Nb3Sn multifilamentary strands subjected to bending

    International Nuclear Information System (INIS)

    Miyoshi, Y; Zhou, C; Lanen, E P A van; Dhallé, M M J; Nijhuis, A

    2012-01-01

    In Nb 3 Sn cable-in-conduit conductors (CICCs), strands follow complex trajectories that result in a periodic bending strain acting on the strands upon electromagnetic loading and thermal contraction. Such a periodic bending strain leads to degradation of the overall transport performance of a CICC. Aiming for a better understanding and quantitative correlation between strand degradation and CICC test results, a detailed strand model is essential in combination with accurate intra-strand resistance data, the spatial filament strain distribution, and the associated filament crack distribution. Our novel numerical strand model is a 3D network of resistors including superconducting filaments, normal matrix elements, and an outer stabilizing shell or inner core. Along the strand length, matrix elements have Ohmic resistance, there is a filament-to-matrix contact resistance (R fm ) between filaments and matrix elements, while superconducting filaments have a power-law voltage–current (VI) characteristic with critical current (I c ) and an n-value described by the ITER Nb 3 Sn strain scaling law based on measured strand data. The model simulates the VI characteristic in a periodic bending experiment and provides the associated spatial potential distribution. The VI characteristics representing the low- and high-resistivity limits (LRL and HRL) are identified for periodic and uniform axial bending. The voltage level for the current transfer regime depends on the strand internal resistivities, i.e. the filament-to-matrix contact and the matrix resistivity, the twist pitch and the bending wavelength. The simulation results show good agreement against I c degradation, as experimentally measured by the TARSIS facility, versus the assessed peak bending strain. In addition we discuss different methods for determining the applied peak bending strain. The model provides a basis to find a practical relationship between a strand’s VI characteristic and the periodic bending

  6. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  7. Investigation of unstable periodic space-time states in distributed active system with supercritical current

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru

  8. Current distribution effects in patterned non-linear magnetoresistive tunnel junctions

    CERN Document Server

    Montaigne, F; Schuhl, A

    2000-01-01

    To be used in submicronic devices like magnetic memories, magnetic tunnel junctions require low resistances. Four-probe measurements of such resistances are often altered by non-uniformity of the current distribution in the junction. The measured resistance is decreased by localised preferential conduction and increased by voltage drop in the measure electrode. Competition between these two effects is investigated as a function of the geometry. The non-linear conduction of tunnel junctions amplifies dramatically these phenomena and can modify by more than 50% the measured resistance.

  9. Predicting the potential distribution in China of Euwallacea fornicates (Eichhoff) under current and future climate conditions

    OpenAIRE

    Ge, Xuezhen; Jiang, Chao; Chen, Linghong; Qiu, Shuang; Zhao, Yuxiang; Wang, Tao; Zong, Shixiang

    2017-01-01

    Euwallacea fornicatus (Eichhoff) is an important forest pest that has caused serious damage in America and Vietnam. In 2014, it attacked forests of Acer trialatum in the Yunnan province of China, creating concern in China?s Forestry Bureau. We used the CLIMEX model to predict and compare the potential distribution for E. fornicates in China under current (1981?2010) and projected climate conditions (2011?2040) using one scenario (RCP8.5) and one global climate model (GCM), CSIRO-Mk3-6-0. Unde...

  10. Dynamic measurement of surface strain distribution on the foot during walking.

    Science.gov (United States)

    Ito, Kohta; Maeda, Kosuke; Fujiwara, Ikumi; Hosoda, Koh; Nagura, Takeo; Lee, Taeyong; Ogihara, Naomichi

    2017-05-01

    To clarify the mechanism underlying the development of foot disorders such as diabetic ulcers and deformities, it is important to understand how the foot surface elongates and contracts during gait. Such information is also helpful for improving the prevention and treatment of foot disorders. We therefore measured temporal changes in the strain distribution on the foot surface during human walking. Five adult male participants walked across a glass platform placed over an angled mirror set in a wooden walkway at a self-selected speed and the dorsolateral and plantar surfaces of the foot were filmed using two pairs of synchronized high-speed cameras. Three-dimensional (3D) digital image correlation was used to quantify the spatial strain distribution on the foot surface with respect to that during quiet standing. Using the proposed method, we observed the 3D patterns of foot surface strain distribution during walking. Large strain was generated around the ball on the plantar surface of the foot throughout the entire stance phase, due to the windlass mechanism. The dorsal surface around the cuboid was stretched in the late stance phase, possibly due to lateral protruding movement of the cuboid. It may be possible to use this technique to non-invasively estimate movements of the foot bones under the skin using the surface strain distribution. The proposed technique may be an effective tool with which to analyze foot deformation in the fields of diabetology, clinical orthopedics, and ergonomics. Copyright © 2017. Published by Elsevier Ltd.

  11. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  12. Estimation of Operating Condition of Appliances Using Circuit Current Data on Electric Distribution Boards

    Science.gov (United States)

    Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie

    The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.

  13. Species distributions and climate change:current patterns and future scenarios for biodiversity

    DEFF Research Database (Denmark)

    Hof, Christian

    How does climate change affect biodiversity? - Answering this question is one of the most important tasks in current ecological research. Earth has been warming by 0.7°C during the last 100 years, and the consequences are already apparent in biotic systems. For example, species are responding...... by shifts of their distributional ranges, which affects the spatial patterns of species richness and turnover. Global temperatures are projected to rise by 1.8 - 4°C until the end of the century; hence climate change will most likely leave further imprints on species and ecosystems. This PhD thesis aims...... extinction, one might assume that most species may also be able to successfully cope with contemporary climate change. However, current ecosystems are heavily modified by humans. Among other factors, habitat destruction and fragmentation caused by anthropogenic land-use changes negatively affect species...

  14. Radial Distribution of the Nanosecond Dielectric Barrier Discharge Current in Atmospheric-Pressure Air

    Science.gov (United States)

    Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.

    2018-01-01

    Experimental results on the radial distribution of the nanosecond dielectric barrier discharge (DBD) current in flat millimeter air gaps under atmospheric pressure and natural humidity of 40-60% at a voltage rise rate at the electrodes of 250 V/ns are presented. The time delay of the appearance of discharge currents was observed to increase from the center to the periphery of the air gap at discharge gap heights above 3 mm, which correlated with the appearance of constricted channels against the background of the volume DBD plasma. Based on the criterion of the avalanche-streamer transition, it is found out that the development of a nanosecond DBD in air gaps of 1-3 mm occurs by the streamer mechanism.

  15. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  16. Results of Current Density Distribution Mapping in PEM Fuel Cells Dependent on Operation Parameters

    Directory of Open Access Journals (Sweden)

    Zbigniew A. Styczynski

    2013-07-01

    Full Text Available This paper presents in situ measurements of a newly developed current density measurement system for proton exchange membrane fuel cells (PEMFC. While the functional principle and technical evaluation of the measurement system were presented in a previous paper, this paper analyzes the influence of various operation parameters, including multiple start-stop operation, at the anode, cathode and cooling locations on the distribution and long-term development of the current density. The system was operated for 500 h over two years with long periods of inactivity between measurements. The measurement results are evaluated and provide additional information on how to optimize the operation modes of fuel cells, including the start and stop of such systems as well as the water balance.

  17. Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-04-01

    Full Text Available We study what effect a possible surface conductivity of Mercury has on the closure of magnetospheric currents by making six runs with a quasi-neutral hybrid simulation. The runs are otherwise identical but use different synthetic conductivity models: run 1 has a fully conducting planet, run 2 has a poorly conducting planet ( $sigma{=}10^{-8} Omega^{-1}$ m$^{-1}$ and runs 3-6 have one of the hemispheres either in the dawn-dusk or day-night directions, conducting well, the other one being conducting poorly. Although the surface conductivity is not known from observations, educated guesses easily give such conductivity values that magnetospheric currents may close partly within the planet, and as the conductivity depends heavily on the mineral composition of the surface, the possibility of significant horizontal variations cannot be easily excluded. The simulation results show that strong horizontal variations may produce modest magnetospheric asymmetries. Beyond the hybrid simulation, we also briefly discuss the possibility that in the nightside there may be a lack of surface electrons to carry downward current, which may act as a further source of surface-related magnetospheric asymmetry.

    Key words. Magnetospheric physics (planetary magnetospheres; current systems; solar wind-magnetosphere interactions.6

  18. Determining the near-surface current profile from measurements of the wave dispersion relation

    Science.gov (United States)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  19. Electro-Optical Effects to Visualize Field and Current Distributions in Semiconductors

    CERN Document Server

    Böer, Karl W

    2010-01-01

    The book describes the basic principles that relate to field and current inhomogeneities in semiconductors and their kinetics that occur in the regime of negative differential conductances of semiconductors. The book presents the related theory and experiment. It proceeds to give for the first time the experimental methods to observe directly these inhomogeneities within the semiconductor. It analyses in detail the different ranges in which such inhomogeneities occur, when they are stationary and when not and what technical and device application result. The accompanying film on the website demonstrates all related kinetic effects. Information on these effects was previously mostly available indirectly by interpretation of current-voltage characteristics, or by point contact probing along the surface, or by changes in the luminescence spectrum. The material is based on the original papers of the research team of the author, starting in the late 50’s and updated to incl. 2008.

  20. Neutron radiography characterization of an operating proton exchange membrane fuel cell with localized current distribution measurements

    International Nuclear Information System (INIS)

    Gagliardo, J.J.; Owejan, J.P.; Trabold, T.A.; Tighe, T.W.

    2009-01-01

    Neutron radiography has proven to be a powerful tool to study and understand the effects of liquid water in an operating fuel cell. In the present work, this experimental method is coupled with locally resolved current and ohmic resistance measurements, giving additional insight into water management and fuel cell performance under a variety of conditions. The effects of varying the inlet humidification level and the current density of the 50 cm 2 cell are studied by simultaneously monitoring electrochemical performance with a 10x10 matrix of current sensors, and liquid water volumes are measured using the National Institute of Standards and Technology (NIST) neutron imaging facility. A counter flow, straight channel proton exchange membrane (PEM) fuel cell is used to demonstrate localized performance loss corresponds to water-filled channels that impede gas transport to the catalyst layer, thereby creating an area that has low current density. Furthermore, certain operating conditions causing excess water accumulation in the channels can result in localized proton resistance increase, a result that can only be accurately observed with combined radiography and distributed electrochemical measurements.

  1. Surface micro-distributions of pigment and the relation between smearing and local mass distribution

    International Nuclear Information System (INIS)

    Buelow, K.; Kristiansson, P.; Larsson, T.; Malmberg, S.; Elfman, M.; Malmqvist, K.; Pallon, J.; Shariff, A.

    2001-01-01

    In this work, the process of smearing and its time evolution have been investigated. When smearing occurs, the print is removed from the printed paper and colours other parts of the paper or the printing press and destroys the final product. To study the re-distribution of ink, cyan ink with Cu as a tracer in the coloured pigment has been used. Non-printed paper has been pressed against the paper, 1 and 5 s after the printing. The micro-distributions of ink on both printed and non-printed papers have then been studied using particle-induced X-ray emission (PIXE). Basis weight was measured with the off-axis scanning transmission ion microscopy (STIM) technique and this data was correlated with the data from the print. One conclusion is that the process of smearing is not dependent on the shape of the pigment distribution, i.e. copper, or the content of copper in a specific pixel. On the contrary, the smearing was found to be related to the structure of the paper and that it mainly occurs where the paper is thicker

  2. The coupling of mechanical dynamics and induced currents in plates and surfaces

    International Nuclear Information System (INIS)

    Weissenburger, D.W.; Bialek, J.M.

    1986-10-01

    Significant mechanical reactions and deflections may be produced when electrical eddy currents induced in a conducting structure by transformer-like electromotive forces interact with background magnetic fields. Additional eddy currents induced by structural motion through the background fields modify both the mechanical and electrical dynamic behavior of the system. The observed effects of these motional eddy currents are sometimes referred to as magnetic damping and magnetic stiffness. This paper addresses the coupled structural deformation and eddy currents in flat plates and simple two-dimensional surfaces in three-space. A coupled system of equations has been formulated using finite element techniques for the mechanical aspects and a mesh network method for the electrical aspects of the problem

  3. Near-surface current meter array measurements of internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.

  4. Intensity distributions of reflected surface channeling protons scattered on surfaces of electron-bombarded alkali halide crystals

    Science.gov (United States)

    Fukazawa, Y.; Kihara, K.; Iwamoto, K.; Susuki, Y.

    2013-11-01

    We have examined the surface-channeling of 550 keV protons on electron-bombarded KBr(0 0 1) surfaces at grazing incidence. On the surface, electron-stimulated desorption (ESD) resulting from the irradiation of 5 keV electrons changes the surface morphology. In order to investigate the change of the surface morphology, the luminous intensity distributions observed on a fluorescent screen (scattering patterns) of the reflected protons under the surface-channeling conditions are measured. Normalized specular intensity of the protons oscillates, and the results of computer simulations show that the period of the intensity oscillation agrees with the period of layer-by-layer desorption. The measured period of the oscillation is comparable to the simulated one, i.e., the period of the desorption, however, the measured amplitude of the oscillation is weak. This shows that the layer-by-layer desorption of the experimental surface is observed but is not as remarkable as that of the perfect surface introduced in the simulation.

  5. Intensity distributions of reflected surface channeling protons scattered on surfaces of electron-bombarded alkali halide crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fukazawa, Y., E-mail: yukofu@cc.osaka-kyoiku.ac.jp; Kihara, K.; Iwamoto, K.; Susuki, Y.

    2013-11-15

    We have examined the surface-channeling of 550 keV protons on electron-bombarded KBr(0 0 1) surfaces at grazing incidence. On the surface, electron-stimulated desorption (ESD) resulting from the irradiation of 5 keV electrons changes the surface morphology. In order to investigate the change of the surface morphology, the luminous intensity distributions observed on a fluorescent screen (scattering patterns) of the reflected protons under the surface-channeling conditions are measured. Normalized specular intensity of the protons oscillates, and the results of computer simulations show that the period of the intensity oscillation agrees with the period of layer-by-layer desorption. The measured period of the oscillation is comparable to the simulated one, i.e., the period of the desorption, however, the measured amplitude of the oscillation is weak. This shows that the layer-by-layer desorption of the experimental surface is observed but is not as remarkable as that of the perfect surface introduced in the simulation.

  6. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  7. Current Outlook for 99mTc Distribution Based on Electron Accelerator Production

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin L. Nelson; W. David Bence; John R. Snyder

    2007-07-01

    In 1999 a practical example illustrating the economical and reliable production of 99mTc from an accelerator was developed. It included the realistic costs involved in establishing and operating the accelerator facility and the distribution of the 99mTc to regions in Florida. However, the technology was never commercialized. Recent political and economic developments prompted this second look at accelerator produced 99mTc. The practicality of this system in 2007 dollars was established to account for inflation and current demand. The same distribution model and production schedule from the Global ‘99 study were used. Numbers were found using current rates and costs where possible and indexed estimations when necessary. Though several of the costs increased significantly and the sale price remains at approximately 35¢/mCi, the unit cost of 99mTc throughput only increased from 12.8¢/mCi to 15.0¢/mCi or approximately 17.2% from 1999 to 2007 thus continuing to be economically viable. This study provides ground work for creating business development models at additional locations within the U.S.

  8. Current Outlook for 99mTc Distribution Based on Electron Accelerator Production

    International Nuclear Information System (INIS)

    Benjamin L. Nelson; W. David Bence; John R. Snyder

    2007-01-01

    In 1999 a practical example illustrating the economical and reliable production of 99mTc from an accelerator was developed. It included the realistic costs involved in establishing and operating the accelerator facility and the distribution of the 99mTc to regions in Florida. However, the technology was never commercialized. Recent political and economic developments prompted this second look at accelerator produced 99mTc. The practicality of this system in 2007 dollars was established to account for inflation and current demand. The same distribution model and production schedule from the Global 1999 study were used. Numbers were found using current rates and costs where possible and indexed estimations when necessary. Though several of the costs increased significantly and the sale price remains at approximately 35 cents/mCi, the unit cost of 99mTc throughput only increased from 12.8 cents/mCi to 15.0 cents/mCi or approximately 17.2% from 1999 to 2007 thus continuing to be economically viable. This study provides ground work for creating business development models at additional locations within the U.S

  9. The distribution of pharmaceuticals in Europe--current and future trends in wholesaling.

    Science.gov (United States)

    Andersson, F

    1994-03-01

    As of January 1, 1993 a huge market, encompassing more than 325 million people, has been established with the unification of the 12 member states in the European Community. During the last 10 years, the pharmaceutical wholesaling sector has therefore been involved in an intense restructuring process. But, there is a considerable scientific gap in the knowledge of pharmaceutical wholesaling. In view of the uncertain situation and the scarcity of structured information, the purpose of this article is to examine current and future trends in the European pharmaceutical wholesaling sector. We reviewed the literature and identified three major areas of interest; general threats to traditional full-line wholesaling, wholesalers' response to these threats, and the new Glaxo distribution scheme. The current and expected importance of these areas were assessed with the help of a survey, encompassing 20 experts in this field. Based on the review and the survey, we conclude that there are many serious threats to traditional wholesaling, the major ones being governmental pressures to lower the already relatively low gross margins, manufacturers contemplating taking over the drug distribution process themselves and increasing international competition. The major responses to these threats are to become a truly international player (via mergers, acquisitions and joint ventures), or being able to provide the customers with detailed management information through computerised networks. In order to survive the next 5-10 years, companies have to be very alert to the changing competitive situation.

  10. On the Distribution of Lightning Current among Interconnected Grounding Systems in Medium Voltage Grids

    Directory of Open Access Journals (Sweden)

    Guido Ala

    2018-03-01

    Full Text Available This paper presents the results of a first investigation on the effects of lightning stroke on medium voltage installations’ grounding systems, interconnected with the metal shields of the Medium Voltage (MV distribution grid cables or with bare buried copper ropes. The study enables us to evaluate the distribution of the lightning current among interconnected ground electrodes in order to estimate if the interconnection, usually created to reduce ground potential rise during a single-line-to-ground fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Four different case studies of direct lightning stroke are presented and discussed: (1 two secondary substations interconnected by the cables’ shields; (2 two secondary substations interconnected by a bare buried conductor; (3 a high voltage/medium voltage station connected with a secondary substation by the medium voltage cables’ shields; (4 a high voltage/medium voltage station connected with a secondary substation by a bare buried conductor. The results of the simulations show that a higher peak-lowering action on the lighting-stroke current occurs due to the use of bare conductors as interconnection elements in comparison to the cables’ shields.

  11. Brain Surface Current Density Mapping in Pianists and Non-Pianists

    Science.gov (United States)

    2001-10-25

    while listening to piano pieces. Keywords - Inverse problems, Biomagnetism I. INTRODUCTION In magnetoencephalography (MEG), one of the common...Number Author(s) Project Number Task Number Work Unit Number Performing Organization Name(s) and Address(es) Biomagnetic Center Friedrich-Schiller...Haueisen, H. Nowak, and H. Brauer, “Equivalent Ellipsoid as an interpretation tool of extended current distributions in biomagnetic inverse problems,” IEEE Trans. Mag., vol. 36, pp. 1692 – 1695, 2000

  12. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xia; Wang Jia

    2009-01-01

    The wire beam electrode (WBE) method was first used to study the activity of local glucose oxidase (GOD) on stainless steel surface in seawater. Glucose oxidase was immobilized in calcium alginate gel capsules, which were embedded in a layer of artificial biofilm (calcium alginate gel) on the WBE surface. The potential/current distributions on the WBE surface were mapped using a newly developed device for the WBE method in our lab. The results demonstrated that the catalysis of H 2 O 2 formation by GOD can produce local noble potential peaks and cathodic current zones on the stainless steel surface. An interesting fluctuant current distribution around cathodic zones was observed the first time. The potential and current maps showed that the enzyme heterogeneity of the artificial biofilm caused a corresponding electrochemical heterogeneity at the biofilm/metal interface. The application of the WBE method to ennoblement study enables us to observe the heterogeneous electrochemistry at biofilm/stainless steel interface directly, providing us with a powerful tool to investigate other biofilm-related processes such as microbially influenced corrosion (MIC).

  13. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    Science.gov (United States)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  14. Time varying eddy currents on a conducting surface in 3-D using a network mesh method

    International Nuclear Information System (INIS)

    Christensen, U.R.

    1979-04-01

    The method presented in this paper was developed for the purpose of analyzing the eddy currents in the TFTR vacuum vessel. The basic principle in this method lies in representing a conducting surface as a network comprised of a number of branches. Each branch has a resistance and a self-inductance as well as mutuals to all other branches. The resulting branch resistance and branch inductance matrices are transformed into mesh matrices by a conventional network procedure. By using these mesh matrices a set of simultaneous differential equations is then established. The eddy currents are then found by using a standard method for solving simultaneous differential equations

  15. The North Atlantic Oscillation, Surface Current Velocities, and SST Changes in the Subpolar North Atlantic.

    Science.gov (United States)

    Flatau, Maria K.; Talley, Lynne; Niiler, Pearn P.

    2003-07-01

    Changes in surface circulation in the subpolar North Atlantic are documented for the recent interannual switch in the North Atlantic Oscillation (NAO) index from positive values in the early 1990s to negative values in 1995/96. Data from Lagrangian drifters, which were deployed in the North Atlantic from 1992 to 1998, were used to compute the mean and varying surface currents. NCEP winds were used to calculate the Ekman component, allowing isolation of the geostrophic currents. The mean Ekman velocities are considerably smaller than the mean total velocities that resemble historical analyses. The northeastward flow of the North Atlantic Current is organized into three strong cores associated with topography: along the eastern boundary in Rockall Trough, in the Iceland Basin (the subpolar front), and on the western flank of the Reykjanes Ridge (Irminger Current). The last is isolated in this Eulerian mean from the rest of the North Atlantic Current by a region of weak velocities on the east side of the Reykjanes Ridge.The drifter results during the two different NAO periods are compared with geostrophic flow changes calculated from the NASA/Pathfinder monthly gridded sea surface height (SSH) variability products and the Advanced Very High Resolution Radiometer (AVHRR) SST data. During the positive NAO years the northeastward flow in the North Atlantic Current appeared stronger and the circulation in the cyclonic gyre in the Irminger Basin became more intense. This was consistent with the geostrophic velocities calculated from altimetry data and surface temperature changes from AVHRR SST data, which show that during the positive NAO years, with stronger westerlies, the subpolar front was sharper and located farther east. SST gradients intensified in the North Atlantic Current, Irminger Basin, and east of the Shetland Islands during the positive NAO phase, associated with stronger currents. SST differences between positive and negative NAO years were consistent with

  16. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  17. Detection of milled 100Cr6 steel surface by eddy current and incremental permeance methods

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Neslušan, M.; Stupakov, Alexandr

    2017-01-01

    Roč. 87, Apr (2017), s. 15-23 ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Eddy currents * hard milling * incremental permeance * magnetic materials * surface characterization Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 2.726, year: 2016

  18. Station-keeping control of an unmanned surface vehicle exposed to current and wind disturbances

    OpenAIRE

    Sarda, Edoardo I.; Qu, Huajin; Bertaska, Ivan R.; von Ellenrieder, Karl D.

    2017-01-01

    Field trials of a 4 meter long, 180 kilogram, unmanned surface vehicle (USV) have been conducted to evaluate the performance of station-keeping heading and position controllers in an outdoor marine environment disturbed by wind and current. The USV has a twin hull configuration and a custom-designed propulsion system, which consists of two azimuthing thrusters, one for each hull. Nonlinear proportional derivative, backstepping and sliding mode feedback controllers were tested in winds of abou...

  19. Dynamics at Solid State Surfaces and Interfaces, Volume 1 Current Developments

    CERN Document Server

    Bovensiepen, Uwe; Wolf, Martin

    2010-01-01

    This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.

  20. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates.

