WorldWideScience

Sample records for surface coil imaging

  1. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  2. [Surface coils for magnetic-resonance images].

    Science.gov (United States)

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  3. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  4. Focused surface coil for MR imaging of the pituitary

    International Nuclear Information System (INIS)

    Harms, S.E.; Sherry, C.S.; Youshimura, L.; Lokken, R.; Hyde, J.S.

    1987-01-01

    A specially designed surface coil for pituitary MR imaging results in improved image quality over that achieved with conventional pituitary Mr imaging. The coil consists of connected planar pair coils with a variable intercoil distance to accommodate differences in head size. The sensitive field is focused deep to the surface between the two planar pairs. This arrangement optimizes the signal-to-noise ratio and allows better gradient magnification of the pituitary region. Fifteen subjects with a variety of pituitary disorders were imaged

  5. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    International Nuclear Information System (INIS)

    Steen, M. van den; Maeseneer, M. de; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M.

    2003-01-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR

  6. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, 02115, Boston, MA (United States); Ueno, Teruko; Itai, Yuji [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Tanaka, Toshikazu [Department of Orthopedic Surgery, Tsukuba Kinen Hospital, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2003-10-01

    To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively. Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured. All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil. High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions. (orig.)

  7. The experimental study on positioning of the surface coil for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Kyoji; Yotsui, Yoritaka; Koseki, Yonoshin [Osaka Dental Univ., Hirakata (Japan)

    2002-12-01

    We examined the correlation between signal intensity and setting angulations for magnetic resonance imagesobtained using a surface coil, which had a three inch surface coil, and dual coil, which and a three inch surface coil and an anterior neck coil. We took T2-3D weighted, T2-2D weighted and T1-2D weighted images with the angulated three-inch surface coil at 0-90 degrees with the magnetic direction. In every sequence, the maximum intensity with the dual coil was taken with angulations of 50-60 degrees. The intensity of the dual coil could be as much as the three times that of the single coil. As the angulations increased with the dual coil, the thickness of the effective intensity was decreased until it reached 50% of the maximum thickness. With the single coil it decreased until it reached 10%. When using a high-resolution coil that cannot be setup parallel with the magnetic direction, we recommend using a dual coil rather than a single coil to increase the signal intensity. In the oral cavity, the intraoral coil should be used with the extraoral coil as the phased array coil. This is the optimum condition of coil angulation for taking high resolution images. (author)

  8. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    International Nuclear Information System (INIS)

    Solis, S E; Rodriguez, A O; Wang, R; Tomasi, D

    2011-01-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  9. A multi-slot surface coil for MRI of dual-rat imaging at 4 T

    Energy Technology Data Exchange (ETDEWEB)

    Solis, S E; Rodriguez, A O [Departamento de Ingenieria Electrica, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF 09340 (Mexico); Wang, R; Tomasi, D, E-mail: arog@xanum.uam.mx [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-06-21

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  10. A multi-slot surface coil for MRI of dual-rat imaging at 4T

    Energy Technology Data Exchange (ETDEWEB)

    Solis, S.E.; Tomasi, D.; Solis, S.E.; Wang, R.; Tomasi, D.; Rodriguez, A.O.

    2011-07-01

    A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.

  11. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  12. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  13. Four-channel surface coil array for sequential CW-EPR image acquisition

    Science.gov (United States)

    Enomoto, Ayano; Emoto, Miho; Fujii, Hirotada; Hirata, Hiroshi

    2013-09-01

    This article describes a four-channel surface coil array to increase the area of visualization for continuous-wave electron paramagnetic resonance (CW-EPR) imaging. A 776-MHz surface coil array was constructed with four independent surface coil resonators and three kinds of switches. Control circuits for switching the resonators were also built to sequentially perform EPR image acquisition for each resonator. The resonance frequencies of the resonators were shifted using PIN diode switches to decouple the inductively coupled coils. To investigate the area of visualization with the surface coil array, three-dimensional EPR imaging was performed using a glass cell phantom filled with a solution of nitroxyl radicals. The area of visualization obtained with the surface coil array was increased approximately 3.5-fold in comparison to that with a single surface coil resonator. Furthermore, to demonstrate the applicability of this surface coil array to animal imaging, three-dimensional EPR imaging was performed in a living mouse with an exogenously injected nitroxyl radical imaging agent.

  14. Clinical usefulness of a newly-developed head and neck surface coil for MR imaging

    International Nuclear Information System (INIS)

    Shimada, Morio; Kogure, Takashi; Hayashi, Sanshin

    1995-01-01

    To obtain correct diagnosis at early stages of cervical lymph node swelling, especially cases with suspected epipharyngeal carcinoma, and cerebral arterial sclerotic diseases, high-quality MR images visualizing the entire head and neck structures and vessels are of crucial importance. When obtaining images of head and neck regions using a head coil, signal intensity (SI) and signal to noise ratio (SNR) of regions below the hypopharynx are weakened. Moreover, when obtaining images of head and neck regions using an anterior neck coil, SI and SNR of upper regions of epipharynx are also weakened. In an attempt to solve these problems, we developed a new head and neck surface coil for MR imaging. With this new coil we were able to obtain better images (153 cases) from regions below the hypopharynx to the upper regions of the epipharynx in the same time as images obtained using the head coil and anterior neck coil. 2D TOF MR angiographic images (11 cases) obtained by the head and neck surface coil are superior to 2D TOF angiographic images obtained by the anterior neck coil. MR images obtained with this improved method are valuable in the evaluation and management of head and neck region disease. (author)

  15. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    Science.gov (United States)

    2016-02-13

    magnet wires with insulating coating for rectangular surface coils. The wires are formed into four one turn 145mm x 32mm rectangular coils...switchable array, RF magnetic field, NQR, MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic ...grid array. This achieves the switchable array configuration. Later, investigations will have circuit controlled multiplexer for switching to

  16. Surface coil imaging of the spine using fast sequences: Improvement of intensity profile and contrast behavior

    International Nuclear Information System (INIS)

    Requardt, H.; Deimling, M.; Weber, H.

    1986-01-01

    Sagittal and axial images obtained using a surface coil suffer from the extreme intensity profile caused by physical properties of the coil and the anatomic entity of subcutaneous fat. The authors present a measuring device that reduces these disadvantages by means of Helmholtz-type coils, and sequences that reduce the fat signal by dephasing its signal part. The extremely short repetition time (<30 msec) allows acquisition times shorter than 10 sec. Breath-holding for this short period to avoid movement artifacts is possible. Images are presented that illustrate the enhanced contrast of spinal tissue and surrounding structures. Comparisons are made with spin-echo and CHESS images

  17. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  18. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    International Nuclear Information System (INIS)

    Gensanne, D; Josse, G; Lagarde, J M; Vincensini, D

    2006-01-01

    Measuring spin-spin relaxation times (T 2 ) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T 2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T 2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T 2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T 2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T 2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm 3 for a conventional volume birdcage coil and only of 1.7 mm 3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T 2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a

  19. Do carotid MR surface coils affect PET quantification in PET/MR imaging?

    International Nuclear Information System (INIS)

    Willemink, Martin J; Eldib, Mootaz; Leiner, Tim; Fayad, Zahi A; Mani, Venkatesh

    2015-01-01

    To evaluate the effect of surface coils for carotid MR imaging on PET quantification in a clinical simultaneous whole-body PET/MR scanner. A cylindrical phantom was filled with a homogeneous 2L water-FDG mixture at a starting dose of 301.2MBq. Clinical PET/MR and PET/CT systems were used to acquire PET-data without a coil (reference standard) and with two carotid MRI coils (Siemens Special Purpose 8-Channel and Machnet 4-Channel Phased Array). PET-signal attenuation was evaluated with Osirix using 51 (PET/MR) and 37 (PET/CT) circular ROIs. Mean and maximum standardized uptake values (SUVs) were quantified for each ROI. Furthermore, SUVs of PET/MR and PET/CT were compared. For validation, a patient was scanned with an injected dose of 407.7MBq on both a PET/CT and a PET/MR system without a coil and with both coils. PET/MR underestimations were -2.2% (Siemens) and -7.8% (Machnet) for SUVmean, and -1.2% (Siemens) and -3.3% (Machnet) for SUVmax, respectively. For PET/CT, underestimations were -1.3% (Siemens) and -1.4% (Machnet) for SUVmean and -0.5% (both Siemens and Machnet) for SUVmax, respectively using no coil data as reference. Except for PET/CT SUVmax values all differences were significant. SUVs differed significantly between PET/MR and PET/CT with SUVmean values of 0.51-0.55 for PET/MR and 0.68-0.69 for PET/CT, respectively. The patient examination showed that median SUVmean values measured in the carotid arteries decreased from 0.97 without a coil to 0.96 (Siemens) and 0.88 (Machnet). Carotid surface coils do affect attenuation correction in both PET/MR and PET/CT imaging. Furthermore, SUVs differed significantly between PET/MR and PET/CT.

  20. Preliminary results of endorectal surface coil magnetic resonance imaging for local staging of prostate cancer

    NARCIS (Netherlands)

    Jager, G. J.; Barentsz, J. O.; de la Rosette, J. J.; Rosenbusch, G.

    1994-01-01

    To evaluate the effectiveness of endorectal surface coil (ERC) magnetic resonance imaging (MRI) in the local staging of adenocarcinoma of the prostate (ACP). A total of 23 patients who were considered candidates for radical prostatectomy because of clinically localized ACP were examined by ERC-MRI.

  1. Normal appearance of the prostate and seminal tract: MR imaging using an endorectal surface coil

    International Nuclear Information System (INIS)

    Kim, Myeong Jin; Lee, Jong Tae; Lee, Moo Sang; Choi, Pil Sik; Hong, Sung Joon; Lee, Yeon Hee; Choi, Hak Yong

    1994-01-01

    To assess the ability of MR imaging with an endorectal surface coil for the depiction of normal anatomical structure of prostate and its adjacent organs. MR imaging using an endorectal surface coil was performed in 23 male patients(age ; 20-75) to evaluate various prostatic and vasovesicular disorders, i. e, 14 cases of ejaculatory problems, 3 cases of hypogonadism, and 4 cases of prostatic cancers and 2 cases of benign prostatic hyperplasia. MR images were obtained with axial, sagittal and coronal fast spin echo long TR/TE images and axial spin echo short TR/TE images. Field of views was 10-12 cm and scan thickness was 3-5 mm. Depiction of normal anatomcial structures was excellent in all cases. On T2WI, zonal anatomy of the prostate and prostatic urethra, urethral crest, and ejaculatory duct were cleary visualized. On T1WI, periprostatic fat plane is more cleary visualized. On transverse images, periprostatic structures were well visualized on T1WI,and on T2WI, anterior fibromuscular stroma, transition zone and peripheral zone could be readily differentiated. Coronal images were more helpful in visualization of both central and peripheral zones. Vas deferens, ejaculatory duct and vermontanum were also more easily defined on these images. Sagittal images was helpful in the depiction of anterior fibromuscular stroma, central zone and peripheral zone with prostatic urethra and ejaculatory duct in a single plane. High resolution MR imaging with an endorectal surface coil can readily visualize the normal anatomy of the prostate and its related structures and may be useful in the evaluation of various diseases of prostate and vasvesicular system

  2. Normal appearance of the prostate and seminal tract: MR imaging using an endorectal surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myeong Jin; Lee, Jong Tae; Lee, Moo Sang; Choi, Pil Sik; Hong, Sung Joon; Lee, Yeon Hee; Choi, Hak Yong [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1994-06-15

    To assess the ability of MR imaging with an endorectal surface coil for the depiction of normal anatomical structure of prostate and its adjacent organs. MR imaging using an endorectal surface coil was performed in 23 male patients(age ; 20-75) to evaluate various prostatic and vasovesicular disorders, i. e, 14 cases of ejaculatory problems, 3 cases of hypogonadism, and 4 cases of prostatic cancers and 2 cases of benign prostatic hyperplasia. MR images were obtained with axial, sagittal and coronal fast spin echo long TR/TE images and axial spin echo short TR/TE images. Field of views was 10-12 cm and scan thickness was 3-5 mm. Depiction of normal anatomcial structures was excellent in all cases. On T2WI, zonal anatomy of the prostate and prostatic urethra, urethral crest, and ejaculatory duct were cleary visualized. On T1WI, periprostatic fat plane is more cleary visualized. On transverse images, periprostatic structures were well visualized on T1WI,and on T2WI, anterior fibromuscular stroma, transition zone and peripheral zone could be readily differentiated. Coronal images were more helpful in visualization of both central and peripheral zones. Vas deferens, ejaculatory duct and vermontanum were also more easily defined on these images. Sagittal images was helpful in the depiction of anterior fibromuscular stroma, central zone and peripheral zone with prostatic urethra and ejaculatory duct in a single plane. High resolution MR imaging with an endorectal surface coil can readily visualize the normal anatomy of the prostate and its related structures and may be useful in the evaluation of various diseases of prostate and vasvesicular system.

  3. High-resolution MR imaging of urethra for incontinence by means of intracavitary surface coils

    International Nuclear Information System (INIS)

    Yang, A.; Mostwin, J.L.; Genadry, R.; Yang, S.S.

    1991-01-01

    Urinary incontinence is a major medical problem affecting millions of older women. This paper demonstrates the use of dynamic MR imaging in noninvasive quantification of prolapse in all three pelvic compartments. In this exhibit we use high-resolution MR imaging with intracavity (intravaginal, intrarectal) and surface/intracavitary coils to diagnose intrinsic urethral pathology that prevents opening (dysuria) or coaptation (incontinence). Normal anatomy, congenital anatomy (pelvic floor defects, hypoplasia), acquired anatomy (periurethral cyst/divertivulum, tumor, hypertrophy), and operative failure as causes of incontinence (postoperative scarring, misplacement/dehiscence of sutures and flaps) are shown. We demonstrate a novel method for MR cine voiding cystourethrography. Technical factors and applications are discussed

  4. Magnetic resonance imaging of cervical carcinoma using an endorectal surface coil

    International Nuclear Information System (INIS)

    Brocker, Kerstin A.; Alt, Céline D.; Gebauer, Gerhard; Sohn, Christof; Hallscheidt, Peter

    2014-01-01

    Introduction: The objective of this trial is to investigate the diagnostic value of magnetic resonance imaging (MRI) with an endorectal surface coil for precise local staging of patients with histologically proven cervical cancer by comparing the radiological, clinical, and histological results. Materials and methods: Women with cervical cancer were recruited for this trial between February 2007, and September 2010. All the patients were clinically staged according to the FIGO classification and underwent radiological staging by MRI that employed an endorectal surface coil. The staging results after surgery were compared to histopathology in all the operable patients. Results: A total of 74 consecutive patients were included in the trial. Forty-four (59.5%) patients underwent primary surgery, whereas 30 (40.5%) patients were inoperable according to FIGO and underwent primary radiochemotherapy. The mean age of the patients was 50.6 years. In 11 out of the 44 patients concordant staging results were obtained by all three staging modalities. Thirty-two of the 44 patients were concordantly staged by FIGO and histopathological examination, while only 16 were concordantly staged by eMRI and histopathological examination. eMRI overstaged tumors in 14 cases and understaged them in 7 cases. Conclusions: eMRI is applicable in patients with cervical cancer, yet of no benefit than staging with FIGO or standard pelvic MRI. The most precise preoperative staging procedure still appears to be the clinical examination

  5. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    Science.gov (United States)

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  6. Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils

    Science.gov (United States)

    Hanvey, S.; Glegg, M.; Foster, J.

    2009-09-01

    This study investigated the compatibility of a head and neck immobilization device with magnetic resonance imaging (MRI). The immobilization device is used to position a patient in the same way as when receiving a computed tomography (CT) scan for radiotherapy planning and radiation treatment. The advantage of using immobilization in MR is improved accuracy in CT/MR image registration enabling greater confidence in the delineation of structures. The main practical difficulty in using an immobilization device in MRI is that physical constraints make their use incompatible with head imaging coils. Within this paper we describe a method for MR imaging of the brain which allows the use of head and neck immobilization devices. By a series of image quality tests we obtained the same or better image quality as a multi-channel head coil.

  7. Image analysis from surface scanning with an absolute eddy current coil

    International Nuclear Information System (INIS)

    Attaoui, P.

    1994-01-01

    The aim of this work is to implement processing and analysis tools applied to eddy current imaging. These cartographies are issued from steam generator tubes testing using an absolute coil. The first is to eliminate the perturbations due to probe lift-off changes which generate low frequency oscillations on the image. The principle of the processing is to rebuild a complete surface of the noise using only the points around the defect area. The geometric origin of these perturbations led to a model based on sinusoidal functions. The method consists of gradually decomposing the image into a sum of basic sinusoidal surfaces. In order to take into account all kind of cartographies (especially rolling zone) some preprocessing must be applied. The results obtained with this 'cartography flattening'are satisfactory and the phase of analysis could begin with good condition of signal ratio. The second part of this work dealt with the choice and the perfection of image processing tools which would fit the most with the defect characterization. The aim of this characterization is to give the orientation and main size of the detected defect. A morphological skeleton representation has been chosen to illustrate the defect architecture and to allow sizing. A set of tools has been elaborated to obtain an (automatic) processing according to threshold. The results for single defect are satisfactory since the sizing error is around ± 25% and orientation is nearly always correctly given. The processing for area with several defects is more complex and new complementary research directions are proposed. (author)

  8. Preliminary results of endorectal surface coil magnetic resonance imaging for local staging of prostate cancer

    International Nuclear Information System (INIS)

    Jager, G.H.; Barentsz, J.O.; Rosette, J.J.M.C.H. de la; Rosenbusch, G.

    1994-01-01

    Objective: To evaluate the effectiveness of endorectal surface coil (ERC) magnetic resonance imaging (MRI) in the local staging of adenocarcinoma of the prostate (ACP). Materials and methods: A total of 23 patients who were considered candidates for radical prostatectomy because of clinically localized ACP were examined by ERC-MRI. All patients underwent laparoscopic or open lymph-node dissection prior to surgery. Four patients had positive lymph nodes at operation. A total of 19 underwant radical prostatectomy, allowing comparison of the MRI data with the surgical pathologic findings. Results: Twelve patients had extraglandular spread of ACP (T3) and 7 had locally confined ACP (T2). ERC-MRI predicted correctly a T3 tumor in 10 of 12 cases and a T2 tumor in 4 of 7 cases. ERC-MRI was 74% accurate in differentiating T2 from T3 tumor. Three cases of overestimation were in studies with poor image quality because of bowel movement motion artifacts. Conclusion: ERC-MRI was found to be a sensitive modality in staging clinically localized ACP. (orig.) [de

  9. Design and application of surface coils for MR imaging with consideration of patient safety

    International Nuclear Information System (INIS)

    Bader, R.; Zabel, H.J.; Gehrig, J.; Lorenz, W.J.

    1987-01-01

    Problems concerning the safety of the patient have arisen by increasing the magnetic field for MR imaging and MR spectroscopy up to 2 T. High electric potentials result on the radio frequency (RF) that antennas in some cases are situated directly on or even inside the body. Transmit pulses can induce high voltages and currents in a separate receiver coil being resonant. Intensive RF fields emerging from the receiver coil may severely heat the conductive body tissue. Principles for suppressing the induced voltages and for detuning the antenna are described. General rules for the design of antennas and their application are discussed

  10. Parallel image-acquisition in continuous-wave electron paramagnetic resonance imaging with a surface coil array: Proof-of-concept experiments

    Science.gov (United States)

    Enomoto, Ayano; Hirata, Hiroshi

    2014-02-01

    This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.

  11. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 Tesla.

    Science.gov (United States)

    Laistler, Elmar; Poirier-Quinot, Marie; Lambert, Simon A; Dubuisson, Rose-Marie; Girard, Olivier M; Moser, Ewald; Darrasse, Luc; Ginefri, Jean-Christophe

    2015-02-01

    To demonstrate the feasibility of a highly sensitive superconducting surface coil for microscopic MRI of the human skin in vivo in a clinical 1.5 Tesla (T) scanner. A 12.4-mm high-temperature superconducting coil was used at 1.5T for phantom and in vivo skin imaging. Images were inspected to identify fine anatomical skin structures. Signal-to-noise ratio (SNR) improvement by the high-temperature superconducting (HTS) coil, as compared to a commercial MR microscopy coil was quantified from phantom imaging; the gain over a geometrically identical coil made from copper (cooled or not) was theoretically deduced. Noise sources were identified to evaluate the potential of HTS coils for future studies. In vivo skin images with isotropic 80 μm resolution were demonstrated revealing fine anatomical structures. The HTS coil improved SNR by a factor 32 over the reference coil in a nonloading phantom. For calf imaging, SNR gains of 380% and 30% can be expected over an identical copper coil at room temperature and 77 K, respectively. The high sensitivity of HTS coils allows for microscopic imaging of the skin at 1.5T and could serve as a tool for dermatology in a clinical setting. © 2013 Wiley Periodicals, Inc.

  12. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R. [Medical Faculty of the Humboldt Univ., Berlin (Germany). Dept. of Radiology

    2000-07-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm{sup 2} and 60x60 mm{sup 2} in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils.

  13. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    International Nuclear Information System (INIS)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R.

    2000-01-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm 2 and 60x60 mm 2 in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils

  14. Capsule of parotid gland tumor: evaluation by 3.0 T magnetic resonance imaging using surface coils

    International Nuclear Information System (INIS)

    Ishibashi, Mana; Fujii, Shinya; Nishihara, Keisuke; Matsusue, Eiji; Kodani, Kazuhiko; Kaminou, Toshio; Ogawa, Toshihide; Kawamoto, Katsuyuki

    2010-01-01

    Background: Magnetic resonance (MR) imaging of parotid gland tumors has been widely reported, although few reports have evaluated the capsule of parotid gland tumors in detail. Purpose: To evaluate the diagnostic usefulness of 3.0 T MR imaging with surface coils for detection of the parotid gland tumor capsule, and to clarify the characteristics of the capsules. Material and Methods: Seventy-eight patients with parotid gland tumors (63 benign and 15 malignant) were evaluated. Axial and coronal T2-weighted and contrast-enhanced T1-weighted images were obtained using a 3.0 T MR scanner with 70 mm surface coils. It was retrospectively assessed whether each parotid gland tumor was completely surrounded by a capsule. The capsule was classified as regular or irregular in terms of capsular thickness, and as none, mildly, or strongly enhancing in terms of contrast enhancement. Visual interpretations were compared with histopathological findings to evaluate the diagnostic ability of MR imaging to detect parotid gland tumor capsules. Statistical evaluation was conducted concerning the presence of capsules, capsular irregularity, and the difference in contrast enhancement between benign and malignant tumors, and that between pleomorphic adenomas and Warthin's tumors. Results: Capsules completely surrounding the tumor on MR imaging yielded a sensitivity of 87.7% (50/57), specificity of 90.5% (19/21), and accuracy of 88.5% (69/78). Benign tumors had a capsule completely surrounding the tumor significantly more often than malignant tumors (P = 0.009). Concerning capsular irregularity, malignant tumors tended to have more irregular capsules than benign tumors, although there were no significant differences. The capsules of malignant tumors enhanced significantly more strongly than those of benign tumors (P = 0.018). Conclusion: 3.0 T MR imaging using surface coils could correctly depict parotid gland tumor capsules in most cases. Most benign and some malignant tumors had capsules

  15. Magnetic resonance imaging in ophthalmic diagnosis. Results of examinations using a small field-of-view surface coil

    International Nuclear Information System (INIS)

    Kato, Yuji; Yoshida, Akitoshi; Kanno, Harumi; Ogasawara, Hironobu; Murakami, Noboru; Cheng, Hong-Ming.

