WorldWideScience

Sample records for surface corrugation functions

  1. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    International Nuclear Information System (INIS)

    Talebi, Nahid; Shahabadi, Mahmoud

    2010-01-01

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  2. Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Talebi, Nahid; Shahabadi, Mahmoud, E-mail: n.talebi@ece.ut.ac.i [Photonics Research Laboratory, Center of Excellence for Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, North Kargar Ave., Tehran (Iran, Islamic Republic of)

    2010-04-07

    Using the rigorous mode-matching technique, we have investigated a periodically corrugated perfectly conducting coaxial waveguide for the possibility of propagation of localized spoof surface plasmons. To verify our results, the computed band diagram of the structure has been compared with the one obtained using the body-of-revolution finite-difference time-domain method. The obtained spoof surface plasmon modes have been shown to be highly localized and slowly propagating. Variations of the obtained modal frequencies and mode profiles as a function of the depth and width of the grooves have also been investigated.

  3. Tuning Mechanisms in a Corrugated Origami Frequency Selective Surface (Preprint)

    Science.gov (United States)

    2017-07-09

    AFRL-RX-WP-JA-2017-0298 TUNING MECHANISMS IN A CORRUGATED ORIGAMI FREQUENCY SELECTIVE SURFACE (PREPRINT) Kazuko Fuchi UDRI... SURFACE (PREPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0002 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 1) Kazuko Fuchi...Clearance Date: 12 Jan 2017. This document contains color. The U.S. Government is joint author of the work and has the right to use, modify, reproduce

  4. Optical coating on a corrugated surface to align the polarization of an unpolarized wave without loss

    Science.gov (United States)

    Jen, Yi Jun

    2017-12-01

    A multilayer comprising birefringent thin films is devised to present to function as a polarization beam splitter and waveplate simultaneously. By arranging such a multilayer on a right triangle-shaped corrugated surface, a polarizer is realized to align the randomly oscillating electric field of an unpolarized wave into a linear polarized wave without loss.

  5. Self-organization of decaying surface corrugations: a numerical study.

    Science.gov (United States)

    Bonito, Andrea; Nochetto, Ricardo H; Quah, John; Margetis, Dionisios

    2009-05-01

    We study numerically the interplay of surface topography and kinetics in the relaxation of crystal surface corrugations below roughening in two independent space dimensions. The kinetic processes are isotropic diffusion of adatoms across terraces and attachment-detachment of atoms at steps. We simulate the corresponding anisotropic partial differential equation for the surface height via the finite element method. The numerical results show a sharp transition from initially biperiodic surface profiles to one-dimensional surface morphologies. This transition is found to be enhanced by an applied electric field. Our predictions demonstrate the dramatic influence on morphological relaxation of geometry-induced asymmetries in the adatom fluxes transverse and parallel to step edges.

  6. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  7. Non-Classical Smoothening of Nano-Scale Surface Corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Michael J.; Chason, Eric; Erlebacher, Jonah; Floro, Jerrold A.; Sinclair, Michael B.

    1999-05-20

    We report the first experimental observation of non-classical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(OO1) by sputter rippling and then annealed at 650 - 750 °C. In contrast to the classical exponential decay with time, the ripple amplitude, A{lambda}(t), followed an inverse linear decay, A{lambda}(t)= A{lambda}(0)/(1 +k{lambda}t), agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6±0.2 eV, consistent with an interpretation that dimers mediate transport.

  8. Non-Classical Smoothening of Nano-Scale Surface Corrugations

    International Nuclear Information System (INIS)

    Aziz, Michael J.; Chason, Eric; Erlebacher, Jonah; Floro, Jerrold A.; Sinclair, Michael B.

    1999-01-01

    We report the first experimental observation of non-classical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(OO1) by sputter rippling and then annealed at 650 - 750 ampersand deg;C. In contrast to the classical exponential decay with time, the ripple amplitude, A λ (t), followed an inverse linear decay, A λ (t)= A λ (0)/(1 +k λ t), agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6 ampersand plusmn;0.2 eV, consistent with an interpretation that dimers mediate transport

  9. Role of Bénard-Marangoni instabilities during solvent evaporation in polymer surface corrugations.

    Science.gov (United States)

    Bassou, N; Rharbi, Y

    2009-01-06

    Film formation through the drying of polymer solutions is a widely used process in laboratories and in many industrial applications such as coatings. One of the main goals of these applications is to control the film surface morphology. In many cases, evaporation has been found to yield corrugated patterns on the free surface of films. This has been interpreted in terms of either mechanical or hydrodynamic instabilities. In this article, we present experimental results where mesoscale 2D well-ordered surface corrugation patterns are formed during solvent evaporation from polystyrene/toluene solutions. The transformation of Benard-Marangoni instabilities into surface corrugation is studied during the entire drying process using particle tracking, 3D morphology analyses, etc. We show that the corrugation wavelength is controlled by the Benard-Marangoni instability, whereas the corrugation amplitude is controlled by a mechanism that involves a high evaporation rate.

  10. Transition from diffusive to localized regimes in surface corrugated waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Martin, A.; Saenz, J. J. [Universidad Autonoma de Madrid, Madrid (Spain); Nieto-Vesperinas, M. [Instituto de Ciencias de Materiales de Madrid, Madrid (Spain)

    2001-03-01

    Exact calculations of transmission and reflection coefficients in surface randomly corrugated waveguides are presented. The elastic scattering of diffuse light classical waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an analogy with electron conduction in nano wires, and hence, a concept analogous to that of resistance can be introduced. An oscillatory behavior of different transport properties (elastic mean free path, localization length, enhanced backscattering), versus the wavelength is predicted. An analysis of the transmission coefficients (transmitted speckle) shows that as the length of the corrugated part of the waveguide increases there is a strong preference to forward coupling through the lowest mode. This marks a clear anisotropy in the forward propagation which is absent in the case of volume disorder. The statistics of reflection coefficients is analyzed, first using random matrix theory (Rm) to analytically deduce the probability densities in the localization regime, afterwards exact numerical calculations of the coupling to backward modes in surface corrugated waveguides will be put forward for comparison. We show that the reflected speckle distribution are independent of the transport regime, at variance with the regime transition found in the transmission case. Despite the strong anisotropy, the analysis of the probability distributions of both transmitted and reflected waves confirms the distributions predicted by Random Matrix Theory for volume disorder. [Spanish] Presentamos calculos exactos de los coeficientes de transmision y reflexion en guias de onda con desorden de superficie. La dispersion elastica de luz difusa o de otras ondas clasicas por una superficie rugosa induce un transporte difusivo a lo largo del eje de la guia. A medida que la longitud de la zona

  11. Theory and Monte-Carlo simulation of adsorbates on corrugated surfaces

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    -phase between the commensurate and incommensurate phase stabilized by defects. Special attention has been given to the study of the epitaxial rotation angles of the different phases. Available experimental data is in agreement with the simulations and with a general theory for the epitaxial rotation which takes......Phase transitions in systems of adsorbed molecules on corrugated surfaces are studied by means of Monte Carlo simulation. Particularly, we have studied the phase diagram of D2 on graphite as a function of coverage and temperature. We have demonstrated the existence of an intermediate gamma...

  12. Hierarchical synthesis of corrugated photocatalytic TiO{sub 2} microsphere architectures on natural pollen surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, Deniz Altunoz; Ozensoy, Emrah, E-mail: ozensoy@fen.bilkent.edu.tr

    2017-05-01

    Highlights: • Biotemplate-based photocatalytic material was synthesized in the form of corrugated TiO{sub 2} microspheres. • Characterization of photocatalysts as a function of temperature. • Photocatalytic activities studied in the gas and solution phases. - Abstract: Biomaterials are challenging, yet vastly promising templates for engineering unusual inorganic materials with unprecedented surface and structural properties. In the current work, a novel biotemplate-based photocatalytic material was synthesized in the form of corrugated TiO{sub 2} microspheres by utilizing a sol-gel methodology where Ambrosia trifida (Ab, Giant ragweed) pollen was exploited as the initial biological support surface. Hierarchically synthesized TiO{sub 2} microspheres were structurally characterized in detail via SEM-EDX, Raman spectroscopy, XRD and BET techniques in order to shed light on the surface chemistry, crystal structure, chemical composition and morphology of these novel material architectures. Photocatalytic functionality of the synthesized materials was demonstrated both in gas phase as well as in liquid phase. Along these lines, air and water purification capabilities of the synthesized TiO{sub 2} microspheres were established by performing photocatalytic oxidative NOx(g) storage and Rhodamine B(aq) degradation experiments; respectively. The synthetic approach presented herein offers new opportunities to design and create sophisticated functional materials that can be used in micro reactor systems, adsorbents, drug delivery systems, catalytic processes, and sensor technologies.

  13. Surface impedance formalism for a metallic beam pipe with small corrugations

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2012-12-01

    Full Text Available A metallic pipe with wall corrugations is of special interest in light of recent proposals to use such a pipe for the generation of terahertz radiation and for energy dechirping of electron bunches in free electron lasers. In this paper we calculate the surface impedance of a corrugated metal wall and show that it can be reduced to that of a thin layer with dielectric constant ϵ and magnetic permeability μ. We develop a technique for the calculation of these constants, given the geometrical parameters of the corrugations. We then calculate, for the specific case of a round metallic pipe with small corrugations, the frequency and strength of the resonant mode excited by a relativistic beam. Our analytical results are compared with numerical simulations, and are shown to agree well. They are also shown to be more accurate when compared to the earlier used analytical model.

  14. Hollow fiber membranes with different external corrugated surfaces for desalination by membrane distillation

    Science.gov (United States)

    García-Fernández, Loreto; García-Payo, Carmen; Khayet, Mohamed

    2017-09-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) hollow fiber membranes were prepared using the phase inversion spinning technique under a wet gap mode. Different corrugated outer surfaces were obtained by means of a micro-engineered spinneret, spraying the external coagulant on the nascent fiber along gap, and different spinning parameters, namely, the gap distance and the external coagulant flow rate. A quantitative evaluation of the corrugation size and shape was carried out by electron scanning microscopy and atomic force microscopy. The effect of the corrugation size and shape on the direct contact membrane distillation (DCMD) performance has been studied. The corrugated outer surface acted as micro-turbulence promoters mitigating the temperature polarization effect and enhanced the external effective surface area for condensation. Both factors improved the DCMD permeability of the hollow fiber membranes. However, corrugations with V-shaped valleys depths greater than about 30 μm did not always improve the DCMD permeate flux. It was found that the membrane prepared with the spray wetting mode exhibited the best desalination performance. The salt rejection factor of all prepared hollow fiber membranes was greater than 99.9% and the highest DCMD permeate flux of this study was greater than those reported so far for the PVDF-HFP hollow fiber membranes.

  15. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

    Science.gov (United States)

    Kumar Singh, Abhishek; Kumar, Santan; Kumari, Richa

    2018-03-01

    The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

  16. Designing the inner surface corrugations of hollow fibers to enhance CO2 absorption efficiency.

    Science.gov (United States)

    Fashandi, Hossein; Zarrebini, Mohammad; Ghodsi, Ali; Saghafi, Reza

    2016-08-15

    For the first time, a low cost strategy is introduced to enhance the efficiency of CO2 absorption using gas-liquid membrane contactors. This is implemented by designing the corrugations in the inner layer of poly(vinyl chloride) hollow fibers (PVC HFs) through changing the bore fluid composition. In fact, the number of corrugations in the HF inner layer is engineered via changing the phase separation time within the inner layer. Such that expedited phase separation leads to highly corrugated inner layer. In contrast, decelerated phase separation is responsible for reduced number of inner layer corrugations. Phase separation causes the initial polymer solution with low viscoelastic moduli to be transferred into polymer-rich domains with high viscoelastic moduli. These domains resist against stretching-induced radial forces toward the center of HF; therefore, the inner layer of HF buckles. Delayed phase separation defers formation of polymer-rich domains and hence, HF with less corrugated inner surface is expected. The phase separation within the HF inner layer is controlled through changing the rate of solvent/nonsolvent exchange. This is conducted by variation the solvent content in the bore fluid; as higher as solvent content, as slower as solvent/nonsolvent exchange. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Hierarchical synthesis of corrugated photocatalytic TiO2 microsphere architectures on natural pollen surfaces

    Science.gov (United States)

    Erdogan, Deniz Altunoz; Ozensoy, Emrah

    2017-05-01

    Biomaterials are challenging, yet vastly promising templates for engineering unusual inorganic materials with unprecedented surface and structural properties. In the current work, a novel biotemplate-based photocatalytic material was synthesized in the form of corrugated TiO2 microspheres by utilizing a sol-gel methodology where Ambrosia trifida (Ab, Giant ragweed) pollen was exploited as the initial biological support surface. Hierarchically synthesized TiO2 microspheres were structurally characterized in detail via SEM-EDX, Raman spectroscopy, XRD and BET techniques in order to shed light on the surface chemistry, crystal structure, chemical composition and morphology of these novel material architectures. Photocatalytic functionality of the synthesized materials was demonstrated both in gas phase as well as in liquid phase. Along these lines, air and water purification capabilities of the synthesized TiO2 microspheres were established by performing photocatalytic oxidative NOx(g) storage and Rhodamine B(aq) degradation experiments; respectively. The synthetic approach presented herein offers new opportunities to design and create sophisticated functional materials that can be used in micro reactor systems, adsorbents, drug delivery systems, catalytic processes, and sensor technologies.

  18. Stark effect of excitons in corrugated lateral surface superlattices: effect of centre-of-mass quantization

    International Nuclear Information System (INIS)

    Hong Sun

    1998-11-01

    The quantum confined Stark effect (QCSE) of excitons in GaAs/AlAs corrugated lateral surface superlattices (CLSSLs) is calculated. Blue and red shifts in the exciton energies are predicted for the heavy- and light-excitons in the CLSSLs, respectively, comparing with those in the unmodulated quantum well due to the different effective hole masses in the parallel direction. Sensitive dependence of the QCSE on the hole effective mass in the parallel direction is expected because of the ''centre-of-mass'' quantization (CMQ) induced by the periodic corrugated interfaces of the CLSSLs. The effect of the CMQ on the exciton mini-bands and the localization of the excitons in the CLSSLs is discussed. (author)

  19. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    elements in metal waveguides increase the number of their natural modes and give rise to new effects accompanying wave propagation, e.g. excitation of SPW in these waveguides. Such large area surface wave plasma sources have been reported using a microwave launcher of large aperture formed on a waveguide, ...

  20. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    Abstract. A microwave propagating along vacuum–dielectric–plasma interface excites surface plasma wave (SPW). A periodic slow-wave structure placed over dielectric slows down the SPW. The phase velocity of slow SPW is sensitive to height, periodicity, number of periods, thickness and the separation between ...

  1. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  2. Thermal-Hydraulic Performance of a Corrugated Cooling Fin with Louvered Surfaces

    DEFF Research Database (Denmark)

    Sønderby, Simon Kaltoft; Hosseini, Seyed Mojtaba Mir; Rezaniakolaei, Alireza

    2017-01-01

    The main objective of the article is to investigate thermal-hydraulic performance of a corrugated cooling fin with louvered surfaces. The investigation is carried out using the fin geometry of one most commonly used liquid-to-air heat exchangers. The investigation was carried out by numerically s...... between -45.5 % to 86.4 % were reported for the f-factor. The thermal part of the model was validated with good confidence, while the frictional part of the model was validated with a smaller degree of certainty....

  3. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  4. Measuring the height-to-height correlation function of corrugation in suspended graphene

    International Nuclear Information System (INIS)

    Kirilenko, D.A.; Brunkov, P.N.

    2016-01-01

    Nanocorrugation of 2D crystals is an important phenomenon since it affects their electronic and mechanical properties. The corrugation may have various sources; one of them is flexural phonons that, in particular, are responsible for the thermal conductivity of graphene. A study of corrugation of just the suspended graphene can reveal much of valuable information on the physics of this complicated phenomenon. At the same time, the suspended crystal nanorelief can hardly be measured directly because of high flexibility of the 2D crystal. Moreover, the relief portion related to rapid out-of-plane oscillations (flexural phonons) is also inaccessible by such measurements. Here we present a technique for measuring the Fourier components of the height–height correlation function H(q) of suspended graphene which includes the effect of flexural phonons. The technique is based on the analysis of electron diffraction patterns. The H(q) is measured in the range of wavevectors q≈0.4–4.5 nm −1 . At the upper limit of this range H(q) does follow the T/κq 4 law. So, we measured the value of suspended graphene bending rigidity κ=1.2±0.4 eV at ambient temperature T≈300 K. At intermediate wave vectors, H(q) follows a slightly weaker exponent than theoretically predicted q −3.15 but is closer to the results of the molecular dynamics simulation. At low wave vectors, the dependence becomes even weaker, which may be a sign of influence of charge carriers on the dynamics of undulations longer than 10 nm. The technique presented can be used for studying physics of flexural phonons in other 2D materials. - Highlights: • A technique for measuring free-standing 2D crystal corrugation is proposed. • The height-to-height correlation function of the suspended graphene corrugation is measured. • Various parameters of the intrinsic graphene properties are experimentally determined.

  5. Squeezing Molecularly thin Lubricant Films between curved Corrugated Surfaces with long range Elasticity

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    2010-01-01

    one being associated with devastating wear progress. The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths, C......The present work investigates the ability of two nm thick lubrication films to stay in a contact and thereby to prevent excessive wear of the surfaces. At this thickness the film is no longer a fluid but it is the very important intermediate between the lubricated and the dry regimes, the latter......3H8, C4H10, C8H18, C9H20, C10H22, C14H30 and C16H34, confined between corrugated gold surfaces. Well defined molecular layers develop in the lubricant film when the width is of the order of a few atomic diameters. An external squeezing pressure induces discontinuous, thermally activated changes...

  6. Design and manufacturing of skins based on composite corrugated laminates for morphing aerodynamic surfaces

    Science.gov (United States)

    Airoldi, Alessandro; Fournier, Stephane; Borlandelli, Elena; Bettini, Paolo; Sala, Giuseppe

    2017-04-01

    The paper discusses the approaches for the design and manufacturing of morphing skins based on rectangular-shaped composite corrugated laminates and proposes a novel solution to prevent detrimental effects of corrugation on aerodynamic performances. Additionally, more complex corrugated shapes are presented and analysed. The manufacturing issues related to the production of corrugated laminates are discussed and tests are performed to compare different solutions and to assess the validity of analytical and numerical predictions. The solution presented to develop an aerodynamically efficient skin consists in the integration of an elastomeric cover in the corrugated laminate. The related manufacturing process is presented and assessed, and a fully nonlinear numerical model is developed and characterized to study the behaviour of this skin concept in different load conditions. Finally, configurations based on combinations of individual rectangular-shaped corrugated panels are considered. Their structural properties are numerically investigated by varying geometrical parameters. Performance indices are defined to compare structural stiffness contributions in non-morphing directions with the ones of conventional panels of the same weight. Numerical studies also show that the extension of the concept to complex corrugated shapes may improve both the design flexibility and some specific performances with respect to rectangular shaped corrugations. The overall results validate the design approaches and manufacturing processes to produce corrugated laminates and indicate that the solution for the integration of an elastomeric cover is a feasible and promising method to enhance the aerodynamic efficiency of corrugated skins.

  7. ΔM/sub j/ transitions in homonuclear molecule scattering off corrugated surfaces. Square and rectangular lattice symmetry and purely repulsive interaction

    International Nuclear Information System (INIS)

    Proctor, T.R.; Kouri, D.J.; Gerber, R.B.

    1984-01-01

    In this paper, we present the first formal and computational studies of Δm/sub j/ transitions occurring in homonuclear molecule-corrugated surface collisions. The model potential is a pairwise additive one which correctly incorporates the fact that Δm/sub j/ transitions occur only for corrugated surfaces (provided the quantization axis is chosen to be the average surface normal). The principal results are: (a) Δm/sub j/ transitions are extremely sensitive to lattice symmetry; (b) strong selection rules obtain for specular scattering; (c) the magnitude of Δm/sub j/ -transition probabilities are strongly sensitive to surface corrugation; (d) the Δm/sub j/ transitions depend strongly on diffraction peak; (e) the ratio of molecular length to lattice dimension (r/a) has a strong influence on the magnitude of Δm/sub j/ -transition probabilities [with the probabilities increasing as (r/a) increases]; (f) Δm/sub j/ rainbows are predicted to occur as a function of the (r/a) ratio increases; (g) Δm/sub j/ transitions and the Δm/sub j/ rainbow are expected to accompany Δj-rotational rainbows; (h) such magnetic transition rainbows accompanying Δj rainbows are suggested as an explanation of recent experimental observations of quenching of NO polarization for larger Δj transitions in NO/Ag(111) scattering

  8. Numerical study of three-dimensional sound reflection from corrugated surface waves.

    Science.gov (United States)

    Choo, Youngmin; Song, H C; Seong, Woojae

    2016-10-01

    When a sound wave propagates in a water medium bounded by a smooth surface wave, reflection from a wave crest can lead to focusing and result in rapid variation of the received waveform as the surface wave moves [Tindle, Deane, and Preisig, J. Acoust. Soc. Am. 125, 66-72 (2009)]. In prior work, propagation paths have been constrained to be in a plane parallel to the direction of corrugated surface waves, i.e., a two-dimensional (2-D) propagation problem. In this paper, the azimuthal dependence of sound propagation as a three-dimensional (3-D) problem is investigated using an efficient, time-domain Helmholtz-Kirchhoff integral formulation. When the source and receiver are in the plane orthogonal to the surface wave direction, the surface wave curvature vanishes in conventional 2-D treatments and the flat surface simply moves up and down, resulting in minimal temporal variation of the reflected signal intensity. On the other hand, the 3-D propagation analysis reveals that a focusing phenomenon occurs in the reflected signal due to the surface wave curvature formed along the orthogonal plane, i.e., out-of-plane scattering.

  9. Torsional Wave Propagation in a Pre-Stressed Structure with Corrugated and Loosely Bonded Surfaces

    Directory of Open Access Journals (Sweden)

    Singh Manoj K.

    2017-12-01

    Full Text Available An analytical model is presented to study the behaviour of propagation of torsional surface waves in initially stressed porous layer, sandwiched between an orthotropic half-space with initial stress and pre-stressed inhomogeneous anisotropic half-space. The boundary surfaces of the layer and halfspaces are taken as corrugated, as well as loosely bonded. The heterogeneity of the lower half-space is due to trigonometric variation in elastic parameters of the pre-stressed inhomogeneous anisotropic medium. Expression for dispersion relation has been obtained in closed form for the present analytical model to observe the effect of undulation parameter, flatness parameter and porosity on the propagation of torsional surface waves. The obtained dispersion relation is found to be in well agreement with classical Love wave equation for a particular case. The cases of ideally smooth interface and welded interface have also been analysed. Numerical example and graphical illustrations are made to demonstrate notable effect of initial stress, wave number, heterogeneity parameter and initial stress on the phase velocity of torsional surface waves.

  10. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)

    2016-03-15

    Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.

  11. Methods to introduce sub-micrometer, symmetry-breaking surface corrugation to silicon substrates to increase light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Eon; Hoard, Brittany R.; Han, Sang M.; Ghosh, Swapnadip

    2018-04-10

    Provided is a method for fabricating a nanopatterned surface. The method includes forming a mask on a substrate, patterning the substrate to include a plurality of symmetry-breaking surface corrugations, and removing the mask. The mask includes a pattern defined by mask material portions that cover first surface portions of the substrate and a plurality of mask space portions that expose second surface portions of the substrate, wherein the plurality of mask space portions are arranged in a lattice arrangement having a row and column, and the row is not oriented parallel to a [110] direction of the substrate. The patterning the substrate includes anisotropically removing portions of the substrate exposed by the plurality of spaces.

  12. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  13. Design of superhydrophobic porous coordination polymers through the introduction of external surface corrugation by the use of an aromatic hydrocarbon building unit.

    Science.gov (United States)

    Rao, Koya Prabhakara; Higuchi, Masakazu; Sumida, Kenji; Furukawa, Shuhei; Duan, Jingui; Kitagawa, Susumu

    2014-07-28

    We demonstrate a new approach to superhydrophobic porous coordination polymers by incorporating an anisotropic crystal morphology featuring a predominant surface that is highly corrugated and terminated by aromatic hydrocarbon moieties. The resulting low-energy surface provides particularly promising hydrophobic properties without the need for postsynthetic modifications or surface processing that would block the porosity of the framework. Consequently, hydrophobic organic molecules and water vapor are able to penetrate the surface and be densely accommodated within the pores, whereas bulk water is repelled as a result of the exterior surface corrugation derived from the aromatic surface groups. This study provides a new strategy for the design and development of superhydrophobic porous materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mitigation of biofilm formation on corrugated cardboard fresh produce packaging surfaces using a novel thiazolidinedione derivative integrated in acrylic emulsion polymers

    Directory of Open Access Journals (Sweden)

    Michael eBrandwein

    2016-02-01

    Full Text Available Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analogue cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed.

  15. Corrugated megathrust revealed offshore from Costa Rica

    Science.gov (United States)

    Edwards, Joel H.; Kluesner, Jared; Silver, Eli A.; Brodsky, Emily E.; Brothers, Daniel; Bangs, Nathan L.; Kirkpatrick, James D.; Wood, Ruby; Okamato, Kristina

    2018-01-01

    Exhumed faults are rough, often exhibiting topographic corrugations oriented in the direction of slip; such features are fundamental to mechanical processes that drive earthquakes and fault evolution. However, our understanding of corrugation genesis remains limited due to a lack of in situ observations at depth, especially at subducting plate boundaries. Here we present three-dimensional seismic reflection data of the Costa Rica subduction zone that image a shallow megathrust fault characterized by corrugated, and chaotic and weakly corrugated topographies. The corrugated surfaces extend from near the trench to several kilometres down-dip, exhibit high reflection amplitudes (consistent with high fluid content/pressure) and trend 11–18° oblique to subduction, suggesting 15 to 25 mm yr−1 of trench-parallel slip partitioning across the plate boundary. The corrugations form along portions of the megathrust with greater cumulative slip and may act as fluid conduits. In contrast, weakly corrugated areas occur adjacent to active plate bending faults where the megathrust has migrated up-section, forming a nascent fault surface. The variations in megathrust roughness imaged here suggest that abandonment and then reestablishment of the megathrust up-section transiently increases fault roughness. Analogous corrugations may exist along significant portions of subduction megathrusts globally.

  16. Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces

    Science.gov (United States)

    Iliev, Stanimir; Pesheva, Nina

    2016-06-01

    We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1 -0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012), 10.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.

  17. Electromagnetic radiation of electrons in corrugated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ktitorov, S. A., E-mail: ktitorov@mail.ioffe.ru; Myhamadiarov, R. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-08-15

    Bremsstrahlung in corrugated single-layer graphene in the presence of a ballistic transport current is analyzed. Radiation of a similar nature is observed in undulators and wigglers. Regular and chaotic corrugations (ripples) are considered. It is shown that the quadratic relation between the Monge membrane function and the synthetic calibration field leads to the appearance of a central peak in the radiation spectral density. Possible formation mechanisms of single-layer graphene corrugation are proposed. In one case, the corrugation is considered as an incommensurate superstructure in a two-dimensional crystal, resulting from instability developing in the optical phonon subsystem with the formation of a periodic soliton train. Corrugation results from the interaction of subsystems. Another possible mechanism consists in instability of the membrane flat state due to strong fluctuations characteristic of two-dimensional systems.

  18. Mathematical Model for Thin-walled Corrugated Tube under Axial Compression

    Directory of Open Access Journals (Sweden)

    Eyvazian Arameh

    2016-01-01

    Full Text Available In this research, theoretical investigation of corrugated aluminum tubes is performed to predicting the energy absorption characteristics. Aim to deform plastic tubes in predetermined intervals, corrugations are introduced on its surface. Theoretical relations are presented for predicting the energy absorption and mean crushing load of corrugated tubes. Other than that, corrugation helps to control the failure mode.

  19. On the whistling of corrugated pipes with narrow cavities

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; González Diez, N.; Bendiksen, E.; Frimodt, C.

    2013-01-01

    Pipes with a corrugated inner surface, as used inflexible pipes for gas production and transport, can be subject to Flow-Induced Pulsations when the flow velocities are higher than a certain onset velocity. The onset velocity for classical corrugated pipes can be predicted on basis of the geometry

  20. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls

    International Nuclear Information System (INIS)

    Buren, Mandula; Jian, Yongjun; Chang, Long

    2014-01-01

    In this paper a perturbation method is introduced to study the electromagnetohydrodynamic (EMHD) flow in a microparallel channel with slightly corrugated walls. The corrugations of the two walls are periodic sinusoidal waves of small amplitude either in phase or half-period out of phase, and the perturbation solutions of velocity and volume flow rate are obtained. Using numerical computation the effects of the corrugations on the flow are graphically analysed. The results show that the influence of corrugation on the flow decreases with Hartmann number. The phase difference of wall corrugations becomes unimportant when the wavenumber is greater than 3 or when the Hartmann number is greater than 4. With the increase in wavenumber, the decreasing effects of corrugations on the flow increase. When the wavenumber is smaller than the threshold wavenumber (it is a function of Hartmann number) and the wall corrugations are half-period out of phase, the corrugations can enhance the mean velocity of EMHD flow. However, the mean velocity is always decreased when the corrugations are in phase. (paper)

  1. Cells on corrugations for pollution control

    International Nuclear Information System (INIS)

    Clyde, R.

    1993-01-01

    Old cardboard boxes constitute 12% of landfills. White rot fungus can be grown on the boxes and buried in contaminated soil. The fungus needs air which is entrapped in the corrugations. The fungus is sensitive to large amounts of TNT but it is protected when inside the corrugations. Fast food containers are filling landfills. Lactic acid production needs air and the polymers are biodegradable. When corrugations are put in a half full rotary unit, holes in the valleys make drops, and mass transfer to drops is much higher than to a flat surface. A lab corrugator has been made from an old washing machine wringer, so other fibers can be corrugated. When the bacterium, Zymomonas mobilis is grown on Tyvek fiber, lead and six valent chromium are removed from wastewater in a few seconds. Zymomonas on rotating fibers converts sugar to alcohol in 10--15 minutes and when a light is shown into flat rotating discs, it hits a thin moving film to destroy dioxin. Salt on roads causes millions of dollars damage to bridges and cars but calcium magnesium acetate is not corrosive and can be made with cells on rotating fibers

  2. Mechanical Behavior of Quasi-sinusoidal Corrugated Composite sheets

    Directory of Open Access Journals (Sweden)

    Pouyan Ghabezi

    2013-01-01

    Full Text Available An aircraft wing needs to display different mechanical behavior in different directions. 1- stiffness in the spanwise (transverse to the corrugation direction which enables the aerodynamic and inertial loads to be carried. 2- compliance in the chordwise (corrugation direction which would allow shape changes and increases in surface area; whereas a corrugated sheet due to their special geometry has potential to use in morphing applications. Therefore, in this paper the mechanical behaviour of quasi-sinusoidal corrugated composites is studied by commercial FEM software ABAQUS and a simple analytical model which is used for the initial stiffness of the quasi-sinusoidal corrugated composites (Yokozeki model. The elongation and effective stiffness in longitudinal and transverse directions of quasi-sinusoidal  corrugated  skins  and fat  composites  are  calculated  and  compared together.  Using  frst  and  second  Castigliano’s  theorem  and  Bernoulli-Euler  beam theorem can be used to calculate the defection and rotational angle of a beam (sheet. In this research, different dimensions of quasi-sinusoidal element for unidirectional and woven composites of E-glass/epoxy are investigated. FEM results and analytical model are compared together. Then, the analytical model is validated by experimental results of plain woven E-glass/epoxy composites. The results of FEM, experimental and analytical simulations show that how a corrugated composite can afford with certainty larger deformation than the fat composite in using this analytical model to predict the mechanical behavior of quasi-sinusoidal corrugated composites. It was found that the corrugated composites display extremely high anisotropic behavior and have high  tensile and fexural stiffness  in  transverse direction while exhibiting  low stiffness in longitudinal direction of corrugation.

  3. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  4. Composite corrugated structures for morphing wing skin applications

    International Nuclear Information System (INIS)

    Thill, C; Etches, J A; Bond, I P; Potter, K D; Weaver, P M

    2010-01-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles

  5. The mechanism of selective corrugation removal by KOH anisotropic wet etching

    International Nuclear Information System (INIS)

    Shikida, M; Inagaki, N; Sasaki, H; Amakawa, H; Fukuzawa, K; Sato, K

    2010-01-01

    The mechanism of selective corrugation removal by anisotropic wet etching—which reduces a periodic corrugation, called 'scalloping', formed on the sidewalls of microstructures by the Bosch process in deep reactive-ion etching (D-RIE)—was investigated. In particular, the corrugation-removal mechanism was analyzed by using the etching rate distribution pattern, and two equations for predicting the corrugation-removal time by the etching were derived. A Si{1 0 0} wafer was first etched by D-RIE at a depth of 29.4 µm (60 cycles) to form the corrugation on the sidewall surface. The height and pitch of the corrugation were 196 and 494 nm, respectively. Selective removal of the corrugation by using 50% KOH (40 °C) was experimentally tried. The corrugation formed on Si{1 0 0} sidewall surfaces was gradually reduced in size as the etching progressed, and it was completely removed after 5 min of etching. Similarly, the corrugation formed on a Si{1 1 0} sidewall surface was also selectively removed by KOH etching (etching time: 3 min). The roughness value of the sidewall surface was reduced from 17.6 nm to a few nanometers by the etching. These results confirm that the corrugation-removal mechanism using anisotropic wet etching can be explained in terms of the distribution pattern of etching rate

  6. Stable corrugated state of the two-dimensional electron gas

    International Nuclear Information System (INIS)

    Mendez-Moreno, R.M.; Moreno, M.; Ortiz, M.A.

    1991-01-01

    A corrugated and stable ground state is found for the two-dimensional electron gas in both the normal paramagnetic and the fully polarized phases. The self-consistent Hartree-Fock method is used with a modulated set of trial wave functions within the deformable jellium model. The results for high metallic densities reproduce the usual noncorrugated ferromagnetic electron-gas behavior. A transition to a paramagnetic corrugated state for values of r s ∼6.5 is predicted. At lower densities r s ∼30, a second transition to a corrugated ferromagnetic phase is suggested

  7. Anatomy of the Corrugator Muscle.

    Science.gov (United States)

    Hwang, Kun; Lee, Jung Hun; Lim, Hee Joong

    2017-03-01

    The aim of this article is to systematically review the anatomy and action of the corrugator muscle. PubMed and Scopus were searched using the terms "corrugator" AND "anatomy." Among the 60 full texts from the 145 relevant abstracts, 34 articles without sufficient content were excluded and 4 articles drawn from the reference lists were added. Among the 30 articles analyzed (721 hemifaces), 28% classified by oblique head and transverse head, and 72% did not. Corrugator originated mostly from the medial supraorbital rim (45%), followed by the medial frontal bone (31%), the medial infraorbital rim (17%), and the upper nasal process (7%). Corrugator extended through the frontalis and orbicularis oculi (41%), only the frontalis (41%), or only the orbicularis oculi (18%). Corrugator ran superolaterally (59%), or laterally (41%). Corrugators inserted mostly to the middle of the eyebrow (57%), or the medial half of the eyebrow (36%), but also to the glabella region (7%). The length of the corrugator ranged 38 to 53 mm. The transverse head (23.38 mm) was longer than the oblique head (19.75 mm). Corrugator was thicker at the medial canthus than at the midpupillary line. Corrugator was innervated by the temporal branch of the facial nerve (66%), the zygomatic branch (17%), or the angular nerve (zygomatic branch and buccal branch, 17%). Supraorbital nerve (60%) or supratrochlear nerve (40%) penetrated the corrugator. The action was depressing, pulling the eyebrow medially (91%), or with medial eyebrow elevation and lateral eyebrow depression (9%). Surgeons must keep this anatomy in mind during surgical procedures.

  8. Stylus type MEMS texture sensor covered with corrugated diaphragm

    Science.gov (United States)

    Tsukamoto, Takashiro; Asao, Hideaki; Tanaka, Shuji

    2017-09-01

    In this paper, a stylus type MEMS texture sensor covered with a corrugated palylene diaphragm, which prevent debris from jamming into the sensor without significant degradation of sensitivity and bandwidth, was reported. A new fabrication process using a lost-foil method to make the corrugated diaphragm on a 3-axis piezoresistive force sensor at wafer level has been developed. The texture sensor could detect the surface microstructure as small as about 10 \

  9. Characterisation of Functional Surfaces

    DEFF Research Database (Denmark)

    Lonardo, P.M.; De Chiffre, Leonardo; Bruzzone, A.A.

    2004-01-01

    Characterisation of surfaces is of fundamental importance to control the manufacturing process and the functional performance of the part. Many applications concern contact and tribology problems, which include friction, wear and lubrication. This paper presents the techniques and instruments for...

  10. Heat transfer enhancement in two-start spirally corrugated tube

    Directory of Open Access Journals (Sweden)

    Zaid S. Kareem

    2015-09-01

    Full Text Available Various techniques have been tested on heat transfer enhancement to upgrade the involving equipment, mainly in thermal transport devices. These techniques unveiled significant effects when utilized in heat exchangers. One of the most essential techniques used is the passive heat transfer technique. Corrugations represent a passive technique. In addition, it provides effective heat transfer enhancement because it combined the features of extended surfaces, turbulators and artificial roughness. Therefore, A Computational Fluid Dynamics was employed for water flowing at low Reynolds number in spiral corrugated tubes. This article aimed for the determination of the thermal performance of unique smooth corrugation profile. The Performance Evaluation Criteria were calculated for corrugated tubes, and the simulation results of both Nusselt number and friction factor were compared with those of standard plain and corrugated tubes for validation purposes. Results showed the best thermal performance range of 1.8–2.3 for the tube which has the severity of 45.455 × 10−3 for Reynolds number range of 100–700. The heat transfer enhancement range was 21.684%–60.5402% with friction factor increase of 19.2–36.4%. This indicated that this creative corrugation can improve the heat transfer significantly with appreciably increasing friction factor.

  11. Numerical Investigation of the Fully-Developed Periodic Flow Field for Optimal Heat Transfer in Spirally Corrugated Tubes

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    Even though the corrugated tube is a widely used technique to enhance transfer heat, the exact heat transfer enhancing mechanism remains relatively un-documented. Most studies attribute the favourable heat transfer characteristics to a swirling flow being present at higher corrugation....... In this study, a systematic approach relying on Computational Fluid Dynamics (CFD) is used to study and compare the heat transfer characteristics with the detailed flow field in the spirally corrugated tubes. By comparing the flow in 12 different spirally corrugated tubes at a fixed Reynolds number of 5000......, this study compares the flow field with the surface averaged Nusselt number to gain valuable insight into which flow phenomena causes favourable heat transfer characteristics. While the flow at low corrugations approximates the non-corrugated tube, higher corrugations of h/D creates a significant tangential...

  12. Whistling of pipes with narrow corrugations: scale model tests and consequences for carcass design

    NARCIS (Netherlands)

    Golliard, J.; Belfroid, S.P.C.; Bendiksen, E.; Frimodt, C.

    2013-01-01

    Pipes for gas production and transport with a corrugated inner surface, as used in flexible pipes, can be subject to Flow-Induced Pulsations when the flow velocity is larger than a certain velocity. This onset velocity is dependent on the geometry of the corrugations, the operational conditions and

  13. The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Persson, Bo N. J.

    2016-01-01

    The properties of linear alkane lubricants confined between two approaching solids are investigated by a model that accounts for the roughness, curvature and elastic properties of the solid surfaces. We consider linear alkanes of different chain lengths from [Formula: see text] to [Formula: see...

  14. Detection of rail corrugation based on fiber laser accelerometers

    International Nuclear Information System (INIS)

    Huang, Wenzhu; Zhang, Wentao; Li, Fang; Du, Yanliang; Sun, Baochen; Ma, Huaixiang

    2013-01-01

    Efficient inspection methods are necessary for detection of rail corrugation to improve the safety and ride quality of railway operations. This paper presents a novel fiber optic technology for detection of rail corrugation based on fiber laser accelerometers (FLAs), tailored to the measurement of surface damage on rail structures. The principle of detection of rail corrugation using double integration of axle-box acceleration is presented. Then we present the theoretical model and test results of FLAs which are installed on the bogie to detect the vertical axle-box acceleration of the train. Characteristics of high sensitivity and large dynamic range are achieved when using fiber optic interferometric demodulation. A flexible inertial algorithm based on double integration and the wavelet denoising method is proposed to accurately estimate the rail corrugation. A field test is carried out on the Datong–Qinhuangdao Railway in north China. The test results are compared with the results of a rail inspection car, which shows that the fiber laser sensing system has a good performance in monitoring rail corrugation. (paper)

  15. Numerical analysis of beam with sinusoidally corrugated webs

    Science.gov (United States)

    Górecki, Marcin; Pieńko, Michał; Łagoda, GraŻyna

    2018-01-01

    The paper presents numerical tests results of the steel beam with sinusoidally corrugated web, which were performed in the Autodesk Algor Simulation Professional 2010. The analysis was preceded by laboratory tests including the beam's work under the influence of the four point bending as well as the study of material characteristics. Significant web's thickness and use of tools available in the software allowed to analyze the behavior of the plate girder as beam, and also to observe the occurrence of stresses in the characteristic element - the corrugated web. The stress distribution observed on the both web's surfaces was analyzed.

  16. Influence of charge carriers on corrugation of suspended graphene

    Science.gov (United States)

    Kirilenko, Demid A.; Gorodetsky, Andrei; Baidakova, Marina V.

    2018-02-01

    Electronic degrees of freedom are predicted to play a significant role in mechanics of two-dimensional crystalline membranes. Here we show that appearance of charge carriers may cause a considerable impact on suspended graphene corrugation, thus leading to additional mechanism resulting in charge carriers mobility variation with their density. This finding may account for some details of suspended graphene conductivity dependence on its doping level and suggests that proper modeling of suspended graphene-based device properties must include the influence of charge carriers on its surface corrugation.