    Science.gov (United States)

    Oliveira, Rafael S; Eller, Cleiton B; Bittencourt, Paulo R L; Mulligan, Mark

    2014-05-01

    Tropical montane cloud forests (TMCFs) are characterized by a unique set of biological and hydroclimatic features, including frequent and/or persistent fog, cool temperatures, and high biodiversity and endemism. These forests are one of the most vulnerable ecosystems to climate change given their small geographic range, high endemism and dependence on a rare microclimatic envelope. The frequency of atmospheric water deficits for some TMCFs is likely to increase in the future, but the consequences for the integrity and distribution of these ecosystems are uncertain. In order to investigate plant and ecosystem responses to climate change, we need to know how TMCF species function in response to current climate, which factors shape function and ecology most and how these will change into the future. This review focuses on recent advances in ecophysiological research of TMCF plants to establish a link between TMCF hydrometeorological conditions and vegetation distribution, functioning and survival. The hydraulic characteristics of TMCF trees are discussed, together with the prevalence and ecological consequences of foliar uptake of fog water (FWU) in TMCFs, a key process that allows efficient acquisition of water during cloud immersion periods, minimizing water deficits and favouring survival of species prone to drought-induced hydraulic failure. Fog occurrence is the single most important microclimatic feature affecting the distribution and function of TMCF plants. Plants in TMCFs are very vulnerable to drought (possessing a small hydraulic safety margin), and the presence of fog and FWU minimizes the occurrence of tree water deficits and thus favours the survival of TMCF trees where such deficits may occur. Characterizing the interplay between microclimatic dynamics and plant water relations is key to foster more realistic projections about climate change effects on TMCF functioning and distribution.

  1. The influence of current and future climate on the spatial distribution of coccidioidomycosis in the southwestern United States

    Science.gov (United States)

    Gorris, M. E.; Hoffman, F. M.; Zender, C. S.; Treseder, K. K.; Randerson, J. T.

    2017-12-01

    Coccidioidomycosis, otherwise known as valley fever, is an infectious fungal disease currently endemic to the southwestern U.S. The magnitude, spatial distribution, and seasonality of valley fever incidence is shaped by variations in regional climate. As such, climate change may cause new communities to become at risk for contracting this disease. Humans contract valley fever by inhaling fungal spores of the genus Coccidioides. Coccidioides grow in the soil as a mycelium, and when stressed, autolyze into spores 2-5 µm in length. Spores can become airborne from any natural or anthropogenic soil disturbance, which can be exacerbated by dry soil conditions. Understanding the relationship between climate and valley fever incidence is critical for future disease risk management. We explored several multivariate techniques to create a predictive model of county-level valley fever incidence throughout the southwestern U.S., including Arizona, California, New Mexico, Nevada, and Utah. We incorporated surface air temperature, precipitation, soil moisture, surface dust concentrations, leaf area index, and the amount of agricultural land, all of which influence valley fever incidence. A log-linear regression model that incorporated surface air temperature, soil moisture, surface dust concentration, and the amount of agricultural land explained 34% of the county-level variance in annual average valley fever incidence. We used this model to predict valley fever incidence for the Representative Concentration Pathway 8.5 using simulation output from the Community Earth System Model. In our analysis, we describe how regional hotspots of valley fever incidence may shift with sustained warming and drying in the southwestern U.S. Our predictive model of valley fever incidence may help mitigate future health impacts of valley fever by informing health officials and policy makers of the climate conditions suitable for disease outbreak.

  2. Poleward propagating subinertial alongshore surface currents off the U.S. West Coast

    KAUST Repository

    Kim, Sung Yong

    2013-12-01

    The network comprising 61 high-frequency radar systems along the U.S. West Coast (USWC) provides a unique, high resolution, and broad scale view of ocean surface circulation. Subinertial alongshore surface currents show poleward propagating signals with phase speeds of O(10) and O(100-300) km d -1 that are consistent with historical in situ observations off the USWC and that can be possibly interpreted as coastally trapped waves (CTWs). The propagating signals in the slow mode are partly observed in southern California, which may result from scattering and reflection of higher-mode CTWs due to curvature of shoreline and bathymetry near Point Conception, California. On the other hand, considering the order of the phase speed in the slow mode, the poleward propagating signals may be attributed to alongshore advection or pressure-driven flows. A statistical regression of coastal winds at National Data Buoy Center buoys on the observed surface currents partitions locally and remotely wind-forced components, isolates footprints of the equatorward propagating storm events in winter off the USWC, and shows the poleward propagating signals year round. Key Points A unique resource to examine synoptic-scale alongshore variability Isolation of equatorward wind events in winter using a statistical model Poleward propagating surface signals year-round © 2013. American Geophysical Union. All Rights Reserved.

  3. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  4. Dependence of the runaway greenhouse threshold on the surface water distribution for Earth-like planets

    Science.gov (United States)

    Kodama, T.; Nitta, A.; Genda, H.; Oishi, R.; Abe-Ouchi, A.; Abe, Y.

    2017-12-01

    Liquid water is one of the important materials that affect the climate and habitability on a terrestrial planet. Liquid water entirely vaporizes when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. In general, it is assumed that an Earth-like planet with oceans is a potentially habitable planet. Such a planet is implicitly assumed to be a planet whose surface is covered with oceans. Thus, most of previous studies estimated the runaway greenhouse threshold for such planets. Abe et al. (2011) suggest that the runaway greenhouse threshold significantly depends on the distribution of water on the surface. The distribution of the surface water is determined by the surface topography, the surface water flow and the transport of water vapor in the atmosphere. Here, we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We recognized two climate regimes: the land planet regime, which has dry low latitude and wet high latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold continuously varies with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water.

  5. Distribution of benthic foraminifers (>125 um) in the surface sediments of the Arctic Ocean

    Science.gov (United States)

    Osterman, Lisa E.; Poore, Richard Z.; Foley, Kevin M.

    1999-01-01

    Census data on benthic foraminifers (>125 ?m) in surface sediment samples from 49 box cores are used to define four depth-controlled biofacies, which will aid in the paleoceanographic reconstruction of the Arctic Ocean. The shelf biofacies contains a mix of shallow-water calcareous and agglutinated species from the continental shelves of the Beaufort and Chukchi Seas and reflects the variable sedimentologic and oceanic conditions of the Arctic shelves. The intermediate-depth calcareous biofacies, found between 500 and 1,100 meters water depth (mwd), contains abundant Cassidulina teretis , presumably indicating the influence of Atlantic-derived water at this depth. In water depths between 1,100 and 3,500 m, a deepwater calcareous biofacies contains abundant Oridorsalis umbonatus . Below 3,500 mwd, the deepwater mixed calcareous/agglutinated biofacies of the Canada, Makarov, and Eurasian Basins reflects a combination of low productivity, dissolution, and sediment transport. Two other benthic foraminiferal species show specific environmental preferences. Fontbotia wuellerstorfi has a depth distribution between 900 and 3,500 mwd, but maximum abundance occurs in the region of the Mendeleyev Ridge. The elevated abundance of F. wuellerstorfi may be related to increased food supply carried by a branch of Atlantic water that crosses the Lomonosov Ridge near the Russian Continental Shelf. Triloculina frigida is recognized to be a species preferring lower slope sediments commonly disturbed by turbidites and bottom currents. INTRODUCTION At present, our understanding of the Arctic Ocean lags behind our understanding of other oceans, and fundamental questions still exist about its role in and response to global climate change. The Arctic Ocean is particularly sensitive to climatic fluctuations because small changes in the amounts of sea-ice cover can alter global albedo and thermohaline circulation (Aagaard and Carmack, 1994). Numerous questions still exist regarding the nature

  6. Research of the use of silver nanowires as a current spreading layer on vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Guo, Xia; Shi, Lei; Li, Chong; Dong, Jian; Liu, Bai; Hu, Shuai; He, Yan

    2016-11-01

    Silver nanowire (AgNW) film was proposed to apply on the surface of the vertical-cavity surface-emitting lasers (VCSELs) with large aperture in order to obtain a uniform current distribution in the active region and a better optical beam quality. Optimization of the AgNW film was carried out with the sheet resistance of 28.4 Ω/sq and the optical transmission of 94.8% at 850 nm. The performance of VCSELs with and without AgNW film was studied. When the AgNW film was applied to the surface of VCSELs, due to its better current spreading effect, the maximum output optical power increased from 23.4 mW to 24.4 mW, the lasing wavelength redshift decreased from 0.085 nm/mA to 0.077 nm/mA, the differential resistance decreased from 23.95 Ω to 21.13 Ω, and the far field pattern at 50 mA decreased from 21.6° to 19.2°. At the same time, the near field test results showed that the light in the aperture was more uniform, and the far field exhibited a better single peak characteristic. Various results showed that VCSELs with AgNW on the surface showed better beam quality. Project supported by the National Natural Science Foundation of China (Grant Nos. 61335004 and 61505003), the National High Technology Research and Development Program of China (Grant No. 2015AA017101), and the National Key Research and Development of China (Grant No. 2016YFB0400603).

  7. Comparison between Underground Cable and Overhead Line for a Low-Voltage Direct Current Distribution Network Serving Communication Repeater

    Directory of Open Access Journals (Sweden)

    Jae-Han Kim

    2014-03-01

    Full Text Available This paper compares the differences in economic feasibility and dynamic characteristics between underground (U/G cable and overhead (O/H line for low-voltage direct current (LVDC distribution. Numerous low loaded long-distance distribution networks served by medium-voltage alternative current (MVAC distribution lines exist in the Korean distribution network. This is an unavoidable choice to compensate voltage drop, therefore, excessive cost is expended for the amount of electrical power load. The Korean Electric Power Corporation (KEPCO is consequently seeking a solution to replace the MVAC distribution line with a LVDC distribution line, reducing costs and providing better quality direct current (DC electricity. A LVDC distribution network can be installed with U/G cables or O/H lines. In this paper, a realistic MVAC distribution network in a mountainous area was selected as the target model to replace with LVDC. A 30 year net present value (NPV analysis of the economic feasibility was conducted to compare the cost of the two types of distribution line. A simulation study compared the results of the DC line fault with the power system computer aided design/electro-magnetic transient direct current (PSCAD/EMTDC. The economic feasibility evaluation and simulation study results will be used to select the applicable type of LVDC distribution network.

  8. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    Science.gov (United States)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  9. Sensitivity of the Antarctic Circumpolar Current transport to surface buoyancy conditions in the North Atlantic

    Science.gov (United States)

    Sun, Shantong; Liu, Jinliang

    2017-10-01

    The sensitivity of the Antarctic Circumpolar Current (ACC) transport to surface buoyancy conditions in the North Atlantic is investigated using a sector configuration of an ocean general circulation model. We find that the sensitivity of the ACC transport is significantly weaker than previous studies. We attribute this difference to the different depth of the simulated Atlantic Meridional Overturning Circulation. Because a fast restoring buoyancy boundary condition is used that strongly constrains the surface buoyancy structure at the Southern Ocean surface, the ACC transport is determined by the isopycnal slope that is coupled to the overturning circulation in the Southern Ocean. By changing the surface buoyancy in the North Atlantic, the shared buoyancy contour between the North Atlantic and the Southern Ocean is varied, and consequently the strength of the overturning circulation is modified. For different depth of the simulated overturning circulation, the response of the ACC transport to changes in the strength of the overturning circulation varies substantially. This is illustrated in two conceptual models based on the residual-mean theory of overturning circulation. Our results imply that the sensitivity of the ACC transport to surface forcing in the North Atlantic could vary substantially in different models depending on the simulated vertical structure of the overturning circulation.

  10. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.

    Science.gov (United States)

    Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong

    2017-12-05

    Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.

  11. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  12. Current dipole orientation and distribution of epileptiform activity correlates with cortical thinning in left mesiotemporal epilepsy.

    Science.gov (United States)

    Reinsberger, Claus; Tanaka, Naoaki; Cole, Andrew J; Lee, Jong Woo; Dworetzky, Barbara A; Bromfield, Edward B; Hamiwka, Lorie; Bourgeois, Blaise F; Golby, Alexandra J; Madsen, Joseph R; Stufflebeam, Steven M

    2010-10-01

    To evaluate cortical architecture in mesial temporal lobe epilepsy (MTLE) with respect to electrophysiology, we analyze both magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 19 patients with left MTLE. We divide the patients into two groups: 9 patients (Group A) have vertically oriented antero-medial equivalent current dipoles (ECDs). 10 patients (Group B) have ECDs that are diversely oriented and widely distributed. Group analysis of MRI data shows widespread cortical thinning in Group B compared with Group A, in the left hemisphere involving the cingulate, supramarginal, occipitotemporal and parahippocampal gyri, precuneus and parietal lobule, and in the right hemisphere involving the fronto-medial, -central and -basal gyri and the precuneus. These results suggest that regardless of the presence of hippocampal sclerosis, in a subgroup of patients with MTLE a large cortical network is affected. This finding may, in part, explain the unfavorable outcome in some MTLE patients after epilepsy surgery. Copyright 2010 Elsevier Inc. All rights reserved.

  13. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.

  14. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    Science.gov (United States)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  15. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    Science.gov (United States)

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Distribution and Characteristics of Boulder Halos at High Latitudes on Mars: Ground Ice and Surface Processes Drive Surface Reworking

    Science.gov (United States)

    Levy, J. S.; Fassett, C. I.; Rader, L. X.; King, I. R.; Chaffey, P. M.; Wagoner, C. M.; Hanlon, A. E.; Watters, J. L.; Kreslavsky, M. A.; Holt, J. W.; Russell, A. T.; Dyar, M. D.

    2018-02-01

    Boulder halos are circular arrangements of clasts present at Martian middle to high latitudes. Boulder halos are thought to result from impacts into a boulder-poor surficial unit that is rich in ground ice and/or sediments and that is underlain by a competent substrate. In this model, boulders are excavated by impacts and remain at the surface as the crater degrades. To determine the distribution of boulder halos and to evaluate mechanisms for their formation, we searched for boulder halos over 4,188 High Resolution Imaging Science Experiment images located between 50-80° north and 50-80° south latitude. We evaluate geological and climatological parameters at halo sites. Boulder halos are about three times more common in the northern hemisphere than in the southern hemisphere (19% versus 6% of images) and have size-frequency distributions suggesting recent Amazonian formation (tens to hundreds of millions of years). In the north, boulder halo sites are characterized by abundant shallow subsurface ice and high thermal inertia. Spatial patterns of halo distribution indicate that excavation of boulders from beneath nonboulder-bearing substrates is necessary for the formation of boulder halos, but that alone is not sufficient. Rather, surface processes either promote boulder halo preservation in the north or destroy boulder halos in the south. Notably, boulder halos predate the most recent period of near-surface ice emplacement on Mars and persist at the surface atop mobile regolith. The lifetime of observed boulders at the Martian surface is greater than the lifetime of the craters that excavated them. Finally, larger minimum boulder halo sizes in the north indicate thicker icy soil layers on average throughout climate variations driven by spin/orbit changes during the last tens to hundreds of millions of years.

  17. Current distribution evaluation of dye-sensitized solar cell using HTS-SQUID-based magnetic measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kenji, E-mail: Sakai-k@okayama-u.ac.jp; Tanaka, Kohei; Kiwa, Toshihiko; Tsukada, Keiji

    2016-11-15

    Highlights: • Current distribution and direction of dye-sensitized solar cell (DSSC) was measured. • Electrical current flowing in the indium tin oxide (ITO) glass substrate was uniform. • The distribution of electrical current depended on I–V characteristic. • Current direction changed when the performance of DSSC is low. - Abstract: The current flowing inside a dye-sensitized solar cell (DSSC) was measured using a high-temperature superconductor superconducting quantum interference device (HTS-SQUID)-based magnetic measurement system. Further, a new evaluation method of the DSSC, which is difficult to measure using the conventional method, was investigated to improve the characteristics of the DSSC. The tangential components of the magnetic field generated from the DSSC were measured using two HTS-SQUIDs, and the intensity and direction related to the electrical current were obtained by the measured magnetic field. The DSSCs prepared with different dyes and catalytic substances showed different current-intensity mapping. The current direction was different for the DSSC with low performance. In addition, the current flowing in the ITO layer of the ITO glass substrate was also measured and the results confirmed that it had uniform distribution. These results show that the current mapping and the direction of the electrical current depend on the internal factors of the DSSC, and the detection of the magnetic field distribution generated from it is expected to lead to its new evaluation method.

  18. Estimating Discharge, Depth and Bottom Friction in Sand Bed Rivers Using Surface Currents and Water Surface Elevation Observations

    Science.gov (United States)

    Simeonov, J.; Czapiga, M. J.; Holland, K. T.

    2017-12-01

    We developed an inversion model for river bathymetry estimation using measurements of surface currents, water surface elevation slope and shoreline position. The inversion scheme is based on explicit velocity-depth and velocity-slope relationships derived from the along-channel momentum balance and mass conservation. The velocity-depth relationship requires the discharge value to quantitatively relate the depth to the measured velocity field. The ratio of the discharge and the bottom friction enter as a coefficient in the velocity-slope relationship and is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. Completing the inversion requires an estimate of the bulk friction, which in the case of sand bed rivers is a strong function of the size of dune bedforms. We explored the accuracy of existing and new empirical closures that relate the bulk roughness to parameters such as the median grain size diameter, ratio of shear velocity to sediment fall velocity or the Froude number. For given roughness parameterization, the inversion solution is determined iteratively since the hydraulic roughness depends on the unknown depth. We first test the new hydraulic roughness parameterization using estimates of the Manning roughness in sand bed rivers based on field measurements. The coupled inversion and roughness model is then tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID.

  19. Distribution and seasonal change of the Tsugaru warm current water off Rokkasho

    International Nuclear Information System (INIS)

    Shima, Shigeki; Nakayama, Tomoharu; Iseda, Kenichi; Nishizawa, Keisuke; Gasa, Shinichi; Suto, Kazuhiko; Sakurai, Satoshi; Oguri, Kazumasa; Kouzuma, Kiyotake

    2000-01-01

    The first commercial spent fuel reprocessing plant in Japan is being installed in Rokkasho-mura, Aomori Prefecture. Decontaminated liquid effluents in its operation will be released into a sea. In accessing the environmental impact of radionuclides discharged into a sea, it is important that the patterns of water movements around the discharge outlet are clarified. This area off Rokkasho is an open coast, where the Tsugaru Warm Current Water (TWC), the cold Oyashio and the warm Kuroshio Extension meet. Therefore, it is considered that complicated water circulations will be formed around the region of the wastewater outlet. Current structures of the coastal water near the ocean outlet were investigated by use of mooring current meters/ADCPs, a towing-ADCP, and some CTD observations. In addition, extensive observations with CTD and a shipboard ADCP were made in detail around the off Rokkasho (Shimokita Peninsula) to evaluate the distribution and the seasonal change of the TWC. These observations were carried out five times in September 1997 to August 1999. Gyre mode and coastal mode of the TWC experimentally pointed out by Conlon are found by those investigations. In the gyre mode, the large eddy more than 100 km in diameter is found in the east part of the Tsugaru Strait, which has the vertical structure of 1,000 m in depth. From the current measurements by shipboard ADCP, the velocity of the TWC was more than three knots and the width of its fastest region about 30km at that mode. On the other hand, in the coastal mode, the TWC flows along the continental slope off Rokkasho (ca five miles off the coast) and is about 400m thick in depth. The TWC affects the layers below the sill depth of the Tsugaru Strait. In the gyre mode the TWC flows northward along the slope off Rokkasho, however, around the coastal zone standing near to the outlet, southward flow was observed predominantly. At the coastal mode, the northward flow was mostly observed around the coastal area

  20. Distributions of 12 elements on 64 absorbers from simulated Hanford Neutralized Current Acid Waste (NCAW)

    Energy Technology Data Exchange (ETDEWEB)

    Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States); Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions.

  1. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  2. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-01-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  3. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  4. Patterns of distribution of phosphomono-esterases on surfaces of demineralized bone

    DEFF Research Database (Denmark)

    Kirkeby, S; Vilmann, H

    1979-01-01

    Decalcification over short periods (5 days) with MnNa2 EDTA, MgNa2 EDTA and EGTA according to a method described in the present paper, creates sections of high quality with simultaneous good preservation of phosphomonoesterases on bone surfaces. In fact, the enzyme distribution seems to be compar......Decalcification over short periods (5 days) with MnNa2 EDTA, MgNa2 EDTA and EGTA according to a method described in the present paper, creates sections of high quality with simultaneous good preservation of phosphomonoesterases on bone surfaces. In fact, the enzyme distribution seems...... be an indication of differential processes of bone transformations in such a way that bone surfaces corresponding to areas of enzyme reactions are depository whereas bone surfaces corresponding to areas of lack of enzyme reaction are resorptive. New experimental designs are, however, necessary before...

  5. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid.

    Science.gov (United States)

    Smith, D J; Gaffney, E A; Blake, J R

    2007-07-01

    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous 'singularity models' is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a 'posterior tilt,' and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 mum/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this

  6. Current distribution inside Rutherford-type superconducting cables and impact on performance of LHC dipoles

    CERN Document Server

    Schreiner, T

    2002-01-01

    The windings of high--field superconducting accelerator magnets are usually made of Rutherford--type cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. Such a Periodic Field Pattern (PFP) has already been observed in number of superconducting accelerator magnets. Additional unbalanced currents in individual strands of the cable appear to be causing this effect. The present thesis describes the investigation of the PFPs performed with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in the small--scale model magnets with a length of one meter and in full--scale prototypes and pre--series magnets with fifteen meters of length. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. One of the main parameters influencing the properties of the PFP is the cross--...

  7. Correlations between sea surface temperature, circulation patterns and the distribution of hermatypic corals of Japan

    Science.gov (United States)

    Veron, J. E. N.; Minchin, Peter R.

    1992-07-01

    Techniques of multivariate exploratory data analysis and regression are used to examine correlations between patterns of distribution of the hermatypic corals of the Ryukyu Islands and mainland Japan, sea surface temperature (SST) and dispersal time. The species composition of all localities is highly correlated with geographic position, with species richness decreasing with latitude. There is an abrupt decrease in diversity between reefal (Ryukyu Islands) and non-reefal (mainland) localities. The compositional data are strongly unidimensional and this dimension is correlated with SST. There are eight high latitude endemic species as well as other species "locked-up" in northern localities as a result of the northward-flowing Kuroshio Current. On a broad scale, overall similarity in coral species composition can be predicted solely from absolute differences in SST and dispersal time makes no significant contribution. Except for short term or localized chilling, the minimum SST for coral reef development is 18°C. Of all Japanese species, 22.5% tolerate a minimum SST of 10.4°C, 27% tolerate 13.2°C and 48% tolerate 14.1°C. Thus, approximately half of all species tolerate temperatures 4°C below the 18°C minimum required for reef development.

  8. A numerical method for calculation of electrostatic charge distribution induced on conducting surfaces

    OpenAIRE

    Saeed Hatamzadeh-Varmazyar; Zahra Masouri

    2014-01-01

    The focus of this article is on calculation of electrostatic charge distribution induced on conducting surfaces. For this purpose, the integral equation concept is used for mathematical modeling of the problem. A special set of exponential basis functions is introduced and defined to be used in formulation of a numerical method for solving the integral equation to obtain the charge distribution. The method is numerically evaluated via calculation of charge density for some structures by which...

  9. Eddy current technique for detecting and sizing surface cracks in steel components

    International Nuclear Information System (INIS)

    Cecco, V.S.; Carter, J.R.; Sullivan, S.P.

    1995-01-01

    Cracking has occurred in pressure vessel nozzles and girth welds due to thermal fatigue. Pipe welds, welds in support structures, and welds in reactor vault liner panels in nuclear facilities have failed because of cracks. Cracking can also occur in turbine rotor bore surfaces due to high cycle fatigue. Dye penetrant, magnetic particle and other surface NDT methods are used to detect cracks but cannot be used for depth sizing. Crack depth can be measured with various NDT methods such as ultrasonic time-of-flight diffraction (TOFD), potential drop, and eddy current. The TOFD technique can be difficult to implement on nozzle welds and is best suited for sizing deep cracks (>5 mm). The conventional eddy current method is easy to implement, but crack sizing is normally limited to shallow cracks ( 2 mm) cracks. Eddy current testing (ET) techniques are readily amenable to remote/automatic inspections. These new probes could augment present magnetic particle (MT) and dye penetrant (PT) testing through provision of reliable defect depth information. Reliable crack sizing permits identification of critical cracks for plant life extension and licensing purposes. In addition, performing PT and MT generates low level radioactive waste in some inspection applications in nuclear facilities. Replacing these techniques with ET for some components will eliminate some of this radioactive waste. (author)

  10. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    Science.gov (United States)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  11. Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method

    OpenAIRE

    B. Marungsri; W. Onchantuek; A. Oonsivilai

    2008-01-01

    This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to ...