    1997-01-01

    We obtained T 1 -and T 2 -weighted magnetic resonance (MR) images in 3 patients with vitreoretinal disorders using a recently developed surface coil that was inductively coupled and had a small field of view. On both T 1 -and T 2 -weighted images, tractional retinal detachment was clearly detected in the first patient, who had proliferative diabetic retinopathy. T 1 - and T 2 -weighted images of the second patient, who had total retinal detachment with proliferative vitreous retinopathy, revealed a funnel-shaped thickened retina. The third patient had postoperative rhegmatogenous retinal detachment with opacity due to postoperative cataract and intravitreous injection of gas; on this patient's MR images we could clearly differentiate the reattached retina, silicone used for scleral buckling, and intravitreous gas, even though these differentiations were not possible with ophthalmoscopy or B-scan ultrasonography. High resolution MR imaging with our technique can be performed in a short time and regardless of the eye's condition. Our findings strongly indicate that MRI with a small field-of-view surface coil is a useful tool for diagnosing various vitreoretinal disorders and observing pathological changes. (author)

  16. Optimal design for MRI surface coils

    International Nuclear Information System (INIS)

    Rivera, M.; Vaquero, J.J.; Santos, A.; Pozo, F. del; Ruiz-Cabello, J.

    1997-01-01

    To demonstrate the possibility of designing and constructing specific surface coils or antennae for MRI viewing of each particular tissue producing better results than those provided by a general purpose surface coil. The study was performed by the Bioengineering and Telemedicine Group of Madrid Polytechnical University and was carried out at the Pluridisciplinary Institute of the Universidad Complutense in Madrid, using a BMT-47/40 BIOSPEC resonance unit from Bruker. Surface coils were custom-designed and constructed for each region to be studied, and optimized to make the specimen excitation field as homogeneous as possible, in addition to reducing the brightness artifact. First, images were obtained of a round, water phantom measuring 50 mm in diameter, after which images of laboratory rats and rabbits were obtained. The images thus acquired were compared with the results obtained with the coil provided by the manufacturer of the equipment, and were found to be of better quality, allowing the viewing of deeper tissue for the specimen as well as reducing the brightness artifact. The construction of surface coils for viewing specific tissues or anatomical regions improves image quality. The next step in this ongoing project will be the application of these concepts to units designed for use in humans. (Author) 14 refs

  17. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 2: new vs. old imaging concept

    Energy Technology Data Exchange (ETDEWEB)

    Sirin, Selma; Schlamann, Marc; Schweiger, Bernd; Goericke, Sophia L. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Metz, Klaus A. [University Hospital Essen, Department of Pathology and Neuropathology, Essen (Germany); Bornfeld, Norbert; Holdt, Markus [University Hospital Essen, Department of Ophthalmology, Essen (Germany); Temming, Petra; Schuendeln, Michael M. [University Hospital Essen, Department of Pediatric Hematology and Oncology, Essen (Germany)

    2015-08-15

    High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil. One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard. Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion). The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up. (orig.)

  18. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 2: new vs. old imaging concept

    International Nuclear Information System (INIS)

    Sirin, Selma; Schlamann, Marc; Schweiger, Bernd; Goericke, Sophia L.; Metz, Klaus A.; Bornfeld, Norbert; Holdt, Markus; Temming, Petra; Schuendeln, Michael M.

    2015-01-01

    High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil. One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard. Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion). The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up. (orig.)

  19. High-resolution MR imaging of the elbow using a microscopy surface coil and a clinical 1.5 T MR machine: preliminary results

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Ueno, Teruko; Takahashi, Nobuyuki; Saida, Yukihisa; Tanaka, Toshikazu; Kujiraoka, Yuka; Shindo, Masashi; Nishiura, Yasumasa; Ochiai, Naoyuki

    2004-01-01

    To obtain high-resolution MR images of the elbow using a microscopy surface coil with a 1.5 T clinical machine and to evaluate the feasibility of its use for elbow injuries. Five asymptomatic normal volunteers and 13 patients with elbow pain were prospectively studied with MR imaging using a microscopy surface coil 47 mm in diameter. High-resolution MR images using a microscopy coil were obtained with fast spin echo (FSE) proton density-weighted sequence, gradient recalled echo (GRE) T2*-weighted sequence, and short tau inversion recovery (STIR) sequence, with a 1-2 mm slice thickness, a 50-70 mm field of view, an imaging matrix of 140-224 x 512 using zero fill interpolation, and 2-6 excitations. High-resolution MR images of normal volunteers using a microscopy coil clearly showed each structure of the medial and lateral collateral ligaments on GRE T2*-weighted images and FSE proton-density weighted images. Partial medial collateral ligament injury, a small avulsion of the medial epicondyle, and osteochondritis dissecans were well demonstrated on high-resolution MR images. High-resolution MR imaging of the elbow using a microscopy surface coil with a 1.5 T clinical machine is a promising method for accurately characterizing the normal anatomy of the elbow and depicting its lesions in detail. (orig.)

  20. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  1. 16-Channel surface coil for 13C-hyperpolarized spectroscopic imaging of cardiac metabolism in pig heart

    DEFF Research Database (Denmark)

    Frijia, Francesca; Santarelli, Maria Filomena; Koellisch, Ulrich

    2016-01-01

    Magnetic resonance spectroscopy (MRS) of hyperpolarized 13C pyruvate and its metabolites in large animal models is a powerful tool for assessing cardiac metabolism in patho-physiological conditions. In 13C studies, a high signal-to-noise ratio (SNR) is crucial to overcome the intrinsic data quality...... both targets. In this study, a 16-channel receive surface coil was designed for 13C hyperpolarized studies of the pig heart with a clinical 3-T scanner. The coil performance was characterized by phantom experiments and compared with that of a birdcage coil used in transmit/receive mode. Segmental...... of the 16-channel coil is recommended for studies of septal and anterior LV walls....

  2. High resolution MR imaging of the hip using pelvic phased-array coil

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, Mamoru; Mishima, Hajime; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    1997-01-01

    A pelvic phased-array coil was applied to obtain high resolution MR images of the hip. Three-mm-thick fast spin-echo images were obtained in seven hips. Images with a pelvic coil enhanced delineation of acetabular labrum and articular cartilage more clearly than those with a body coil or flexible-surface coil. The use of a pelvic coil in imaging of the hip may be of diagnostic value because of its superior delineation. (author)

  3. MRI of the orbit with surface coils

    International Nuclear Information System (INIS)

    Reuther, G.; Requardt, H.; Siemens A.G., Erlangen

    1986-01-01

    MRI of the orbit is strongly improved by the use of surface coils due to a higher signal-to-noise ratio. Oblique views without moving the patient present the optic nerve in full length on one slice. First experience with a small number of cases demonstrates normal anatomy and lesions in detail only at T 1 -weighted pulse sequences. Losses in contrast variation and detail accuracy are caused by movements of the eyeballs. Edge artifacts due to chemical shifting impair the image quality. So far there are no pinters towards tissue-specific signal intensity behaviour. Procedure and most favourable parameters at 1 tesla are given. (orig.) [de

  4. Improved imaging of cochlear nerve hypoplasia using a 3-Tesla variable flip-angle turbo spin-echo sequence and a 7-cm surface coil.

    Science.gov (United States)

    Giesemann, Anja M; Raab, Peter; Lyutenski, Stefan; Dettmer, Sabine; Bültmann, Eva; Frömke, Cornelia; Lenarz, Thomas; Lanfermann, Heinrich; Goetz, Friedrich

    2014-03-01

    Magnetic resonance imaging of the temporal bone has an important role in decision making with regard to cochlea implantation, especially in children with cochlear nerve deficiency. The purpose of this study was to evaluate the usefulness of the combination of an advanced high-resolution T2-weighted sequence with a surface coil in a 3-Tesla magnetic resonance imaging scanner in cases of suspected cochlear nerve aplasia. Prospective study. Seven patients with cochlear nerve hypoplasia or aplasia were prospectively examined using a high-resolution three-dimensional variable flip-angle turbo spin-echo sequence using a surface coil, and the images were compared with the same sequence in standard resolution using a standard head coil. Three neuroradiologists evaluated the magnetic resonance images independently, rating the visibility of the nerves in diagnosing hypoplasia or aplasia. Eight ears in seven patients with hypoplasia or aplasia of the cochlear nerve were examined. The average age was 2.7 years (range, 9 months-5 years). Seven ears had accompanying malformations. The inter-rater reliability in diagnosing hypoplasia or aplasia was greater using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence (fixed-marginal kappa: 0.64) than with the same sequence in lower resolution (fixed-marginal kappa: 0.06). Examining cases of suspected cochlear nerve aplasia using the high-resolution three-dimensional variable flip-angle turbo spin-echo sequence in combination with a surface coil shows significant improvement over standard methods. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.

    2013-01-01

    , the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...

  6. Eye imaging with a 3.0-T MRI using a surface coil - a study on volunteers and initial patients with uveal melanoma

    International Nuclear Information System (INIS)

    Lemke, Arne-Joern; Hengst, Susanne Anja; Kazi, Iris; Felix, Roland; Alai-Omid, Minouche

    2006-01-01

    MRI of uveal melanoma using 1.5-T technology and surface coils has developed into a standard procedure. The purpose of the study was to evaluate the feasibility of 3.0-T technology in eye imaging. To optimize the MRI sequences for clinical eye imaging with 3.0-T, six healthy volunteers were conducted using a 4.0-cm surface coil. Evaluation criteria were the signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR) and image quality. A further six patients with uveal melanoma were examined with 1.5- and 3.0-T under retrobulbar anesthesia. During 3.0-T examinations of volunteers, eye movements caused significant artifacts. On the contrary, excellent imaging quality was reached in examinations of patients under retrobulbar anesthesia at 3.0 T. Subjective assessment showed no significant difference between 1.5 and 3.0 T in patients. Due to the increased SNR, the 3.0-T technique has the potential to improve eye imaging, but the higher susceptibility to motion artifacts limits the clinical use of this technique to patients receiving retrobulbar anesthesia. (orig.)

  7. MRI surface-coil pair with strong inductive coupling.

    Science.gov (United States)

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  8. Ocular MR imaging. Evaluation of different coil setups in a phantom study

    International Nuclear Information System (INIS)

    Erb-Eigner, Katharina; Warmuth, Carsten; Taupitz, Matthias; Bertelmann, Eckart; Hamm, Bernd; Asbach, Patrick

    2013-01-01

    Small loop surface coils are generally recommended for ocular magnetic resonance (MR) imaging, but the optimal coil setup has not been systematically investigated. In this phantom study, we investigated which coil setup of those coils available for our MR imaging system provides the highest signal-to-noise ratio (SNR) in ocular MR imaging at 1.5 tesla. Using a phantom to simulate the eyeball and the orbital fat, we employed loop surface coils of 4- and 6-cm diameter and a multi-channel head coil to obtain images using a T 1 -weighted spin-echo sequence and then measured the SNR for each coil and coil combination. Use of the 6-cm loop coil alone yielded the highest mean SNR (27.5). Even in superficial regions (mesial and temporal), the SNR was higher using the 6-cm loop coil (33.6 and 45.5) than the 4-cm loop coil (28.0 and 33.8). Additional use of the head coil reduced the mean SNR to 10.4. This quantitative analysis suggests that use of a 6-cm loop surface coil offers the best results in ocular MR imaging. Combinations of loop coils or additional use of a head coil cannot be recommended because higher noise degrades image quality. (author)

  9. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    Science.gov (United States)

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  10. Localized 31PNMR spectroscopy with ISIS and surface coils

    International Nuclear Information System (INIS)

    Heindel, W.; Schreier, G.; Steinbrich, W.; Glathe, S.; Huttmann, P.

    1990-01-01

    A new method for image-guided localized phosphorus NMR spectroscopy of superficial tissues has been investigated using a 1.5 Tesla whole-body-MR-system. We used a surface coil combined with adiabatic excitation pulses and a modified ISIS sequence. This approach is related to imaging sequences and thus permits a flexible and accurate determination of the volume of interest from 'conventional' proton images. The scope and advantages of the method are demonstrated by phantom studies. Clinical applications to the liver, renal transplants, and the mediastinum are described. (orig.) [de

  11. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Cheng, M C; Yan, B P; Lee, K H; Ma, Q Y; Yang, E S

    2005-01-01

    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi (2-x) Pb x Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio

  12. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla

    NARCIS (Netherlands)

    van Kalleveen, Irene M. L.; Boer, VO; Luijten, Peter R.; Klomp, DWJ

    Purpose: Going to ultrahigh field MRI (e. g., 7 Tesla [ T]), the nonuniformity of the B_1 field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B_1, its field remains nonuniform. In this work, an RF pulse was designed

  13. High resolution MR imaging of the anal sphincter using an intravaginal surface coil; Hochaufloesende Magnetresonanztomographie des Analsphinkters mit einer intravaginalen Oberflaechenspule

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Schimpfle, M. [Radiologische Klinik, Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Franz, H. [Frauenklinik, Tuebingen Univ. (Germany); Lobinger, B. [Radiologische Klinik, Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany); Claussen, C.D. [Radiologische Klinik, Abt. fuer Radiologische Diagnostik, Tuebingen Univ. (Germany)

    1995-06-01

    MR imaging was performed using a 1.0 T unit. In 10 females (6 nullipara, one primipara without and three primipara with postpartum faecal incontinence) a surface coil, originally designed for endorectal use, was placed into the vagina. Transverse oblique T{sub 1}-weighted spin echo and double echo turbo spin echo sequences with T{sub 2}- and proton density-weighting were acquired parallel to the puborectal, rectococcygeal and anorectal planes. Three readers analysed the images in consensus. The anatomic structures of the external and internal sphincter as well as the mucosa were differentiated in all cases with a good contrast. The best results were yielded by the proton density weighting. In one case of faecal incontinence a sphincter defect after repair of a complete rupture of the anal sphincter was shown. In another case irregularities in the structure of the external sphincter and perineum were visualised. (orig./MG) [Deutsch] Die Magnetresonanztomographie (MRT) wurde an einem 1,0-Tesla-Geraet durchgefuehrt. Bei 10 Frauen (6 Nulliparae, eine Primipara ohne und drei Primiparae mit postpartaler Stuhlinkontinenz) wurde eine Oberflaechenspule, die urspruenglich zur endorektalen Anwendung konzipiert war, intravaginal eingefuehrt. Es wurden T{sub 1}-gewichtete Spin-Echo-Sequenzen sowie Doppel-Echo-Turbo-Spin-Echo-Sequenzen mit T{sub 2}- und Protonendichtegewichtung parallel zur puborektalen, rektokokzygealen und anorektalen Ebene akquiriert. Drei Auswerter analysierten die Aufnahmen im Konsensmodus. Die anatomischen Strukturen des Musculus sphincter ani externus und internus sowie die Mukosa konnten in allen Faellen gut differenziert werden. Das beste Ergebnis wurde mit der Protonendichte-Gewichtung erzielt. In einem Fall von Stuhlinkontinenz zeigte sich ein kombinierter Defekt des M. sphincter ani internus und externus nach Naht eines Dammrisses III. Grades. In einem weiteren Fall waren Irregularitaeten im Perineum und externen Sphinkteranteil darzustellen. (orig./MG)

  14. Magnetic resonance imaging of rodent spinal cord with an improved performance coil at 7 Tesla

    Science.gov (United States)

    Solis-Najera, S. E.; Rodriguez, A. O.

    2014-11-01

    Magnetic Resonance Imaging of animal models provide reliable means to study human diseases. The image acquisition particularly determined by the radio frequency coil to detect the signal emanated from a particular region of interest. A scaled-down version of the slotted surface coil was built based on the previous results of a magnetron-type surface coil for human applications. Our coil prototype had a 2 cm total diameter and six circular slots and was developed for murine spinal cord at 7 T. Electromagnetic simulations of the slotted and circular coils were also performed to compute the spatially dependent magnetic and electric fields using a simulated saline-solution sphere. The quality factor of both coils was experimentally measured giving a lower noise figure and a higher quality factor for the slotted coil outperforming the circular coil. Images of the spinal cord of a rat were acquired using standard pulse sequences. The slotted surface coil can be a good tool for spinal cord rat imaging using conventional pulse sequences at 7 T.

  15. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Merina [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Schmidt, Maria [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Sohaib, Aslam [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Kong, Christine; Burke, Kevin [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Richardson, Cheryl; Usher, Marianne [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Brennan, Sinead [Department of Radiotherapy, St. James' s Hospital, Dublin (Ireland); Riddell, Angela [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Davies, Mark; Newbold, Kate [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Harrington, Kevin J; Nutting, Christopher M [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Institute of Cancer Research, London (United Kingdom)

    2010-02-15

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm{sup 3}, p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm{sup 3}, p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and

  16. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    International Nuclear Information System (INIS)

    Ahmed, Merina; Schmidt, Maria; Sohaib, Aslam; Kong, Christine; Burke, Kevin; Richardson, Cheryl; Usher, Marianne; Brennan, Sinead; Riddell, Angela; Davies, Mark; Newbold, Kate; Harrington, Kevin J.; Nutting, Christopher M.

    2010-01-01

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm 3 , p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm 3 , p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and improved

  17. New method to design stellarator coils without the winding surface

    Science.gov (United States)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  18. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Science.gov (United States)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  19. Comparative study between body and surface coils in magnetic resonance mammography of silicone prosthesis

    International Nuclear Information System (INIS)

    Scaranelo, Anabel Medeiros

    2001-01-01

    Magnetic resonance imaging scans using predefined parameters were performed in patients with silicone breast implants. The same group of patients was submitted to magnetic resonance imaging scans using surface breast coils and body coils, and the results were compared. A total of 43 single-lumen silicone-gel breast implants in 24 patients were examined. The signal-to-noise ratio was greater for the breast coil than for the body coil. Radial folds were identified with equal resolution by both in almost 82% of the cases on the right side and 95% on the left side. In about 5% of the cases the folds were seen exclusively when the breast coil used. The linguine sign was almost equally with both methods. In just one case the linguine sign was observed only by using the breast coil. Identification of building or irregularity of contours were concordant using both techniques. We concluded that although magnetic resonance imaging quality is better using a dedicated coil, silicone breast implants can be assessed with the same diagnostic accuracy using a body coil. (author)

  20. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    Science.gov (United States)

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  1. Coil Tolerance Impact on Plasma Surface Quality for NCSX

    International Nuclear Information System (INIS)

    Brooks, Art; Reiersen, Wayne

    2003-01-01

    The successful operation of the National Compact Stellarator Experiment (NCSX) machine will require producing plasma configurations with good flux surfaces, with a minimum volume of the plasma lost to magnetic islands or stochastic regions. The project goal is to achieve good flux surfaces over 90% of the plasma volume. NCSX is a three period device designed to be operated with iota ranging from ∼0.4 on axis to ∼0.7 at the edge. The field errors of most concern are those that are resonant with 3/5 and 3/6 modes (for symmetry preserving field errors) and the 1/2 and 2/3 modes (for symmetry breaking field errors). In addition to losses inherent in the physics configuration itself, there will be losses from field errors arising from coil construction and assembly errors. Some of these losses can be recovered through the use of trim coils or correction coils. The impact of coil tolerances on plasma surface quality is evaluated herein for the NCSX design. The methods used in this evaluation are discussed. The ability of the NCSX trim coils to correct for field errors is also examined. The results are used to set coils tolerances for the various coil systems

  2. Anatomy of the fingers in MR imaging using a high resolution surface coil; Die Anatomie der Finger in der MRT unter Anwendung einer Hochaufloesungsspule

    Energy Technology Data Exchange (ETDEWEB)

    Maeurer, J. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany); Mueller, H.F. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany); Lemke, A.J. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany); Requardt, R. [Siemens AG, Erlangen (Germany); Stein, I. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany); Schedel, H. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany); Langer, R. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany); Felix, R. [Strahlenklinik und Poliklinik, Klinikum Rudolf Virchow, Standort Wedding, Freie Univ. Berlin (Germany)

    1994-12-31

    MR-images of the fingers of twenty healthy volunteers were obtained at a 1,5-T whole-body system with a high resolution coil. Additionally, the fingers of two formalin-fixed anatomical specismen were imaged, fronzen and then subsequently sectioned for anatomic correlation. Measurements were recorded with a slice thickness of 2 mm. A 256x256 matrix and a 2,5 cam fiel of view (FOV) were used resulting in a pixel size of 0,01 mm{sup 2}. Based on the excellent depiction of anatomic detail and contrast resolution high resolution MRI of the fingers enabled identification of osseous and cartilaginous structures, as well as delineation of tendons, ligaments blood-vessels and dermal layers. (orig.) [Deutsch] An einem 1,5-T-Ganzkoerpertomographen wurden die Finger von 20 gesunden Probanden mit einer Hochaufloesungsspule zur Darstellung der Anatomie untersucht. Zum Vergleich erfolgte die Abbildung der anatomischen Strukturen an zwei formol- und alkoholfixierten Leichepraeparaten der Hand mittels MRT. Im Anschluss wurden die untersuchten Regionen am tiefgefrorenen Praeparat mit einer Bandsaege nachgeschnitten. Die MR-Messungen wurden mit einer Schichtdicke von 3 mm, einem Field of View (FOV) von 25 mm und einer Matrix von 256x256 Pixel durchgefuehrt. Die daraus resultierende Pixelgroesse betrug 0,01 mm{sup 2}. Der Weichteilkontrast und die hohe Ortsaufloesung ermoeglichten die Identifikation von Knochen- und Knorpelstrukturen sowie die Abgrenzung von Sehnen, Baendern, Blutgefaessen und Hautschichten. (orig.)

  3. Whole-body MRI using a sliding table and repositioning surface coil approach

    International Nuclear Information System (INIS)

    Takahara, Taro; Kwee, Thomas; Luijten, Peter; Kibune, Satoshi; Ochiai, Reiji; Sakamoto, Tetsuro; Niwa, Tetsu; Van Cauteren, Marc

    2010-01-01

    To introduce and assess a new way of performing whole-body magnetic resonance imaging (MRI) using a non-integrated surface coil approach as available on most clinical MRI systems worldwide. Ten consecutive asymptomatic subjects prospectively underwent whole-body MRI for health screening. Whole-body MRI included T1-, T2- and diffusion-weighted sequences, and was performed using a non-integrated surface coil to image four different stations without patient repositioning. The four separately acquired stations were merged, creating seamless coronal whole-body T1-, T2- and diffusion-weighted images. Anatomical alignment, image quality at the boundaries of adjacent stations, and overall image quality of all stations were qualitatively assessed. The average time (±SD) taken to change the surface coil from one station to the next station was 53.8 (±7.1) s. The average total extra examination time ± SD was 2 min 41.4 s (±15.3 s). Anatomical alignment, image quality at the boundaries of adjacent stations, and overall image quality of all stations of T1-, T2- and diffusion-weighted whole-body MRI were overall graded as ''good'' to ''excellent''. This study shows that a time-efficient and high-quality whole-body MRI examination can easily be performed by using a non-integrated sliding surface coil approach. (orig.)