  17. Singing mitigation in corrugated tubes with liquid injection

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Golliard, J.; Vijlbrief, O.

    2013-01-01

    Pipes with a corrugated inner surface, as used in flexible pipes for gas production and transport, can generate a high amplitude tonal sound (singing). Small quantities of liquid can result in a significant amplitude reduction or total mitigation of this sound production. To evaluate different

  18. Effect of long-range structural corrugations on magnetotransport properties of phosphorene in tilted magnetic field

    Science.gov (United States)

    Mogulkoc, A.; Modarresi, M.; Rudenko, A. N.

    2017-08-01

    Rippling is an inherent quality of two-dimensional materials playing an important role in determining their properties. Here, we study the effect of structural corrugations on the electronic and transport properties of monolayer black phosphorus (phosphorene) in the presence of tilted magnetic field. We follow a perturbative approach to obtain analytical corrections to the spectrum of Landau levels induced by a long-wavelength corrugation potential. We show that surface corrugations have a non-negligible effect on the electronic spectrum of phosphorene in tilted magnetic field. Particularly, the Landau levels are shown to exhibit deviations from the linear field dependence. The observed effect become especially pronounced at large tilt angles and corrugation amplitudes. Magnetotransport properties are further examined in the low temperature regime taking into account impurity scattering. We calculate magnetic field dependence of the longitudinal and Hall resistivities and find that the nonlinear effects reflecting the corrugation might be observed even in moderate fields (B <10 T).

  19. Beam Expansion of Blind Spot Detection Radar Antennas Using a Radome with Defected Corrugated Inner Wall

    Directory of Open Access Journals (Sweden)

    Hayeon Kim

    2017-01-01

    Full Text Available A beam expanding radome for 76.5 GHz automotive radar antennas is presented whose inner surface is engraved with corrugations. The radar used for blind spot detection (BSD requires a very wide beam width to ensure longer time for tracking out-of-sight objects. It is found that the corrugations modulate the phase velocities of the waves along the surface, which increases beam width in the far field. In addition, defects in the corrugation increase beam width even further. The presented structure satisfies the beam width requirement while keeping a low profile.

  20. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  1. Flow around a corrugated wing over the range of dragonfly flight

    Science.gov (United States)

    Padinjattayil, Sooraj; Agrawal, Amit

    2017-11-01

    The dragonfly flight is very much affected by the corrugations on their wings. A PIV based study is conducted on a rigid corrugated wing for a range of Reynolds number 300-12000 and three different angles of attack (5°-15°) to understand the mechanism of dragonfly flight better. The study revealed that the shape of the corrugation plays a key role in generating vortices. The vortices trapped in the valleys of corrugation dictates the shape of a virtual airfoil around the corrugated wing. A fluid roller bearing effect is created over the virtual airfoil when the trapped vortices merge with each other. A travelling wave produced by the moving virtual boundary around the fluid roller bearings avoids the formation of boundary layer on the virtual surface, thereby leading to high aerodynamic performance. It is found that the lift coefficient increases as the number of vortices increases on the suction surface. Also, it is shown that the partially merged co- rotating vortices give higher lift as compared to fully merged vortices. Further, the virtual airfoil formed around the corrugated wing is compared with a superhydrophobic airfoil which exhibits slip on its surface; several similarities in their flow characteristics are observed. The corrugated airfoil performs superior to the superhydrophobic airfoil in the aerodynamic efficiency due to the virtual slip caused by the travelling wave.

  2. Influence of geometrical parameters on turbulent flow and heat transfer characteristics in outward helically corrugated tubes

    International Nuclear Information System (INIS)

    Wang, Wei; Zhang, Yaning; Li, Bingxi; Han, Huaizhi; Gao, Xiaoyan

    2017-01-01

    Highlights: • The outward helically corrugated tube is suitable for high pressure fluids. • The effects of corrugation height and pitch on turbulent flow are investigated. • The relationships among swirl, rotational flow and heat transfer are discussed. - Abstract: Concerning a novel outward helically corrugated tube manufactured through hydraulic forming under 290 MPa, a numerical study was conducted to investigate the mechanism of turbulent flow dynamics and heat transfer enhancement based on the Reynolds stress model (RSM) using the FLUENT software. A validation of the Reynolds stress model for turbulent flow over a wavy surface was performed, and the results were then compared with the results from a large eddy simulation (LES) model and with experimental measurements. The helically corrugated tubes with different corrugation height-to-diameter ratios and pitch-to-diameter ratios are then evaluated to explore their influence on turbulent flow and heat transfer. It was found that the intensity of swirl flow was enhanced with an increase in the corrugation height, and it increased with a decrease in the corrugation pitch, the intensification of the swirl flow strengthens the heat transfer and resistance characteristics. The intensity of rotational flow was enhanced with an increase in the corrugation height, and increased with an increase in the corrugation pitch; the enhanced rotational flow causes an inhibition effect on heat transfer and resistance. Moreover, the maximum values of the local Nusselt number and the friction factor along the walls were observed at the reattachment point, and their minimum values appeared at the core of the swirl flow. It is therefore reasonable to keep the corrugation height-to-diameter ratios be less than 0.1, and the pitch-to-diameter ratios be less than 2 to ensure that the growth rate of the heat transfer is greater than the growth rate of the flow resistance.

  3. Experimental studies of Steel Corrugated Constructions

    Directory of Open Access Journals (Sweden)

    Lazarev Yuriy

    2016-01-01

    Full Text Available The purpose of this particular article is to assess existing calculations of steel corrugated constructions. Steel Corrugated Construction is a perspective type of constructions, which is exhibiting numerous advantages in comparison with one that currently applied in automobile and railroad networks (reinforced concrete water-throughput pipes, reinforced concrete frame bridges. The evaluation of experimental data on models of constructions of this particular type has been carried out in order to improve calculations of Steel Corrugated Constructions.

  4. Linear Corrugating - Final Technical Report; FINAL

    International Nuclear Information System (INIS)

    Lloyd Chapman

    2000-01-01

    Linear Corrugating is a process for the manufacture of corrugated containers in which the flutes of the corrugated medium are oriented in the Machine Direction (MD) of the several layers of paper used. Conversely, in the conventional corrugating process the flutes are oriented at right angles to the MD in the Cross Machine Direction (CD). Paper is stronger in MD than in CD. Therefore, boxes made using the Linear Corrugating process are significantly stronger-in the prime strength criteria, Box Compression Test (BCT) than boxes made conventionally. This means that using Linear Corrugating boxes can be manufactured to BCT equaling conventional boxes but containing 30% less fiber. The corrugated container industry is a large part of the U.S. economy, producing over 40 million tons annually. For such a large industry, the potential savings of Linear Corrugating are enormous. The grant for this project covered three phases in the development of the Linear Corrugating process: (1) Production and evaluation of corrugated boxes on commercial equipment to verify that boxes so manufactured would have enhanced BCT as proposed in the application; (2) Production and evaluation of corrugated boxes made on laboratory equipment using combined board from (1) above but having dual manufactures joints (glue joints). This box manufacturing method (Dual Joint) is proposed to overcome box perimeter limitations of the Linear Corrugating process; (3) Design, Construction, Operation and Evaluation of an engineering prototype machine to form flutes in corrugating medium in the MD of the paper. This operation is the central requirement of the Linear Corrugating process. Items I and II were successfully completed, showing predicted BCT increases from the Linear Corrugated boxes and significant strength improvement in the Dual Joint boxes. The Former was constructed and operated successfully using kraft linerboard as the forming medium. It was found that tensile strength and stretch

  5. Nonlinear finite element modeling of corrugated board

    Science.gov (United States)

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  6. Flow induced pulsations generated in corrugated tubes

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Swindell, R.; Tummers, R.

    2008-01-01

    Corrugated tubes can produce a tonal noise when used for gas transport, for instance in the case of flexible risers. The whistling sound is generated by shear layer instability due to the boundary layer separation at each corrugation. This whistling is examined by investigating the frequency,

  7. Magnetic anisotropy of cobalt nanoparticle 2D arrays grown on corrugated MnF{sub 2}(1 1 0) and CaF{sub 2}(1 1 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, D.A., E-mail: dbaranov@mail.ioffe.ru [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Krichevtsov, B.B.; Gastev, S.V.; Banschikov, A.G.; Fedorov, V.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Koshmak, K.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Suturin, S.M.; Sokolov, N.S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation)

    2013-02-15

    Cobalt nanoparticle 2D arrays with different effective thicknesses of cobalt layer (2 nm < d{sub eff} < 10 nm) were grown by molecular beam epitaxy on CaF{sub 2}(1 1 0)/Si(0 0 1) and MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) substrates with corrugated morphology of the surface. Surface morphology analysis showed that for effective thickness of cobalt layer d{sub eff} = 5 nm the lateral dimensions of cobalt islands are about 5–10 nm and the distances between the islands differs in a half along and across the grooves. In both types of the heterostructures the shape of hysteresis loops measured by LMOKE depend on orientation of in-plane magnetic field relative to the direction of the grooves. The azimuthal dependence of coercive field H{sub c} in Co/CaF{sub 2}(1 1 0)/Si(0 0 1) structures corresponds to Stoner–Wohlfarth model's predictions, which takes into account the anisotropy of individual particles. In contrast to that, in Co/MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) structures these dependences are analogous to those predicted by the model based on account of magnetic–dipole interaction between particles which are placed in chains (chain-of-spheres-model). Possible explanations of the difference in magnetic anisotropy are suggested.

  8. Applicability of magic angle for angle-resolved X-ray photoelectron spectroscopy of corrugated SiO.sub.2./sub./Si surfaces: Monte Carlo calculations

    Czech Academy of Sciences Publication Activity Database

    Olejník, Kamil; Zemek, Josef

    2008-01-01

    Roč. 602, - (2008), s. 2581-2586 ISSN 0039-6028 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : photoelectron spectroscopy * surface roughness * Monte Carlo calculations * magic angle * overlayer thickness Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.731, year: 2008

  9. Classical theory for the in-plane scattering of atoms from corrugated surfaces: application to the Ar-Ag(111) system.

    Science.gov (United States)

    Pollak, Eli; Miret-Artés, Salvador

    2009-05-21

    A classical Wigner in-plane atom surface scattering perturbation theory within the generalized Langevin equation formalism is proposed and discussed with applications to the Ar-Ag(111) system. The theory generalizes the well-known formula of Brako as well as the "washboard model." Explicit expressions are derived for the joint angular and final momentum distributions, joint final energy, and angular distributions as well as average energy losses to the surface. The theory provides insight into the intertwining between the energy loss and angular dependence of the scattering. At low energies the energy loss in the horizontal direction is expected to be large, leading to a shift of the maximum of the angular distribution to subspecular angles, while at high energies the energy loss in the vertical direction dominates, leading to a superspecular maximum in the angular distribution. The same effect underlies the negative slope of the average final (relative) energy versus scattering angle at low energies which becomes positive at high energies. The theory also predicts that the full width at half maximum of the angular distribution varies as the square root of the temperature. We show how the theory provides insight into the experimental results for scattering of Ar from the Ag(111) surface.

  10. Fabrication of corrugated artificial insect wings using laser micromachined molds

    International Nuclear Information System (INIS)

    Tanaka, Hiroto; Wood, Robert J

    2010-01-01

    This paper describes the fabrication of an artificial insect wing with a rich set of topological features by micromolding a thermosetting resin. An example 12 mm long hoverfly-like wing is fabricated with 50–125 µm vein heights and 100 µm corrugation heights. The solid veins and membrane were simultaneously formed and integrated by a single molding process. Employing a layered laser ablation technique, three-dimensional molds were created with 5 µm resolution in height. Safe demolding of the wing was achieved with a water-soluble sacrificial layer on the mold. Measured surface profiles of the wing matched those of the molds, demonstrating the high replication accuracy of this molding process. Using this process, the morphological features of insect wings can be replicated at-scale with high precision, enabling parametric experiments of the functional morphology of insect wings. This fabrication capability also makes it possible to create a variety of wing types for micro air vehicles on scales similar to insects.

  11. Vicinal surfaces for functional nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)], E-mail: tegenkamp@fkp.uni-hannover.de

    2009-01-07

    Vicinal surfaces are currently the focus of research. The regular arrangements of atomic steps on a mesoscopic scale reveal the possibility to functionalize these surfaces for technical applications, e.g. nanowires, catalysts, etc. The steps of the vicinal surface are well-defined defect structures of atomic size for nucleation of low-dimensional nanostructures. The concentration and therefore the coupling between the nanostructures can be tuned over a wide range by simply changing the inclination angle of the substrate. However, the coupling of these nano-objects to the substrate is just as important in controlling their electronic or chemical properties and making a functionality useable. On the basis of stepped insulating films, these aspects are fulfilled and will be considered in the first part of this review. Recent results for the epitaxial growth of wide bandgap insulating films (CaF{sub 2}, MgO, NaCl, BaSrO) on metallic and semiconducting vicinal substrates (Si(100), Ge(100), Ag(100)) will be presented. The change of the electronic structure, the adsorption behavior as well as the kinetics and energetics of color centers in the presence of steps is discussed. The successful bridging of the gap between the atomic and mesoscopic world, i.e. the functionalization of vicinal surfaces by nanostructures, is demonstrated in the second part by metal adsorption on semiconducting surfaces. For (sub)monolayer coverage these systems have in common that the surface states do not hybridize with the support, i.e. the semiconducting surfaces are insulating. Here I will focus on the latest results of macroscopic transport measurements on Pb quantum wires grown on vicinal Si(111) showing indeed a one-dimensional transport behavior. (topical review)

  12. Theory of static friction: temperature and corrugation effects

    International Nuclear Information System (INIS)

    Franchini, A; Brigazzi, M; Santoro, G; Bortolani, V

    2008-01-01

    We present a study of the static friction, as a function of temperature, between two thick solid slabs. The upper one is formed of light particles and the substrate of heavy particles. We focus our attention on the interaction between the phonon fields of the two blocks and on the interface corrugation, among the various mechanisms responsible for the friction. To give evidence of the role played by the dynamical interaction of the substrate with the upper block, we consider both a substrate formed by fixed atoms and a substrate formed by mobile atoms. To study the effect of the corrugation, we model it by changing the range parameter σ in the Lennard-Jones interaction potential. We found that in the case of the mobile substrate there is a large momentum transfer from the substrate to the upper block. This momentum transfer increases on increasing the temperature and produces a large disorder in the upper block favouring a decrease of the static friction with respect to the case for a rigid substrate. Reducing the corrugation, we found that with a rigid substrate the upper block becomes nearly commensurate, producing an enhancement of the static friction with respect to that with a mobile substrate

  13. Effects of corrugation parameters on fluid mixing characteristics in corrugated passages

    Science.gov (United States)

    Gaiser, Gerd; Kottke, Volker

    1991-05-01

    Static mixers are well established in process engineering. Their particular advantages are in-line mixing, no moving parts, low power consumption, and simultaneous homogenization of residence time behavior. Several species of static mixers are well known. An example of their arrangement is based on corrugated passages formed by layers of single plates with opposing orientation. Until now, the corrugation parameters of this species have mainly been designed according to few experimental studies. However, flow phenomena, implied by the geometry of the corrugated structure, are of significant influence on the mixing behavior, the pressure drop, and the residence time characteristics in corrugated passages. In new investigations, the effects of a variety of corrugation parameters on flow phenomena, mixing characteristics/and pressure drop have been systematically determined. The results prove that there are quite different kinds of flow phenomena depending on the geometrical parameters of the structure. Some parameter combinations lead to no mixing at all, others lead to a homogeneous mixing within a small length. Examples are shown of flow behavior in corrugated passages; here the flow has been traced locally making the flow direction evident. The effects of corrugation parameters on the fundamental flow phenomena will be discussed. In order to describe and predict the flow behavior in these corrugated passages, a model has been set up based on the fundamental flow phenomena. This model allows the simulation of flow behavior in corrugated passages, thereby allowing, also, the simulation of the mixing characteristics and the residence time behavior of the fluid in these structures. Examples of the simulation, where the local addition of a tracer and its mixing across the structure has been simulated, are shown. Further results of flow simulation on mixing characteristics and dynamic aspects will be compared to experiments. Combined with the pressure drop in corrugated

  14. Passive heat transfer enhancement in 3D corrugated tube

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Engelbrecht, Kurt; Bahl, Christian

    2017-01-01

    An innovative hydraulic design was studied for corrugated tube geometry for a heat exchanger. An ellipse based double corrugation was used as a concept of the geometry. The hydraulic diameter (Dh) is maintained over the tube length while the shape of the cross section varies continuously along...... the flow direction. 38 corrugated tubes with a Dh of 5 mm were studied numerically with corrugation heights from 0.23 to 0.69 mm and corrugation periods from 5 to 50 mm for laminar flow with water. Computational fluid dynamics (CFD) is used as a tool to study the effect of corrugation geometry on heat...

  15. An effective field study of the magnetic properties and critical behaviour at the surface Ising film

    International Nuclear Information System (INIS)

    Bengrine, M.; Benyoussef, A.; Ez-Zahraouy, H.; Mhirech, F.

    1998-09-01

    The influence of corrugation and disorder at the surface on the critical behaviour of a ferromagnetic spin-1/2 Ising film is investigated using mean-field theory and finite cluster approximation. It is found that the critical surface exponent β 1 follows closely the one of a perfect surface, in the two cases: corrugated surface and random equiprobable coupling surface. However, in the case of flat surface with random interactions the surface critical exponent β 1 depends on the concentration p of the strong interaction for p>p c =0,5, while for p≤p c , such critical exponent is independent on the value of p and is equal to the one of the perfect surface. Moreover, in the case of corrugated surface, the effective exponent for a layer z, β eff J(z,n), is calculated as a function of the number of steps at the surface. (author)

  16. Design of Corrugated Plates for Optimal Fundamental Frequency

    Directory of Open Access Journals (Sweden)

    Nabeel Alshabatat

    2016-01-01

    Full Text Available This paper investigates shifting the fundamental frequency of plate structures by corrugation. Creating corrugations significantly improves the flexural rigidities of plate and hence increases its natural frequencies. Two types of corrugations are investigated: sinusoidal and trapezoidal corrugations. The finite element method (FEM is used to model the corrugated plates and extract the natural frequencies and mode shapes. The effects of corrugation geometrical parameters on simply supported plate fundamental frequency are studied. To reduce the computation time, the corrugated plates are modeled as orthotropic flat plates with equivalent rigidities. To demonstrate the validity of modeling the corrugated plates as orthotropic flat plates in studying the free vibration characteristics, a comparison between the results of finite element model and equivalent orthotropic models is made. A correspondence between the results of orthotropic models and the FE models is observed. The optimal designs of sinusoidal and trapezoidal corrugated plates are obtained based on a genetic algorithm. The optimization results show that plate corrugations can efficiently maximize plate fundamental frequency. It is found that the trapezoidal corrugation can more efficiently enhance the fundamental frequency of simply supported plate than the sinusoidal corrugation.

  17. Effect of Corrugation Angle on Heat Transfer Studies of Viscous Fluids in Corrugated Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    B Sreedhara Rao

    2015-04-01

    Full Text Available In the present investigation heat transfer studies are conducted in corrugated plate heat exchangers (PHEs having three different corrugation angles of 300, 400 and 500. The plate heat exchangers have a length of 30 cm and a width of 10 cm with a spacing of 5 mm. Water and 20% glycerol solution are taken as test fluids and hot fluid is considered as heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by means of thermocouples. The inlet and outlet temperatures of test fluid and hot fluid are measured by means of four more thermocouples. The experiments are conducted at a flowrate ranging from 0.5 lpm to 6 lpm with the test fluid. Film heat transfer coefficient and Nusselt number are determined from the experimental data. These values are compared with different corrugation angles. The effects of corrugation angles on heat transfer rates are discussed.

  18. Treatment Outcomes of Auricular Hematoma Using Corrugated ...

    African Journals Online (AJOL)

    In managing four patients who presented with this condition, the author has used a corrugated drain made of flexible soft rubber, which causes no tissue reaction and has the ability to mold to the shape of the pinna. It is also readily available locally and quite affordable. That two of the patients presented were factory workers ...

  19. Constructive fire protection of steel corrugated beams of buildings and other structures

    Directory of Open Access Journals (Sweden)

    Ilyin Nikolay

    2017-01-01

    Full Text Available The research introduces a methodology of establishing indicators of fire safety of a building in relation to a guaranteed duration of steel fire-proof corrugated beams resistance in conditions of standard fire tests. Indicators of fire safety are also established in the assessment of design limits of steel fire-proof corrugated beams during design process, construction or maintenance of the building as well as in reducing economic costs when testing steel structures for fire resisting property. The suggested methodology introduces the system of actions aimed to design constructive fire protection of steel corrugated beams of buildings. Technological effect is achieved by conducting firing tests of steel construction by non-destructive methods; the evaluation of fire resistance of fire-proof elements of corrugated beams (corrugated web, upper and lower shelves is identified by the least fire-proof element of a welded I-beam. In this methodology fire resistance duration of the constituent elements of a welded I-beam with account of its fire protection ability is described with an analytic function taken as variables. These variables are intensity strength of stresses and the degree of fire protection of a compound element.

  20. Stiffness Matrices and Anisotropy in the Trapezoidal Corrugated Composite Sheets

    Directory of Open Access Journals (Sweden)

    Mohammad Golzar

    2013-10-01

    Full Text Available In the some applications like as morphing technology, high strain and anisotropic behavior are essential design requirements. The corrugated composite sheets due to their special geometries have potential to high deflection under axial loading through longitudinal direction of corrugation. In this research, the strain and the anisotropic behavior of corrugated composite sheets are investigated by fabricating glass/epoxy samples with trapezoidal geometries. For evaluation of the mechanical behavior of the composites the samples were subjected to tension and flexural tests in the longitudinal and transverse directions of corrugation. In order to determine anisotropic behavior of the corrugated sheets, two approaches were introduced: (1 tensile anisotropic (E* and (2 flexural anisotropic (D*. The anisotropic behavior and ultimate deflections were investigated theoretically and experimentally. In this paper, mechanical behaviors based on theoretical and experimental analysis including the elastic constants and stiffness matrices of trapezoidal corrugated composite sheets were studied and the results were verified by finite element method. The results of the numerical and analytical solutions were compared with those of experimental tests. Finally, the load-displacement curves of tensile tests in longitudinal direction of corrugation, the ultimate deflection and anisotropy behavior of these exclusive composite sheets in the corrugated composite sheets were studied experimentally. The experimental results of the trapezoidal corrugated sheets showed that one of the most important parameters in the ultimate strain was amplitude of the corrugation elements. Generally, increasing the amplitude and element per length unit of trapezoidal corrugated specimen led to higher ultimate strain.

  1. Hydraulic and thermal behaviour of a corrugated plane canal. Application to plate-based heat exchangers

    International Nuclear Information System (INIS)

    Amblard, Alain

    1986-01-01

    As corrugations are often used in heat exchangers in order to promote heat exchange mechanisms through a reduction of boundary layer thickness, an increase of turbulence within the boundary layer, and an increase of exchange surface, the objectives of this research thesis are, on the one hand, to determine the influence of corrugation geometry on heat exchange and friction laws, and, on the other hand, to develop a computing software to describe the flow and heat exchange in the elementary canal. This study is limited to the case of single-phase forced convection in water. After a bibliographical overview on the hydraulic and thermal behaviour of corrugated surfaces used in heat exchangers, the author presents the different studied geometries, and the experimental installation used to determine the friction and exchange coefficient in a vertical duct formed by two corrugated plates. Experimental results are presented and compared with respect to the shape of exchange surfaces. The author then reports the use of two-dimensional code used to describe the flow in an exchanger duct [fr

  2. Imaging local electronic corrugations and doped regions in graphene.

    Science.gov (United States)

    Schultz, Brian J; Patridge, Christopher J; Lee, Vincent; Jaye, Cherno; Lysaght, Patrick S; Smith, Casey; Barnett, Joel; Fischer, Daniel A; Prendergast, David; Banerjee, Sarbajit

    2011-06-28

    Electronic structure heterogeneities are ubiquitous in two-dimensional graphene and profoundly impact the transport properties of this material. Here we show the mapping of discrete electronic domains within a single graphene sheet using scanning transmission X-ray microscopy in conjunction with ab initio density functional theory calculations. Scanning transmission X-ray microscopy imaging provides a wealth of detail regarding the extent to which the unoccupied levels of graphene are modified by corrugation, doping and adventitious impurities, as a result of synthesis and processing. Local electronic corrugations, visualized as distortions of the π*cloud, have been imaged alongside inhomogeneously doped regions characterized by distinctive spectral signatures of altered unoccupied density of states. The combination of density functional theory calculations, scanning transmission X-ray microscopy imaging, and in situ near-edge X-ray absorption fine structure spectroscopy experiments also provide resolution of a longstanding debate in the literature regarding the spectral assignments of pre-edge and interlayer states.

  3. Density functional theory formulation for fluid adsorption on correlated random surfaces

    Science.gov (United States)

    Aslyamov, Timur; Khlyupin, Aleksey

    2017-10-01

    We provide novel random surface density functional theory (RSDFT) formulation in the case of geometric heterogeneous surfaces of solid media which is essential for the description of thermodynamic properties of confined fluids. The major difference of our theoretical approach from the existing ones is a stochastic model of solid surfaces which takes into account the correlation properties of geometry. The main building blocks are effective fluid-solid potentials developed in the work of Khlyupin and Aslyamov [J. Stat. Phys. 167, 1519 (2017)] and geometry-based modification of the Helmholtz free energy for Lennard-Jones fluids. The efficiency of RSDFT is demonstrated in the calculation of argon and nitrogen low temperature adsorption on real heterogeneous surfaces (BP280 carbon black). These results are in good agreement with experimental data published in the literature. Also several models of corrugated materials are developed in the framework of RSDFT. Numerical analysis demonstrates a strong influence of surface roughness characteristics on adsorption isotherms. Thus the developed formalism provides a connection between a rigorous description of the stochastic surface and confined fluid thermodynamics.

  4. Determination of transfer parameters in corrugated plates exchangers

    International Nuclear Information System (INIS)

    Silva Lima Filho, S. da.

    1984-01-01

    In this work is presented a experimental study about the forced convenction problem in vee-corrugated exchangers, with flow in the transversal sense, and parallel plates exchangers in which the isotermal plate is equivalent to the absobing one and the other plate is adiabatic. Global values of the transfer coefficients were experimentally obtained by application of the Naphthalene Sublimation Technique in accordance with the analogy between heat and mass transfer. The results were expressed in terms of Sh sup(-) /Sc sup(0,4) that according to the analogy is equal the Nu sup(-) / Pr sup(0,4) in function of the Reynolds number. The ratio between the lenght of the channel and the average spacing between plates L/2a was ranged in all the exchangers. Parameters of transfer to angles of 45 0 and 31 0 were determined in the corrugated plates exchangers. The experimental results obtained were analyzed and compared among them. Finally practical applications of these results are presented to heat exchangers with similars geometric characteristics. (Author) [pt

  5. Post-Hartree-Fock studies of the He/Mg(0001) interaction: Anti-corrugation, screening, and pairwise additivity

    Science.gov (United States)

    de Lara-Castells, María Pilar; Fernández-Perea, Ricardo; Madzharova, Fani; Voloshina, Elena

    2016-06-01

    The adsorption of noble gases on metallic surfaces represents a paradigmatic case of van-der-Waals (vdW) interaction due to the role of screening effects on the corrugation of the interaction potential [J. L. F. Da Silva et al., Phys. Rev. Lett. 90, 066104 (2003)]. The extremely small adsorption energy of He atoms on the Mg(0001) surface (below 3 meV) and the delocalized nature and mobility of the surface electrons make the He/Mg(0001) system particularly challenging, even for state-of-the-art vdW-corrected density functional-based (vdW-DFT) approaches [M. P. de Lara-Castells et al., J. Chem. Phys. 143, 194701 (2015)]. In this work, we meet this challenge by applying two different procedures. First, the dispersion-corrected second-order Möller-Plesset perturbation theory (MP2C) approach is adopted, using bare metal clusters of increasing size. Second, the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)] is applied at coupled cluster singles and doubles and perturbative triples level, using embedded cluster models of the metal surface. Both approaches provide clear evidences of the anti-corrugation of the interaction potential: the He atom prefers on-top sites, instead of the expected hollow sites. This is interpreted as a signature of the screening of the He atom by the metal for the on-top configuration. The strong screening in the metal is clearly reflected in the relative contribution of successively deeper surface layers to the main dispersion contribution. Aimed to assist future dynamical simulations, a pairwise potential model for the He/surface interaction as a sum of effective He-Mg pair potentials is also presented, as an improvement of the approximation using isolated He-Mg pairs.

  6. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  7. Dynamic tension testing equipment for paperboard and corrugated fiberboard

    Science.gov (United States)

    W. D. Godshall

    1965-01-01

    The objective of this work was to develop a method, the testing equipment, and the instrumentation with which dynamic stress-strain information may be obtained for paperboards and built-up corrugated fiberboards as used in corrugated fiberboard containers. Much information is available on the properties of these materials when subjected to static or low rates of...

  8. Functionals of finite Riemann surfaces

    CERN Document Server

    Schiffer, Menahem

    1954-01-01

    This advanced monograph on finite Riemann surfaces, based on the authors' 1949-50 lectures at Princeton University, remains a fundamental book for graduate students. The Bulletin of the American Mathematical Society hailed the self-contained treatment as the source of ""a plethora of ideas, each interesting in its own right,"" noting that ""the patient reader will be richly rewarded."" Suitable for graduate-level courses, the text begins with three chapters that offer a development of the classical theory along historical lines, examining geometrical and physical considerations, existence theo

  9. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  10. The Role of CorrugateDrain In Decreasing Postoperative Complication Of Penile Fracture Surgery

    Directory of Open Access Journals (Sweden)

    Salam Abd El-Ameer Almosawi

    2017-12-01

    Full Text Available Objective:tostudy the role of corrugate drain (which is used by some urosurgeons followed surgical correction of fractured penis in decreasing post operative complications such as penile swelling, pain and curvature. Patient and method:comparative cross sectional study was carried out at the urological department of Al-Hilla teaching hospital from March 2008 to April 2011. Twenty male patients (age between 21-40 years admitted to the urological department in Al-Hila teaching hospital suffering from penile fracture from March 2008 to April 2011 were included in this study. Immediate surgical repair done to all those patients ,corrugate drain put post operatively for 10 patients while the remaining 10 patients without drains. All patients are fallowed for at least 3 months regarding postoperative penile swelling, deformity, pain and sexual function. Result:regarding age distribution of patients suffering from fracture penis, from twenty patients included in this study 11 patients their agerange from (20-30years, 7 patients their age group range from (31-45years and only 2 patients their age range from (46-60years. Fifteen patients are married and only 5 patients are unmarried. No one develop postoperative penile swelling in patients with corrugate drain and only one patient develops swelling in patients without corrugate drain. Regarding postoperative pain, in patients surgically corrected with drain, 6 patients develop pain and only 2 patients surgically corrected without drain develops pain. Conclusion:No beneficial effect of corrugate drain in decreasing postoperative penile swelling or curvature and on the other hand it increase post operative penile pain.

  11. The Role of CorrugateDrain In Decreasing Postoperative Complication Of Penile Fracture Surgery

    Directory of Open Access Journals (Sweden)

    Salam Abd El-Ameer Almosawi

    2017-12-01

    Full Text Available Objective:tostudy the role of corrugate drain (which is used by some urosurgeons followed surgical correction of fractured penis in decreasing post operative complications such as penile swelling, pain and curvature. Patient and method:comparative cross sectional study was carried out at the urological department of Al-Hilla teaching hospital from March 2008 to April 2011. Twenty male patients (age between 21-40 years admitted to the urological department in Al-Hila teaching hospital suffering from penile fracture from March 2008 to April 2011 were included in this study. Immediate surgical repair done to all those patients ,corrugate drain put post operatively for 10 patients while the remaining 10 patients without drains. All patients are fallowed for at least 3 months regarding postoperative penile swelling, deformity, pain and sexual function. Result:regarding age distribution of patients suffering from fracture penis, from twenty patients included in this study 11 patients their agerange from (20-30years, 7 patients their age group range from (31-45years and only 2 patients their age range from (46-60years. Fifteen patients are married and only 5 patients are unmarried. No one develop postoperative penile swelling in patients with corrugate drain and only one patient develops swelling in patients without corrugate drain. Regarding postoperative pain, in patients surgically corrected with drain, 6 patients develop pain and only 2 patients surgically corrected without drain develops pain. Conclusion:No beneficial effect of corrugate drain in decreasing postoperative penile swelling or curvature and on the other hand it increase post operative penile pain

  12. Impact of substrate corrugation on the sliding friction levels of adsorbed films.

    Science.gov (United States)

    Coffey, T; Krim, J

    2005-08-12

    We report a quartz crystal microbalance (QCM) study of sliding friction for solid xenon monolayers at 77 K on Cu(111), Ni(111), graphene/Ni(111), and C(60) substrates. Simulations have predicted a strong dependence of phononic friction coefficient (eta) on surface corrugation in systems with similar lattice spacing, eta approximately U(2)(0), but this has never before been shown experimentally. In order to make direct comparisons with theory, substrates with similar lattice spacing but varying amplitudes of surface corrugation were studied. QCM data reveal friction levels proportional to U(2)(0), validating current theoretical and numerical predictions. Measurements of Xe/C(60) are also included for comparison purposes.

  13. Design and Characterization of a Novel Rotating Corrugated Drum Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Sarah M. Meunier

    2010-01-01

    Full Text Available A novel photoreactor system consisting of a TiO2-coated corrugated drum and a UV light source is experimentally characterized for the treatment of phenol-polluted wastewaters. The design incorporates periodic illumination and increased agitation through the introduction of rotation. The effects ofrent degrees and flat fins to increase surface area, varying rotational speed, initial pollutant concentration, and illumination intensities were studied. The corrugated and finned drums did not exhibit a critical rotational speed, indicating that there is excellent mass transfer in the system. A Langmuir-Hinshelwood kinetic analysis was applied to the degradation, and an average adsorption coefficient of K=0.120 L/mg was observed. The overall reaction rate increased with increasing surface area from 0.046 mg/L/min for the annular drum to 0.16 mg/L/min for the 40-fin drum. The apparent photonic efficiency was found to increase with increasing surface area at a faster rate for the corrugations than for the fin additions. The energy efficiency (EE/O found for the drums varied from 380–550 kWh/m3, which is up to 490% more energy-efficient than the annular drum.

  14. Chelating ligands for nanocrystals' surface functionalization

    NARCIS (Netherlands)

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-01-01

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild

  15. Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method

    International Nuclear Information System (INIS)

    Han, Huai-Zhi; Li, Bing-Xi; Wu, Hao; Shao, Wei

    2015-01-01

    Integrated a fully developing three-dimensional heat transfer and flow model, a multi-objective optimization aims to fulfill the geometric design for double-tube heat exchangers with inner corrugated tube is investigated in this work with RSM. Dimensionless corrugation pitch (p/D), dimensionless corrugation height (H/D), dimensionless corrugation radius (r/D) and Reynolds number (Re) are considered as four design parameters. Considering the process parameters, the characteristic numbers involving heat transfer characteristic, resistance characteristic and overall heat transfer performance calculated by CFD, and are served as objective functions to the RSM (Nu c , f c , Nu c /Nu s , f c /f s and h in this paper). The results of optimal designs are a set of multiple optimum solutions, called 'Pareto optimal solutions'. It reveals the identical tendency of Nu c /Nu s and f c /f s reflecting the conflict between them that means augmenting the heat transfer performance with various design parameters in the optimal situation inevitably sacrificed the increase of flow resistance. According to the Pareto optimal curves, the optimum designing parameters of double pipe heat exchanger with inner corrugated tube under the constrains of Nu c /Nu s ≥1.2 are found to be P/D = 0.82, H/D = 0.22, r/D = 0.23, Re = 26,263, corresponding to the maximum value of η = 1.12. (authors)

  16. CONTRIBUTIONS ON THE DESIGN OF UNCONVENTIONAL CORRUGATED BOARD STRUCTURES

    Directory of Open Access Journals (Sweden)

    NEIDONI Nadina

    2015-06-01

    Full Text Available The paper depicts a few contributions on the design of several unconventional corrugated board structures. In general, cardboard and corrugated cardboard is strongly linked to packaging. However, limiting these materials to their primary use does nothing else but to restrict the possibilities of using them in other interesting areas. Consequently, new structures built from cardboard have been imagined and in the paper there are presented a few unconventional uses of the corrugated fiberboard, namely as furniture elements, along with the technology used in the design and the manufacturing process.

  17. Enhanced photoluminescence of corrugated Al2O3 film assisted by colloidal CdSe quantum dots.

    Science.gov (United States)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Huang, Zhaoling; Qin, Shuijie

    2017-05-19

    We present the enhanced photoluminescence (PL) of a corrugated Al 2 O 3 film enabled by colloidal CdSe quantum dots. The colloidal CdSe quantum dots are fabricated directly on a corrugated Al 2 O 3 substrate using an electrochemical deposition (ECD) method in a microfluidic system. The photoluminescence is excited by using a 150 nm diameter ultraviolet laser spot of a scanning near-field optical microscope. Owing to the electron transfer from the conduction band of the CdSe quantum dots to that of Al 2 O 3 , the enhanced photoluminescence effect is observed, which results from the increase in the recombination rate of electrons and holes on the Al 2 O 3 surface and the reduction in the fluorescence of the CdSe quantum dots. A periodically-fluctuating fluorescent spectrum was exhibited because of the periodical wire-like corrugated Al 2 O 3 surface serving as an optical grating. The spectral topographic map around the fluorescence peak from the Al 2 O 3 areas covered with CdSe quantum dots was unique and attributed to the uniform deposition of CdSe QDs on the corrugated Al 2 O 3 surface. We believe that the microfluidic ECD system and the surface enhanced fluorescence method described in this paper have potential applications in forming uniform optoelectronic films of colloidal quantum dots with controllable QD spacing and in boosting the fluorescent efficiency of weak PL devices.

  18. Selective functionalization of patterned glass surfaces

    NARCIS (Netherlands)

    Ploetz, E.; Visser, B.; Slingenbergh, W.; Evers, K.; Martinez-Martinez, D.; Pei, Y. T.; Feringa, B. L.; De Hosson, J. Th. M.; Cordes, T.; van Dorp, W. F.

    2014-01-01

    Tailored writing and specific positioning of molecules on nanostructures is a key step for creating functional materials and nano-optical devices, or interfaces for synthetic machines in various applications. We present a novel approach for the selective functionalization of patterned glass surfaces

  19. Guiding spoof surface plasmon polaritons by infinitely thin grooved metal strip

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-04-01

    Full Text Available In this paper, the propagation characteristics of spoof surface plasmon polaritons (SPPs on infinitely thin corrugated metal strips are theoretically analyzed. Compared with the situations of infinitely thick lateral thickness, the infinitely thin lateral thickness leads to lower plasma frequency according to the analyses. The propagation lengths and the binding capacity of the spoof SPPs are evaluated based on the derived dispersion equation. The effects of different lateral thicknesses are also investigated. At the end, a surface wave splitter is presented using infinitely thin corrugated metal strip. Other functional planar or flexible devices can also be designed using these metal strips in microwave or terahertz regimes.

  20. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  1. Adsorption of Wine Constituents on Functionalized Surfaces.

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A

    2016-10-18

    The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  2. Adsorption of Wine Constituents on Functionalized Surfaces

    Directory of Open Access Journals (Sweden)

    Agnieszka Mierczynska-Vasilev

    2016-10-01

    Full Text Available The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  3. Theory of potentiostatic current transients for coupled catalytic reaction at random corrugated fractal electrode

    International Nuclear Information System (INIS)

    Jha, Shailendra K.; Kant, Rama

    2010-01-01

    We developed a mathematical model for the first order homogeneous catalytic chemical reaction coupled with an electron transfer (EC') on a rough working electrode. Results are obtained for the various roughness models of electrode corrugations, viz., (i) roughness as an exact periodic function, (ii) roughness as a random function with known statistical properties, and (iii) roughness as a random function with statistical self-affine fractality over a finite range of length scales. Method of Green's function is used in the formulation to obtain second-order perturbation (in roughness profile) expressions for the concentration, the local current density and the current transients. A general operator structure between these quantities and arbitrary roughness profile is emphasized. The statistically averaged (randomly rough) electrode response is obtained by an ensemble averaging over all possible surface configurations. An elegant mathematical formula between the average electrochemical current transient and surface structure factor or power-spectrum of roughness is obtained. This formula is used to obtain an explicit equation for the current on an approximately self-affine (or realistic) fractal electrode with a limited range of length scales of irregularities. This description of realistic fractal is obtained by cutoff power law power-spectrum of roughness. The realistic fractal power-spectrum consists of four physical characteristics, viz., the fractal dimension (D H ), lower (l) and upper (L) cutoff length scales of fractality and a proportionality factor (μ), which is related to the topothesy or strength of fractality. Numerical calculations are performed on final results to understand the effect of catalytic reaction and fractal morphological characteristics on potentiostatic current transients.

  4. Shielding effect of a thick screen with corrugations

    OpenAIRE

    Albani, M; Piazzesi, P; Capolino, F; Maci, S; Tiberio, R

    1998-01-01

    The shielding effectiveness of a corrugated thick screen is theoretically and experimentally investigated. This screen consists of a half-plane of finite thickness in which corrugations are etched on the smaller side. This structure provides a significant attenuation in the shadow region for both polarizations of the incident field; thus, it can be effectively used for protecting apparatuses from radiating interference as well as for decoupling nearby operating antennas. The shielding propert...