  12. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  13. Near-Surface Residual Stress-Profiling with High Frequency Eddy Current Conductivity Measurement

    Science.gov (United States)

    Hillmann, S.; Heuer, H.; Baron, H.-U.; Bamberg, J.; Yashan, A.; Meyendorf, N.

    2009-03-01

    The lifetime of aero engine components can be extended by applying an additional strain to the material. Typical aero engine-alloys like Nickel-Base superalloys or Titanium alloys can be surface-treated by use of shot peening to induce the compressive strain near the surface. However, in order to use the additional life for critical aero engine components, a quantitative determination of strain gradients near the surface has to be carried out periodically. We propose to measure the depth-profile of residual stresses non-destructively by use of high frequency eddy current techniques. This paper presents results obtained with an experimental set-up based on a high precision impedance analyzer. Test samples prepared from IN718 by shot peening of different intensities can be easily distinguished. By sweeping the frequency from 100 kHz up to 100 MHz a depth profile for the electrical conductivity from 50 μm to 500 μm can be obtained. The measured conductivity profile is a resultant from residual stresses, cold work, surface roughness and the texture of the material. In addition, first results for strain profiling obtained with industry applicable NDE instrument will be presented.

  14. Noether Current of the Surface Term of Einstein-Hilbert Action, Virasoro Algebra, and Entropy

    Directory of Open Access Journals (Sweden)

    Bibhas Ranjan Majhi

    2013-01-01

    Full Text Available A derivation of Noether current from the surface term of Einstein-Hilbert action is given. We show that the corresponding charge, calculated on the horizon, is related to the Bekenstein-Hawking entropy. Also using the charge, the same entropy is found based on the Virasoro algebra and Cardy formula approach. In this approach, the relevant diffeomorphisms are found by imposing a very simple physical argument: diffeomorphisms keep the horizon structure invariant. This complements similar earlier results (Majhi and Padmanabhan (2012 (arXiv:1204.1422 obtained from York-Gibbons-Hawking surface term. Finally we discuss the technical simplicities and improvements over the earlier attempts and also various important physical implications.

  15. The ISMAR high frequency coastal radar network: Monitoring surface currents for management of marine resources

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier

    2015-01-01

    The Institute of Marine Sciences (ISMAR) of the National Research Council of Italy (CNR) established a High Frequency (HF) Coastal Radar Network for the measurement of the velocity of surface currents in coastal seas. The network consists of four HF radar systems located on the coast of the Gargano...... Promontory (Southern Adriatic, Italy). The network has been operational since May 2013 and covers an area of approximately 1700 square kilometers in the Gulf of Manfredonia. Quality Assessment (QA) procedures are applied for the systems deployment and maintenance and Quality Control (QC) procedures...

  16. On The Accuracy Of Current Mean Sea Surface Models For The Use With Goce Data

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Rio, M. H.

    2011-01-01

    The mean sea surface (MSS) is a fundamental parameter in geodesy and physical oceanography and knowledge about the error on the MSS is fundamental for the interpretation of GOCE geoid model for the study of large scale ocean circulation. The MSS is the sum of the geoid height G and the temporal...... mean of the ocean mean dynamic topography (MDT) like MSS = G + MDT, where the MDT is the quantity bridging the geoid and the MSS and the quantity constraining large scale ocean circulation. In order to evaluate the accurate of satellite derived ocean currents from the difference between the MSS...

  17. Control and Calibration of a Staubli RX130 Robotic Arm for Construction of Surface Current Coils

    Science.gov (United States)

    Vanmeter, Patrick; Crawford, Christopher; Guler, Emre; Fugal, Mario; Irvin, Bradley

    2013-10-01

    Precision low energy neutron experiments require extremely uniform magnetic fields for manipulating the neutron spin. Such fields can be generated with surface current coils-precision 3-dimensional printed circuits. We are developing a facility to etch out these circuits on copper-plated curved forms using a high-speed spindle attached to the end-effector of a Staubli RX130 six-axis robotic arm. We describe our mathematical model of the robotic links and the software system we designed to control the motion of the arm and to prevent collisions during actuations. We developed a calibration procedure to achieve accuracy of 30 microns in the position of drill.

  18. Cetacean Distributions Relative to Ocean Processes in the Northern California Current System

    National Research Council Canada - National Science Library

    Tynan, Cynthia T; Ainley, David G; Barth, John A; Cowles, Timothy J

    2004-01-01

    ...., sea surface salinity, sea surface temperature, thermocline depth, halocline depth, chlorophyll maximum, distance to the center of the equatorward jet, distance to the shoreward edge of the upwelling...

  19. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution

    Science.gov (United States)

    Ding, Wenfeng; Huang, Chihua

    2017-10-01

    Soil surface roughness significantly impacts runoff and erosion under rainfall. Few previous studies on runoff generation focused on the effects of soil surface roughness on the sediment particle size distribution (PSD), which greatly affects interrill erosion and sedimentation processes. To address this issue, a rainfall-simulation experiment was conducted with treatments that included two different initial soil surface roughnesses and two rainfall intensities. Soil surface roughness was determined by using photogrammetric method. For each simulated event, runoff and sediment samples were collected at different experimental times. The effective (undispersed) PSD of each sediment sample and the ultimate (after dispersion) PSD were used to investigate the detachment and transport mechanisms involved in sediment movement. The results show that soil surface roughness significantly delayed runoff initiation, but had no significant effect on the steady runoff rate. However, a significant difference in the soil loss rate was observed between the smooth and rough soil surfaces. Sediments from smooth soil surfaces were more depleted in clay-size particles, but more enriched in sand-size particles than those from rough soil surfaces, suggesting that erosion was less selective on smooth than on rough soil surfaces. The ratio of different sizes of transported sediment to the soil matrix indicates that most of the clay was eroded in the form of aggregates, silt-size particles were transported mainly as primary particles, and sand-size particles were predominantly aggregates of finer particles. Soil surface roughness has a crucial effect on the sediment size distribution and erosion processes. Significant differences of the enrichment ratios for the effective PSD and the ultimate PSD were observed under the two soil surface roughness treatments. These findings demonstrate that we should consider each particle size separately rather than use only the total sediment discharge in

  20. Observations of Near-Surface Current Shear Help Describe Oceanic Oil and Plastic Transport

    Science.gov (United States)

    Laxague, Nathan J. M.; Ö-zgökmen, Tamay M.; Haus, Brian K.; Novelli, Guillaume; Shcherbina, Andrey; Sutherland, Peter; Guigand, Cédric M.; Lund, Björn; Mehta, Sanchit; Alday, Matias; Molemaker, Jeroen

    2018-01-01

    Plastics and spilled oil pose a critical threat to marine life and human health. As a result of wind forcing and wave motions, theoretical and laboratory studies predict very strong velocity variation with depth over the upper few centimeters of the water column, an observational blind spot in the real ocean. Here we present the first-ever ocean measurements of the current vector profile defined to within 1 cm of the free surface. In our illustrative example, the current magnitude averaged over the upper 1 cm of the ocean is shown to be nearly four times the average over the upper 10 m, even for mild forcing. Our findings indicate that this shear will rapidly separate pieces of marine debris which vary in size or buoyancy, making consideration of these dynamics essential to an improved understanding of the pathways along which marine plastics and oil are transported.

  1. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  2. Multispectral UV imaging for surface analysis of MUPS tablets with special focus on the pellet distribution

    DEFF Research Database (Denmark)

    Novikova, Anna; Carstensen, Jens Michael; Rades, Thomas

    2016-01-01

    In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well...... on the tablet surface allowed an estimation of the true drug content in the respective MUPS tablet. In addition, the pellet distribution in the MUPS formulations could be estimated by UV image analysis of the tablet surface. In conclusion, this study revealed that UV imaging in combination with multivariate...... image analysis is a promising approach for the automatic quality control of MUPS tablets during the manufacturing process....

  3. CURRENT - DIRECTION and Other Data from MULTIPLE SHIPS From World-Wide Distribution from 18940101 to 19931231 (NODC Accession 9400068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SCUDS (Surface CUrrent Data Summary) Data from Robert Rushton collected between 1894 and 1993 was submitted by Richard Enkoji of NAVOCEANO (US Naval Oceanographic...

  4. CURRENT - DIRECTION and Other Data from UNKNOWN From World-Wide Distribution for 1901-01-01 (NCEI Accession 8800294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The originator's tape contains Naval Oceanographic Office (NAVOCEANO) surface current basic file data collected by France, Japan, United States, Britain, and Holland...

  5. Spatial distribution, temporal variation and risks of parabens and their chlorinated derivatives in urban surface water in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenhui; Gao, Lihong [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Shi, Yali; Wang, Yuan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Jiemin, E-mail: liujm@ustb.edu.cn [School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Cai, Yaqi, E-mail: caiyaqi@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China)

    2016-01-01

    The occurrence and distribution of 13 target compounds, including eight parabens, four chlorinated parabens and p-hydroxybenzoic acid (PHBA), were detected in surface water samples at 35 sampling sites in the Beijing River system, China. The surface water samples were collected from the main rivers and lakes in the urban area monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that parabens were ubiquitous in the surface water of Beijing. PHBA was the predominant compound in the surface water samples, with the average concentration of 239 ng L{sup −1}, followed by the total amount of chlorinated parabens (average 50.1 ng/L) and parabens (average 44.3 ng/L). It is noteworthy that octylparaben with longer chain was firstly detected in the surface water. Significant difference was observed for paraben concentrations from different sampling sites, and the highest level of parabens was found in the Xiaotaihou River, which was mainly due to the untreated sewage discharge. Seasonal variation of target compounds in the urban surface water was also studied, and parabens exhibited a different temporal variation from chlorinated derivatives. A combination of factors including high residual chlorine level and water temperature as well as intense ultraviolet radiation might enhance the persistence of chlorinated parabens in chlorinated water during the wet season. Risk assessment showed that parabens and their chlorinated derivatives are not likely to produce biological effects on aquatic ecosystems at current levels in the surface water of Beijing. - Highlights: • Parabens and chlorinated parabens are ubiquitous in surface water in Beijing. • Octylparaben with longer chain was firstly detected in surface water. • Untreated sewage discharge was the main source of parabens in river. • Parabens exhibited a different seasonal variation from chlorinated derivatives. • The risks of target compounds are negligible at

  6. The stochastic distribution of available coefficient of friction for human locomotion of five different floor surfaces.

    Science.gov (United States)

    Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi

    2014-05-01

    The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  8. Radiolarian abundance and geochemistry of the surface-sediments from the Central Indian Basin: Inferences to Antarctic bottom water current

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Jauhari, P.

    The distribution trend of numbers of radiolarian shells/gram dry sediment, biogenic silica, organic carbon, and the carbon/nitrogen ratios in the surface sediments of the Central Indian Basin is similar. Ratios of two suborders of radiolaria, i...

  9. The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments

    NARCIS (Netherlands)

    Rodrigo-Gámiz, M.; Rampen, S.W.; Schouten, S.; Sinninghe Damsté, J.S.

    2016-01-01

    Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affectthe application of organic proxies used for reconstructing past environmental conditions. To determineits effect on long chain alkyl diol and keto-ol based proxies, the distributions of these lipids

  10. The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments

    NARCIS (Netherlands)

    Rodrigo-Gámiz, M.; Rampen, Sebastiaan W.; Schouten, S.; Sinninghe Damsté, J.S.

    2016-01-01

    Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affect the application of organic proxies used for reconstructing past environmental conditions. To determine its effect on long chain alkyl diol and keto-ol based proxies, the distributions of these

  11. Distribution and current infection status of Biomphalaria straminea in Hong Kong.

    Science.gov (United States)

    Zeng, Xin; Yiu, Wing Chung; Cheung, Kwan Ho; Yip, Ho Yin; Nong, Wenyan; He, Ping; Yuan, Dongjuan; Rollinson, David; Qiu, Jian-Wen; Fung, Ming Chiu; Wu, Zhongdao; Hui, Jerome Ho Lam

    2017-07-25

    Schistosomiasis, also generally known as snail fever, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. In Hong Kong and mainland China, the freshwater snail Biomphalaria straminea has been introduced and has the potential to transmit intestinal schistosomiasis caused by S. mansoni, a parasite of man which has a wide distribution in Africa and parts of the New World, especially Brazil. The first identification of B. straminea in Hong Kong dates back to the 1970s, and its geographical distribution, phylogenetic relationships, and infection status have not been updated for more than 30 years. Thus, this study aims to reveal the distribution and current infection status of B. straminea in contemporary Hong Kong. Snails were collected from different parts of Hong Kong from July 2016 to January 2017. Both anatomical and molecular methods were applied to identify B. straminea. Cytochrome c oxidase subunit 1 (cox1), internal transcribed spacer 1 (ITS1), 5.8S rDNA, internal transcribed spacer 2 (ITS2), and 16S ribosomal DNA (rDNA) were sequenced from individual snails and analyzed. To detect the presence of S. mansoni, both biopsy and PCR analyses were carried out. Using both anatomical and molecular analyses, this study demonstrated the existence of black- and red-coloured shell B. straminea in different districts in the New Territories in Hong Kong, including places close to the mainland China border. None of the B. straminea (n = 87) investigated were found to be infected with S. mansoni when tested by biopsy and PCR. The Hong Kong B. straminea are genetically indistinguishable, based on the chosen molecular markers (cox1, ITS1-5.8S-ITS2, and 16S rDNA), and are similar to those obtained in mainland China and South America. Biomphalaria straminea is now well established in freshwater habitats in Hong Kong. No evidence of infection with S. mansoni has been found. Surveillance should be continued to monitor and better understand this

  12. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  13. The artificial object detection and current velocity measurement using SAR ocean surface images

    Science.gov (United States)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  14. Multifrequency eddy current examination for surface defects detection of hot steel products

    International Nuclear Information System (INIS)

    Hiroshima, Tatsuo; Sakamoto, Takahide; Takahashi, Akio; Miyata, Kenichi.

    1985-01-01

    Multifrequency eddy current testing method using probe coils has been studied for surface defects detection in hot steel products at high temperature over the magnetic Curie point. The conventional signal processing method is not available for suppression of an undesirable signal caused by lift-off variation or unevenness in inspected surfaces, because the undesirable signal pattern is similar to a defect signal pattern. In order to suppress the undesirable signal a new dual frequency signal processing method using three phase rotators has been developed, and was applied to several hot steel inspections. The results are as follows. 1. In the rotating eddy current machine for hot steel rods, the lift-off variation signal caused by a wobble of rods or the difference between rotating center and pass center of rods can be suppressed. A long seam or crack whose depth is more than 0.5mm can be detected. 2. In the hot inspection for continuously cast slabs, the signal caused by oscillation mark whose depth is under 1 mm can be suppressed. A fine transversal crack whose depth is 2 mm can be detected. 3. In the hot inspection for round billets, the lift-off variation signal caused by oval shape can be eliminated, and a crack which is deeper than 1.5 mm can be clearly detected. The detectability of defects can be improved by the analysis of dual frequency signal pattern. (author)

  15. Unraveling the size distributions of surface properties for purple soil and yellow soil.

    Science.gov (United States)

    Tang, Ying; Li, Hang; Liu, Xinmin; Zhu, Hualing; Tian, Rui

    2015-06-01

    Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges (i.e. >10, 1-10, 0.5-1, 0.2-0.5 and soil (Entisol) and a yellow soil (Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction. We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles (soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy. Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties. Copyright © 2015. Published by Elsevier B.V.

  16. Surface alloying of aluminum with molybdenum by high-current pulsed electron beam

    Science.gov (United States)

    Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng

    2018-02-01

    The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.

  17. A Flexible Arrayed Eddy Current Sensor for Inspection of Hollow Axle Inner Surfaces

    Directory of Open Access Journals (Sweden)

    Zhenguo Sun

    2016-06-01

    Full Text Available A reliable and accurate inspection of the hollow axle inner surface is important for the safe operation of high-speed trains. In order to improve the reliability of the inspection, a flexible arrayed eddy current sensor for non-destructive testing of the hollow axle inner surface was designed, fabricated and characterized. The sensor, consisting of two excitation traces and 28 sensing traces, was developed by using the flexible printed circuit board (FPCB technique to conform the geometric features of the inner surfaces of the hollow axles. The main innovative aspect of the sensor was the new arrangement of excitation/sensing traces to achieve a differential configuration. Finite element model was established to analyze sensor responses and to determine the optimal excitation frequency. Experimental validations were conducted on a specimen with several artificial defects. Results from experiments and simulations were consistent with each other, with the maximum relative error less than 4%. Both results proved that the sensor was capable of detecting longitudinal and transverse defects with the depth of 0.5 mm under the optimal excitation frequency of 0.9 MHz.

  18. Calibration of a distributed hydrological model using satellite data of land surface temperature

    Science.gov (United States)

    Corbari, Chiara; Mancini, Marco; Ravazzani, Giovanni

    2013-04-01

    Calibration and validation of distributed models at basin scale generally refer to external variables, which are integrated catchment model outputs, and usually depend on the comparison between simulated and observed discharges at the available rivers cross sections, which are usually very few. However distributed models allow an internal validation due to their intrinsic structure, so that internal processes and variables of the model can be controlled in each cell of the domain. In particular this work investigates the potentiality to control evapotranspiration and its spatial and temporal variability through the detection of land surface temperature (LST) from satellite remote sensing. This study proposes a methodology for the calibration of distributed hydrological models at basin scale using remote sensing data of land surface temperature. The distributed energy water balance model, Flash-flood Event-based Spatially-distributed rainfall-runoff Transformation - Energy Water Balance model (FEST-EWB) will be calibrated in the Upper Po river basin (Italy) closed at the river cross section of Ponte della Becca with a total catchment area of about 38000 km2. The model algorithm solves the system of energy and mass balances in term of the representative pixel equilibrium temperature (RET) that governs the fluxes of energy and mass over the basin domain. This equilibrium surface temperature, which is a critical model state variable, is comparable to the land surface temperature (LST) from satellite. So a pixel to pixel semi-automatic calibration procedure of soil and vegetation parameter is presented through the comparison between the model internal state variable RET and the remotely observed LST. A similar calibration procedure will also be applied performing the traditional calibration using only discharge measurements. 260 diurnal and nocturne LST MODIS products are compared with FEST-EWB land surface temperature over the 11 years of simulation from 2000 to 2010

  19. Current distribution and conservation status of Bhutan Takin Budorcas whitei Lydekker, 1907 (Artiodactyla: Bovidae

    Directory of Open Access Journals (Sweden)

    Tiger Sangay

    2016-12-01

    Full Text Available The Bhutan Takin Budorcas whitei Lydekker, 1907 is endemic to Bhutan and it is categorized as Vulnerable by the IUCN Red List of Threatened Species. While the other Takin species have been studied in China (Golden Takin B. bedfordi; Sichuan Takin B. tibetana and India (Mishmi Takin B. taxicolor, only one study has focused on the Bhutan Takin.  In this paper, we report the current distribution and conservation status of the Bhutan Takin using the information gathered through field surveys, interviews and unpublished reports.  Bhutan Takin are seasonal migrants, occurring between 1500–5550 m, preferring areas in close proximity to river valleys and geothermal outlets (hot springs.  Takin avoid areas that are disturbed by road construction and power transmission lines, and where they have to compete for forage with domestic livestock.  Takin conservation in Bhutan requires: (1 a commitment to reduce disturbances from domestic livestock through better herding and animal husbandry practices, (2 environmentally friendly road construction, inclusive of wildlife corridors, (3 establishment of satellite offices and regularizing anti-poaching patrol systems, (4 development of education programs to enlist support for Takin conservation, and (5 encouragement of more research on the ecology and management needs of the species.

  20. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming.

    Science.gov (United States)

    Tarling, Geraint A; Ward, Peter; Thorpe, Sally E

    2018-01-01

    The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It

  1. Multiplicity distributions of charged hadrons produced in (anti)neutrino-deuterium charged- and neutral-current interactions

    International Nuclear Information System (INIS)

    Jongejans, B.; Tenner, A.G.; Apeldoorn, G.W. van

    1989-01-01

    Results are presented on the multiplicity distributions of charged hadrons produced in νn, νp, antiνn and antiνp charged-current interactions for the hadronic energy range 2GeV ≤ W ≤ 14GeV (corresponding approximately to the neutrino energy range 5GeV ≤ E ≤ 150GeV). The experimental distributions are analysed in terms of binomial distributions. With increasing hadronic energy it is found a smooth transition from an ordinary binomial via Poissonian to the negative binomial function. KNO scaling holds approximately for the multiplicity distribution for the whole phase space. Data on the multiplicity distributions for neutral-current interactions are also presented

  2. Study of electromagnetic fields and current distribution near a transmission line tower subjected to unbalanced currents and phase-to-ground faults

    International Nuclear Information System (INIS)

    Ruan, W.; Dawalibi, F.P.; Ma, J.; Fortin, S.

    1995-01-01

    This paper presents and discusses computed electromagnetic fields near a 525 kV transmission line tower structure and metallic fence, based on a direct solution of the electromagnetic field equations. The analysis and computations have been carried out assuming both normal and fault conditions. The effects of unbalanced currents during normal conditions are also considered. The spatial distributions of the scalar potentials and electromagnetic fields are presented. The distortions of the fields and current distribution, in the presence of the fence and tower structure, are analyzed and discussed. It is found that the electromagnetic fields generated by the induced currents in the tower and fence are negligible compared to those generated by the phase conductor currents except in the vicinity of the fence and tower, where significant distortion is observed. The scalar potential and electric fields, however, are still slightly distorted near the structures. Under fault conditions, a large ground potential rise and significant increases in the electromagnetic fields are observed. For unbalanced phase currents, the percent change in the electromagnetic fields is approximately equal to the percent unbalance in the phase currents

  3. Pore scale heterogeneity in the mineral distribution and surface area of porous rocks

    Science.gov (United States)

    Lai, Peter; Moulton, Kevin; Krevor, Samuel

    2014-05-01

    There are long-standing challenges in characterizing reactive transport in porous media at scales larger than individual pores. This hampers the prediction of the field-scale impact of geochemical processes on fluid flow [1]. This is a source of uncertainty for carbon dioxide injection, which results in a reactive fluid-rock system, particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2,3]. The objective of this study was to quantify heterogeneity in reactive surface and observe the extent of its non-normal character. In this study we describe our work in using micron-scale x-ray imaging and other spectroscopic techniques for the purpose of describing the statistical distribution of reactive surface area within a porous medium, and identifying specific mineral phases and their distribution in 3-dimensions. Using in-house image processing techniques and auxilary charactersation with thin section, electron microscope and spectroscopic techniques we quantified the surface area of each mineral phase in the x-ray CT images. This quantification was validated against nitrogen BET surface area and backscattered electron imaging measurements of the CT-imaged samples. Distributions in reactive surface area for each mineral phase were constructed by calculating surface areas in thousands of randomly selected subvolume images of the total sample, each normalized to the pore volume in that image. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be

  4. High sea surface temperatures driven by a strengthening current reduce foraging success by penguins

    Science.gov (United States)

    Carroll, G.; Everett, J. D.; Harcourt, R.; Slip, D.; Jonsen, I.

    2016-02-01

    The world's oceans are undergoing rapid, regionally specific warming. Strengthening western boundary currents play a significant role in this phenomenon, with sea surface temperatures (SST) in their paths rising faster than the global average. To understand how dynamic oceanography influences food availability in these ocean warming "hotspots", we use a novel prey capture signature derived from accelerometry to understand how the warm East Australian Current shapes foraging success by a meso-predator, the little penguin. This seabird feeds on low-trophic level species that are sensitive to environmental change. We found that in 2012, prey capture success by penguins was high when SST was low relative to the long-term mean. In 2013 prey capture success was low, coincident with an unusually strong penetration of warm water. Overall there was an optimal temperature range for prey capture around 19-21oC, with lower success at both lower and higher temperatures, mirroring published relationships between commercial sardine catch and SST. Spatially, higher SSTs corresponded to a lower probability of penguins using an area, and lower prey capture success. These links between high SST and reduced prey capture success by penguins suggest negative implications for future resource availability in a system dominated by a strengthening western boundary current.