  4. MR imaging of colorectal carcinomas using an MR endoscopic coil

    International Nuclear Information System (INIS)

    Murano, Akihiko; Kido, Choichiro; Sasaki, Fumio; Nakamura, Tsuneya; Kobayashi, Semi; Katoh, Tomoyuki; Hirai, Takashi

    1994-01-01

    Diagnosis of the depth of wall invasion by rectal carcinoma using MR endoscopy was performed in ten resected specimens, including five rectal carcinomas, three colon carcinomas, two normal gastric wall. In addition, the gastric wall of a pig was examined. MR imaging was done with a 1.5-T Signa Advantage (GE Medical System) system, with the surface coil of the MR endoscope acting as the receiver coil. Five layers could be distinguished in the bowel wall: mucosa, submucosa and muscularis propria divided into circular muscle, longitudinal muscle and intervening connective tissue. Tumors had almost the same signal intensity as muscle. The MR images of colon carcinomas, rectal carcinomas, and extrinsically metastatic involvement of the sigmoid colon by rectal carcinoma all correlated well with the pathological findings. The normal structure of the gastric wall was similar to that of the colon. 3D-fast Spoiled Grass (SPGR) sequence has a fairly short scanning time. Thus, the possibility of precise clinical diagnosis by this method was suggested. (author)

  5. High-resolution imaging of the spine in young infants with a loop-gap resonator remote current return coil

    International Nuclear Information System (INIS)

    Ball, W.S.; Prenger, E.C.; Auringer, S.T.

    1989-01-01

    MR imaging of the young child's spin requires proper selection of surface coils and pulse sequences that optimize resolution. The authors report the use in the infant spine of a new coil design in combination with specialized pulse sequences, such as fat suppression. Thirty children underwent spine MR imaging with a loop-gap resonator remote current return (RCR) coil. Spin-echo T1-weighted, T2-weighted, and T1-weighted fat-suppression pulse sequences were performed on a 1.5-T imager. Twelve patients had normal studies, 14 had spinal dysraphism, two had drop metastases, and two had paravertebral masses. Twelve initial patients had comparison images obtained with a 5-inch general-purpose surface coil. Similar pulse sequences were used for each coil. Image were compared diagnostically and for resolution based on the ability to discriminate small intrathecal structures

  6. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    Science.gov (United States)

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-04-19

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity

  7. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging.

    Science.gov (United States)

    Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A

    2014-02-01

    Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in

  8. A 2-in-1 single-element coil design for transcranial magnetic stimulation and magnetic resonance imaging.

    Science.gov (United States)

    Lu, Hai; Wang, Shumin

    2018-01-01

    To demonstrate the feasibility of turning transcranial magnetic stimulation (TMS) coil for MRI signal reception. A critically coupled network was formed by using a resonated turn of TMS coil as the secondary and a regular radiofrequency (RF) coil as the primary. A third coil was positioned between the two coils for detuning during RF transmission. Bench measurement, numerical simulation, and MRI experiment were performed for validation. The signal-to-noise ratio of the proposed 2-in-1 coil is 35% higher in its field of view, compared with a MRI-only reference coil of the same size, made by the same material, and backed up by an untuned TMS coil, but lower than a RF surface coil of the same size without any TMS coil nearby. Spin-echo images of the human brain further validated its performance. The proposed method can transform TMS coil for MRI signal acquisition with virtually no modifications on the TMS side. It not only enables flexible and close positioning of TMS coil inside MRI scanner, but also improves the signal-to-noise ratio compared with conventional implementations. It can be applied as a building block for developing advanced concurrent TMS/MRI hardware. Magn Reson Med 79:582-587, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Three-dimensional proton magnetic resonance spectroscopic imaging with and without an endorectal coil: a prostate phantom study

    NARCIS (Netherlands)

    Ma, C.; Chen, L.; Scheenen, T.W.J.; Lu, J.; Wang, J

    2015-01-01

    Proton magnetic resonance spectroscopic imaging (MRSI) of the prostate has been used with only a combination of external surface coils. The quality of spectral fitting of the (choline + creatine)/citrate ([Cho + Cr]/Cit) ratio at different field strengths and different coils is important for

  10. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery.

    Science.gov (United States)

    Chittiboina, Prashant; Talagala, S Lalith; Merkle, Hellmut; Sarlls, Joelle E; Montgomery, Blake K; Piazza, Martin G; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R; Oldfield, Edward H; Koretsky, Alan P; Butman, John A

    2016-12-01

    OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra-high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm 3 and 0.15 × 0.15 × 0.30 mm 3 , respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult

  11. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery

    Science.gov (United States)

    Chittiboina, Prashant; Talagala, S. Lalith; Merkle, Hellmut; Sarlls, Joelle E.; Montgomery, Blake K.; Piazza, Martin G.; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R.; Oldfield, Edward H.; Koretsky, Alan P.; Butman, John A.

    2016-01-01

    OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing’s disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra–high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm3 and 0.15 × 0.15 × 0.30 mm3, respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary

  12. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission

    Science.gov (United States)

    Garwood, Michael; Uğurbil, Kamil

    2018-06-01

    The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.

  13. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate.

    Science.gov (United States)

    Gawlitza, Josephin; Reiss-Zimmermann, Martin; Thörmer, Gregor; Schaudinn, Alexander; Linder, Nicolas; Garnov, Nikita; Horn, Lars-Christian; Minh, Do Hoang; Ganzer, Roman; Stolzenburg, Jens-Uwe; Kahn, Thomas; Moche, Michael; Busse, Harald

    2017-02-01

    This work aims to assess the impact of an additional endorectal coil on image quality and cancer detection rate within the same patients. At a single academic medical center, this transversal study included 41 men who underwent T2- and diffusion-weighted imaging at 3 T using surface coils only or in combination with an endorectal coil in the same session. Two blinded readers (A and B) randomly evaluated all image data in separate sessions. Image quality with respect to localization and staging was rated on a five-point scale. Lesions were classified according to their prostate imaging reporting and data system (PIRADS) score version 1. Standard of reference was provided by whole-mount step-section analysis. Mean image quality scores averaged over all localization-related items were significantly higher with additional endorectal coil for both readers (p < 0.001), corresponding staging-related items were only higher for reader B (p < 0.001). With an endorectal coil, the rate of correctly detecting cancer per patient was significantly higher for reader B (p < 0.001) but not for reader A (p = 0.219). The numbers of histologically confirmed tumor lesions were rather similar for both settings. The subjectively rated 3-T image quality was improved with an endorectal coil. In terms of diagnostic performance, the use of an additional endorectal coil was not superior.

  14. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    Science.gov (United States)

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  15. The ability to identify the intraparotid facial nerve for locating parotid gland lesions in comparison to other indirect landmark methods: evaluation by 3.0 T MR imaging with surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Mana; Fujii, Shinya; Nishihara, Keisuke; Matsusue, Eiji; Kodani, Kazuhiko; Kaminou, Toshio; Ogawa, Toshihide [Tottori University, Division of Radiology, Department of Pathophysiological and Therapeutic Science, Faculty of Medicine, Tottori (Japan); Kawamoto, Katsuyuki [Tottori University, Division of Otolaryngology, Head and Neck Surgery, Department of Medicine of Sensory and Motor Organs, Faculty of Medicine, Tottori (Japan)

    2010-11-15

    It is important to know whether a parotid gland lesion is in the superficial or deep lobe for preoperative planning. We aimed to investigate the ability of 3.0 T magnetic resonance (MR) imaging with surface coils to identify the intraparotid facial nerve and locate parotid gland lesions, in comparison to other indirect landmark methods. We retrospectively evaluated 50 consecutive patients with primary parotid gland lesions. The position of the facial nerve was determined by tracing the nerve in the stylomastoid foramen and then following it on sequential MR sections through the parotid gland. The retromandibular vein and the facial nerve line (FN line) were also identified. For each radiologist and each method, we determined the diagnostic ability for deep lobe lesions and superficial lobe lesions, as well as accuracy. These abilities were compared among the three methods using the Chi-square test with Yates' correction. Mean diagnostic ability for deep lobe lesions, the diagnostic ability for superficial lobe lesions, and accuracy were 92%, 86%, 87%, respectively, for the direct identification method; 67%, 89%, 86%, respectively, for the retromandibular vein method; and 25%, 99%, 90%, respectively, for the FN line method. The direct identification method had significantly higher diagnostic ability for deep lesions than the FN line method (P < 0.01), but significantly lower diagnostic ability for superficial lobe lesions than the FN line method (P < 0.01). Direct identification of the intraparotid facial nerve enables parotid gland lesions to be correctly located, particularly those in the deep lobes. (orig.)

  16. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2017-05-01

    In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  17. A flexible coil array for high resolution magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Kriegl, R.

    2015-01-01

    Magnetic resonance imaging (MRI), among other imaging techniques, has become a major backbone of modern medical diagnostics. MRI enables the non-invasive combined, identification of anatomical structures, functional and chemical properties, especially in soft tissues. Nonetheless, applications requiring very high spatial and/or temporal resolution are often limited by the available signal-to-noise ratio (SNR) in MR experiments. Since first clinical applications, image quality in MRI has been constantly improved by applying one or several of the following strategies: increasing the static magnetic field strength, improvement of the radiofrequency (RF) detection system, development of specialized acquisition sequences and optimization of image reconstruction techniques. This work is concerned with the development of highly sensitive RF detection systems for biomedical ultra-high field MRI. In particular, auto-resonant RF coils based on transmission line technology are investigated. These resonators may be fabricated on flexible substrate which enables form-fitting of the RF detector to the target anatomy, leading to a significant SNR gain. The main objective of this work is the development of a flexible RF coil array for high-resolution MRI on a human whole-body 7 T MR scanner. With coil arrays, the intrinsically high SNR of small surface coils may be exploited for an extended field of view. Further, parallel imaging techniques are accessible with RF array technology, allowing acceleration of the image acquisition. Secondly, in this PhD project a novel design for transmission line resonators is developed, that brings an additional degree of freedom in geometric design and enables the fabrication of large multi-turn resonators for high field MR applications. This thesis describes the development, successful implementation and evaluation of novel, mechanically flexible RF devices by analytical and 3D electromagnetic simulations, in bench measurements and in MRI

  18. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    International Nuclear Information System (INIS)

    Dregely, Isabel; Lanz, Titus; Mueller, Matthias F.; Metz, Stephan; Kuschan, Marika; Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus; Bundschuh, Ralph A.; Haase, Axel

    2015-01-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative 18 F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  19. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  20. Newly developed surface coil for endoluminal MRI, depiction of pig gastric wall layers and vascular architecture in ex vivo study.

    Science.gov (United States)

    Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi

    2009-01-01

    The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.

  1. Newly developed surface coil for endoluminal MRI, depiction of pig gastric wall layers and vascular architecture in ex vivo study

    International Nuclear Information System (INIS)

    Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato

    2009-01-01

    The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n=4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study. (author)

  2. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  3. High-resolution magnetic resonance imaging of the anal sphincter using a dedicated endoanal receiver coil

    International Nuclear Information System (INIS)

    DeSouza, N.M.; Williams, A.D.; Gilderdale, D.J.

    1999-01-01

    The use of a surface coil in MR imaging improves signal-to-noise ratio of adjacent tissues of interest. We therefore devised an endoanal receiver coil for imaging the anal sphincter. The probe is solid and re-usable: it comprises a saddle geometry receiver with integral tuning, matching and decoupling. It is placed in the anal canal and immobilised externally. Both in vitro and in vivo normal anatomy is identified. The mucosa is high signal intensity, the submucosa low signal intensity, the internal sphincter uniformly high signal intensity and the external sphincter low signal intensity on T1- and T2-weighted images. In females, the transverse perineal muscle bridges the inferior part of the external sphincter anteriorly. In perianal sepsis, collections and the site of the endoanal opening are identified. In early-onset fecal incontinence following obstetric trauma/surgery, focal sphincter defects are demonstrated; in late-onset fecal incontinence external sphincter atrophy is seen. In fecally incontinent patients with scleroderma, forward deviation of the anterior sphincter musculature with descent of rectal air and feces into the anal canal is noted. The extent of sphincter invasion is assessed in low rectal tumours. In children with congenital anorectal anomalies, abnormalities of the muscle components are defined using smaller-diameter coils. Such information is invaluable in the assessment and surgical planning of patients with a variety of anorectal pathologies. (orig.)

  4. High-resolution magnetic resonance imaging of the anal sphincter using a dedicated endoanal receiver coil

    Energy Technology Data Exchange (ETDEWEB)

    DeSouza, N.M.; Williams, A.D.; Gilderdale, D.J. [Dept. of Radiology, Imperial College School of Medicine, London (United Kingdom)

    1999-04-01

    The use of a surface coil in MR imaging improves signal-to-noise ratio of adjacent tissues of interest. We therefore devised an endoanal receiver coil for imaging the anal sphincter. The probe is solid and re-usable: it comprises a saddle geometry receiver with integral tuning, matching and decoupling. It is placed in the anal canal and immobilised externally. Both in vitro and in vivo normal anatomy is identified. The mucosa is high signal intensity, the submucosa low signal intensity, the internal sphincter uniformly high signal intensity and the external sphincter low signal intensity on T1- and T2-weighted images. In females, the transverse perineal muscle bridges the inferior part of the external sphincter anteriorly. In perianal sepsis, collections and the site of the endoanal opening are identified. In early-onset fecal incontinence following obstetric trauma/surgery, focal sphincter defects are demonstrated; in late-onset fecal incontinence external sphincter atrophy is seen. In fecally incontinent patients with scleroderma, forward deviation of the anterior sphincter musculature with descent of rectal air and feces into the anal canal is noted. The extent of sphincter invasion is assessed in low rectal tumours. In children with congenital anorectal anomalies, abnormalities of the muscle components are defined using smaller-diameter coils. Such information is invaluable in the assessment and surgical planning of patients with a variety of anorectal pathologies. (orig.) With 15 figs., 26 refs.

  5. Numerical Study of a Crossed Loop Coil Array for Parallel Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Hernandez, J.; Solis, S. E.; Rodriguez, A. O.

    2008-01-01

    A coil design has been recently proposed by Temnikov (Instrum Exp Tech. 2005;48;636-637), with higher experimental signal-to-noise ratio than that of the birdcage coil. It is also claimed that it is possible to individually tune it with a single chip capacitor. This coil design shows a great resemble to the gradiometer coil. These results motivated us to numerically simulate a three-coil array for parallel magnetic resonance imaging and in vivo magnetic resonance spectroscopy with multi nuclear capability. The magnetic field was numerical simulated by solving Maxwell's equations with the finite element method. Uniformity profiles were calculated at the midsection for one single coil and showed a good agreement with the experimental data. Then, two more coils were added to form two different coil arrays: coil elements were equally distributed by an angle of a 30 deg. angle. Then, uniformity profiles were calculated again for all cases at the midsection. Despite the strong interaction among all coil elements, very good field uniformity can be achieved. These numerical results indicate that this coil array may be a good choice for magnetic resonance imaging parallel imaging

  6. Characterization and flip angle calibration of 13C surface coils for hyperpolarization studies

    DEFF Research Database (Denmark)

    Hansen, Rie Beck; Gutte, Henrik; Larsen, Majbrit M E

    The aim of the present work is to address the challenge of optimal The aim of the present work is to address the challenge of optimal flflip angle calibration of ip angle calibration of C surface coils in C surface coils in hyperpolarization studies. To this end, we characterize the spatial pro h...

  7. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  8. Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil.

    Science.gov (United States)

    Fenchel, Michael; Deshpande, Vibhas S; Nael, Kambiz; Finn, J Paul; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-08-01

    We sought to assess the feasibility of cardiac cine imaging and evaluate image quality at 3 T using a body-array coil with 32 coil elements. Eight healthy volunteers (3 men; median age 29 years) were examined on a 3-T magnetic resonance scanner (Magnetom Trio, Siemens Medical Solutions) using a 32-element phased-array coil (prototype from In vivo Corp.). Gradient-recalled-echo (GRE) cine (GRAPPAx3), GRE cine with tagging lines, steady-state-free-precession (SSFP) cine (GRAPPAx3 and x4), and SSFP cine(TSENSEx4 andx6) images were acquired in short-axis and 4-chamber view. Reference images with identical scan parameters were acquired using the total-imaging-matrix (Tim) coil system with a total of 12 coil elements. Images were assessed by 2 observers in a consensus reading with regard to image quality, noise and presence of artifacts. Furthermore, signal-to-noise values were determined in phantom measurements. In phantom measurements signal-to-noise values were increased by 115-155% for the various cine sequences using the 32-element coil. Scoring of image quality yielded statistically significant increased image quality with the SSFP-GRAPPAx4, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). Similarly, scoring of image noise yielded a statistically significant lower noise rating with the SSFP-GRAPPAx4, GRE-GRAPPAx3, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). This study shows that cardiac cine imaging at 3 T using a 32-element body-array coil is feasible in healthy volunteers. Using a large number of coil elements with a favorable sensitivity profile supports faster image acquisition, with high diagnostic image quality even for high parallel imaging factors.

  9. Analyses and Comparison of Bulk and Coil Surface Samples from the DWPF Slurry Mix Evaporator

    International Nuclear Information System (INIS)

    Hay, M.; Nash, C.; Stone, M.

    2012-01-01

    Sludge samples from the DWPF Slurry Mix Evaporator (SME) heating coil frame and coil surface were characterized to identify differences that might help identify heat transfer fouling materials. The SME steam coils have seen increased fouling leading to lower boil-up rates. Samples of the sludge were taken from the coil frame somewhat distant from the coil (bulk tank material) and from the coil surface (coil surface sample). The results of the analysis indicate the composition of the two SME samples are very similar with the exception that the coil surface sample shows ∼5-10X higher mercury concentration than the bulk tank sample. Elemental analyses and x-ray diffraction results did not indicate notable differences between the two samples. The ICP-MS and Cs-137 data indicate no significant differences in the radionuclide composition of the two SME samples. Semi-volatile organic analysis revealed numerous organic molecules, these likely result from antifoaming additives. The compositions of the two SME samples also match well with the analyzed composition of the SME batch with the exception of significantly higher silicon, lithium, and boron content in the batch sample indicating the coil samples are deficient in frit relative to the SME batch composition.

  10. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    Science.gov (United States)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  11. SU-E-J-239: Influence of RF Coil Materials On Surface and Buildup Dose From a 6MV Photon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Ghila, A; Fallone, B; Rathee, S [Cross Cancer Institute, Edmonton, AB (United Kingdom)

    2015-06-15

    Purpose: In order to perform real time tumour tracking using an integrated Linac-MR, images have to be acquired during irradiation. MRI uses RF coils in close proximity to the imaged volume. Given current RF coil designs this means that the high energy photons will be passing through the coil before reaching the patient. This study experimentally investigates the dose modifications that occur due to the presence of various RF coil materials in the treatment beam. Methods: Polycarbonate, copper or aluminum tape, and Teflon were used to emulate the base, conductor and cover respectively of a surface RF coil. These materials were placed at various distances from the surface of polystyrene or solid water phantoms which were irradiated in the presence of no magnetic field, a transverse 0.2T magnetic field, and a parallel 0.2T magnetic field. Percent depth doses were measured using ion chambers. Results: A significant increase in surface and buildup dose is observed. The surface dose is seen to decrease with an increasing separation between the emulated coil and the phantom surface, when no magnetic field is present. When a transverse magnetic field is applied the surface dose decreases faster with increasing separation, as some of the electrons created in the coil are curved away from the phantom’s surface. When a parallel field is present the surface dose stays approximately constant for small separations, only slightly decreasing for separations greater than 5cm, since the magnetic field focuses the electrons produced in the coil materials not allowing them to scatter. Conclusion: Irradiating a patient through an RF coil leads to an increase in the surface and buildup doses. Mitigating this increase is important for the successful clinical use of either a transverse or a parallel configuration Linac-MR unit. This project is partially supported by an operating grant from the Canadian Institute of Health Research (CIHR MOP 93752)

  12. MRI of prostate zonal anatomy with an endorectal surface coil

    International Nuclear Information System (INIS)

    Cornud, F.; Belin, X.; Melki, P.; Helenon, O.; Cretien, Y.; Dufour, B.; Moreau, J.F.

    1995-01-01

    The development of an endorectal surface coil now permits a partial study of the anatomical model developed by McNeal. Axial and coronal views, which were used to establish the model can be obtained in a short period of time with fast spin echo sequences. Axial views are performed along the proximal urethra and coronal views are performed along the axis of the distal urethra and the ejaculatory duts. Anatomical boundaries of the transitional zone are well delineated on axial views, illustrating the concept of 'inner gland'. The prostatic capsule and the neuro-vascular bundles, pathways of extension of the cancer out of the prostate are also well delineated. Coronal sections allow a very good anatomical study of the caudal junction of the vas deferens and the seminal vesicles (the so called weak space), pathway of tumor extension to the seminal vesicles. Differences in signal of the prostatic zones make the outer gland cancers very conspicuous as well as some transitional cancers which can show, in some cases, an homogeneous hyposignal. (authors). 15 refs., 14 figs

  13. Double-tuned radiofrequency coil for (19)F and (1)H imaging.

    Science.gov (United States)

    Otake, Yosuke; Soutome, Yoshihisa; Hirata, Koji; Ochi, Hisaaki; Bito, Yoshitaka

    2014-01-01

    We developed a double-tuned radiofrequency (RF) coil using a novel circuit method to double tune for fluorine-19 (19F) and 1H magnetic resonance imaging, whose frequencies are very close to each other. The RF coil consists of 3 parallel-connected series inductor capacitor circuits. A computer simulation for our double-tuned RF coil with a phantom demonstrated that the coil has tuned resonant frequency and high sensitivity for both 19F and 1H. Drug distribution was visualized at 7 tesla using this RF coil and a rat administered perfluoro 15-crown-5-ether emulsion. The double-tune RF coil we developed may be a powerful tool for 19F and 1H imaging.

  14. Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.

    Science.gov (United States)

    Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko

    2017-05-01

    Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Design of an interventional magnetic resonance imaging coil for cerebral surgery

    Science.gov (United States)

    Xu, Yue; Wang, Wen-Tao; Wang, Wei-Min

    2012-11-01

    In clinical magnetic resonance imaging (MRI), the design of the radiofrequency (RF) coil is very important. For certain applications, the appropriate coil can produce an improved image quality. However, it is difficult to achieve a uniform B1 field and a high signal-to-noise ratio (SNR) simultaneously. In this article, we design an interventional transmitter-and-receiver RF coil for cerebral surgery. This coil adopts a disassembly structure that can be assembled and disassembled repeatedly on the cerebral surgery gantry to reduce the amount of interference from the MRI during surgery. The simulation results and the imaging experiments demonstrate that this coil can produce a uniform RF field, a high SNR, and a large imaging range to meet the requirements of the cerebral surgery.

  16. Echo Planar Diffusion-Weighted Imaging: Possibilities and Considerations with 12- and 32-Channel Head Coils

    Directory of Open Access Journals (Sweden)

    John N Morelli

    2012-01-01

    Full Text Available Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss and an approach to readout-segmented (rs echo planar imaging (EPI are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  17. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  18. Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.

    Science.gov (United States)

    Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko

    2007-01-01

    To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.

  19. Loop radiofrequency coils for clinical magnetic resonance imaging at 7 tesla

    NARCIS (Netherlands)

    Kraff, O.