  5. Impact of Corrugated Paperboard Structure on Puncture Resistance

    Directory of Open Access Journals (Sweden)

    Vaidas Bivainis

    2015-03-01

    Full Text Available Thanks to its excellentprotective properties, lightness, a reasonable price, and ecology, corrugated paperboardis one of the most popular materials used in the production of packaging for variousproducts. During transportation or storage, packaging with goods can be exposedto the mass of other commodities, dropping from heights and transportationshock loads, which can lead to their puncture damage. Depending on the purposeand size of the packaging, the thickness, grammage, constituent paper layers,numbers of layers and type of fluting of corrugated paperboard used in itsproduction differ. A standard triangular prism, corrugated paperboard fixationplates and a universal tension-compression machine were used to investigate theimpact of corrugated paperboard structure and other parameters on the punctureresistance of the material. The investigation determines the maximum punctureload and estimates energy required to penetrate the corrugated paperboard. Itwas found that the greatest puncture resistance is demonstrated by paperboardwith a larger number of corrugating flutings and the board produced from harderpaper with a smaller amount of recycled paper. It was established that thegrammage of three-layered paperboard with two different fluting profiles has thegreatest impact on the level of static puncture energy.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5713

  6. Response Surface Modeling Using Multivariate Orthogonal Functions

    Science.gov (United States)

    Morelli, Eugene A.; DeLoach, Richard

    2001-01-01

    A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.

  7. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S

    1986-01-01

    sulphate helps to connect the intracellular cytoskeleton to the extracellular matrix in focal adhesions. This evidence includes: the co-localization of actin and heparan sulphate proteoglycan during the process of cell spreading, and in isolated focal adhesions; biochemical analyses of a hydrophobic......Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface...

  8. Functions of proteoglycans at the cell surface

    DEFF Research Database (Denmark)

    Höök, M; Woods, A; Johansson, S

    1986-01-01

    Proteoglycans (primarily heparan sulphate proteoglycans) are found at the surface of most adherent eukaryotic cells. Earlier studies suggest that these molecules can be associated with the cell surface principally by two different mechanisms. Proteoglycans may occur as membrane......-intercalated glycoproteins, where the core protein of the proteoglycan is anchored in the lipid interior of the plasma membrane, or they may be bound via the polysaccharide components of the molecule to specific anchoring proteins present at the cell surface. A number of functions have been proposed for cell surface......-associated proteoglycans, including: regulation of cell-substrate adhesion; regulation of cell proliferation; participation in the binding and uptake of extracellular components; and participation in the regulation of extracellular matrix formation. Evidence is discussed suggesting that the cell-associated heparan...

  9. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  10. Permanent isolation surface barrier: Functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Wing, N.R.

    1993-10-01

    This document presents the functional performance parameters for permanent isolation surface barriers. Permanent isolation surface barriers have been proposed for use at the Hanford Site (and elsewhere) to isolate and dispose of certain types of waste in place. Much of the waste that would be disposed of using in-place isolation techniques is located in subsurface structures, such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via transport pathways, such as water infiltration, biointrusion, wind and water erosion, human interference, and/or gaseous release.

  11. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  12. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  13. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  14. Chelating ligands for nanocrystals' surface functionalization.

    Science.gov (United States)

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  15. Numerical modeling of manufacturing process of corrugated plate

    Directory of Open Access Journals (Sweden)

    Khodos Ol'ga Aleksandrovna

    2014-09-01

    Full Text Available The rigidity increase of structures consisting of plates and shells is a relevant task. One way to obtain plates with enhanced stiffness performance is the corrugation, i.e. change of its topography elevation. Depending on the method, corrugation provides a plate with additional rigidity in one or several directions without weight gain. The most common way to get corrugated plates is pressure forming. The problem of finding the most energy saving method is very relevant. In this regard, a possible approach is to use buckling of thin cylinder. The idea of this technique comes from the fact that as a result of stability loss of cylindrical shell in compression along its elements, the cylinder walls are deformed periodically. The article considers the problem of corrugated plates manufacturing using smooth sheet metal. The method of manufacture is based on irreversible process of cylindrical buckling of a shell previously obtained from a worksheet. Such a deformation process may be useful if the energy spent on its implementation is smaller than the energy in standard process of forming. The task of defining the stiffness of a corrugated plate is quite difficult because it is difficult to experimentally measure the tension, bending and coupled stiffness. The numerical simulation of three ways to manufacture corrugated cylindrical shell made of smooth sheet by elastic-plastic deformation process are offered: the first way is to deform the cylindrical shell under the action of axial load on the butt end, and the second way is the influence of strutting internal pressure. In the third way the cylindrical shell is made of the leaf using the special techniques. In order to compare the effectiveness of the options presented for each case the internal energy is calculated. It is shown that the energy expenditure in buckling method is the smallest.

  16. Numerical simulation study of gas-liquid reactive mass transfer along corrugated sheets with interface tracking

    International Nuclear Information System (INIS)

    Haroun, Y.

    2008-11-01

    This work is done within the framework of gas treatment and CO 2 capture process development. The main objective of the present work is to fill the gap between classical experiments and industrial conditions by the use of Computational Fluid Dynamics (CFD). The physical problem considered corresponds to the liquid film flow down a corrugate surface under gravity in present of a gas phase. The chemical species in the gas phase absorb in the liquid phase and react. Numerical calculations are carried out in order to determine the impact of physical and geometrical properties on reactive mass transfer in industrial operating conditions. (author)

  17. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Enrico, E-mail: enrico.sowade@mb.tu-chemnitz.de [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Göthel, Frank [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Zichner, Ralf [Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany); Baumann, Reinhard R. [Digital Printing and Imaging Technology, Technische Universität Chemnitz, Chemnitz (Germany); Department Printed Functionalities, Fraunhofer Institute for Electronic Nano Systems (ENAS), Chemnitz (Germany)

    2015-03-30

    Highlights: • Inkjet printing of UHF antennas on cardboard substrates. • Development of primer layer to compensate the absorptiveness of the cardboard and the rough surface. • Manufacturing of UHF antennas in a fully digital manner for packaging applications. - Abstract: In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S{sub 11} and the antenna gain.

  18. Electron work function of stepped tungsten surfaces

    International Nuclear Information System (INIS)

    Krahl-Urban, B.

    1976-03-01

    The electron work function of tungsten (110) vicinal faces was measured with the aid of thermionic emission, and its dependence on the crystallographic orientation and the surface structure was investigated. The thermionic measurements were evaluated with the aid of the Richardson plot. The real temperature of the emitting tungsten faces was determined with an accuracy of +- 0.5% in the range between 2,200 and 2,800 K. The vicinal faces under investigation have been prepared with an orientation exactness of +- 15'. In the tungsten (110) vicinal faces under investigation, a strong dependence of the temperature coefficient d PHI/dT of the work function on the crystallographic orientation was found. A strong influence of the edge structure as well as of the step density on the temperature coefficient was observed. (orig./HPOE) [de

  19. Inkjet printing of UHF antennas on corrugated cardboards for packaging applications

    Science.gov (United States)

    Sowade, Enrico; Göthel, Frank; Zichner, Ralf; Baumann, Reinhard R.

    2015-03-01

    In this study, a method based on inkjet printing has been established to develop UHF antennas on a corrugated cardboard for packaging applications. The use of such a standardized, paper-based packaging substrate as material for printing electronics is challenging in terms of its high surface roughness and high ink absorption rate, especially when depositing very thin films with inkjet printing technology. However, we could obtain well-defined silver layers on the cardboard substrates due to a primer layer approach. The primer layer is based on a UV-curable ink formulation and deposited as well as the silver ink with inkjet printing technology. Industrial relevant printheads were chosen for the deposition of the materials. The usage of inkjet printing allows highest flexibility in terms of pattern design. The primer layer was proven to optimize the surface characteristics of the substrate, mainly reducing the surface roughness and water absorptiveness. Thanks to the primer layer approach, ultra-high-frequency (UHF) radio-frequency identification (RFID) antennas were deposited by inkjet printing on the corrugated cardboards. Along with the characterization and interpretation of electrical properties of the established conductive antenna patterns, the performance of the printed antennas were analyzed in detail by measuring the scattering parameter S11 and the antenna gain.

  20. Surface modification using peptide functionalized bilayers

    Science.gov (United States)

    Stroumpoulis, Dimitrios

    Engineering materials that are capable of supporting cell and tissue growth is a challenging task that involves identifying and incorporating biological signals into the material surfaces or scaffolds. One approach towards bioactivity in materials is to mimic the function of the extracellular matrix (ECM) by displaying adhesion promoting oligopeptides. Supported planar bilayers (SPB) are a good platform to study molecular interactions at interfaces, since transmembrane proteins and peptides can be incorporated in a biologically relevant environment with precise control over their concentration and presentation. SPBs can be formed on flat surfaces using the Langmuir-Blodgett (LB) technique or alternatively from vesicle solutions. The fusion of vesicles with solid substrates offers simplicity and enhanced bilayer deposition rates over the LB method, whereas it can also be used with convex and enclosed surfaces. Ellipsometry and a mass transport model were used to investigate the kinetics of SPB formation on silicon dioxide surfaces from 100 nm diameter 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles. For the range of concentrations studied, 0.025 to 0.380 mg/ml, a monotonic increase in the ellipsometric signal with time was observed until saturation and the adsorption rate constant was calculated. Further, a Monte Carlo model was used to simulate the SPB formation process and the computational results were successfully fit to the experimental data. Lipid vesicles displaying RGD peptide amphiphiles were fused onto glass coverslips to control the ability of these surfaces to support cell adhesion and growth. Cell adhesion was prevented on phosphatidylcholine bilayers in the absence of RGD, whereas cells adhered and spread in the presence of accessible RGD amphiphiles. This specific interaction between cells and RGD peptides was further explored in a concentration dependent fashion by creating a surface composition array using a microfluidic device. For the

  1. Uncertainty quantification of aeroacoustic power sources in corrugated pipes

    NARCIS (Netherlands)

    Swamy, M.; Shoeibi Omrani, P.; González Díez, N.

    2015-01-01

    Gas transport in corrugated pipes often exhibit whistling behavior, due to periodic flow-induced pulsations generated in the pipe cavities. These aero-acoustic sources are strongly dependent on the geometrical dimensions and features of the cavities. As a result, uncertainties in the exact shape and

  2. Mechanical behavior of a sandwich with corrugated GRP core: numerical modeling and experimental validation

    Directory of Open Access Journals (Sweden)

    D. Tumino

    2014-10-01

    Full Text Available In this work the mechanical behaviour of a core reinforced composite sandwich structure is studied. The sandwich employs a Glass Reinforced Polymer (GRP orthotropic material for both the two external skins and the inner core web. In particular, the core is designed in order to cooperate with the GRP skins in membrane and flexural properties by means of the addition of a corrugated laminate into the foam core. An analytical model has been developed to replace a unit cell of this structure with an orthotropic equivalent thick plate that reproduces the in plane and out of plane behaviour of the original geometry. Different validation procedures have been implemented to verify the quality of the proposed method. At first a comparison has been performed between the analytical model and the original unit cell modelled with a Finite Element mesh. Elementary loading conditions are reproduced and results are compared. Once the reliability of the analytical model was assessed, this homogenised model was implemented within the formulation of a shell finite element. The goal of this step is to simplify the FE analysis of complex structures made of corrugated core sandwiches; in fact, by using the homogenised element, the global response of a real structure can be investigated only with the discretization of its mid-surface. Advantages are mainly in terms of time to solution saving and CAD modelling simplification. Last step is then the comparison between this FE model and experiments made on sandwich beams and panels whose skins and corrugated cores are made of orthotropic cross-ply GRP laminates. Good agreement between experimental and numerical results confirms the validity of the proposed model.

  3. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  4. Test of superplastically formed corrugated aluminum compression specimens with beaded webs

    Science.gov (United States)

    Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.; James, William F.; Shinn, Joseph M., Jr.

    1991-01-01

    Corrugated wall sections provide a highly efficient structure for carrying compressive loads in aircraft and spacecraft fuselages. The superplastic forming (SPF) process offers a means to produce complex shells and panels with corrugated wall shapes. A study was made to investigate the feasibility of superplastically forming 7475-T6 aluminum sheet into a corrugated wall configuration and to demonstrate the structural integrity of the construction by testing. The corrugated configuration selected has beaded web segments separating curved-cap segments. Eight test specimens were fabricated. Two specimens were simply a single sheet of aluminum superplastically formed to a beaded-web, curved-cap corrugation configuration. Six specimens were single-sheet corrugations modified by adhesive bonding additional sheet material to selectively reinforce the curved-cap portion of the corrugation. The specimens were tested to failure by crippling in end compression at room temperature.

  5. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.

    Science.gov (United States)

    Du, Gang; Sun, Mao

    2012-05-07

    We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Excitation of surface plasma waves over corrugated slow-wave ...

    Indian Academy of Sciences (India)

    Pramana – Journal of Physics. Current Issue : Vol. 90, Issue 1 · Current Issue Volume 90 | Issue 1. January 2018. Home · Volumes & Issues · Special Issues · Forthcoming Articles · Search · Editorial Board · Information for Authors · Subscription ...

  7. Measuring autogenous strain of concrete with corrugated moulds

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2008-01-01

    A reliable technique to quantify autogenous strain is a prerequisite to numerical modeling in stress calculations for high performance concrete. The introducing of a special kind of corrugated tube mould helps to transforming volume strain measurement into liner strain measurement in horizontal...... direction for fluid concrete, which not only realizes the continuous monitoring of the autogenous shrinkage since casting, but also effectively eliminates the disturbance resulting from gravity, temperature variation and mould restraint on measuring results. Based on this measuring technique, this paper...

  8. Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

    OpenAIRE

    Wei-Hsin Sun; Jr-Ming Miao; Chang-Hsien Tai; Chien-Chun Hung

    2011-01-01

    The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airf...

  9. Diverse corrugation pattern in radially shrinking carbon nanotubes

    OpenAIRE

    Shima, Hiroyuki; Sato, Motohito; Iiboshi, Kohtaroh; Ghosh, Susanta; Arroyo, Marino

    2010-01-01

    Stable cross sections of multiwalled carbon nanotubes subjected to electron-beam irradiation are investigated in the realm of the continuum mechanics approximation. The self-healing nature of sp2 graphitic sheets implies that selective irradiation of the outermost walls causes their radial shrinkage with the remaining inner walls undamaged. The shrinking walls exert high pressure on the interior part of nanotubes, yielding a wide variety of radial-corrugation patterns (i.e. circumferential...

  10. Fast rail corrugation detection based on texture filtering

    Science.gov (United States)

    Xiao, Jie; Lu, Kaixia

    2018-02-01

    The condition detection of rails in high-speed railway is one of the important means to ensure the safety of railway transportation. In order to replace the traditional manual inspection, save manpower and material resources, and improve the detection speed and accuracy, it is of great significance to develop a machine vision system for locating and identifying defects on rails automatically. Rail defects exhibit different properties and are divided into various categories related to the type and position of flaws on the rail. Several kinds of interrelated factors cause rail defects such as type of rail, construction conditions, and speed and/or frequency of trains using the rail. Rail corrugation is a particular kind of defects that produce an undulatory deformation on the rail heads. In high speed train, the corrugation induces harmful vibrations on wheels and its components and reduces the lifetime of rails. This type of defects should be detected to avoid rail fractures. In this paper, a novel method for fast rail corrugation detection based on texture filtering was proposed.

  11. Measurements of terahertz radiation generated using a metallic, corrugated pipe

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl, E-mail: kbane@slac.stanford.edu [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stupakov, Gennady [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Antipov, Sergey [Euclid Techlabs LLC, Bolingbrook, IL 60440 (United States); Fedurin, Mikhail; Kusche, Karl; Swinson, Christina [Brookhaven National Laboratory, Upton, NY 11973 (United States); Xiang, Dao [Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2017-02-01

    A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 µm. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation, but with short rise time, to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation. For the THz pulse we obtain and compare with calculations: the central frequency, the bandwidth, and the spectral power—compared to a diffraction radiation background signal.

  12. Performance analysis of solar air heater with jet impingement on corrugated absorber plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2017-09-01

    Full Text Available This paper deals with the experimental investigation outlet temperature and efficiency, of Solar Air heater (SAH. The experimental test set up designed and fabricated to study the effect of jet impingement on the corrugated absorber plate, through circular jets in a duct flow of solar air heater, and compared with conventional solar air heater on flat plat absorber. Under effect of mass flow rate (ṁ of air and solar radiation on outlet air temperature, and efficiency, are analyzed. Results show the flow jet impingement on corrugated plat absorber is a strong function of heat transfer enhancement. The present investigation concludes that the mass flow rate of air substantially influences the heat transfer on solar air heaters. And the thermal efficiency of proposed design duct is observed almost 14% more as compare to the smooth duct. At solar radiation 500–1000 (W/M2, 308 K ambient temperature and 0.01–0.03 (Kg/S mass flow rate

  13. Sound Propagation in a Duct with Wall Corrugations Having Square-Wave Profiles

    Directory of Open Access Journals (Sweden)

    Muhammad A. Hawwa

    2015-01-01

    Full Text Available Acoustic wave propagation in ducts with rigid walls having square-wave wall corrugations is considered in the context of a perturbation formulation. Using the ratio of wall corrugation amplitude to the mean duct half width, a small parameter is defined and a two levels of approximations are obtained. The first-order solution produces an analytical description of the pressure field inside the duct. The second-order solution yields an analytical estimate of the phase speed of waves transmitting through the duct. The effect of wall corrugation density on acoustic impedance and wave speeds is highlighted. The analysis reveals that waves propagating in a duct with square-wave wall corrugation are slower than waves propagating in a duct with sinusoidal wave corrugation having the same corrugation wavelength.

  14. Geometrical parameters influence on behavior of the sandwich plates with corrugated core

    Directory of Open Access Journals (Sweden)

    Djoković Jelena M.

    2016-01-01

    Full Text Available The influence of geometric parameters on behavior and stiffness of sandwich plates with corrugated core is considered in this paper. The following parameters were analyzed: ratio of core sheet and facing sheet thickness and the ratio of the core’s pitch to the core’s depth, as well as the corrugation angle. It is shown that changes of these parameters can contribute to increase or decrease of the corrugated sandwich plate stiffness.

  15. Trend extraction of rail corrugation measured dynamically based on the relevant low-frequency principal components reconstruction

    International Nuclear Information System (INIS)

    Li, Yanfu; Liu, Hongli; Ma, Ziji

    2016-01-01

    Rail corrugation dynamic measurement techniques are critical to guarantee transport security and guide rail maintenance. During the inspection process, low-frequency trends caused by rail fluctuation are usually superimposed on rail corrugation and seriously affect the assessment of rail maintenance quality. In order to extract and remove the nonlinear and non-stationary trends from original mixed signals, a hybrid model based ensemble empirical mode decomposition (EEMD) and modified principal component analysis (MPCA) is proposed in this paper. Compared with the existing de-trending methods based on EMD, this method first considers low-frequency intrinsic mode functions (IMFs) thought to be underlying trend components that maybe contain some unrelated components, such as white noise and low-frequency signal itself, and proposes to use PCA to accurately extract the pure trends from the IMFs containing multiple components. On the other hand, due to the energy contribution ratio between trends and mixed signals is prior unknown, and the principal components (PCs) decomposed by PCA are arranged in order of energy reduction without considering frequency distribution, the proposed method modifies traditional PCA and just selects relevant low-frequency PCs to reconstruct the trends based on the zero-crossing numbers (ZCN) of each PC. Extensive tests are presented to illustrate the effectiveness of the proposed method. The results show the proposed EEMD-PCA-ZCN is an effective tool for trend extraction of rail corrugation measured dynamically. (paper)

  16. Nanoparticle Surface Functionality Dictates Cellular and Systemic Toxicity

    DEFF Research Database (Denmark)

    Saei, Amir Ata; Yazdani, Mahdieh; Lohse, Samuel E.

    2017-01-01

    can greatly enhance subsequent therapeutic effects of NPs while diminishing their adverse side effects. In this review, we will focus on the effect of surface functionality on the cellular uptake and the transport of NPs by various subcellular processes.......Engineered nanoparticles (NPs) have opened new frontiers in therapeutics and diagnostics in recent years. The surface functionality of these nanoparticles often predominates their interactions with various biological components of human body, and proper selection or control of surface functionality...

  17. Stainless steel and polyethylene surfaces functionalized with silver nanoparticles.

    Science.gov (United States)

    Fialho, José Fq; Naves, Emiliane Aa; Bernardes, Patrícia C; Ferreira, Deusmaque C; Dos Anjos, Letícia D; Gelamo, Rogério V; de Sá, João Pn; de Andrade, Nélio J

    2018-01-01

    The antimicrobial effects of a stainless steel surface and a polyethylene surface functionalized with silver nanoparticles on the adhesion of different bacteria and the changes in physical and chemical characteristics of these surfaces that influence biofilm formation were evaluated. The functionalized surfaces of polyethylene and stainless steel were more hydrophobic than the control ones. The bacterial surfaces were hydrophilic. The adhesion of all bacteria was thermodynamically favorable (ΔG adhesion functionalized and control. The numbers of adhered cells of Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescens were not significantly different (p > 0.05) between the control and functionalized surfaces, reaching values compatible with biofilm formation. Analysis of atomic absorption spectrometry using water and reconstituted skim milk as simulants showed no release of Ag from the functionalized surfaces. In conclusion, the surfaces that were functionalized with silver nanoparticles were modified in hydrophobicity, roughness, and did not avoid bacterial adhesion. Additional studies of surfaces functionalized with silver nanoparticles should be conducted addressing the adsorption technique of silver nanoparticles on the stainless steel surface as well as in the preparation of the polyethylene surface to allow the contact of microorganism with the antimicrobial agent.

  18. Ellipsometry of functional organic surfaces and films

    CERN Document Server

    Hinrichs, Karsten

    2013-01-01

    Ellipsometry is the method of choice to determin the properties of surfaces and thin films. It provides comprehensive and sensitive characterization in a contactless and non-invasive measurements. This book gives a state-of-the-art survey of ellipsometric investigations of organic films and surfaces, from laboratory to synchrotron applications, with a special focus on in-situ use in processing environments and at solid-liquid interfaces.

  19. FE analysis of unstiffened and stiffened corrugated panels subjected to blast loading

    Energy Technology Data Exchange (ETDEWEB)

    Wijaya, Christian; Kim, Byung Tak [Pukyong National University, Busan (Korea, Republic of)

    2011-12-15

    This paper presents the results of a dynamic analysis on unstiffened and stiffened corrugated panels subjected to hydrocarbon explosion. A parametric study is also conducted on simplified models of the stiffened corrugated panels considering the effect of stiffeners on the compressive flange under different loading levels. The 1/2 symmetry of corrugated panels is modeled. This numerical study is performed using NX Nastran version 7.5. The unstiffened panel produces localized buckling at the center of corrugation and large permanent deformation by increasing the peak pressure. The stiffened panels suppress the structural response, and the vee stiffeners are structurally more effective than the round ones.

  20. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...... and resampling. This is illustrated by searching for meta-GGA type functionals that outperform current meta-GGAs while allowing for error estimation....

  1. He atom scattering from ZnO surfaces: calculation of diffraction peak intensities using the close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Meyer, B [Interdisziplinaeres Zentrum fuer Molekulare Materialien ICMM and Computer-Chemie-Centrum CCC, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Naegelsbachstrasse 25, 91052 Erlangen (Germany); Traeger, F [Lehrstuhl fuer Physikalische Chemie I, Ruhr-Universitaet Bochum, 44801 Bochum (Germany); Woell, Ch, E-mail: r.martinezcasado@imperial.ac.u [Institut fuer Funktionelle Grenzflaechen, Karlsruher Institut fuer Technologie KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany)

    2010-08-04

    Diffraction intensities of a molecular He beam scattered off the clean and water-covered ZnO(101-bar0) surface have been simulated using a new potential model in conjunction with the close-coupling formalism. The effective corrugation functions for the systems He-ZnO(101-bar0) and He-H{sub 2}O/ZnO(101-bar0) have been obtained from density functional theory calculations within the Esbjerg-Noerskov approximation. Using these data a potential model is constructed consisting of a corrugated Morse potential at small He-surface distances and a semiempiric attractive part at larger distances. The diffraction patterns obtained from close-coupling calculations agree with the experimental data within about 10%, which opens the possibility to simulate He diffraction from surfaces of any structural complexity and to verify surface and adsorbate structures proposed theoretically by employing this kind of analysis.

  2. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  3. Functional superhydrophobic surfaces made of Janus micropillars.

    Science.gov (United States)

    Mammen, Lena; Bley, Karina; Papadopoulos, Periklis; Schellenberger, Frank; Encinas, Noemí; Butt, Hans-Jürgen; Weiss, Clemens K; Vollmer, Doris

    2015-01-21

    We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging.

  4. The use of hydrophobins to functionalize surfaces

    NARCIS (Netherlands)

    Scholtmeijer, K; Janssen, M.I.; van Leeuwen, M.B.M.; van Kooten, T.G.; Hektor, H.; Wosten, H.A B

    2004-01-01

    The physiochemical nature of surfaces can be changed by small proteins which are secreted by filamentous fungi. These proteins, called hydrophobins, are characterized by the presence of eight conserved cysteine residues and a typical hydropathy pattern. Upon contact with a hydrophilic–hydrophobic

  5. Surface-functionalized mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  6. Distributed feedback interband cascade lasers with top grating and corrugated sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Feng [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Stocker, Michael [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Pham, John [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Towner, Frederick [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Shen, Kun [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA; Wang, Jie [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA; Lascola, Kevin [Thorlabs Quantum Electronics, 10335 Guilford Rd, Jessup, Maryland 20794, USA

    2018-03-26

    Distributed feedback (DFB) interband cascade lasers (ICLs) with a 1st order top surface grating were designed and fabricated. Partially corrugated sidewalls were implemented to suppress high order lateral modes. The DFB ICLs have 4 mm long and 4.5 mu m wide ridge waveguides and are mounted epi-up on AlN submounts. We demonstrated a continuous-wave (CW) DFB ICL, from a first wafer which has a large detuning of the gain peak from the DFB wavelength, with a side mode suppression ratio of 30 dB. With proper matching of grating feedback and the gain peak wavelength for the second wafer, a DFB ICL was demonstrated with a maximum CW output power and a maximum wall plug efficiency reaching 42 mW and 2%, respectively, at 25 degrees C. The lasing wavelengths of both lasers are around 3.3 mu m at 25 degrees C. Published by AIP Publishing.

  7. Surface functionalized hollow silica particles and composites

    KAUST Repository

    Rodionov, Valentin

    2017-05-26

    Composition comprising hollow spherical silica particles having outside particle walls and inside particle walls, wherein the particles have an average particle size of about 10 nm to about 500 nm and an average wall thickness of about 10 nm to about 50 nm; and wherein the particles are functionalized with at least one organic functional group on the outside particle wall, on the inside particle wall, or on both the outside and inside particle walls, wherein the organic functional group is in a reacted or unreacted form. The organic functional group can be epoxy. The particles can be mixed with polymer precursor or a polymer material such as epoxy to form a prepreg or a nanocomposite. Lightweight but strong materials can be formed. Low loadings of hollow particles can be used.

  8. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  9. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange

    2010-01-01

    an immunomicroarray for systematic studies of the binding properties of 10 different micro-/nano-sized streptavidin-functionalized beads to a biotin substrate immobilized on SiO2 with or without surface modification SiO2 surface cleaning, immobilized substrate concentration and surface blocking conditions were...

  10. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  11. The spectral function for Mott insulating surfaces

    CERN Document Server

    Manuel, L O; Feiguin, A E; Trumper, A E

    2003-01-01

    We show theoretically the fingerprints of short-range spiral magnetic correlations in the photoemission spectra of the Mott insulating ground states realized in the sq root 3 x sq root 3 triangular silicon surfaces K/Si(111)-B and SiC(0001). The calculated spectra present low-energy features of magnetic origin with a reduced dispersion approx 10-40 meV compared with the centre-of-mass spectra bandwidth approx 0.2-0.3 eV. Remarkably, we find that the quasiparticle (QP) signal survives only around the magnetic Goldstone modes. Our findings position these silicon surfaces as new candidates for investigation in the search for non-conventional QP excitations.

  12. The spectral function for Mott insulating surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, L O [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis (2000) Rosario (Argentina); Gazza, C J [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis (2000) Rosario (Argentina); Feiguin, A E [Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA (United States); Trumper, A E [Instituto de Fisica Rosario (CONICET) and Universidad Nacional de Rosario, Boulevard 27 de Febrero 210 bis (2000) Rosario (Argentina)

    2003-05-07

    We show theoretically the fingerprints of short-range spiral magnetic correlations in the photoemission spectra of the Mott insulating ground states realized in the {radical}3 x{radical} 3 triangular silicon surfaces K/Si(111)-B and SiC(0001). The calculated spectra present low-energy features of magnetic origin with a reduced dispersion {approx}10-40 meV compared with the centre-of-mass spectra bandwidth {approx}0.2-0.3 eV. Remarkably, we find that the quasiparticle (QP) signal survives only around the magnetic Goldstone modes. Our findings position these silicon surfaces as new candidates for investigation in the search for non-conventional QP excitations.

  13. The spectral function for Mott insulating surfaces

    International Nuclear Information System (INIS)

    Manuel, L O; Gazza, C J; Feiguin, A E; Trumper, A E

    2003-01-01

    We show theoretically the fingerprints of short-range spiral magnetic correlations in the photoemission spectra of the Mott insulating ground states realized in the √3 x√ 3 triangular silicon surfaces K/Si(111)-B and SiC(0001). The calculated spectra present low-energy features of magnetic origin with a reduced dispersion ∼10-40 meV compared with the centre-of-mass spectra bandwidth ∼0.2-0.3 eV. Remarkably, we find that the quasiparticle (QP) signal survives only around the magnetic Goldstone modes. Our findings position these silicon surfaces as new candidates for investigation in the search for non-conventional QP excitations

  14. Calculus on Surfaces with General Closest Point Functions

    KAUST Repository

    März, Thomas

    2012-01-01

    The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization of this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs. © 2012 Society for Industrial and Applied Mathematics.

  15. Container Surface Evaluation by Function Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-03

    Container images are analyzed for specific surface features, such as, pits, cracks, and corrosion. The detection of these features is confounded with complicating features. These complication features include: shape/curvature, welds, edges, scratches, foreign objects among others. A method is provided to discriminate between the various features. The method consists of estimating the image background, determining a residual image and post processing to determine the features present. The methodology is not finalized but demonstrates the feasibility of a method to determine the kind and size of the features present.

  16. Segmentation of thin corrugated layers in high-resolution OCT images

    NARCIS (Netherlands)

    Callewaert, T.W.J.; Dik, J.; Kalkman, J.

    2017-01-01

    In this paper we present a novel method for the segmentation of thin corrugated layers in high resolution optical coherence tomography (OCT) images. First, we make an initial segmentation, for example with graph based segmentation that, for highly corrugated interfaces, leads to many segmentation

  17. Mass transfer in corrugated-plate membrane modules. II. Ultrafiltration experiments

    NARCIS (Netherlands)

    van der Waal, M.J.; Stevanovic, S.; Racz, I.G.

    1989-01-01

    The application of corrugations as turbulence promoters in membrane filtration was studied. In ultrafiltration experiments with polysulfone membranes using Dextran T70 as solute, it was found that the corrugations result in reduced energy consumption or pressure drop compared with flat membranes at

  18. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    Science.gov (United States)

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-04

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments.

    Science.gov (United States)

    Jawla, Sudheer K; Shapiro, Michael A; Idei, Hiroshi; Temkin, Richard J

    2014-10-21

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE 11 mode, with <8% of the power in high-order modes.

  20. A comprehensive track model for the improvement of corrugation models

    Science.gov (United States)

    Gómez, J.; Vadillo, E. G.; Santamaría, J.

    2006-06-01

    This paper presents a detailed model of the railway track based on wave propagation, suitable for corrugation studies. The model analyses both the vertical and the transverse dynamics of the track. Using the finite strip method (FSM), only the cross-section of the rail must be meshed, and thus it is not necessary to discretise a whole span in 3D. This model takes into account the discrete nature of the support, introducing concepts pertaining to the theory of periodic structures in the formulation. Wave superposition is enriched taking into account the contribution of residual vectors. In this way, the model obtains accurate results when a finite section of railway track is considered. Results for the infinite track have been compared against those presented by Gry and Müller. Aside from the improvements provided by the model presented in this paper, which Gry's and Müller's models do not contemplate, the results arising from the comparison prove satisfactory. Finally, the calculated receptances are compared against the experimental values obtained by the authors, demonstrating a fair degree of adequacy. Finally, these receptances are used within a linear model of corrugation developed by the authors.

  1. Surface functionalization of silicone rubber for permanent adhesion improvement.

    Science.gov (United States)

    Roth, Jan; Albrecht, Victoria; Nitschke, Mirko; Bellmann, Cornelia; Simon, Frank; Zschoche, Stefan; Michel, Stefan; Luhmann, Claudia; Grundke, Karina; Voit, Brigitte

    2008-11-04

    The surface properties of poly(dimethyl siloxane) (PDMS) layers screen printed onto silicon wafers were studied after oxygen and ammonia plasma treatments and subsequent grafting of poly(ethylene -alt-maleic anhydride) (PEMA) using X-ray photoelectron spectroscopy (XPS), roughness analysis, and contact angle and electrokinetic measurements. In the case of oxygen-plasma-treated PDMS, a hydrophilic, brittle, silica-like surface layer containing reactive silanol groups was obtained. These surfaces indicate a strong tendency for "hydrophobic recovery" due to the surface segregation of low-molecular-weight PDMS species. The ammonia plasma treatment of PDMS resulted in the generation of amino-functional surface groups and the formation of a weak boundary layer that could be washed off by polar liquids. To avoid the loss of the plasma modification effect and to achieve stabilization of the mechanically instable, functionalized PDMS top layer, PEMA was subsequently grafted directly or after using gamma-APS as a coupling agent on the plasma-activated PDMS surfaces. In this way, long-time stable surface functionalization of PDMS was obtained. The reactivity of the PEMA-coated PDMS surface caused by the availability of anhydride groups could be controlled by the number of amino functional surface groups of the PDMS surface necessary for the covalent binding of PEMA. The higher the number of amino functional surface groups available for the grafting-to procedure, the lower the hydrophilicity and hence the lower the reactivity of the PEMA-coated PDMS surface. Additionally, pull-off tests were applied to estimate the effect of surface modification on the adhesion between the silicone rubber and an epoxy resin.

  2. Surface energy and work function of the light actinides

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Skriver, Hans Lomholt

    1994-01-01

    We have calculated the surface energy and work function of the light actinides Fr, Ra, Ac, Th, Pa, U, Np, and Pu by means of a Green's-function technique based on the linear-muffin-tin-orbitals method within the tight-binding representation. In these calculations we apply an energy functional which...

  3. A Kind of Nanofluid Consisting of Surface-Functionalized Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Xuefei

    2010-01-01

    Full Text Available Abstract A method of surface functionalization of silica nanoparticles was used to prepare a kind of stable nanofluid. The functionalization was achieved by grafting silanes directly to the surface of silica nanoparticles in silica solutions (both a commercial solution and a self-made silica solution were used. The functionalized nanoparticles were used to make nanofluids, in which well-dispersed nanoparticles can keep good stability. One of the unique characteristics of the nanofluids is that no deposition layer forms on the heated surface after a pool boiling process. The nanofluids have applicable prospect in thermal engineering fields with the phase-change heat transfer.

  4. Effect of corrugation profile on the thermal–hydraulic performance of corrugated channels using CuO–water nanofluid

    Directory of Open Access Journals (Sweden)

    M.A. Ahmed

    2014-11-01

    Full Text Available In this article, laminar flow and heat transfer characteristics of CuO–water nanofluid in straight and corrugated channels are numerically investigated over the Reynolds number and nanoparticles volume fraction ranges of 100–800 and 0–0.05, respectively. The governing equations in body-fitted coordinates are discretized using finite volume approach (FVM on a collocated grid and solved iteratively using SIMPLE technique. Three different shapes of corrugated channels such as sinusoidal, triangular and trapezoidal channel are considered in this study. The streamwise velocity contours, temperature contours, non-dimensional pressure drop, average Nusselt number and thermal–hydraulic performance factor are presented and analyzed. Results show that the average Nusselt number and thermal–hydraulic performance factor increases with increasing nanoparticles volume fraction and Reynolds number for all channel shapes. In addition, the non dimensional pressure drop increases with increasing nanoparticles volume fraction, while it decreases as Reynolds number increases for all channel geometries. Furthermore, the trapezoidal channel has the highest Nusselt number and followed by the sinusoidal, triangular and straight channel.

  5. Three dimensional classical theory of rainbow scattering of atoms from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovoth (Israel); Miret-Artes, Salvador [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2010-10-05

    Graphical abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously. - Abstract: In this work, we extend to three dimensions our previous stochastic classical theory on surface rainbow scattering. The stochastic phonon bath is modeled in terms of linear coupling of the phonon modes to the motion of the scattered particle. We take into account the three polarizations of the phonons. Closed formulae are derived for the angular and energy loss distributions. They are readily implemented when assuming that the vertical interaction with the surface is described by a Morse potential. The hard wall limit of the theory is derived and applied to some model corrugated potentials. We find that rainbow structure of the scattered angular distribution reflects the underlying symmetries of the surface. We also distinguish between 'normal rainbows' and 'super rainbows'. The latter occur when the two eigenvalues of the Hessian of the corrugation function vanish simultaneously.

  6. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  7. Comparison of manufacturing of lightweight corrugated sheet sandwiches by hydroforming and incremental sheet forming

    Science.gov (United States)

    Maqbool, Fawad; Elze, Lars; Seidlitz, Holger; Bambach, Markus

    2016-10-01

    Sandwich materials made from corrugated sheet metal provide excellent mechanical properties for lightweight design without using filler material. The increased mechanical properties of these sandwich materials are achieved by the 3-D geometry of the corrugated sheet and the hardening due to pre-forming. In the present study, manufacturing of corrugated sheet metal consisting of hexagonal bulge patterns through hydroforming and incremental forming is analyzed. Double layered corrugated sheet metal sandwiches with hexagonal patterns of free-form bulge geometries are investigated through finite element analysis for the maximum increase in stiffness over the normal flat sheets. The analysis shows that a bending stiffness increase of up to 13 times over flat sheet of the same mass is attainable by corrugated sandwiches. Further, it is proved for these types of corrugation sandwiches that stiffness increases by increasing the height of the corrugation bulge but that hydroforming poses restrictions with respect to bulge height, since it is limited by forming force and formability of the material. Incremental sheet metal forming can be used to produce sheets with a hexagonal bulge pattern with increased height. Hence, a higher increase in stiffness as compared to hydroforming is possible but at the expense of process speed.

  8. Functionalized surfaces and nanostructures for nanotechnological applications

    Science.gov (United States)

    2003-01-01

    CMOS roadmap in sight at around 10 nm, combined with the uncertainly principal's limit of Von Neuman electronics at 2 nm, that merely making things smaller will not help us. Replacing CMOS transistors on a one for one basis with some type of nano device would have the effect of drastically increasing fabrication costs, while offering only a marginal improvement over current technologies. However, nanotechnology offers us a way out of this technological and financial cul-de-sac by building devices from the bottom up. Techniques such as self assembly, perhaps assisted by templates created by nano imprint lithography, a notable European success, combined with our understanding of the workings of polymers and molecules such as Rotoxane at the nanoscale open up a whole new host of possibilities. Whether it is avoiding Moore's second law by switching to plastic electronics, or using molecular electronics, our understanding of the behaviour of materials on the scale of small molecules allows a variety of alternative approaches, to produce smarter, cheaper devices. The new understandings will also allow us to design new architectures, with the end result that functionality will become a more valid measure of performance than transistor density or operations per second. 8. Nanotechnology is new It often comes as a surprise to learn that the Romans and Chinese were using nanoparticles thousands of years ago. Similarly, every time you light a match, fullerenes are produced. Degusssa have been producing carbon black, the substance that makes car tyres black and improves the wear resistance of the rubber, since the 1920s. Of course they were not aware that they were using nanotechnology, and as they had no control over particle size, or even any knowledge of the nanoscale they were not using nanotechnology as currently defined. What is new about nanotechnology is our ability to not only see, and manipulate matter on the nanoscale, but our understanding of atomic scale interactions

  9. Terahertz Radiation from a Pipe with Small Corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  10. Geometrical properties of turbulent premixed flames and other corrugated interfaces

    Science.gov (United States)

    Thiesset, F.; Maurice, G.; Halter, F.; Mazellier, N.; Chauveau, C.; Gökalp, I.

    2016-01-01

    This study focuses on the geometrical properties of turbulent flame fronts and other interfaces. Toward that end, we use an original tool based on proper orthogonal decomposition (POD), which is applied to the interface spatial coordinates. The focus is mainly on the degree of roughness of the flame front, which is quantified through the scale dependence of its coverage arclength. POD is first validated by comparing with the caliper technique. Fractal characteristics are extracted in an unambiguous fashion using a parametric expression which appears to be impressively well suited for representing Richardson plots. Then it is shown that, for the range of Reynolds numbers investigated here, the scale-by-scale contribution to the arclength does not comply with scale similarity, irrespectively of the type of similarity which is invoked. The finite ratios between large and small scales, referred to as finite Reynolds number effects, are likely to explain this observation. In this context, the Reynolds number that ought to be achieved for a proper inertial range to be discernible, and for scale similarity to be likely to apply, is calculated. Fractal characteristics of flame folding are compared to available predictions. It is confirmed that the inner cutoff satisfactorily correlates with the Kolmogorov scale while the outer cutoff appears to be proportional to the integral length scale. However, the scaling for the fractal dimension is much less obvious. It is argued that much higher Reynolds numbers have to be reached for drawing firm statements about the evolution (or constancy) of the fractal dimension with respect to flame and flow parameters. Finally, a heuristic phenomenology of corrugated interfaces is highlighted. The degree of generality of the latter phenomenology is confirmed by comparing the folding of different interfaces including a turbulent-nonturbulent interface, a liquid jet destabilized by a surrounding air jet, a cavitating flow, and an isoscalar

  11. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  12. Low work function of the Ca2N surface

    NARCIS (Netherlands)

    Uijttewaal, M.A.; de Wijs, G. A.; Groot, R.A. de

    2004-01-01

    Polymer diodes require cathodes that do not corrode the polymer but do have low work function to minimize the electron injection barrier. First-principles calculations demonstrate that the work function of the (1000) surface of the compound Ca2N is half an eV lower than that of the elemental metal

  13. Piezotransistive GaN microcantilevers based surface work function measurements

    Science.gov (United States)

    Bayram, Ferhat; Khan, Digangana; Li, Hongmei; Maksudul Hossain, Md.; Koley, Goutam

    2018-04-01

    Surface work function (SWF) measurements using a piezotransistive III–nitride cantilever has been demonstrated on multiple surfaces. The minimum detectable surface potential change of 10 mV was achieved with a signal to noise ratio of 3. This method was applied to determine the surface potential changes due to exposure of 5 ppm NO2 in graphene and In2O3 thin film, simultaneously with conductivity changes. The potentiometric measurements yielded 100 and 80 mV potential changes in SWFs of graphene and In2O3 respectively, which matches very well with experimental data published earlier indicating the efficacy of this readily miniaturizable measurement technique.