  5. Development of a Magnetostrictive FeNi Coated Surface Acoustic Wave Current Sensor

    Directory of Open Access Journals (Sweden)

    Jie Tong

    2017-07-01

    Full Text Available A magnetostrictive FeNi-coated surface acoustic wave (SAW-based current sensor was proposed in this work. The weak remanence and hysteresis effect of the FeNi itself contributes to suppress the asymmetry in sensor response at increasing and decreasing current. The sensor response was simulated by solving the coupled electromechanical field equation in layered structure considering the magnetostrictive effect and an approach of effective dielectric constant. The effects from the aspect ratio and thickness of the FeNi film on sensor response were analyzed to determine the optimal design parameters. Differential oscillation structure was used to form the sensor, in which, the FeNi thin film was deposited along the SAW propagation of the sensor chip by using RF magnetron sputtering. The magnetostrictive effect of the FeNi coating induced by the magnetic loading generates the perturbation in SAW velocity, and corresponding oscillation frequency. High sensitivity of 10.7 KHz/A, good linearity and repeatability, lower hysteresis error of 0.97% were obtained from the developed prototype 150 MHz SAW FeNi coated current sensor.

  6. Contextualizing Distributed Leadership within Early Childhood Education: Current Understandings, Research Evidence and Future Challenges

    Science.gov (United States)

    Heikka, Johanna; Waniganayake, Manjula; Hujala, Eeva

    2013-01-01

    This article seeks to establish a new research agenda on distributed leadership by linking early childhood and school leadership research. It begins with a discussion of how distributed leadership is conceptualized, including a discussion of the main features and meanings of distributed leadership as defined by key scholars who have maintained a…

  7. 2D instabilities of surface gravity waves on a linear shear current

    Science.gov (United States)

    Francius, Marc; Kharif, Christian

    2016-04-01

    Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational

  8. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.

    Science.gov (United States)

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf

    2012-01-03

    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (Arctic.

  9. Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: an example with coypu (Myocastor coypus

    Directory of Open Access Journals (Sweden)

    Catherine S. Jarnevich

    2017-01-01

    Full Text Available Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782], we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.

  10. Influence of the surface drag coefficient (young waves) on the current structure of the Berre lagoon

    Science.gov (United States)

    Alekseenko, Elena; Roux, Bernard; Kharif, Christian; Sukhinov, Alexander; Kotarba, Richard; Fougere, Dominique; Chen, Paul Gang

    2013-04-01

    Due to the shallowness, currents and hydrodynamics of Berre lagoon (South of France) are closely conditioned by the bottom topography, and wind affects the entire water column, as for many other Mediterranean lagoons (Perez-Ruzafa, 2011). Wind stress, which is caused by moving atmospheric disturbance, is known to have a major influence in lagoon water circulation. According to the numerical simulation for the main directions of the wind: N-NW, S-SE and W (wind speed of 80 km/h) it is observed that the current is maximal alongshore in the wind direction; the bottom nearshore current being larger in shallower area. This fact is coherent with fundamental principle of wind-driven flows in closed or partially closed basins which states that in shallow water the dominant force balance is between surface wind stress and bottom friction, yielding a current in the direction of the wind (Mathieu et al, 2002, Hunter and Hearn, 1987; Hearn and Hunter,1990). A uniform wind stress applied at the surface of a basin of variable depth sets up a circulation pattern characterized by relatively strong barotropic coastal currents in the direction of the wind, with return flow occurring over the deeper regions (Csanady, 1967; Csanady, 1971). One of the key parameters characterizing the wind stress formulation is a surface drag coefficient (Cds). Thus, an effect of a surface drag coefficient, in the range 0.0016 - 0.0032, will be analyzed in this work. The value of surface drag coefficient Cds = 0.0016 used in our previous studies (Alekseenko et al., 2012), would correspond to mature waves (open sea). But, in the case of semi-closed lagoonal ecosystem, it would be more appropriate to consider "young waves" mechanism. A dependency of this coefficient in terms of the wind speed is given by Young (1999) in both cases of mature waves and young waves. For "young waves" generated at a wind speed of 80 km/h, Cds = 0.0032. So, the influence of Cds on the vertical profile of the velocity in the

  11. Characterizing AISI 1045 steel surface duplex-treated by alternating current field enhanced pack aluminizing and nitriding

    Science.gov (United States)

    Xie, Fei; Zhang, Ge; Pan, Jianwei

    2018-02-01

    Thin cases and long treating time are shortcomings of conventional duplex treatment of aluminizing followed by nitriding (DTAN). Alternating current field (ACF) enhanced DTAN was carried out on AISI 1045 steel by applying an ACF to treated samples and treating agents with a pair of electrodes for overcoming those shortcomings. By investigating cases' structures, phases, composition and hardness distributions of differently treated samples, preliminary studies were made on characterizations of the ACF enhanced duplex treatment to AISI 1045 steel. The results show that, with the help of the ACF, the surface Al-rich phase Al5Fe2 formed in conventional pack aluminizing can be easily avoided and the aluminizing process is dramatically promoted. The aluminizing case can be nitrided either with conventional pack nitriding or ACF enhanced pack nitriding. By applying ACF to pack nitriding, the diffusion of nitrogen into the aluminizing case is promoted. AlN, Fe2∼3N and solid solution of N in iron are efficiently formed as a result of reactions of N with the aluminizing case. A duplex treated case with an effective thickness of more than 170 μm can be obtained by the alternating current field enhanced 4 h pack aluminizing plus 4 h pack nitriding.

  12. Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary, China.

    Science.gov (United States)

    Shao, Mihua; Ding, Guanghui; Zhang, Jing; Wei, Lie; Xue, Huanhuan; Zhang, Nannan; Li, Yang; Chen, Guanqun; Sun, Yeqing

    2016-09-01

    Perfluoroalkyl substances (PFASs) have been recognized as emerging environmental pollutants. However, there is limited information on the contamination level and spatial distribution of PFASs in the Shuangtaizi Estuary, where the Shuangtaizi Hekou Nature Reserve is located. In the present study, the contamination level and spatial distribution of PFASs in surface water (approximately 0.5 m below the surface) and bottom water (about 0.5 m above the bottom) of the Shuangtaizi Estuary were investigated. The data indicated that the Shuangtaizi Estuary was commonly contaminated by PFASs. The total concentration of PFASs in surface and bottom water of the Shuangtaizi Estuary ranged from 66.2 to 185 ng L(-1) and from 44.8 to 209 ng L(-1), respectively. The predominant PFASs were perfluorobutanoic acid (PFBA), perfluoropentanoic acid, perfluorooctanoic acid, perfluorohexanoic acid and perfluorobutane sulfonate (PFBS). In general, PFAS concentrations in surface water samples were lower than those in bottom water samples. The spatial distribution of PFASs in the Shuangtaizi Estuary was mainly affected by particular landform, tide and residual currents in Liaodong Bay. The total mass flux of 15 PFASs from the Shuangtaizi River to Liaodong Bay was estimated to be 352 kg year(-1), which was lower than the total flux from the Daling River and the Daliao River. As short-chain PFASs, such as PFBS and PFBA, have been the prevalent compounds in some places and are continuously produced and used, long-term monitoring and effective pollution controls are suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of an end plate on surface pressure distributions of two swept wings

    Directory of Open Access Journals (Sweden)

    Mohammad Reza SOLTANI

    2017-10-01

    Full Text Available A series of wind tunnel tests was conducted to examine how an end plate affects the pressure distributions of two wings with leading edge (LE sweep angles of 23° and 40°. All the experiments were carried out at a midchord Reynolds number of 8×105, covering an angle of attack (AOA range from −2° to 14°. Static pressure distribution measurements were acquired over the upper surfaces of the wings along three chordwise rows and one spanwise direction at the wing quarter-chord line. The results of the tests confirm that at a particular AOA, increasing the sweep angle causes a noticeable decrease in the upper-surface suction pressure. Furthermore, as the sweep angle increases, the development of a laminar separation bubble near the LEs of the wings takes place at higher AOAs. On the other hand, spanwise pressure measurements show that increasing the wing sweep angle results in forming a stronger vortex on the quarter-chord line which has lower sensitivity to AOA variation and remains substantially attached to the wing surface for higher AOAs than that can be achieved in the case of a lower sweep angle. In addition, data obtained indicate that installing an end plate further reinforces the spanwise flow over the wing surface, thus affecting the pressure distribution.

  14. Distribution of 137Cs in surface seawater and sediment around Sabahs Sulu-Sulawesi Sea

    International Nuclear Information System (INIS)

    Mohd Izwan Abdul Aziz; Ahmad Sanadi Abu Bakar; Yii, Mei Wo; Nurrul Assyikeen Jaffary; Zaharudin Ahmad

    2010-01-01

    The studies on distribution of 137 Cs in surface seawater and sediment around Sabahs Sulu-Sulawesi Sea were carried out during Ekspedisi Pelayaran Saintifik Perdana (EPSP) in July 2009. About sixteen and twenty five sampling locations were identified for surface seawater and sediment respectively in Sabahs Sulu-Sulawesi Sea. Large volumes of seawater samples are collected and co-precipitation technique was employed to concentrate cesium content before known amounts of 134 Cs tracer were added as yield determinant. Grab sampler were used to collect surface sediment sample. The caesium precipitate and sediment were dried and finely ground before counted using gamma-ray spectrometry system at 661 keV. The activity of 137 Cs was found in surface seawater and sediment to be in the range 1.73 Bq/ m 3 to 5.50 Bq/ m 3 and 1.15 Bq/ kg to 4.53 Bq/ kg respectively. (author)

  15. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  16. Backtracking drifting objects using surface currents from high-frequency (HF) radar technology

    Science.gov (United States)

    Abascal, Ana Julia; Castanedo, Sonia; Fernández, Vicente; Medina, Raúl

    2012-07-01

    In this work, the benefits of high-frequency (HF) radar ocean observation technology for backtracking drifting objects are analysed. The HF radar performance is evaluated by comparison of trajectories between drifter buoys versus numerical simulations using a Lagrangian trajectory model. High-resolution currents measured by a coastal HF radar network combined with atmospheric fields provided by numerical models are used to backtrack the trajectory of two dataset of surface-drifting buoys: group I (with drogue) and group II (without drogue). A methodology based on optimization methods is applied to estimate the uncertainty in the trajectory simulations and to optimize the search area of the backtracked positions. The results show that, to backtrack the trajectory of the buoys in group II, both currents and wind fields were required. However, wind fields could be practically discarded when simulating the trajectories of group I. In this case, the optimal backtracked trajectories were obtained using only HF radar currents as forcing. Based on the radar availability data, two periods ranging between 8 and 10 h were selected to backtrack the buoy trajectories. The root mean squared error (RMSE) was found to be 1.01 km for group I and 0.82 km for group II. Taking into account these values, a search area was calculated using circles of RMSE radii, obtaining 3.2 and 2.11 km2 for groups I and II, respectively. These results show the positive contribution of HF radar currents for backtracking drifting objects and demonstrate that these data combined with atmospheric models are of value to perform backtracking analysis of drifting objects.

  17. Probability distribution of surface wind speed induced by convective adjustment on Venus

    Science.gov (United States)

    Yamamoto, Masaru

    2017-03-01

    The influence of convective adjustment on the spatial structure of Venusian surface wind and probability distribution of its wind speed is investigated using an idealized weather research and forecasting model. When the initially uniform wind is much weaker than the convective wind, patches of both prograde and retrograde winds with scales of a few kilometers are formed during active convective adjustment. After the active convective adjustment, because the small-scale convective cells and their related vertical momentum fluxes dissipate quickly, the large-scale (>4 km) prograde and retrograde wind patches remain on the surface and in the longitude-height cross-section. This suggests the coexistence of local prograde and retrograde flows, which may correspond to those observed by Pioneer Venus below 10 km altitude. The probability distributions of surface wind speed V during the convective adjustment have a similar form in different simulations, with a sharp peak around ∼0.1 m s-1 and a bulge developing on the flank of the probability distribution. This flank bulge is associated with the most active convection, which has a probability distribution with a peak at the wind speed 1.5-times greater than the Weibull fitting parameter c during the convective adjustment. The Weibull distribution P(> V) (= exp[-(V/c)k]) with best-estimate coefficients of Lorenz (2016) is reproduced during convective adjustments induced by a potential energy of ∼7 × 107 J m-2, which is calculated from the difference in total potential energy between initially unstable and neutral states. The maximum vertical convective heat flux magnitude is proportional to the potential energy of the convective adjustment in the experiments with the initial unstable-layer thickness altered. The present work suggests that convective adjustment is a promising process for producing the wind structure with occasionally generating surface winds of ∼1 m s-1 and retrograde wind patches.

  18. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1991

    Science.gov (United States)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  19. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1990

    Science.gov (United States)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.

  20. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  1. Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method.

    Science.gov (United States)

    Pellegrino, Giovanni; Hedrich, Tanguy; Chowdhury, Rasheda Arman; Hall, Jeffery A; Dubeau, Francois; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2018-01-01

    Source localization of interictal epileptic discharges (IEDs) is clinically useful in the presurgical workup of epilepsy patients. It is usually obtained by equivalent current dipole (ECD) which localizes a point source and is the only inverse solution approved by clinical guidelines. In contrast, magnetic source imaging using distributed methods (dMSI) provides maps of the location and the extent of the generators, but its yield has not been clinically validated. We systematically compared ECD versus dMSI performed using coherent Maximum Entropy on the Mean (cMEM), a method sensitive to the spatial extent of the generators. 340 source localizations of IEDs derived from 49 focal epilepsy patients with foci well-defined through intracranial EEG, MRI lesions, and surgery were analyzed. The comparison was based on the assessment of the sublobar concordance with the focus and of the distance between the source and the focus. dMSI sublobar concordance was significantly higher than ECD (81% vs 69%, P sources (dMSI = 84%; ECD = 67%, P < 0.001) and for seizure free patients (dMSI = 83%; ECD = 70%, P < 0.001). The median distance from the focus was 4.88 mm for ECD and 3.44 mm for dMSI (P < 0.001). ECD dipoles were often wrongly localized in deep brain regions. dMSI using cMEM exhibited better accuracy. dMSI also offered the advantage of recovering more realistic maps of the generator, which could be exploited for neuronavigation aimed at targeting invasive EEG and surgical resection. Therefore, dMSI may be preferred to ECD in clinical practice. Hum Brain Mapp 39:218-231, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Australian Sphingidae--DNA barcodes challenge current species boundaries and distributions.

    Science.gov (United States)

    Rougerie, Rodolphe; Kitching, Ian J; Haxaire, Jean; Miller, Scott E; Hausmann, Axel; Hebert, Paul D N

    2014-01-01

    We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.

  3. Australian Sphingidae--DNA barcodes challenge current species boundaries and distributions.

    Directory of Open Access Journals (Sweden)

    Rodolphe Rougerie

    Full Text Available MAIN OBJECTIVE: We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae. METHODS: We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. RESULTS: Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758, a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90% Australian sphingids are endemic to the continent (45% or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%. Only seven species (10% have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. MAIN CONCLUSIONS: This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies.

  4. Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions

    Science.gov (United States)

    Rougerie, Rodolphe; Kitching, Ian J.; Haxaire, Jean; Miller, Scott E.; Hausmann, Axel; Hebert, Paul D. N.

    2014-01-01

    Main Objective We examine the extent of taxonomic and biogeographical uncertainty in a well-studied group of Australian Lepidoptera, the hawkmoths (Sphingidae). Methods We analysed the diversity of Australian sphingids through the comparative analysis of their DNA barcodes, supplemented by morphological re-examinations and sequence information from a nuclear marker in selected cases. The results from the analysis of Australian sphingids were placed in a broader context by including conspecifics and closely related taxa from outside Australia to test taxonomic boundaries. Results Our results led to the discovery of six new species in Australia, one case of erroneously synonymized species, and three cases of synonymy. As a result, we establish the occurrence of 75 species of hawkmoths on the continent. The analysis of records from outside Australia also challenges the validity of current taxonomic boundaries in as many as 18 species, including Agrius convolvuli (Linnaeus, 1758), a common species that has gained adoption as a model system. Our work has revealed a higher level of endemism than previously recognized. Most (90%) Australian sphingids are endemic to the continent (45%) or to Australia, the Pacific Islands and the Papuan and Wallacean regions (45%). Only seven species (10%) have ranges that extend beyond this major biogeographical boundary toward SE Asia and other regions of the Old World. Main Conclusions This study has established that overlooked cryptic diversity and inaccurate species delineation produced significant misconceptions concerning diversity and distribution patterns in a group of insects that is considered well known taxonomically. Because DNA barcoding represents a straightforward way to test taxonomic boundaries, its implementation can improve the accuracy of primary diversity data in biogeography and conservation studies. PMID:24987846

  5. The Variation of Planetary Surfaces' Structure and Size Distribution with Depth

    Science.gov (United States)

    Charalambous, C. A.; Pike, W. T.

    2014-12-01

    The particle, rock and boulder size distribution of a planetary surface bring important implications not only to crucial aspects of future missions but also to the better understanding of planetary and earth sciences. By exploiting a novel statistical model, the evolution of particle fragmentation phenomena can be understood in terms of a descriptive maturity index, a measure of the number of fragmentation events that have produced the soil. This statistical model, which is mathematically constructed via fundamental physical principles, has been validated by terrestrial mineral grinding data and impact experiments. Applying the model to planetary surfaces, the number of fragmentation events is determined by production function curves that quantify the degree of impact cratering. The model quantifies the variation of the maturity index of the regolith with depth, with a high maturity index at the surface decreasing to a low index corresponding to the megaregolith of a blocky population and fractured bedrock. The measured lunar and martian particle size distributions at the surface is well matched by the model over several orders of magnitude. The continuous transition invoked by the model can be furthermore synthesised to provide temporal and spatial visualisations of the internal architecture of the Martian and Lunar regolith. Finally, the model is applied to the risk assessment and success criteria of future mission landings as well as drilling on planetary surfaces. The solutions to a variety of planetary fragmentation related problems can be found via exact mathematical foundations or through simulations using the particle population provided by the model's maturation.

  6. Data fusion analysis of a surface direct-current resistivity and well pick data set

    International Nuclear Information System (INIS)

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory (PNL) has been tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. This report discusses the results of evaluating a surface direct-current (dc) resistivity and well-pick data set using two methods: data fusion technology and commercially available software (i.e., RESIX Plus from Interpex Ltd., Golden, Colorado), the conventional method of analysis. The report compares the two technologies; describes the survey, procedures, and results; and includes conclusions and recommendations. The surface dc resistivity and well-pick data set had been acquired by PNL from a study performed in May 1993 at Eielson Air Force Base near Fairbanks, Alaska. The resistivity survey data were acquired to map the top of permafrost in support of a hydrogeologic study. This data set provided an excellent opportunity to test and refine the dc resistivity capabilities of the DFW; previously, the data fusion software was untested on dc resistivity data. The DFW was used to evaluate the dc resistivity survey data and to produce a 3-dimensional earth model of the study area

  7. Current status and new trends in the methodology of safety assessment for near surface disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Danchiv, Alexandru

    2008-01-01

    The main goal of this paper is to present the status of the safety assessment methodology at the end of IAEA CRP 'Application of Safety Assessment Methodology for Near-Surface Radioactive Waste Disposal Facilities (ASAM)', and the new trends outlined at the launch of the follow-up project 'Practical Implementation of Safety Assessment Methodologies in a Context of Safety Case of Near-Surface Facilities (PRISM)'. Over the duration of the ASAM project, the ISAM methodology was confirmed as providing a good framework for conducting safety assessment calculations. In contrast, ASAM project identified the limitations of the ISAM methodology as currently formulated. The major limitations are situated in the area of the use of safety assessment for informing practical decisions about alternative waste and risk management strategies for real disposal sites. As a result of the limitation of the ISAM methodology, the PRISM project is established as an extension of the ISAM and ASAM projects. Based on the outcomes of the ASAM project, the main objective of the PRISM project are: 1 - to develop an overview of what constitutes an adequate safety case and safety assessment with a view to supporting decision making processes; 2 - to provide practical illustrations of how the safety assessment methodology could be used for addressing some specific issues arising from the ASAM project and national cases; 3 - to support harmonization with the IAEA's international safety standards. (authors)

  8. Ulnar Nerve Conduction Block Using Surface Kilohertz Frequency Alternating Current: A Feasibility Study.

    Science.gov (United States)

    Springer, Shmuel; Kozol, Zvi; Reznic, Zvi

    2018-03-08

    The aim of this study was to test the effects of kilohertz frequency alternating current (KHFAC) surface stimulation applied to the ulnar nerve on force and myoelectrical activity of the abductor digiti minimi (ADM) muscle. Eighteen healthy volunteers (age: 27.6 ± 7.9 years; 10 males, 8 females) were included in the study. Each subject participated in one session during which a biphasic 7 kHz rectangular pulse was delivered above the medial epicondyle of the humerus to induce ulnar nerve blocking. ADM electromyographic (EMG) activity and contraction force were measured before (Pre), immediately after, and following 5 and 10 min post stimulation (post 1, post 2). The results showed that EMG activity decreased immediately after stimulation compared to prestimulation, it returned to the level of prestimulation at 5 min (post 1), and decreased again at 10 min (post 2). Furthermore, analysis of compound adjusted z-score indicated significant decrease of force and myoelectrical activity immediately, and 10 min post stimulation. The findings, which demonstrate that KHFAC surface stimulation of the ulnar nerve may decrease the motor activity of intrinsic hand muscle, can help to develop future methods of neuromodulation to treat hand spasticity. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  9. Non-reciprocal Oersted field contribution to the current-induced frequency shift of magnetostatic surface waves

    OpenAIRE

    Haidar, Mohammad; Bailleul, Matthieu; Kostylev, Mikhail; Lao, Yuyan

    2013-01-01

    The influence of an electrical current on the propagation of magnetostatic surface waves is investigated in a relatively thick (40 nm) permalloy film both experimentally and theoretically. Contrary to previously studied thinner films where the dominating effect is the current-induced spin-wave Doppler shift, the magnetic field generated by the current (Oersted field) is found to induce a strong non-reciprocal frequency shift which overcompensates the Doppler shift. The measured current induce...

  10. Organic-walled dinoflagellate cysts in western equatorial Atlantic surface sediments: distributions and their relation to environment.

    Science.gov (United States)

    Vink; Zonneveld; Willems

    2000-11-01

    In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.

  11. Current mercury distribution and bioavailability in floodplain soils of Lower East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    International Nuclear Information System (INIS)

    Han, Fengxiang X.; Su, Yi; Monts, David L.

    2011-01-01

    The objectives of this study were to investigate the current status of mercury distribution, speciation and bioavailability in the floodplain soils of Lower East Fork Poplar Creek (LEFPC) after decades of US Department of Energy's remediation. Historically as part of its national security mission, the U.S. Department of Energy's Y-12 National Security Facility in Oak Ridge, TN, USA acquired a significant fraction of the world's supply of elemental mercury. During the 1950s and 1960s, a large amount of elemental mercury escaped confinement and is still present in the watershed surrounding the Y-12 facility. A series of remediation efforts have been deployed in the watersheds around the Oak Ridge site during the following years. The sampling fields were located in a floodplain of LEFPC of Oak Ridge, TN, USA. A series of surface soils (10-20 cm) were sampled from both wooded areas and wetland/grass land. Two 8x8 m fields were selected in the woodland. Five profiles each consisting of three layers were randomly taken from each field. The three layers were the surface layer at 0-10cm, subsurface layer at 50-60 cm, and bottom layer at 100-110 cm. Soil in both wood and wetland areas was well developed with a clear B horizon. The present study clearly shows that the total mercury in floodplain soils of LEFPC significantly decreased after the series of remediation. This study confirmed the long-term effectiveness of these remediation actions, especially after excavation of highly contaminated floodplain soils. However, the average total mercury level of all soil samples collected are in the range of 50-80 mg/kg, still significantly above toxic level (> 5mg/kg). Furthermore, contrary to conventional believing, the major mercury form in current soils of this particular area of floodplain of LEFPC is mainly in non-cinnabar mercury bound in clay minerals (after decades of remediation). The floodplains can act both as a medium-term sink and as long-term sources. Native North

  12. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    Science.gov (United States)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  13. Wave-current interaction near the Gulf Stream during the surface wave dynamics experiment

    Science.gov (United States)

    Wang, David W.; Liu, Antony K.; Peng, Chih Y.; Meindl, Eric A.