    2011-01-01

    To date, the 7 T magnetic resonance imaging (MRI) scanner remains a pure research system and there is still a long way ahead till full clinical integration. Key challenges are the absence of a body transmit radiofrequency (RF) coil as well as of dedicated RF coils in general, short RF wavelengths of

  20. Innovative mutually inductively coupled radiofrequency coils for magnetic resonance imaging and spectroscopy

    International Nuclear Information System (INIS)

    Tomanek, B.

    2006-01-01

    The paper presents the author's thesis based on the work carried out at the Institute for Bio diagnostics in Canada and published in years 2000-2006. A patented new generation of the RF coils were introduced to MRI and MRS techniques what significantly reduced SNR and improved image resolution of MR diagnostic procedure. Examples of the applications of the RF coils are presented. The intraoperative MRI system with a movable magnet used during the brain surgery included RF probe. This coil was efficiently used for breast screening and detection of submillimeter tumors. Quantification of the tissue metabolites by combining MRT with 31 P MRS can be achieved using dual - frequency RF coils. It was successfully tested on a rat liver. The innovative RF coil design was supported by the theoretical analysis and performed experiments. As an extension of the design an idea and the theory construction of multi - frequency multi - ring coil and its possible applications are also considered

  1. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Directory of Open Access Journals (Sweden)

    Oliver Weinberger

    Full Text Available The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation.Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated.Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit.Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  2. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  3. High-resolution magnetic resonance imaging of rotator cuff tears using a microscopy coil. Noninvasive detection without intraarticular contrast material

    International Nuclear Information System (INIS)

    Hitachi, Shin; Takase, Kei; Higano, Shuichi; Takahashi, Shoki; Tanaka, Minoru; Tojo, Yuichi; Tabata, Shiro; Majima, Kazuhiro

    2011-01-01

    The aim of this study was to evaluate the feasibility of high-resolution magnetic resonance imaging (MRI) using a microscopy coil for the diagnosis of rotator cuff tears by comparing the method to conventional MRI and MRI arthrography. A total of 68 shoulders were prospectively studied using a 1.5-T MRI unit. Conventional MRI scans were obtained with a surface coil and high-resolution MRI scans with a microscopy coil. MRI arthrography was performed in 28 shoulders using a surface coil. MRI evaluation of tears of rotator cuff tendons was compared with arthroscopic findings and surgical results. The surgery revealed 40 full-thickness tears, 13 partial-thickness tears, and 15 intact cuffs. In all, 35 (88%) full-thickness tears were correctly diagnosed on conventional MRI and 40 (100%) on high-resolution MRI. MR arthrography delineated 11 of 12 (92%) full-thickness tears. Altogether, 5 (38%) of the partial-thickness tears were detected on conventional MRI, and 12 (92%) were clearly demonstrated on high-resolution MRI. MRI arthrography depicted three (60%) of five partial-thickness tears. High-resolution MRI showed higher sensitivity than conventional MRI (P<0.05) and had values equivalent to those of MRI arthrography for diagnosing partial-thickness tears. High-resolution MRI with a microscopy coil is a feasible, noninvasive technique for diagnosing rotator cuff tears. (author)

  4. Protocol optimization of sacroiliac joint MR Imaging at 3 Tesla: Impact of coil design and motion resistant sequences on image quality.

    Science.gov (United States)

    Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A

    2017-12-01

    To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; Pcoil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  5. Thermal performance of a spirally coiled finned tube heat exchanger under wet-surface conditions

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Naphon, Paisarn

    2006-01-01

    This paper is a continuation of the author's previous work on spiral coil heat exchangers. In the present study, the heat transfer characteristics and the performance of a spirally coiled finned tube heat exchanger under wet-surface conditions are theoretically and experimentally investigated. The test section is a spiral-coil heat exchanger which consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled finned tubes. Each tube is fabricated by bending a 9.6 mm diameter straight copper tube into a spiral-coil of four turns. The innermost and outermost diameters of each spiral-coil are 145.0 and 350.4 mm, respectively. Aluminium crimped spiral fins with thickness of 0.6 mm and outer diameter of 28.4 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Air and water are used as working fluids in shell side and tube side, respectively. The experiments are done under dehumidifying conditions. A mathematical model based on the conservation of mass and energy is developed to simulate the flow and heat transfer characteristics of working fluids flowing through the heat exchanger. The results obtained from the present model show reasonable agreement with the experimental data

  6. A spiral, bi-planar gradient coil design for open magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Peng; Shi, Yikai; Wang, Wendong; Wang, Yaohui

    2018-01-01

    To design planar gradient coil for MRI applications without discretization of continuous current density and loop-loop connection errors. In the new design method, the coil current is represented using a spiral curve function described by just a few control parameters. Using a proper parametric equation set, an ensemble of spiral contours is reshaped to satisfy the coil design requirements, such as gradient linearity, inductance and shielding. In the given case study, by using the spiral coil design, the magnetic field errors in the imaging area were reduced from 5.19% (non-spiral design) to 4.47% (spiral design) for the transverse gradient coils, and for the longitudinal gradient coil design, the magnetic field errors were reduced to 5.02% (spiral design). The numerical evaluation shows that when compared with conventional wire loop, the inductance and resistance of spiral coil was reduced by 11.55% and 8.12% for x gradient coil, respectively. A novel spiral gradient coil design for biplanar MRI systems, the new design offers better magnetic field gradients, smooth contours than the conventional connected counterpart, which improves manufacturability.

  7. MR spectroscopic imaging studies of prostate cancer: comparison of body coil and endorectal coil

    International Nuclear Information System (INIS)

    Li Xinmin; Wang Xiaoying; Guo Xuemei; Wang He; Jiang Xuexiang

    2009-01-01

    Objective: To compare the diagnostic value of MRS acquired by body coil (BODY) and endorectal Coil (ERC) in the detection of prostate cancer. Methods: MRI and 3D MRS were performed in 12 patients with prostate disease, in which 6 of them were proved to have prostate cancer and the other 6 noncancerous disease. Both BODY and ERC MRS were performed in 7 patients, and only BODY MRS was performed in the other 5 patients. All MRS data were quantitatively assessed with a per-sextant method. The metabolic ratio of (Choline + Creatine)/Citrate [(Cho + Crc )/Cit] was measured in each ROI. ROC analysis was carried out to assess and to compare the diagnostic value of BODY and ERC MRS in patients with prostate cancer with Wilcoxon test. Results: (1) The ratios of (Cho + Cre)/Cit in the prostate cancer group (median 1.744, 0.295 to 7.998) was statistically higher than that in the non-prostate cancer group (median 0.412, 0.112 to 2.113)acquired by using BODY MRS(Z=-9.159, P 0.05). (4) ROC analysis for diagnosing prostate cancer showed no significant difference (P=0.851 ) between the areas under the curve of BODY and that of ERC MRS (Az=0.931 and 0.935 respectively). Conclusion: The BODY MRS could provide comparable diagnostic efficacy to ERC MRS in patients with prostate cancer. (authors)

  8. MR-based conductivity imaging using multiple receiver coils.

    Science.gov (United States)

    Lee, Joonsung; Shin, Jaewook; Kim, Dong-Hyun

    2016-08-01

    To propose a signal combination method for MR-based tissue conductivity mapping using a standard clinical scanner with multiple receiver coils. The theory of the proposed method is presented with two practical approaches, a coil-specific approach and a subject-specific approach. Conductivity maps were reconstructed using the transceive phase of the combined signal. The sensitivities of the coefficients used for signal combination were analyzed and the method was compared with other signal combination methods. For validation, multiple receiver brain coils and multiple receiver breast coils were used in phantom, in vivo brain, and in vivo breast studies. The variation among the conductivity estimates was conductivity estimates. MR-based tissue conductivity mapping is feasible when using a standard clinical MR scanner with multiple receiver coils. The proposed method reduces systematic errors in phase-based conductivity mapping that can occur due to the inhomogeneous magnitude of the combined receive profile. Magn Reson Med 76:530-539, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    Science.gov (United States)

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Cardiac MRI in mice at 9.4 Tesla with a transmit-receive surface coil and a cardiac-tailored intensity-correction algorithm.

    Science.gov (United States)

    Sosnovik, David E; Dai, Guangping; Nahrendorf, Matthias; Rosen, Bruce R; Seethamraju, Ravi

    2007-08-01

    To evaluate the use of a transmit-receive surface (TRS) coil and a cardiac-tailored intensity-correction algorithm for cardiac MRI in mice at 9.4 Tesla (9.4T). Fast low-angle shot (FLASH) cines, with and without delays alternating with nutations for tailored excitation (DANTE) tagging, were acquired in 13 mice. An intensity-correction algorithm was developed to compensate for the sensitivity profile of the surface coil, and was tailored to account for the unique distribution of noise and flow artifacts in cardiac MR images. Image quality was extremely high and allowed fine structures such as trabeculations, valve cusps, and coronary arteries to be clearly visualized. The tag lines created with the surface coil were also sharp and clearly visible. Application of the intensity-correction algorithm improved signal intensity, tissue contrast, and image quality even further. Importantly, the cardiac-tailored properties of the correction algorithm prevented noise and flow artifacts from being significantly amplified. The feasibility and value of cardiac MRI in mice with a TRS coil has been demonstrated. In addition, a cardiac-tailored intensity-correction algorithm has been developed and shown to improve image quality even further. The use of these techniques could produce significant potential benefits over a broad range of scanners, coil configurations, and field strengths. (c) 2007 Wiley-Liss, Inc.

  11. MR imaging of brain surface structures

    International Nuclear Information System (INIS)

    Katada, Kazuhiro; Anno, Hirofumi; Takesita, Gen; Koga, Sukehiko; Kanno, Tetuo; Sakakibara, Tatuo; Yamada, Kazuhiro; Suzuki, Hirokazu; Saito, Sigeki.

    1989-01-01

    An imaging technique that permits direct and non-invasive visualization of brain surface structures was proposed. This technique (Surface anatomy scanning, SAS) consists of long TE-long TR spin echo sequence, thick slice and surface coil. Initial clinical trials in 31 patients with various cerebral pathology showed excellent visualization of sulci, gyri and major cortical veins on the lateral surface of the brain together with cortical and subcortical lesions. Our preliminary results indicate that the SAS is an effective method for the diagnosis and localization of cortical and subcortical pathology, and the possible application of SAS to the surgical and the radiation therapy planning is sugessted. (author)

  12. Comparison of a 28 Channel-Receive Array Coil and Quadrature Volume Coil for Morphologic Imaging and T2 Mapping of Knee Cartilage at 7 Tesla

    Science.gov (United States)

    Chang, Gregory; Wiggins, Graham C.; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G.; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P.; Regatte, Ravinder R.

    2011-01-01

    Purpose To compare a new birdcage-transmit, 28 channel-receive array (28 Ch) coil and a quadrature volume coil for 7 Tesla morphologic MRI and T2 mapping of knee cartilage. Methods The right knees of ten healthy subjects were imaged on a 7 Tesla whole body MR scanner using both coils. 3-dimensional fast low-angle shot (3D-FLASH) and multi-echo spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. Results SNR/CNR was 17–400% greater for the 28 Ch compared to the quadrature coil (p≤0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (−0.002±0.009 cm/0.003±0.011 cm) and large (−6.8±6.7 ms/−8.2±9.7 ms), respectively. For the 28 Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed, SNR retained was: 62–69%, 51–55%, and 39–45%. Conclusion A 28 Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28 Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. PMID:22095723

  13. The interaction of pulsed eddy current with metal surface crack for various coils

    International Nuclear Information System (INIS)

    Yang, H.-C.; Tai, C.-C.

    2002-01-01

    We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection

  14. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  15. Optimization of saddle coils for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Salmon, Carlos Ernesto Garrido; Vidoto, Edson Luiz Gea; Martins, Mateus Jose; Tannus, Alberto

    2006-01-01

    In Nuclear Magnetic Resonance (NMR) experiments, besides the apparatus designed to acquire the NMR signal, it is necessary to generate a radio frequency electromagnetic field using a device capable to transduce electromagnetic power into a transverse magnetic field. We must generate this transverse homogeneous magnetic field inside the region of interest with minimum power consumption. Many configurations have been proposed for this task, from coils to resonators. For low field intensity (<0.5 T) and small sample dimensions (<30 cm), the saddle coil configuration has been widely used. In this work we present a simplified method for calculating the magnetic field distribution in these coils considering the current density profile. We propose an optimized saddle configuration as a function of the dimensions of the region of interest, taking into account the uniformity and the sensitivity. In order to evaluate the magnetic field uniformity three quantities have been analyzed: Non-uniformity, peak-to-peak homogeneity and relative uniformity. Some experimental results are presented to validate our calculation. (author)

  16. RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging

    Science.gov (United States)

    2016-02-04

    magnetic, potassium chlorate , nuclear quadrupole resonance, uniform field, coil, surface coil I. INTRODUCTION QR is a magnetic resonance phenomenon...material that will be used is this investigation is potassium chlorate (KCLO3). This paper utilizes the NQR signals detection from KCLO3 to determine the...frequency of potassium chlorate (KCLO3), and matched to a 50 ohm input impedance using L-network circuit of capacitors. Fig.1 shows a diagram of the

  17. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    Science.gov (United States)

    Gürsoy, D.; Scharfetter, H.

    2009-10-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors.

  18. The effect of receiver coil orientations on the imaging performance of magnetic induction tomography

    International Nuclear Information System (INIS)

    Gürsoy, D; Scharfetter, H

    2009-01-01

    Magnetic induction tomography is an imaging modality which aims to reconstruct the conductivity distribution of the human body. It uses magnetic induction to excite the body and an array of sensor coils to detect the perturbations in the magnetic field. Up to now, much effort has been expended with the aim of finding an efficient coil configuration to extend the dynamic range of the measured signal. However, the merits of different sensor orientations on the imaging performance have not been studied in great detail so far. Therefore, the aim of the study is to fill the void of a systematic investigation of coil orientations on the reconstruction quality of the designs. To this end, a number of alternative receiver array designs with different coil orientations were suggested and the evaluations of the designs were performed based on the singular value decomposition. A generalized class of quality measures, the subclasses of which are linked to both the spatial resolution and uncertainty measures, was used to assess the performance on the radial and axial axes of a cylindrical phantom. The detectability of local conductivity perturbations in the phantom was explored using the reconstructed images. It is possible to draw the conclusion that the proper choice of the coil orientations significantly influences the number of usable singular vectors and accordingly the stability of image reconstruction, although the effect of increased stability on the quality of the reconstructed images was not of paramount importance due to the reduced independent information content of the associated singular vectors

  19. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain.

    Science.gov (United States)

    Alecci, M; Romanzetti, S; Kaffanke, J; Celik, A; Wegener, H P; Shah, N J

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides (1)H and (23)Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the (1)H frequency and a smaller co-planar loop tuned to the (23)Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned (23)Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the (23)Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent (1)H and (23)Na rat brain images showing good SNR ((23)Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ((23)Na: 1.25 x 1.25 x 5mm(3)) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  20. Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils

    Energy Technology Data Exchange (ETDEWEB)

    Sasayama, Teruyoshi, E-mail: sasayama@sc.kyushu-u.ac.jp; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji

    2017-04-01

    We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used. - Highlights: • 3D magnetic particle imaging system combining field-free line and two pickup coils. • Imaging method based on third harmonic signal detection and small field gradient. • Nonnegative least squares method for 3D magnetic nanoparticle image reconstruction. • High spatial resolution despite use of small field gradient.

  1. Improving quality of arterial spin labeling MR imaging at 3 Tesla with a 32-channel coil and parallel imaging.

    Science.gov (United States)

    Ferré, Jean-Christophe; Petr, Jan; Bannier, Elise; Barillot, Christian; Gauvrit, Jean-Yves

    2012-05-01

    To compare 12-channel and 32-channel phased-array coils and to determine the optimal parallel imaging (PI) technique and factor for brain perfusion imaging using Pulsed Arterial Spin labeling (PASL) at 3 Tesla (T). Twenty-seven healthy volunteers underwent 10 different PASL perfusion PICORE Q2TIPS scans at 3T using 12-channel and 32-channel coils without PI and with GRAPPA or mSENSE using factor 2. PI with factor 3 and 4 were used only with the 32-channel coil. Visual quality was assessed using four parameters. Quantitative analyses were performed using temporal noise, contrast-to-noise and signal-to-noise ratios (CNR, SNR). Compared with 12-channel acquisition, the scores for 32-channel acquisition were significantly higher for overall visual quality, lower for noise and higher for SNR and CNR. With the 32-channel coil, artifact compromise achieved the best score with PI factor 2. Noise increased, SNR and CNR decreased with PI factor. However mSENSE 2 scores were not always significantly different from acquisition without PI. For PASL at 3T, the 32-channel coil at 3T provided better quality than the 12-channel coil. With the 32-channel coil, mSENSE 2 seemed to offer the best compromise for decreasing artifacts without significantly reducing SNR, CNR. Copyright © 2012 Wiley Periodicals, Inc.

  2. Coil concepts for rapid and motion-compensated MR-Imaging of small animals

    International Nuclear Information System (INIS)

    Korn, Matthias

    2009-01-01

    In this work radiofrequency-coils for the imaging of small animals in clinical whole-body MRI-systems were developed. Therefore in a first step single-channel solenoids were designed and characterized. The solenoids had two and three windings respectively, which were implemented as double wires to increase the homogeneity of the receive profile. These coils allow the acquisition of whole-body images of mice with high signal-to-noise ratio and homogeneity over a distance of at least 6.3 cm. Since many imaging experiments require rapid image acquisition, in the next step a novel coil concept was developed, which, due to its geometry, enables parallel imaging in arbitrary directions. A prototype was assembled and tested on phantom and small-animal experiments. With an accelerating factor of R=2, the difference of the SNR in all directions from the theoretical maximum, was less than 1%. In order to compensate physiological motion by the self-gating technique, in this work a coil is presented for the first time, which selectively amplifies the self-gating signal, while - due to a optical detuning technique - preserving the homogeneous illumination of the image. In vivo experiments on a small animal show an amplification of the self-gating signal by at least 40%. (orig.)

  3. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    Science.gov (United States)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous

  4. Retrospective correction of bias in diffusion tensor imaging arising from coil combination mode.

    Science.gov (United States)

    Sakaie, Ken; Lowe, Mark

    2017-04-01

    To quantify and retrospectively correct for systematic differences in diffusion tensor imaging (DTI) measurements due to differences in coil combination mode. Multi-channel coils are now standard among MRI systems. There are several options for combining signal from multiple coils during image reconstruction, including sum-of-squares (SOS) and adaptive combine (AC). This contribution examines the bias between SOS- and AC-derived measures of tissue microstructure and a strategy for limiting that bias. Five healthy subjects were scanned under an institutional review board-approved protocol. Each set of raw image data was reconstructed twice-once with SOS and once with AC. The diffusion tensor was calculated from SOS- and AC-derived data by two algorithms-standard log-linear least squares and an approach that accounts for the impact of coil combination on signal statistics. Systematic differences between SOS and AC in terms of tissue microstructure (axial diffusivity, radial diffusivity, mean diffusivity and fractional anisotropy) were evaluated on a voxel-by-voxel basis. SOS-based tissue microstructure values are systematically lower than AC-based measures throughout the brain in each subject when using the standard tensor calculation method. The difference between SOS and AC can be virtually eliminated by taking into account the signal statistics associated with coil combination. The impact of coil combination mode on diffusion tensor-based measures of tissue microstructure is statistically significant but can be corrected retrospectively. The ability to do so is expected to facilitate pooling of data among imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Study on Induction Heating Coil for Uniform Mold Cavity Surface Heating

    OpenAIRE

    Yu-Ting Sung; Sheng-Jye Hwang; Huei-Huang Lee; Durn-Yuan Huang

    2014-01-01

    Recently, energy saving is one of the important issues for polymer processing industry. Electromagnetic induction heating has many advantages such as fast heating and low energy consumption. Previous studies using electromagnetic induction heating for rapid tool heating have indicated that the temperature uniformity on a cavity surface is not easy to be achieved. In this paper, two different coils were used for heating uniform 7 mm thick hot work tool steel (JIS SKD61) surface. One is a four-...

  6. Ressonância magnética das vias lacrimais: estudo comparativo entre bobinas de superfície convencionais e microscópicas Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    Directory of Open Access Journals (Sweden)

    Luiz de Abreu Junior

    2008-08-01

    Full Text Available OBJETIVO: A ressonância magnética tem sido utilizada para avaliar as vias lacrimais, com vantagens em relação à dacriocistografia por raios-X. O objetivo deste trabalho é obter imagens de alta resolução utilizando bobinas de superfície microscópicas para avaliação de estruturas normais das vias lacrimais, comparando com o aspecto observado utilizando-se bobinas de superfície convencionais. MATERIAIS E MÉTODOS: Cinco voluntários assintomáticos, sem histórico de lacrimejamento, submeteram-se a ressonância magnética de alto campo, com bobinas de superfície (convencional e microscópica, com seqüência STIR após instilação de soro fisiológico. A identificação das estruturas anatômicas normais das vias lacrimais foi comparada utilizando-se as duas bobinas. Mediante uso de um sistema de escore, um valor médio de cada estrutura foi calculado por dois examinadores, consensualmente. RESULTADOS: Em 90% das vezes houve aumento do escore, atribuído à estrutura anatômica no estudo com a bobina microscópica. Em média, houve aumento de 1,17 ponto no escore, por estrutura anatômica visualizada, quando se utilizou a bobina microscópica. Observou-se, ainda, melhora subjetiva da relação sinal-ruído ao se utilizar a bobina microscópica. CONCLUSÃO: A dacriocistografia por ressonância magnética com bobinas microscópicas é um método adequado para o estudo das vias lacrimais, resultando em imagens de melhor qualidade quando comparada ao uso de bobinas de superfície convencionais.OBJECTIVE: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high-resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. MATERIALS AND METHODS: Five asymptomatic volunteers with no history of

  7. Retinoblastoma - MR appearance using a surface coil in comparison with histopathological results

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, Arne-Joern; Kazi, Iris; Mergner, Ulrike; Senfft von Pilsach, Marie-Isabell; Felix, Roland [Campus Virchow-Klinikum, Charite, Universitaetsmedizin Berlin, Berlin (Germany); Foerster, Paul I. [Universitaetsaugenklinik, Klinikum der Universitaet Muenchen-Innenstadt, Muenchen (Germany); Heimann, Heinrich; Bechrakis, Nikolaos; Foerster, Michael [Campus Benjamin-Franklin, Charite, Universitaetsmedizin Berlin, Berlin (Germany); Schueler, Andreas [Universitaetsaugenklinik Essen, Essen (Germany); Hosten, Norbert [Institut fuer Diagnostische Radiologie und Neuroradiologie, Klinikum der Ernst-Moritz-Arndt-Universitaets Greifswald, Greifswald (Germany)

    2007-01-15

    The purpose of this work was to evaluate the characteristic appearance of untreated retinoblastoma on a large sample in comparison to the histological findings after therapeutical enucleation. In a prospective clinical trial 46 children with retinoblastoma in 63 affected untreated eyes were examined under general anesthesia on MRI using a 1.5-T system. The examinations were performed with a special surface coil applying an examination protocol including fast T2- and T1-weighted spin echo sequences and additional fast T1-WI after intravenous injection of Gd-DTPA in different planes. The imaging results were compared to the histopathological findings in 29 patients with 30 affected eyes. Comparing MRI findings and histopathological results, optic nerve infiltration was detected with a sensitivity of 53.8% and a specificity of 82.3% on MRI, infiltration of the choroid with a sensitivity of 75.0% and a specificity of 100.0%, and the degree of tumor calcification with a sensitivity of 91.7% and a specificity of 88.9%. In this study the characteristic MR appearance of untreated retinoblastoma was evaluated. MRI was helpful in relevant aspects of pretherapeutical retinoblastoma staging, deficits remain regarding optic nerve infiltration. (orig.)