  14. Superhydrophobic surfaces: from natural to biomimetic to functional.

    Science.gov (United States)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2011-01-15

    Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly' wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar to a simple copying or duplicating of biological structures. In this feature article, we review the recent studies in both natural superhydrophobic surfaces and biomimetic superhydrophobic surfaces, and highlight some of the recent advances in the last four years, including the various smart routes to construct rough surfaces, and a lot of chemical modifications which lead to superhydrophobicity. We also review their functions and applications to date. Finally, the promising routes from biomimetic superhydrophobic surfaces in the next are proposed. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe

    2014-01-07

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  16. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  17. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  18. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    International Nuclear Information System (INIS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Blázquez, O.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Hernández, S.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Garrido, B.

    2016-01-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  19. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  20. Investigations of the Reconstructed Gold Surface with Electrochemical Scanning Probe Microscopy.

    Science.gov (United States)

    Oden, Patrick Ian

    1993-03-01

    Scanning Tunneling and Atomic Force Microscopies (STM, AFM) have been used in conjunction with an electrochemical potentiostat for studying the properties of the reconstructed phase of the Au(111) surface in dilute solutions of perchloric acid (50mM) as well as comparing the STM and AFM results for the underpotential deposition (UPD) of lead on Au(111). With the STM, a variation of the out-of-plane corrugation amplitude of the reconstructed phase has been observed as a function of electrochemical potential (from -100mV to +400mV vs. a silver quasi-reference electrode). The variation in amplitude appears to be insensitive to both the sign and magnitude of the tunneling tip bias (in the range of -100mV to +100mV). From the slope of the corrugation amplitude versus electrochemical potential, an STM-tip induced modification of the corrugation amplitude of the (23 x surd3) surface near the phase transition to a (1 x 1) surface is believed to occur. For UPD of lead studies, both the STM and AFM showed similar coverages of lead as a function of electrochemical potential, but a slight variation in the two techniques results was observed at the denuted zone boundaries.

  1. The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory.

    Science.gov (United States)

    Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch

    2016-10-07

    Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.

  2. Gelatin Functionalization of Biomaterial Surfaces: Strategies for Immobilization and Visualization

    Directory of Open Access Journals (Sweden)

    Peter Dubruel

    2011-01-01

    Full Text Available In the present work, the immobilization of gelatin as biopolymer on two types of implantable biomaterials, polyimide and titanium, was compared. Both materials are known for their biocompatibility while lacking cell-interactive behavior. For both materials, a pre-functionalization step was required to enable gelatin immobilization. For the polyimide foils, a reactive succinimidyl ester was introduced first on the surface, followed by covalent grafting of gelatin. For the titanium material, methacrylate groups were first introduced on the Ti surface through a silanization reaction. The applied functionalities enabled the subsequent immobilization of methacrylamide modified gelatin. Both surface modified materials were characterized in depth using atomic force microscopy, static contact angle measurements, confocal fluorescence microscopy, attenuated total reflection infrared spectroscopy and X-ray photo-electron spectroscopy. The results indicated that the strategies elaborated for both material classes are suitable to apply stable gelatin coatings. Interestingly, depending on the material class studied, not all surface analysis techniques are applicable.

  3. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  4. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  5. Surface functionalization of polyamide fiber via dopamine polymerization

    Science.gov (United States)

    Kuang, Xiao-Hui; Guan, Jin-Ping; Tang, Ren-Cheng; Chen, Guo-Qiang

    2017-09-01

    The oxidative polymerization of dopamine for the functional surface modification of textile fibers has drawn great attention. In this work, the functionalization of polyamide fiber via dopamine polymerization was studied with the aim of the fabrication of hydrophilic and antistatic surface. The conditions of dopamine application were first discussed in the absence of specific oxidants in terms of the apparent color depth of polyamide fiber. Dopamine concentration, pH and time were found to exert great impact on color depth. The highest color depth was achieved at pH 8.5. In the process of modification, polydopamine was deposited onto the surface of polyamide fiber. The modified polyamide fiber displayed a yellowish brown color with excellent wash and light color fastness, and exhibited good hydrophilic, UV protection and antistatic effects. A disadvantage of the present approach was the slow rate of dopamine polymerization and functionalization.

  6. Meromorphic functions and cohomology on a Riemann surface

    International Nuclear Information System (INIS)

    Gomez-Mont, X.

    1989-01-01

    The objective of this set of notes is to introduce a series of concepts of Complex Analytic Geometry on a Riemann Surface. We motivate the introduction of cohomology groups through the analysis of meromorphic functions. We finish by showing that the set of infinitesimal deformations of a Riemann surface (the tangent space to Teichmueller space) may be computed as a Cohomology group. (author). 6 refs

  7. Reducing the subconscious frown by endoscopic resection of the corrugator muscles.

    Science.gov (United States)

    Hamas, R S

    1995-01-01

    Certain patients subconsciously frown whenever concentrating or conversing. This hyperactivity of their corrugator muscles gives them an unattractive mean or angry look. Prominent glabellar frown lines eventually result from making this facial expression repeatedly. If such patients undergo an open coronal browlift, their corrugator muscles are resected routinely. However, patients who do not need or want a browlift seldom agree to a coronal incision just for access to their corrugators. To address this problem, the author devised an endoscopic operation to approach and resect the corrugators through three 5-mm hairline incisions. In this initial series, the subconscious tendency to frown when concentrating or conversing was reduced to about 20% of the preoperative level. This resulted in a more pleasant facial appearance.

  8. A soluble-lead redox flow battery with corrugated graphite sheet and ...

    Indian Academy of Sciences (India)

    lead redox flow battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors. A Banerjee D Saha T N Guru Row A K Shukla. Volume 36 Issue 1 February 2013 pp 163-170 ...

  9. Axial Crushing Behaviors of Thin-Walled Corrugated and Circular Tubes - A Comparative Study

    Science.gov (United States)

    Reyaz-Ur-Rahim, Mohd.; Bharti, P. K.; Umer, Afaque

    2017-10-01

    With the help of finite element analysis, this research paper deals with the energy absorption and collapse behavior with different corrugated section geometries of hollow tubes made of aluminum alloy 6060-T4. Literature available experimental data were used to validate the numerical models of the structures investigated. Based on the results available for symmetric crushing of circular tubes, models were developed to investigate corrugated thin-walled structures behavior. To study the collapse mechanism and energy absorbing ability in axial compression, the simulation was carried in ABAQUS /EXPLICIT code. In the simulation part, specimens were prepared and axially crushed to one-fourth length of the tube and the energy diagram of crushing force versus axial displacement is shown. The effect of various parameters such as pitch, mean diameter, corrugation, amplitude, the thickness is demonstrated with the help of diagrams. The overall result shows that the corrugated section geometry could be a good alternative to the conventional tubes.

  10. Modeling of the plastic flow kinematics in the forming process of the lightweight flange corrugation

    Directory of Open Access Journals (Sweden)

    I. V. Fomenko

    2012-01-01

    Full Text Available The determination of the forming maximum possibilities of the flange corrugation by stretching with a free movement of the billets end in the rigid sectional matrices detachable by the flexible filler.

  11. Erosion resistance of bionic functional surfaces inspired from desert scorpions.

    Science.gov (United States)

    Zhiwu, Han; Junqiu, Zhang; Chao, Ge; Li, Wen; Ren, Luquan

    2012-02-07

    In this paper, a bionic method is presented to improve the erosion resistance of machine components. Desert scorpion (Androctonus australis) is a typical animal living in sandy deserts, and may face erosive action of blowing sand at a high speed. Based on the idea of bionics and biologic experimental techniques, the mechanisms of the sand erosion resistance of desert scorpion were investigated. Results showed that the desert scorpions used special microtextures such as bumps and grooves to construct the functional surfaces to achieve the erosion resistance. In order to understand the erosion resistance mechanisms of such functional surfaces, the combination of computational and experimental research were carried out in this paper. The Computational Fluid Dynamics (CFD) method was applied to predict the erosion performance of the bionic functional surfaces. The result demonstrated that the microtextured surfaces exhibited better erosion resistance than the smooth surfaces. The further erosion tests indicated that the groove surfaces exhibited better erosion performance at 30° injection angle. In order to determine the effect of the groove dimensions on the erosion resistance, regression analysis of orthogonal multinomials was also performed under a certain erosion condition, and the regression equation between the erosion rate and groove distance, width, and height was established.

  12. Surface functionalization of aluminosilicate nanotubes with organic molecules

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2012-02-01

    Full Text Available The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid (HT3P and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-ylethylphosphonic acid 1,1-dioxide (HT3OP, on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene (P3HT chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid.

  13. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  14. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.

    2006-01-01

    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...... amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  15. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    Science.gov (United States)

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  16. Constructive fire protection of steel corrugated beams of buildings and other structures

    OpenAIRE

    Ilyin Nikolay; Panfilov Denis; Lukin Aleksey

    2017-01-01

    The research introduces a methodology of establishing indicators of fire safety of a building in relation to a guaranteed duration of steel fire-proof corrugated beams resistance in conditions of standard fire tests. Indicators of fire safety are also established in the assessment of design limits of steel fire-proof corrugated beams during design process, construction or maintenance of the building as well as in reducing economic costs when testing steel structures for fire resisting propert...

  17. Experimental study of the turbulent convective heat transfer of titanium oxide nanofluid flowing inside helically corrugated tubes

    Energy Technology Data Exchange (ETDEWEB)

    Salimpour, Mohammad Reza; Golmohammadi, Kia; Sedaghat, Ahmad [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Campo, Antonio [The University of Texas at San Antonio, San Antonio (United States)

    2015-09-15

    The convective heat transfer for the turbulent flow of water/TiO{sub 2} nanofluid inside helically horizontal corrugated tubes is investigated in this paper using experimental techniques. The tube boundary condition is a uniform wall temperature. The test apparatus was designed and assembled with a test section containing 93 cm copper tubes with internal and external diameters of 7.71 mm and 9.52 mm, respectively. First, the heat transfer characteristics of the distilled water turbulent flow in a plain copper tube were measured preliminarily. Second, various test runs were performed for nanofluids with two nanoparticle concentrations (0.1% and 0.5%), two corrugation depth to diameter ratios (0.0648 and 0.103), two corrugation pitch to diameter ratios (0.917 and 1.297), and two corrugation width to diameter ratios (0.363 and 0.492) that were all within the range of turbulent Reynolds numbers (3000 < Re < 15000). The experimental results reveal that the Nusselt number augments the dual increments in corrugation depth and width and with the decrements in corrugation pitch, particularly for high Reynolds numbers. The nanoparticles have a stronger effect on the heat transfer in helically corrugated tubes with higher corrugation depths and widths as well as lower corrugation pitches. A correlation for the Nusselt number in terms of the helically corrugated tubes is introduced based on the linear regression analysis of the experimental data.

  18. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs.

    Science.gov (United States)

    Wang, Zhi-Yu; Wang, Qing-Yuan; Liu, Yong-Jie

    2015-08-19

    Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.

  19. Evaluation of Fatigue Strength Improvement by CFRP Laminates and Shot Peening onto the Tension Flanges Joining Corrugated SteelWebs

    Directory of Open Access Journals (Sweden)

    Zhi-Yu Wang

    2015-08-01

    Full Text Available Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates.

  20. Device Performance Improvement of Recycling Double-Pass Cross-Corrugated Solar Air Collectors

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2018-02-01

    Full Text Available The device performance of cross-corrugated double-pass solar air heaters under external recycle conditions was investigated experimentally and theoretically, and solved numerically using the Newton method. Comparisons were made and represented graphically among three different configurations of the single-pass, flat-plate double-pass and cross-corrugated double-pass devices. Air flowing simultaneously over the wavelike corrugated absorbing plate and in-between both wavelike cross-corrugated absorbing and transverse bottom plates was conducted under double-pass operations. A considerable heat-transfer efficiency enhancement is obtained employing such a recycling double pass device with welding cross-corrugated absorbing plates, instead of using the flat-plate device. An effective thermal performance was achieved because the heat transfer area is doubled and the turbulent intensity is enhanced as well. The power consumption increment owing to the reduction in the cross-sectional area was taken into account associated with the heat-transfer efficiency enhancement for comparisons in determining the optimal design on an economic consideration for the recycling cross-corrugated double-pass device.

  1. Optimum Design of Composite Corrugated Web Beams Using Hunting Search Algorithm

    Directory of Open Access Journals (Sweden)

    Ferhat Erdal

    2017-07-01

    Full Text Available Over the past few years there has been sustainable development in the steel and composite construction technology. One of the recent additions to such developments is the I-girders with corrugated web beams. The use of these new generation beams results in a range of benefits, including flexible, free internal spaces and reduced foundation costs. Corrugated web beams are built-up girders with a thin-walled, corrugated web and wide plate flanges. The thin corrugated web affords a significant weight reduction of these beams, compared with hot-rolled or welded ones. In this paper, optimum design of corrugated composite beams is presented. A recent stochastic optimization algorithm coded that is based on hunting search is used for obtaining the solution of the design problem. In the optimisation process, besides the thickness of concrete slab and studs, web height and thickness, distance between the peaks of the two curves, the width and thickness of flange are considered as design variables. The design constraints are respectively implemented from BS EN1993-1:2005 (Annex-D, Eurocode 3 BS-8110 and DIN 18-800 Teil-1. Furthermore, these selections are also carried out such that the design limitations are satisfied and the weight of the composite corrugated web beam is the minimum.

  2. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  3. Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite.

    Science.gov (United States)

    Ross, Ryan D; Roeder, Ryan K

    2011-10-01

    Gold nanoparticles (Au NPs) have been investigated for a number of biomedical applications, including drug and gene delivery vehicles, thermal ablation therapy, diagnostic sensors, and imaging contrast agents. Surface functionalization with molecular groups exhibiting calcium affinity can enable targeted delivery of Au NPs to calcified tissue, including damaged bone tissue. Therefore, the objective of this study was to investigate the binding affinity of functionalized Au NPs for targeted delivery to bone mineral, using hydroxyapatite (HA) crystals as a synthetic analog in vitro. Au NPs were synthesized to a mean particle size of 10-15 nm and surface functionalized with either L-glutamic acid, 2-aminoethylphosphonic acid, or alendronate, which exhibit a primary amine for binding gold opposite carboxylate, phosphonate, or bisphosphonate groups, respectively, for targeting calcium. Bisphosphonate functionalized Au NPs exhibited the most rapid binding kinetics and greatest binding affinity to HA, followed by glutamic acid and phosphonic acid. All functional groups reached complete binding after 24 h. Equilibrium binding constants in de-ionized water, determined by nonlinear regression of Langmuir isotherms, were 3.40, 0.69, and 0.25 mg/L for bisphosphonate, carboxylate, and phosphonate functionalized Au NPs, respectively. Functionalized Au NPs exhibited lower overall binding in fetal bovine serum compared to de-ionized water, but relative differences between functional groups were similar. Copyright © 2011 Wiley Periodicals, Inc.

  4. Membrane mimetic surface functionalization of nanoparticles: Methods and applications

    Science.gov (United States)

    Weingart, Jacob; Vabbilisetty, Pratima; Sun, Xue-Long

    2013-01-01

    Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regards to the overall performance of the NP system for its intended use. Among known examples of surface functionalization, the construction of an artificial cell membrane structure, based on phospholipids, has proven effective in enhancing biocompatibility and has become a viable alternative to more traditional modifications, such as direct polymer conjugation. Furthermore, certain bioactive molecules can be immobilized onto the surface of phospholipid platforms to generate displays more reminiscent of cellular surface components. Thus, NPs with membrane-mimetic displays have found use in a range of bioimaging, biosensing, and drug delivery applications. This review herein describes recent advances in the preparations and characterization of integrated functional NPs covered by artificial cell membrane structures and their use in various biomedical applications. PMID:23688632

  5. Curves and surfaces represented by polynomial support functions

    DEFF Research Database (Denmark)

    Sir, Z.; Gravesen, Jens; Juttler, B.

    2008-01-01

    This paper studies shapes (curves and surfaces) which can be described by (piecewise) polynomial support functions. The class of these shapes is closed under convolutions, offsetting, rotations and translations. We give a geometric discussion of these shapes and present methods for the approximat...

  6. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Administrator

    well as applications. One of the special interests of SiNWs is that their surfaces can be easily modified to act as both elec- ... functionalized the SiNWs via nanoscale Joule heat- ing. 23. Shir et al investigated the oxidation of silicon nanowires. 24 .... cording to Vegard's law. 29. Figure 5b presents a TEM image of one single.

  7. Bio-inspired functional surfaces for advanced applications

    DEFF Research Database (Denmark)

    Malshe, Ajay; Rajurkar, Kamlakar; Samant, Anoop

    2013-01-01

    , are being evolved to a higher state of intelligent functionality. These surfaces became more efficient by using combinations of available materials, along with unique physical and chemical strategies. Noteworthy physical strategies include features such as texturing and structure, and chemical strategies...

  8. Numerical Investigation of Simultaneously Deposition and Re-Entrainment Fouling Processes in Corrugated Tubes by Coupling CFD and DEM

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Condra, Thomas Joseph; Sørensen, Kim

    The deposition of particulate fouling on flue gas heat exchanger surfaces results in decreased heat transfer. Even though an increasingly amount of work is done on the design of clean heat exchanger surfaces, the effect of fouling remains a challenge. As some heat exchanger designs are more prone...... to fouling deposit than others, detailed fouling considerations have to be taken into account in the initial design process of new heat exchangers. This study presents initial simulations of particulate fouling in the corrugated tube heat exchanger type. Using a mechanistic Euler-Lagrange approach, where...... Computational Fluid Dynamics (CFD) software OpenFOAM is coupled to the Discrete Element Method (DEM) software LIGGGHTS using the coupling software CFDEM. A four-way coupling is used to model fluid-particle and particle-particle interactions and thereby allowing for a particle fouling layer to build up along...

  9. Scattering function for a model of interacting surfaces

    International Nuclear Information System (INIS)

    Colangelo, P.; Gonnella, G.; Maritan, A.

    1993-01-01

    The two-point correlation function of an ensemble of interacting closed self-avoiding surfaces on a cubic lattice is analyzed in the disordered phase, which corresponds to the paramagnetic region in a related spin formulation. Mean-field theory and Monte Carlo simulations predict the existence of a disorder line which corresponds to a transition from an exponential decay to an oscillatory damped behavior of the two-point correlation function. The relevance of the results for the description of amphiphilic systems in a microemulsion phase is discussed. The scattering function is also calculated for a bicontinuous phase coexisting with the paramagnetic phase

  10. Surface functionalization of detonation nanodiamonds by phosphonic dichloride derivatives.

    Science.gov (United States)

    Presti, Charlene; Alauzun, Johan G; Laurencin, Danielle; Mutin, P Hubert

    2014-08-05

    A new method for the functionalization of detonation nanodiamonds (DNDs) is proposed, on the basis of surface modification with phosphonic dichloride derivatives. DNDs were first modified by phenylphosphonic dichloride, and the grafting modes and hydrolytic stability under neutral conditions were investigated using (1)H, (13)C, and (31)P solid state NMR spectroscopy, Fourier transform infrared spectroscopy, as well as elemental analysis. Then, in order to illustrate the possibilities offered by this method, DNDs functionalized by mesityl imidazolium groups were obtained by postmodification of DNDs modified by 12-bromododecylphosphonic dichloride. The oxidative thermal stability of the functionalized DNDs was investigated using thermogravimetric analysis.

  11. Superradiance of short electron pulses in regular and corrugated waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N.S.; Konoplev, I.V.; Sergeev, A.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    The report is devoted to theoretical and experimental study of superradiance of short electron pulses moving through waveguide systems. It is suggested that electrons oscillate or in undulator field (undulator SR) or in homogeneous magnetic field (cyclotron SR). We studied specific regimes of SR which may occur due to peculiarities of waveguide dispersion. Among them there are regimes of radiation near cut-off frequency as well as regimes of group synchronism. At the last operating regimes an electron bunch longitudinal velocity coincide with group velocity of e.m. wave. It is found the increasing of the SR instability grows rate and energy extraction efficiency in such regimes. It is also possible to observe the same enhancement using external feedback in periodically corrugated waveguide when Bragg resonance condition with forward propagated e.m. wave is fulfill. For experimental observation of cyclotron SR we intend to use compact subnanosecond accelerator RADAN 303B on the base of the high voltage generator with special subnansecond transformer. Accelerator generates short 0.3ns electron pulses with current about 1kA and particles energy 200keV. Design of magnetic confound system provide possibility to install an active locker to impose to electrons cyclotron rotation with pitch-factor about 1-1.5. According to numerical simulation at the mm and submm wavebands it is possible to achieve radiation pick power about 5-10MW with pulse duration less than 1ns.

  12. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    Science.gov (United States)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  13. Driving corrugated donut rotors with Laguerre-Gauss beams.

    Science.gov (United States)

    Loke, Vincent L Y; Asavei, Theodor; Stilgoe, Alexander B; Nieminen, Timo A; Rubinsztein-Dunlop, Halina

    2014-08-11

    Tightly-focused laser beams that carry angular momentum have been used to trap and rotate microrotors. In particular, a Laguerre-Gauss mode laser beam can be used to transfer its orbital angular momentum to drive microrotors. We increase the torque efficiency by a factor of about 2 by designing the rotor such that its geometry is compatible with the driving beam, when driving the rotation with the optimum beam, rather than beams of higher or lower orbital angular momentum. Based on Floquet's theorem, the order of discrete rotational symmetry of the rotor can be made to couple with the azimuthal mode of the Laguerre-Gauss beam. We design corrugated donut rotors, that have a flat disc-like profile, with the help of the discrete dipole approximation and the T-matrix methods in parallel with experimental demonstrations of stable trapping and torque measurement. We produce and test such a rotor using two-photon photopolymerization. With a rotor that has 8-fold discrete rotational symmetry, an outer radius of 1.85 μm and a hollow core radius of 0.5 μm, we were able to transfer approximately 0.3 h̄ per photon of the orbital angular momentum from an LG04 beam.

  14. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  15. Silver nanoprisms self-assembly on differently functionalized silica surface

    Science.gov (United States)

    Pilipavicius, J.; Chodosovskaja, A.; Beganskiene, A.; Kareiva, A.

    2015-03-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs.

  16. Minimal models on Riemann surfaces: The partition functions

    International Nuclear Information System (INIS)

    Foda, O.

    1990-01-01

    The Coulomb gas representation of the A n series of c=1-6/[m(m+1)], m≥3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius) 2 of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.)

  17. Minimal models on Riemann surfaces: The partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)

    1990-06-04

    The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).

  18. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  19. Corrugated Shell Displacements During the Passage of a Vehicle Along a Soil-Steel Structure

    Directory of Open Access Journals (Sweden)

    Machelski Czesław

    2016-12-01

    Full Text Available Corrugated steel plates are highly rigid and as the constructions can be immersed in soil, they can be used as soil-steel structures. With an increase of cover depth, the effectiveness of operating loads decreases. A substantial reduction of the impacts of vehicles takes place as a road or rail surface with its substructure is crucial. The scope of load’s impact greatly exceeds the span L of a shell. This article presents the analysis of deformations of the upper part of a shell caused by a live load. One of the assumptions used in calculations performed in Plaxis software was the circle-shaped shell and the circumferential segment of the building structure in the 2D model. The influence lines of the components of vertical and horizontal displacements of points located at the highest place on the shell were used as a basis of analysis. These results are helpful in assessing the results of measurements carried out for the railway structure during the passage of two locomotives along the track. This type of load is characterized by a steady pressure onto wheels with a regular wheel base. The results of measurements confirmed the regularity of displacement changes during the passage of this load.

  20. Modification of old corrugated container pulp with laccase and laccase-mediator system.

    Science.gov (United States)

    Chen, Yangmei; Wan, Jinquan; Ma, Yongwen; Tang, Bing; Han, Wenjia; Ragauskas, Arthur J

    2012-04-01

    Modification of the physical properties of old corrugated container (OCC) pulp with laccase or a laccase-mediator (ABTS, HBT, VA) system was investigated under select enzymatic concentrations and reaction times. The optimal conditions for laccase treatment shown to be using a laccase dose of 160U/g o.d. pulp, a treatment time of 20h at 25°C, pH 7 with a pulp consistency of 5%. Results showed that the Lac-HBT treated OCC pulp gave the best strength properties, improving tensile strength by 15.7%. The increase in the carboxyl group content of OCC laccase or Lac-HBT treated pulp led to the increase in the swelling ability and bonding between fibers. Microscope images showed the fiber surface became rougher and more collapsible after Lac-HBT treatment. FT-IR data showed that new carboxylic acid groups were formed during Lac-HBT treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Usage of analytical diagnostics when evaluating functional surface material defects

    Directory of Open Access Journals (Sweden)

    R. Frischer

    2015-10-01

    Full Text Available There are occurring defects due to defects mechanisms on parts of production devices surfaces. Outer defects pronouncement is changing throw the time with unequal speed. This variability of defect’s mechanism development cause that is impossible to evaluate technical state of the device in any moment, without the necessary underlying information. Proposed model is based on analytical diagnostics basis. Stochastic model with usage of Weibull probability distribution can assign probability of function surface defect occurrence on the operational information in any moment basis. The knowledge of defect range limiting moment, then enable when and in what range will be necessary to make renewal.

  2. Plant Surfaces: Structures and Functions for Biomimetic Innovations

    Science.gov (United States)

    Barthlott, Wilhelm; Mail, Matthias; Bhushan, Bharat; Koch, Kerstin

    2017-04-01

    An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350-450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology

  3. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-03-01

    Full Text Available Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  4. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  5. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  6. Nanodrop on a nanorough solid surface: Density functional theory considerations

    Science.gov (United States)

    Berim, Gersh O.; Ruckenstein, Eli

    2008-07-01

    The density distributions and contact angles of liquid nanodrops on nanorough solid surfaces are determined on the basis of a nonlocal density functional theory. Two kinds of roughness, chemical and physical, are examined. The former considers the substrate as a sequence of two kinds of semi-infinite vertical plates of equal thicknesses but of different natures with different strengths for the liquid-solid interactions. The physical roughness involves an ordered set of pillars on a flat homogeneous surface. Both hydrophobic and hydrophilic surfaces were considered. For the chemical roughness, the contact angle which the drop makes with the flat surface increases when the strength of the liquid-solid interaction for one kind of plates decreases with respect to the fixed value of the other kind of plates. Such a behavior is in agreement with the Cassie-Baxter expression derived from macroscopic considerations. For the physical roughness on a hydrophobic surface, the contact angle which a drop makes with the plane containing the tops of the pillars increases with increasing roughness. Such a behavior is consistent with the Wenzel formula developed for macroscopic drops. For hydrophilic surfaces, as the roughness increases the contact angle first increases, in contradiction with the Wenzel formula, which predicts for hydrophilic surfaces a decrease of the contact angle with increasing roughness. However, a further increase in roughness changes nonmonotonously the contact angle, and at some roughness, the drop disappears and only a liquid film is present on the surface. It was also found that the contact angle has a periodic dependence on the volume of the drop.

  7. Synthesis, characterization, and selective surface functionalization of structured nanoparticles

    OpenAIRE

    Hofmann, Andreas

    2010-01-01

    In this thesis, open questions in the field of nanomaterials are investigated and answered. These topics are focused on the study of doping agents in the crystal lattice of semiconductor nanoparticles, the use of oleic acid coated iron oxide nanoparticles for applications in biological systems, and the regioselective surface functionalization of gold nanoparticles for a controlled linkage of single particles. In order to better understand the spin properties of dopants in the core of sem...

  8. Sortase A-mediated functionalization of nanobodies toward surface coupling

    OpenAIRE

    TA, Duy Tien; STEEN REDEKER, Erik; GUEDENS, Wanda; ADRIAENSENS, Peter

    2013-01-01

    The conserved LPETG motif, at which sortase A-catalyzed transpeptidation occurs, is engineered at the C-terminal region of the variable domain of single-domain heavy chain antibody (or nanobody) against Vascular Cell Adhesion Molecule 1 (VCAM1). The recombinant nanobody can then subsequently be ligated, under sortase A catalysis, to a variety of oligoglycine containing targets, including material surfaces, contrast labeling molecules and molecules functionalized for specific chemical coupling...

  9. Functionalization of the hydroxyapatite nanoparticles surface: source of new applications

    International Nuclear Information System (INIS)

    Rojas Sanchez, Leonardo

    2012-01-01

    The surface of the nano-calcium hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 is reacted with stearic acid, succinic anhydride, succinimide and 2 a minoetil dihydrogenphosphate. Introduction of different functional groups is given onto the surface. An ionic interaction is identified by infrared spectroscopy and Raman between the carboxylate groups of the resulting organic molecules and calcium of the hydroxyapatite. The formation of a P-O-P pyrophosphate type bond has been for 2-aminoethyl dihydrogen phosphate with hydroxyapatite groups. Hydroxyapatite phase was remained in all cases after the reaction as demonstrated by diffraction of x-ray in powder. The amount of spiked molecules is quantified by analysis of thermal degradation which together with the determination of the surface area by BET isotherms of nitrogen adsorption. A degree of surface coverage is estimated by the organic molecules. A maximum percentage of 71% is obtained for the functionalization with succinic anhydride, followed by 57% for the reaction with stearic acid. Dilute suspensions of different materials were prepared for which in phosphate buffer solution have presented two populations around 2 and 5 μm in diameter for the modified particles. The ζ-Potential of various materials was determined occurring a variation in the potential of the unmodified hydroxyapatite. The particles with physicochemical properties different of the starting hydroxyapatite were obtained, this has expanded the range of application of the material. (author) [es

  10. Surface functionalization with strontium-containing nanocomposite coatings via EPD.

    Science.gov (United States)

    Ma, Kena; Huang, Dan; Cai, Jing; Cai, Xinjie; Gong, Lingling; Huang, Pin; Wang, Yining; Jiang, Tao

    2016-10-01

    Metal orthopedic implants still face challenges in some compromised conditions, partly due to bio-inertness. The present study aimed to functionalize metallic implants with organic-inorganic nanocomposite (strontium-containing chitosan/gelatin) coatings through a simple single-step electrophoretic deposition under mild conditions. The surface characterization and in vitro cellular response were studied and compared with chitosan/gelatin (CS/G) coatings. SEM images suggested the inorganic nanoparticles may be encapsulated within or mixed with organic polymers. The XRD patterns showed that strontium carbonate was generated in the coatings. The TEM images revealed strontium-containing nanoparticles were released from the coatings in PBS. The continuous release after the initial burst release ensured the enduring effects of the functionalized surface. The tensile bond strength of the coatings to the substrates increased after the addition of strontium. In vitro cellular study confirmed that strontium-containing coatings supported the proliferation of MC3T3-E1 cells and exhibited excellent ability to enhance the differentiation of such pre-osteoblasts. Therefore, such organic-inorganic nanocomposite coatings are a promising candidate to functionalize orthopedic implant surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  12. Fracture Behaviours in Compression-loaded Triangular Corrugated Core Sandwich Panels

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2016-01-01

    Full Text Available The failure modes occurring in sandwich panels based on the corrugations of aluminium alloy, carbon fibre-reinforced plastic (CFRP and glass fibre-reinforced plastic (GFRP are analysed in this work. The fracture behaviour of these sandwich panels under compressive stresses is determined through a series of uniform lateral compression performed on samples with different cell wall thicknesses. Compression test on the corrugated-core sandwich panels were conducted using an Instron series 4505 testing machine. The post-failure examinations of the corrugated-core in different cell wall thickness were conducted using optical microscope. Load-displacement graphs of aluminium alloy, GFRP and CFRP specimens were plotted to show progressive damage development with five unit cells. Four modes of failure were described in the results: buckling, hinges, delamination and debonding. Each of these failure modes may dominate under different cell wall thickness or loading condition, and they may act in combination. The results indicate that thicker composites corrugated-core panels tend can recover more stress and retain more stiffness. This analysis provides a valuable insight into the mechanical behaviour of corrugated-core sandwich panels for use in lightweight engineering applications.

  13. Experimental investigation of heat transfer and friction factor in a corrugated plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Shive Dayal; Nema, V.K. [Department of Mechanical Engineering, MNNIT, Allahabad-211004 U.P. (India)

    2011-07-01

    Experiments are conducted to determine the heat transfer characteristics for fully developed flow of air and water flowing in alternate corrugated ducts with an inter-wall spacing equal to the corrugation height. The friction factor is found for air channel. The test section was formed by three identical corrugated channels having corrugation angle of 30o with cold air flowing in the middle one and hot water equally divided in the adjacent channels. Sinusoidal wavy arcs connected with tangential flat portions make the said corrugation angle with transverse direction. The Reynolds number based on hydraulic diameter varied from 750 to 3200 for water and from 16900 to 68000 for air by changing the mass flow rates of the two fluids. The Prandtl numbers were approximately constant at 2.55 for water and 0.7 for air. The various correlations are obtained Num=0.247Re0.83 for water, Num=66.686Re0.18 and friction factor f = 0.644 / Re0.18 for air.

  14. A Conjectural Generating Function for Numbers of Curves on Surfaces

    Science.gov (United States)

    Göttsche, Lothar

    I give a conjectural generating function for the numbers of δ-nodal curves in a linear system of dimension δ on an algebraic surface. It reproduces the results of Vainsencher [V] for the case δ &\\le 6 and Kleiman-Piene [K-P] for the case δ &\\le 8. The numbers of curves are expressed in terms of five universal power series, three of which I give explicitly as quasimodular forms. This gives in particular the numbers of curves of arbitrary genus on a K3 surface and an abelian surface in terms of quasimodular forms, generalizing the formula of Yau-Zaslow for rational curves on K3 surfaces. The coefficients of the other two power series can be determined by comparing with the recursive formulas of Caporaso-Harris for the Severi degrees in 2. We verify the conjecture for genus 2 curves on an abelian surface. We also discuss a link of this problem with Hilbert schemes of points.

  15. Plasma functionalized surface of commodity polymers for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, Georgina [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Osorio, Joaquin [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Castedo, Alejandra [Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Institut de Tècniques Energètiques, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Armelin, Elaine [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); and others

    2017-03-31

    Highlights: • Electrochemically inert polymers become electroactive after plasma functionalization. • Selective dopamine detection has been achieved functionalizing polymers with plasma. • Plasma-functionalized polymers are sensitive dopamine detectors. • XPS analyses reflect the transformation of inert polymers into electrosensors. - Abstract: We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  16. Orthogonal chemical functionalization of patterned gold on silica surfaces.

    Science.gov (United States)

    Palazon, Francisco; Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane; Chevolot, Yann; Cloarec, Jean-Pierre

    2015-01-01

    Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge.

  17. Orthogonal chemical functionalization of patterned gold on silica surfaces

    Directory of Open Access Journals (Sweden)

    Francisco Palazon

    2015-12-01

    Full Text Available Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica was demonstrated by X-ray photoelectron spectroscopy (XPS as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM. These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors is a major challenge.

  18. Analysis III analytic and differential functions, manifolds and Riemann surfaces

    CERN Document Server

    Godement, Roger

    2015-01-01

    Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular fun...

  19. Functionalization of silicon nanowire surfaces with metal-organic frameworks

    KAUST Repository

    Liu, Nian

    2011-12-28

    Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  20. Effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure

    Directory of Open Access Journals (Sweden)

    Zaid N.Z.M.

    2017-01-01

    Full Text Available Sandwich structure is an attractive alternative that increasingly used in the transportation and aerospace industry. Corrugated-core with trapezoidal shape allows enhancing the damage resistance to the sandwich structure, but on the other hand, it changes the structural response of the sandwich structure. The aim of this paper is to study the effect of varying geometrical parameters of trapezoidal corrugated-core sandwich structure under compression loading. The corrugated-core specimen was fabricated using press technique, following the shape of trapezoidal shape. Two different materials were used in the study, glass fibre reinforced plastic (GFRP and carbon fibre reinforced plastic (CFRP. The result shows that the mechanical properties of the core in compression loading are sensitive to the variation of a number of unit cells and the core thickness.

  1. Measurement with corrugated tubes of early-age autogenous shrinkage of cement-based material

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2009-01-01

    The use of a special corrugated mould enables transformation of volume strain into horizontal, linear strain measurement in the fluid stage. This allows continuous measurement of the autogenous shrinkage of cement-based materials since casting, and also effectively eliminates unwanted influence...... on the measuring results from gravity, temperature variation and mould restraint. In this paper the principle of the corrugated tube measurement is described. A systematic study was carried out on the influence on the measuring results of the material properties, size effects and encapsulated air in the corrugated...... tube. The experimental results show that there is a minor influence on the measuring results of the stiffness and size of the plastic tube as well as of the encapsulated air. However, the influence decreases with the hardening process and becomes negligible a few hours after final set....

  2. Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Borca, Bogdana; Barja, Sara; Garnica, Manuela; Rodriguez-GarcIa, Josefa M; Hinarejos, Juan Jose; FarIas, Daniel; Parga, Amadeo L Vazquez de; Miranda, Rodolfo [Departamento de Fisica de la Materia Condensada, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid (Spain); Minniti, Marina; Politano, Antonio, E-mail: al.vazquezdeparga@uam.e [Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049, Madrid (Spain)

    2010-09-15

    Graphene epitaxially grown on Ru(0001) displays a remarkably ordered pattern of hills and valleys in scanning tunneling microscopy (STM) images. The extent to which the observed 'ripples' are structural or electronic in origin has been much disputed recently. A combination of ultrahigh-resolution STM images and helium atom diffraction data shows that (i) the graphene lattice is rotated with respect to the lattice of Ru and (ii) the structural corrugation as determined from He diffraction is substantially smaller (0.15 A) than predicted (1.5 A) or reported from x-ray diffraction or low-energy electron diffraction. The electronic corrugation, on the contrary, is strong enough to invert the contrast between hills and valleys above +2.6 V as new, spatially localized electronic states enter the energy window of the STM. The large electronic corrugation results in a nanostructured periodic landscape of electron and hole pockets.

  3. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    Science.gov (United States)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  4. Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells

    International Nuclear Information System (INIS)

    Heidary, H.; Abbassi, A.; Kermani, M.J.

    2013-01-01

    Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC

  5. [Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].

    Science.gov (United States)

    Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang

    2014-03-01

    In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.

  6. Nanosensors based on functionalized nanoparticles and surface enhanced raman scattering

    Science.gov (United States)

    Talley, Chad E.; Huser, Thomas R.; Hollars, Christopher W.; Lane, Stephen M.; Satcher, Jr., Joe H.; Hart, Bradley R.; Laurence, Ted A.

    2007-11-27

    Surface-Enhanced Raman Spectroscopy (SERS) is a vibrational spectroscopic technique that utilizes metal surfaces to provide enhanced signals of several orders of magnitude. When molecules of interest are attached to designed metal nanoparticles, a SERS signal is attainable with single molecule detection limits. This provides an ultrasensitive means of detecting the presence of molecules. By using selective chemistries, metal nanoparticles can be functionalized to provide a unique signal upon analyte binding. Moreover, by using measurement techniques, such as, ratiometric received SERS spectra, such metal nanoparticles can be used to monitor dynamic processes in addition to static binding events. Accordingly, such nanoparticles can be used as nanosensors for a wide range of chemicals in fluid, gaseous and solid form, environmental sensors for pH, ion concentration, temperature, etc., and biological sensors for proteins, DNA, RNA, etc.

  7. Bionanohybrid based on bioplastic and surface-functionalized carbon nanotubes.

    Science.gov (United States)

    Singh, Ravina; Ray, Suprakas Sinha

    2010-12-01

    A bionanohybrid consisting of biodegradable/biocompatible poly(butylene succinate) (PBS) and surface-oxidized carbon nanotubes (o-CNTs) was prepared via melt-mixing method. The inherent properties of PBS were concurrently improved by the incorporation of a small amount of o-CNTs. For example, at room temperature, elongation at break increased from approximately 21.2% for pure PBS to approximately 55.1% for the nanohybrid and an increase of about approximately 150% in the value of toughness with moderate improvement in tensile modulus and strength. The dynamic mechanical properties of PBS also increased significantly after nanocomposite formation with o-CNTs. Electron microscopy and Raman spectroscopy were used to investigate the mechanical properties and improvement mechanism of surface-functionalized o-CNTs containing PBS nanohybrid.

  8. A parametric study on the whistling of multiple side branch system as a model for corrugated pipes

    NARCIS (Netherlands)

    Nakiboglu, G.; Belfroid, S.P.C.; Tonon, D.; Willems, J.F.H.; Hirschberg, A.

    2010-01-01

    Corrugated pipes are widely used in industry due to their inherent character of being globally flexible and locally rigid. Under certain conditions flow through the corrugated pipes causes severe noise and vibration problems. Thus, to understand the phenomenon and parameters that play role is a real

  9. Toward spatial control of gold nanorod surface functionalization

    Science.gov (United States)

    Eller, Jonathan R.