    1994-01-01

    This paper presents a case study on the wave-current interaction near the local curvature of a Gulf Stream meander. The wave data were obtained from in situ measurements by a pitch-roll discus buoy during the Surface Wave Dynamics Experiment (SWADE) conducted off Wallops Island, Virginia, from October 1990 to March 1991. Owing to the advection of the Gulf Stream by the semidiurnal tide, the discus buoy was alternately located outside and inside the Gulf Stream. The directional wave measurements from the buoy show the changes in wave direction, wave energy, and directional spreading when waves encountered the current in the Gulf Stream meanders. A wave refraction model, using the ray-tracing method with an estimated Gulf Stream velocity field and meandering condition, was used to simulate wave refraction patterns and to estimate wave parameters at relative locations corresponding to buoy measurements. The numerical simulation shows that a focusing zone of wave rays was formed near the boundary and behind the crest of a simulated Gulf Stream meander. The focusing of wave rays causes changes in wave direction, increases in wave energy, and decreases in wave directional spreading, which are in good agreement with the results from the buoy measurements.

  14. Second order classical perturbation theory for atom surface scattering: analysis of asymmetry in the angular distribution.

    Science.gov (United States)

    Zhou, Yun; Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to "soft" corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  15. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  16. Ocular surface squamous neoplasia in HIV-infected patients: current perspectives

    Directory of Open Access Journals (Sweden)

    Rathi SG

    2018-03-01

    Full Text Available Shweta Gupta Rathi, Anasua Ganguly Kapoor, Swathi Kaliki Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India Abstract: Ocular surface squamous neoplasia (OSSN refers to a spectrum of conjunctival and corneal epithelial tumors including dysplasia, carcinoma in situ, and invasive carcinoma. In this article, we discuss the current perspectives of OSSN associated with HIV infection, focusing mainly on the epidemiology, pathophysiology, clinical manifestations, diagnosis, and treatment of these tumors in patients with HIV. Upsurge in the incidence of OSSN with the HIV pandemic most severely affected sub-Saharan Africa, due to associated risk factors, such as human papilloma virus and solar ultraviolet exposure. OSSN has been reported as the first presenting sign of HIV/AIDS in 26%–86% cases, and seropositivity is noted in 38%–92% OSSN patients. Mean age at presentation of OSSN has dropped to the third to fourth decade in HIV-positive patients in developing countries. HIV-infected patients reveal large aggressive tumors, higher-grade malignancy, higher incidence of corneal, scleral, and orbital invasion, advanced-stage T4 tumors, higher need for extended enucleation/exenteration, and increased risk of tumor recurrence. Current management of OSSN in HIV-positive individuals is based on standard treatment guidelines described for OSSN in the general population, as there is little information available about various treatment modalities or their outcomes in patients with HIV. OSSN can occur at any time in the disease course of HIV/AIDS, and no significant trend has been discovered between CD4 count and grade of OSSN. Furthermore, the effect of highly active antiretroviral therapy on OSSN is controversial. The current recommendation is to conduct HIV screening in all cases presenting with OSSN to rule out undiagnosed HIV infection. Patient counseling is crucial, with emphasis on regular follow-up to address

  17. Pore scale heterogeneity in the mineral distribution and reactive surface area of rocks

    Science.gov (United States)

    Lai, P. E.; Krevor, S. C.

    2013-12-01

    There are long-standing challenges in characterizing reactive transport in porous media at scales larger than individual pores. This hampers the prediction of the field-scale impact of geochemical processes on fluid flow [1]. This is a source of uncertainty for CO2 injection, which results in a reactive fluid-rock system, particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2,3]. In this study we have created μm resolution 3D images of 3 sandstone and 4 carbonate rocks using x-ray microtomography. Using in-house image processing techniques and auxiliary characterisation with thin section, electron microscope and spectroscopic techniques we quantified the surface area of each mineral phase in the x-ray CT images. This quantification was validated against N2 BET surface area and He porosity measurements of the imaged samples. Distributions in reactive surface area for each mineral phase were constructed by calculating surface areas in thousands of randomly selected subvolume images of the total sample, each normalized to the pore volume in that image. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be characterized at multiple length scales for an accurate description of reactive transport. [1] Maher, Steefel, Depaolo and Vianni (2006) Geochimica et Cosmochimica Acta, 70, 337-363 [2] Landrot, Ajo-Franklin, Yang, Cabrini and Steefel (2012) Chemical Geology 318-319, 113-125 [3] Li, Peters and Celia (2007) American Journal of Science 307, 1146

  18. Ocular surface squamous neoplasia in HIV-infected patients: current perspectives.

    Science.gov (United States)

    Rathi, Shweta Gupta; Ganguly Kapoor, Anasua; Kaliki, Swathi

    2018-01-01

    Ocular surface squamous neoplasia (OSSN) refers to a spectrum of conjunctival and corneal epithelial tumors including dysplasia, carcinoma in situ, and invasive carcinoma. In this article, we discuss the current perspectives of OSSN associated with HIV infection, focusing mainly on the epidemiology, pathophysiology, clinical manifestations, diagnosis, and treatment of these tumors in patients with HIV. Upsurge in the incidence of OSSN with the HIV pandemic most severely affected sub-Saharan Africa, due to associated risk factors, such as human papilloma virus and solar ultraviolet exposure. OSSN has been reported as the first presenting sign of HIV/AIDS in 26%-86% cases, and seropositivity is noted in 38%-92% OSSN patients. Mean age at presentation of OSSN has dropped to the third to fourth decade in HIV-positive patients in developing countries. HIV-infected patients reveal large aggressive tumors, higher-grade malignancy, higher incidence of corneal, scleral, and orbital invasion, advanced-stage T4 tumors, higher need for extended enucleation/exenteration, and increased risk of tumor recurrence. Current management of OSSN in HIV-positive individuals is based on standard treatment guidelines described for OSSN in the general population, as there is little information available about various treatment modalities or their outcomes in patients with HIV. OSSN can occur at any time in the disease course of HIV/AIDS, and no significant trend has been discovered between CD4 count and grade of OSSN. Furthermore, the effect of highly active antiretroviral therapy on OSSN is controversial. The current recommendation is to conduct HIV screening in all cases presenting with OSSN to rule out undiagnosed HIV infection. Patient counseling is crucial, with emphasis on regular follow-up to address high recurrence rates and early presentation to an ophthalmologist for of any symptoms in the unaffected eye. Effective evidence-based interventions are needed to allow early diagnosis

  19. The Surface Velocity Structure of the Florida Current in a Jet Coordinate Frame

    Science.gov (United States)

    Archer, Matthew R.; Shay, Lynn K.; Johns, William E.

    2017-11-01

    The structure and variability of the Florida Current between 25° and 26°N are investigated using HF radar ocean current measurements to provide the most detailed view of the surface jet to date. A 2-D jet coordinate analysis is performed to define lateral displacements of the jet in time (meandering), and associated structural variations over a 2 year period (2005-2006). In the jet coordinate frame, core speed has a median value of ˜160 cm s-1 at the central latitude of the array (25.4°N), with a standard deviation (STD) of 35 cm s-1. The jet meanders at timescales of 3-30 days, with a STD of 8 km, and a downstream phase speed of ˜80 km d-1. Meandering accounts for ˜45% of eddy kinetic energy computed in a fixed (geographical) reference frame. Core speed, width, and shear undergo the same dominant 3-30 day variability, plus an annual cycle that matches seasonality of alongshore wind stress. Jet transport at 25.4°N exhibits a different seasonality to volume transport at 27°N, most likely driven by input from the Northwest Providence Channel. Core speed correlates inversely with Miami sea level fluctuations such that a 40 cm s-1 deceleration is associated with a ˜10 cm elevation in sea level, although there is no correlation of sea level to jet meandering or width. Such accurate quantification of the Florida Current's variability is critical to understand and forecast future changes in the climate system of the North Atlantic, as well as local impacts on coastal circulation and sea level variability along south Florida's coastline.

  20. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  1. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    Science.gov (United States)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  2. Current Control Method for Distributed Generation Power Generation Plants under Grid Fault Conditions

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon

    2011-01-01

    The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...

  3. Historical and Current U.S. Strategies for Boosting Distributed Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  4. Current state of the art for statistical modeling of species distributions [Chapter 16

    Science.gov (United States)

    Troy M. Hegel; Samuel A. Cushman; Jeffrey Evans; Falk Huettmann

    2010-01-01

    Over the past decade the number of statistical modelling tools available to ecologists to model species' distributions has increased at a rapid pace (e.g. Elith et al. 2006; Austin 2007), as have the number of species distribution models (SDM) published in the literature (e.g. Scott et al. 2002). Ten years ago, basic logistic regression (Hosmer and Lemeshow 2000)...

  5. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    Science.gov (United States)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  6. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    OpenAIRE

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-01-01

    Ocean currents play a key role in Earth's climate – they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dy...

  7. Evaluation of protein adsorption onto a polyurethane nanofiber surface having different segment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yuko; Koizumi, Gaku [Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui (Japan); Sakamoto, Hiroaki, E-mail: hi-saka@u-fukui.ac.jp [Tenure-Track Program for Innovative Research, University of Fukui (Japan); Suye, Shin-ichiro [Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui (Japan)

    2017-02-01

    Electrospinning is well known to be an effective method for fabricating polymeric nanofibers with a diameter of several hundred nanometers. Recently, the molecular-level orientation within nanofibers has attracted particular attention. Previously, we used atomic force microscopy to visualize the phase separation between soft and hard segments of a polyurethane (PU) nanofiber surface prepared by electrospinning. The unstretched PU nanofibers exhibited irregularly distributed hard segments, whereas hard segments of stretched nanofibers prepared with a high-speed collector exhibited periodic structures along the long-axis direction. PU was originally used to inhibit protein adsorption, but because the surface segment distribution was changed in the stretched nanofiber, here, we hypothesized that the protein adsorption property on the stretched nanofiber might be affected. We investigated protein adsorption onto PU nanofibers to elucidate the effects of segment distribution on the surface properties of PU nanofibers. The amount of adsorbed protein on stretched PU nanofibers was increased compared with that of unstretched nanofibers. These results indicate that the hard segment alignment on stretched PU nanofibers mediated protein adsorption. It is therefore expected that the amount of protein adsorption can be controlled by rotation of the collector. - Highlights: • The hard segments of stretched PU nanofibers exhibit periodic structures. • The adsorbed protein on stretched PU nanofibers was increased compared with PU film. • The hard segment alignment on stretched PU nanofibers mediated protein adsorption.

  8. Changes in snow distribution and surface topography following a snowstorm on Antarctic sea ice

    Science.gov (United States)

    Trujillo, Ernesto; Leonard, Katherine; Maksym, Ted; Lehning, Michael

    2016-11-01

    Snow distribution over sea ice is an important control on sea ice physical and biological processes. We combine measurements of the atmospheric boundary layer and blowing snow on an Antarctic sea ice floe with terrestrial laser scanning to characterize a typical storm and its influence on the spatial patterns of snow distribution at resolutions of 1-10 cm over an area of 100 m × 100 m. The pre-storm surface exhibits multidirectional elongated snow dunes formed behind aerodynamic obstacles. Newly deposited dunes are elongated parallel to the predominant wind direction during the storm. Snow erosion and deposition occur over 62% and 38% of the area, respectively. Snow deposition volume is more than twice that of erosion (351 m3 versus 158 m3), resulting in a modest increase of 2 ± 1 cm in mean snow depth, indicating a small net mass gain despite large mass relocation. Despite significant local snow depth changes due to deposition and erosion, the statistical distributions of elevation and the two-dimensional correlation functions remain similar to those of the pre-storm surface. Pre-storm and post-storm surfaces also exhibit spectral power law relationships with little change in spectral exponents. These observations suggest that for sea ice floes with mature snow cover features under conditions similar to those observed in this study, spatial statistics and scaling properties of snow surface morphology may be relatively invariant. Such an observation, if confirmed for other ice types and conditions, may be a useful tool for model parameterizations of the subgrid variability of sea ice surfaces.

  9. Alluvial aquifers in the Mzingwane catchment: Their distribution, properties, current usage and potential expansion

    Science.gov (United States)

    Moyce, William; Mangeya, Pride; Owen, Richard; Love, David

    The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the

  10. The effect of cathode bias (field effect) on the surface leakage current of CdZnTe detectors

    DEFF Research Database (Denmark)

    Bolotnikov, A.E.; Chen, C.M.H.; Cook, W.R.

    2003-01-01

    Surface resistivity is an important parameter of multi-electrode CZT detectors such as coplanar-grid, strip, or pixel detectors. Low surface resistivity results in a high leakage current and affects the charge collection efficiency in the areas near contacts. Thus, it is always desirable to have ...

  11. Effect of surface condition to temperature distribution in living tissue during cryopreservation

    Science.gov (United States)

    Nozawa, M.; Hatakeyama, S.; Sugimoto, Y.; Sasaki, H.

    2017-12-01

    The temperature distribution of the simulated living tissue is measured for the improvement of the cooling rate during cryopreservation when the surface condition of the test sample is changed by covering the stainless steel mesh. Agar is used as a simulated living tissue and is filled inside the test sample. The variation of the transient temperature with mesh by the directly immersion in the liquid nitrogen is measured. The temperatures on the sample surface and the inside of the sample are measured by use of type T thermocouples. It is confirmed that on the sample surface there is the slightly temperature increase than that in the saturated liquid nitrogen at the atmospheric pressure. It is found by the comparison of the degree of superheat with or without the mesh that the surface temperature of the test sample with the mesh is lower than that without the mesh. On the other hand, the time series variations of the temperature located in the center of the sample does not change with or without the mesh. It is considered that the center of the sample used is too deep from the surface to respond to the boiling state on the sample surface.

  12. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface

    KAUST Repository

    Ng, Kim Choon

    2017-08-31

    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  13. A Screen Space GPGPU Surface LIC Algorithm for Distributed Memory Data Parallel Sort Last Rendering Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Loring, Burlen; Karimabadi, Homa; Rortershteyn, Vadim

    2014-07-01

    The surface line integral convolution(LIC) visualization technique produces dense visualization of vector fields on arbitrary surfaces. We present a screen space surface LIC algorithm for use in distributed memory data parallel sort last rendering infrastructures. The motivations for our work are to support analysis of datasets that are too large to fit in the main memory of a single computer and compatibility with prevalent parallel scientific visualization tools such as ParaView and VisIt. By working in screen space using OpenGL we can leverage the computational power of GPUs when they are available and run without them when they are not. We address efficiency and performance issues that arise from the transformation of data from physical to screen space by selecting an alternate screen space domain decomposition. We analyze the algorithm's scaling behavior with and without GPUs on two high performance computing systems using data from turbulent plasma simulations.

  14. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    Science.gov (United States)

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  15. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  16. Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Bokrantz, Rasmus

    2013-01-01

    We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained. (paper)

  17. Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning.

    Science.gov (United States)

    Bokrantz, Rasmus

    2013-06-07

    We consider multicriteria radiation therapy treatment planning by navigation over the Pareto surface, implemented by interpolation between discrete treatment plans. Current state of the art for calculation of a discrete representation of the Pareto surface is to sandwich this set between inner and outer approximations that are updated one point at a time. In this paper, we generalize this sequential method to an algorithm that permits parallelization. The principle of the generalization is to apply the sequential method to an approximation of an inexpensive model of the Pareto surface. The information gathered from the model is sub-sequently used for the calculation of points from the exact Pareto surface, which are processed in parallel. The model is constructed according to the current inner and outer approximations, and given a shape that is difficult to approximate, in order to avoid that parts of the Pareto surface are incorrectly disregarded. Approximations of comparable quality to those generated by the sequential method are demonstrated when the degree of parallelization is up to twice the number of dimensions of the objective space. For practical applications, the number of dimensions is typically at least five, so that a speed-up of one order of magnitude is obtained.

  18. Current status of siting a new near surface repository in Romania

    International Nuclear Information System (INIS)

    Ionita, G.; Andrei, V.; Niculae, O.; Petrescu, A.; Sorescu, A.

    2009-01-01

    Full text: The site selection process for a near surface repository dedicated for the radioactive waste resulted from the Cernavoda NPP operation and decommissioning started early in 90's. Each site selection stage included the collection of data from specific field and laboratory works as well as the appropriate safety performance evaluation. In order to assess/confirm the performance of the natural barrier of the Saligny site, the radionuclide concentration in the disposal system compartments has been evaluated, as complementary safety indicator of repository. The siting process was made in accordance with national and international regulations and standards and using a conceptual design similar to those used at L'Aube (France), ElCabril (Spain) or Mohovce (Slovak Republic). ANDRAD, the Romanian waste management organization that has continued the siting process in the last three years applied and obtained a partial siting license from CNCAN in 2008. In 2009, ANDRAD has to prepare the strategy to complete the siting process with the aims to obtain the final siting license from CNCAN and other legal approvals including stakeholders involvement in the decision process for siting the near surface repository at Saligny. Public acceptance issues, in particular acceptance of ANDRAD works in site by the local communities and their representatives are of paramount importance for ANDRAD. The siting of a new radioactive waste repository is a complex process involving multidisciplinary activities and expert teams. ANDRAD needs to develop the appropriate documentation for the safety case of such type of facility. The paper presents the results of the recent performance assessments on the natural barrier of the disposal system and current stage of the repository siting approval. (authors)

  19. Image analysis from surface scanning with an absolute eddy current coil

    International Nuclear Information System (INIS)

    Attaoui, P.

    1994-01-01

    The aim of this work is to implement processing and analysis tools applied to eddy current imaging. These cartographies are issued from steam generator tubes testing using an absolute coil. The first is to eliminate the perturbations due to probe lift-off changes which generate low frequency oscillations on the image. The principle of the processing is to rebuild a complete surface of the noise using only the points around the defect area. The geometric origin of these perturbations led to a model based on sinusoidal functions. The method consists of gradually decomposing the image into a sum of basic sinusoidal surfaces. In order to take into account all kind of cartographies (especially rolling zone) some preprocessing must be applied. The results obtained with this 'cartography flattening'are satisfactory and the phase of analysis could begin with good condition of signal ratio. The second part of this work dealt with the choice and the perfection of image processing tools which would fit the most with the defect characterization. The aim of this characterization is to give the orientation and main size of the detected defect. A morphological skeleton representation has been chosen to illustrate the defect architecture and to allow sizing. A set of tools has been elaborated to obtain an (automatic) processing according to threshold. The results for single defect are satisfactory since the sizing error is around ± 25% and orientation is nearly always correctly given. The processing for area with several defects is more complex and new complementary research directions are proposed. (author)

  20. Current distribution of Branchinecta gaini on James Ross Island and Vega Island

    Czech Academy of Sciences Publication Activity Database

    Nedbalová, Linda; Nývlt, D.; Lirio, J.M.; Kavan, J.; Elster, Josef

    2017-01-01

    Roč. 29, č. 4 (2017), s. 341-342 ISSN 0954-1020 Institutional support: RVO:67985939 Keywords : Antarctica * fairy shrimp * distribution Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.461, year: 2016

  1. Investigation of (de)coupling between surface and subsurface soil moisture using a Distributed Lag Non-linear Model (DNLM)

    Science.gov (United States)

    Carranza, Coleen; van der Ploeg, Martine

    2017-04-01

    Accurate estimates of water content in the soil profile are essential for environmental and climate modeling studies. Current trends for estimating profile soil moisture incorporate remote sensing methods for mapping soil moisture at greater spatial coverage but is limited to the upper soil layers (e.g. 5cm for radar satellites). Data assimilation methods offer promising computational techniques to translate mapped surface soil moisture to estimates of profile soil moisture, in conjunction with physical models. However, a variety of factors, such as differences in the drying rates, can lead to "decoupling" (Capehart and Carlson, 1997) of surface and subsurface soil moisture. In other words, surface soil moisture conditions no longer reflect or represent subsurface conditions. In this study, we investigated the relation and observed decoupling between surface and subsurface soil moisture from 15-minute interval time series datasets in four selected Dutch agricultural fields (SM_05, SM_09, SM_13, SM_20) from the soil moisture network in Twente region. The idea is that surface soil moisture conditions will be reflected in the subsurface after a certain time lag because of its movement or flow from the surface. These lagged associations were analysed using distributed lag non-linear model (DLNM). This statistical technique provides a framework to simultaneously represent non-linear exposure-response dependencies and delayed effects. DNLM was applied to elucidate which surface soil moisture conditions resulted in a high association to subsurface values, indicating good correlation between the two zones. For example, initial results for this ongoing study from SM_13 show an overall low but increasing association from dry to intermediate soil moisture values (0 to 25%). At this range of values, we say that the two zones are decoupled. Above these values towards near saturated conditions ( 40%), associations between the two zones remain high. For predictor

  2. Distribution patterns of Recent planktonic foraminifera in surface sediments of the western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    derived from organisms living as benthos on the seafloor, and shells of organisms which once had lived as plankton in the surface waters (Diester-Haass et al., 1973). Thus the sedi- ments of continental margins show features typical 0025... surface waters contrast sharply with low salinity waters along the south Indian coast and in the Bay of Bengal (Fig. 3A). The North Equato- rial Current sets-in during the northeastern mon- soon period and it penetrates into the southern Arabian Sea...

  3. Impact of PV/Wind/Diesel Hybrid system on the distribution networks - Fault currents

    OpenAIRE

    Afifi, SN; Darwish, MK

    2016-01-01

    The short circuit analysis secures the electrical power systems protection scheme. Thus, in turn ensures the power system reliability, safe mode of operation, and uninterruptable power supply. The impact of distributed generation on the power systems stability, power quality, and short circuit level is still unclear and uncertain. The different characteristics of each distributed generation type, such as synchronous generators, induction generators, power electronics inverters make it more co...

  4. A Survey of Current Trends in Distributed, Grid and Cloud Computing

    OpenAIRE

    Mittal, Gaurav; Kesswani, Dr. Nishtha; Goswami, Kuldeep

    2013-01-01

    Through the 1990s to 2012 the internet changed the world of computing drastically. It started its journey with parallel computing after it advanced to distributed computing and further to grid computing. And in present scenario it creates a new world which is pronounced as a Cloud Computing [1]. These all three terms have different meanings. Cloud computing is based on backward computing schemes like cluster computing, distributed computing, grid computing and utility computing. The basic con...

  5. Historical and Current U.S. Strategies for Boosting Distributed Generation (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)

    2015-08-01

    This is the Chinese translation of NREL/TP-6A20-64843. This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  6. Mechanical Effects of the Non-Uniform Current Distribution on HTS Coils for Accelerators Wound with REBCO Roebel Cable

    CERN Document Server

    Murtomaeki, Jaako; Kirby, Glen; Rossi, Lucio; Ruuskanen, Janne; Stenvall, Antti; Murtomaeki, Jaako

    2017-01-01

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 WP10 Future Magnets collaboration is aiming at testing HTS-based Roebel cables in an accelerator magnet. The demonstrator should produce around 17 T, when inserted into the 100 mm aperture of Feather-M2 13 T outsert magnet. HTS Roebel cables are assembled from meander shaped REBCO coated conductor tapes. In comparison with fair level of uniformity of current distribution in cables made out of round Nb-Ti or Nb$_{3}$Sn strands, current distribution within the coils wound from Roebel cables is highly non-homogeneous. It results in nonuniform electromagnetic force distribution over the cable that could damage the very thin REBCO superconducting layer. This paper focuses on the numerical models to describe the effect of the non-homogenous current distribution on stress distribution in the demonstrator magnet designed for the EuCARD-2 project. Preliminary results indicate that the impregnation bonding betweenthe...