  8. High-resolution MR imaging of the proximal zone of the lunotriquetral ligament with a microscopy coil

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Carrino, John A.; Lang, Philipp; Winalski, Carl S.; Tanaka, Toshikazu; Ueno, Teruko; Shindo, Masashi

    2006-01-01

    To evaluate high-resolution MRI of the proximal zone of the lunotriquetral ligament (LTL) using a microscopy surface coil with a 1.5 T scanner. The proximal zone of the LTL was reviewed in 90 subjects (23 asymptomatic normal volunteers and 67 patients with suspicion of triangular fibrocartilage complex injury) with high-resolution MRI using a 47-mm microscopy surface coil. High-resolution MR images were obtained with gradient recalled echo (GRE) T2*-weighted sequence and short tau inversion recovery imaging, with a 1- to 1.5-mm slice thickness, a 50-mm field of view, an imaging matrix of 140-224 x 512 using zero fill interpolation, and 3-4 excitations. As a qualitative analysis, the LTL was classified in shape and signal intensity. The triangle-shaped low-signal-intensity LTL was identified in 77 of 90 subjects (85.6%) on GRE images. The triangle was classified as regular (41.1%), broad-based (20.0%), narrow-based (6.7%), or asymmetrical (17.8%). The bar-shaped ligament was seen in one patient, and unclassified ligaments were seen in 12 patients. All volunteers showed triangle-shaped LTL. The MR signal intensity of the proximal zone in the LTL was characterized as homogeneously low intensity (type 1; 33.8%). (orig.)

  9. High-resolution MR imaging of the proximal zone of the lunotriquetral ligament with a microscopy coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi; Carrino, John A.; Lang, Philipp; Winalski, Carl S. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Tanaka, Toshikazu [Tsukuba Memorial Hospital, Department of Orthopedic Surgery, Tsukuba (Japan); Ueno, Teruko [University of Tsukuba, Department of Radiology, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2006-05-15

    To evaluate high-resolution MRI of the proximal zone of the lunotriquetral ligament (LTL) using a microscopy surface coil with a 1.5 T scanner. The proximal zone of the LTL was reviewed in 90 subjects (23 asymptomatic normal volunteers and 67 patients with suspicion of triangular fibrocartilage complex injury) with high-resolution MRI using a 47-mm microscopy surface coil. High-resolution MR images were obtained with gradient recalled echo (GRE) T2*-weighted sequence and short tau inversion recovery imaging, with a 1- to 1.5-mm slice thickness, a 50-mm field of view, an imaging matrix of 140-224 x 512 using zero fill interpolation, and 3-4 excitations. As a qualitative analysis, the LTL was classified in shape and signal intensity. The triangle-shaped low-signal-intensity LTL was identified in 77 of 90 subjects (85.6%) on GRE images. The triangle was classified as regular (41.1%), broad-based (20.0%), narrow-based (6.7%), or asymmetrical (17.8%). The bar-shaped ligament was seen in one patient, and unclassified ligaments were seen in 12 patients. All volunteers showed triangle-shaped LTL. The MR signal intensity of the proximal zone in the LTL was characterized as homogeneously low intensity (type 1; 33.8%). (orig.)

  10. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla.

    Science.gov (United States)

    Sosna, Jacob; Pedrosa, Ivan; Dewolf, William C; Mahallati, Houman; Lenkinski, Robert E; Rofsky, Neil M

    2004-08-01

    To qualitatively compare the image quality of torso phased-array 3-Tesla (3T) imaging of the prostate with that of endorectal 1.5-Tesla imaging. Twenty cases of torso phased-array prostate imaging performed at 3-Tesla with FSE T2 weighted images were evaluated by two readers independently for visualization of the posterior border (PB), seminal vesicles (SV), neurovascular bundles (NVB), and image quality rating (IQR). Studies were performed at large fields of view(FOV) (25 cm) (14 cases) (3TL) and smaller FOV (14 cm) (19 cases) (3TS). A comparison was made to 20 consecutive cases of 1.5-T endorectal evaluation performed during the same time period.Results. 3TL produced a significantly better image quality compared with the small FOV for PB (P = .0001), SV (P =.0001), and IQR (P = .0001). There was a marginally significant difference within the NVB category (P = .0535). 3TL produced an image of similar quality to image quality at 1.5 T for PB (P = .3893), SV (P = .8680), NB (P = .2684), and IQR (P = .8599). Prostate image quality at 3T with a torso phased-array coil can be comparable with that of endorectal 1.5-T imaging. These findings suggest that additional options are now available for magnetic resonance imaging of the prostate gland.

  11. Coiling and clipping of middle cerebral artery aneurysms: a systematic review on clinical and imaging outcome

    NARCIS (Netherlands)

    Zijlstra, Ijsbrand A.; Verbaan, Dagmar; Majoie, Charles B.; Vandertop, Peter; van den Berg, Rene

    2016-01-01

    There is an ongoing debate on the preferred treatment of middle cerebral artery (MCA) aneurysms. The purpose of this study was to assess the clinical and imaging outcomes comparing conventional coiling and clipping of unruptured and ruptured MCA aneurysms. We searched the electronic databases

  12. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla

    Science.gov (United States)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1-) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.

  13. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla.

    Science.gov (United States)

    Li, Mingyan; Jin, Jin; Zuo, Zhentao; Liu, Feng; Trakic, Adnan; Weber, Ewald; Zhuo, Yan; Xue, Rong; Crozier, Stuart

    2015-03-01

    Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Investigating the road surface effect to the fatigue life of an automotive coil spring

    Science.gov (United States)

    Putra, T. E.; Husaini

    2018-05-01

    This work aims to estimate the life of a coil spring considering road surface profiles. Strain signals were measured by installing a strain gage at the highest stress location of the coil spring and then driving the vehicle on country and village roads. The village road gave high amplitudes containing spikes when the tire touched a curb, bump or pothole. These conditions contributed to a higher loading rate to the car component, contributing to shorter useful fatigue life, which was only 140 reversals of blocks. Driving on the village road resulted in a 6-times decrease in the useful fatigue life of the component in comparison to the country road. In conclusion, the village road caused stronger vibrations to the component because it has a rough surface; meanwhile, the country road provided lower vibrations because the road was smooth.

  15. Comparative study between body and surface coils in magnetic resonance mammography of silicone prosthesis; Estudo comparativo entre bobinas de corpo e superficie na mamografia por ressonancia magnetica de proteses de silicone

    Energy Technology Data Exchange (ETDEWEB)

    Scaranelo, Anabel Medeiros [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: anabelms@uol.com.br

    2001-04-01

    Magnetic resonance imaging scans using predefined parameters were performed in patients with silicone breast implants. The same group of patients was submitted to magnetic resonance imaging scans using surface breast coils and body coils, and the results were compared. A total of 43 single-lumen silicone-gel breast implants in 24 patients were examined. The signal-to-noise ratio was greater for the breast coil than for the body coil. Radial folds were identified with equal resolution by both in almost 82% of the cases on the right side and 95% on the left side. In about 5% of the cases the folds were seen exclusively when the breast coil used. The linguine sign was almost equally with both methods. In just one case the linguine sign was observed only by using the breast coil. Identification of building or irregularity of contours were concordant using both techniques. We concluded that although magnetic resonance imaging quality is better using a dedicated coil, silicone breast implants can be assessed with the same diagnostic accuracy using a body coil. (author)

  16. Quadrature transmit coil for breast imaging at 7 tesla using forced current excitation for improved homogeneity.

    Science.gov (United States)

    McDougall, Mary Preston; Cheshkov, Sergey; Rispoli, Joseph; Malloy, Craig; Dimitrov, Ivan; Wright, Steven M

    2014-11-01

    To demonstrate the use of forced current excitation (FCE) to create homogeneous excitation of the breast at 7 tesla, insensitive to the effects of asymmetries in the electrical environment. FCE was implemented on two breast coils: one for quadrature (1) H imaging and one for proton-decoupled (13) C spectroscopy. Both were a Helmholtz-saddle combination, with the saddle tuned to 298 MHz for imaging and 75 MHz for spectroscopy. Bench measurements were acquired to demonstrate the ability to force equal currents on elements in the presence of asymmetric loading to improve homogeneity. Modeling and temperature measurements were conducted per safety protocol. B1 mapping, imaging, and proton-decoupled (13) C spectroscopy were demonstrated in vivo. Using FCE to ensure balanced currents on elements enabled straightforward tuning and maintaining of isolation between quadrature elements of the coil. Modeling and bench measurements confirmed homogeneity of the field, which resulted in images with excellent fat suppression and in broadband proton-decoupled carbon-13 spectra. FCE is a straightforward approach to ensure equal currents on multiple coil elements and a homogeneous excitation field, insensitive to the effects of asymmetries in the electrical environment. This enabled effective breast imaging and proton-decoupled carbon-13 spectroscopy at 7T. © 2014 Wiley Periodicals, Inc.

  17. Using GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms.

    Science.gov (United States)

    Hoge, W Scott; Brooks, Dana H

    2008-08-01

    Two strategies are widely used in parallel MRI to reconstruct subsampled multicoil image data. SENSE and related methods employ explicit receiver coil spatial response estimates to reconstruct an image. In contrast, coil-by-coil methods such as GRAPPA leverage correlations among the acquired multicoil data to reconstruct missing k-space lines. In self-referenced scenarios, both methods employ Nyquist-rate low-frequency k-space data to identify the reconstruction parameters. Because GRAPPA does not require explicit coil sensitivities estimates, it needs considerably fewer autocalibration signals than SENSE. However, SENSE methods allow greater opportunity to control reconstruction quality though regularization and thus may outperform GRAPPA in some imaging scenarios. Here, we employ GRAPPA to improve self-referenced coil sensitivity estimation in SENSE and related methods using very few auto-calibration signals. This enables one to leverage each methods' inherent strength and produce high quality self-referenced SENSE reconstructions. (c) 2008 Wiley-Liss, Inc.

  18. A 16-channel receive, forced current excitation dual-transmit coil for breast imaging at 7T.

    Directory of Open Access Journals (Sweden)

    Samantha By

    Full Text Available To enable high spatial and temporal breast imaging resolution via combined use of high field MRI, array coils, and forced current excitation (FCE multi channel transmit.A unilateral 16-channel receive array insert was designed for use in a transmit volume coil optimized for quadrature operation with dual-transmit RF shimming at 7 T. Signal-to-noise ratio (SNR maps, g-factor maps, and high spatial and temporal resolution in vivo images were acquired to demonstrate the utility of the coil architecture.The dual-transmit FCE coil provided homogeneous excitation and the array provided an increase in average SNR of 3.3 times (max 10.8, min 1.5 compared to the volume coil in transmit/receive mode. High resolution accelerated in vivo breast imaging demonstrated the ability to achieve isotropic spatial resolution of 0.5 mm within clinically relevant 90 s scan times, as well as the ability to perform 1.0 mm isotropic resolution imaging, 7 s per dynamics, with the use of bidirectional SENSE acceleration of up to R = 9.The FCE design of the transmit coil easily accommodates the addition of a sixteen channel array coil. The improved spatial and temporal resolution provided by the high-field array coil with FCE dual-channel transmit will ultimately be beneficial in lesion detection and characterization.

  19. Diagnostic accuracy of surface coil MRI in assessing cartilaginous invasion in laryngeal tumours. Do we need contrast-agent administration?

    International Nuclear Information System (INIS)

    Preda, Lorenzo; Conte, Giorgio; Bonello, Luke; Giannitto, Caterina; Tagliabue, Elena; Raimondi, Sara; Ansarin, Mohssen; De Benedetto, Luigi; Cattaneo, Augusto; Maffini, Fausto; Bellomi, Massimo

    2017-01-01

    To assess the diagnostic accuracy of MRI performed using surface coils, with and without contrast medium, in predicting thyroid and cricoid cartilage infiltration in laryngeal tumours, and to investigate whether the radiologist's experience influences diagnostic accuracy. We retrospectively enrolled patients with biopsy-proven laryngeal cancer who had undergone preoperative staging MRI and open surgery. Two radiologists with different experience (senior vs. junior) reviewed the MR images without (session A1) and with contrast medium (session A2) separately. We calculated the accuracy of MRI with and without contrast medium in detecting infiltration of the thyroid and cricoid cartilages. Interobserver agreement was calculated by Cohen's Kappa (k). Forty-two patients were enrolled, for a total of 62 cartilages. In session A1 the senior and junior radiologists showed an accuracy of 85% and 71%, respectively, with k = 0.53 (0.33-0.72). In session A2 the senior and junior radiologists showed an accuracy of 84% and 77%, respectively, with k = 0.68 (0.49-0.86). Staging of laryngeal tumours with surface coil MRI showed good diagnostic accuracy in assessing cartilaginous infiltration. We observed similar values of diagnostic accuracy for the analysis performed with and without contrast medium for the senior radiologist. (orig.)

  20. Diagnostic accuracy of surface coil MRI in assessing cartilaginous invasion in laryngeal tumours. Do we need contrast-agent administration?

    Energy Technology Data Exchange (ETDEWEB)

    Preda, Lorenzo [Universita degli Studi di Pavia, Department of Clinical-Surgical Diagnostic and Pediatric Sciences, Pavia (Italy); Division of Radiology, National Center of Oncological Hadrontherapy (CNAO Foundation), Pavia (Italy); Conte, Giorgio [Universita degli Studi di Milano, Postgraduation School in Radiodiagnostics, Milan (Italy); Bonello, Luke [Division of Radiology, Poliambulanza Hospital, Brescia (Italy); Giannitto, Caterina [European Institute of Oncology, Division of Radiology, Milan (Italy); Tagliabue, Elena; Raimondi, Sara [European Institute of Oncology, Division of Epidemiology and Biostatistics, Milan (Italy); Ansarin, Mohssen; De Benedetto, Luigi; Cattaneo, Augusto [European Institute of Oncology, Division of Head and Neck Surgery, Milan (Italy); Maffini, Fausto [European Institute of Oncology, Division of Pathology, Milan (Italy); Bellomi, Massimo [European Institute of Oncology, Division of Radiology, Milan (Italy); Universita degli Studi di Milano, Oncology and Haematology/Oncology Department, Milan (Italy)

    2017-11-15

    To assess the diagnostic accuracy of MRI performed using surface coils, with and without contrast medium, in predicting thyroid and cricoid cartilage infiltration in laryngeal tumours, and to investigate whether the radiologist's experience influences diagnostic accuracy. We retrospectively enrolled patients with biopsy-proven laryngeal cancer who had undergone preoperative staging MRI and open surgery. Two radiologists with different experience (senior vs. junior) reviewed the MR images without (session A1) and with contrast medium (session A2) separately. We calculated the accuracy of MRI with and without contrast medium in detecting infiltration of the thyroid and cricoid cartilages. Interobserver agreement was calculated by Cohen's Kappa (k). Forty-two patients were enrolled, for a total of 62 cartilages. In session A1 the senior and junior radiologists showed an accuracy of 85% and 71%, respectively, with k = 0.53 (0.33-0.72). In session A2 the senior and junior radiologists showed an accuracy of 84% and 77%, respectively, with k = 0.68 (0.49-0.86). Staging of laryngeal tumours with surface coil MRI showed good diagnostic accuracy in assessing cartilaginous infiltration. We observed similar values of diagnostic accuracy for the analysis performed with and without contrast medium for the senior radiologist. (orig.)

  1. Performance of coils wound from long lengths of surface-coated, reacted, BSCCO-2212 conductor

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.S.; Hazelton, D.W.; Gardner, M.T. [Intermagnetics General Corp., Latham, NY (United States)] [and others

    1996-10-01

    React-before-wind surface-coated BSCCO-2212 is being established as a relatively low cost HTS conductor for practical applications. Quality tape is presently being manufactured in 450-500m lengths at a cost estimated to be 1/3-1/5 of the industry costs of BSCCO-2223 powder-in-tube tape. Robust, mechanically sound coils for applications ranging from NMR insert magnets to transformer windings are being made from this BSCCO-2212 tape. The coils have performed consistently through test and thermal cycling without degradation and as projected from short sample measurements. A hybrid approach, which uses mainly BSCCO- 2212 augmented by BSCCO-2223 conductor in the high radial field end regions, is expected to halve magnet system costs.

  2. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance.

    NARCIS (Netherlands)

    Heijmink, S.W.T.P.J.; Futterer, J.J.; Hambrock, T.; Takahashi, S.; Scheenen, T.W.J.; Huisman, H.J.; Hulsbergen-van de Kaa, C.A.; Knipscheer, B.C.; Kiemeney, L.A.L.M.; Witjes, J.A.; Barentsz, J.O.

    2007-01-01

    PURPOSE: To prospectively compare image quality and accuracy of prostate cancer localization and staging with body-array coil (BAC) versus endorectal coil (ERC) T2-weighted magnetic resonance (MR) imaging at 3 T, with histopathologic findings as the reference standard. MATERIALS AND METHODS: After

  3. Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: numerical modelling.

    Science.gov (United States)

    Zolgharni, M; Griffiths, H; Ledger, P D

    2010-08-01

    The feasibility of detecting a cerebral haemorrhage with a hemispherical MIT coil array consisting of 56 exciter/sensor coils of 10 mm radius and operating at 1 and 10 MHz was investigated. A finite difference method combined with an anatomically realistic head model comprising 12 tissue types was used to simulate the strokes. Frequency-difference images were reconstructed from the modelled data with different levels of the added phase noise and two types of a priori boundary errors: a displacement of the head and a size scaling error. The results revealed that a noise level of 3 m degrees (standard deviation) was adequate for obtaining good visualization of a peripheral stroke (volume approximately 49 ml). The simulations further showed that the displacement error had to be within 3-4 mm and the scaling error within 3-4% so as not to cause unacceptably large artefacts on the images.

  4. MR findings of facial nerve on oblique sagittal MRI using TMJ surface coil: normal vs peripheral facial nerve palsy

    International Nuclear Information System (INIS)

    Park, Yong Ok; Lee, Myeong Jun; Lee, Chang Joon; Yoo, Jeong Hyun

    2000-01-01

    To evaluate the findings of normal facial nerve, as seen on oblique sagittal MRI using a TMJ (temporomandibular joint) surface coil, and then to evaluate abnormal findings of peripheral facial nerve palsy. We retrospectively reviewed the MR findings of 20 patients with peripheral facial palsy and 50 normal facial nerves of 36 patients without facial palsy. All underwent oblique sagittal MRI using a T MJ surface coil. We analyzed the course, signal intensity, thickness, location, and degree of enhancement of the facial nerve. According to the angle made by the proximal parotid segment on the axis of the mastoid segment, course was classified as anterior angulation (obtuse and acute, or buckling), straight and posterior angulation. Among 50 normal facial nerves, 24 (48%) were straight, and 23 (46%) demonstrated anterior angulation; 34 (68%) showed iso signal intensity on T1W1. In the group of patients, course on the affected side was either straight (40%) or showed anterior angulation (55%), and signal intensity in 80% of cases was isointense. These findings were similar to those in the normal group, but in patients with post-traumatic or post-operative facial palsy, buckling, of course, appeared. In 12 of 18 facial palsy cases (66.6%) in which contrast materials were administered, a normal facial nerve of the opposite facial canal showed mild enhancement on more than one segment, but on the affected side the facial nerve showed diffuse enhancement in all 14 patients with acute facial palsy. Eleven of these (79%) showed fair or marked enhancement on more than one segment, and in 12 (86%), mild enhancement of the proximal parotid segment was noted. Four of six chronic facial palsy cases (66.6%) showed atrophy of the facial nerve. When oblique sagittal MR images are obtained using a TMJ surface coil, enhancement of the proximal parotid segment of the facial nerve and fair or marked enhancement of at least one segment within the facial canal always suggests pathology of

  5. Pulsed magnetization transfer imaging with body coil transmission at 3 Tesla: feasibility and application.

    Science.gov (United States)

    Smith, Seth A; Farrell, Jonathan A D; Jones, Craig K; Reich, Daniel S; Calabresi, Peter A; van Zijl, Peter C M

    2006-10-01

    Pulsed magnetization transfer (MT) imaging has been applied to quantitatively assess brain pathology in several diseases, especially multiple sclerosis (MS). To date, however, because of the high power deposition associated with the use of short, rapidly repeating MT prepulses, clinical application has been limited to lower field strengths. The contrast-to-noise ratio (CNR) of MT is limited, and this method would greatly benefit from the use of higher magnetic fields and phased-array coil reception. However, power deposition is proportional to the square of the magnetic field and scales with coil size, and MT experiments are already close to the SAR limit at 1.5T even when smaller transmit coils are used instead of the body coil. Here we show that these seemingly great obstacles can be ameliorated by the increased T(1) of tissue water at higher field, which allows for longer maintenance of sufficiently high saturation levels while using a reduced duty cycle. This enables a fast (5-6 min) high-resolution (1.5 mm isotropic) whole-brain MT acquisition with excellent anatomical visualization of gray matter (GM) and white matter (WM) structures, and even substructures. The method is demonstrated in nine normal volunteers and five patients with relapsing remitting MS (RRMS), and the results show a clear delineation of heterogeneous lesions.

  6. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 1: MRI vs. histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Sirin, Selma; Schlamann, Marc; Schweiger, Bernd; Goericke, Sophia L. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Metz, Klaus A. [University Hospital Essen, Department of Pathology and Neuropathology, Essen (Germany); Bornfeld, Norbert; Holdt, Markus [University Hospital Essen, Department of Ophthalmology, Essen (Germany); Temming, Petra; Schuendeln, Michael M. [University Hospital Essen, Department of Pediatric Hematology and Oncology, Essen (Germany)

    2015-08-15

    A reliable detection of metastatic risk factors is important for children with retinoblastoma to choose the right therapeutic regimen. First studies using high-resolution magnetic resonance imaging (MRI) with orbit surface coils were promising. The aim of this study was therefore to evaluate the ability of high-resolution MRI to detect metastatic and especially advanced metastatic risk factors in a large group of children with retinoblastoma. One hundred forty-three consecutive children with retinoblastoma (148 enucleated eyes, 64 girls, 79 boys, mean age 19.7 ± 15.3) who received pretherapeutical high-resolution MRI with orbit surface coils on 1.5 T MR scanner systems between 2007 and 2012 and subsequent primary enucleation within 14 days were included in this retrospective study. Image analysis was performed by two neuroradiologists experienced in ocular imaging in consensus. Histopathology served as gold standard. Sensitivity/specificity for the detection of metastatic risk factors using high-resolution MRI with orbit surface coils were 60 %/88.7 % for postlaminar optic nerve infiltration, 65.5 %/95.6 % for choroidal invasion, 100 %/99.3 % for scleral invasion, and 100 %/100 % for peribulbar fat invasion, respectively. The results increased for the detection of advanced metastatic risk factors, 81.8 %/89.1 % for deep postlaminar optic nerve infiltration, 70.6 %/97.6 % for massive choroidal invasion. High-resolution MRI is clinically valuable for the detection of metastatic, especially of advanced metastatic risk factors in children with retinoblastoma. (orig.)