    Gold nanorods (GNRs) show much promise for applications in biological, optoelectronic and energy applications. The resonant generation of a localized surface plasmon resonance (LSPR) at the GNR surface results in interesting optical properties and unique interactions with molecules. Combined with their biocompatibility, ease of synthesis and facile surface functionalization, these anisotropic metal particles are excellent scaffolds for the study of the interactions between nanoscale surfaces and their chemical/biological environments. Regardless of the application, however, GNR utility will not be fully realized until the chemical nature of the surface is understood and controlled. GNRs can enhance various photophysical properties of molecules. In the case of two-photon absorption (TPA), cross-section enhancements have been shown to increase with strong distance-dependence. Here, a dual approach for the conjugation of a TPA chromophore to GNRs is presented, relying on layer-by- layer (LbL) polymer wrapping and direct thiol coating of the same parent chromophore structure. Together, these approaches allow for estimated chromophore-particle distances from products in the synthesis of site- selective silica-coated GNRs is demonstrated, and the thickness tunability of the resulting core-shell materials is investigated. The redox state of methoxy- terminated poly(ethylene glycol) thiol attached to GNRs is shown to be relevant in guiding the deposition of silica, providing an important insight into the design of anisotropic composite nanomaterials. Surface-initiated Atom transfer radical polymerization (SI-ATRP) is a popular method for grafting polymers from a surface. We demonstrate our ability to grow poly(N-isopropylacrylamide) (PNIPAM) shells on the GNR surface, toward a "smart" thermoresponsive polymer shell. The role of ligand choice, molar ratio of monomer to initiator and polymerization on presence and control of shell thickness are investigated. The introduction

  10. Swarm formation control utilizing elliptical surfaces and limiting functions.

    Science.gov (United States)

    Barnes, Laura E; Fields, Mary Anne; Valavanis, Kimon P

    2009-12-01

    In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).

  11. A Comparative Study of Dispersion Characteristics Determination of a Trapezoidally Corrugated Slow Wave Structure Using Different Techniques

    International Nuclear Information System (INIS)

    Saber, Md. Ghulam; Sagor, Rakibul Hasan; Amin, Md. Ruhul

    2016-01-01

    The linear dispersion relation of a trapezoidally corrugated slow wave structure (TCSWS) is analyzed and presented. The size parameters of the TCSWS are chosen in such a way that they operate in the x-band frequency range. The dispersion relation is solved by utilizing the Rayleigh–Fourier method by expressing the radial function in terms of the Fourier series. A highly accurate synthetic technique is also applied to determine the complete dispersion characteristics from experimentally measured resonances (cold test). Periodic structures resonate at specific frequencies when the terminals are shorted appropriately. The dispersion characteristics obtained from numerical calculation, synthetic technique and cold test are compared, and an excellent agreement is achieved. (paper)

  12. Comparison of heat transfer in straight and corrugated minichannels with two-phase flow

    Directory of Open Access Journals (Sweden)

    Peukert P.

    2014-03-01

    Full Text Available Measurements of heat transfer rates performed with an experimental condensation heat exchanger are reported for a corrugated minichannel tube and for a straight minichannel tube. The two cases were compared at same flow regimes. The corrugation appears advantageous for relatively low steam pressures and flow rates where much higher heat transfer rates were observed close to the steam entrance, thus allowing shortening the heat exchanger with the associated advantages of costs lowering and smaller built-up space. At high steam pressures and high flow rates both tubes performed similarly.

  13. Elastic stability of superplastically formed/diffusion-bonded orthogonally corrugated core sandwich plates

    Science.gov (United States)

    Ko, W. L.

    1980-01-01

    The paper concerns the elastic buckling behavior of a newly developed superplastically formed/diffusion-bonded (SPF/DB) orthogonally corrugated core sandwich plate. Uniaxial buckling loads were calculated for this type of sandwich plate with simply supported edges by using orthotropic sandwich plate theory. The buckling behavior of this sandwich plate was then compared with that of an SPF/DB unidirectionally corrugated core sandwich plate under conditions of equal structural density. It was found that the buckling load for the former was considerably higher than that of the latter.

  14. Numerical Investigation of Structural Response of Corrugated Blast Wall Depending on Blast Load Pulse Shapes

    Directory of Open Access Journals (Sweden)

    Jung Min Sohn

    Full Text Available Abstract Hydrocarbon explosions are one of most hazardous events for workers on offshore platforms. To protect structures against explosion loads, corrugated blast walls are typically installed. However, the profiles of real explosion loads are quite different depending on the congestion and confinement of Topside structures. As the level of congestion and confinement increases, the explosion load increases by up to 8 bar, and the rising time of the load decreases. This study primarily aims to investigate the structural behavior characteristics of corrugated blast walls under different types of explosion loadings. Four loading shapes were applied in the structural response analysis, which utilized a dynamic nonlinear finite element method.

  15. Effects on the structure of monolayer and submonolayer fluid nitrogen films by the corrugation in the holding potential of nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing

    2001-01-01

    of interactions were indicated by the comparison of the calculated and measured isosteric heats of adsorption in fluid films of nitrogen molecules on graphite. The melting temperatures were lowered by 7K and a region of liquid-gas coexistence was observed for films on the smooth graphite surface indicating......The effects of corrugation in the holding potential of nitrogen molecules on the structure of fluid monolayer and submonolayer films of the molecules on a solid substrate was studied using molecular dynamics simulation. Including McLachlan mediation of the intermolecular potential in a model...

  16. Holographic partition functions and phases for higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Maxfield, Henry; Ross, Simon F; Way, Benson

    2016-01-01

    We describe a numerical method to compute the action of Euclidean saddle points for the partition function of a two-dimensional holographic CFT on a Riemann surface of arbitrary genus, with constant curvature metric. We explicitly evaluate the action for the saddles for genus two and map out the phase structure of dominant bulk saddles in a two-dimensional subspace of the moduli space. We discuss spontaneous breaking of discrete symmetries, and show that the handlebody bulk saddles always dominate over certain non-handlebody solutions. (paper)

  17. Symposium Supramolecular Assemblies on Surface: Nanopatterning, Functionality and Reactivity

    Science.gov (United States)

    2016-05-19

    modules, steer their organisational and dynamic behaviour , and afford novel functions using well-defined homogenous surfaces, textured and sp2...three electron oxidations of singleIndiana University 11:00 AM 11:30 AM Frida 30 Beton, Peter Supramolecular  organisation  on layered semiconductors and...change in oxidation state of the metal. See J. Am. Chem. Soc. 136, 9862 (2014). 1841 - Supramolecular organisation on layered semiconductors and

  18. Fabrication of Bioactive Surfaces by Functionalization of Electroactive and Surface-Active Block Copolymers

    Directory of Open Access Journals (Sweden)

    Omotunde Olubi

    2014-08-01

    Full Text Available Biofunctional block copolymers are becoming increasingly attractive materials as active components in biosensors and other nanoscale electronic devices. We have described two different classes of block copolymers with biofuctional properties. Biofunctionality for block copolymers is achieved through functionalization with appropriate biospecific ligands. We have synthesized block copolymers of electroactive poly(3-decylthiophene and 2-hydroxyethyl methacrylate by atom transfer radical polymerization. The block copolymers were functionalized with the dinitrophenyl (DNP groups, which are capable of binding to Immunoglobulin E (IgE on cell surfaces. The block copolymers were shown to be redox active. Additionally, the triblock copolymer of α, ω-bi-biotin (poly(ethylene oxide-b-poly (styrene-b-poly(ethylene oxide was also synthesized to study their capacity to bind fluorescently tagged avidin. The surface-active property of the poly(ethylene oxide block improved the availability of the biotin functional groups on the polymer surfaces. Fluorescence microscopy observations confirm the specific binding of biotin with avidin.

  19. Analysis and design of functional micro/nano structured surfaces

    Science.gov (United States)

    Xu, Zhenzhen; Kong, Lingbao; Xu, Min

    2016-03-01

    In recent years, more and more attention has been paid to the bionic structure and functional materials. The theoretical research and fabricating ways of the Super-hydrophobic surface have sound achievements. However, the existing methods largely depend on the precision of the equipment and complex chemical substances, and it is hard to ensure the consistence of the material surface. Therefore, construction of microstructure on the surface of the material by using the method of mechanical processing to make the scale of the Super-hydrophobic surface to promote the popularization and application of Super-hydrophobic surface is of great significance. In order to put forward the innovative microstructure and to provide theoretical basis for the subsequent mechanical processing, based on the analysis of the classical theory of Super-hydrophobic, the super-hydrophobic film was by sol gel method. To explore the effects of different ratio of materials on the hydrophobicity, a micro/nano-structured super-hydrophobic coating was obtained by coating a film improved by hexamethyldisilazane (HMDS) after a film improved by polyethylene glycol (PEG) was coated. The microstructure of bilayer films is analyzed, and the double-layer film structure is simplified to design two kinds of microstructure models. For the design of the two models based on the Wenzel and Cassie equations, a roughness factor is adopted to establish the quantitative relationship between the contact angle and the microstructure parameters, and the microstructure parameters is also analyzed by using MATLAB software, and hence the optimized microstructure parameters is obtained.

  20. Frog tongue surface microstructures: functional and evolutionary patterns

    Science.gov (United States)

    Gorb, Stanislav N

    2016-01-01

    Summary Frogs (Lissamphibia: Anura) use adhesive tongues to capture fast moving, elusive prey. For this, the tongues are moved quickly and adhere instantaneously to various prey surfaces. Recently, the functional morphology of frog tongues was discussed in context of their adhesive performance. It was suggested that the interaction between the tongue surface and the mucus coating is important for generating strong pull-off forces. However, despite the general notions about its importance for a successful contact with the prey, little is known about the surface structure of frog tongues. Previous studies focused almost exclusively on species within the Ranidae and Bufonidae, neglecting the wide diversity of frogs. Here we examined the tongue surface in nine different frog species, comprising eight different taxa, i.e., the Alytidae, Bombinatoridae, Megophryidae, Hylidae, Ceratophryidae, Ranidae, Bufonidae, and Dendrobatidae. In all species examined herein, we found fungiform and filiform papillae on the tongue surface. Further, we observed a high degree of variation among tongues in different frogs. These differences can be seen in the size and shape of the papillae, in the fine-structures on the papillae, as well as in the three-dimensional organization of subsurface tissues. Notably, the fine-structures on the filiform papillae in frogs comprise hair-like protrusions (Megophryidae and Ranidae), microridges (Bufonidae and Dendrobatidae), or can be irregularly shaped or absent as observed in the remaining taxa examined herein. Some of this variation might be related to different degrees of adhesive performance and may point to differences in the spectra of prey items between frog taxa. PMID:27547606

  1. Micro-morphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH: velocity source forests

    NARCIS (Netherlands)

    van Veenendaal, E.; Sato, K.; Shikida, M.; Shikida, M.; Nijdam, A.J.; van Suchtelen, J.

    2001-01-01

    For silicon etched in KOH the micro-morphology of any surface, no matter the crystallographic orientation, is defined by some sort of persistent corrugations. As a matter of principle, the occurrence of these corrugations is incompatible with the classical kinematic wave theory for the evolution of

  2. Bovine serum albumin adsorption on functionalized porous silicon surfaces

    Science.gov (United States)

    Tay, Li-Lin; Rowell, Nelson L.; Lockwood, David J.; Boukherroub, Rabah

    2004-10-01

    The large surface area within porous Si (pSi) and its strong room temperature photoluminescence (PL) make it an ideal host for biological sensors. In particular, the development of pSi-based optical sensors for DNA, enzyme and other biochemical molecules have become of great interest. Here, we demonstrate that the in-situ monitoring of the pSi PL behaviour can be used as a positive identification of bovine serum albumin (BSA) protein adsorption inside the porous matrix. Electrochemically prepared pSi films were first functionalized with undecylenic acid to produce an organic monolayer covalently attached to the porous silicon surfaces. The acid terminal group also provided favourable BSA binding sites on the pSi matrix sidewalls. In-situ PL spectra showed a gradual red shift (up to 12 meV) in the PL peak energy due to the protein incorporation into the porous matrix. The PL then exhibited a continuous blue shift after saturation of the protein molecules in the pores. This blue shift of the PL peak frequency and a steady increase in the PL intensity is evidence of surface oxidation. Comparing the specular reflectance obtained by Fourier transform infrared spectroscopy (FTIR) before and after BSA incubation confirmed the adsorption of protein in the pSi matrix.

  3. Postural Stability Margins as a Function of Support Surface Slopes.

    Directory of Open Access Journals (Sweden)

    Aviroop Dutt-Mazumder

    Full Text Available This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe Down, 0° Flat and 10°, 20°, 25° Facing (Toe Up and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length had least motion at the baseline (0° Flat platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  4. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    Directory of Open Access Journals (Sweden)

    Andreas Baranowski

    Full Text Available Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES, and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants

  5. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Peter [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Gillespie, Andrew [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Stalla, David [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics; Dohnke, Elmar [Univ. of Missouri, Columbia, MO (United States). Dept. of Physics

    2017-02-20

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H2) by adsorption in quantities and at conditions that outperform current compressed-gas H2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H2 tanks operate at pressures between 350 and 700 bar at ambient temperature and store 3-4 percent of H2 by weight (wt%) and less than 25 grams of H2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H2 at pressures less than 350 bar. Adsorption holds H2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank

  6. Improving the Performance of Semiconductor Sensor Devices Using Surface Functionalization

    Science.gov (United States)

    Rohrbaugh, Nathaniel W.

    As production and understanding of III-nitride growth has progressed, this class of material has been used for its semiconducting properties in the fields of computer processing, microelectronics, and LEDs. As understanding of materials properties has advanced, devices were fabricated to be sensitive to environmental surroundings such as pH, gas, or ionic concentration. Simultaneously the world of pharmaceuticals and environmental science has come to the age where the use of wearable devices and active environmental sensing can not only help us learn more about our surroundings, but help save lives. At the crossroads of these two fields work has been done in marrying the high stability and electrical properties of the III-nitrides with the needs of a growing sensor field for various environments and stimuli. Device architecture can only get one so far, and thus the need for well understood surface functionalization techniques has arisen in the field of III-nitride environmental sensing. Many existing schemes for functionalization involve chemistries that may be unfriendly to a biological environment, unstable in solution, or expensive to produce. One possible solution to these issues is the work presented here, which highlights a surface modification scheme utilizing phosphonic acid based chemistry and biomolecular attachment. This dissertation presents a set of studies and experiments quantifying and analyzing the response behaviors of AlGaN/GaN field effect transistor (FET) devices via their interfacial electronic properties. Additional investigation was done on the modification of these surfaces, effects of stressful environmental conditions, and the utility of the phosphonic acid surface treatments. Signals of AlGaN/GaN FETs were measured as IDrain values and in the earliest study an average signal increase of 96.43% was observed when surfaces were incubated in a solution of a known recognition peptide sequence (SVSVGMKPSPRP). This work showed that even without

  7. A photometric function of planetary surfaces for gourmets

    Science.gov (United States)

    Shkuratov, Yuriy; Korokhin, Viktor; Shevchenko, Vasilij; Mikhalchenko, Olga; Belskaya, Irina; Kaydash, Vadym; Videen, Gorden; Zubko, Evgenij; Velikodsky, Yuriy

    2018-03-01

    A new photometric model with small number of parameters is presented. The model is based on an assumption that there exist such surfaces for which spatial brightness variations caused by small topography undulations can be reproduced exactly by corresponding spatial variations of albedo. This indistinguishability results in a differential equation suggesting a new photometric function that generalizes, in particular, the Akimov disk-function. Our model provides excellent fits in a wide phase-angle range for integral observations of asteroids of different albedos. We also carried out fitting to integral observations of the Moon and Mercury, confirming difficulties in describing Mercury's phase function at large phase angles, which were also found for the Hapke model. Comparisons of global latitude and longitude trends with our model calculations have shown good coincidence for the Moon. To retrieve the lunar trends, we use the phase-ratio technique, applying it to our telescope observations. Mapping the model parameters using LROC WAC data were carried out for a region comprising the Reiner Gamma formation. This mapping allows us to calculate phase-ratio images of the region, showing at large phase angles systematically steeper phase curves of young craters and smaller steepness for the very Reiner Gamma formation.

  8. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  9. Design and Realization Aspects of 1-THz Cascade Backward Wave Amplifier Based on Double Corrugated Waveguide

    DEFF Research Database (Denmark)

    Paoloni, Claudio; Di Carlo, Aldo; Bouamrane, Fayçal

    2013-01-01

    The design and fabrication challenges in the first ever attempt to realize a 1-THz vacuum tube amplifier are described. Implementation of innovative solutions including a slow-wave structure in the form of a double corrugated waveguide, lateral tapered input and output couplers, deep X-ray LIGA...

  10. Monotron and azimuthally corrugated: application to the high power microwaves generation

    International Nuclear Information System (INIS)

    Castro, Pedro Jose de

    2003-01-01

    The present document reports the activity of construction and initial operation of 6.7 GHz operation for high power microwave generation, the study on cylindrical resonators with azimuthally corrugated cross section, the determination of electrical conductivity of metallic materials and development of dielectric resonators for telecommunication applications

  11. Self-standing corrugated Ag and Au-nanorods for plasmonic applications

    DEFF Research Database (Denmark)

    Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.

    2011-01-01

    We use home-made Si-supported anodized alumina thin film templates for the electrodeposition of large area self-standing Ag- and Au-nanorod (Au-NR) arrays. The deposition conditions chosen, i.e. electrolyte composition and deposition voltage, lead to a corrugated rod morphology, particularly for Au...

  12. Evaluation of Steel Shear Walls Behavior with Sinusoidal and Trapezoidal Corrugated Plates

    Directory of Open Access Journals (Sweden)

    Emad Hosseinpour

    2015-01-01

    Full Text Available Reinforcement of structures aims to control the input energy of unnatural and natural forces. In the past four decades, steel shear walls are utilized in huge constructions in some seismic countries such as Japan, United States, and Canada to lessen the risk of destructive forces. The steel shear walls are divided into two types: unstiffened and stiffened. In the former, a series of plates (sinusoidal and trapezoidal corrugated with light thickness are used that have the postbuckling field property under overall buckling. In the latter, steel profile belt series are employed as stiffeners with different arrangement: horizontal, vertical, or diagonal in one side or both sides of wall. In the unstiffened walls, increasing the thickness causes an increase in the wall capacity under large forces in tall structures. In the stiffened walls, joining the stiffeners to the wall is costly and time consuming. The ANSYS software was used to analyze the different models of unstiffened one-story steel walls with sinusoidal and trapezoidal corrugated plates under lateral load. The obtained results demonstrated that, in the walls with the same dimensions, the trapezoidal corrugated plates showed higher ductility and ultimate bearing compared to the sinusoidal corrugated plates.

  13. Evaluation of Mechanical Strength of Five Layered Corrugated Cardboard Depending on the Types of Waveforms

    Directory of Open Access Journals (Sweden)

    Ivan Budimir

    2013-01-01

    Full Text Available Due to the growing need for material saving in the production of paper packaging, its industrial production is faced with the problem of quality assurance. By controlling the cost of production of corrugated cardboard, paperboard mechanical properties depend directly on the flute profile. Therefore, the corrugated cardboard can be observed both from technological and environmental aspects. Five layered corrugated cardboard of different types of flute profile was used for this research. It is assumed that the characteristic shape of the wave has a positive effect on its mechanical properties. On the other hand, it is supposed if the material saving can be achieved without the characteristic flute profile effects on the reduction of mechanical strength of paperboard. The aim of the research is to determine whether there is a direct impact on the type of waveform on its mechanical strength. Statistical methods were used for the evaluation of expectation values ​​of the estimated strength of corrugated board with respect to the flute profile.

  14. Membranes fabricated with a deep single corrugation for package stress reduction and residual stress relief

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Bouwstra, S.; Bouwstra, S.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    1993-01-01

    Thin square membranes including a deep circular corrugation are realized and tested for application in a strain-based pressure sensor. Package-induced stresses are reduced and relief of the residual stress is obtained, resulting in a larger pressure sensitivity and a reduced temperature sensitivity.

  15. A Simple Experiment to Explore Standing Waves in a Flexible Corrugated Sound Tube

    Science.gov (United States)

    Amorim, Maria Eva; Sousa, Teresa Delmira; Carvalho, P. Simeao; Sousa, Adriano Sampaioe

    2011-01-01

    Sound tubes, pipes, and singing rods are used as musical instruments and as toys to perform amusing experiments. In particular, corrugated tubes present unique characteristics with respect to the sounds they can produce; that is why they have been studied so intensively, both at theoretical and experimental levels. Experimental studies usually…

  16. Design of Ultra-Wideband Tapered Slot Antenna by Using Binomial Transformer with Corrugation

    Science.gov (United States)

    Chareonsiri, Yosita; Thaiwirot, Wanwisa; Akkaraekthalin, Prayoot

    2017-05-01

    In this paper, the tapered slot antenna (TSA) with corrugation is proposed for UWB applications. The multi-section binomial transformer is used to design taper profile of the proposed TSA that does not involve using time consuming optimization. A step-by-step procedure for synthesis of the step impedance values related with step slot widths of taper profile is presented. The smooth taper can be achieved by fitting the smoothing curve to the entire step slot. The design of TSA based on this method yields results with a quite flat gain and wide impedance bandwidth covering UWB spectrum from 3.1 GHz to 10.6 GHz. To further improve the radiation characteristics, the corrugation is added on the both edges of the proposed TSA. The effects of different corrugation shapes on the improvement of antenna gain and front-to-back ratio (F-to-B ratio) are investigated. To demonstrate the validity of the design, the prototypes of TSA without and with corrugation are fabricated and measured. The results show good agreement between simulation and measurement.

  17. A soluble-lead redox flow battery with corrugated graphite sheet and ...

    Indian Academy of Sciences (India)

    2012-08-03

    Aug 3, 2012 ... Abstract. A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as posi- tive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1·5 M lead (II) methanesulfonate and 0·9 M methanesulfonic acid with sodium salt ...

  18. Use of a corrugated beam pipe as a passive deflector for bunch length measurements

    Science.gov (United States)

    Seok, Jimin; Chung, Moses; Kang, Heung-Sik; Min, Chang-Ki; Na, Donghyun

    2018-02-01

    We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch's longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The astra and elegant simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive) rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL) Injector Test Facility (ITF), and its results are discussed together with a comparison with the rf deflector measurement.

  19. Use of a corrugated beam pipe as a passive deflector for bunch length measurements

    Directory of Open Access Journals (Sweden)

    Jimin Seok

    2018-02-01

    Full Text Available We report the experimental demonstration of bunch length measurements using a corrugated metallic beam pipe as a passive deflector. The corrugated beam pipe has been adopted for reducing longitudinal chirping after the bunch compressors in several XFEL facilities worldwide. In the meantime, there have been attempts to measure the electron bunch’s longitudinal current profile using the dipole wakefields generated in the corrugated pipe. Nevertheless, the bunch shape reconstructed from the nonlinearly deflected beam suffers from significant distortion, particularly near the head of the bunch. In this paper, we introduce an iterative process to improve the resolution of the bunch shape reconstruction. The astra and elegant simulations have been performed for pencil beam and cigar beam cases, in order to verify the effectiveness of the reconstruction process. To overcome the undesirable effects of transverse beam spreads, a measurement scheme involving both the corrugated beam pipe and the spectrometer magnet has been employed, both of which do not require a dedicated (and likely very expensive rf system. A proof-of-principle experiment was carried out at Pohang Accelerator Laboratory (PAL Injector Test Facility (ITF, and its results are discussed together with a comparison with the rf deflector measurement.

  20. Quantifying wave propagation over a corrugated metal using 5 dBi antennas

    CSIR Research Space (South Africa)

    Nkosi, MC

    2015-09-01

    Full Text Available corrugated metal of a shipping container and also in a free space. The free space measurement is used as a reference point to study the influence of the metal on the wave propagation. The transmission coefficient measured over the shipping container...

  1. Flexural Behavior of Sandwich Structures Consisting of Corrugated Composite Core with Different Geometries

    Directory of Open Access Journals (Sweden)

    Rahmat Allah Rahmani

    2015-08-01

    Full Text Available An Experimental and numerical study on the flexural behavior of new types of sandwich structures with glass-epoxy skins and a combinatorial core consisting of PVC foam and a corrugated composite was performed. The purpose of inserting a corrugated composite into the core was the reinforcement of the core and so of the sandwich structure without substantial increment in its weight. Samples were prepared by vacuum assisted resin transform molding industrial technique and tested using three-point bending load test according to ASTM C393 and then the load-deflection curves were obtained. The finite element analysis was performed using Abaqus software to determine the maximum deflection of the samples. In order to increase the precision of numerical results, the tensile test was carried out according to ASTM D3039 to obtain the mechanical properties of the skins and corrugated composite. In addition to a reference sample consisting of a simple foam core, three series of samples were prepared, which consisted of corrugated composites, with square, trapezoidal and triangular geometries, inserted in a PVC foam core. For each experiment, three samples were prepared and tested and the data were used as mean values. It was revealed that the highest and lowest increases in flexural stiffness and flexural stiffness-to-weight ratio were obtained for the samples with trapezoidal and triangular geometries, respectively. Finally, the experimental and numerical results were compared and a good agreement was observed in all samples.

  2. Molecular-dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: A test of the corrugation in the nitrogen-graphite potential

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    1995-01-01

    calculated at several temperatures and wave vectors. Effects of out-of-plane motions and the formation of pinwheel-like structural elements associated with the orientational-disorder transition are observed both in the equilibrium order parameters and in the time-correlation functions. The calculated...... temperature dependence of the Brillouin-zone-center frequency gap in the acoustic phonon branches up to the melting point agrees well with the experimental observations and gives strong support to a model of the substrate corrugation energy. Diffusive motion in the fluid just above the melting point has been...

  3. Zinc surface complexes on birnessite: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison

    2009-01-05

    Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.

  4. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    Science.gov (United States)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  5. Interaction between Palladium Nanoparticles and Surface-Modified Carbon Nanotubes: Role of Surface Functionalities

    DEFF Research Database (Denmark)

    Zhang, Bingsen; Shao, Lidong; Zhang, Wei

    2014-01-01

    degrees C. We focus on probing the effects of oxygen and nitrogen-containing functional groups on supported palladium nanoparticles (NPs) in the model catalytic system. The stability of palladium NPs supported on CNTs depends strongly on the surface properties of CNTs. Moreover, the oxygen...... feature, instability, and subtle response of the components upon application of an external field. Herein, we use insitu TEM, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy techniques to record the interaction in palladium on carbon nanotubes (CNTs) from room temperature to 600...

  6. Surface functionalization and biomedical applications based on SiC

    Energy Technology Data Exchange (ETDEWEB)

    Yakimova, R; Petoral, R M Jr; Yazdi, G R; Vahlberg, C; Spetz, A Lloyd; Uvdal, K [Department of Physics, Chemistry and Biology, Linkoeping University, SE-58183 Linkoeping (Sweden)

    2007-10-21

    The search for materials and systems, capable of operating long term under physiological conditions, has been a strategy for many research groups during the past years. Silicon carbide (SiC) is a material, which can meet the demands due to its high biocompatibility, high inertness to biological tissues and to aggressive environment, and the possibility to make all types of electronic devices. This paper reviews progress in biomedical and biosensor related research on SiC. For example, less biofouling and platelet aggregation when exposed to blood is taken advantage of in a variety of medical implantable materials while the robust semiconducting properties can be explored in surface functionalized bioelectronic devices. (review article)

  7. Triboelectric Hydrogen Gas Sensor with Pd Functionalized Surface

    Directory of Open Access Journals (Sweden)

    Sung-Ho Shin

    2016-10-01

    Full Text Available Palladium (Pd-based hydrogen (H2 gas sensors have been widely investigated thanks to its fast reaction and high sensitivity to hydrogen. Various sensing mechanisms have been adopted for H2 gas sensors; however, all the sensors must be powered through an external battery. We report here an H2 gas sensor that can detect H2 by measuring the output voltages generated during contact electrification between two friction surfaces. When the H2 sensor, composed of Pd-coated ITO (indium tin oxide and PET (polyethylene Terephthalate film, is exposed to H2, its output voltage is varied in proportion to H2 concentration because the work function (WF of Pd-coated surface changes, altering triboelectric charging behavior. Specifically, the output voltage of the sensor is gradually increased as exposing H2 concentration increases. Reproducible and sensitive sensor response was observed up 1% H2 exposure. The approach introduced here can easily be adopted to development of triboelectric gas sensors detecting other gas species.

  8. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  9. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  10. EXPERIMENTAL STUDY OF HORIZONTAL PRESSURE DISTRIBUTION ON CORRUGATED STEEL SILO WALLS

    Directory of Open Access Journals (Sweden)

    V. V. Kachurenko

    2016-08-01

    Full Text Available Purpose. The paper aims: 1 qualitative assessment of the nature of the container corrugated wall deformation caused by the load from bulk materials. 2 determination of the horizontal pressure redistribution scheme for each individual corrugation plate and the calculation method that is closer to the real situation. 3 obtaining the quantitativedeformation indicators to compare them with the calculated ones produced by means of mathematical model simulation. Methodology.To achieve this purpose the different types of capacitive structure profiles were investigated and the values of total vertical displacement under load were obtained. The computational experiment used the design computer system Structure CAD for Windows. In addition, the laboratory experiment was conducted, the analysis of which is important to confirm the correctness of pre-made computer models. Findings. The conducted experiment allowed receiving the confirmation of the FEM calculated data, namely qualitatively and quantitatively the deformation direction and nature completely repeated the design situation in SCAD. Thework ofcorrugatedprofile was analysedfordifferenttheoreticallypossibleload schemesanddifferentcalculation methods. Alsotheworkcontainstherecommendationsfortherealcalculationusingcomputersimulation. During a joint study the authors obtained the data that allow for more accurate assessment of the corrugated profile performance under the pressure from bulk materials. Originality. The conducted research and experimental tests explain and clarify the ways for possible redistribution of bulk material pressure on each corrugation plate, while there is no such information in the existing recommendation literature and regulatory framework concerning the capacitive structure design. Practical value.The use of the proposed solutions is useful for correct design of containers with corrugated walls during further calculations and search of new directions for future research.

  11. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH, thiol-functionalized graphene (graphene-SH, and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene suspensions, where the gold nanoparticles are deposited on the functionalized graphene surface during their synthesis process. In addition, we compare the influence of surface functionalization on the growth of gold nanoparticles on graphene surface. Transmission electron morphology (TEM and ultraviolet-visible (UV-Vis spectroscopy are employed to study the effect of surface functionalities on AuNPs distribution onto the graphene surface and demonstrate the successful immobilization of AuNPs on graphene surface.

  12. Vibroacoustic Characterization of Corrugated-Core and Honeycomb-Core Sandwich Panels

    Science.gov (United States)

    Allen, Albert; Schiller, Noah

    2016-01-01

    The vibroacoustic characteristics of two candidate launch vehicle fairing structures, corrugated- core and honeycomb-core sandwich designs, were studied. The study of these structures has been motivated by recent risk reduction efforts focused on mitigating high noise levels within the payload bays of large launch vehicles during launch. The corrugated-core sandwich concept is of particular interest as a dual purpose structure due to its ability to harbor resonant noise control systems without appreciably adding mass or taking up additional volume. Specifically, modal information, wavelength dispersion, and damping were determined from a series of vibrometer measurements and subsequent analysis procedures carried out on two test panels. Numerical and analytical modeling techniques were also used to assess assumed material properties and to further illuminate underlying structural dynamic aspects. Results from the tests and analyses described herein may serve as a reference for additional vibroacoustic studies involving these or similar structures.

  13. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    International Nuclear Information System (INIS)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-01-01

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency

  14. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    Science.gov (United States)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-02-01

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  15. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    Energy Technology Data Exchange (ETDEWEB)

    Qingbang, Han; Ling, Chen; Changping, Zhu [Changzhou Key Laboratory of Sensor Networks and Environmental Sensing, College of IOT, Hohai University Changzhou, Jiangsu, 213022 (China)

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain, the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.

  16. Psychometric properties of startle and corrugator response in NPU, affective picture viewing, and resting state tasks.

    Science.gov (United States)

    Kaye, Jesse T; Bradford, Daniel E; Curtin, John J

    2016-08-01

    The current study provides a comprehensive evaluation of critical psychometric properties of commonly used psychophysiology laboratory tasks/measures within the NIMH RDoC. Participants (N = 128) completed the no-shock, predictable shock, unpredictable shock (NPU) task, affective picture viewing task, and resting state task at two study visits separated by 1 week. We examined potentiation/modulation scores in NPU (predictable or unpredictable shock vs. no-shock) and affective picture viewing tasks (pleasant or unpleasant vs. neutral pictures) for startle and corrugator responses with two commonly used quantification methods. We quantified startle potentiation/modulation scores with raw and standardized responses. We quantified corrugator potentiation/modulation in the time and frequency domains. We quantified general startle reactivity in the resting state task as the mean raw startle response during the task. For these three tasks, two measures, and two quantification methods, we evaluated effect size robustness and stability, internal consistency (i.e., split-half reliability), and 1-week temporal stability. The psychometric properties of startle potentiation in the NPU task were good, but concerns were noted for corrugator potentiation in this task. Some concerns also were noted for the psychometric properties of both startle and corrugator modulation in the affective picture viewing task, in particular, for pleasant picture modulation. Psychometric properties of general startle reactivity in the resting state task were good. Some salient differences in the psychometric properties of the NPU and affective picture viewing tasks were observed within and across quantification methods. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  17. Anatomocosmetic implication rules of the corrugator supercilii muscle for youthful eye appearance.

    Science.gov (United States)

    Pinar, Yelda; Govsa, Figen; Ozer, Mehmet Asim; Ertam, Ilgen

    2016-11-01

    The dynamic balance of the eyebrows is maintained by the frontal muscle which acts as a brow elevator, and the brow depressors include corrugator supercilii muscle (CSM), procerus, depressor supercilii, and orbicularis oculi muscles. The glabellar rhytids might appear as a result of negative emotions, such as anger, anxiety, fatigue, fear, or disapproval. For youthful and calmer eyes, CSM may restore the muscle balance more safely and effectively for the treatments of forehead rejuvenation. In 50 cadaver hemibrows, CSM was dissected to investigate the location, position, muscle patterns, and its relationships to other muscles. The location of the CSM was variable; five different CSM patterns were defined. Pattern 1: rectangular-shaped classical type was observed with the frequency of 42.5 %. Also, three bellies were present in 25 %, and duplicate muscle in 12.5 %. Irregular flat (15 %) and hypoplastic types (5 %) were introduced as previously unidentified patterns. In muscle specimens, 30 % had complete symmetry, 45 % complete asymmetry, and 25 % semi-assymetry. Mean CSM thickness, length, and width were measured as 1.62 ± 0.4, 29.24 ± 6.4, and 12.62 ± 3.3 mm, respectively. The distances of the medial origo of the CSM-midline and the lateral origo of the CSM-midline were measured as 5.54 ± 4.89 and 14.62 ± 4.17 mm. The different patterns of the CSM were undefined previously. The findings manifest the necessity of botox treatment peculiar to each individual. As, insertion points have been releasing fibres to the peripheral muscles, it is an evidence of its complicated structure. The muscles in the glabella are difficult to demarcate precisely from surface anatomy due to overlapped muscles with intermingled borders, where they are attached as individual patterns. Hence, it might be disadvantageous that different patterns may lead to the risk of asymmetry of the face and brow ptosis in the postinjection period.

  18. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.

    2018-01-02

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  19. Effect of wall corrugations on lower-hybrid-wave launching and reflection

    International Nuclear Information System (INIS)

    Schuss, J.J.; Porkolab, M.

    1983-02-01

    The effect of wall corrugations on lower-hybrid-wave launching and reflection is considered and applied to the Alcator C 4.6-GHz RF experiment. A method of treating the effect of wall corrugations on wave launching is outlined. Using this formulism it is shown that placing four wall corrugations on each side of the Alcator C lower-hybrid-waveguide array increases its utility for current drive by better defining its low-n/sub z/ power spectrum. A method of calculating the effect of bellows on the reflection of lower-hybrid waves is also presented. This technique is applied to Alcator C to show that lower-hybrid waves having k/sub ko/ < 4 #betta#/c can have a significant fraction of their RF power shifted to k/sub zo/ +- 2π/d upon reflection, where d is the bellows spatial period. Furthermore, the shape of the incident RF power spectrum for k/sub zo/ < 2 #betta#/c is distorted upon reflection. This effect can fundamentally modify wave trajectories that involve wall reflection

  20. Compact Elliptically Tapered Slot Antenna with Non-uniform Corrugations for Ultra-wideband Applications

    Directory of Open Access Journals (Sweden)

    F. G. Zhu

    2013-04-01

    Full Text Available A small size elliptically tapered slot antenna (ETSA fed by coplanar waveguide (CPW for ultra-wideband (UWB applications is proposed. It is printed on an FR4 substrate and occupies a size of 37×34×0.8 mm^3. A pair of quarter circular shapes is etched on the radiator to reduce the size. To overcome the limitation of uniform corrugation, non-uniform corrugation is utilized to reduce the cross-polarization level. A parametric study is carried out to investigate the effects of circular cut and corrugations. In order to validate the design, a prototype is fabricated and measured. Both simulated and measured results confirm that the proposed antenna achieves a good performance of a reflection coefficient below -10 dB from 3.1 GHz to 10.6 GHz, including a maximum antenna gain of 8.1dBi, directional patterns in the end-fire direction, low cross-polarization level below -20 dB and linear phase response. The antenna is promising for applications in UWB impulse radar imaging.

  1. Evaluation of Thermo-Fluid Performance of Compact Heat Exchanger with Corrugated Wall Channels

    International Nuclear Information System (INIS)

    Tak, Nam Il; Lee, Won Jae

    2006-01-01

    One of the key components of an indirect nuclear hydrogen production system is an intermediate heat exchanger (IHX). For the IHX, a printed circuit heat exchanger (PCHE) is known as one of the promising types due to its compactness and ability to operate at high temperatures and under high pressures. The PCHE is a relatively new heat exchanger. It has been commercially manufactured only since 1985 and solely by one British vendor, HeatricTM. Due to its short history and limited production, sufficient information about the PCHE is not available for the design of the IHX in open literatures. The predominant shape of flow channels of the PCHE is laterally corrugated. The flow in a corrugated wall channel is very interesting since a variety of flow phenomena can be considered by changing the amplitude-to-wavelength ratio. In the present paper, thermo-fluid performance of a heat exchanger with a typical PCHE geometry has been evaluated. Computational fluid dynamics (CFD) analysis was performed to analyze a gas flow behavior in a corrugated wall channel

  2. Soda-Anthraquinone Durian (Durio Zibethinus Murr.) Rind Linerboard and Corrugated Medium Paper: A Preliminary Test

    Science.gov (United States)

    Rizal Masrol, Shaiful; Irwan Ibrahim, Mohd Halim; Adnan, Sharmiza; Mubarak Sa'adon, Amir; Ika Sukarno, Khairil; Fadrol Hisham Yusoff, Mohd

    2017-08-01

    A preliminary test was conducted to investigate the characteristics of linerboard and corrugated medium paper made from durian rind waste. Naturally dried durian rinds were pulped according to Soda-Anthraquinone (Soda-AQ) pulping process with a condition of 20% active alkali, 0.1% AQ, 7:1 liquor to material ratio, 120 minutes cooking time and 170°C cooking temperature. The linerboard and corrugated medium paper with a basis weight of 120 gsm were prepared and evaluated according to Malaysian International Organization for Standardization (MS ISO) and Technical Association of the Pulp and Paper Industry (TAPPI). The results indicate that the characteristics of durian rind linerboard are comparable with other wood or non-wood based paper and current commercial paper. However, low CMT value for corrugated medium and water absorptiveness quality for linerboard could be improved in future. Based on the bulk density (0.672 g/cm3), burst index (3.12 kPa.m2/g) and RCT (2.00 N.m2/g), the durian rind has shown a good potential and suitable as an alternative raw material source for linerboard industry.

  3. Multi-functional surfaces with controllable wettability and water adhesion

    Science.gov (United States)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Kenanakis, George; Kaklamani, Georgia; Papoutsakis, Lampros

    The design of multifunctional surfaces based on biomimetic structures has gained the interest of the scientific community. Novel multifunctional surfaces have been developed, able to alter their wetting properties in response to temperature and pH as well as light illumination, by combining proper chemistry and surface micro/nano-structuring using ultrafast (femtosecond) laser irradiation. The combination of the hierarchical surface with a ZnO and/or a responsive polymer coating results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces in response to external stimuli. These surfaces can be optimized to exhibit high or zero water adhesion and/or controllable directionality as well. Moreover, they can be seeded with human fibroblasts to examine the cellular response on both surface roughness and surface chemistry. Acknowledgements: This research has been co-financed by the General Secretariat for Research and Technology (''ARISTEIA II'' Action, SMART-SURF) and the European Union (NFFA Europe -Grant agreement No. 654360).

  4. Investigation of Tooling for Anisotropic Optical Functional Surfaces

    DEFF Research Database (Denmark)

    Li, Dongya; Regi, Francesco; Zhang, Yang

    is assessed by processing the images obtained from a digital microscope Hirox RH-2000 [1]. Figure 1 illustrates the studied surface structure and the microscope. The optical axis of microscope can be tilted within 90 degrees from the horizontal level, which simulates the viewing angle; the analysed surface...

  5. Interactions between acid- and base-functionalized surfaces

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    In this paper we present an AFM force study on interactions between chemically modified surfaces. Surfaces with terminal groups of either NH2 or COOH were obtained by chemisorption of a silane-based compound (3-amino-propyltriethoxysilane) on silica or a thiol compound (11-mercapto undecanoic acid)

  6. Testing of newly developed functional surfaces under pure sliding conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Mohaghegh, Kamran; Grønbæk, J.

    2013-01-01

    -polished counterpart. A number of experiments were carried out at different normal pressures employing for all specimens the same reciprocating movement and the same lubrication. The measured friction forces were plotted against the incremental normal pressure, and the friction coefficients were calculated....... The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0...... the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology...

  7. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges

    NARCIS (Netherlands)

    Bhattacharjee, S.; Rietjens, I.M.C.M.; Singh, M.P.; Atkins, T.M.; Purkait, T.K.; Xu, Z.; Regli, S.; Shukaliak, A.; Clark, R.J.; Mitchell, B.S.; Alink, G.M.; Marcelis, A.T.M.; Fink, M.J.; Veinot, J.G.C.; Kauzlarich, S.M.; Zuilhof, H.