  7. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mehdi; Sensale-Rodriguez, Berardi, E-mail: berardi.sensale@utah.edu [Department of Electrical and Computer Engineering, The University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-09-15

    In this paper, a two-dimensional (2-D) model for a graphene symmetric field effect transistor (SymFET), which considers (a) the intra-graphene layer potential distributions and (b) the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i) when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN) or a small coherence length, the voltage distributions along the graphene electrodes have almost zero variations upon including these distributed effects, (ii) when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN) or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.

  8. Analytical model for current distribution in large-area organic light emitting diodes with parallel metal grid lines

    NARCIS (Netherlands)

    Barink, M.; Harkema, S.

    2012-01-01

    In this study, an analytical solution for the current distribution of a large-area organic light emitting diodes (OLEDs) with parallel equidistant gridlines is derived. In contrast to numerical methods, this analytical solution allows for a very quick scan of the OLED design space, even for very

  9. Effect of Doubly Fed Induction GeneratorTidal Current Turbines on Stability of a Distribution Grid under Unbalanced Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Dahai Zhang

    2017-02-01

    Full Text Available This paper analyses the effects of doubly fed induction generator (DFIG tidal current turbines on a distribution grid under unbalanced voltage conditions of the grid. A dynamic model of an electrical power system under the unbalanced network is described in the paper, aiming to compare the system performance when connected with and without DFIG at the same location in a distribution grid. Extensive simulations of investigating the effect of DFIG tidal current turbine on stability of the distribution grid are performed, taking into account factors such as the power rating, the connection distance of the turbine and the grid voltage dip. The dynamic responses of the distribution system are examined, especially its ability to ride through fault events under unbalanced grid voltage conditions. The research has shown that DFIG tidal current turbines can provide a good damping performance and that modern DFIG tidal current power plants, equipped with power electronics and low-voltage ride-through capability, can stay connected to weak electrical grids even under the unbalanced voltage conditions, whilst not reducing system stability.

  10. Effect of the intra-layer potential distributions and spatial currents on the performance of graphene SymFETs

    Directory of Open Access Journals (Sweden)

    Mehdi Hasan

    2015-09-01

    Full Text Available In this paper, a two-dimensional (2-D model for a graphene symmetric field effect transistor (SymFET, which considers (a the intra-graphene layer potential distributions and (b the internal current flows through the device, is presented and discussed. The local voltages along the graphene electrodes as well as the current-voltage characteristics of the device are numerically calculated based on a single-particle tunneling model. Our numerical results show that: (i when the tunneling current is small, due to either a large tunneling thickness (≥ 2 atomic layers of BN or a small coherence length, the voltage distributions along the graphene electrodes have almost zero variations upon including these distributed effects, (ii when the tunnel current is large, due to either a small tunneling thickness (∼ 1 atomic layer of BN or due to a large coherence length, the local voltage distributions along the graphene electrodes become appreciable and the device behavior deviates from that predicted by a 1-D approximation. These effects, which are not captured in one-dimensional SymFET models, can provide a better understanding about the electron dynamics in the device and might indicate potential novel applications for this proposed device.

  11. Spatial Distribution of Selected Heavy Metals in Surface Sediments of the EEZ of the East Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hasrizal Shaari

    2015-01-01

    Full Text Available Spatial distribution of selected metals (Al, Fe, Mn, Zn, Cu, and Co in surface sediments in the EEZ of the east coast of Peninsular Malaysia was investigated. The aim of this paper is to determine the distribution pattern and pollution status of heavy metals in tropical shelf sediments since limited information is available. Heavy metal concentrations ranged between 207.58 and 491.33 µg·g−1 for Mn, 36.13 and 125.93 µg·g−1 for Zn, 14.49 and 22.33 µg·g−1 for Cu, 2.00 and 11.12 µg·g−1 for Co, 6.20 and 8.95% for Fe, and 0.94 and 6.62% for Al. The mean concentrations of heavy metals are in decreasing order as follows: Fe > Al > Mn > Zn > Cu > Co. Most metals registered low concentrations at the nearshore areas. Pearson correlation indicates that most of the metals are derived from the miscellaneous sources. Based on the EFs and Igeo, it is implied that the surface sediment trace metal levels in the study area might be enriched by anthropogenic sources. However, the PLI suggests that this area is not contaminated from the measured heavy metals. This work is important to register the current levels of metals so that any change in concentration can be monitored and managed.

  12. Analytical Calculation of Magnetic Field Distribution and Stator Iron Losses for Surface-Mounted Permanent Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Zhen Tian

    2017-03-01

    Full Text Available Permanent-magnet synchronous machines (PMSMs are widely used in electric vehicles owing to many advantages, such as high power density, high efficiency, etc. Iron losses can account for a significant component of the total loss in permanent-magnet (PM machines. Consequently, these losses should be carefully considered during the PMSM design. In this paper, an analytical calculation method has been proposed to predict the magnetic field distribution and stator iron losses in the surface-mounted permanent magnet (SPM synchronous machines. The method introduces the notion of complex relative air-gap permeance to take into account the effect of slotting. The imaginary part of the relative air-gap permeance is neglected to simplify the calculation of the magnetic field distribution in the slotted air gap for the surface-mounted permanent-magnet (SPM machine. Based on the armature reaction magnetic field analysis, the stator iron losses can be estimated by the modified Steinmetz equation. The stator iron losses under load conditions are calculated according to the varying d-q-axis currents of different control methods. In order to verify the analysis method, finite element simulation results are compared with analytical calculations. The comparisons show good performance of the proposed analytical method.

  13. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  14. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  15. MHD stability analysis of axisymmetric surface current model tokamaks close to the spheromak regime

    International Nuclear Information System (INIS)

    Honma, Toshihisa; Kaji, Ikuo; Fukai, Ichiro; Kito, Masafumi.

    1984-01-01

    In the toroidal coordinates, a stability analysis is presented for very low-aspect-ratio tokamaks with circular cross section which is described by a surface current model (SCM) of axisymmetric equilibria. The energy principle determining the stability of plasma is treated without any expansion of aspect ratio. Numerical results show that, owing to the occurrence of the non-axisymmetric (n=1) unstable modes, there exists no MHD-stable ideal SCM spheromak characterized by zero external toroidal vacuum field. Instead, a stable spheromak-type plasma which comes to the ideal SCM spheromak is provided by the configuration with a very weak external toroidal field. Close to the spheromak regime (1.0 1 aspect ratio< = 1.1), the minimum safety factor and the critical β-values increase mo notonically with aspect ratio decreasing from a large value, and curves of βsub(p) versus β in the marginal stability approach to an ideal SCM spheromak line βsub(p)=β. (author)

  16. SCO shipments from Rocky Flats - Experience and current practice [Surface Contaminated Object

    International Nuclear Information System (INIS)

    Bracken, Gary; Morris, Robert L.

    2001-01-01

    Decommissioning activities at Rocky Flats Environmental Technology Site (RFETS) are expected to generate approximately 251,000 cubic meters of low-level radioactive waste. Almost half of this will be characterized and shipped as the Department of Transportation ''Surface Contaminated Object'' (SCO) shipping class. In the 2 years since an SCO characterization method was implemented, almost 11,000 of the 18,000 cubic meters of low-level waste were SCO. RFETS experience to-date using an SCO waste characterization method has shown significant time and cost savings, reduced errors, and enhanced employee safety. SCO waste is characterized prior to packaging, near the point of generation, by any of the site's 300 Radiological Control Technicians using inexpensive radiological control survey instruments. This reduces on-site waste container moves and eliminates radiometric analysis at centrally located drum or crate counters. Containers too large for crate counters can also be characterized. Current instrumentation is not adequate to take full advantage of the SCO regulations. Future improvements in the SCO characterization and shipping process are focused on use of larger and/or reusable containers, extended-range instruments, and additional statistical methods, so that the full extent of the SCO regulations can be used

  17. Surface Modification of Direct-Current and Radio-Frequency Oxygen Plasma Treatments Enhance Cell Biocompatibility

    Directory of Open Access Journals (Sweden)

    Wan-Ching Chou

    2017-10-01

    Full Text Available The sand-blasting and acid etching (SLA method can fabricate a rough topography for mechanical fixation and long-term stability of titanium implant, but can not achieve early bone healing. This study used two kinds of plasma treatments (Direct-Current and Radio-Frequency plasma to modify the SLA-treated surface. The modification of plasma treatments creates respective power range and different content functional OH groups. The results show that the plasma treatments do not change the micron scale topography, and plasma-treated specimens presented super hydrophilicity. The X-ray photoelectron spectroscopy (XPS-examined result showed that the functional OH content of the RF plasma-treated group was higher than the control (SLA and DC treatment groups. The biological responses (protein adsorption, cell attachment, cell proliferation, and differentiation promoted after plasma treatments, and the cell responses, have correlated to the total content of amphoteric OH groups. The experimental results indicated that plasma treatments can create functional OH groups on SLA-treated specimens, and the RF plasma-treated SLA implant thus has potential for achievement of bone healing in early stage of implantation.

  18. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  19. Fault current reduction by SFCL in a distribution system with PV using fuzzy logic technique

    Science.gov (United States)

    Mounika, M.; Lingareddy, P.

    2017-07-01

    In the modern power system, as the utilization of electric power is very wide, there is a frequent occurring of any fault or disturbance in power system. It causes a high short circuit current. Due to this fault, high currents occurs results to large mechanical forces, these forces cause overheating of the equipment. If the large size equipment are used in power system then they need a large protection scheme for severe fault conditions. Generally, the maintenance of electrical power system reliability is more important. But the elimination of fault is not possible in power systems. So the only alternate solution is to minimize the fault currents. For this the Super Conducting Fault Current Limiter using fuzzy logic technique is the best electric equipment which is used for reducing the severe fault current levels. In this paper, we simulated the unsymmetrical and symmetrical faults with fuzzy based superconducting fault current limiter. In our analysis it is proved that, fuzzy logic based super conducting fault current limiter reduces fault current quickly to a lower value.

  20. [Distributions of phosphorus fractions in suspended sediments and surface sediments of Tiaoxi mainstreams and cause analysis].

    Science.gov (United States)

    Chen, Hai-Long; Yuan, Xu-Yin; Wang, Huan; Li, Zheng-Yang; Xu, Hai-Yan

    2015-02-01

    Phosphorus is a primary nutrient showing the water quality status of river and inducing eutrophication, and a different phosphorus fraction can make diverse contributions to water quality. Four phosphorus forms of suspended sediments and surface sediments in Tiaoxi mainstreams were measured using a sequential extraction procedure, and the distributions of their forms were discussed. The results showed that the tropic status of Xitiaoxi River was inferior to that of Dongtiaoxi River as a whole, and the water quality in the middle reach of Dongtiaoxi River was better than that in the upper and lower reaches. The contents of nutrient elements in suspended sediments were significantly higher than those in surface sediment, which indicated an enrichment of nutrient in fine sediment. The percentages of the loosely absorbed phosphorus ( NH4Cl-P), the reductant phosphorus (BD-P) and the metal oxide bound phosphorus (NaOH-P) in the suspended sediment were higher than those in surface sediment, while the percentage of the calcium bound phosphorus (HCl-P) showed a reverse trend. Correlation analyses between phosphorus forms and chemical compositions of suspended sediments and surface sediments were performed. The results showed the phosphorus forms in suspended sediments and surface sediments of Xitiaoxi River had weak relationships with mineral components, while those in the Dongtiaoxi River had strong relationships with mineral, especially OM and clay mineral. The cause was associated with the geological setting and material sources in Tiaoxi watershed.

  1. Distribution and respiration of the high-latitude pelagic amphipod Themisto gaudichaudi in the Benguela Current in relation to upwelling intensity

    Science.gov (United States)

    Auel, Holger; Ekau, Werner

    2009-12-01

    The cold and highly productive waters of coastal upwelling areas provide habitats for marine species usually occurring at higher latitudes and allow those species to extend their distribution ranges towards the equator into regions otherwise characterised by warm and oligotrophic sub-tropical waters. The pelagic hyperiid amphipod Themisto gaudichaudi has a circum-Antarctic epipelagic distribution pattern generally south of 35°S and plays an important role in Antarctic food webs as effective link from zooplankton secondary production to higher trophic levels including seabirds and marine mammals. In the cold and productive waters of the Benguela Current coastal upwelling system, the distribution range of the species extents far northward into the subtropics. The present study focuses on the distribution of T. gaudichaudi at the northernmost limit of its range in the Benguela upwelling system in relation to upwelling intensity and hydrographic conditions (sea surface temperature) based on time-series data from 2002 to 2008. Moreover, field data on life-history traits and respiration rates in relation to water temperature are combined to elucidate the environmental and physiological factors limiting the distribution range. Compared to Themisto populations from higher latitudes, the relatively higher water temperatures in the coastal upwelling region lead to higher respiration rates, faster growth, earlier sexual maturity and smaller body size.

  2. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    Science.gov (United States)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  3. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  4. Spatial distribution of heterocyclic organic matter compounds at macropore surfaces in Bt-horizons

    Science.gov (United States)

    Leue, Martin; Eckhardt, Kai-Uwe; Gerke, Horst H.; Ellerbrock, Ruth H.; Leinweber, Peter

    2017-04-01

    The illuvial Bt-horizon of Luvisols is characterized by coatings of clay and organic matter (OM) at the surfaces of cracks, biopores and inter-aggregate spaces. The OM composition of the coatings that originate from preferential transport of suspended matter in macropores determines the physico-chemical properties of the macropore surfaces. The analysis of the spatial distribution of specific OM components such as heterocyclic N-compounds (NCOMP) and benzonitrile and naphthalene (BN+NA) could enlighten the effect of macropore coatings on the transport of colloids and reactive solutes during preferential flow and on OM turnover processes in subsoils. The objective was to characterize the mm-to-cm scale spatial distribution of NCOMP and BN+NA at intact macropore surfaces from the Bt-horizons of two Luvisols developed on loess and glacial till. In material manually separated from macropore surfaces the proportions of NCOMP and BN+NA were determined by pyrolysis-field ionization mass spectrometry (Py-FIMS). These OM compounds, likely originating from combustion residues, were found increased in crack coatings and pinhole fillings but decreased in biopore walls (worm burrows and root channels). The Py-FIMS data were correlated with signals from C=O and C=C groups and with signals from O-H groups of clay minerals as determined by Fourier transform infrared spectroscopy in diffuse reflectance mode (DRIFT). Intensive signals of C15 to C17 alkanes from long-chain alkenes as main components of diesel and diesel exhaust particulates substantiated the assumption that burning residues were prominent in the subsoil OM. The spatial distribution of NCOMP and BN+NA along the macropores was predicted by partial least squares regression (PLSR) using DRIFT mapping spectra from intact surfaces and was found closely related to the distribution of crack coatings and pinholes. The results emphasize the importance of clay coatings in the subsoil to OM sorption and stabilization

  5. Galvanic Couple Current and Potential Distribution between a Mg Electrode and 2024-T351 under Droplets Analyzed by Microelectrode Arrays

    Science.gov (United States)

    2015-11-04

    concentration of a given elec- trolyte varies with ambient RH.21–23 As a given deposited hygroscopic salt deliquesces on a surface it will, over time... liquid electrolyte layer. H2 bubbles could be seen to form and move under the salt cap and the magnitude of the cathodic current density on each AA2024

  6. Pore Scale Heterogeneity in the Mineral Distribution, Surface Area and Adsorption in Porous Rocks

    Science.gov (United States)

    Lai, P. E. P.; Krevor, S. C.

    2014-12-01

    The impact of heterogeneity in chemical transport and reaction is not understood in continuum (Darcy/Fickian) models of reactive transport. This is manifested in well-known problems such as scale dependent dispersion and discrepancies in reaction rate observations made at laboratory and field scales [1]. Additionally, this is a source of uncertainty for carbon dioxide injection, which produces a reactive fluid-rock system particularly in carbonate rock reservoirs. A potential cause is the inability of the continuum approach to incorporate the impact of heterogeneity in pore-scale reaction rates. This results in part from pore-scale heterogeneities in surface area of reactive minerals [2, 3]. We use x-ray micro tomography to describe the non-normal 3-dimensional distribution of reactive surface area within a porous medium according to distinct mineral groups. Using in-house image processing techniques, thin sections, nitrogen BET surface area, backscattered electron imaging and energy dispersive spectroscopy, we compare the surface area of each mineral phase to those obtained from x-ray CT imagery. In all samples, there is little correlation between the reactive surface area fraction and the volumetric fraction of a mineral in a bulk rock. Berea sandstone was far less heterogeneous and has a characteristic pore size at which a surface area distribution may be used to quantify heterogeneity. In carbonates, heterogeneity is more complex and surface area must be characterized at multiple length scales for an accurate description of reactive transport. We combine the mineral specific surface area characterisation to dynamic tomography, imaging the flow of water and solutes, to observe flow dependent and mineral specific adsorption. The observations may contribute to the incorporation of experimentally based statistical descriptions of pore scale heterogeneity in reactive transport into upscaled models, moving it closer to predictive capabilities for field scale

  7. Towards a future with large penetration of distributed generation: Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cossent, Rafael [Instituto de Investigacion Tecnologica, Escuela Tecnica Superior de Ingenieria, Universidad Pontificia Comillas, C/ Quintana 21, 28008 Madrid (Spain)], E-mail: Rafael.Cossent@iit.upcomillas.es; Gomez, Tomas; Frias, Pablo [Instituto de Investigacion Tecnologica, Escuela Tecnica Superior de Ingenieria, Universidad Pontificia Comillas, C/ Quintana 21, 28008 Madrid (Spain)

    2009-03-15

    The European Energy Policy promotes renewable energy sources and energy efficiency as means to mitigate environmental impact, increase security of supply and ensure economic competitiveness. As a result, the penetration levels of distributed generation (DG) in electricity networks are bound to increase. Distribution networks and distribution system operators (DSOs) will be especially affected by growing levels of DG. This paper reviews the current regulation of distribution in the European Union Member States, focusing on those aspects that might hinder the future integration of DG. Several regulatory issues that may hinder a successful integration of DG have been identified. Recommendations to improve the current situation are proposed. Regarding economic signals sent to DG, connection charges and cost-reflective use-of-system charges together with incentives to provide ancillary services are the key aspects. Concerning DSOs regulation, unbundling from generation and supply according to the European Electricity Directive, incentives for optimal planning and network operation considering DG, including energy losses and quality of service, and innovation schemes to migrate to active networks are the most relevant topics.

  8. Towards a future with large penetration of distributed generation. Is the current regulation of electricity distribution ready? Regulatory recommendations under a European perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cossent, Rafael; Gomez, Tomas; Frias, Pablo [Instituto de Investigacion Tecnologica, Escuela Tecnica Superior de Ingenieria, Universidad Pontificia Comillas, C/ Quintana 21, 28008 Madrid (Spain)

    2009-03-15

    The European Energy Policy promotes renewable energy sources and energy efficiency as means to mitigate environmental impact, increase security of supply and ensure economic competitiveness. As a result, the penetration levels of distributed generation (DG) in electricity networks are bound to increase. Distribution networks and distribution system operators (DSOs) will be especially affected by growing levels of DG. This paper reviews the current regulation of distribution in the European Union Member States, focusing on those aspects that might hinder the future integration of DG. Several regulatory issues that may hinder a successful integration of DG have been identified. Recommendations to improve the current situation are proposed. Regarding economic signals sent to DG, connection charges and cost-reflective use-of-system charges together with incentives to provide ancillary services are the key aspects. Concerning DSOs regulation, unbundling from generation and supply according to the European Electricity Directive, incentives for optimal planning and network operation considering DG, including energy losses and quality of service, and innovation schemes to migrate to active networks are the most relevant topics. (author)

  9. Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system

    Directory of Open Access Journals (Sweden)

    Wenge Christoph

    2017-12-01

    Full Text Available Electric vehicles (EVs can be utilized as mobile storages in a power system. The use of battery chargers can cause current harmonics in the supplied AC system. In order to analyze the impact of different EVs with regardto their number and their emission of current harmonics, a generic harmonic current model of EV types was built and implemented in the power system simulation tool PSS®NETOMAC. Based on the measurement data for different types of EVs three standardized harmonic EV models were developed and parametrized. Further, the identified harmonic models are used by the computation of load flow in a modeled, German power distribution system. As a benchmark, a case scenario was studied regarding a high market penetration of EVs in the year 2030 for Germany. The impact of the EV charging on the power distribution system was analyzed and evaluated with valid power quality standards.

  10. A novel wide-area backup protection based on fault component current distribution and improved evidence theory.

    Science.gov (United States)

    Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun

    2014-01-01

    In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance.

  11. A Novel Wide-Area Backup Protection Based on Fault Component Current Distribution and Improved Evidence Theory

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2014-01-01

    Full Text Available In order to solve the problems of the existing wide-area backup protection (WABP algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance.

  12. A Novel Wide-Area Backup Protection Based on Fault Component Current Distribution and Improved Evidence Theory

    Science.gov (United States)

    Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun

    2014-01-01

    In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance. PMID:25050399

  13. Abundance and Distribution Characteristics of Microplastics in Surface Seawaters of the Incheon/Kyeonggi Coastal Region.

    Science.gov (United States)

    Chae, Doo-Hyeon; Kim, In-Sung; Kim, Seung-Kyu; Song, Young Kyoung; Shim, Won Joon

    2015-10-01

    Microplastics in marine environments are of emerging concern due to their widespread distribution, their ingestion by various marine organisms, and their roles as a source and transfer vector of toxic chemicals. However, our understanding of their abundance and distribution characteristics in surface seawater (SSW) remains limited. We investigated microplastics in the surface microlayer (SML) and the SSW at 12 stations near-shore and offshore of the Korean west coast, Incheon/Kyeonggi region. Variation between stations, sampling media, and sampling methods were compared based on abundances, size distribution, and composition profiles of microsized synthetic polymer particles. The abundance of microplastics was greater in the SML (152,688 ± 92,384 particles/m(3)) than in SSW and showed a significant difference based on the sampling method for SSWs collected using a hand net (1602 ± 1274 particles/m(3)) and a zooplankton trawl net (0.19 ± 0.14 particles/m(3)). Ship paint particles (mostly alkyd resin polymer) accounted for the majority of microplastics detected in both SML and SSWs, and increased levels were observed around the voyage routes of large vessels. This indicates that polymers with marine-based origins become an important contributor to microplastics in coastal SSWs of this coastal region.

  14. Longitudinal motion in high current ion beams: a self-consistent phase space distribution with an envelope equation

    International Nuclear Information System (INIS)

    Neuffer, D.

    1979-03-01

    Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived

  15. Multispectral UV imaging for surface analysis of MUPS tablets with special focus on the pellet distribution.

    Science.gov (United States)

    Novikova, Anna; Carstensen, Jens M; Rades, Thomas; Leopold, Prof Dr Claudia S

    2016-12-30

    In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well as pellet distribution, and influence of the coating material and tablet thickness on the predictive model. Different formulations consisting of coated drug pellets with two coating polymers (Aquacoat ® ECD and Eudragit ® NE 30 D) at three coating levels each were compressed to MUPS tablets with various amounts of coated pellets and different tablet thicknesses. The coated drug pellets were clearly distinguishable from the excipients matrix using a partial least squares approach regardless of the coating layer thickness and coating material used. Furthermore, the number of the detected drug pellets on the tablet surface allowed an estimation of the true drug content in the respective MUPS tablet. In addition, the pellet distribution in the MUPS formulations could be estimated by UV image analysis of the tablet surface. In conclusion, this study revealed that UV imaging in combination with multivariate image analysis is a promising approach for the automatic quality control of MUPS tablets during the manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dose distribution considerations of medium energy electron beams at extended source-to-surface distance

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Ayyangar, Komanduri M.; Pawlicki, Todd; Korb, Leroy J.