  7. Integrated PET/MR breast cancer imaging: Attenuation correction and implementation of a 16-channel RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Oehmigen, Mark, E-mail: mark.oehmigen@uni-due.de; Lindemann, Maike E. [High Field and Hybrid MR Imaging, University Hospital Essen, Essen 45147 (Germany); Lanz, Titus [Rapid Biomedical GmbH, Rimpar 97222 (Germany); Kinner, Sonja [Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen 45147 (Germany); Quick, Harald H. [High Field and Hybrid MR Imaging, University Hospital Essen, Essen 45147, Germany and Erwin L. Hahn Institute for MR Imaging, University Duisburg-Essen, Essen 45141 (Germany)

    2016-08-15

    Purpose: This study aims to develop, implement, and evaluate a 16-channel radiofrequency (RF) coil for integrated positron emission tomography/magnetic resonance (PET/MR) imaging of breast cancer. The RF coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification. Methods: A 16-channel breast array RF coil was designed for integrated PET/MR hybrid imaging of breast cancer lesions. The RF coil features a lightweight rigid design and is positioned with a spacer at a defined position on the patient table of an integrated PET/MR system. Attenuation correction is performed by generating and applying a dedicated 3D CT-based template attenuation map. Reposition accuracy of the RF coil on the system patient table while using the positioning frame was tested in repeated measurements using MR-visible markers. The MR, PET, and PET/MR imaging performances were systematically evaluated using modular breast phantoms. Attenuation correction of the RF coil was evaluated with difference measurements of the active breast phantoms filled with radiotracer in the PET detector with and without the RF coil in place, serving as a standard of reference measurement. The overall PET/MR imaging performance and PET quantification accuracy of the new 16-channel RF coil and its AC were then evaluated in first clinical examinations on ten patients with local breast cancer. Results: The RF breast array coil provides excellent signal-to-noise ratio and signal homogeneity across the volume of the breast phantoms in MR imaging and visualizes small structures in the phantoms down to 0.4 mm in plane. Difference measurements with PET revealed a global loss and thus attenuation of counts by 13% (mean value across the whole phantom volume) when the RF coil is placed in the PET detector. Local attenuation ranging from 0% in the middle of the phantoms up to 24% was detected in the peripheral regions of the phantoms at

  8. Practical aspects of 13C surface receive coils with active decoupling and tuning circuit

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Mohr, Johan Jacob; Zhurbenko, Vitaliy

    2012-01-01

    is based on application-specified coil profile and includes impedance matching and balancing circuits. Active decoupling is implemented in order to minimize the influence of the receiving coil on the homogeneity of the transmit-coil field. Measurement results for a coil prototype are presented, including...

  9. Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T.

    Science.gov (United States)

    Li, Mingyan; Weber, Ewald; Jin, Jin; Hugger, Thimo; Tesiram, Yasvir; Ullmann, Peter; Stark, Simon; Fuentes, Miguel; Junge, Sven; Liu, Feng; Crozier, Stuart

    2018-02-01

    The rotating radiofrequency coil (RRFC) has been developed recently as an alternative approach to multi-channel phased-array coils. The single-element RRFC avoids inter-channel coupling and allows a larger coil element with better B 1 field penetration when compared with an array counterpart. However, dedicated image reconstruction algorithms require accurate estimation of temporally varying coil sensitivities to remove artefacts caused by coil rotation. Various methods have been developed to estimate unknown sensitivity profiles from a few experimentally measured sensitivity maps, but these methods become problematic when the RRFC is used as a transceiver coil. In this work, a novel and practical radial encoding method is introduced for the RRFC to facilitate image reconstruction without the measurement or estimation of rotation-dependent sensitivity profiles. Theoretical analyses suggest that the rotation-dependent sensitivities of the RRFC can be used to create a uniform profile with careful choice of sampling positions and imaging parameters. To test this new imaging method, dedicated electronics were designed and built to control the RRFC speed and hence positions in synchrony with imaging parameters. High-quality phantom and animal images acquired on a 9.4 T pre-clinical scanner demonstrate the feasibility and potential of this new RRFC method. Copyright © 2017 John Wiley & Sons, Ltd.

  10. A transmit/receive radiofrequency array for imaging the carotid arteries at 7 Tesla: coil design and first in vivo results.

    Science.gov (United States)

    Kraff, Oliver; Bitz, Andreas K; Breyer, Tobias; Kruszona, Stefan; Maderwald, Stefan; Brote, Irina; Gizewski, Elke R; Ladd, Mark E; Quick, Harald H

    2011-04-01

    To develop a transmit/receive radiofrequency (RF) array for magnetic resonance imaging (MRI) of the carotid arteries at 7 T. The prototype is characterized in numerical simulations and bench measurements, and the feasibility of plaque imaging at 7 T is demonstrated in first in vivo images. The RF phased array coil consists of 8 surface loop coils. To allow imaging of both sides of the neck, the RF array is divided into 2 coil clusters, each with 4 overlapping loop elements. For safety validation, numerical computations of the RF field distribution and the corresponding specific absorption rate were performed on the basis of a heterogeneous human body model. To validate the coil model, maps of the transmit B1(+) field were compared between simulation and measurement. In vivo images of a healthy volunteer and a patient (ulcerating plaque and a 50% stenosis of the right internal carotid artery) were acquired using a 3-dimensional FLASH sequence with a high isotropic spatial resolution of 0.54 mm as well as using pulse-triggered proton density (PD)/T2-weighted turbo spin echo sequences. Measurements of the S-parameters yielded a reflection and isolation of the coil elements of better than -18 and -13 dB, respectively. Measurements of the g-factor indicated good image quality for parallel imaging acceleration factors up to 2.4. A similar distribution and a very good match of the absolute values were found between the measured and simulated B1(+) transmit RF field for the validation of the coil model. In vivo images revealed good signal excitation of both sides of the neck and a high vessel-to-background image contrast for the noncontrast-enhanced 3-dimensional FLASH sequence. Imaging at 7 T could depict the extent of stenosis, and revealed the disruption and ulcer of the plaque. This study demonstrates that 2 four-channel transmit/receive RF arrays for each side of the neck is a suitable concept for in vivo MRI of the carotid arteries at 7 Tesla. Further studies are

  11. A new holder and surface MRI coil for the examination of the newborn infant hip

    Energy Technology Data Exchange (ETDEWEB)

    Krasny, R. (Dept. of Diagnostic Radiology, Univ. of Technology, Aachen (Germany)); Casser, H.R. (Dept. of Orthopedics, Univ. of Technology, Aachen (Germany)); Requardt, H. (Siemens AG, Erlangen (Germany)); Botschek, A. (Dept. of Diagnostic Radiology, Univ. of Technology, Aachen (Germany))

    1993-11-01

    A special holder was developed for examination of the infant hip joint using MRI. This holder allows the infant hip joint to be examined both in a neutral position and in various defined functional positions. A special integrated surface coil, also developed for this purpose, provides the high spatial resolution required for assessment of the fine joint structures. Thirty infants were examined and the new device has proved useful in advanced hip dysplasia, therapy-resistant subluxation and luxation, and for operative therapy planning (reconstruction of the acetabular roof, redirectional osteotomies). Interpretation errors due to misprojection can be eliminated to a large extent since the holder allows standardized and reproducible positioning. (orig.)

  12. Results of MRI of the temporo-mandibular joint using optimised surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Vogl, T.; Kellermann, O.; Randzio, J.; Kniha, H.; Requardt, H.; Tiling, R.; Lissner, J.

    1988-11-01

    One hundred temporo-mandibular joints were examined with a super-conducting nuclear resonance tomograph (1.0 Tesla) using various high resolution surface coils. The optimal method proved to be a spin echo sequence with a repetition time of 1,000 msec and an echo period of 28 msec with a 4 mm slice width. There were significant advantages from the non-invasive MRT diagnosis of the temporo-mandibular joints when compared with CT and with arthrography in recognising abnormal discs, changes in the tissues and for post-operative control.

  13. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7T-A phantom based study.

    Science.gov (United States)

    Li, Mingyan; Zuo, Zhentao; Jin, Jin; Xue, Rong; Trakic, Adnan; Weber, Ewald; Liu, Feng; Crozier, Stuart

    2014-03-01

    Parallel imaging (PI) is widely used for imaging acceleration by means of coil spatial sensitivities associated with phased array coils (PACs). By employing a time-division multiplexing technique, a single-channel rotating radiofrequency coil (RRFC) provides an alternative method to reduce scan time. Strategically combining these two concepts could provide enhanced acceleration and efficiency. In this work, the imaging acceleration ability and homogeneous image reconstruction strategy of 4-element rotating radiofrequency coil array (RRFCA) was numerically investigated and experimental validated at 7T with a homogeneous phantom. Each coil of RRFCA was capable of acquiring a large number of sensitivity profiles, leading to a better acceleration performance illustrated by the improved geometry-maps that have lower maximum values and more uniform distributions compared to 4- and 8-element stationary arrays. A reconstruction algorithm, rotating SENSitivity Encoding (rotating SENSE), was proposed to provide image reconstruction. Additionally, by optimally choosing the angular sampling positions and transmit profiles under the rotating scheme, phantom images could be faithfully reconstructed. The results indicate that, the proposed technique is able to provide homogeneous reconstructions with overall higher and more uniform signal-to-noise ratio (SNR) distributions at high reduction factors. It is hoped that, by employing the high imaging acceleration and homogeneous imaging reconstruction ability of RRFCA, the proposed method will facilitate human imaging for ultra high field MRI. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  15. High Retention and Safety of Percutaneously Implanted Endovascular Embolization Coils as Fiducial Markers for Image-Guided Stereotactic Ablative Radiotherapy of Pulmonary Tumors

    International Nuclear Information System (INIS)

    Hong, Julian C.; Yu Yao; Rao, Aarti K.; Dieterich, Sonja; Maxim, Peter G.; Le, Quynh-Thu; Diehn, Maximilian; Sze, Daniel Y.; Kothary, Nishita; Loo, Billy W.

    2011-01-01

    Purpose: To compare the retention rates of two types of implanted fiducial markers for stereotactic ablative radiotherapy (SABR) of pulmonary tumors, smooth cylindrical gold 'seed' markers ('seeds') and platinum endovascular embolization coils ('coils'), and to compare the complication rates associated with the respective implantation procedures. Methods and Materials: We retrospectively analyzed the retention of percutaneously implanted markers in 54 consecutive patients between January 2004 and June 2009. A total of 270 markers (129 seeds, 141 coils) were implanted in or around 60 pulmonary tumors over 59 procedures. Markers were implanted using a percutaneous approach under computed tomography (CT) guidance. Postimplantation and follow-up imaging studies were analyzed to score marker retention relative to the number of markers implanted. Markers remaining near the tumor were scored as retained. Markers in a distant location (e.g., pleural space) were scored as lost. CT imaging artifacts near markers were quantified on radiation therapy planning scans. Results: Immediately after implantation, 140 of 141 coils (99.3%) were retained, compared to 110 of 129 seeds (85.3%); the difference was highly significant (p < 0.0001). Of the total number of lost markers, 45% were reported lost during implantation, but 55% were lost immediately afterwards. No additional markers were lost on longer-term follow-up. Implanted lesions were peripherally located for both seeds (mean distance, 0.33 cm from pleural surface) and coils (0.34 cm) (p = 0.96). Incidences of all pneumothorax (including asymptomatic) and pneumothorax requiring chest tube placement were lower in implantation of coils (23% and 3%, respectively) vs. seeds (54% and 29%, respectively; p = 0.02 and 0.01). The degree of CT artifact was similar between marker types. Conclusions: Retention of CT-guided percutaneously implanted coils is significantly better than that of seed markers. Furthermore, implanting coils is at

  16. Mass and heat transfer at the outer surface of helical coils under single and two phase flow

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H.

    2016-01-01

    Highlights: • The work aims to develop reactors which need rapid temperature control. • Mass and heat transfer at the outer surface of helical coils was studied experimentally. • The experiments were conducted under gas sparing, single and two phase flow. • Variables were helical tube diameter, physical properties, and gas and liquid velocity. • Results verification in terms of natural convection and surface renewal mechanism was explained. - Abstract: The mass transfer behavior of the outer surface of vertical helical coil was studied by the electrochemical technique under single phase flow, gas sparging and two phase flow. Variables studied were helical tube diameter, physical properties of the solution, solution velocity and superficial gas velocity. The mass transfer data were correlated by dimensionless equations. Mass transfer enhancement ratio in case of two phase flow ranged from 1.1 to 4.9 compared to single phase flow. Implication of the results for the design and operation of helical coil reactors used to conduct L–S exothermic diffusion controlled reactions which need rapid temperature control were outlined. In this case the inner coil surface will act as a cooler while the outer surface will act a reaction surface. Immobilized enzyme catalyzed biochemical reactions where heat sensitive materials may be involved represent an example for the reactions which can employ the helical coil reactor. Also the importance of the results in the design of and operation of diffusion controlled membrane processes which employ helical coil membrane was noted. In view of the analogy between heat and mass transfer the possibility of using the results in the design and operation of helical coil heat exchangers was highlighted.

  17. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja [University Medical Center Freiburg, Department of Oral and Maxillofacial Surgery, Freiburg (Germany); Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Spittau, Bjoern [Albert Ludwig University of Freiburg, Institute of Anatomy and Cell Biology, Freiburg (Germany)

    2016-12-15

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm{sup 3}, FOV of 64 x 64 x 28 mm{sup 3} and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm{sup 3} and FOV of 34 cm{sup 3} in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm{sup 3} and FOV of 36.5 cm{sup 3}. Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c{sub v}). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  18. Magnetic resonance imaging of intraoral hard and soft tissues using an intraoral coil and FLASH sequences

    International Nuclear Information System (INIS)

    Fluegge, Tabea; Eisenbeiss, Anne-Kathrin; Schmelzeisen, Rainer; Nelson, Katja; Hoevener, Jan-Bernd; Ludwig, Ute; Hennig, Juergen; Spittau, Bjoern

    2016-01-01

    To ascertain the feasibility of MRI as a non-ionizing protocol for routine dentomaxillofacial diagnostic imaging. Wireless coils were used for MRI of intraoral hard and soft tissues. FLASH MRI was applied in vivo with a mandible voxel size of 250 x 250 x 500 μm 3 , FOV of 64 x 64 x 28 mm 3 and acquisition time of 3:57 min and with a maxilla voxel size of 350 μm 3 and FOV of 34 cm 3 in 6:40 min. Ex vivo imaging was performed in 4:38 min, with a resolution of 200 μm 3 and FOV of 36.5 cm 3 . Cone beam (CB) CT of the mandible and subjects were acquired. MRI was compared to CBCT and histological sections. Deviations were calculated with intraclass correlation coefficient (ICC) and coefficient of variation (c v ). A high congruence between CBCT, MRI and specimens was demonstrated. Hard and soft tissues including dental pulp, periodontium, gingiva, cancellous bone and mandibular canal contents were adequately displayed with MRI. Imaging of select intraoral tissues was achieved using custom MRI protocols with an easily applicable intraoral coil in a clinically acceptable acquisition time. Comparison with CBCT and histological sections helped demonstrate dimensional accuracy of the MR images. The course of the mandibular canal was accurately displayed with CBCT and MRI. (orig.)

  19. Flexible, wireless, inductively coupled surface coil resonator for EPR tooth dosimetry

    International Nuclear Information System (INIS)

    Schreiber, Wilson; Petryakov, Sergey V.; Kmiec, Maciej M.; Feldman, Matthew A.; Wood, Victoria A.; Boyle, Holly K.; Flood, Ann Barry; Williams, Benjamin B.; Swartz, Harold M.; Meaney, Paul M.

    2016-01-01

    Managing radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation relies on the availability of biodosimetry to assess whether individuals need to be triaged for care. Electron Paramagnetic Resonance (EPR) tooth dosimetry is a viable method to accurately estimate the amount of ionizing radiation to which an individual has been exposed. In the intended measurement conditions and scenario, it is essential that the measurement process be fast, straightforward and provides meaningful and accurate dose estimations for individuals in the expected measurement conditions. The sensing component of a conventional L-band EPR spectrometer used for tooth dosimetry typically consists of a surface coil resonator that is rigidly, physically attached to the coupler. This design can result in cumbersome operation, limitations in teeth geometries that may be measured and hinder the overall utility of the dosimeter. A novel surface coil resonator has been developed for the currently existing L-band (1.15 GHz) EPR tooth dosimeter for the intended use as a point of care device by minimally trained operators. This resonator development provides further utility to the dosimeter, and increases the usability of the dosimeter by non-expert operators in the intended use scenario. (authors)

  20. Stochastization of Magnetic Field Surfaces in Tokamaks by an Inner Coil

    International Nuclear Information System (INIS)

    Chavez-Alarcon, Esteban; Herrera-Velazquez, J. Julio E.; Braun-Gitler, Eliezer

    2006-01-01

    A 3-D code has been developed in order to simulate the magnetic field lines in circular cross-section tokamaks. The toroidal magnetic field can be obtained from the individual fields of circular coils arranged around the torus, or alternatively, as a ripple-less field. The poloidal field is provided by a given toroidal current density profile. Proposing initial conditions for a magnetic filed line, it is integrated along the toroidal angle coordinate, and Poincare maps can be obtained at any desired cross section plane. Following this procedure, the code allows the mapping of magnetic field surfaces for the axisymmetric case. For this work, the density current profile is chosen to be bell-shaped, so that realistic safety factor profiles can be obtained. This code is used in order to study the braking up of external surfaces when the symmetry is broken by an inner coil with tilted circular loops, with the purpose of modelling the behaviour of ergodic divertors, such as those devised for TEXTOR

  1. Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T.

    Directory of Open Access Journals (Sweden)

    Ladislav Valkovič

    Full Text Available Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS.A fully-removable (55 cm diameter birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany. Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers.The combined (volume-transmit, local receive array setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%; and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable.This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T.

  2. Intensity correction method customized for multi-animal abdominal MR imaging with 3 T clinical scanner and multi-array coil

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Nakagami, Ryutaro; Furuta, Toshihiro; Fujii, Hirofumi; Sekine, Norio; Niitsu, Mamoru; Moriyama, Noriyuki

    2013-01-01

    Simultaneous magnetic resonance (MR) imaging of multiple small animals in a single session increases throughput of preclinical imaging experiments. Such imaging using a 3-tesla clinical scanner with multi-array coil requires correction of intensity variation caused by the inhomogeneous sensitivity profile of the coil. We explored a method for correcting intensity that we customized for multi-animal MR imaging, especially abdominal imaging. Our institutional committee for animal experimentation approved the protocol. We acquired high resolution T 1 -, T 2 -, and T 2 * -weighted images and low resolution proton density-weighted images (PDWIs) of 4 rat abdomens simultaneously using a 3T clinical scanner and custom-made multi-array coil. For comparison, we also acquired T 1 -, T 2 -, and T 2 * -weighted volume coil images in the same rats in 4 separate sessions. We used software created in-house to correct intensity variation. We applied thresholding to the PDWIs to produce binary images that displayed only a signal-producing area, calculated multi-array coil sensitivity maps by dividing low-pass filtered PDWIs by low-pass filtered binary images pixel by pixel, and divided uncorrected T 1 -, T 2 -, or T 2 * -weighted images by those maps to obtain intensity-corrected images. We compared tissue contrast among the liver, spinal canal, and muscle between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method performed well for all pulse sequences studied and corrected variation in original multi-array coil images without deteriorating the throughput of animal experiments. Tissue contrasts were comparable between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method customized for multi-animal abdominal MR imaging using a 3T clinical scanner and dedicated multi-array coil could facilitate image interpretation. (author)

  3. Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac.

    Science.gov (United States)

    Liney, Gary P; Dong, Bin; Weber, Ewald; Rai, Robba; Destruel, Aurelien; Garcia-Alvarez, Roberto; Manton, David; Jelen, Urszula; Zhang, Kevin; Barton, Michael; Keall, Paul J; Crozier, Stuart

    2018-05-25

    This work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening. Methods: A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions. Results: Daily phantom measurements demonstrated excellent imaging performance with stable SNR over a period of 3 months (42.6 ± 0.9). Simultaneous irradiation produced no statistical change in image quality (p>0.74) and no interference in raw data for a 20  20 cm radiation field. The coil was found to be efficient over large volumes and negligible RF heating was observed. Volunteer scans acquired in both supine and standing positions provided artefact free images with good anatomical visualisation. Conclusions: The first completely radio transparent RF coil for use on a 1.0 Tesla MRI-Linac has been described. There is no impact on either the imaging or dosimetry performance with a simultaneous radiation beam. The open design enables imaging and radiotherapy guidance in a variety of positons. . © 2018 Institute of Physics and Engineering in Medicine.

  4. A new RF transmit coil for foot and ankle imaging at 7T MRI.

    Science.gov (United States)

    Santini, Tales; Kim, Junghwan; Wood, Sossena; Krishnamurthy, Narayanan; Farhat, Nadim; Maciel, Carlos; Raval, Shailesh B; Zhao, Tiejun; Ibrahim, Tamer S

    2018-01-01

    A four-channel Tic-Tac-Toe (TTT) transmit RF coil was designed and constructed for foot and ankle imaging at 7T MRI. Numerical simulations using an in-house developed FDTD package and experimental analyses using a homogenous phantom show an excellent agreement in terms of B 1 + field distribution and s-parameters. Simulations performed on an anatomically detailed human lower leg model demonstrated an B 1 + field distribution with a coefficient of variation (CV) of 23.9%/15.6%/28.8% and average B 1 + of 0.33μT/0.56μT/0.43μT for 1W input power (i.e., 0.25W per channel) in the ankle/calcaneus/mid foot respectively. In-vivo B 1 + mapping shows an average B 1 + of 0.29μT over the entire foot/ankle. This newly developed RF coil also presents acceptable levels of average SAR (0.07W/kg for 10g per 1W of input power) and peak SAR (0.34W/kg for 10g per 1W of input power) over the whole lower leg. Preliminary in-vivo images in the foot/ankle were acquired using the T2-DESS MRI sequence without the use of a dedicated receive-only array. Copyright © 2017. Published by Elsevier Inc.

  5. Advancing Cardiovascular, Neurovascular and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Directory of Open Access Journals (Sweden)

    Thoralf eNiendorf

    2015-11-01

    Full Text Available Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF coils in small animal MR as a means of boosting image quality (e.g. by supporting MR microscopy and making data acquisition more efficient (e.g. by reducing measuring time; both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (biomedical imaging, molecular medicine and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (pathophysiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular and renal disease will be discussed.