    2013-01-01

    Although it is frequently hypothesized that surface (like surface charge) and physical characteristics (like particle size) play important roles in cellular interactions of nanoparticles (NPs), a systematic study probing this issue is missing. Hence, a comparative cytotoxicity study, quantifying

  8. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  9. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  10. Process chain for fabrication of anisotropic optical functional surfaces on polymer components

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    2017-01-01

    This paper aims to introduce a process chain for fabrication of anisotropic optical functional surfaces on polymer products. Thesurface features under investigation are composed of micro serrated ridges. The scope was to maximize the visible contrast betweenhorizontally orthogonal textured surfaces...

  11. Functional surface chemistry of carbon-based nanostructures

    Science.gov (United States)

    Abdula, Daner

    The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and

  12. Microwave assisted organic modification and surface functionalization of Phyllosilicates

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-11-01

    Full Text Available Organically modified phyllosilicates (montmorillonite and palygorskite) using Arquad 2HT-75 surfactant were effectively synthesized utilizing a microwave irradiation technique. The microwave method was successfully used also for the surface...

  13. Study of turbulent flows loaded with particles. Application to the particulate fouling of corrugated plate heat exchangers

    International Nuclear Information System (INIS)

    Kouidri, Frederic

    1997-01-01

    This work is a numerical and experimental study of the behaviour of a turbulent flow loaded with solid particles. It involves the particulate fouling of plate heat exchangers used in industrial field. Visual observation and LDA measurements inside a mock-up show the presence of large coherent vortices and confirm the tight link between particulate deposition and flow field. The vortices participate to the creation of preferential areas where the particles are in contact with the wall, and they shape the deposit according to a precise mechanism. Two processes of deposit removal have also been shown. Hydraulic phenomena and particles behaviours pointed out in the experiment are compared to different typical samples in a bibliographic survey. The use of the a software for computational fluid dynamics (TRIO developed at the Commissariat a l'Energie Atomique) completed the experimental results by predicting the particles behaviour into the turbulent flow. The approach is based on a connection between a pseudo-direct simulation of the turbulent flow and a Lagrangian model for particles paths. The results show good agreements, qualitatively speaking, between numerical predictions and experimental measurement. The arrangement of the deposit onto the corrugated surface is globally well described by numerical simulation. The influence of some parameters on deposition process such as the flow (corresponding to Re=5000 or Re=10000), the horizontal or vertical position of the channel or the particles diameter (d p =100 μm or d p =25 μm) has been studied. (author) [fr

  14. Compact wideband plasmonic filter with flat-top transmission response based on corrugated metal-insulator-metal ring resonator.

    Science.gov (United States)

    Yang, Liu; Zhou, Yong Jin; Zhang, Chao; Xiao, Qian Xun

    2017-10-27

    We demonstrate a novel route to control the filtering of spoof localized surface plasmons (LSPs) on the corrugated metal-insulator-metal (MIM) ring resonator. The spoof LSPs resonance modes can be effectively tuned to achieve broad passband (covering the quadrupole mode and the hexapole mode) by selecting proper lengths in the input and output coupling area. The mutual coupling between the input and output lines produces the flat-top transmission response and sharp out-of-band rejection. Compared with the wideband bandpass filters based on spoof plasmonic waveguides, the proposed filter is ultra-compact and only 0.35λ*0.35λ. In order to further improve the property of the bandpass plasmonic filter, all the out-of-band frequencies (the dipole mode and the octopole mode) have been rejected by introducing a shunt stepped-impedance resonator and double C-shaped rings on the back of the substrate of the filter. Simulated results are confirmed via experiment, showing good rejection and wideband filtering performance with low insertion loss, flat-top transmission response and sharp out-of-band suppression. The proposed filter can find more applications in the highly integrated plasmonic circuits and systems in both terahertz and microwave regimes.

  15. Wake fields effects due to surface roughness in a circular pipe

    CERN Document Server

    Angelici, M; Mostacci, A; Palumbo, L

    2001-01-01

    The problem of the wake field generated by a relativistic particle travelling in a long beam pipe with rough surface has been studied by means of a standard theory based on the hybrid modes excited in a periodically corrugated waveguide with circular cross-section. Slow waves synchronous with the particle can be excited in the structure, producing wake fields whose frequency and amplitude depend on the depth of the corrugation. An analytical expression of the wake field is given for very small corrugations.

  16. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface

    International Nuclear Information System (INIS)

    Metin, Cigdem O.; Baran, Jimmie R.; Nguyen, Quoc P.

    2012-01-01

    The adsorption of silica nanoparticles onto representative mineral surfaces and at the decane/water interface was studied. The effects of particle size (the mean diameters from 5 to 75 nm), concentration and surface type on the adsorption were studied in detail. Silica nanoparticles with four different surfaces [unmodified, surface modified with anionic (sulfonate), cationic (quaternary ammonium (quat)) or nonionic (polyethylene glycol (PEG)) surfactant] were used. The zeta potential of these silica nanoparticles ranges from −79.8 to 15.3 mV. The shape of silica particles examined by a Hitachi-S5500 scanning transmission electron microscope (STEM) is quite spherical. The adsorption of all the nanoparticles (unmodified or surface modified) on quartz and calcite surfaces was found to be insignificant. We used interfacial tension (IFT) measurements to investigate the adsorption of silica nanoparticles at the decane/water interface. Unmodified nanoparticles or surface modified ones with sulfonate or quat do not significantly affect the IFT of the decane/water interface. It also does not appear that the particle size or concentration influences the IFT. However, the presence of PEG as a surface modifying material significantly reduces the IFT. The PEG surface modifier alone in an aqueous solution, without the nanoparticles, yields the same IFT reduction for an equivalent PEG concentration as that used for modifying the surface of nanoparticles. Contact angle measurements of a decane droplet on quartz or calcite plate immersed in water (or aqueous nanoparticle dispersion) showed a slight change in the contact angle in the presence of the studied nanoparticles. The results of contact angle measurements are in good agreement with experiments of adsorption of nanoparticles on mineral surfaces or decane/water interface. This study brings new insights into the understanding and modeling of the adsorption of surface-modified silica nanoparticles onto mineral surfaces and

  17. First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach

    Science.gov (United States)

    Smidstrup, Søren; Stradi, Daniele; Wellendorff, Jess; Khomyakov, Petr A.; Vej-Hansen, Ulrik G.; Lee, Maeng-Eun; Ghosh, Tushar; Jónsson, Elvar; Jónsson, Hannes; Stokbro, Kurt

    2017-11-01

    We present an efficient implementation of a surface Green's-function method for atomistic modeling of surfaces within the framework of density functional theory using a pseudopotential localized basis set approach. In this method, the system is described as a truly semi-infinite solid with a surface region coupled to an electron reservoir, thereby overcoming several fundamental drawbacks of the traditional slab approach. The versatility of the method is demonstrated with several applications to surface physics and chemistry problems that are inherently difficult to address properly with the slab method, including metal work function calculations, band alignment in thin-film semiconductor heterostructures, surface states in metals and topological insulators, and surfaces in external electrical fields. Results obtained with the surface Green's-function method are compared to experimental measurements and slab calculations to demonstrate the accuracy of the approach.

  18. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo D. [Yale Univ., New Haven, CT (United States). Dept. of Mechanical Engineering and Materials Science; Altman, Eric I. [Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3DAFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  19. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Science.gov (United States)

    Shen, Tao; Liu, Yong; Zhu, Yan; Yang, De-Quan; Sacher, Edward

    2017-07-01

    Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (sbnd OH, sbnd CHdbnd O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose sbnd NH2 groups were then able to form a bonding complex with the Ag NPs.

  20. Time-domain Helmholtz-Kirchhoff integral for surface scattering in a refractive medium.

    Science.gov (United States)

    Choo, Youngmin; Song, H C; Seong, Woojae

    2017-03-01

    The time-domain Helmholtz-Kirchhoff (H-K) integral for surface scattering is derived for a refractive medium, which can handle shadowing effects. The starting point is the H-K integral in the frequency domain. In the high-frequency limit, the Green's function can be calculated by ray theory, while the normal derivative of the incident pressure from a point source is formulated using the ray geometry and ray-based Green's function. For a corrugated pressure-release surface, a stationary phase approximation can be applied to the H-K integral, reducing the surface integral to a line integral. Finally, a computationally-efficient, time-domain H-K integral is derived using an inverse Fourier transform. A broadband signal scattered from a sinusoidal surface in an upwardly refracting medium is evaluated with and without geometric shadow corrections, and compared to the result from a conventional ray model.

  1. The effect of surface roughness on the adhesion of solid surfaces for systems with and without liquid lubricant

    DEFF Research Database (Denmark)

    Samoilov, V. N.; Sivebæk, Ion Marius; Persson, B. N. J.

    2004-01-01

    We present molecular dynamics results for the interaction between two solid elastic walls during pull-off for systems with and without octane (C8H18) lubricant. We used two types of substrate-flat and corrugated-and varied the lubricant coverage from similar to1/8 to similar to4 ML (monolayers......) of octane. For the flat substrate without lubricant the maximum adhesion was found to be approximately three times larger than for the system with the corrugated substrate. As a function of the octane coverage (for the corrugated substrate) the pull-off force first increases as the coverage increases from 0...... to similar to1 ML, and then decreases as the coverage is increased beyond monolayer coverage. It is shown that at low octane coverage, the octane molecules located in the substrate corrugation wells during squeezing are pulled out of the wells during pull-off, forming a network of nanocapillary bridges...

  2. On Approximations of Compact Sets of Functions by Algebraic Surfaces

    Science.gov (United States)

    Kudryavtsev, S. N.

    1986-06-01

    This article deals with approximations of certain compact sets of smooth and analytic functions by families of functions depending in a polynomial fashion on parameters. The connection between the accuracy of the approximations of the compact sets by such families and the number of parameters and their degree is studied. Bibliography: 3 titles.

  3. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design

  4. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be

  5. Density functional theory in surface chemistry and catalysis

    Science.gov (United States)

    Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337

  6. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  7. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  8. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Administrator

    tron-transfer mediator and immobilizing matrices for biological or chemical molecules. 22. The chemical properties of SiNWs surfaces are crucial to their application in mesoscopic electronic devices in terms of stability and transport properties. Currently, many studies have been involved in the modification and reactivity of ...

  9. Vitamin D, surface electromyography and physical function in uraemic patients

    DEFF Research Database (Denmark)

    Heaf, J.G.; Mølsted, Stig; Harrison, Adrian Paul

    2010-01-01

    ) under voluntary contractions. Physical function was determined using a 30-second Chair Stand Test and the Short Form 36 quality of life questionnaire. Clinical characteristics were collected from the patient records. Results: Moderate vitamin 25-OHD deficiency (

  10. Structure Function Studies of Vaccinia Virus Host Range Protein K1 Reveal a Novel Functional Surface for Ankyrin Repeat Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao; Meng, Xiangzhi; Xiang, Yan; Deng, Junpeng (Texas-HSC); (OKLU)

    2010-06-15

    Poxvirus host tropism at the cellular level is regulated by virus-encoded host range proteins acting downstream of virus entry. The functioning mechanisms of most host range proteins are unclear, but many contain multiple ankyrin (ANK) repeats, a motif that is known for ligand interaction through a concave surface. We report here the crystal structure of one of the ANK repeat-containing host range proteins, the vaccinia virus K1 protein. The structure, at a resolution of 2.3 {angstrom}, showed that K1 consists entirely of ANK repeats, including seven complete ones and two incomplete ones, one each at the N and C terminus. Interestingly, Phe82 and Ser83, which were previously shown to be critical for K1's function, are solvent exposed and located on a convex surface, opposite the consensus ANK interaction surface. The importance of this convex surface was further supported by our additional mutagenesis studies. We found that K1's host range function was negatively affected by substitution of either Asn51 or Cys47 and completely abolished by substitution of both residues. Cys47 and Asn51 are also exposed on the convex surface, spatially adjacent to Phe82 and Ser83. Altogether, our data showed that K1 residues on a continuous convex ANK repeat surface are critical for the host range function, suggesting that K1 functions through ligand interaction and does so with a novel ANK interaction surface.

  11. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy.

    Science.gov (United States)

    Wang, Zhaohui; Gong, Xiangjun; Ngai, To

    2015-03-17

    Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions.

  12. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  13. Primary role of electron work function for evaluation of nanostructured titania implant surface against bacterial infection

    Energy Technology Data Exchange (ETDEWEB)

    Golda-Cepa, M., E-mail: golda@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Syrek, K. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Brzychczy-Wloch, M. [Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow (Poland); Sulka, G.D. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Kotarba, A., E-mail: kotarba@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland)

    2016-09-01

    The electron work function as an essential descriptor for the evaluation of metal implant surfaces against bacterial infection is identified for the first time. Its validity is demonstrated on Staphylococcus aureus adhesion to nanostructured titania surfaces. The established correlation: work function–bacteria adhesion is of general importance since it can be used for direct evaluation of any electrically conductive implant surfaces. - Highlights: • The correlation between work function and bacteria adhesion was discovered. • The discovered correlation is rationalized in terms of electrostatic bacteria–surface repulsion. • The results provide basis for the simple evaluation of implant surfaces against infection.

  14. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  15. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications.

    Science.gov (United States)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H

    2014-06-21

    Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.

  16. Graphs on Surfaces and the Partition Function of String Theory

    OpenAIRE

    Garcia-Islas, J. Manuel

    2007-01-01

    Graphs on surfaces is an active topic of pure mathematics belonging to graph theory. It has also been applied to physics and relates discrete and continuous mathematics. In this paper we present a formal mathematical description of the relation between graph theory and the mathematical physics of discrete string theory. In this description we present problems of the combinatorial world of real importance for graph theorists. The mathematical details of the paper are as follows: There is a com...

  17. Development of smart functional surfaces for biosensor applications

    Science.gov (United States)

    Sokkalinga Balasubramanian, Shankar Ganesh

    Biosensing platforms and antimicrobial coatings were developed to combat problems associated with infectious diseases. Particularly, a lytic bacteriophage based surface plasmon resonance (SPR) biosensor was developed to detect food borne pathogen Staphylococcus aureus (S.aureus) in real-time with high specificity. Lytic bacteriophages are naturally developed molecular probes that infect bacteria. They are environmentally stable and inexpensive to produce compared to commercially available antibodies. The sensitivity of SPR biosensors were further improved specifically by poly-L-lysine grafted polyethylene glycol (PLL-g-PEG) polymer. This polymer reduces non-specific adsorption of S.aureus on SPR gold surface by ˜97%. When used as a blocking buffer in affinity sensing of model antigen, beta-galactosidase by filamentous bacteriophage, this polymer improved the detection sensitivity by 2 to 3 orders of magnitude. A facile approach was developed for sensor surface regeneration by controlling the immobilization and removal of antibodies from SPR gold surface. This was facilitated by the electro-reductive nature of alkanethiols. By combining SPR with electrochemical methods, the molecular assembly/disassembly processes were monitored in real-time with great control. Finally, single-walled carbon nanotube (SWNT) biocomposites were prepared using DNA and lysozyme (LSZ) to develop mechanically strong antimicrobial coatings. Coulombic interactions between DNA and LSZ were exploited to fabricate multilayer antimicrobial coatings using a technique called layer-by-layer assembly. This produced large scale biomimetic coatings with significant antimicrobial activity, high Young's modulus and controlled morphology which combines the individual attributes of SWNTs and natural materials.

  18. Functionalization of silicon crystal surface by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Jastrabík, Lubomír; Vorlíček, Vladimír; Chvostová, Dagmar; Potůček, Zdeněk; Narumi, K.; Naramoto, H.

    2012-01-01

    Roč. 12, č. 12 (2012), s. 9136-9141 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : cluster impacts * silicon * surface * quantum dots * light emission Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2012

  19. Relationships between surface energy analysis and functional characteristics of dairy powders.

    Science.gov (United States)

    Kondor, Anett; Hogan, Sean A

    2017-12-15

    Surface energetics of demineralised whey (DMW), skimmed milk (SMP), phosphocasein (PCN) and infant milk formula (IMF) powders were determined by inverse gas chromatography (IGC). All four milk powders were amphoteric in nature with the dispersive (apolar) component of surface energy dominating the specific (polar) contribution. PCN and IMF had the highest and lowest extent of surface heterogeneity, respectively. PCN also demonstrated the poorest functional properties of the powders examined. In contrast, IMF had excellent flow and rehydration properties. Thermodynamic work of cohesion was highest in PCN and may have contributed to inadequate rehydration behaviour. Glass transition temperature of IMF powder, determined by IGC, suggested a surface dominated by lactose. Surface heterogeneity provided a better indicator of functional behaviour than total surface energy. IGC is a useful complementary technique for chemical and structural analysis of milk powders and allows improved insight into the contribution of surface and bulk factors to functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tao [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Liu, Yong [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Zhu, Yan, E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Yang, De-Quan, E-mail: dequan.yang@gmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Sacher, Edward [Regroupement Québécois de Matériaux de Pointe, Department of Engineering Physics, École Polytechnique de Montréal, Case Postale 6079, succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2017-07-31

    Highlights: • A two-step process has been developed to enhance the adhesion of immobilized Ag NPs to the PET surface. • The method is simple, easy to use and low-cost for mass production. • The increased density of active sites (−OH, −CH=O and COOH) at the PET surface, after plasma treatment, permits increased reaction with 3-aminopropyltriethoxysilane (APTES). • The presence of APTES with high surface density permits −NH{sub 2}-Ag complex formation, increasing the adhesion of the Ag NPs. - Abstract: Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (−OH, −CH=O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose −NH{sub 2} groups were then able to form a bonding complex with the Ag NPs.

  1. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus

    2016-01-01

    be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry.......2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here open new possibilities for constructing complex nanostructures and functionalized surfaces....

  2. Swimming behaviour and ascent paths of brook trout in a corrugated culvert

    Science.gov (United States)

    Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.

    2017-01-01

    Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.

  3. Coupled-Mode Theory for Complex-Index, Corrugated Multilayer Stacks

    DEFF Research Database (Denmark)

    Lüder, Hannes; Gerken, Martina; Adam, Jost

    We present a coupled-mode theory (CMT) approach for modelling the modal behaviour of multi- layer thinfilm devices with complex material parameters and periodic corrugations. Our method provides fast computation and extended physical insight as compared to standard numerical methods. Nanostructur....... Express 22, A1363-A1371, 2014 [2] L. T. Neustock et al., Journal of Sensors, ArticleID 6174527, 2016 [3] J. Adam, H. Lüder, and M. Gerken, OWTNM 2015 [4] W.-P. Huang and J. Mu, Opt. Express 17, 19134-19152, 2009...

  4. Excitation of a double corrugation slow-wave structure in terahertz range

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Krozer, Viktor; Kotiranta, Mikko

    2011-01-01

    In spite of the fact that the technology is constantly advancing, the realization of terahertz components is still heavily constrained by problems arising from technological limitations. As a result, the design of terahertz components still remains a challenging problem. In this work, an excitation...... problem of a terahertz double corrugation slow-wave structure is considered and practical realization of the structure using currently available technological processes is discussed. The parameters of the realized excitation structure are optimized for vacuum electronics applications while taking...

  5. Superparamagnetic bead interactions with functionalized surfaces characterized by an immunomicroarray

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Hansen, Mikkel Fougt; Moresco, Jacob Lange

    2010-01-01

    Magneto-resistive sensors capable of detecting superparamagnetic micro-/nano-sized beads are promising alternatives to standard diagnostic assays based on absorbance or fluorescence and streptavidin-functionalized beads are widely used as an integral part of these sensors. Here we have developed ...

  6. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Reed, David [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nie, Zimin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Schwarz, Ashleigh M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nandasiri, Manjula I. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Kizewski, James P. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Wang, Wei [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Thomsen, Edwin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Sprenkle, Vincent [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Li, Bin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA

    2016-05-17

    We decorated the surfaces of graphite felts with some oxygen-containing functional groups, such as C-OH, O=C and HO-C=O. And the mole ratios and amounts of these functional groups were effectively adjusted on the graphite surface by a particular method. The catalytic effects of amounts and mole ratio of different kinds of functional groups on VRB electrode performances were investigated in detail.

  7. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets

    Directory of Open Access Journals (Sweden)

    N Jiao

    2012-06-01

    Full Text Available Using first-principles calculations within the framework of density-functional theory, we studied the modulation effect of hydrogen/fluorine chemical decoration on the surface work function of BN sheets. We found that the difference in the work function (ΔWBN between two surfaces of the chair structure varies with the different decoration. Geometric distortion and chemical effects cause opposite modulation effects, and the chemical effect plays a leading role by inducing charge redistribution in the system.

  8. Surface Tension of Nonideal Binary Liquid Mixtures as a Function of Composition.

    Science.gov (United States)

    Nath

    1999-01-01

    The composition dependence of the surface tension of highly nonideal organic-organic and aqueous-organic nonelectrolyte solutions is described, based on the assumption that the surface layer can be treated as a separate phase located between vapor and bulk liquid phases. The Wilson, NRTL, and UNIFAC methods are used for activity coefficients of surface and bulk phases and three techniques for calculation of molar surface areas, based on Paquette areas, Rasmussen areas, and a Langmuir-type approach are tested. Comparisons of the calculated surface tensions with experimental data yield mean absolute errors, in the best case, of less than 2.5% for the systems studied, all of which exhibit highly nonideal behavior. The surface tension predictions are found to be extremely sensitive to the values of the molar surface areas used in the computation. A Langmuir-type adsorption model is formulated to determine the surface mole fractions from a knowledge of the mixture surface tension as a function of bulk composition. A novel procedure is developed to obtain the partial molar surface area of the larger organic component as a function of composition in binary aqueous-organic systems, assuming that the two components are very dissimilar in size, and that deviations in the partial molar surface area of the smaller component (water) from its pure component molar surface area contribute negligibly to the total molar surface area of the mixture. This removes the approximation of equality of partial and pure component molar surface area for the larger organic component. Use of the Langmuir-type approach with partial molar surface areas improves surface tension predictions of highly nonideal aqueous-organic mixtures by 20% over use of pure component molar surface areas. It is an important first step in the development of a thermodynamically consistent theory of surfaces for liquid mixtures based on an accurate determination of the composition dependence of partial molar surface

  9. Surface regulated arsenenes as Dirac materials: From density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian, E-mail: niannianyu@whut.edu.cn; Wang, Jiafu, E-mail: jasper@whut.edu.cn

    2017-02-01

    Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  10. An investigation of the functional groups on the surface of activated carbons

    Directory of Open Access Journals (Sweden)

    MARYTE DERVINYTE

    2004-05-01

    Full Text Available Activated carbons were produced in the laboratory from wood using a 20-run Plackett–Burman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carboxyl, lactone and phenol. The linear regression equations reflecting the influence of each operation used for the synthesis on the amount of these functional groups in the obtained activated carbons were generated. The FTIR spectra were used in parallel for the evaluation of the amount and the type of the surface functional groups. Relationships between the two data sets obtained by potentiometric titration and FTIR spectroscopy were evaluated by correlation analysis. It was established that the amount of surface functional groups determined by potentiometric titration positively correlates with the intensity of the peaks of hydrophilic functional groups in the FTIR spectra. At the same time, the negative correlation between potentiometrically determined amount of surface functional groups and the intensity of peaks of hydrophobic functional groups was observed. Most probably, these non-polar formations can take part in the interaction of carbon surface with H+/OH- ions and diminish the strength of existent functional groups.

  11. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C, E-mail: albertto@pitt.edu [Department of Mechanical Engineering and Materials Science and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-02-11

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size ({approx}5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  12. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    International Nuclear Information System (INIS)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C

    2011-01-01

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  13. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results...... are in excellent agreement with experimental values of lattice constants and bulk moduli. The adsorption of atomic hydrogen is used as a probe to compare the chemical properties of various carbide surfaces. Hydrogen adsorbs more strongly to the metal-terminated carbide surfaces than to the corresponding closest......-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon atoms...

  14. Highly sensitive BTX detection using surface functionalized QCM sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  15. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan

    2001-01-01

    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...

  16. Osteoblast response to the surface of amino acid-functionalized hydroxyapatite.

    Science.gov (United States)

    Lee, Wing-Hin; Loo, Ching-Yee; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2015-06-01

    Interactions between proteins and the surface of biomaterials are crucial for the biological function and success of materials implanted in the human body. In this study, hydroxyapatite (HA) with negative and positive surface charges were fabricated by functionalizing the HA surface with acidic or basic amino acids. The influence of HA surface charge on protein adsorption and cell activities was studied. The crystallinity, morphology, and surface charge of amino acid-functionalized HA (AA-HA) particles and the stability of amino acids on the HA surface were determined. Both AA-HA and unmodified HA were studied for their capacity to adsorb proteins present in biological medium. The results showed that the presence of glutamic acid; Glu (acidic amino acids) and arginine; Arg (basic amino acids) on the HA surface resulted in higher protein adsorption owing to stronger electrostatic attraction between the HA particles and the proteins in medium. Functionalizing HA with Glu and Arg significantly promoted osteoblast adhesion on the surface of treated HA. No significant differences in cell proliferation between negatively and positively charged HA was observed. Significantly higher alkaline phosphatase (ALP) activity of osteoblasts on both charged surfaces was seen as compared to the unmodified HA. The study demonstrated that immobilization of amino acids (Glu and Arg) on the surface of HA promoted osteoblast proliferation and ALP activity. © 2014 Wiley Periodicals, Inc.

  17. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces.

    Science.gov (United States)

    Martin, Lewis J; Akhavan, Behnam; Bilek, Marcela M M

    2018-01-24

    Surface functionalization of an implantable device with bioactive molecules can overcome adverse biological responses by promoting specific local tissue integration. Bioactive peptides have advantages over larger protein molecules due to their robustness and sterilizability. Their relatively small size presents opportunities to control the peptide orientation on approach to a surface to achieve favourable presentation of bioactive motifs. Here we demonstrate control of the orientation of surface-bound peptides by tuning electric fields at the surface during immobilization. Guided by computational simulations, a peptide with a linear conformation in solution is designed. Electric fields are used to control the peptide approach towards a radical-functionalized surface. Spontaneous, irreversible immobilization is achieved when the peptide makes contact with the surface. Our findings show that control of both peptide orientation and surface concentration is achieved simply by varying the solution pH or by applying an electric field as delivered by a small battery.

  18. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    Science.gov (United States)

    Giresse Tetsassi Feugmo, Conrard; Champagne, Benoît; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J.; Liégeois, Vincent

    2012-03-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement.

  19. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    International Nuclear Information System (INIS)

    Tetsassi Feugmo, Conrard Giresse; Champagne, Benoît; Liégeois, Vincent; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J

    2012-01-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement. (paper)

  20. Using the lambda function to evaluate probe measurements of charged dielectric surfaces

    DEFF Research Database (Denmark)

    Rerup, T. O.; Crichton, George C; McAllister, Iain Wilson

    1996-01-01

    The use of Pedersen's λ function to evaluate electrostatic probe measurements of charged dielectric surfaces is demonstrated. With a knowledge of the probe λ function, the procedure by which this function is employed is developed, and thereafter applied to a set of experimental measurements avail...

  1. Functionality of porous silicon particles: Surface modification for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gallach, D.; Recio Sanchez, G.; Munoz Noval, A. [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain); Manso Silvan, M., E-mail: miguel.manso@uam.es [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain); Ceccone, G. [Institute for Health and Consumer Protection, European Commission, 21020 Ispra (Italy); Martin Palma, R.J.; Torres Costa, V.; Martinez Duart, J.M. [Departamento de Fisica Aplicada y Departamento de Biologia Molecular, Facultad de Ciencias, Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Biomedicas en Red, Biomateriales, Bioingenieria y Nanomedicina (CIBERbbn) (Spain)

    2010-05-25

    Porous silicon-based particles (PSps) with tailored physical and biological properties have recently attracted great attention given their biomedical potential. Within this context, the objective of the present work is to optimize the experimental parameters for the formation of biofunctional mesoporous PSps. Their functionality has been studied on the one hand by analyzing the fluorescence characteristics, such as tunable narrow band emission and fluorescence aging for PSps with different molecular capping. With regard to the biofunctional characteristics, two different molecular end-capping processes have been assayed: antifouling polyethylene glycol (PEG) and polar binding amino silanes (APTS), which were evaluated by X-ray photoelectron spectroscopy (XPS). Both PEG and APTS binding to the particles could be confirmed from the analysis of Si 2p and C 1s XPS core level spectra. The finding that these PSp-molecule conjugates allow the reduction of fluorescence degradation with time in solution is of interest for the development of cellular or tissue markers. From the morphological point of view, PEG termination is of special interest allowing the PSps after an ultrasonic treatment to get spherical shapes in the micron scale. The functionality as solid state dyes is preliminarily evaluated by direct fluorescence imaging.

  2. Functionality of porous silicon particles: Surface modification for biomedical applications

    International Nuclear Information System (INIS)

    Gallach, D.; Recio Sanchez, G.; Munoz Noval, A.; Manso Silvan, M.; Ceccone, G.; Martin Palma, R.J.; Torres Costa, V.; Martinez Duart, J.M.

    2010-01-01

    Porous silicon-based particles (PSps) with tailored physical and biological properties have recently attracted great attention given their biomedical potential. Within this context, the objective of the present work is to optimize the experimental parameters for the formation of biofunctional mesoporous PSps. Their functionality has been studied on the one hand by analyzing the fluorescence characteristics, such as tunable narrow band emission and fluorescence aging for PSps with different molecular capping. With regard to the biofunctional characteristics, two different molecular end-capping processes have been assayed: antifouling polyethylene glycol (PEG) and polar binding amino silanes (APTS), which were evaluated by X-ray photoelectron spectroscopy (XPS). Both PEG and APTS binding to the particles could be confirmed from the analysis of Si 2p and C 1s XPS core level spectra. The finding that these PSp-molecule conjugates allow the reduction of fluorescence degradation with time in solution is of interest for the development of cellular or tissue markers. From the morphological point of view, PEG termination is of special interest allowing the PSps after an ultrasonic treatment to get spherical shapes in the micron scale. The functionality as solid state dyes is preliminarily evaluated by direct fluorescence imaging.

  3. Scaling invariance for the escape of particles from a periodically corrugated waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP – Univ Estadual Paulista, Av. 24A, 1515, CEP 13506-900, Rio Claro, SP (Brazil); Costa, Diogo R. da [Departamento de Estatística, Matemática Aplicada e Computação, UNESP – Univ Estadual Paulista, Av. 24A, 1515, CEP 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ São Paulo, Rua do Matão, Cidade Universitária, CEP 05314-970, São Paulo, SP (Brazil); Dettmann, Carl P. [School of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom)

    2012-01-09

    The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n{sub p} and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. -- Highlights: ► Escape of light ray inside a corrugated waveguide ► Two-dimensional nonlinear and area preserving mapping ► Scaling for escaping particles.

  4. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines.

    Science.gov (United States)

    Kowalski, Elizabeth J; Shapiro, Michael A; Temkin, Richard J

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE 11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP 11 and HE 12 , are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE 11 and LP 11 modes) or the waist size and phase front radius of curvature of a beam (for the HE 11 and HE 12 modes). By introducing two miter bend correctors into the transmission system-miter bends that have slightly angled or ellipsoidal mirrors-the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE 11 mode with minimal losses.

  5. Removal of VOCs from air stream with corrugated sheet as adsorbent

    Directory of Open Access Journals (Sweden)

    Rabia Arshad

    2016-10-01

    Full Text Available A large proportional of volatile organic compounds (VOCs are released into the environment from various industrial processes. The current study elucidates an application of a simple adsorption phenomenon for removal of three main types of VOCs, i.e., benzene, xylene and toluene, from an air stream. Two kinds of adsorbents namely acid digested adsorbent and activated carbon are prepared to assess the removal efficiency of each adsorbent in the indoor workplace environment. The results illustrate that the adsorbents prepared from corrugated sheets were remarkably effective for the removal of each pollutant type. Nevertheless, activated carbon showed high potential of adsorbing the targeted VOC compared to the acid digested adsorbent. The uptake by the adsorbents was in the following order: benzene > xylene > toluene. Moreover, maximum adsorption of benzene, toluene and xylene occurred at 20 °C and 1.5 cm/s for both adsorbents whereas minimum success was attained at 30 °C and 1.0 cm/s. However, adsorption pattern are found to be similar for each of the the three aromatic hydrocarbons. It is concluded that the corrugated sheets waste can be a considered as a successful and cost-effective solution towards effective removal of targeted pollutants in the air stream.

  6. Scaling invariance for the escape of particles from a periodically corrugated waveguide

    International Nuclear Information System (INIS)

    Leonel, Edson D.; Costa, Diogo R. da; Dettmann, Carl P.

    2012-01-01

    The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n p and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. -- Highlights: ► Escape of light ray inside a corrugated waveguide ► Two-dimensional nonlinear and area preserving mapping ► Scaling for escaping particles.

  7. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    Science.gov (United States)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  8. Electronically controllable spoof localized surface plasmons

    Science.gov (United States)

    Zhou, Yong Jin; Zhang, Chao; Yang, Liu; Xun Xiao, Qian

    2017-10-01

    Electronically controllable multipolar spoof localized surface plasmons (LSPs) are experimentally demonstrated in the microwave frequencies. It has been shown that half integer order LSPs modes exist on the corrugated ring loaded with a slit, which actually arise from the Fabry-Perot-like resonances. By mounting active components across the slit in the corrugated rings, electronic switchability and tunability of spoof LSPs modes have been accomplished. Both simulated and measured results demonstrate efficient dynamic control of the spoof LSPs. These elements may form the basis of highly integrated programmable plasmonic circuits in microwave and terahertz regimes.

  9. Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion.

    Science.gov (United States)

    Zhao, Lu; Hu, Yan; Xu, Dawei; Cai, Kaiyong

    2014-07-01

    Orthopedic implants failures are generally related to poor osseointegration and/or bacterial infection in clinical application. Surface functionalization of an implant is one promising alternative for enhancing osseointegration and/or reducing bacterial infection, thus ensuring the long term survival of the implant. In this study, titanium (Ti) substrates were surface functionalized with a polydopamine (PDOP) film as an intermediate layer for post-immobilization of chitosan-lauric acid (Chi-LA) conjugate. Chi-LA conjugate was synthesized and characterized by Fourier transform infrared spectroscopy (FTIR) and hydrogen proton nuclear magnetic resonance (NMR) spectrometer, respectively. Lauric acid (LA), a natural saturated fatty acid, was used mainly due to its good antibacterial property. Scanning electron microscopy (SEM) and water contact angle measurements were employed to detect the morphology changes and surface wettability of Ti substrates. The results suggested that Chi-LA conjugate was successfully immobilized onto the surfaces of Ti substrates. In vitro tests confirmed that the cell adhesion, cell viability, intracellular alkaline phosphatase activity and mineralization capacity of osteoblasts were remarkably improved when cultured onto Chi-LA surface functionalized Ti substrates. Antibacterial assay against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) showed that the Chi-LA modified Ti substrates efficiently inhibited the adhesion and growth of bacteria. Overall, this study developed a promising approach to fabricate functional Ti-based orthopedic implants, which could enhance the biological functions of osteoblasts and concurrently reduce bacteria adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effect of titanium surface characteristics on the behavior and function of oral fibroblasts.

    Science.gov (United States)

    Att, Wael; Yamada, Masahiro; Ogawa, Takahiro

    2009-01-01

    The purpose of this study was to evaluate the effect of different titanium surface characteristics on the behavior and function of oral fibroblasts as well as the deposition pattern of collagen within the extracellular matrix. Titanium surfaces created by machining, acid etching with sulfuric acid (AE1), or acid etching with hydrofluoric acid (AE2) were analyzed using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy. Rat oral fibroblasts were cultured on different surfaces. Cell spread and morphology of extracellular matrix were evaluated using SEM. Attachment and proliferation of cells were examined by comparing the numbers of attached to detached cells and cell count, respectively. Gene expression was analyzed via reverse transcriptase polymerase chain reaction. Collagen production and deposition were examined via a Sirius red-based stain assay and confocal laser scanning microscopy. The machined surface showed a flat profile with isotropic grooves, the AE1 surface showed a uniformly microscale roughened surface, and the AE2 surface had a grooved profile with intermediate surface roughness. The AE2 surface contained fluoride atoms (2.45%+/-0.44% as F/Ti atomic ratio). Cell attachment was significantly weaker on the machined surface than on the AE1 and AE2 surfaces, whereas no differences were observed between the AE1 and AE2 surfaces. The cell counts on the machined and AE2 surfaces were higher, with a parallel orientation, whereas the cell count was lower and randomly distributed on the AE1 surface. The expression level of fibroblastic genes was similar among surfaces for all time points tested. Collagen production was highest on the machined surface, followed by AE2 and AE1 surfaces. Collagen deposition displayed a parallel pattern on the machined surface, while it was multidirectional on the AE1 and AE2 surfaces. The surface characteristics of titanium affect attachment, spread, and proliferative activity of oral fibroblasts as well

  11. Hydrogen bonding motifs, spectral characterization, theoretical computations and anticancer studies on chloride salt of 6-mercaptopurine: An assembly of corrugated lamina shows enhanced solubility

    Science.gov (United States)

    Suresh Kumar, S.; Athimoolam, S.; Sridhar, B.

    2015-10-01

    6-Mercaptopurine (an anti cancer drug), is coming under the class II Biopharmaceutics Classification System (BCS). In order to enhance the solubility with retained physiochemical/pharmaceutical properties, the present work was attempted with its salt form. The single crystals of 6-mercaptopurinium chloride (6MPCl) were successfully grown by slow evaporation technique under ambient temperature. The X-ray diffraction study shows that the crystal packing is dominated by N-H⋯Cl classical hydrogen bonds leading to corrugated laminar network. The hydrogen bonds present in the lamina can be dismantled as three chain C21(6), C21(7) and C21(8) motifs running along ab-diagonal of the unit cell. These primary chain motifs are interlinked to each other forming ring R63(21) motifs. These chain and ring motifs are aggregated like a dendrimer structure leading to the above said corrugated lamina. This low dimensional molecular architecture differs from the ladder like arrays in pure drug though it possess lattice water molecule in lieu of the chloride anion in the present compound. Geometrical optimizations of 6MPCl were done by Density Functional Theory (DFT) using B3LYP function with two different basis sets. The optimized molecular geometries and computed vibrational spectra are compared with their experimental counterparts. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and Intramolecular Charge Transfer (ICT). The chemical hardness, electronegativity, chemical potential and electrophilicity index of 6MPCl were found along with the HOMO-LUMO plot. The lower band gap value obtained from the Frontier Molecular Orbital (FMO) analysis reiterates the pharmaceutical activity of the compound. The anticancer studies show that 6MPCl retains its activity against human cervical cancer cell line (HeLa). Hence, this anticancer efficacy and improved solubility demands 6MPCl towards the further pharmaceutical applications.

  12. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  13. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical-vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  14. Surface enhanced infrared absorption spectroscopy for graphene functionalization on copper

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Kovaříček, Petr; Šlouf, Miroslav; Němec, I.; Kalbáč, Martin

    2017-01-01

    Roč. 124, NOV 2017 (2017), s. 250-255 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk LL1301; GA MŠk(CZ) LM2015073 Grant - others:AVČR PPPLZ(CZ) L200401551; GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:61389013 Keywords : chemical -vapor-deposition * diazonium salts * raman-spectroscopy * covalent functionalization * seira spectroscopy * grown graphene Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 6.337, year: 2016

  15. Preparation and biocompatibility of grafted functional β-cyclodextrin copolymers from the surface of PET films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan, E-mail: yan_jiang_72@126.com [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Liang, Yuan; Zhang, Hongwen [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); Zhang, Weiwei [College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, Heilongjiang (China); Tu, Shanshan [College of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2014-08-01

    The hydrophobic inert surface of poly(ethylene terephthalate) (PET) film has limited its practical bioapplications, in which case, better biocompatibility should be achieved by surface modification. In this work, the copolymer of functional β-cyclodextrin derivatives and styrene grafted surfaces was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) on initiator-immobilized PET. The structures, composition, properties, and surface morphology of the modified PET films were characterized by fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by a thick targeted copolymer layer, and the hydrophobic surface of PET was changed into an amphiphilic surface. The copolymer-grafted surfaces were also shown good biocompatibility on which SGC-7901 A549 and A549/DDP cells readily attached and proliferated, demonstrating that the functional copolymer-grafted PET films could be a promising alternative to biomaterials especially for tissue engineering. - Highlights: • The PET film was grafted by functional β-CD copolymers, which owns amphiphilicity. • The surface of grafted PET film by copolymers enhanced the cell adhesion and growth. • The biocompatible PET film may be used in tissue engineering and cell cultivation.

  16. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    OpenAIRE

    Song, Min; Xu, Juan; Wu, Changzi

    2012-01-01

    In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH), thiol-functionalized graphene (graphene-SH), and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene sus...

  17. Surface Acoustic Wave (SAW-Enhanced Chemical Functionalization of Gold Films

    Directory of Open Access Journals (Sweden)

    Gina Greco

    2017-10-01

    Full Text Available Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material’s surface. Here, we demonstrate that surface acoustic waves (SAWs can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids and devices (e.g., sensors, devices for cell cultures.

  18. Neuromuscular functions in sportsmen and fibromyalgia patients : a surface EMG study in static and dynamic conditions

    NARCIS (Netherlands)

    Klaver-Krol, E.G.

    2012-01-01

    This thesis presents two studies, one involving sportsmen (sprinters versus endurance athletes) and one fibromyalgia patients (patients versus healthy controls). The studies have investigated muscular functions using a non-invasive method: surface electromyography (sEMG). In the sportsmen,

  19. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  20. Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae).