    1995-01-01

    Purpose: To determine the effects of extended source-to-surface distance (SSD) on dose distributions for a range of medium energy electron beams and cone sizes. Methods and Materials: The depth-dose curves and isodose distributions of 6 MeV, 10 MeV, and 14 MeV electron beams from a dual photon and multielectron energies linear accelerator were studied. To examine the influence of cone size, the smallest and the largest cone sizes available were used. Measurements were carried out in a water phantom with the water surface set at three different SSDs from 101 to 116 cm. Results: In the region between the phantom surface and the depth of maximum dose, the depth-dose decreases as the SSD increases for all electron beam energies. The effects of extended SSD in the region beyond the depth of maximum dose are unobservable and, hence, considered minimal. Extended SSD effects are apparent for higher electron beam energy with small cone size causing the depth of maximum dose and the rapid dose fall-off region to shift deeper into the phantom. However, the change in the depth-dose curve is small. On the other hand, the rapid dose fall-off region is essentially unaltered when the large cone is used. The penumbra enlarges and electron beam flatness deteriorates with increasing SSD

  17. Comparison of the Performances of Three Different Types of Fault Current Limiter in the Distribution Network

    Science.gov (United States)

    Morandi, A.; Bocchi, M.; Fabbri, M.; Martini, L.; Negrini, F.; Ribani, P. L.

    2006-06-01

    In this paper the comparison of three different types of SFCL, the resistive, the inductive and the rectifier type, with reference to a significant position in the distribution network, is carried out. The design of the SFCL devices is developed and size, losses and refrigeration power are evaluated. An equivalent circuit model of each device is then derived and implemented, along with the scheme of the considered distribution network, in the EMTP program. The limiting effect, joule integral, recovery time and influence of SFCL devices on the healthy part of the system are studied and compared.

  18. SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Yang, K; Liu, B [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.) (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.

  19. Current Knowledge of Leishmania Vectors in Mexico: How Geographic Distributions of Species Relate to Transmission Areas

    Science.gov (United States)

    González, Camila; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A. Townsend; Sánchez-Cordero, Víctor

    2011-01-01

    Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological niches of nine sand fly species and projected niches to estimate potential distributions by using known occurrences, environmental coverages, and the algorithms GARP and Maxent. All vector species were distributed in areas with known recurrent transmission, except for Lu. diabolica, which appeared to be related only to areas of occasional transmission in northern Mexico. The distribution of Lu. o. olmeca does not overlap with all reported cutaneous leishmaniasis cases, suggesting that Lu. cruciata and Lu. shannoni are likely also involved as primary vectors in those areas. Our study provides useful information of potential risk areas of leishmaniasis transmission in Mexico. PMID:22049037

  20. Current knowledge of Leishmania vectors in Mexico: how geographic distributions of species relate to transmission areas.

    Science.gov (United States)

    González, Camila; Rebollar-Téllez, Eduardo A; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A Townsend; Sánchez-Cordero, Víctor

    2011-11-01

    Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological niches of nine sand fly species and projected niches to estimate potential distributions by using known occurrences, environmental coverages, and the algorithms GARP and Maxent. All vector species were distributed in areas with known recurrent transmission, except for Lu. diabolica, which appeared to be related only to areas of occasional transmission in northern Mexico. The distribution of Lu. o. olmeca does not overlap with all reported cutaneous leishmaniasis cases, suggesting that Lu. cruciata and Lu. shannoni are likely also involved as primary vectors in those areas. Our study provides useful information of potential risk areas of leishmaniasis transmission in Mexico.

  1. Modified knife-edge method for current density distribution measurements in e-beam writers

    Czech Academy of Sciences Publication Activity Database

    Bok, Jan; Kolařík, Vladimír; Horáček, Miroslav; Matějka, Milan; Matějka, František

    2013-01-01

    Roč. 31, č. 3 (2013), 031603:1-6 ISSN 1071-1023 R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020118 Institutional support: RVO:68081731 Keywords : electron-beam * intensity distribution * aperture * detector * profile * size Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.358, year: 2013

  2. Dynamics of the field-aligned current distribution during a magnetic storm: AMPERE

    Science.gov (United States)

    Vassiliadis, D.; Tepke, B. P.

    2015-12-01

    Field-aligned current density in the ionosphere can be used to identify the location and intensity of solar wind-magnetosphere-ionosphere coupling, and help identify the large-scale processes that contribute to this coupling. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) mission effectively provides high-resolution spatial and temporal measurements of the radial current during magnetic storms. These in situ measurements are complementary to magnetic remote sensing from the ground using magnetometer arrays. Here we examine two storms, on May 29, 2010 and August 5, 2011, using AMPERE and solar wind data. We identify the regions whose radial current density has the greatest correlation with solar wind coupling functions and individual magnetic and plasma variables. We develop a statistical model of the radial current density from the magnetospheric and solar wind data which is then used to represent regions of outflowing and inflowing current in the two hemispheres. While the model is limited in representing high spatial resolution, time series of regional and global field-aligned current are reproduced with relatively large correlation coefficients (0.70-0.90) in each event.

  3. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    Science.gov (United States)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  4. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    DEFF Research Database (Denmark)

    McMahon, C.A.; Vintró, L.L.; Mitchell, P.I.

    2000-01-01

    The speciation of plutonium in Arctic waters sampled on the northwest Greenland shelf in August 1997 is discussed in this paper. Specifically, we report the results of analyses carried out on seawater sampled (a) close to the Thule air base where, in 1968, a US military aircraft carrying four......(V, VI) (mean, 68 +/- 6%; n = 6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed...... in shelf waters at midlatitudes, suggesting that the underlying processes controlling plutonium speciation are insensitive to temperature over the range 0-25 degrees C. Measurements using tangential-flow ultrafiltration indicate that virtually all of the plutonium (including the fraction in a reduced...

  5. Distributed modeling of surface solar radiation based on aerosol optical depth and sunshine duration in China

    Science.gov (United States)

    Zeng, Xiaofan; Zhao, Na; Ma, Yue

    2018-02-01

    Surface solar radiation, as a major component of energy balance, is an important driving condition for nutrient and energy cycle in the Earth system. The spatial distribution of total solar radiation at 10 km×10 km resolution in China was simulated with Aerosol Optical Depth (AOD) data from remote sensing and observing sunshine hours data from ground meteorological stations based on Geographic Information System (GIS). The results showed that the solar radiation was significantly different in the country, and affected by both sunshine hours and AOD. Sunshine hours are higher in the Northwest than that in the Northeast, but solar radiation is lower because of the higher AOD, especially in autumn and winter. It was suggested that the calculation accuracy of solar radiation was limited if just based on sunshine hours, and AOD can be considered as the influencing factor which would help to improve the simulation accuracy of the total solar radiation and realize the solar radiation distributed simulation.

  6. Distribution of /sup 137/Cs in surface intertidal sediments from the Solway Firth

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.G.; Miller, J.M.; Roberts, P.D. (Institute of Geological Sciences, Keyworth (UK))

    1984-05-01

    The distribution of /sup 137/Cs from the Sellafield (Windscale) nuclear fuel reprocessing plant has been examined in detail in the surface intertidal sediments of the inner Solway Firth by means of a hovercraft-borne radiometric survey. With the exception of a belt of relatively active sands to the south of Silloth, caesium distribution is generally consistent with that of fine-grained sediment such that the highest concentrations occur in mud flat and salt marsh sediments which are most extensive in sheltered coastal embayments. /sup 137/Cs activities in July 1980 were typically 2 to 30 pCi g/sup -1/ but locally exceeded 50 pCi g/sup -1/. These levels are considerably lower than those recorded in locations, such as the outer Solway and Ravenglass estuary, which are closer to the Sellafield outfall.

  7. Evaluation of two microwave surface distribution systems designed for substratum and agricultural soil disinfection

    International Nuclear Information System (INIS)

    Velázquez Martí, B.; Gracia López, C.

    2004-01-01

    Heat treatment by microwave for soil disinfection may represent an alternative to chemical treatments. One of the main problems in the design of microwave applicators for agricultural soil disinfection is to achieve a homogeneous surface energy distribution. This work has been carried out in order to evaluate two systems which can solve this problem: the first one is based on the use of a slotted waveguide and the other is based on overlapping the radiation of several magnetrons working simultaneously. Initially, the systems were modelled using an algorithm based on Maxwell equations in order to give a first overview of the system functioning. In a second step, the models were validated by comparison with thermal maps obtained empirically. As a consequence of this work we propose a redesign of the slotted waveguide system to improve the homogeneity of the temperature distribution over a large radiation area. The overlapping system gave adequate homogeneity for commercial purposes [es

  8. Distribution of Different Sized Ocular Surface Vessels in Diabetics and Normal Individuals.

    Science.gov (United States)

    Banaee, Touka; Pourreza, Hamidreza; Doosti, Hassan; Abrishami, Mojtaba; Ehsaei, Asieh; Basiry, Mohsen; Pourreza, Reza

    2017-01-01

    To compare the distribution of different sized vessels using digital photographs of the ocular surface of diabetic and normal individuals. In this cross-sectional study, red-free conjunctival photographs of diabetic and normal individuals, aged 30-60 years, were taken under defined conditions and analyzed using a Radon transform-based algorithm for vascular segmentation. The image areas occupied by vessels (AOV) of different diameters were calculated. The main outcome measure was the distribution curve of mean AOV of different sized vessels. Secondary outcome measures included total AOV and standard deviation (SD) of AOV of different sized vessels. Two hundred and sixty-eight diabetic patients and 297 normal (control) individuals were included, differing in age (45.50 ± 5.19 vs. 40.38 ± 6.19 years, P distribution curves of mean AOV differed between patients and controls (smaller AOV for larger vessels in patients; P distribution curve of vessels compared to controls. Presence of diabetes mellitus is associated with contraction of larger vessels in the conjunctiva. Smaller vessels dilate with diabetic retinopathy. These findings may be useful in the photographic screening of diabetes mellitus and retinopathy.

  9. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    Science.gov (United States)

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  10. Surface-Wettability Patterning for Distributing High-Momentum Water Jets on Porous Polymeric Substrates.

    Science.gov (United States)

    Sen, Uddalok; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Dodge, Richard; Yu, Lisha; Megaridis, Constantine M

    2018-02-07

    Liquid jet impingement on porous materials is particularly important in many applications of heat transfer, filtration, or in incontinence products. Generally, it is desired that the liquid not penetrate the substrate at or near the point of jet impact, but rather be distributed over a wider area before reaching the back side. A facile wettability-patterning technique is presented, whereby a water jet impinging orthogonally on a wettability-patterned nonwoven substrate is distributed on the top surface and through the porous matrix, and ultimately dispensed from prespecified points underneath the sample. A systematic approach is adopted to identify the optimum design that allows for a uniform distribution of the liquid on horizontally mounted substrates of ∼50 cm 2 area, with minimal or no spilling over the sample edges at jet flow rates exceeding 1 L/min. The effect of the location of jet impingement on liquid distribution is also studied, and the design is observed to perform well even under offset jet impact conditions.

  11. System architecture and operational analysis of medium displacement unmanned surface vehicle sea hunter as a surface warfare component of distributed lethality

    Science.gov (United States)

    2017-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. SYSTEM ARCHITECTURE ...TITLE AND SUBTITLE SYSTEM ARCHITECTURE AND OPERATIONAL ANALYSIS OF MEDIUM DISPLACEMENT UNMANNED SURFACE VEHICLE SEA HUNTER AS A SURFACE WARFARE...traceability, requirements and capabilities while determining the architecture framework in accordance with the Department of Defense Architectural

  12. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  13. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    Science.gov (United States)

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.

  14. Pyrometer for measurement of surface temperature distribution on a rotating turbine blade.

    Science.gov (United States)

    Buchele, D. R.; Lesco, D. J.

    1972-01-01

    A conceptual optical method and some test results are presented for measuring the surface temperature distribution on one of the rotating turbine blades with a surface resolution of 0.05 cm spot diameter at a tip speed of 400 m/sec. The blade is scanned line-by-line by a fixed optical system. During each line-scan, the detector analog output signal is converted to 200 consecutive digital values that are temporarily stored in a high-speed buffer memory and then transferred at a slower rate to a computer for processing. The signal-to-noise ratio of the silicon avalanche detector is large enough to obtain an accuracy of 1% at 1050 K blade temperature. By averaging 25 scans of the same line the same accuracy can be obtained at 900 K.

  15. Eddy heat flux across the Antarctic Circumpolar Current estimated from sea surface height standard deviation

    Science.gov (United States)

    Foppert, Annie; Donohue, Kathleen A.; Watts, D. Randolph; Tracey, Karen L.

    2017-08-01

    Eddy heat flux (EHF) is a predominant mechanism for heat transport across the zonally unbounded mean flow of the Antarctic Circumpolar Current (ACC). Observations of dynamically relevant, divergent, 4 year mean EHF in Drake Passage from the cDrake project, as well as previous studies of atmospheric and oceanic storm tracks, motivates the use of sea surface height (SSH) standard deviation, H*, as a proxy for depth-integrated, downgradient, time-mean EHF (>[EHF>¯>]) in the ACC. Statistics from the Southern Ocean State Estimate corroborate this choice and validate throughout the ACC the spatial agreement between H* and >[EHF>¯>] seen locally in Drake Passage. Eight regions of elevated >[EHF>¯>] are identified from nearly 23.5 years of satellite altimetry data. Elevated cross-front exchange usually does not span the full latitudinal width of the ACC in each region, implying a hand-off of heat between ACC fronts and frontal zones as they encounter the different >[EHF>¯>] hot spots along their circumpolar path. Integrated along circumpolar streamlines, defined by mean SSH contours, there is a convergence of ∮>[EHF>¯>] in the ACC: 1.06 PW enters from the north and 0.02 PW exits to the south. Temporal trends in low-frequency [EHF] are calculated in a running-mean sense using H* from overlapping 4 year subsets of SSH. Significant increases in downgradient [EHF] magnitude have occurred since 1993 at Kerguelen Plateau, Southeast Indian Ridge, and the Brazil-Malvinas Confluence, whereas the other five >[EHF>¯>] hot spots have insignificant trends of varying sign.

  16. [Treatment of burn surfaces by proteinases: mathematical description of an enzyme distribution].

    Science.gov (United States)

    Khalili, A S; Domogatskiĭ, S P; Blizniukov, O P; Ruuge, E K

    2003-01-01

    The process of penetration of a proteolytic enzyme applied to the surface of burn wound into the depth of necrotic tissue was considered. The model approximation describes three factors by a series of mathematical equations: inward-directed enzyme diffusion, counter-flow filtration of interstitial fluid (exudates), and irreversible inactivation of the enzyme by specific inhibitors present in exudates. According to the model, a quasi-stationary distribution of enzymatic activity through the thickness of the necrotic layer is achieved within 3 h and persists as long as the enzyme concentration on the wound surface is constant. The enzyme activity diminishes linearly from the wound surface to the mid-part of the necrotic layer. No enzyme activity is retained in the inner mid-part of the necrotic layer completely protected by the prevalent inhibitor. The ratio of enzyme concentration on the wound surface to inhibitor concentration in the interstitial fluid is the same as the ratio of the depth of active enzyme area to the depth of the inhibitor-protected area through the necrotic layer. The dynamics of accumulation of the active enzyme in the necrotic zone and the rate of enzyme inactivation in the wound by inhibitors were described by formulas applicable for practical purposes.

  17. Distribution and sources of n-alkanes in surface sediments of Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Yu Yunlong

    2016-03-01

    Full Text Available The last study on n-alkanes in surface sediments of Taihu Lake was in 2000, only 13 surface sediment samples were analysed, in order to have a comprehensive and up-to-date understanding of n-alkanes in the surface sediments of Taihu Lake, 41 surface sediment samples were analyzed by GC-MS. C10 to C37 were detected, the total concentrations of n-alkanes ranged from 2109 ng g−1 to 9096 ng g−1 (dry weight. There was strong odd carbon predominance in long chain n-alkanes and even carbon predominance in short chain n-alkanes. When this finding was combined with the analysis results of wax n-alkanes (WaxCn, carbon preference index (CPI, unresolved complex mixture (UCM, hopanes and steranes, it was considered that the long chain n-alkanes were mainly from terrigenous higher plants, and that the short chain n-alkanes mainly originated from bacteria and algae in the lake, compared with previous studies, there were no obvious anthropogenic petrogenic inputs. Terrestrial and aquatic hydrocarbons ratio (TAR and C21−/C25+ indicated that terrigenous input was higher than aquatic sources and the nearshore n-alkanes were mainly from land-derived sources. Moreover, the distribution of short chain n-alkanes presented a relatively uniform pattern, while the long chain n-alkanes presented a trend that concentrations dropped from nearshore places to the middle of lake.

  18. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  19. A new approach to the current distribution in field cooled superconductors disks

    Science.gov (United States)

    Bernstein, P.; Colson, L.; Dupont, L.; Noudem, J.

    2018-01-01

    The Bean model considers that in field cooled superconducting cylinders with diameter R, the currents flow over all the thickness of the superconductor along circular paths, the minimum radius of which depends on the magnetizing field and the critical current density. A combination of trapped field and levitation force measurements reported recently has shown, however, that in YBCO and MgB2 disks the current flows in fact in a restricted region with thickness t of the superconductor. In this contribution, from measurements carried out on two YBCO and two MgB2 disks, we report the dependence on temperature of t and J p, the current density in this region, as well as that of the field trapped by the samples. The results confirm that t decreases as the temperature decreases. This behaviour is ascribed to the conservation of the magnetic energy stored in the superconductor, which depends on the magnetizing source and not on the measurement temperature. As a consequence, t behaves as {{J}{{p}}}-2/3, while the field trapped along the axis of the cylinder behaves as {{J}{{p}}}1/3. These claims are substantiated by the experimental results. The possibility that J p is equal to the depairing current is investigated.

  20. Multishot echo-planar MREIT for fast imaging of conductivity, current density, and electric field distributions.

    Science.gov (United States)

    Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind

    2018-01-01

    Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Massive charged-current coefficient functions in deep-inelastic scattering at NNLO and impact on strange-quark distributions

    Science.gov (United States)

    Gao, Jun

    2018-02-01

    We present details on calculation of next-to-next-to-leading order QCD corrections to massive charged-current coefficient functions in deep-inelastic scattering. Especially we focus on the application to charm-quark production in neutrino scattering on fixed target that can be measured via the dimuon final state. We construct a fast interface to the calculation so for any parton distributions the cross sections can be evaluated within milliseconds by using the pre-generated interpolation grids. We discuss agreements of various theoretical predictions with the NuTeV and CCFR dimuon data and the impact of the results on determination of the strange-quark distributions.

  2. Surface-water radon-222 distribution along the west-central Florida shelf

    Science.gov (United States)

    Smith, C.G.; Robbins, L.L.

    2012-01-01

    In February 2009 and August 2009, the spatial distribution of radon-222 in surface water was mapped along the west-central Florida shelf as collaboration between the Response of Florida Shelf Ecosystems to Climate Change project and a U.S. Geological Survey Mendenhall Research Fellowship project. This report summarizes the surface distribution of radon-222 from two cruises and evaluates potential physical controls on radon-222 fluxes. Radon-222 is an inert gas produced overwhelmingly in sediment and has a short half-life of 3.8 days; activities in surface water ranged between 30 and 170 becquerels per cubic meter. Overall, radon-222 activities were enriched in nearshore surface waters relative to offshore waters. Dilution in offshore waters is expected to be the cause of the low offshore activities. While thermal stratification of the water column during the August survey may explain higher radon-222 activities relative to the February survey, radon-222 activity and integrated surface-water inventories decreased exponentially from the shoreline during both cruises. By estimating radon-222 evasion by wind from nearby buoy data and accounting for internal production from dissolved radium-226, its radiogenic long-lived parent, a simple one-dimensional model was implemented to determine the role that offshore mixing, benthic influx, and decay have on the distribution of excess radon-222 inventories along the west Florida shelf. For multiple statistically based boundary condition scenarios (first quartile, median, third quartile, and maximum radon-222 inshore of 5 kilometers), the cross-shelf mixing rates and average nearshore submarine groundwater discharge (SGD) rates varied from 100.38 to 10-3.4 square kilometers per day and 0.00 to 1.70 centimeters per day, respectively. This dataset and modeling provide the first attempt to assess cross-shelf mixing and SGD on such a large spatial scale. Such estimates help scale up SGD rates that are often made at 1- to 10-meter

  3. Surface ozone in China: present-day distribution and long-term changes

    Science.gov (United States)

    Xu, X.; Lin, W.; Xu, W.

    2017-12-01

    Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements

  4. Assesment and Analyze Hybride Control System in Distribution Static Synchronous Compensator Based Current Source Converter

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Ali Zanjani

    2011-10-01

    Full Text Available With the rapid technology advancement in control processes, electric utilities are experiencing more demanding requirements on the power quality from the large industrial power consumers. For achieved this purpose use of FACTS devices. One of kind compensator is D-Statcom, using in distribution system for conquest of power quality problem. This paper presents system modeling and control design techniques of distribution static synchronous compensator. For reach an optimal design, using a hybride state-feedback and d-q control systems. Using direct sampling on network parameter, than conventional control system, as well as fast dynamic responses are achieved. The derived simulations are tried to verify the result of this paper.

  5. A Survey on SCADA / Distributed Control System Current Security Development and Studies

    Science.gov (United States)

    2010-11-01

    NOTES See also ADA564697. Information Assurance and Cyber Defence (Assurance de l’information et cyberdefense). RTO-MP-IST-091 14. ABSTRACT...Unit 2 of the Hatch nuclear power plant near Baxley, Georgia , a software update on a computer on the plant’s business A Survey on SCADA / Distributed...www.fas.org/sgp/crs/RL32631.pdf [7] Europa Justice and Home Affair. (2006). EPCIP European Programme for Critical Infrastructure Protection

  6. Current Knowledge of Leishmania Vectors in Mexico: How Geographic Distributions of Species Relate to Transmission Areas

    OpenAIRE

    González, Camila; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A. Townsend; Sánchez-Cordero, Víctor

    2011-01-01

    Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological...

  7. Sampling surface particle size distributions and stability analysis of deep channel in the Pearl River Estuary

    Science.gov (United States)

    Feng, Hao-chuan; Zhang, Wei; Zhu, Yu-liang; Lei, Zhi-yi; Ji, Xiao-mei

    2017-06-01

    Particle size distributions (PSDs) of bottom sediments in a coastal zone are generally multimodal due to the complexity of the dynamic environment. In this paper, bottom sediments along the deep channel of the Pearl River Estuary (PRE) are used to understand the multimodal PSDs' characteristics and the corresponding depositional environment. The results of curve-fitting analysis indicate that the near-bottom sediments in the deep channel generally have a bimodal distribution with a fine component and a relatively coarse component. The particle size distribution of bimodal sediment samples can be expressed as the sum of two lognormal functions and the parameters for each component can be determined. At each station of the PRE, the fine component makes up less volume of the sediments and is relatively poorly sorted. The relatively coarse component, which is the major component of the sediments, is even more poorly sorted. The interrelations between the dynamics and particle size of the bottom sediment in the deep channel of the PRE have also been investigated by the field measurement and simulated data. The critical shear velocity and the shear velocity are calculated to study the stability of the deep channel. The results indicate that the critical shear velocity has a similar distribution over large part of the deep channel due to the similar particle size distribution of sediments. Based on a comparison between the critical shear velocities derived from sedimentary parameters and the shear velocities obtained by tidal currents, it is likely that the depositional area is mainly distributed in the northern part of the channel, while the southern part of the deep channel has to face higher erosion risk.

  8. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  9. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    DEFF Research Database (Denmark)

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  10. Determination of the centre of gravity of the current distribution in the MT-1 tokamak

    International Nuclear Information System (INIS)

    Zoletnik, S.; Montvai, A.

    1986-03-01

    A simple software method is described for measuring the plasma current channel position from Mirnov coil signals on the MT-1 tokamak. Plasma equilibrium calculations are not involved. The method was also applied to unstable tokamak discharges, and examples based on the results are presented. (author)

  11. Surface and subsurface geostrophic current variability in the Indian Ocean from altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Cadden, D.D; Subrahmanyam, B; Chambers, D; Murty, V.S.N.

    the World Ocean Atlas 2005. The results of this method were validated with currents measured using Acoustic Doppler Current Profilers moored along the equator at 77 degrees E, 83 degrees E, and 93 degrees E. The measured and computed currents compared...