  6. Comparative study of fast T 2-weighted images using respiratory triggered, breath-hold, fat suppression and phased array multi coil for liver evaluation by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Abbehusen, Cristiane L.; D'Ippolito, Giuseppe; Palacio, Glaucia A.S.; Szejnfeld, Jacob

    2003-01-01

    The objective of this study was to compare both qualitatively and quantitatively six T 2-weighted turbo spin-echo sequences varying the respiratory compensation technique, associating or not fat tissue suppression and using different types of coils. We performed a prospective study of 71 consecutive patients that were submitted to MRI of the liver using a 1.5 T magnet. The six following pulse sequences were used: fat-suppressed respiratory triggered with conventional body coil; breath-hold fat-suppressed with conventional body coil; non-suppressed respiratory triggered with conventional body coil; breath-hold non fat-suppressed with conventional body coil; fat-suppressed respiratory triggered with phased-array multi coil; breath-hold fat-suppressed with phased-array multi coil. Images were analyzed quantitatively by measuring the signal-to-noise ratios and qualitatively by evaluating the sharpness of hepatic contours, visibility of intrahepatic vessels and other segmental landmarks, and the presence of artifacts. Results: the qualitative analysis showed that the mean values obtained with the six sequences were 7.8, 4.6, 7.9, 5.2, 6.7 and 4.6 respectively. The respiratory-triggered sequences were better than the breath-hold sequences in both qualitative and quantitative analysis (p < 0.001). No significant differences in the values of signal-to-noise ratios and in overall image quality were found between the sequences with and without fat suppression (p . 0.05). The sequences using the body coil were similar in terms of image quality (p . 0.05) and better regarding signal-to-noise ratios than those obtained with the phased=array multi coil (p ,0.001). Our qualitative and quantitative results suggest that the best MRI sequences for the valuation of the liver are the sequences with respiratory triggering using a conventional body coil, with or without fat suppression. (author)

  7. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    Science.gov (United States)

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  8. 31P nuclear magnetic resonance surface coil study of ischemic preconditioned isolated perfused rat heart

    International Nuclear Information System (INIS)

    Yan Yongbin; Luo Xuechun; Zhang Riqing; Wang Xiaoyin; Zuo Lin; Liu Wei

    2000-01-01

    ischemic preconditioning (IPC) will protect the heart from the damage caused by a subsequent long ischemia period. 31 P spectra of isolated perfused rat heart measured by the nuclear magnetic resonance (NMR) surface coil technique can be used to continually, dynamically and noninvasively obtain metabolism information. This paper explores the IPC mechanisms by NMR. This study shows that IPC has no effect on enhancing the ATP and PCr levels during reperfusion but makes significantly slows and smooths the changes of intracellular pH and ATP during ischemia periods. The ATP and PCr recovery rate of the IPC group after ischemia is significantly higher than that of the control group. In conclusion, the above results support that IPC can protect the rat heart by reducing damage during the ischemia period

  9. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Shumin; Duyn, Jeff H

    2008-01-01

    A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations

  10. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla

    Science.gov (United States)

    Im, Geun Ho; Seo, Jeong-Hoon; Kim, Kyoung-Nam; Heo, Phil; Chung, Julius Juhyun; Jang, Moon-Sun; Lee, Jung Hee; Kim, Jae-Hun; Kim, Sun I.

    2014-09-01

    This article presents an effective arrangement with shifted transmit (Tx)-only and receive (Rx)-only (TORO) radiofrequency (RF) coils in a single-channel surface coil for improving the magnetic flux ( B 1) homogeneity in an ultra-high field (UHF) magnetic resonance imaging (MRI) scanner. The proposed new methodology for the coil arrangement using the shifted TORO RF coils was demonstrated for coils with 50-mm, 100-mm, and 150-mm-square surfaces and the results were compared to those for general Tx/Rx surface coils with the same dimensions. The computational analysis indicated that a homogeneous B1 field was achieved when the Rx-only coil was shifted in the two-dimensional xy-plane away from the Tx-only coils. Because the proposed coil configuration provides a unique opportunity for increasing the B 1 homogeneity, this feature is likely to increase the feasibility via new coil arrangements of UHF surface design and fabrication.

  11. Extended Monopole antenna Array with individual Shield (EMAS) coil: An improved monopole antenna design for brain imaging at 7 tesla MRI.

    Science.gov (United States)

    Woo, Myung-Kyun; Hong, Suk-Min; Lee, Jongho; Kang, Chang-Ki; Park, Sung-Yeon; Son, Young-Don; Kim, Young-Bo; Cho, Zang-Hee

    2016-06-01

    To propose a new Extended Monopole antenna Array with individual Shields (EMAS) coil that improves the B1 field coverage and uniformity along the z-direction. To increase the spatial coverage of Monopole antenna Array (MA) coil, each monopole antenna was shielded and extended in length. Performance of this new coil, which is referred to as EMAS coil, was compared with the original MA coil and an Extended Monopole antenna Array coil with no shield (EMA). For comparison, flip angle, signal-to-noise ratio (SNR), and receive sensitivity maps were measured at multiple regions of interest (ROIs) in the brain. The EMAS coil demonstrated substantially larger flip angle and receive sensitivity than the MA and EMA coils in the inferior aspect of the brain. In the brainstem ROI, for example, the flip angle in the EMAS coil was increased by 45.5% (or 60.0%) and the receive sensitivity was increased by 26.9% (or 14.9%), resulting in an SNR gain of 84.8% (or 76.3%) when compared with the MA coil (or EMA). The EMAS coil provided 25.7% (or 24.4%) more uniform B1+ field distribution compared with the MA (or EMA) coil in sagittal. The EMAS coil successfully extended the imaging volume in lower part of the brain. Magn Reson Med 75:2566-2572, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.

    Science.gov (United States)

    Obata, Takayuki; Uemura, Koji; Nonaka, Hiroi; Tamura, Mitsuru; Tanada, Shuji; Ikehira, Hiroo

    2006-01-01

    To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.

  13. Development of Multiorgan Finite Element-Based Prostate Deformation Model Enabling Registration of Endorectal Coil Magnetic Resonance Imaging for Radiotherapy Planning

    International Nuclear Information System (INIS)

    Hensel, Jennifer M.; Menard, Cynthia; Chung, Peter W.M.; Milosevic, Michael F.; Kirilova, Anna; Moseley, Joanne L.; Haider, Masoom A.; Brock, Kristy K.

    2007-01-01

    Purpose: Endorectal coil (ERC) magnetic resonance imaging (MRI) provides superior visualization of the prostate compared with computed tomography at the expense of deformation. This study aimed to develop a multiorgan finite element deformable method, Morfeus, to accurately co-register these images for radiotherapy planning. Methods: Patients with prostate cancer underwent fiducial marker implantation and computed tomography simulation for radiotherapy planning. A series of axial MRI scans were acquired with and without an ERC. The prostate, bladder, rectum, and pubic bones were manually segmented and assigned linear elastic material properties. Morfeus mapped the surface of the bladder and rectum between two imaged states, calculating the deformation of the prostate through biomechanical properties. The accuracy of deformation was measured as fiducial marker error and residual surface deformation between the inferred and actual prostate. The deformation map was inverted to deform from 100 cm 3 to no coil. Results: The data from 19 patients were analyzed. Significant prostate deformation occurred with the ERC (mean intrapatient range, 0.88 ± 0.25 cm). The mean vector error in fiducial marker position (n = 57) was 0.22 ± 0.09 cm, and the mean vector residual surface deformation (n = 19) was 0.15 ± 0.06 cm for deformation from no coil to 100-cm 3 ERC, with an image vector resolution of 0.22 cm. Accurately deformed MRI scans improved soft-tissue resolution of the anatomy for radiotherapy planning. Conclusions: This method of multiorgan deformable registration enabled accurate co-registration of ERC-MRI scans with computed tomography treatment planning images. Superior structural detail was visible on ERC-MRI, which has potential for improving target delineation

  14. Design of radiofrequency coils for NMR imaging; Desenvolvimento de bobinas de radiofrequencia para geracao de imagens por ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Maria Angelica

    1988-07-01

    In this work we describe and analyse different types of radiofrequency coils for NMR Imaging. Our system operates with a superconducting magnet, 22.5 cm bore, at 2.0 Tesla (85 MHz, resonant frequency for protons). Distinct structures, frequently described in the specialized literature, are discussed here. Usually the RF coils proposed are resonant circuits with distributed inductance and capacitance. We have built different types of resonators and its performance were compared. With the resonators developed here we have been able to obtain proton density images of good quality. (author)

  15. (31) P MR spectroscopic imaging combined with (1) H MR spectroscopic imaging in the human prostate using a double tuned endorectal coil at 7T.

    Science.gov (United States)

    Luttje, Mariska P; Italiaander, Michel G M; Arteaga de Castro, Catalina S; van der Kemp, Wybe J M; Luijten, Peter R; van Vulpen, Marco; van der Heide, Uulke A; Klomp, Dennis W J

    2014-12-01

    Improved diagnostic sensitivity could be obtained in cancer detection and staging when individual compounds of the choline pool can be detected. Therefore, a novel coil design is proposed, providing the ability to acquire both (1) H and (31) P magnetic resonance spectroscopic imaging (MRSI) in patients with prostate cancer. A two-element (1) H/(31) P endorectal coil was designed by adjusting a commercially available 3T endorectal coil. The two-element coil setup was interfaced as a transceiver to a whole body 7T MR scanner. Simulations and phantom measurements were performed to compare the efficiency of the coil. (1) H MRSI and (31) P MRSI were acquired in vivo in prostate cancer patients. The efficiency of the (1) H/(31) P coil is comparable to the dual channel (1) H coil previously published. Individually distinguishable phospholipid metabolites in the in vivo (31) P spectra were: phosphoethanolamine, phosphocholine, phosphate, glycerophosphoethanolamine, glycerophosphocholine, phosphocreatine, and adenosine triposphate. (1) H MRSI was performed within the same scan session, visualizing choline, polyamines, creatine, and citrate. (1) H MRSI and (31) P MRSI can be acquired in the human prostate at 7T within the same scan session using an endorectal coil matched and tuned for (1) H (quadrature) and (31) P (linear) without the need of cable traps and with negligible efficiency losses in the (1) H and (31) P channel. © 2013 Wiley Periodicals, Inc.

  16. Visualization of brain surface structures by weighted summation technique using multislice MR images

    International Nuclear Information System (INIS)

    Machida, Yoshio; Hatanaka, Masahiko; Hagiwara, Masayuki; Sugimoto, Hiroshi; Yoshida, Tadatoki; Katada, Kazuhiro.

    1991-01-01

    Surface anatomy scanning (SAS) technique which visualizes brain surface structures has been developed since 1987. In this paper, we propose a modified method called 'multislice SAS', which also generates such surface structure images, and has several advantages compared with conventional SAS technique. The conventional SAS technique uses a very long echo time sequence (e.g. SE(3000, 250)) with a thick slice and a surface coil to enhance CSF on the brain surface. Our modified technique also uses a long echo time sequence. But, added multislice images, each appropriately weighted, are used in stead of a thick slice and a surface coil. Our basic studies have shown that this modified method has the following advantage: Several surface images with slightly different summation directions are obtained, and they are used for stereographic display and cine display. This is very useful for visualizing the spatial relationship of brain surface structures. By choosing appropriate weighting, we can obtain clinically legible surface images. This technique dose not require a surface coil. It means that flexibility of selecting imaging direction is high. We can make a lot of modifications, because the original multislice images of weighted summation are arbitrary. And we also clarify some limitation or disadvantage of this modified method. In conclusion, we think that this technique is one of the practical approaches for surface anatomy imaging. (author)

  17. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Science.gov (United States)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  18. Non-granulomatous prostatitis: MR appearance with an endorectal surface coil; Nichtgranulomatoese Prostatitis: Erscheinungsbild im MRT mit endorektaler Oberflaechenspule (``Endo-MRT``)

    Energy Technology Data Exchange (ETDEWEB)

    Szolar, D.H.M. [Magnetresonanztomographie-Zentrum, Univ. Graz (Austria); Ranner, G. [Magnetresonanztomographie-Zentrum, Univ. Graz (Austria); Preidler, K.W. [Magnetresonanztomographie-Zentrum, Univ. Graz (Austria); Lax, S. [Inst. fuer Pathologische Anatomie, Univ. Graz (Austria)

    1995-01-01

    Inflammatory conditions of the prostate are often idfficult to distinguish from early stages of prostate cancer with imaging techniques. The use of an endorectal surface coil in MRI of the prostate gland has been reported to provide superior resolution and better imaging of details than MRI with a body coil in the diagnosis of early prostate cancer. We report a 34-year-old patient with nonspecific non-granlomatous prostatitis in whom T{sub 2}-weighted endorectal surface coil magnetic resonance imaging (ESCMRI) showed a region of markedly decreased signal intensity in the periphery of the gland. The low signal intensity of the lesion, its sharp demarcation from the normal part of the peripheral zone of the prostate and the marked bulge of the surface contour without capsular breach of the organ were interpreted as evidence of a bioptically proven benign inflammatory condition. (orig.) [Deutsch] Die Unterscheidung entzuendlicher Prozesse von Fruehstadien maligner Neoplasien der Prostata mittels Magnetresonanztomographie bereitet immer wieder Schwierigkeiten. Die Anwendung einer Oberflaechenspule erlaubt durch hoehere Aufloesung eine exaktere Beurteilung der Prostatakapsel, was eine hoehere Treffsicherheit beim Nachweis moeglicher organueberschreitender Infiltrationen bedeutet. Wir praesentieren den Fall eines 34jaehrigen Mannes mit unspezifischer, nichtgranulomatoeser Prostatitis, bei dem das MR-Tomogramm mit endorektal plazierter Oberflaechenspule (Endo-MRT) in der Peripherzone ein Areal deutlich herabgesetzter Signalintensitaet auf T{sub 2}-gewichteten Aufnahmen zeigte. Die scharfe Begrenzung der ausgedehnten signalarmen Laesion gegenueber dem nichtbefallenen Anteil der Peripherzone beim im Endo-MRT identifizierbarer intakter Kapsel liess ein organueberschreitendes Malignom ausschliessen und bestaetigte durch histologische Aufarbeitung der Bioptate den Endo-MRT-Verdachtsbefund einer Prostatitis. (orig.)

  19. A study on evaluating validity of SNR calculation using a conventional two region method in MR images applied a multichannel coil and parallel imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwan Woo; Son, Soon Yong [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Sungnam (Korea, Republic of); Kwon, Kyung Tae [Dept. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Yoo, Beong Gyu; Lee, Jong Seok [Dept. of Radiotechnology, Wonkwang Health Science University, Iksan (Korea, Republic of)

    2015-12-15

    The purpose of this study was to investigate the problems of a signal to noise ratio measurement using a two region measurement method that is conventionally used when using a multi-channel coil and a parallel imaging technique. As a research method, after calculating the standard SNR using a single channel head coil of which coil satisfies three preconditions when using a two region measurement method, we made comparisons and evaluations after calculating an SNR by using a two region measurement method of which method is problematic because it is used without considering the methods recommended by reputable organizations and the preconditions at the time of using a multi-channel coil and a parallel imaging technique. We found that a two region measurement method using a multi-channel coil and a parallel imaging technique shows the highest relative standard deviation, and thus shows a low degree of precision. In addition, we found out that the difference of SNR according to ROI location was very high, and thus a spatial noise distribution was not uniform. Also, 95% confidence interval through Blend-Altman plot is the widest, and thus the conformity degree with a two region measurement method using the standard single channel head coil is low. By directly comparing an AAPM method, which serves as a standard of a performance evaluation test of a magnetic resonance imaging device under the same image acquisition conditions, an NEMA method which can accurately determine the noise level in a signal region and the methods recommended by manufacturers of a magnetic resonance imaging device, there is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a two region measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

  20. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    Science.gov (United States)

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  1. A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.

    Science.gov (United States)

    Gao, Fei; Zhang, Rui; Zhou, Diange; Wang, Xiaoying; Huang, Kefu; Zhang, Jue

    2016-10-01

    Musculoskeletal MR imaging under multi-angle situations plays an increasingly important role in assessing joint and muscle tissues system. However, there are still limitations due to the closed structures of most conventional RF coils. In this study, a time-harmonic target-field method was employed to design open multi-purpose coil (OMC) for multi-angle musculoskeletal MR imaging. The phantom imaging results suggested that the proposed OMC could achieve homogeneously distributed magnetic field and high signal-to-noise ratio (SNR) of 239.04±0.83 in the region of interest (ROI). The maximum temperature in the heating hazard test was 16°C lower than the standard regulation, which indicated the security of the designed OMC. Furthermore, to demonstrate the effectiveness of the proposed OMC for musculoskeletal MR imaging, especially for multi-angle imaging, a healthy volunteer was examined for MR imaging of elbow, ankle and knee using OMC. The in vivo imaging results showed that the proposed OMC is effective for MR imaging of musculoskeletal tissues at different body parts, with satisfied B1 field homogeneity and SNR. Moreover, the open structure of the OMC could provide a large joint movement region. The proposed open multi-purpose coil is feasible for musculoskeletal MR imaging, and potentially, it is more suitable for the evaluation of musculoskeletal tissues under multi-angle conditions. Copyright © 2016. Published by Elsevier Inc.

  2. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  3. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T.

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1 H (400 MHz) and inner low-pass coil for 23 Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1 H and -27 dB for 23 Na. Signal-to-noise ratios (SNRs) were calculated and 23 Na flip angle maps were acquired. 23 Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo 1 H and 23 Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23 Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A.; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N. Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1H (400 MHz) and inner low-pass coil for 23Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1H and -27 dB for 23Na. Signal-to-noise ratios (SNRs) were calculated and 23Na flip angle maps were acquired. 23Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo1H and 23Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR.

  5. 7 Tesla 22-channel wrap-around coil array for cervical spinal cord and brainstem imaging.

    Science.gov (United States)

    Zhang, Bei; Seifert, Alan C; Kim, Joo-Won; Borrello, Joseph; Xu, Junqian

    2017-10-01

    Increased signal-to-noise ratio and blood oxygenation level-dependent sensitivity at 7 Tesla (T) have the potential to enable high-resolution imaging of the human cervical spinal cord and brainstem. We propose a new two-panel radiofrequency coil design for these regions to fully exploit the advantages of ultra-high field. A two-panel array, containing four transmit/receive and 18 receive-only elements fully encircling the head and neck, was constructed following simulations demonstrating the B1+ and specific absorption rate (SAR) benefits of two-panel over one-panel arrays. This array was compared with a previously reported posterior-only array and tested for safety using a phantom. Its anatomical, functional, and diffusion MRI performance was demonstrated in vivo. The two-panel array produced more uniform B1+ across the brainstem and cervical spinal cord without compromising SAR, and achieved 70% greater receive sensitivity than the posterior-only array. The two-panel design enabled acceleration of R = 2 × 2 in two dimensions or R = 3 in a single dimension. High quality in vivo anatomical, functional, and diffusion images of the human cervical spinal cord and brainstem were acquired. We have designed and constructed a wrap-around coil array with excellent performance for cervical spinal cord and brainstem MRI at 7T, which enables simultaneous human cervical spinal cord and brainstem functional MRI. Magn Reson Med 78:1623-1634, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Feasibility of magnetic resonance angiography (MRA) follow-up as the primary imaging modality after coiling of intracranial aneurysms

    International Nuclear Information System (INIS)

    Bakker, Nicolaas A.; Metzemaekers, Jan D. M.; Dijk, J. Marc C. van; Mooij, Jan Jakob A.; Groen, Rob J. M.; Westerlaan, Henriette E.; Eshghi, Omid S.

    2010-01-01

    Background: Digital subtraction angiography (DSA) is still regarded as the gold standard for detecting residual flow in treated aneurysms. Recent reports have also shown excellent results from magnetic resonance angiography (MRA) imaging. This is an important observation, since DSA is associated with a risk of medical complications, is time consuming, and is more expensive. Purpose: To determine whether MRA could replace conventional DSA and serve as the primary postinterventional imaging modality in patients with coiled intracranial aneurysms. Material and Methods: We studied a prospectively enrolled cohort of 190 patients treated endovascularly for a first-ruptured and/or unruptured intracranial aneurysm between January 2004 and December 2008. The imaging protocol included a 1.5T time-of-flight (TOF) MRA and a DSA at 3 months (on the same day) and, depending on comparability, a 1.5T TOF-MRA or DSA 1 year after treatment. All images were evaluated by a multidisciplinary panel. Results: In 141/190 patients, both an MRA and DSA were performed after 3-month follow-up. In 2/141 patients (1.4%), (small) neck remnants gave false-negative MRA results. In one patient (0.7%), this led to additional neurosurgical clipping of the aneurysm. In 25/141 patients, future follow-up (>3 months) consisted of DSA because of various reasons. In 24/25 of these patients, primary MRA images alone would invariably have led to additional DSA imaging. Conclusion: The present study shows that 1.5T TOF-MRA is a feasible primary follow-up modality after coiling of intracranial aneurysms. Given our data, we now suggest that, in every patient with a coiled intracranial aneurysm, the first follow-up, 3 months after coiling, should be an MRA study. Only when this MRA is inconclusive (e.g., because of coil artifacts), or in the case of suspicion of recanalization, should DSA be performed additionally

  7. Fluorescence Imaging Reveals Surface Contamination

    Science.gov (United States)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  8. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil.

    Science.gov (United States)

    Kodama, Nao; Kose, Katsumi

    2016-10-11

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.

  9. Echo-Planar Imaging for a 9.4 Tesla Vertical-Bore Superconducting Magnet Using an Unshielded Gradient Coil

    Science.gov (United States)

    KODAMA, Nao; KOSE, Katsumi

    2016-01-01

    Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398

  10. A TMS coil positioning/holding system for MR image-guided TMS interleaved with fMRI.

    Science.gov (United States)

    Bohning, Daryl E; Denslow, S; Bohning, P A; Walker, J A; George, M S

    2003-11-01

    Transcranial magnetic stimulation (TMS) can be interleaved with fMRI to visualize regional brain activity in response to direct, non-invasive, cortical stimulation, making it a promising tool for studying brain function. A major practical difficulty is accurately positioning the TMS coil within the MRI scanner for stimulating a particular area of brain cortex. The objective of this work was to design and build a self-contained hardware/software system for MR-guided TMS coil positioning in interleaved TMS/fMRI studies. A compact, manually operated, articulated TMS coil positioner/holder with 6 calibrated degrees of freedom was developed for use inside a cylindrical RF head coil, along with a software package for transforming between MR image coordinates, MR scanner space coordinates, and positioner/holder settings. Phantom calibration studies gave an accuracy for positioning within setups of dx=+/-1.9 mm, dy=+/-1.4 mm, dz=+/-0.8 mm and a precision for multiple setups of dx=+/-0.8 mm, dy=+/-0.1 mm, dz=+/-0.1 mm. This self-contained, integrated MR-guided TMS system for interleaved TMS/fMRI studies provides fast, accurate location of motor cortex stimulation sites traditionally located functionally, and a means of consistent, anatomy-based TMS coil positioning for stimulation of brain areas without overt response.

  11. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    OpenAIRE

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    INTRODUCTION: The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS: Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each...

  12. Evaluation of an image-based tracking workflow using a passive marker and resonant micro-coil fiducials for automatic image plane alignment in interventional MRI.

    Science.gov (United States)

    Neumann, M; Breton, E; Cuvillon, L; Pan, L; Lorenz, C H; de Mathelin, M

    2012-01-01

    In this paper, an original workflow is presented for MR image plane alignment based on tracking in real-time MR images. A test device consisting of two resonant micro-coils and a passive marker is proposed for detection using image-based algorithms. Micro-coils allow for automated initialization of the object detection in dedicated low flip angle projection images; then the passive marker is tracked in clinical real-time MR images, with alternation between two oblique orthogonal image planes along the test device axis; in case the passive marker is lost in real-time images, the workflow is reinitialized. The proposed workflow was designed to minimize dedicated acquisition time to a single dedicated acquisition in the ideal case (no reinitialization required). First experiments have shown promising results for test-device tracking precision, with a mean position error of 0.79 mm and a mean orientation error of 0.24°.