    Science.gov (United States)

    Gorb, E V; Gorb, S N

    2006-11-01

    Pitchers of the carnivorous plant Nepenthes alata are highly specialized organs adapted to attract, capture, and digest animals, mostly insects. They consist of several well distinguishable zones, differing in macro-morphology, surface microstructure, and functions. Since physicochemical properties of these surfaces may influence insect adhesion, we measured contact angles of non-polar (diiodomethane) and polar liquids (water and ethylene glycol) and estimated the free surface energy of 1) the lid, 2) the peristome, 3) the waxy surface of the slippery zone, and 4) the glandular surface of the digestive zone in N. alata pitchers. As a control, the external surface of the pitcher, as well as abaxial and adaxial surfaces of the leaf blade, was measured. Both leaf surfaces, both lid surfaces, and the external pitcher surface showed similar contact angles and had rather high values of surface free energy with relatively high dispersion component. These surfaces are considered to support strong adhesion forces based on the capillary interaction, and by this, to promote successful attachment of insects. The waxy surface is almost unwettable, has extremely low surface energy, and therefore, must essentially decrease insect adhesion. Both the peristome and glandular surfaces are wetted readily with both non-polar and polar liquids and have very high surface energy with a predominating polar component. These properties result in the preclusion of insect adhesion due to the hydrophilic lubricating film covering the surfaces. The obtained results support field observations and laboratory experiments of previous authors that demonstrated the possible role of different pitcher surfaces in insect trapping and retention.

  1. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions

    Science.gov (United States)

    Zhang, Lijuan; Webster, Thomas J.

    2012-04-01

    The ability of poly(lactic-co-glycolic acid) (PLGA, 50:50 PLG/PGA, wt%) nanotopographies to decrease lung epithelial carcinoma cell functions (including adhesion, proliferation, apoptosis and vascular endothelial growth factor (VEGF) secretion) has been previously reported. Specifically, results demonstrated decreased lung epithelial carcinoma cell VEGF synthesis on 23 nm surface-featured PLGA compared to traditional nanosmooth PLGA. However, clearly, different cell lines could have different behaviors on similar biomaterials. Thus, to investigate the universality of nanopatterned PLGA substrates to inhibit numerous cancer cell functions, here, breast epithelial adenocarcinoma cell (MCF-7) adhesion, proliferation, apoptosis and VEGF secretion were determined on different PLGA nanometer surface topographies. To isolate surface nanotopographical effects from all other surface properties, PLGA surfaces with various nanotopographies but similar chemistry and hydrophobicity were fabricated here. Atomic force microscopy (AFM) verified the varied nanotopographies on the PLGA surfaces prepared in this study. Importantly, results demonstrated for the first time significantly decreased breast adenocarcinoma cell functions (including decreased proliferation rate, increased apoptosis and decreased VEGF synthesis) on 23 nm featured PLGA surfaces compared to all other PLGA surface topographies fabricated (specifically, nanosmooth, 300 and 400 nm surface-featured PLGA surfaces). In contrast, healthy breast epithelial cells proliferated more (24%) on the 23 nm featured PLGA surfaces compared to all other PLGA samples. In summary, these results provided further insights into understanding the role PLGA surface nanotopographies can have on cancer cell functions and, more importantly, open the possibility of using polymer nanotopographies for a wide range of anticancer regenerative medicine applications (without resorting to the use of chemotherapeutics).

  2. Density-functional calculations of the surface tension of liquid Al and Na

    Science.gov (United States)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  3. Biomimetic Functionalized Surfaces and the Induction of Bone Formation.

    Science.gov (United States)

    Ripamonti, Ugo

    2017-11-01

    Tissue engineering still needs to assign the molecular basis of pattern formation, tissue induction, and morphogenesis: What next to morphogens and stem cells? Macroporous biomimetic matrices per se, without the addition of the soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β) supergene family, remarkably initiate the induction of bone formation. Carving geometries within different calcium phosphate-based macroporous bioreactors we show that geometric cues imprinted within the macroporous spaces initiate the spontaneous induction of bone. Concavities biomimetize the remodeling cycle of the primate osteonic bone and are endowed with functionalized smart geometric cues that per se initiate osteoblasts' differentiation with the expression and secretion of osteogenic molecular signals that induce bone as a secondary response. To study the role of calcium ions (Ca ++ ) and osteoclastogenesis, coral-derived calcium carbonate (CC)/hydroxyapatite (HA) bioreactors with limited conversion to HA (7% HA/CC) were preloaded with 500 μg of the L-type voltage gated calcium channel blocker verapamil hydrochloride. Bioreactors were also loaded with 240 μg of the bisphosphonate zoledronate, an osteoclast inhibitor, and implanted in heterotopic sites of the rectus abdominis muscle of Papio ursinus. Bisphosphonate-treated specimens were characterized by a delayed profoundly inhibited induction of tissue patterning with limited induction of bone. Macroporous constructs pretreated with verapamil hydrochloride yielded limited bone formation. Similarly, 125 or 150 μg human Noggin previously adsorbed onto the macroporous bioreactors resulted in minimal bone formation by induction, indirectly showing that the initiation of bone formation is through the bone morphogenetic protein (BMP) pathway. Downregulation of BMP-2 and osteogenic protein-1 (OP-1) with upregulation of Noggin correlated with limited bone induction. Angiogenesis, capillary sprouting

  4. Electron work function and composition of gallium-indium alloy surface

    International Nuclear Information System (INIS)

    Egorova, E.M.

    1979-01-01

    The dependences of electron work functions on the composition for gallium-indium alloy obtained under different conditions are compared. An attempt is made to estimate a change in the alloy surface composition caused by a change in temperature and in the boundary phase nature. For the case under consideration it has been shown to be reasonable to compare the dependences of the electron work functions not on the alloy volumetric composition but on the composition of its surface

  5. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2.

    Science.gov (United States)

    Piskounova, Sonya; Forsgren, Johan; Brohede, Ulrika; Engqvist, Håkan; Strømme, Maria

    2009-11-01

    Poor implant fixation and bone resorption are two of the major challenges in modern orthopedics and are caused by poor bone/implant integration. In this work, bioactive crystalline titanium dioxide (TiO(2))/hydroxyapatite (HA) surfaces, functionalized with bone morphogenetic protein 2 (BMP-2), were evaluated as potential implant coatings for improved osseointegration. The outer layer consisted of HA, which is known to be osteoconductive, and may promote improved initial bone attachment when functionalized with active molecules such as BMP-2 in a soaking process. The inner layer of crystalline TiO(2) is bioactive and ensures long-term fixation of the implant, once the hydroxyapatite has been resorbed. The in vitro response of mesenchymal stem cells on bioactive crystalline TiO(2)/HA surfaces functionalized with BMP-2 was examined and compared with the cell behavior on nonfunctionalized HA layers, crystalline TiO(2) surfaces, and native titanium oxide surfaces. The crystalline TiO(2) and the HA surfaces showed to be more favorable than the native titanium oxide surface in terms of cell viability and cell morphology as well as initial cell differentiation. Furthermore, cell differentiation on BMP-2-functionalized HA surfaces was found to be significantly higher than on the other surfaces indicating that the simple soaking process can be used for incorporating active molecules, promoting fast bone osseointegration to HA layers.

  6. Ab initio and work function and surface energy anisotropy of LaB6

    NARCIS (Netherlands)

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of

  7. Interrelation of work function and surface stability : The case of BaAl4

    NARCIS (Netherlands)

    Uijttewaal, MA; de Wijs, GA; de Groot, RA; Coehoorn, R; van Elsbergen, [No Value; Weijtens, CHL

    2005-01-01

    The relationship between the work function (Phi) and the surface stability of compounds is, to our knowledge, unknown but very important for applications such as organic light-emitting diodes. This relation is studied using first-principles calculations on various surfaces of BaAl4. The most stable

  8. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    Science.gov (United States)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  9. Grafting of functionalized polymer on porous silicon surface using Grignard reagent

    Science.gov (United States)

    Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.

    2017-11-01

    Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).

  10. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.

    Science.gov (United States)

    Jeon, Seongbeom; Subbiah, Ramesh; Bonaedy, Taufik; Van, Seyoung; Park, Kwideok; Yun, Kyusik

    2018-02-01

    Magnetic nanoparticles (MNPs) are used as contrast agents and targeted drug delivery systems (TDDS) due to their favorable size, surface charge, and magnetic properties. Unfortunately, the toxicity associated with MNPs limits their biological applications. Surface functionalization of MNPs with selective polymers alters the surface chemistry to impart better biocompatibility. We report the preparation of surface functionalized MNPs using iron oxide NPs (MNPs), poly (lactic-co-glycolic acid) (PLGA), and sodium alginate via co-precipitation, emulsification, and electro-spraying, respectively. The NPs are in the nanosize range and negatively charged. Morphological and structural analyses affirm the surface functionalized nanostructure of the NPs. The surface functionalized MNPs are biocompatible, and demonstrate enhanced intracellular delivery under an applied magnetic field (H), which evinces the targeting ability of MNPs. After NP treatment, the physico-mechanical properties of fibroblasts are decided by the selective MNP uptake under "on" or "off" magnetic field conditions. We envision potential use of biocompatible surface functionalized MNP for intracellular-, targeted-DDS, imaging, and for investigating cellular mechanics. © 2017 Wiley Periodicals, Inc.

  11. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  12. Functionalization of CoCr surfaces with cell adhesive peptides to promote HUVECs adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Maria Isabel, E-mail: maria.isabel.castellanos@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Mas-Moruno, Carlos, E-mail: carles.mas.moruno@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Grau, Anna, E-mail: agraugar@gmail.com [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC), ETSEIB, 08028 Barcelona (Spain); Centre for Research in Nanoengineering (CRNE), UPC, 08028 Barcelona (Spain); Serra-Picamal, Xavier, E-mail: xserrapicamal@gmail.com [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Trepat, Xavier, E-mail: xtrepat@ub.edu [Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona (Spain); University of Barcelona and CIBER-BBN, 08036 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain); Albericio, Fernando, E-mail: fernando.albericio@irbbarcelona.org [Department of Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona (Spain); Joner, Michael, E-mail: michaeljoner@me.com [Department of Cardiology, Deutsches Herzzentrum München, 80636 Munich (Germany); CVPath Institute, Gaithersburg, MD 20878 (United States); and others

    2017-01-30

    Highlights: • We immobilized peptides on CoCr alloy through physisorption and covalent bonding. • Surface activation is an essential step prior to silanization to enhance peptide attachment. • Biofunctionalized surface characteristics were discussed. • RGDS, YIGSR and combination peptides display an improved HUVECs adhesion and proliferation. - Abstract: Biomimetic surface modification with peptides that have specific cell-binding moieties is a promising approach to improve endothelialization of metal-based stents. In this study, we functionalized CoCr surfaces with RGDS, REDV, YIGSR peptides and their combinations to promote endothelial cells (ECs) adhesion and proliferation. An extensive characterization of the functionalized surfaces was performed by XPS analysis, surface charge and quartz crystal microbalance with dissipation monitoring (QCM-D), which demonstrated the successful immobilization of the peptides to the surface. Cell studies demonstrated that the covalent functionalization of CoCr surfaces with an equimolar combination of RGDS and YIGSR represents the most powerful strategy to enhance the early stages of ECs adhesion and proliferation, indicating a positive synergistic effect between the two peptide motifs. Although these peptide sequences slightly increased smooth muscle cells (SMCs) adhesion, these values were ten times lower than those observed for ECs. The combination of RGDS with the REDV sequence did not show synergistic effects in promoting the adhesion or proliferation of ECs. The strategy presented in this study holds great potential to overcome clinical limitations of current metal stents by enhancing their capacity to support surface endothelialization.

  13. Theoretical studies of the work functions of Pd-based bimetallic surfaces

    Science.gov (United States)

    Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao; Jiang, Hong

    2015-06-01

    Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between the top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties.

  14. Three dimensional corrugated organic photovoltaics for building integration; improving the efficiency, oblique angle and diffuse performance of solar cells

    DEFF Research Database (Denmark)

    Kettle, Jeff; Bristow, Noel; Sweet, Tracy K. N.

    2015-01-01

    The lamination of OPV modules to corrugated roof cladding has been undertaken. The 3-dimensional form of the cladding provides three advantages for outdoor OPV deployment; firstly the ‘footprint’ of the solar cell is reduced, which leads to B10% improved power conversion (PCE) efficiency per unit...

  15. U-rans model for the prediction of the acoustic sound power generated in a whistling corrugated pipe

    NARCIS (Netherlands)

    Golliard, J.; González Díez, N.; Belfroid, S.P.C.; Nakiboǧlu, G.; Hirschberg, A.

    2013-01-01

    Corrugated pipes, as used in flexible risers for gas production or in domestic appliances, can whistle when a flow is imposed through the pipe. Nakiboglu et al [1, 2] have developed a method to compute the acoustic source term for axi-symmetric cavities. The method is based on the resolution of

  16. On-Surface Synthesis and Reactivity of Functional Organic and Metal-Organic Adsorbates at Metal Surfaces by Vibrational Spectroscopy

    Science.gov (United States)

    Williams, Christopher Glen

    Surface self-assembly is a promising way to introduce functionality to a surface through design at the molecular level. These self-assembled species allow for new on-surface type reactions to be observed and studied. The experiments described in this thesis demonstrate that the molecules used in self-assembly can potentially lead to interesting synthesis pathways and can be used to explore previously under-researched reaction pathways and surface molecular architecture activity or stability. Alkanes are an unreactive species typically used for driving molecular assembly in surface structures. However, with molecular design, alkanes are capable of reacting on surfaces not typically associated with alkane reactivity. Utilizing high-resolution electron energy loss spectroscopy (HREELS) and octaethylporphyrin, we could observe that dehydrogenation is possible on Cu(100) and Ag(111) surfaces at 500 and 610 K respectively. HREELS revealed that after the dehydrogenation, the molecule undergoes an intramolecular C-C bond formation leading to a tetrabenzo-porphyrin structure. Controls with deposited tetrabenzo-porphyrin were performed to verify the structure. This work provides the first example of dehydrocyclization on Cu(100) and Ag(111) to be analyzed by vibrational spectroscopy. Alkyl species in the 1,3,5-tris-(3,5-diethylphenyl)benzene molecule also undergo a dehydrogenation on Cu(100) and Au(111) at 450 and 500 K. The design of this molecule does not let the intramolecular dehydrocyclization reaction take place, but instead the dehydrogenation leads to intermolecular C-C bond formation between molecular species as noted by the formation of extended structure across the surface. Controls with triphenyl-benzene were done to help characterize the peaks in the spectra and observe varying reactivity when the ethyl groups are absent. The fabrication of uniform single-site metal centers at surfaces is important for higher selectivity in next-generation heterogeneous

  17. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup, E-mail: kssong10@kumoh.ac.kr

    2016-01-15

    Graphical abstract: - Highlights: • The nanocrystalline diamond (NCD) surface is functionalized with F or O. • The cell adhesion and growth are evaluated on the functionalized NCD surface. • The cell adhesion and growth depend on the wettability of the surface. • Cell patterning was achieved by using of hydrophilic and hydrophobic surfaces. • Neuroblastoma cells were arrayed on the micro-patterned NCD surface. - Abstract: Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O{sub 2} or C{sub 3}F{sub 8} gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  18. Self-consistent Green’s-function technique for surfaces and interfaces

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1991-01-01

    We have implemented an efficient self-consistent Green’s-function technique for calculating ground-state properties of surfaces and interfaces, based on the linear-muffin-tin-orbitals method within the tight-binding representation. In this approach the interlayer interaction is extremely short...... ranged, and only a few layers close to the interface need be treated self-consistently via a Dyson equation. For semi-infinite jellium, the technique gives work functions and surface energies that are in excellent agreement with earlier calculations. For the bcc(110) surface of the alkali metals, we find...

  19. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  20. Probability distribution for the Gaussian curvature of the zero level surface of a random function

    Science.gov (United States)

    Hannay, J. H.

    2018-04-01

    A rather natural construction for a smooth random surface in space is the level surface of value zero, or ‘nodal’ surface f(x,y,z)  =  0, of a (real) random function f; the interface between positive and negative regions of the function. A physically significant local attribute at a point of a curved surface is its Gaussian curvature (the product of its principal curvatures) because, when integrated over the surface it gives the Euler characteristic. Here the probability distribution for the Gaussian curvature at a random point on the nodal surface f  =  0 is calculated for a statistically homogeneous (‘stationary’) and isotropic zero mean Gaussian random function f. Capitalizing on the isotropy, a ‘fixer’ device for axes supplies the probability distribution directly as a multiple integral. Its evaluation yields an explicit algebraic function with a simple average. Indeed, this average Gaussian curvature has long been known. For a non-zero level surface instead of the nodal one, the probability distribution is not fully tractable, but is supplied as an integral expression.

  1. Continuous surface functionalization of flame-made TiO2 nanoparticles.

    Science.gov (United States)

    Teleki, Alexandra; Bjelobrk, Nada; Pratsinis, Sotiris E

    2010-04-20

    Hydrophilic TiO(2) particles made in a flame aerosol reactor were converted in situ to hydrophobic ones by silylation of their surface hydroxyl groups. So the freshly formed titania aerosol was mixed with a fine spray of octyltriethoxysilane (OTES) in water/ethanol solution and functionalized continuously at high temperature. The extent of functionalization and structure of that surface layer were assessed by thermogravimetric analysis (TGA) coupled to mass spectroscopy (MS), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and Raman spectroscopy. Product particles were characterized also by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption. The influence of titania specific surface area (SSA) and OTES solution concentration on the functional group surface density was investigated. The titanium dioxide surface was covered with functional groups (up to 2.9 wt %) that were thermally stable up to 300 degrees C in air at an average density of 2 OTES/nm(2). Such surface-functionalized particle suspensions in 2-ethylhexanoic acid and xylene were stable over several weeks. In contrast, as-prepared hydrophilic TiO(2) precipitated within days in these solvents.

  2. Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

    Directory of Open Access Journals (Sweden)

    Nina J. Blumenstein

    2015-08-01

    Full Text Available We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate.

  3. Surface functionalization of graphite and carbon nanotubes by vacuum-ultraviolet photochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Girard-Lauriault, Pierre-Luc, E-mail: pierre-luc.girard-lauriault@mcgill.ca [BAM Bundesanstalt fuer Materialforschung und - pruefung, D-12203 Berlin (Germany); Department of Chemical Engineering, McGill University, Montreal, H3A 2B2 (Canada); Illgen, Rene [BAM Bundesanstalt fuer Materialforschung und - pruefung, D-12203 Berlin (Germany); Ruiz, Juan-Carlos; Wertheimer, Michael R. [Groupe de Physique et Technologie des Couches Minces (GCM), Department of Engineering Physics, Ecole Polytechnique, Montreal, QC, H3C3A7 (Canada); Unger, Wolfgang E.S. [BAM Bundesanstalt fuer Materialforschung und - pruefung, D-12203 Berlin (Germany)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Graphite and CNT surfaces were functionalized by VUV photochemistry in NH{sub 3} or O{sub 2}. Black-Right-Pointing-Pointer Significant amounts of N and O were incorporated at the materials surface. Black-Right-Pointing-Pointer Primary amine and hydroxyl groups were successfully incorporated at the surface. Black-Right-Pointing-Pointer NEXAFS permitted to assess the conservation of the aromatic structure. - Abstract: Graphite and multiwall carbon nanotube surfaces were functionalized by vacuum-ultraviolet induced photochemistry in NH{sub 3} or O{sub 2}, in order to introduce amino- (NH{sub 2}) or hydroxyl (OH) functionalities, respectively. Modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), which showed significant incorporation of nitrogen (N) and oxygen (O) at the materials' surface. While high-resolution XP spectra did not yield much specific information about the incorporated functional groups, chemical derivatization with 4-trifluoromethyl benzaldehyde and trifluoroacetic anhydride accompanied by XPS enabled quantification of NH{sub 2} and OH groups, respectively. Using near edge X-ray absorption fine structure spectroscopy, we assessed the conservation of the aromatic structure following functionalization treatments.

  4. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    Science.gov (United States)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  5. Work function anisotropy and surface stability of half-metallic CrO(2)

    NARCIS (Netherlands)

    Attema, J. J.; Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    Insight in the interplay between work function and stability is important for many areas of physics. In this paper, we calculate the anisotropy in the work function and the surface stability of CrO(2), a prototype half-metal, and find an anisotropy of 3.8 eV. An earlier model for the relation

  6. On-Site Surface Functionalization for Titanium Dental Implant with Nanotopography: Review and Outlook

    Directory of Open Access Journals (Sweden)

    Byung Gyu Kim

    2016-01-01

    Full Text Available Titanium (Ti has been the first choice of material for dental implant due to bonding ability to natural bone and great biocompatibility. Various types of surface roughness modification in nanoscale have been made as promising strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with nanotopography oriented favors in cell attachment, on-site surface functionalization with reproducibility of nanotopography is introduced as next strategy to further enhance cellular bioactivity. Extensive research has been conducted to investigate the potential of nanotopography preserved on-site surface functionalization for Ti dental implant. This review will discuss nonthermal atmospheric pressure plasma, ultraviolet, and low level of laser therapy on Ti dental implant with nanotopography as next generation of surface functionalization due to its abilities to induce superhydrophilicity or biofunctionality without change of nanotopography.

  7. Hand grip function assessed by the box and block test is affected by object surfaces.

    Science.gov (United States)

    Seo, Na Jin; Enders, Leah R

    2012-01-01

    N/A. One of the hand function assessment tools is the Box and Block Test (BBT). To examine if the BBT score is affected by grip surfaces. Thirteen adults performed the BBT with wooden, rubber-covered, and paper-covered blocks. The BBT scores and time for seven movements (finger closing, contact to lift-off, transport before barrier, transport after barrier, release, return, and reach) were compared across the three block types. The mean BBT score was 8% higher for the rubber blocks than the paper and wooden blocks (pblock until the block is lifted). Hand function assessments should be controlled for object surfaces. Therapists may vary grip difficulties by changing object surfaces. Redesigning daily objects with high-friction surfaces may increase grip function. N/A. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  8. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas

    2009-01-01

    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  9. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil.

    Science.gov (United States)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R; Carmalt, Claire J; Parkin, Ivan P

    2015-03-06

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications. Copyright © 2015, American Association for the Advancement of Science.

  10. Robust self-cleaning surfaces that function when exposed to either air or oil

    Science.gov (United States)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R.; Carmalt, Claire J.; Parkin, Ivan P.

    2015-03-01

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

  11. Photoresponsive switches at surfaces based on supramolecular functionalization with azobenzene-oligoglycerol conjugates.

    Science.gov (United States)

    Nachtigall, Olaf; Kördel, Christian; Urner, Leonhard H; Haag, Rainer

    2014-09-01

    The synthesis, supramolecular complexation, and switching of new bifunctional azobenzene-oligoglycerol conjugates in different environments is reported. Through the formation of host-guest complexes with surface immobilized β-cyclodextrin receptors, the bifunctional switches were coupled to gold surfaces. The isomerization of the amphiphilic azobenzene derivatives was examined in solution, on gold nanoparticles, and on planar gold surfaces. The wettability of functionalized gold surfaces can be reversibly switched under light-illumination with two different wavelengths. Besides the photoisomerization processes and concomitant effects on functionality, the thermal cis to trans isomerization of the conjugates and their complexes was monitored. Thermal half-lives of the cis isomers were calculated for different environments. Surprisingly, the half-lives on gold nanoparticles were significantly smaller compared to planar gold surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers.

    Science.gov (United States)

    Mosby, Brian M; Díaz, Agustín; Bakhmutov, Vladimir; Clearfield, Abraham

    2014-01-08

    Inorganic-organic hybrid materials were synthesized by covalent attachment of epoxides to the surface of zirconium phosphate (ZrP) nanoplatelets. X-ray powder diffraction, FTIR, and TGA were utilized to confirm the presence of the modifiers and exclusive functionalization of the ZrP surface. NMR experiments were conducted to confirm the formation of P-O-C bonds between surface phosphate groups and epoxide rings. The applicability of the organically modified products was demonstrated by their use as fillers in a polymer matrix. Subsequently, a two step intercalation and surface modification procedure was utilized to prepare polymer nanocomposites that were imparted with functionality through the encapsulation of molecules within the interlayer of surface modified ZrP.

  13. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    Science.gov (United States)

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  14. The impact of tool wear on the functionality of replicated polymer surface with micro structures

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    -axis micro milling ma-chine was employed to pattern the surface of a steel insert for subsequent polymer replication. In order to conduct the study, 1200 pixels (0.8 x 0.8 mm2) was machined on the surface of a steel insert using the same mill tool (Ф0.5 mm, ARNO®); each of the pixels contains16 ridges which...... is illustrated in figure 1 (a). The obtained surface structures were replicated using liquid silicon rubber (LSR). The mill tool was inspected by scanning electron microscope (SEM) before and after the machining. Noticeable wear was observed. The weight of the studied tool was measured before and after machining......Wear happened frequently in the tooling process of mold for polymer production. The scope of this paper is to understand how the wear of the milling tool affected the function of the replicated polymer surface. This study is part of the process chain of fabrication of optical functional surfaces...

  15. Particular treatments in Eddy current technique. Application to the control of corrugated tubes

    International Nuclear Information System (INIS)

    1982-11-01

    When the testing of a given product shows that, owing to a particular shape of this product or to its environment, disturbing effects can hide the presence of harmful defects, use must be made of testing artifices or particular treatments enabling an efficient examination to be made. On this score, many eddy current problems are solved by means of the following processes: - use of specific sensors adapted to the geometry of the product, - spectral analysis of the analog results of analyses, - combination of the results of analyses obtained simultaneously at different frequencies (multifrequency techniques). An example of an application is given for corrugated tubes achieved by hollow and helical milling of smooth tubes [fr

  16. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Science.gov (United States)

    Walicka, A.

    2018-02-01

    In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  17. Relativistic magnetohydrodynamical simulations of the resonant corrugation of a fast shock front

    Science.gov (United States)

    Demidem, Camilia; Lemoine, Martin; Casse, Fabien

    2018-04-01

    The generation of turbulence at magnetized shocks and its subsequent interaction with the latter is a key question of plasma- and high-energy astrophysics. This paper presents two-dimensional magnetohydrodynamic simulations of a fast shock front interacting with incoming upstream perturbations, described as harmonic entropy or fast magnetosonic waves, both in the relativistic and the sub-relativistic regimes. We discuss how the disturbances are transmitted into downstream turbulence and we compare the observed response for small amplitude waves to a recent linear calculation. In particular, we demonstrate the existence of a resonant response of the corrugation amplitude when the group velocity of the outgoing downstream fast mode matches the velocity of the shock front. We also present simulations of large amplitude waves to probe the non-linear regime.

  18. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2018-02-01

    Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  19. Using pipe with corrugated walls for a subterahertz free electron laser

    Directory of Open Access Journals (Sweden)

    Gennady Stupakov

    2015-03-01

    Full Text Available A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. It provides an alternative to excitation by short bunches that can be realized with relatively low energy and low peak-current electron beams.

  20. CO2 adsorption on the copper surfaces: van der Waals density functional and TPD studies

    Science.gov (United States)

    Muttaqien, Fahdzi; Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Shiozawa, Yuichiro; Mukai, Kozo; Koitaya, Takanori; Yoshimoto, Shinya; Yoshinobu, Jun; Morikawa, Yoshitada

    2017-09-01

    We investigated the adsorption of CO2 on the flat, stepped, and kinked copper surfaces from density functional theory calculations as well as the temperature programmed desorption and X-ray photoelectron spectroscopy. Several exchange-correlation functionals have been considered to characterize CO2 adsorption on the copper surfaces. We used the van der Waals density functionals (vdW-DFs), i.e., the original vdW-DF (vdW-DF1), optB86b-vdW, and rev-vdW-DF2, as well as the Perdew-Burke-Ernzerhof (PBE) with dispersion correction (PBE-D2). We have found that vdW-DF1 and rev-vdW-DF2 functionals slightly underestimate the adsorption energy, while PBE-D2 and optB86b-vdW functionals give better agreement with the experimental estimation for CO2 on Cu(111). The calculated CO2 adsorption energies on the flat, stepped, and kinked Cu surfaces are 20-27 kJ/mol, which are compatible with the general notion of physisorbed species on solid surfaces. Our results provide a useful insight into appropriate vdW functionals for further investigation of related CO2 activation on Cu surfaces such as methanol synthesis and higher alcohol production.

  1. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.; Cruchaga, Carlos; Colonna, Marco; Holtzman, Michael J.; Brett, Thomas J. (WU-MED)

    2016-12-20

    Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.

  2. Synthesis of nano-hydroxyapatite and its rapid mediated surface functionalization by silane coupling agent.

    Science.gov (United States)

    Rehman, Sarish; Khan, Kishwar; Mujahid, Mohammad; Nosheen, Shaneela

    2016-01-01

    In this work, hydroxyapatite (HA) nanorods were synthesized by simple one step wet precipitation method followed by their rapid surface functionalization via aminopropyltriethoxysilane (APTS) to give modified (HA-APTS) product. Functionalized hydroxyapatite (HA-APTS) holds amino groups on their surface that can be further functionalized with other bioactive molecules. The extent of functionalization of HA was studied under three different processing conditions; at room temperature, at 80 °C and under microwave condition (600 W). Three different temperatures have been use for the purpose of comparison between the functionalized products so that we can judge that whether there is any effect of temperature on the final products. In the last we conclude that temperature has no effect. So microwave condition is best to carried out the functionalization in just 5 min. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Control surfaces of aquatic vertebrates: active and passive design and function.

    Science.gov (United States)

    Fish, Frank E; Lauder, George V

    2017-12-01

    Aquatic vertebrates display a variety of control surfaces that are used for propulsion, stabilization, trim and maneuvering. Control surfaces include paired and median fins in fishes, and flippers and flukes in secondarily aquatic tetrapods. These structures initially evolved from embryonic fin folds in fishes and have been modified into complex control surfaces in derived aquatic tetrapods. Control surfaces function both actively and passively to produce torque about the center of mass by the generation of either lift or drag, or both, and thus produce vector forces to effect rectilinear locomotion, trim control and maneuvers. In addition to fins and flippers, there are other structures that act as control surfaces and enhance functionality. The entire body can act as a control surface and generate lift for stability in destabilizing flow regimes. Furthermore, control surfaces can undergo active shape change to enhance their performance, and a number of features act as secondary control structures: leading edge tubercles, wing-like canards, multiple fins in series, finlets, keels and trailing edge structures. These modifications to control surface design can alter flow to increase lift, reduce drag and enhance thrust in the case of propulsive fin-based systems in fishes and marine mammals, and are particularly interesting subjects for future research and application to engineered systems. Here, we review how modifications to control surfaces can alter flow and increase hydrodynamic performance. © 2017. Published by The Company of Biologists Ltd.

  4. Theoretical analysis of adsorption thermodynamics for hydrophobic peptide residues on SAM surfaces of varying functionality.

    Science.gov (United States)

    Latour, Robert A; Rini, Christopher J

    2002-06-15

    At a fundamental level, protein adsorption to a synthetic surface must be strongly influenced by the interaction between the peptide residues presented by the protein's surface (primary protein structure) and the functional groups presented by the synthetic surface. In this study, semi-empirical molecular modeling was used along with experimental wetting data to theoretically approach protein adsorption at this primary structural level. Changes in enthalpy, entropy, and Gibbs free energy were calculated as a function of residue-surface separation distance for the adsorption of individual hydrophobic peptide residues (valine, leucine, phenylalanine) on alkanethiol self-assembled monolayers on gold [Au-S(CH(2))(15)-X; X = CH(3), OH, NH(3)(+), COO(-)]. The results predict that the adsorption of each type of hydrophobic residue is energetically favorable and entropy dominated on a methyl-terminated hydrophobic surface, energetically unfavorable and enthalpy dominated on a hydroxyl-terminated neutral hydrophilic surface, and very slightly favorable to unfavorable and enthalpy dominated on charged surfaces. These theoretical results provide a basis for understanding some of the fundamental effects governing protein adsorption to synthetic surfaces. This level of understanding is needed for the proactive design of surfaces to control protein adsorption and subsequent cellular response for both implant and tissue engineering applications. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 564-577, 2002

  5. Thermo-hydraulic characterization of a self-pumping corrugated wall heat exchanger

    International Nuclear Information System (INIS)

    Schmidmayer, Kevin; Kumar, Prashant; Lavieille, Pascal; Miscevic, Marc; Topin, Frédéric

    2017-01-01

    Compactness, efficiency and thermal control of the heat exchanger are of critical significance for many electronic industry applications. In this view, a new concept of heat exchanger at millimeter scale is proposed and numerically studied. It consists in dynamically deforming at least one of its walls by a progressive wave in order to create an active corrugated channel. Systematic studies were performed in single-phase flow on the different deformation parameters that allow obtaining the thermo-hydraulic characteristics of the system. It has been observed the dynamic wall deformation induces a significant pumping effect. Intensification of heat transfer remains very important even for highly degraded waveforms although the pumping efficiency is reduced in this case. The mechanical power applied on the upper wall to deform it dynamically is linked to the wave shape, amplitude, frequency and outlet-inlet pressure difference. The overall performance of the proposed system has been evaluated and compared to existing static channels. The performance of the proposed heat exchanger evolved in two steps for a given wall deformation. It declines slightly up to a critical value of mechanical power applied on the wall. When this critical value is exceeded, it deteriorates significantly, reaching the performance of existing conventional systems. - Highlights: • A new concept of heat exchanger within channel at millimeter scale is proposed. • Upper wall is deformed dynamically by applying external mechanical power. • Pumping effect is observed and is linked to the wave shape, amplitude and frequency. • Efficient proposed system in low Reynolds number range. • Overall performance is significantly high compared to static corrugated and straight channels.

  6. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Directory of Open Access Journals (Sweden)

    Valentina eSpampinato

    2016-02-01

    Full Text Available In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS, Principal Component Analysis (PCA and X-ray Photoelectron Spectroscopy (XPS have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP.The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules.Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  7. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    Science.gov (United States)

    Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-02-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  8. Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping.

    Science.gov (United States)

    Ishibashi, Yu; Oura, Shusuke; Umemura, Kazuo

    2017-09-01

    We examined the adsorption of DNA binding proteins on functionalized, single-walled carbon nanotubes (SWNTs). When SWNTs were functionalized with polyethylene glycol (PEG-SWNT), moderate adsorption of protein molecules was observed. In contrast, nanotubes functionalized with CONH 2 groups (CONH 2 -SWNT) exhibited very strong interactions between the CONH 2 -SWNT and DNA binding proteins. Instead, when these SWNT surfaces were wrapped with DNA molecules (thymine 30-mers), protein binding was a little decreased. Our results revealed that DNA wrapped PEG-SWNT was one of the most promising candidates to realize DNA nanodevices involving protein reactions on DNA-SWNT surfaces. In addition, the DNA binding protein RecA was more adhesive than single-stranded DNA binding proteins to the functionalized SWNT surfaces.

  9. Enzyme-mimicking polymer brush-functionalized surface for combating biomaterial-associated infections

    Science.gov (United States)

    Jiang, Rujian; Xin, Zhirong; Xu, Shiai; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Yan, Shunjie; Luan, Shifang; Yin, Jinghua; Khan, Ather Farooq; Li, Yonggang

    2017-11-01

    Biomaterial-associated infections critically compromise the functionality and performance of the medical devices, and pose a serious threat to human healthcare. Recently, natural DNase enzyme has been recognized as a potent material to prevent bacterial adhesion and biofilm formation. However, the vulnerability of DNase dramatically limits its long-term performance in antibacterial applications. In this work, DNase-mimicking polymer brushes were constructed to mimic the DNA-cleavage activity as well as the macromolecular scaffold of the natural DNase. The bacteria repellent efficacy of DNase-mimicking polymer brush-functionalized surface was comparable to that of the DNase-functionalized surface. More importantly, due to their inherent stability, DNase-mimicking polymer brushes presented the much better performance in inhibiting bacterial biofilm development for prolonged periods of time, as compared to the natural DNase. The as-developed DNase-mimicking polymer brush-functionalized surface presents a promising approach to combat biomaterial-associated infections.

  10. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Mierczynska-Vasilev, Agnieszka, E-mail: agnieszka.mierczynska-vasilev@awri.com.au; Smith, Paul A., E-mail: paul.smith@awri.com.au

    2016-11-15

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO{sub 3}H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH{sub 2} and NR{sub 3} groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR{sub 3} and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO{sub 3}H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH{sub 2} and −NR{sub 3} groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR{sub 3} and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  11. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    International Nuclear Information System (INIS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-01-01

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO 3 H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH 2 and NR 3 groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR 3 and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO 3 H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH 2 and −NR 3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR 3 and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  12. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  13. Photo-induced functionalization of spherical and planar surfaces via caged thioaldehyde end-functional polymers

    Czech Academy of Sciences Publication Activity Database

    Kaupp, M.; Quick, A. S.; Rodriguez-Emmenegger, Cesar; Welle, A.; Trouillet, V.; Pop-Georgievski, Ognen; Wegener, M.; Barner-Kowollik, C.

    2014-01-01

    Roč. 24, č. 36 (2014), s. 5649-5661 ISSN 1616-301X R&D Projects: GA ČR GAP205/12/1702; GA ČR(CZ) GAP108/11/1857 Institutional support: RVO:61389013 Keywords : surface modification * porous materials * reversible addition fragmentation chain transfer polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 11.805, year: 2014

  14. Improving the corrosion resistance of proton exchange membrane fuel cell carbon supports by pentafluorophenyl surface functionalization

    Science.gov (United States)

    Forouzandeh, Farisa; Li, Xiaoan; Banham, Dustin W.; Feng, Fangxia; Joseph Kakanat, Abraham; Ye, Siyu; Birss, Viola

    2018-02-01

    In this study, the effect of surface functionalization on the electrochemical corrosion resistance of a high surface area, mesoporous colloid imprinted carbon powder (CIC), as well as microporous Vulcan carbon (VC, serving as the benchmark), was demonstrated, primarily for PEM fuel cell applications. CIC-22, which is highly hydrophilic and was synthesized with 22 nm silica colloid templates, and as-received, mildly hydrophobic, VC powders, were functionalized with 2,3,4,5,6-pentafluorophenyl (-PhF5) surface groups using a straightforward diazonium reduction reaction. These carbons were then subjected to corrosion testing, involving a potential cycling-step sequence in room temperature 0.5 M H2SO4. Using cyclic voltammetry and charge/time analysis, the double layer and pseudo-capacitive gravimetric charges of the carbons, prior to and after the application of these potential steps, were tracked in order to obtain information about surface area changes and the extent of carbon oxidation, respectively. It is shown that the corrosion resistance was improved by ca. 50-80% by surface functionalization, likely due to a combination of surface passivation (loss of carbon active sites) and increased surface hydrophobicity.

  15. Correlation of H- production and the work function of a surface in a hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.

    1983-01-01

    Surface-plasma negative hydrogen ion sources are being developed as possible parts for future netural beam systems. In these ion sources, negative hydrogen ions (H - ) are produced at low work function metal surfaces immersed in hydrogen plasmas. To investigate the correlation between the work function and the H-production at the surface with a condition similar to the one in the actual plasma ion source, these two parameters were simultaneously measured in the hydrogen plasma environment. The photoelectron emission currents from Mo and Cu surfaces in a cesiated hydrogen discharge were measured in the photon energy range from 1.45 to 4.14 eV, to determine the work function based on Fowler's theory. A small magnetic line cusp plasma container was specially designed to minimize the plasma noise and to realize the efficient collection of incident light onto the target. The photelectron current was detected phase sensitively and could be measured with reasonable accuracy up to about 5 x 10 11 cm -3 of the plasma electron density. As Cs density was increased in the hydrogen discharge, the work function decreased until it reached a minimum value. This value of the lowest work function was approximately 1.4 eV for both Mo and Cu surfaces, and the detected total H - current was a maximum at this condition

  16. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics.

    Science.gov (United States)

    Jallo, Laila J; Dave, Rajesh N

    2015-07-01

    Powder flow involves particle-particle and particle-vessel contacts and separation resulting in electrostatic charging. This important phenomenon was studied for uncoated and dry-coated micronized acetaminophen (MAPAP) as a function of relative humidity. The main hypothesis is that by modifying powder surface energy via dry coating of MAPAP performed using magnetically assisted impaction coating, its charging tendency, flow can be controlled. The examination of the relationship between electrostatic charging, powder flow, and the surface energies of the powders revealed that an improvement in flow because of dry coating corresponded to a decrease in the charging of the particles. A general trend of reduction in both electrostatic charging and dispersive surface energy with dry coating and relative humidity were also observed, except that a divergent behavior was observed at higher relative humidities (≥55% RH). The uncoated powder was found to have strong electron acceptor characteristic as compared with the dry coated. The adhesion energy between the particles and the tubes used for the electrostatic charging qualitatively predicted the decreasing trend in electrostatic charging from plastic tubes to stainless steel. In summary, the surface energies of the powders and the vessel could explain the electrostatic charging behavior and charge reduction because of dry coating. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    Science.gov (United States)

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  18. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  19. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay.

    Science.gov (United States)

    Wang, Shige; Wen, Shihui; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Wang, Jianhua; Shi, Xiangyang

    2011-01-01

    We report on aminopropyltriethoxysilane (APTS)-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS) was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS. Ac) or negatively charged (n-HA-APTS.SAH) nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, (1)H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements. In vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization. APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of biomedical applications.

  20. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents.

    Science.gov (United States)

    Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A

    2017-08-01

    Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  2. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus

    Science.gov (United States)

    Foster, Timothy J.; Geoghegan, Joan A.; Ganesh, Vannakambadi K.; Höök, Magnus

    2014-01-01

    Staphylococcus aureus is an important opportunistic pathogen and persistently colonizes about 20% of the human population. Its surface is ‘decorated’ with proteins that are covalently anchored to the cell wall peptidoglycan. Structural and functional analysis has identified four distinct classes of surface proteins, of which microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) are the largest class. These surface proteins have numerous functions, including adhesion to and invasion of host cells and tissues, evasion of immune responses and biofilm formation. Thus, cell wall-anchored proteins are essential virulence factors for the survival of S. aureus in the commensal state and during invasive infections, and targeting them with vaccines could combat S. aureus infections. PMID:24336184

  3. Functionalization of SU-8 Photoresist Surfaces with IgG Proteins

    DEFF Research Database (Denmark)

    Blagoi, Gabriela; Keller, Stephan Urs; Johansson, Alicia

    2008-01-01

    The negative epoxy-based photoresist SU-8 has a variety of applications within microelectromechanical systems (MEMS) and lab-on-a-chip systems. Here, several methods to functionalize SU-8 surfaces with IgG proteins were investigated. Fluorescent labeled proteins and fluorescent sandwich...... immunoassays were employed to characterize the binding efficiency of model proteins to bare SU-8 surface, SU-8 treated with cerium ammonium nitrate (CAN) etchant and CAN treated surfaces modified by aminosilanization. The highest binding capacity of antibodies was observed on bare SU-8. This explains why bare...... SU-8 in a functional fluorescent sandwich immunoassay detecting C-reactive protein (CRP) gave twice as high signal as compared with the other two surfaces. Immunoassays performed on bare SU-8 and CAN treated SU-8 resulted in detection limits of CRP of 30 and 80 ng/ml respectively which is sufficient...