  12. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  13. Ambrosia artemisiifolia in the Czech Republic: history of invasion, current distribution and prediction of future spread

    Czech Academy of Sciences Publication Activity Database

    Skálová, Hana; Guo, Wen-Yong; Wild, Jan; Pyšek, Petr

    2017-01-01

    Roč. 89, č. 1 (2017), s. 1-16 ISSN 0032-7786 R&D Projects: GA MŠk(CZ) LD15157; GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : common ragweed * plant invasion * species distribution modelling (SDM) Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.000, year: 2016

  14. Retrieving near surface soil moisture from microwave radiometric observations: current status and future plans.

    NARCIS (Netherlands)

    Wigneron, J.P.; Calvet, J.C.; Pellarin, T.; vd Griend, A.A.; Berger, M.; Ferrazzoli, P.

    2003-01-01

    Surface soil moisture is a key variable used to describe water and energy exchanges at the land surface/atmosphere interface. Passive microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition on a daily basis and on a regional scale (∼

  15. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China.

    Science.gov (United States)

    Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan

    2018-01-01

    Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.

  16. Density-matrix simulation of small surface codes under current and projected experimental noise

    Science.gov (United States)

    O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.

    2017-09-01

    We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.

  17. Few thoughts on Mixing and Entrainment of Lock-Release Turbulent Dense Currents over Rough-Surfaces

    Science.gov (United States)

    Bhaganaagar, Kiran; NaraSimhaRao, Pavan

    2017-04-01

    Buoyancy driven density currents are the result of the intense turbulence exchanges that occur due to interaction of dense waters with surrounding ambient and calm waters in the ocean. E.g. in the basins of the Arctic continent shelves highly energetic and dissipative density current form due to mixing of cold, dense brine-enriched shelf waters with ambient lighter waters. Intense turbulence causes mixing, the mixed water mass descends down the continental slope. The eventual properties of the mixed water will dictate the deep-water mass. Hence, entrainment/mixing processes are central to oceanic thermohaline circulation. In spite of its importance, the entrainment and the mixing they undergo with overlying water is still not clear. In this talk, we focus on overcoming the challenges in calculating the entrainment over rough-surfaces. The analysis is conducted on lock-release density currents. A highly accurate direct numerical simulation and large eddy simulation solvers have been developed to simulate dense currents over range of rough-surfaces. A new method has been developed to calculate mixing in the head of the density-currents using principles of height-averaged density method. The results have revealed the shape of roughness elements and the standard deviation of the roughness height are the important metrics that influence the front velocity and front characteristics. Entrainment is significant in the head region of dense currents over uniform roughness, whereas for non-uniform rough surfaces, entrainment occurs throughout the current. These results have important implications in our current understanding of mixing in head region of the density current. Further, a relation has been established between the wall-shear stress and entrainment, and this has resulted in a new parameterization of the entrainment as function of the roughness metrics. This study will of be important consequence in improving the accuracy of parameterization of density currents in

  18. Measurements of current density distribution in shaped e-beam writers

    Czech Academy of Sciences Publication Activity Database

    Bok, Jan; Horáček, Miroslav; Kolařík, Vladimír; Urbánek, Michal; Matějka, Milan; Krzyžánek, Vladislav

    2016-01-01

    Roč. 149, JAN 5 (2016), s. 117-124 ISSN 0167-9317 R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : shaped e-beam writer * electron beam * current density Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.806, year: 2016

  19. The Current Landscape of US Pediatric Anesthesiologists: Demographic Characteristics and Geographic Distribution.

    Science.gov (United States)

    Muffly, Matthew K; Muffly, Tyler M; Weterings, Robbie; Singleton, Mark; Honkanen, Anita

    2016-07-01

    There is no comprehensive database of pediatric anesthesiologists, their demographic characteristics, or geographic location in the United States. We endeavored to create a comprehensive database of pediatric anesthesiologists by merging individuals identified as US pediatric anesthesiologists by the American Board of Anesthesiology, National Provider Identifier registry, Healthgrades.com database, and the Society for Pediatric Anesthesia membership list as of November 5, 2015. Professorial rank was accessed via the Association of American Medical Colleges and other online sources. Descriptive statistics characterized pediatric anesthesiologists' demographics. Pediatric anesthesiologists' locations at the city and state level were geocoded and mapped with the use of ArcGIS Desktop 10.1 mapping software (Redlands, CA). We identified 4048 pediatric anesthesiologists in the United States, which is approximately 8.8% of the physician anesthesiology workforce (n = 46,000). The median age of pediatric anesthesiologists was 49 years (interquartile range, 40-57 years), and the majority (56.4%) were men. Approximately two-thirds of identified pediatric anesthesiologists were subspecialty board certified in pediatric anesthesiology, and 33% of pediatric anesthesiologists had an identified academic affiliation. There is substantial heterogeneity in the geographic distribution of pediatric anesthesiologists by state and US Census Division with urban clustering. This description of pediatric anesthesiologists' demographic characteristics and geographic distribution fills an important gap in our understanding of pediatric anesthesia systems of care.

  20. Sea surface temperature data from a world wide distribution from 01 January 1971 to 31 December 2000 (NODC Accession 0000712)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature data were collected in a world wide distribution from January 1, 1971 to December 31, 2000. Data were submitted by Japan Meteorological...

  1. Precipitation Cluster Distributions: Current Climate Storm Statistics and Projected Changes Under Global Warming

    Science.gov (United States)

    Quinn, Kevin Martin

    The total amount of precipitation integrated across a precipitation cluster (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released, i.e. the power of the disturbance. Probability distributions of cluster power are examined during boreal summer (May-September) and winter (January-March) using satellite-retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) 3B42 and Special Sensor Microwave Imager and Sounder (SSM/I and SSMIS) programs, model output from the High Resolution Atmospheric Model (HIRAM, roughly 0.25-0.5 0 resolution), seven 1-2° resolution members of the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, and National Center for Atmospheric Research Large Ensemble (NCAR LENS). Spatial distributions of precipitation-weighted centroids are also investigated in observations (TRMM-3B42) and climate models during winter as a metric for changes in mid-latitude storm tracks. Observed probability distributions for both seasons are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability density drops rapidly. When low rain rates are excluded by choosing a minimum rain rate threshold in defining clusters, the models accurately reproduce observed cluster power statistics and winter storm tracks. Changes in behavior in the tail of the distribution, above the cutoff, are important for impacts since these quantify the frequency of the most powerful storms. End-of-century cluster power distributions and storm track locations are investigated in these models under a "business as usual" global warming scenario. The probability of high cluster power events increases by end-of-century across all models, by up to an order of magnitude for the highest-power events for which statistics can be computed. For the three models in the suite with continuous

  2. Characteristics and Distribution of Phosphorus in Surface Sediments of Limnetic Ecosystem in Eastern China.

    Directory of Open Access Journals (Sweden)

    Wenqiang Zhang

    Full Text Available Phosphorus (P is an essential nutrient for aquatic organisms; however, excessive P inflow to limnetic ecosystems can induce eutrophication. P concentrations in the rivers, wetlands and lakes of Eastern China have been amplified by fertilizer and sewage inputs associated with the development of industry and agriculture. Yet, knowledge of the distribution and speciation of P is lacking at the regional scale. We determined the distribution and speciation of P in limnetic ecosystems in Eastern China using Standards, Measurements and Testing (SMT and phosphorus nuclear magnetic resonance (31P-NMR. The results indicate that P pollution in surface sediments was serious. Inorganic P (Pi was the primary drive of variation in total P (TP among different river systems, and Pi accounted for 71% to 90% of TP in surface sediment in Eastern China. Also, the concentrations of TP and Pi varied among watersheds and Pi primarily drove the variation in TP in different watersheds. Sediments less than 10-cm deep served as the main P reservoir. Environmental factors affect the speciation and origin of P. NaOH-Pi, HCl-Pi and organic P (Po were related to pH accordingly at the regional scale. The physicochemical properties of sediments from different limnetic ecosystems affect the P speciation. HCl-Pi was higher in wetland sediments than in riverine and lake sediments in Eastern China. Conversely, NaOH-Pi was lowest in wetland sediments. Total Po concentration was lower in riverine sediments than in other sediments, but Mono-P was higher, with an average concentration of 48 mg kg-1. Diesters-P was highest in lake sediments. By revealing the regional distribution of TP, Pi and Po, this study will support eutrophication management in Eastern China.

  3. Effects of Wearing Different Personal Equipment on Force Distribution at the Plantar Surface of the Foot

    Directory of Open Access Journals (Sweden)

    Christoph Schulze

    2013-01-01

    Full Text Available Background. The wearing of personal equipment can cause specific changes in muscle activity and posture. In the present study, we investigated the influence of differences in equipment related weight loading and load distribution on plantar pressure. In addition, we studied functional effects of wearing different equipment with a particular focus on relevant changes in foot shape. Methods. Static and dynamic pedobarography were performed on 31 male soldiers carrying increasing weights consisting of different items of equipment. Results. The pressure acting on the plantar surface of the foot increased with higher loading, both under static and dynamic conditions (p < 0.05. We observed an increase in the contact area (p < 0.05 and an influence of load distribution through different ways to carry the rifle. Conclusions. The wearing of heavier weights leads to an increase in plantar pressure and contact area. This may be caused by flattening of the transverse and longitudinal arches. The effects are more evident in subjects with flat feet deformities which seem to flatten at an earlier load condition with a greater amount compared to subjects with normal arches. Improving load distribution should be a main goal in the development of military equipment in order to prevent injuries or functional disorders of the lower extremity.

  4. Examining Urban Impervious Surface Distribution and Its Dynamic Change in Hangzhou Metropolis

    Directory of Open Access Journals (Sweden)

    Longwei Li

    2016-03-01

    Full Text Available Analysis of urban distribution and its expansion using remote sensing data has received increasing attention in the past three decades, but little research has examined spatial patterns of urban distribution and expansion with buffer zones in different directions. This research selected Hangzhou metropolis as a case study to analyze spatial patterns and dynamic changes based on time-series urban impervious surface area (ISA datasets. ISA was developed from Landsat imagery between 1991 and 2014 using a hybrid approach consisting of linear spectral mixture analysis, decision tree classifiers, and post-processing. The spatial patterns of ISA distribution and its dynamic changes in eight directions—east, southeast, south, southwest, west, northwest, north, and northeast—at the temporal scale were analyzed with a buffer zone-based approach. This research indicated that ISA can be extracted from Landsat imagery with both producer and user accuracies of over 90%. ISA in Hangzhou metropolis increased from 146 km2 in 1991 to 868 km2 in 2014. Annual ISA growth rates were between 15.6 km2 and 48.8 km2 with the lowest growth rate in 1994–2000 and the highest growth rate in 2005–2010. Urban ISA increase before 2000 was mainly due to infilling within the urban landscape, and, after 2005, due to urban expansion in the urban-rural interfaces. Urban expansion in this study area has different characteristics in various directions that are influenced by topographic factors and urban development policies.

  5. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  6. Widespread distribution of OH/H2O on the lunar surface inferred from spectral data

    Science.gov (United States)

    Bandfield, Joshua L.; Poston, Michael J.; Klima, Rachel L.; Edwards, Christopher S.

    2018-02-01

    Remote-sensing data from lunar orbiters have revealed spectral features consistent with the presence of OH or H2O on the lunar surface. Analyses of data from the Moon Mineralogy Mapper spectrometer onboard the Chandrayaan-1 spacecraft have suggested that OH/H2O is recycled on diurnal timescales and persists only at high latitudes. However, the spatial distribution and temporal variability of the OH/H2O, as well as its source, remain uncertain. Here we incorporate a physics-based thermal correction into analysis of reflectance spectra from the Moon Mineralogy Mapper and find that prominent absorption features consistent with OH/H2O can be present at all latitudes, local times and surface types examined. This suggests the widespread presence of OH/H2O on the lunar surface without significant diurnal migration. We suggest that the spectra are consistent with the production of OH in space-weathered materials by the solar wind implantation of H+ and formation of OH at crystal defect sites, as opposed to H2O sourced from the lunar interior. Regardless of the specific composition or formation mechanism, we conclude that OH/H2O can be present on the Moon under thermal conditions more wide-ranging than previously recognized.

  7. Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae

    International Nuclear Information System (INIS)

    Bleher, P.M.; Kosygin, D.V.; Sinai, Y.G.

    1995-01-01

    We consider the Weyl asymptotic formula [{E n ≤R 2 }=Area Q.R 2 /(4π)+n(R), for eigenvalues of the Laplace-Beltrami operator on a two-dimensional torus Q with a Liouville metric which is in a sense the most general case of an integrable metric. We prove that if the surface Q is non-degenerate then the remainder term n(R) has the form n(R)=R 1/2 θ(R), where θ(R) is an almost periodic function of the Besicovitch class B 1 , and the Fourier amplitudes and the Fourier frequencies of θ(R) can be expressed via lengths of closed geodesics on Q and other simple geometric characteristics of these geodesics. We prove then that if the surface Q is generic then the limit distribution of θ(R) has a density p(t), which is an entire function of t possessing an asymptotics on a real line, logp(t)∝-C ± t 4 as t→±∞. An explicit expression for the Fourier transform of p(t) via Fourier amplitudes of θ(R) is also given. We obtain the analogue of the Guillemin-Duistermaat trace formula for the Liouville surfaces and discuss its accuracy. (orig.)

  8. On the Pressure Distribution in a Porous Media under a Spherical Loading Surface

    Science.gov (United States)

    Wang, Qiuyun; Zhu, Zenghao; Nathan, Rungun; Wu, Qianhong

    2017-11-01

    The phenomenon of pressure generation and relaxation inside a porous media is widely observed in biological systems. Herein, we report a biomimetic study to examine the pressure distribution inside a soft porous layer when a spherical loaded surface suddenly impacts on it. A novel experimental setup was developed that includes a fully instrumented spherical piston and a soft fibrous porous layer underneath. Extensive experimental study was performed with different porous materials, different loadings and different sized loading surfaces. The pore pressure generation and the motion of the loading surface were recorded. A novel theoretical model was developed to characterize the pressure field during the process. Excellent agreement was observed between the experimental results and the theoretically predictions. It shows that the pressure generation is governed by the Brinkman parameter, α = h/Kp0.5, where h is the porous layer thickness, and Kp is the undeformed permeability. The study improves our understanding of the dynamic response of soft porous media under rapid compression. It has board impact on the study of transient load bearing in biological systems and industry applications. This work was supported by the National Science Foundation (NSF CBET) under Award #1511096.

  9. Analysis and applications of a frequency selective surface via a random distribution method

    International Nuclear Information System (INIS)

    Xie Shao-Yi; Huang Jing-Jian; Yuan Nai-Chang; Liu Li-Guo

    2014-01-01

    A novel frequency selective surface (FSS) for reducing radar cross section (RCS) is proposed in this paper. This FSS is based on the random distribution method, so it can be called random surface. In this paper, the stacked patches serving as periodic elements are employed for RCS reduction. Previous work has demonstrated the efficiency by utilizing the microstrip patches, especially for the reflectarray. First, the relevant theory of the method is described. Then a sample of a three-layer variable-sized stacked patch random surface with a dimension of 260 mm×260 mm is simulated, fabricated, and measured in order to demonstrate the validity of the proposed design. For the normal incidence, the 8-dB RCS reduction can be achieved both by the simulation and the measurement in 8 GHz–13 GHz. The oblique incidence of 30° is also investigated, in which the 7-dB RCS reduction can be obtained in a frequency range of 8 GHz–14 GHz. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. The distribution of sulfur dioxide and other infrared absorbers on the surface of Io

    Science.gov (United States)

    Carlson, R.W.; Smythe, W.D.; Lopes-Gautier, R. M. C.; Davies, A.G.; Kamp, L.W.; Mosher, J.A.; Soderblom, L.A.; Leader, F.E.; Mehlman, R.; Clark, R.N.; Fanale, F.P.

    1997-01-01

    The Galileo Near Infrared Mapping Spectrometer was used to investigate the distribution and properties of sulfur dioxide over the surface of Io, and qualitative results for the anti-Jove hemisphere are presented here. SO2, existing as a frost, is found almost everywhere, but with spatially variable concentration. The exceptions are volcanic hot spots, where high surface temperatures promote rapid vaporization and can produce SO2-free areas. The pervasive frost, if fully covering the cold surface, has characteristic grain sizes of 30 to 100 Urn, or greater. Regions of greater sulfur dioxide concentrations are found. The equatorial Colchis Regio area exhibits extensive snowfields with large particles (250 to 500 ??m diameter, or greater) beneath smaller particles. A weak feature at 3.15 ??m is observed and is perhaps due to hydroxides, hydrates, or water. A broad absorption in the 1 ??m region, which could be caused by iron-containing minerals, shows a concentration in Io'S southern polar region, with an absence in the Pele plume deposition ring. Copyright 1997 by the American Geophysical Union.

  11. Surface circulation in the Iroise Sea (western Brittany) derived from high resolution current mapping by HF radars

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Marié, Louis; Ardhuin, Fabrice

    2010-05-01

    The use of high frequency radar (HFR) systems for near-real-time coastal ocean monitoring necessities that short time scale motions of the radar-derived velocities are better understood. While the ocean radar systems are able to describe coastal flow patterns with unprecedented details, the data they produce are often too sparse or gappy for applications such as the identification of coherent structures and fronts or understanding transport and mixing processes. In this study, we address two challenges. First, we report results from the HF radar system (WERA) which is routinely operating since 2006 on the western Brittany coast to monitor surface circulation in the Iroise Sea, over an area extending up to 100 km offshore. To obtain more reliable records of vector current fields at high space and time resolution, the Multiple Signal Classification (MUSIC) direction finding algorithm is employed in conjunction with the variational interpolation (2dVar) of radar-derived velocities. This provides surface current maps at 1 km spacing and time resolution of 20 min. Removing the influence of the sea state on radar-derived current measurements is discussed and performed on some data sequences. Second, we examine in deep continuous 2d velocity records for a number of periods, exploring the different modes of variability of surface currents in the region. Given the extent, duration, and resolution of surface current velocity measurements, new quantitative insights from various time series and spatial analysis on higher frequency kinematics will be discussed. By better characterizing the full spectrum of flow regimes that contribute to the surface currents and their shears, a more complete picture of the circulation in the Iroise Sea can be obtained.

  12. Current distribution analysis of electroplating reactors and mathematical modeling of the electroplated zinc-nickel alloy

    OpenAIRE

    Teeratananon, Manida

    2004-01-01

    Ce travail est consacré à une étude multi-échelle des réacteurs électrochimiques rencontrés dans les procédés de dépôts électrolytiques. La première partie s'intéresse à la modélisation macroscopique d'un réacteur batch lors de la dépollution d'un bain de dépôt de cuivre. La seconde partie concerne l'étude expérimentale des distributions des lignes de courant dans une cellule de Hull rotative ainsi que dans une cellule de Mohler modifiée. La troisième partie traite de la mise au point d'un mé...

  13. Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement—The Promise and the Current Reality

    Directory of Open Access Journals (Sweden)

    David M. Broday

    2017-10-01

    Full Text Available The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.

  14. Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement-The Promise and the Current Reality.

    Science.gov (United States)

    Broday, David M

    2017-10-02

    The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.

  15. Dynamical phase transitions in the current distribution of driven diffusive channels

    Science.gov (United States)

    Baek, Yongjoo; Kafri, Yariv; Lecomte, Vivien

    2018-03-01

    We study singularities in the large deviation function of the time-averaged current of diffusive systems connected to two reservoirs. A set of conditions for the occurrence of phase transitions, both first and second order, are obtained by deriving Landau theories. First-order transitions occur in the absence of a particle-hole symmetry, while second-order occur in its presence and are associated with a symmetry breaking. The analysis is done in two distinct statistical ensembles, shedding light on previous results. In addition, we also provide an exact solution of a model exhibiting a second-order symmetry-breaking transition.

  16. Pixel pitch and particle energy influence on the dark current distribution of neutron irradiated CMOS image sensors.

    Science.gov (United States)

    Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier

    2016-02-22

    The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.

  17. Behavior of AC High Voltage Polyamide Insulators: Evolution of Leakage Current in Different Surface Conditions

    Directory of Open Access Journals (Sweden)

    Mohammed El Amine Slama

    2015-01-01

    Full Text Available This paper is aimed at a systematic study of the leakage current of high voltage polyamide insulator string under different conditions of pollution for possible application in the electric locomotive systems. It is shown that in the case of clean/dry and clean/wetted insulators, the leakage current and applied voltage are linear. While in the case of pollution with saline spray, the leakage current and the applied voltage are not linear; the leakage current changes from a linear regime to a nonlinear regime up to total flashover of the insulators sting. Traces of erosion and tracking of insulators resulting of partial discharges are observed.

  18. A Current Perspective on the Historical Geographic Distribution of the Endangered Muriquis (Brachyteles spp.): Implications for Conservation.

    Science.gov (United States)

    Ingberman, Bianca; Fusco-Costa, Roberto; Monteiro-Filho, Emygdio Leite de Araujo

    2016-01-01

    The muriqui (Brachyteles spp.), endemic to the Atlantic Forest of Brazil, is the largest primate in South America and is endangered, mainly due to habitat loss. Its distribution limits are still uncertain and need to be resolved in order to determine their true conservation status. Species distribution modeling (SDM) has been used to estimate potential species distributions, even when information is incomplete. Here, we developed an environmental suitability model for the two endangered species of muriqui (Brachyteles hypoxanthus and B. arachnoides) using Maxent software. Due to historical absence of muriquis, areas with predicted high habitat suitability yet historically never occupied, were excluded from the predicted historical distribution. Combining that information with the model, it is evident that rivers are potential dispersal barriers for the muriquis. Moreover, although the two species are environmentally separated in a large part of its distribution, there is a potential contact zone where the species apparently do not overlap. This separation might be due to either a physical (i.e., Serra da Mantiqueira mountains) or a biotic barrier (the species exclude one another). Therefore, in addition to environmental characteristics, physical and biotic barriers potentially shaped the limits of the muriqui historical range. Based on these considerations, we proposed the adjustment of their historical distributional limits. Currently only 7.6% of the predicted historical distribution of B. hypoxanthus and 12.9% of B. arachnoides remains forested and able to sustain viable muriqui populations. In addition to measurement of habitat loss we also identified areas for conservation concern where new muriqui populations might be found.

  19. A Current Perspective on the Historical Geographic Distribution of the Endangered Muriquis (Brachyteles spp.: Implications for Conservation.

    Directory of Open Access Journals (Sweden)

    Bianca Ingberman

    Full Text Available The muriqui (Brachyteles spp., endemic to the Atlantic Forest of Brazil, is the largest primate in South America and is endangered, mainly due to habitat loss. Its distribution limits are still uncertain and need to be resolved in order to determine their true conservation status. Species distribution modeling (SDM has been used to estimate potential species distributions, even when information is incomplete. Here, we developed an environmental suitability model for the two endangered species of muriqui (Brachyteles hypoxanthus and B. arachnoides using Maxent software. Due to historical absence of muriquis, areas with predicted high habitat suitability yet historically never occupied, were excluded from the predicted historical distribution. Combining that information with the model, it is evident that rivers are potential dispersal barriers for the muriquis. Moreover, although the two species are environmentally separated in a large part of its distribution, there is a potential contact zone where the species apparently do not overlap. This separation might be due to either a physical (i.e., Serra da Mantiqueira mountains or a biotic barrier (the species exclude one another. Therefore, in addition to environmental characteristics, physical and biotic barriers potentially shaped the limits of the muriqui historical range. Based on these considerations, we proposed the adjustment of their historical distributional limits. Currently only 7.6% of the predicted historical distribution of B. hypoxanthus and 12.9% of B. arachnoides remains forested and able to sustain viable muriqui populations. In addition to measurement of habitat loss we also identified areas for conservation concern where new muriqui populations might be found.

  20. Calibration and Validation of High Frequency Radar for Ocean Surface Current Mapping

    National Research Council Canada - National Science Library

    Kim, Kyung

    2004-01-01

    High Frequency (HF) radar backscatter instruments are being developed and tested in the marine science and defense science communities for their abilities to sense surface parameters remotely in the coastal ocean over large areas...