  4. Coverage-driven dissociation of azobenzene on Cu(111): a route towards defined surface functionalization.

    Science.gov (United States)

    Willenbockel, Martin; Maurer, Reinhard J; Bronner, Christopher; Schulze, Michael; Stadtmüller, Benjamin; Soubatch, Serguei; Tegeder, Petra; Reuter, Karsten; Stefan Tautz, F

    2015-10-25

    We investigate the surface-catalyzed dissociation of the archetypal molecular switch azobenzene on the Cu(111) surface. Based on X-ray photoelectron spectroscopy, normal incidence X-ray standing waves and density functional theory calculations a detailed picture of the coverage-induced formation of phenyl nitrene from azobenzene is presented. Furthermore, a comparison to the azobenzene/Ag(111) interface provides insight into the driving force behind the dissociation on Cu(111). The quantitative decay of azobenzene paves the way for the creation of a defect free, covalently bonded monolayer. Our work suggests a route of surface functionalization via suitable azobenzene derivatives and the on surface synthesis concept, allowing for the creation of complex immobilized molecular systems.

  5. Development of measurement standards for verifying functional performance of surface texture measuring instruments

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, A [Life and Industrial Product Development Department Olympus Corporation, 2951 Ishikawa-machi, Hachiouji-shi, Tokyo (Japan); Suzuki, H [Industrial Marketing and Planning Department Olympus Corporation, Shinjyuku Monolith, 3-1 Nishi-Shinjyuku 2-chome, Tokyo (Japan); Yanagi, K, E-mail: a_fujii@ot.olympus.co.jp [Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka-shi, Niigata (Japan)

    2011-08-19

    A new measurement standard is proposed for verifying overall functional performance of surface texture measuring instruments. Its surface is composed of sinusoidal surface waveforms of chirp signals along horizontal cross sections of the material measure. One of the notable features is that the amplitude of each cycle in the chirp signal form is geometrically modulated so that the maximum slope is kept constant. The maximum slope of the chirp-like signal is gradually decreased according to movement in the lateral direction. We fabricated the measurement standard by FIB processing, and it was calibrated by AFM. We tried to evaluate the functional performance of Laser Scanning Microscope by this standard in terms of amplitude response with varying slope angles. As a result, it was concluded that the proposed standard can easily evaluate the performance of surface texture measuring instruments.

  6. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  7. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  8. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  9. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  10. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  11. Azetidinium Functionalized Polytetrahydrofurans: Antimicrobial Properties in Solution and Application to Prepare Non Leaching Antimicrobial Surfaces

    Directory of Open Access Journals (Sweden)

    Subrata Chattopadhyay

    2014-05-01

    Full Text Available In this work, we report the antimicrobial efficacy of azetidinium functionalized polytetrahydrofurans in solution and their application in the preparation of non leaching, antimicrobial surfaces. The excellent antimicrobial efficacy of these water soluble polymers both in solution and on surfaces (>99.99%–100% bacterial growth inhibition makes them excellent candidates for solving the hygiene related problems in the medical and hospital environment.

  12. Drug delivery to the bone-implant interface: Functional hydroxyapatite surfaces and particles

    OpenAIRE

    Schüssele, Andrea

    2007-01-01

    With the goal of controlling the events at the bone-implant interface, it was the main objective of this thesis to provide a basis for the conjugation of cell stimulating molecules or targeting motifs to the surface of hydroxyapatite ceramic discs and particles. To this end, methods for surface functionalization have been investigated for the attachment of biomolecules. The approach focused on combining three approved and effective principles for enhanced osseointegration of implants: hydroxy...

  13. Relationship between specific surface area and spatial correlation functions for anisotropic porous media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    1987-01-01

    A result of Debye, Anderson, and Brumberger (P. Debye, H. R. Anderson, Jr., and H. Brumberger, J. Appl. Phys. 28, 679 (1957)) for isotropic porous media states that the derivative of the two-point spatial correlation at the origin is equal to minus one-quarter of the specific surface area. This result is generalized for nonisotropic media by noting that the angular average of the anisotropic two-point spatial correlation function has the same relationship to the specific surface area.

  14. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    Science.gov (United States)

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  15. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    Science.gov (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  16. FUNCTIONAL SURFACE MICROGEOMETRY PROVIDING THE DESIRED PERFORMANCE OF AN AIRCRAFT VIBRATION SENSOR

    Directory of Open Access Journals (Sweden)

    Yuriy S. Andreev

    2016-11-01

    Full Text Available Subject of Research. The paper deals with the methods of efficiency improving for piezoelectric vibration sensors used in aircraft industry to control the level of vibration of gas turbine engines. The study looks into the matter of surface microgeometry effect of the vibro sensor part on its transverse sensitivity ratio. Measures are proposed to improve the sensor performance without cost supplement by optimization of the functional surface microgeometry. Method. A method for determination of the best possible surface microgeometry within the specific production conditions is shown. Also, a method for microgeometry estimation of the functional surfaces using graphical criteria is used. Taguchi method is used for design of experiment for functional surfaces machining. The use of this method reduces significantly the number of experiments without validity loss. Main Results. The relationship between technological factors of manufacturing the vibration sensor parts and its sensitivity has been found out. The optimal surface machining methods and process conditions for parts ensuring the best possible sensitivity have been determined. Practical Relevance. Research results can be used by instrument-making companies to improve the process of piezoelectric vibration sensor design and manufacturing.

  17. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells

    KAUST Repository

    Malara, Natalia

    2014-07-01

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor\\'s stadiation, therapy, and early relapsing lesions. Within surface\\'s bio-functionalization and cell\\'s isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient\\'s blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface-functionalized cockle shell–based calcium carbonate aragonite polymorph as a drug nanocarrier

    Science.gov (United States)

    Mohd Abd Ghafar, Syairah Liyana; Hussein, Mohd Zobir; Rukayadi, Yaya; Abu Bakar Zakaria, Md Zuki

    2017-01-01

    Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery. PMID:28572724

  19. Cavitand-functionalized porous silicon as an active surface for organophosphorus vapor detection.

    Science.gov (United States)

    Tudisco, Cristina; Betti, Paolo; Motta, Alessandro; Pinalli, Roberta; Bombaci, Luigi; Dalcanale, Enrico; Condorelli, Guglielmo G

    2012-01-24

    This paper reports on the preparation of a porous silicon-based material covalently functionalized with cavitand receptors suited for the detection of organophosphorus vapors. Two different isomeric cavitands, both containing one acid group at the upper rim, specifically designed for covalent anchoring on silicon, were grafted on H-terminated porous silicon (PSi) by thermal hydrosilylation. The covalently functionalized surfaces and their complexation properties were characterized by combining different analytical techniques, namely X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy analysis coupled with thermal desorption experiments. Complexation experiments were performed by exposing both active surfaces and a control surface consisting of PSi functionalized with a structurally similar but inactive methylene-bridged cavitand (MeCav) to dimethyl methylphosphonate (DMMP) vapors. Comparison between active and inactive surfaces demonstrated the recognition properties of the new surfaces. Finally, the nature of the involved interactions, the energetic differences between active and inactive surfaces toward DMMP complexation, and the comparison with a true nerve gas agent (sarin) were studied by DFT modeling. The results revealed the successful grafting reaction, the specific host-guest interactions of the PSi-bonded receptors, and the reversibility of the guest complexation.

  20. Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates

    Science.gov (United States)

    Prakash, T.; Singha, M. K.; Ganapathi, M.

    2009-02-01

    Nonlinear behavior of functionally graded material (FGM) skew plates under in-plane load is investigated here using a shear deformable finite element method. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the first order shear deformation theory based on exact neutral surface position is employed here. The present model is compared with the conventional mid-surface based formulation, which uses extension-bending coupling matrix to include the noncoincidence of neutral surface with the geometric mid-surface for unsymmetric plates. The nonlinear governing equations are solved through Newton Raphson technique. The nonlinear behavior of FGM skew plates under compressive and tensile in-plane load are examined considering different system parameters such as constituent gradient index, boundary condition, thickness-to-span ratio and skew angle.

  1. Hydrophobic surface functionalization of Philippine natural zeolite for a targeted oil remediation application

    Science.gov (United States)

    Osonio, Airah P.; Olegario-Sanchez, Eleanor M.

    2017-12-01

    The objective of this study is to modify and compare the oil sorption capacity on the surface of natural zeolite (NZ) and functionalized natural zeolite (FNZ) and to compare with activated charcoal samples. The NZ samples were surface modified via esterification process and characterized using XRD, SEM, and IR spectroscopy. The NZ, FNZ and activated charcoal were then tested using ASTM method F726-12 to validate the oil sorption capacity and TGA was used for the oil selectivity of the adsorbents. The results indicate that FNZ has an improved oil/water adsorption capacity than NZ when functionalized with ester and has a comparable capacity with activated charcoal.

  2. Modeling butadiene adsorption on oxidized graphene surface using density functional theory

    Science.gov (United States)

    Akimenko, Ju. Y.; Akimenko, S. S.; Gorbunov, V. A.

    2017-08-01

    In this paper, the process of chemisorption of cis-butadiene rubber on the surface of oxidized graphene was studied using the density functional theory. The polymer is interacting to a quinone group, an oxygen bridge, and an OH group which was differently located on the surface of the graphene sheet. Based on the calculated value of ΔG298, the possibility of spontaneous formation of the bond between butadiene rubber and these functional groups was estimated. The features of the temperature dependence of the change in free Gibbs energy for thermodynamically possible coupled systems are considered.

  3. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase.

    Science.gov (United States)

    Liu, Siyu; Zhao, Ning; Cheng, Zhen; Liu, Hongguang

    2015-04-21

    Amino-functionalized fluorescent carbon dots have been prepared by hydrothermal treatment of glucosamine with excess pyrophosphate. The produced carbon dots showed stabilized green emission fluorescence at various excitation wavelengths and pH environments. Herein, we demonstrate the surface energy transfer between the amino-functionalized carbon dots and negatively charged hyaluronate stabilized gold nanoparticles. Hyaluronidase can degrade hyaluronate and break down the hyaluronate stabilized gold nanoparticles to inhibit the surface energy transfer. The developed fluorescent carbon dot/gold nanoparticle system can be utilized as a biosensor for sensitive and selective detection of hyaluronidase by two modes which include fluorescence measurements and colorimetric analysis.

  4. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay

    Directory of Open Access Journals (Sweden)

    Wang S

    2011-12-01

    Full Text Available Shige Wang1, Shihui Wen2, Mingwu Shen2, Rui Guo2, Xueyan Cao2, Jianhua Wang3, Xiangyang Shi1,2,41State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 3Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 4Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, PortugalBackground: We report on aminopropyltriethoxysilane (APTS-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS.Ac or negatively charged (n-HA-APTS.SAH nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements.Results: In vitro 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization.Conclusion: APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of

  5. The thumb carpometacarpal joint: curvature morphology of the articulating surfaces, mathematical description and mechanical functioning.

    Science.gov (United States)

    Dathe, Henning; Dumont, Clemens; Perplies, Rainer; Fanghänel, Jochen; Kubein-Meesenburg, Dietmar; Nägerl, Hans; Wachowski, Martin M

    2016-01-01

    The purpose is to present a mathematical model of the function of the thumb carpometacarpal joint (TCMCJ) based on measurements of human joints. In the TCMCJ both articulating surfaces are saddle-shaped. The aim was to geometrically survey the shapes of the articulating surfaces using precise replicas of 28 TCMCJs. None of these 56 articulating surfaces did mathematically extend the differential geometrical neighbourhood around the main saddle point so that each surface could be characterised by three main parameters: the two extreme radii of curvature in the main saddle point and the angle between the saddles' asymptotics (straight lines). The articulating surfaces, when contacting at the respective main saddle points, are incongruent. Hence, the TCMCJ has functionally five kinematical degrees of freedom (DOF); two DOF belong to flexion/extension, two to ab-/adduction. These four DOF are controlled by the muscular apparatus. The fifth DOF, axial rotation, cannot be adjusted but stabilized by the muscular apparatus so that physiologically under compressive load axial rotation does not exceed an angle of approximately ±3°. The TCMCJ can be stimulated by the muscular apparatus to circumduct. The mechanisms are traced back to the curvature incongruity of the saddle surfaces. Hence we mathematically proved that none of the individual saddle surfaces can be described by a quadratic saddle surface as is often assumed in literature. We derived an algebraic formula with which the articulating surfaces in the TCMCJ can be quantitatively described. This formula can be used to shape the articulating surfaces in physiologically equivalent TCMCJ-prostheses.

  6. Determination of the transfer function for optical surface topography measuring instruments—a review

    Science.gov (United States)

    Foreman, Matthew R.; Giusca, Claudiu L.; Coupland, Jeremy M.; Török, Peter; Leach, Richard K.

    2013-05-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements.

  7. Determination of the transfer function for optical surface topography measuring instruments—a review

    International Nuclear Information System (INIS)

    Foreman, Matthew R; Török, Peter; Giusca, Claudiu L; Leach, Richard K; Coupland, Jeremy M

    2013-01-01

    A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements. (topical review)

  8. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    Science.gov (United States)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  9. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    Science.gov (United States)

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  10. Using extremely halophilic bacteria to understand the role of surface charge and surface hydration in protein evolution, folding, and function

    Science.gov (United States)

    Hoff, Wouter; Deole, Ratnakar; Osu Collaboration

    2013-03-01

    Halophilic Archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant, and have evolved highly acidic proteomes that only function at high salinity. We examine osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila. We find that H. halophila has an acidic proteome and accumulates molar concentrations of KCl when grown in high salt media. Upon growth of H. halophila in low salt media, its cytoplasmic K + content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. We conclude that proteome acidity is not driven by stabilizing interactions between K + ions and acidic side chains, but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. We propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K + binding sites on an increasingly acidic protein surface.

  11. Simple preparation of thiol-ene particles in glycerol and surface functionalization by thiol-ene chemistry (TEC) and surface chain transfer free radical polymerization (SCT-FRP)

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Chiaula, Valeria; Pinelo, Manuel

    2018-01-01

    functionalization of excess thiol groups via photochemical thiol-ene chemistry (TEC) resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization (SCT-FRP) was used for the first time to introduce a thicker polymer layer on the particle surface. The application potential...

  12. Adjustment of surface chemical and physical properties with functionalized polymers to control cell adhesion

    Science.gov (United States)

    Zhou, Zhaoli

    Cell-surface interaction is crucial in many cellular functions such as movement, growth, differentiation, proliferation and survival. In the present work, we have developed several strategies to design and prepare synthetic polymeric materials with selected cues to control cell attachment. To promote neuronal cell adhesion on the surfaces, biocompatible, non-adhesive PEG-based materials were modified with neurotransmitter acetylcholine functionalities to produce hydrogels with a range of porous structures, swollen states, and mechanical strengths. Mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates, thereby highlighting the importance of chemical composition and structure in biomaterials. Similar strategies were used to prepare polymer brushes to assess how topographical cues influence neuronal cell behaviors. The brushes were prepared using the "grown from" method through surface-initiated atom transfer radical polymerization (SI-ATRP) reactions and further patterned via UV photolithography. Protein absorption tests and hippocampal neuronal cell culture of the brush patterns showed that both protein and neuronal cells can adhere to the patterns and therefore can be guided by the patterns at certain length scales. We also prepared functional polymers to discourage attachment of undesirable cells on the surfaces. For example, we synthesized PEG-perfluorinated alkyl amphiphilic surfactants to modify polystyrene-block-poly(ethylene-ran-butylene)- block-polyisoprene (SEBI or K3) triblock copolymers for marine antifouling/fouling release surface coatings. Initial results showed that the polymer coated surfaces can facilitate removal of Ulva sporelings on the surfaces. In addition, we prepared both bioactive and dual functional biopassive/bioactive antimicrobial coatings based on SEBI polymers. Incubating the polymer coated surfaces with gram-positive bacteria (S. aureus), gram

  13. Study of carboxylic functionalization of polypropylene surface using the underwater plasma technique

    Science.gov (United States)

    Joshi, R. S.; Friedrich, J. F.; Wagner, M. H.

    2009-08-01

    Non-equilibrium solution plasma treatment of polymer surfaces in water offers the possibility of more dense and selective polymer surface functionalization in comparison to the well-known and frequently used low-pressure oxygen plasma. Functional groups are introduced when the polymer surface contacts the plasma moderated solution especially water solutions. The emission of ions, electrons, energy-rich neutrals and complexes, produced by the ion avalanche are limited by quenching, with the aid of the ambient water phase. The UV-radiation produced in plasma formation also helps to moderate the reaction solution further by producing additional excited, ionized/dissociated molecules. Thus, monotype functional groups equipped polymer surfaces, preferably OH groups, originating from the dissociated water molecules, could be produced more selectively. An interesting feature of the technique is its flexibility to use a wide variety of additives in the water phase. Another way to modify polymer surfaces is the deposition of plasma polymers carrying functional groups as carboxylic groups used in this work. Acetic acid, acrylic acid, maleic and itaconic acid were used as additive monomers. Acetic acid is not a chemically polymerizing monomer but it could polymerize by monomer/molecular fragmentation and recombination to a cross linked layer. The other monomers form preferably water-soluble polymers on a chemical way. Only the fragmented fraction of these monomers could form an insoluble coating by cross linking to substrate. The XPS analysis was used to track the alterations in -O-CO- bond percentage on the PP surface. To identify the -COOH groups on substrate surface unambiguously, which have survived the plasma polymerization process, the derivatization with trifluoroethanol was performed.

  14. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  15. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    positively charged and electrostatically neutral, hydrophobic and hydrophilic, aliphatic and aromatic, and variable-length micro-environments, as well as their combinations. Optimal conditions for enzyme function seems to be a combination of hydrophobic and hydrophilic surface linker properties, which can...... lead to close to complete non-catalytic monolayer interfacial electron transfer function and electrocatalysis with activity approaching enzyme activity in homogeneous solution. Thiophenol (combined hydrophobic stacking and interdispersed water molecules), 4-methyl-thiophenol (hydrophobic and water...

  16. Zeta function of self-adjoint operators on surfaces of revolution

    International Nuclear Information System (INIS)

    Lu, Tianshi; Jeffres, Thalia; Kirsten, Klaus

    2015-01-01

    In this article we analyze the zeta function for the Laplace operator on a surface of revolution. A variety of boundary conditions, separated and unseparated, are considered. Formulas for several residues and values of the zeta function as well as for the determinant of the Laplacian are obtained. The analysis is based upon contour integration techniques in combination with a WKB analysis of solutions of related initial value problems. (paper)

  17. Microstructured Polymer Blend Surfaces Produced by Spraying Functional Copolymers and Their Blends.

    Science.gov (United States)

    Vargas-Alfredo, Nelson; Rodríguez Hernández, Juan

    2016-05-31

    We described the fabrication of functional and microstructured surfaces from polymer blends by spray deposition. This simple technique offers the possibility to simultaneously finely tune the microstructure as well as the surface chemical composition. Whereas at lower polymer concentration, randomly distributed surface micropatterns were observed, an increase of the concentration leads to significant changes on these structures. On the one hand, using pure homopolystyrene fiber-like structures were observed when the polymer concentration exceeded 30 mg/mL. Interestingly, the incorporation of 2,3,4,5,6-pentafluorostyrene changed the morphology, and, instead of fibers, micrometer size particles were identified at the surface. These fluorinated microparticles provide superhydrophobic properties leading to surfaces with contact angles above 165°. Equally, in addition to the microstructures provided by the spray deposition, the use of thermoresponsive polymers to fabricate interfaces with responsive properties is also described. Contact angle measurements revealed variations on the surface wettability upon heating when blends of polystyrene and polystyrene- b -poly(dimethylaminoethyl methacrylate) are employed. Finally, the use of spraying techniques to fabricate gradient surfaces is proposed. Maintaining a constant orientation, the surface topography and thus the contact angle varies gradually from the center to the edge of the film depending on the spray angle.

  18. Doping effects of surface functionalization on graphene with aromatic molecule and organic solvents

    Science.gov (United States)

    Wu, Guangfu; Tang, Xin; Meyyappan, M.; Lai, King Wai Chiu

    2017-12-01

    Aromatic molecule functionalization plays a key role in the development of graphene field-effect transistors (G-FETs) for bio-detection. We have investigated the doping effects of surface functionalization and its influence on the carrier mobility of graphene. The aromatic molecule (1-pyrenebutanoic acid succinimidyl ester, PBASE), which is widely used as a linker to anchor bio-probes, was employed here to functionalize graphene. Dimethyl formamide (DMF) and methanol (CH3OH) were used as two solvents to dissolve PBASE. Raman spectra showed that both PBASE and these two solvents imposed doping effects on graphene. The PBASE was stably immobilized on the graphene surface, which was confirmed by the new peak at around 1623.5 cm-1 and the disordered D peak at 1350 cm-1. Electrical measurements and Fermi level shift analysis further revealed that PBASE imposes a p-doping effect while DMF and CH3OH impose an n-doping effect. More importantly, CH3OH causes a smaller reduction in the carrier mobility of G-FETs (from 1095.6 cm2/V s to 802.4 cm2/V s) than DMF (from 1640.4 cm2/V s to 5.0 cm2/V s). Therefore, CH3OH can be regarded as a better solvent for the PBASE functionalization. This careful study on the influence of organic solvents on graphene during PBASE functionalization process provides an effective approach to monitor the surface functionalization of graphene.

  19. Rectangular microstrip antenna with corrugation like defects at radiating edge: A new approach to reduce cross polarization radiation

    Science.gov (United States)

    Pawar, U. A.; Mondal, D.; Nagaraju, A.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.

    2018-03-01

    In this paper, single layer, simple and compact RMA, with corrugation like defects at the radiating edge, is studied thoroughly to reduce XP radiation from the patch. Unlike the earlier works reported on defected ground structure integrated patches and defect patch structures, in this work, corrugation like linear defects have been placed at the radiating edges of the patch to reduce cross polarisation radiation. Around 30-40 dB of CP-XP isolation is observed in H-plane with 7% impedance bandwidth and in E-plane also, more than 55 dB CP-XP isolation is found. The proposed structure is very simple to design and easy to fabricate.

  20. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Directory of Open Access Journals (Sweden)

    Mao-Kuo Wei

    2010-04-01

    Full Text Available In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.

  1. On the Fully-Developed Heat Transfer Enhancing Flow Field in Sinusoidally, Spirally Corrugated Tubes Using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph

    2017-01-01

    in the ranges 0–0.16 and 0–2.0 respectively. The 3D Unsteady Reynolds-averaged Navier–Stokes (URANS) equations combined with the transition SST turbulence model are solved using the finite volume method to obtain the fully-developed flow field in a repeatable section of the heat exchangers at a constant wall...... loss. To assess the performance as a heat exchanger, the ratio of enhanced Nusselt number to enhanced friction factor η=(Nu/Nu_s)/(f/f_s)^(1/3) compared to the non-corrugated tube is used. Using this parameter, the simulations show a decrease in performance at higher corrugation heights. To link...... the detailed flow fields to the performance as a heat exchanger, non-dimensional correlations for heat transfer, pressure loss, and performance parameter are given....

  2. Thin film lubrication of hexadecane confined by iron and iron oxide surfaces: A crucial role of surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Ta, D. T.; Tieu, A. K.; Zhu, H. T., E-mail: hongtao@uow.edu.au; Kosasih, B. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfield Avenue, Wollongong, NSW 2522 (Australia)

    2015-10-28

    A comparative analysis of thin film lubrication of hexadecane between different iron and its oxide surfaces has been carried out using classical molecular dynamic simulation. An ab initio force-field, COMPASS, was applied for n-hexadecane using explicit atom model. An effective potential derived from density functional theory calculation was utilized for the interfacial interaction between hexadecane and the tribo-surfaces. A quantitative surface parameterization was introduced to investigate the influence of surface properties on the structure, rheological properties, and tribological performance of the lubricant. The results show that although the wall-fluid attraction of hexadecane on pure iron surfaces is significantly stronger than its oxides, there is a considerable reduction of shear stress of confined n-hexadecane film between Fe(100) and Fe(110) surfaces compared with FeO(110), FeO(111), Fe{sub 2}O{sub 3}(001), and Fe{sub 2}O{sub 3}(012). It was found that, in thin film lubrication of hexadecane between smooth iron and iron oxide surfaces, the surface corrugation plays a role more important than the wall-fluid adhesion strength.

  3. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    Science.gov (United States)

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  4. Research on the Matching of Fastener Stiffness Based on Wheel-Rail Contact Mechanism for Prevention of Rail Corrugation

    OpenAIRE

    Zhao, Caiyou; Wang, Ping; Xing, Mengting

    2017-01-01

    Laying shock absorber fasteners is one of the effective countermeasures used to reduce the ground vibration induced from urban rail transit. However, this kind of fasteners could cause severe rail corrugation. Based on the “wheel-rail dynamic flexibility difference” mechanism, the optimization and further research of fastener stiffness were performed. With the finite element method, the simple beam and board model of the rail system is established to study the vertical and lateral dynamic fle...

  5. Highly Hydrophilic Thin-Film Composite Forward Osmosis Membranes Functionalized with Surface-Tailored Nanoparticles

    KAUST Repository

    Tiraferri, Alberto

    2012-09-26

    Thin-film composite polyamide membranes are state-of-the-art materials for membrane-based water purification and desalination processes, which require both high rejection of contaminants and high water permeabilities. However, these membranes are prone to fouling when processing natural waters and wastewaters, because of the inherent surface physicochemical properties of polyamides. The present work demonstrates the fabrication of forward osmosis polyamide membranes with optimized surface properties via facile and scalable functionalization with fine-tuned nanoparticles. Silica nanoparticles are coated with superhydrophilic ligands possessing functional groups that impart stability to the nanoparticles and bind irreversibly to the native carboxyl moieties on the membrane selective layer. The tightly tethered layer of nanoparticles tailors the surface chemistry of the novel composite membrane without altering the morphology or water/solute permeabilities of the membrane selective layer. Surface characterization and interfacial energy analysis confirm that highly hydrophilic and wettable membrane surfaces are successfully attained. Lower intermolecular adhesion forces are measured between the new membrane materials and model organic foulants, indicating the presence of a bound hydration layer at the polyamide membrane surface that creates a barrier for foulant adhesion. © 2012 American Chemical Society.

  6. ADSORPTION OF ASSOCIATING FLUIDS AT ACTIVE SURFACES: A DENSITY FUNCTIONAL THEORY

    Directory of Open Access Journals (Sweden)

    S.Tripathi

    2003-01-01

    Full Text Available We present a density functional theory (DFT to describe adsorption in systems where molecules of associating fluids can bond (or associate with discrete, localized functional groups attached to the surfaces, in addition to other fluid molecules. For such systems as water adsorbing on activated carbon, silica, clay minerals etc. this is a realistic model to account for surface heterogeneity rather than using a continuous smeared surface-fluid potential employed in most of the theoretical works on adsorption on heterogeneous surfaces. Association is modelled within the framework of first order thermodynamic perturbation theory (TPT1. The new theory accurately predicts the distribution of bonded and non-bonded species and adsorption behavior under various conditions of bulk pressure, surface-fluid and fluid-fluid association strengths. Competition between the surface-fluid and fluid-fluid association is analyzed for fluids with multiple association sites and its impact on adsorption is discussed. The theory, supported by simulations demonstrates that the extent and the nature of adsorption (e.g. monolayer vary with the number of association sites on the fluid molecules.

  7. Surface functionalization of magnetite nanoparticle: A new approach using condensation of alkoxysilanes

    Science.gov (United States)

    Rodriguez, A. F. R.; Costa, T. P.; Bini, R. A.; Faria, F. S. E. D. V.; Azevedo, R. B.; Jafelicci, M.; Coaquira, J. A. H.; Martínez, M. A. R.; Mantilla, J. C.; Marques, R. F. C.; Morais, P. C.

    2017-09-01

    In this study we report on successful production of two samples (BR15 and BR16) comprising magnetite (Fe3O4) nanoparticles ( 10 nm) surface-functionalized via hydrolysis and condensation of alkoxysilane agents, namely 3-aminopropyl-trimethoxisilane (APTS) and N-propyl-trimethoxisilane (NPTS). The as-produced samples were characterized using transmission electron microscopy (TEM), x-ray diffraction (XRD), magnetization measurements (5 K and 300 K hysteresis cycles and zero field-cooled/field-cooled measurements), and Mössbauer spectroscopy (77 and 297 K). The Mössbauer data supported the model picture of a core-shell magnetite-based system. This material system shows shell properties influenced by the surface-coating design, either APTS-coated (BR15) or APTS+NPTS-coated (sample BR16). Analyses of the Mössbauer spectra indicates that the APTS-coated sample presents Fe(III)-rich core and Fe(II)-rich shell with strong hyperfine field; whereas, the APTS+NPTS-coated sample leads to a mixture of two main nanostructures, one essentially surface-terminated with APTS whereas the other surface-terminated with NPTS, both presenting weak hyperfine fields compared with the single surface-coated sample. Magnetization measurements support the core-shell picture built from the analyses of the Mössbauer data. Our findings emphasize the capability of the Mössbauer spectroscopy in assessing subtle differences in surface-functionalized iron-based core-shell nanostructures.

  8. Towards Dynamic Control of Wettability by Using Functionalized Altitudinal Molecular Motors on Solid Surfaces

    NARCIS (Netherlands)

    London, Gabor; Chen, Kuang-Yen; Carroll, Gregory T.; Feringa, Ben L.

    2013-01-01

    We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part

  9. Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening

    NARCIS (Netherlands)

    Huang, N.; Krishna, R.; Jiang, D.

    2015-01-01

    Imine-linked covalent organic frameworks (COFs) were synthesized to bear content-tunable, accessible, and reactive ethynyl groups on the walls of one-dimensional pores. These COFs offer an ideal platform for pore-wall surface engineering aimed at anchoring diverse functional groups ranging from

  10. Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton

    NARCIS (Netherlands)

    Kulkarni, A.N.; Tourrette, A.; Warmoeskerken, Marinus; Jocic, D.

    2010-01-01

    An innovative strategy for functional finishing of textile materials is based on the incorporation of a thin layer of surface modifying systems (SMS) in the form of stimuli-sensitive microgels or hydrogels. Since the copolymerization of poly(N-isopropylacrylamide) with an ionizable polymer, such as

  11. Examination of the wind speed limit function in the Rothermel surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews; Miguel G. Cruz; Richard C. Rothermel

    2013-01-01

    The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is...

  12. Highly surface functionalized carbon nano-onions for bright light bioimaging

    International Nuclear Information System (INIS)

    Frasconi, Marco; Maffeis, Viviana; Bartelmess, Juergen; Giordani, Silvia; Echegoyen, Luis

    2015-01-01

    Carbon-based nanomaterials functionalized with fluorescent and water-soluble groups have emerged as platforms for biological imaging because of their low toxicity and ability to be internalized by cells. The development of imaging probes based on carbon nanomaterials for biomedical studies requires the understanding of their biological response as well as the efficient and safety exposition of the nanomaterial to the cell compartment where it is designed to operate. Here, we present a fluorescent probe based on surface functionalized carbon nano-onions (CNOs) for biological imaging. The modification of CNOs by chemical oxidation of the defects on the outer shell of these carbon nanoparticles results in an extensive surface functionalization with carboxyl groups. We have obtained fluorescently labelled CNOs by a reaction involving the amide bond formation between fluoresceinamine and the carboxylic acids groups on the surface of the CNOs. The functionalized CNOs display high emission properties and dispersability in water due to the presence of high surface coverage of carboxylic acid groups that translate in an efficient fluorescent probe for in vitro imaging of HeLa cells, without significant cytotoxicity. The resulting nanomaterial represents a promising platform for biological imaging applications due to the high dispersability in water, its efficient internalization by cancer cells and localization in specific cell compartments. (paper)

  13. Surface Functionalization of Epoxy-Resist- Based Microcantilevers with Iron Oxide Nanocrystals

    DEFF Research Database (Denmark)

    Ingrosso, Chiara; Sardella, E.; Keller, Stephan Sylvest

    2010-01-01

    A functionalization procedure is integrated in the fabrication of micromechanical SU-8 cantilevers in order to chemically bind organic-capped Fe2O3 NCs at the photoresist surface, under visible light, ambient atmosp here and room temperature. The achieved highly interconnected NC multilayer network...

  14. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action.

    Science.gov (United States)

    Slepicka, Petr; Kasalkova, Nikola Slepickova; Siegel, Jakub; Kolska, Zdenka; Bacakova, Lucie; Svorcik, Vaclav

    2015-11-01

    The field of material surface modification with the aim of biomaterial construction involves several approaches of treatments that allow the preparation of materials, which positively influence adhesion of cells and their proliferation and thus aid and improve tissue formation. Modified materials have a surface composition and morphology intended to interact with biological systems and cellular functions. Not only surface chemistry has an effect on material biological response, surface structures of different morphology can be constructed to guide a desirable biological outcome. Nano-patterned material surfaces have been tested with the aim of how surface geometry and physical properties on a micro- and nano-scale can affect cellular response and influence cell adhesion and proliferation. Biological functionality of solid state substrates was significantly improved by the irradiation of material with plasma discharge or laser treatment. Commonly used "artificial" polymers (e.g. polyethylene (PE), polystyrene (PS), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN)) and biopolymers (e.g. Poly-l-Lactic acid (PLLA), polymethylpentene (PMP)) were treated with aim of biocompatibility improvement. The treatment of polymer/biopolymer substrates leads to formation of ripple or wrinkle-like structures, supported also with heat treatment or other subsequent surface processing. Several types of chemically different substances (e.g. metal or carbon nano-particles, proteins) were grafted onto material surfaces or built into material structures by different processes. Surface physico-chemical properties (e.g. chemistry, charge, morphology, wettability, electrical conductivity, optical and mechanical properties) of treated surfaces were determined. The enhancement of adhesion and proliferation of cells on modified substrates was investigated in vitro. Bactericidal action of noble metal nano-particles (e.g. Au, Ag) on polymers was

  15. The insect-trapping rim of Nepenthes pitchers: surface structure and function.

    Science.gov (United States)

    Bauer, Ulrike; Federle, Walter

    2009-11-01

    Carnivorous pitcher plants of the genus Nepenthes capture prey with a pitfall trap that relies on a micro-structured, slippery surface. The upper pitcher rim (peristome) is fully wettable and causes insects to slip by aquaplaning on a thin water film. The high wettability of the peristome is probably achieved by a combination of hydrophilic surface chemistry, surface roughness and the presence of hygroscopic nectar. Insect foot attachment could be prevented by the delayed drainage of the thin water film between the adhesive pad and the surface. Drainage should be faster for insects with a hairy adhesive system; however, they slip equally on the wet peristome. Therefore the stability of the water film against dewetting appears to be the key factor for aquaplaning. New experimental techniques may help to clarify the detailed function of the pitcher plant peristome and to explore its potential for biomimetic applications.

  16. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics.

    Science.gov (United States)

    Orelma, Hannes; Filpponen, Ilari; Johansson, Leena-Sisko; Osterberg, Monika; Rojas, Orlando J; Laine, Janne

    2012-12-01

    We introduce a new method to modify films of nanofibrillated cellulose (NFC) to produce non-porous, water-resistant substrates for diagnostics. First, water resistant NFC films were prepared from mechanically disintegrated NFC hydrogel, and then their surfaces were carboxylated via TEMPO-mediated oxidation. Next, the topologically functionalized film was activated via EDS/NHS chemistry, and its reactivity verified with bovine serum albumin and antihuman IgG. The surface carboxylation, EDC/NHS activation and the protein attachment were confirmed using quartz crystal microbalance with dissipation, contact angle measurements, conductometric titrations, X-ray photoelectron spectroscopy and fluorescence microscopy. The surface morphology of the prepared films was investigated using confocal laser scanning microscopy and atomic force microscopy. Finally, we demonstrate that antihuman IgG can be immobilized on the activated NFC surface using commercial piezoelectric inkjet printing.

  17. Grain boundaries at the surface of consolidated MgO nanocrystals and acid-base functionality.

    Science.gov (United States)

    Vingurt, Dima; Fuks, David; Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2013-09-21

    The increase of the surface basicity-acidity of MgO material by factors of 1.8-3.0 due to consolidation of its nanocrystals was demonstrated by the indicator titration. It was shown that the parallel increase of surface acidity and basicity is attributed to the formation of grain boundaries (GB) after MgO aerogel densification. A simple model predicting the increase of surface acidity-basicity of MgO that correlates with the results of direct measurements was proposed. The model is based on the study of the fine atomic structure at GB surface areas in consolidated MgO nanocrystals in the framework of Density Functional Theory. It is found that the displacements of coordinatively unsaturated surface ions near the GB are significant at the distances ~3-4 atomic layers from the geometrical contact plane between nanocrystals. The detailed analysis of atomic positions inside GB demonstrated the coordination deficiency of surface atoms at the GB areas leading to the formation of stretched bonds and to creation of low coordinated surface ions due to splitting of coordination numbers of surface atoms belonging to GB areas. Density of states for electrons shows the existence of additional states in the band gap close to the bottom of the conduction band. The adsorption energy of CO2 molecules atop oxygen atoms exposed at surface GB areas is of the same order of magnitude as that reported for oxygen atoms at crystallographic edges and corners of MgO crystals. It provides additional options for bonding of molecules at the surface of nanocrystalline MgO increasing the adsorption capacity and catalytic activity.

  18. Eficiência térmica de telhas onduladas de fibrocimento aplicadas em abrigos individuais para bezerros expostos ao sol e à sombra Thermal efficiency of fiber cement corrugated sheets applied to individual housing for calves exposed to sun and shade

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2012-01-01

    Full Text Available Este trabalho apresenta um estudo da eficiência térmica de coberturas de bezerreiros individuais expostas ao sol e à sombra, por meio de termografia infravermelha, temperatura interna e índices de conforto térmico. Foram avaliados quatro bezerreiros, três expostos ao sol, a saber: (i cobertos com telhas de fibrocimento sem amianto - pintadas de branco, (ii sem pintura e (iii com sombrite posicionado internamente aos bezerreiros, à distância de 0,10m da face inferior da telha. O quarto bezerreiro foi instalado em área sombreada e coberto com telhas de fibrocimento sem pintura. As coletas de dados foram realizadas durante 21 dias, nos horários das 11h00min, 14h00min e 17h00min. Os resultados mostraram variações significativas na temperatura de superfície das coberturas e nos índices de conforto térmico, entre os tratamentos expostos ao sol e à sombra, para todos os horários avaliados. As imagens termográficas infravermelhas mostraram-se eficientes para melhor compreensão dos processos de transferência de calor da cobertura para o interior das instalações.This research presents a study of roof thermal efficiency in individual housing for calves exposed to sun and shade through infrared thermography, internal temperature and thermal comfort indexes. Four different individual housing for calves covered with asbestos-free fiber-cement corrugated sheets were evaluated. Three of them were directly exposed to the sun: (i corrugated sheets painted white in the external surface, (ii corrugated sheets without painting and (iii with screen shade fabric installed 0.10m under de internal surface of the corrugated sheet. The fourth individual housing was installed in the shade area and covered with unpainted corrugated fiber-cement sheets. The analysis was taken for 21 days at 11h00min, 14h00min and 17h00min. The results indicate significant variations in the roofing surface temperature and thermal comfort indexes among the treatments

  19. Synthesis of nano-hydroxyapatite and its rapid mediated surface functionalization by silane coupling agent

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Sarish, E-mail: kknano@hotmail.com; Khan, Kishwar; Mujahid, Mohammad; Nosheen, Shaneela

    2016-01-01

    In this work, hydroxyapatite (HA) nanorods were synthesized by simple one step wet precipitation method followed by their rapid surface functionalization via aminopropyltriethoxysilane (APTS) to give modified (HA-APTS) product. Functionalized hydroxyapatite (HA-APTS) holds amino groups on their surface that can be further functionalized with other bioactive molecules. The extent of functionalization of HA was studied under three different processing conditions; at room temperature, at 80 °C and under microwave condition (600 W). Three different temperatures have been use for the purpose of comparison between the functionalized products so that we can judge that whether there is any effect of temperature on the final products. In the last we conclude that temperature has no effect. So microwave condition is best to carried out the functionalization in just 5 min. - Highlights: • Extent of functionalization of HA was studied. • Characterized using FTIR spectroscopy, SEM, FESEM, HRTEM, XRD & NMR • n-HA particles were covalently linked with APTS under microwave radiation. • Beneficial from biomedical point of view.

  20. Green's function based finite element formulations for isotropic seepage analysis with free surface

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Abstract A solution procedure using the Green's function based finite element method (FEM is presented for two-dimensional nonlinear steady-state seepage analysis with the presence of free surface in isotropic dams. In the present algorithm, an iteration strategy is designed to convert the over-specified free surface problem to a regular partial differential equation problem. Then, at each iteration step, the Green's function for isotropic linear seepage partial differential equation is employed to construct the element interior water head field, while the conventional shape functions are used for the independent element frame water head field. Then these two independent fields are connected by a double-variable hybrid functional to produce the final solving equation system. By means of the physical definition of Green's function, all two-dimensional element domain integrals in the present algorithm can reduce to one-dimensional element boundary integrals, so that versatile multi-node element is constructed to simplify mesh reconstruction during iteration. Finally, numerical results from the present Green's function based FEM with isotropic Green's function kernels are compared with other numerical results to verify and demonstrate the performance of the present method.