  13. Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kidoh, Masafumi; Utsunomiya, Daisuke; Ikeda, Osamu; Tamura, Yoshitaka; Oda, Seitaro; Yuki, Hideaki; Nakaura, Takeshi; Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto (Japan); Funama, Yoshinori [Kumamoto University, Department of Medical Physics, Faculty of Life Sciences, Kumamoto (Japan); Kawano, Takayuki [Kumamoto University Graduate School, Department of Neurosurgery, Faculty of Life Sciences Research, Kumamoto (Japan)

    2016-05-15

    We evaluated the effect of a single-energy metal artefact reduction (SEMAR) algorithm for metallic coil artefact reduction in body imaging. Computed tomography angiography (CTA) was performed in 30 patients with metallic coils (10 men, 20 women; mean age, 67.9 ± 11 years). Non-SEMAR images were reconstructed with iterative reconstruction alone, and SEMAR images were reconstructed with the iterative reconstruction plus SEMAR algorithms. We compared image noise around metallic coils and the maximum diameters of artefacts from coils between the non-SEMAR and SEMAR images. Two radiologists visually evaluated the metallic coil artefacts utilizing a four-point scale: 1 = extensive; 2 = strong; 3 = mild; 4 = minimal artefacts. The image noise and maximum diameters of the artefacts of the SEMAR images were significantly lower than those of the non-SEMAR images (65.1 ± 33.0 HU vs. 29.7 ± 10.3 HU; 163.9 ± 54.8 mm vs. 10.3 ± 19.0 mm, respectively; P < 0.001). Better visual scores were obtained with the SEMAR technique (3.4 ± 0.6 vs. 1.0 ± 0.0, P < 0.001). The SEMAR algorithm significantly reduced artefacts caused by metallic coils compared with the non-SEMAR algorithm. This technique can potentially increase CT performance for the evaluation of post-coil embolization complications. (orig.)

  14. Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm

    International Nuclear Information System (INIS)

    Kidoh, Masafumi; Utsunomiya, Daisuke; Ikeda, Osamu; Tamura, Yoshitaka; Oda, Seitaro; Yuki, Hideaki; Nakaura, Takeshi; Hirai, Toshinori; Yamashita, Yasuyuki; Funama, Yoshinori; Kawano, Takayuki

    2016-01-01

    We evaluated the effect of a single-energy metal artefact reduction (SEMAR) algorithm for metallic coil artefact reduction in body imaging. Computed tomography angiography (CTA) was performed in 30 patients with metallic coils (10 men, 20 women; mean age, 67.9 ± 11 years). Non-SEMAR images were reconstructed with iterative reconstruction alone, and SEMAR images were reconstructed with the iterative reconstruction plus SEMAR algorithms. We compared image noise around metallic coils and the maximum diameters of artefacts from coils between the non-SEMAR and SEMAR images. Two radiologists visually evaluated the metallic coil artefacts utilizing a four-point scale: 1 = extensive; 2 = strong; 3 = mild; 4 = minimal artefacts. The image noise and maximum diameters of the artefacts of the SEMAR images were significantly lower than those of the non-SEMAR images (65.1 ± 33.0 HU vs. 29.7 ± 10.3 HU; 163.9 ± 54.8 mm vs. 10.3 ± 19.0 mm, respectively; P < 0.001). Better visual scores were obtained with the SEMAR technique (3.4 ± 0.6 vs. 1.0 ± 0.0, P < 0.001). The SEMAR algorithm significantly reduced artefacts caused by metallic coils compared with the non-SEMAR algorithm. This technique can potentially increase CT performance for the evaluation of post-coil embolization complications. (orig.)

  15. Determination of position and shape of flexible mri surface coils using the Microsoft Kinect for attenuation correction in PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Frohwein, Lynn; He, Mirco; Buther, Florian; Safers, Klaus [European Institute for Molecular Imaging, University of Muenster (Germany)

    2015-05-18

    Due to the varying position and shape of flexible MRI RF surface coils, the creation of attenuation maps for these coils is a challenging task. Nevertheless, coil material (metal, plastic, rubber) attenuates the PET signal to a considerable amount. Thus, including a coil μ-map into the human μ-map is essential. In this work, we present a method to determine the position and shape of flexible coils with the help of the Microsoft Kinect depth camera. Phantom PET/MRI (Siemens Biograph mMR) and CT scans (Siemens Biograph mCT) were performed with and without the flexible 32-channel coil equipped with 15 markers visible in CT and Kinect. Prior to the PET/MRI acquisition, Kinect data is acquired of the phantom with the coil on top. The manually extracted marker positions from CT and Kinect are used to non-rigidly transform the template CT according to the Kinect marker positions describing the shape of the coil during PET/MRI acquisition. An appropriate μ-map can then be calculated from the transformed CT dataset. Subsequently, the μ-map is placed in relation to the patient table according to the Kinect-derived marker positions. First results show that the coil shape can be determined with the help of the Kinect camera. The transformation of the template CT dataset according to Kinect marker positions during PET/MRI leads to appropriate results. Furthermore, the position of the coil can also be determined for an accurate placement of the μ-map in relation to the patient table. The determination of position and shape of flexible surface coils using the Kinect camera can be a way to include the CT-based coil μ-map in PET/MRI acquisitions without the need for additional MRI scans. Accuracy and practicability of the method have to be tested in further experiments.

  16. Determination of position and shape of flexible mri surface coils using the Microsoft Kinect for attenuation correction in PET/MRI

    International Nuclear Information System (INIS)

    Frohwein, Lynn; He, Mirco; Buther, Florian; Safers, Klaus

    2015-01-01

    Due to the varying position and shape of flexible MRI RF surface coils, the creation of attenuation maps for these coils is a challenging task. Nevertheless, coil material (metal, plastic, rubber) attenuates the PET signal to a considerable amount. Thus, including a coil μ-map into the human μ-map is essential. In this work, we present a method to determine the position and shape of flexible coils with the help of the Microsoft Kinect depth camera. Phantom PET/MRI (Siemens Biograph mMR) and CT scans (Siemens Biograph mCT) were performed with and without the flexible 32-channel coil equipped with 15 markers visible in CT and Kinect. Prior to the PET/MRI acquisition, Kinect data is acquired of the phantom with the coil on top. The manually extracted marker positions from CT and Kinect are used to non-rigidly transform the template CT according to the Kinect marker positions describing the shape of the coil during PET/MRI acquisition. An appropriate μ-map can then be calculated from the transformed CT dataset. Subsequently, the μ-map is placed in relation to the patient table according to the Kinect-derived marker positions. First results show that the coil shape can be determined with the help of the Kinect camera. The transformation of the template CT dataset according to Kinect marker positions during PET/MRI leads to appropriate results. Furthermore, the position of the coil can also be determined for an accurate placement of the μ-map in relation to the patient table. The determination of position and shape of flexible surface coils using the Kinect camera can be a way to include the CT-based coil μ-map in PET/MRI acquisitions without the need for additional MRI scans. Accuracy and practicability of the method have to be tested in further experiments.

  17. The use of a phased-array surface coil and breath-holding in MRI of the liver. Comparison of conventional SE, fat-suppressed GRE, and TSE sequences

    International Nuclear Information System (INIS)

    Helmberger, T.; Holzknecht, N.; Lackerbauer, C.A.; Mueller-Lisse, U.; Schnarkowski, P.; Gauger, J.; Reiser, M.

    1995-01-01

    To determine the efficacy of fast MRI techniques using a taylored imaging design (breathhold and array-surface coil), conventional T1-, T2-weighted spin-echo (SE) sequences and breathhold gradient-echo (GRE) T1- and breathhold fast SE T2-weighted images were compared. 20 patients with proven focal liver lesions were studied on a 1.5 Tesla system. Conventional SE T1- und T2-weighted imaging, as well as GRE T1- and fast SE T2-weighted imaging was performed. Fast imaging was done during breathhold using an array-surface coil. For all sequences signal-to-noise ratios (S/N) and liver-to-lesion-contrast ratios (L/L) were measured and statistically compared. Regarding image quality parameters, S/N and L/L, there was no significant difference between the conventional and fast imaging techniques. However, GRE imaging was superior (84.8%) to conventional imaging for breathing and pulsation artifacts, while fast SE T2 imaging was equal regarding breathing artifacts, but superior (51.5%) regarding pulsation artifacts. The number of detected hepatic lesions was identical in all sequences. The fast MRI techniques demonstrated a superiority to conventional imaging regarding image quality and presence of artifacts. (orig.) [de

  18. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    Science.gov (United States)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  19. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    OpenAIRE

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radi...

  20. A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla.

    Science.gov (United States)

    Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2011-07-01

    To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.

  1. Gadolinium-enhanced dynamic magnetic resonance imaging with endorectal coil for local staging of rectal cancer

    International Nuclear Information System (INIS)

    Tamakawa, Mitsuharu; Kawaai, Yuriko; Shirase, Ryuji

    2010-01-01

    The aim of this study was to evaluate the accuracy of dynamic gadolinium (Gd)-enhanced magnetic resonance imaging (MRI) with endorectal coil for assessing tumor invasion based on simple classification criteria. A total of 58 patients with operable primary rectal cancer underwent preoperative MRI. An enhancement pattern in Gd-enhanced dynamic MRI with regard to tumor penetration was clarified. Retrospectively, two observers independently scored T2-weighted MRI and T2-weighted MRI combined with Gd-enhanced dynamic MRI for tumor penetration using the following criteria: With Gd-enhanced dynamic MRI, T1 tumors showed an early enhanced line around the tumor as rim enhancement; T2 tumors appeared as black lines or double layers, as the muscularis propria kept its integrity; T3 tumors showed partial discontinuity of the muscularis propria as a dotted line and a perforated area as an interrupted line. A confidence level scoring system was used, and receiver operating characteristic curves were generated. There were no significant differences at the T1 stage. There were significant differences for observer 1 (P=0.001 for observer 1) at the T2 stage. There were significant differences for both observers (P=0.001 for observer 1 and P=0.005 for observer 2) at the T3 stage. Our criteria for Gd-enhanced dynamic MRI were effective for T3 stage tumors. (author)

  2. NCSX Trim Coil Design

    International Nuclear Information System (INIS)

    Kalish, M.; Brooks, A.; Rushinski, J.; Upcavage, R.

    2009-01-01

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure

  3. Dense, shape-optimized posterior 32-channel coil for submillimeter functional imaging of visual cortex at 3T.

    Science.gov (United States)

    Farivar, Reza; Grigorov, Filip; van der Kouwe, Andre J; Wald, Lawrence L; Keil, Boris

    2016-07-01

    Functional neuroimaging of small cortical patches such as columns is essential for testing computational models of vision, but imaging from cortical columns at conventional 3T fields is exceedingly difficult. By targeting the visual cortex exclusively, we tested whether combined optimization of shape, coil placement, and electronics would yield the necessary gains in signal-to-noise ratio (SNR) for submillimeter visual cortex functional MRI (fMRI). We optimized the shape of the housing to a population-averaged atlas. The shape was comfortable without cushions and resulted in the maximally proximal placement of the coil elements. By using small wire loops with the least number of solder joints, we were able to maximize the Q factor of the individual elements. Finally, by planning the placement of the coils using the brain atlas, we were able to target the arrangement of the coil elements to the extent of the visual cortex. The combined optimizations led to as much as two-fold SNR gain compared with a whole-head 32-channel coil. This gain was reflected in temporal SNR as well and enabled fMRI mapping at 0.75 mm resolutions using a conventional GRAPPA-accelerated gradient echo echo planar imaging. Integrated optimization of shape, electronics, and element placement can lead to large gains in SNR and empower submillimeter fMRI at 3T. Magn Reson Med 76:321-328, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  4. Endorectal coil MRI and MR-spectroscopic imaging in patients with elevated serum prostate specific antigen with negative trus transrectal ultrasound guided biopsy

    Directory of Open Access Journals (Sweden)

    Farooq Ahmad Ganie

    2013-01-01

    Conclusion: Prostatic biopsy directed with endorectal coil MRI and MR-spectroscopic imaging findings in patients with elevated serum PSA and prior negative biopsy, improves the early diagnosis of prostatic carcinoma and accurate localization of prostate cancer within the gland.

  5. Accelerated proton echo planar spectroscopic imaging (PEPSI) using GRAPPA with a 32-channel phased-array coil.

    Science.gov (United States)

    Tsai, Shang-Yueh; Otazo, Ricardo; Posse, Stefan; Lin, Yi-Ru; Chung, Hsiao-Wen; Wald, Lawrence L; Wiggins, Graham C; Lin, Fa-Hsuan

    2008-05-01

    Parallel imaging has been demonstrated to reduce the encoding time of MR spectroscopic imaging (MRSI). Here we investigate up to 5-fold acceleration of 2D proton echo planar spectroscopic imaging (PEPSI) at 3T using generalized autocalibrating partial parallel acquisition (GRAPPA) with a 32-channel coil array, 1.5 cm(3) voxel size, TR/TE of 15/2000 ms, and 2.1 Hz spectral resolution. Compared to an 8-channel array, the smaller RF coil elements in this 32-channel array provided a 3.1-fold and 2.8-fold increase in signal-to-noise ratio (SNR) in the peripheral region and the central region, respectively, and more spatial modulated information. Comparison of sensitivity-encoding (SENSE) and GRAPPA reconstruction using an 8-channel array showed that both methods yielded similar quantitative metabolite measures (P > 0.1). Concentration values of N-acetyl-aspartate (NAA), total creatine (tCr), choline (Cho), myo-inositol (mI), and the sum of glutamate and glutamine (Glx) for both methods were consistent with previous studies. Using the 32-channel array coil the mean Cramer-Rao lower bounds (CRLB) were less than 8% for NAA, tCr, and Cho and less than 15% for mI and Glx at 2-fold acceleration. At 4-fold acceleration the mean CRLB for NAA, tCr, and Cho was less than 11%. In conclusion, the use of a 32-channel coil array and GRAPPA reconstruction can significantly reduce the measurement time for mapping brain metabolites. (c) 2008 Wiley-Liss, Inc.

  6. High-Resolution C-Arm CT and Metal Artifact Reduction Software: A Novel Imaging Modality for Analyzing Aneurysms Treated with Stent-Assisted Coil Embolization.

    Science.gov (United States)

    Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y

    2016-02-01

    Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.

  7. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.

    Science.gov (United States)

    Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P

    2013-09-01

    Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  9. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  10. Use of Fourier domain filtering and dynamic programming in finding a titanium coil implant in high voltage x-ray images

    DEFF Research Database (Denmark)

    Nielsen, Henning; Hansen, Jesper Carl

    2006-01-01

    This paper deals with the problem of finding precise position and orientation of a titanium coil implant in humans. Analysis of high voltage X-rays stereo images are used to determine the true 3D position. High voltage images inherently presents with poor contrast. Various image processing techni...

  11. Using a modified 3D-printer for mapping the magnetic field of RF coils designed for fetal and neonatal imaging.

    Science.gov (United States)

    Vavoulas, Alexander; Vaiopoulos, Nicholas; Hedström, Erik; Xanthis, Christos G; Sandalidis, Harilaos G; Aletras, Anthony H

    2016-08-01

    An experimental setup for characterizing the magnetic field of MRI RF coils was proposed and tested. The setup consisted of a specially configured 3D-printer, a network analyzer and a mid-performance desktop PC. The setup was tested on a single loop RF coil, part of a phased array for fetal imaging. Then, the setup was used for determining the magnetic field characteristics of a high-pass birdcage coil used for neonatal MR imaging with a vertical static field. The scattering parameter S21, converted into power ratio, was used for mapping the B1 magnetic field. The experimental measurements from the loop coil were close to the theoretical results (R=0.924). A high degree of homogeneity was measured for the neonatal birdcage RF coil. The development of MR RF coils is time consuming and resource intensive. The proposed experimental setup provides an alternative method for magnetic field characterization of RF coils used in MRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  13. Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions.

    Science.gov (United States)

    Fenchel, Michael; Nael, Kambiz; Deshpande, Vibhas S; Finn, J Paul; Kramer, Ulrich; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-09-01

    The aim of the present study was to assess the feasibility of renal magnetic resonance angiography at 3.0 T using a phased-array coil system with 32-coil elements. Specifically, high parallel imaging factors were used for an increased spatial resolution and anatomic coverage of the whole abdomen. Signal-to-noise values and the g-factor distribution of the 32 element coil were examined in phantom studies for the magnetic resonance angiography (MRA) sequence. Eleven volunteers (6 men, median age of 30.0 years) were examined on a 3.0-T MR scanner (Magnetom Trio, Siemens Medical Solutions, Malvern, PA) using a 32-element phased-array coil (prototype from In vivo Corp.). Contrast-enhanced 3D-MRA (TR 2.95 milliseconds, TE 1.12 milliseconds, flip angle 25-30 degrees , bandwidth 650 Hz/pixel) was acquired with integrated generalized autocalibrating partially parallel acquisition (GRAPPA), in both phase- and slice-encoding direction. Images were assessed by 2 independent observers with regard to image quality, noise and presence of artifacts. Signal-to-noise levels of 22.2 +/- 22.0 and 57.9 +/- 49.0 were measured with (GRAPPAx6) and without parallel-imaging, respectively. The mean g-factor of the 32-element coil for GRAPPA with an acceleration of 3 and 2 in the phase-encoding and slice-encoding direction, respectively, was 1.61. High image quality was found in 9 of 11 volunteers (2.6 +/- 0.8) with good overall interobserver agreement (k = 0.87). Relatively low image quality with higher noise levels were encountered in 2 volunteers. MRA at 3.0 T using a 32-element phased-array coil is feasible in healthy volunteers. High diagnostic image quality and extended anatomic coverage could be achieved with application of high parallel imaging factors.

  14. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  15. 3D Cones Acquisition of Human Extremity Imaging Using a 1.5T Superconducting Magnet and an Unshielded Gradient Coil Set.

    Science.gov (United States)

    Setoi, Ayana; Kose, Katsumi

    2018-05-16

    We developed ultrashort echo-time (UTE) imaging sequences with 3D Cones trajectories for a home-built compact MRI system using a 1.5T superconducting magnet and an unshielded gradient coil set. We achieved less than 7 min imaging time and obtained clear in vivo images of a human forearm with a TE of 0.4 ms. We concluded that UTE imaging using 3D Cones acquisition was successfully implemented in our 1.5T MRI system.

  16. Transcatheter embolization of abdominal aortic endograft endoleaks using onyx and coils: mid-term imaging follow-up

    Directory of Open Access Journals (Sweden)

    Ford CA

    2017-03-01

    Full Text Available Christopher A Ford, Benjamin B Lange, Christopher S Morris Department of Radiology, University of Vermont Health Network, University of Vermont Medical Center, Burlington, VT, USA Purpose: To evaluate the efficacy and safety of ethylene vinyl alcohol copolymer (Onyx with or without coils in treatment of type II endoleaks associated with abdominal aortic endografts. Materials and methods: The medical records of 14 patients (12 men and 2 women, mean age 73 years with type II endoleaks associated with abdominal aortic endografts, and treated with Onyx, with or without coils, were reviewed. These patients underwent 19 type II endoleak embolization procedures. Time to follow up computed tomography angiogram (CTA, initial and follow-up aneurysm sac characteristics, embolization access technique, use of coils, volume and type of Onyx used, and complications were recorded. Results: Mean procedure time was 124 minutes (range, 51–237 minutes, and mean volume of Onyx used per procedure was 2.1 cc (range, 1.5–3. Mean follow-up time between initial and final CTA was 19.9 months (range, 0.5–64.4. After one or more treatments, follow-up imaging documented complete occlusion of the endoleaks in 10 of 14 patients. Mean sac size decreased by an average of 0.3 cm in those with successful embolization and increased by an average of 0.4 cm in those with failed embolization. One major complication (infection, 5.2% occurred before adding prophylactic antibiotics to our protocol. No significant inadvertent embolization occurred. Conclusion: This study contributes to the growing body of data regarding safety and efficacy of treating type II endoleaks using Onyx. Potential benefits are both technical and economic. As we found advantages with the use of Onyx, additional studies are warranted. Keywords: endoleak, onyx, embolization

  17. Coil concepts for rapid and motion-compensated MR-Imaging of small animals; Spulenkonzepte zur schnellen und bewegungskompensierten MR-Bildgebung von Kleintieren

    Energy Technology Data Exchange (ETDEWEB)

    Korn, Matthias

    2009-05-06

    In this work radiofrequency-coils for the imaging of small animals in clinical whole-body MRI-systems were developed. Therefore in a first step single-channel solenoids were designed and characterized. The solenoids had two and three windings respectively, which were implemented as double wires to increase the homogeneity of the receive profile. These coils allow the acquisition of whole-body images of mice with high signal-to-noise ratio and homogeneity over a distance of at least 6.3 cm. Since many imaging experiments require rapid image acquisition, in the next step a novel coil concept was developed, which, due to its geometry, enables parallel imaging in arbitrary directions. A prototype was assembled and tested on phantom and small-animal experiments. With an accelerating factor of R=2, the difference of the SNR in all directions from the theoretical maximum, was less than 1%. In order to compensate physiological motion by the self-gating technique, in this work a coil is presented for the first time, which selectively amplifies the self-gating signal, while - due to a optical detuning technique - preserving the homogeneous illumination of the image. In vivo experiments on a small animal show an amplification of the self-gating signal by at least 40%. (orig.)

  18. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation.

    Science.gov (United States)

    Ang, JooChuan; Ma, Dan; Jung, Benson T; Keten, Sinan; Xu, Ting

    2017-11-13

    Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.

  19. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  20. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  1. MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results.

    Science.gov (United States)

    Chang, Gregory; Friedrich, Klaus M; Wang, Ligong; Vieira, Renata L R; Schweitzer, Mark E; Recht, Michael P; Wiggins, Graham C; Regatte, Ravinder R

    2010-03-01

    To determine the feasibility of performing MRI of the wrist at 7 Tesla (T) with parallel imaging and to evaluate how acceleration factors (AF) affect signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image quality. This study had institutional review board approval. A four-transmit eight-receive channel array coil was constructed in-house. Nine healthy subjects were scanned on a 7T whole-body MR scanner. Coronal and axial images of cartilage and trabecular bone micro-architecture (3D-Fast Low Angle Shot (FLASH) with and without fat suppression, repetition time/echo time = 20 ms/4.5 ms, flip angle = 10 degrees , 0.169-0.195 x 0.169-0.195 mm, 0.5-1 mm slice thickness) were obtained with AF 1, 2, 3, 4. T1-weighted fast spin-echo (FSE), proton density-weighted FSE, and multiple-echo data image combination (MEDIC) sequences were also performed. SNR and CNR were measured. Three musculoskeletal radiologists rated image quality. Linear correlation analysis and paired t-tests were performed. At higher AF, SNR and CNR decreased linearly for cartilage, muscle, and trabecular bone (r < -0.98). At AF 4, reductions in SNR/CNR were:52%/60% (cartilage), 72%/63% (muscle), 45%/50% (trabecular bone). Radiologists scored images with AF 1 and 2 as near-excellent, AF 3 as good-to-excellent (P = 0.075), and AF 4 as average-to-good (P = 0.11). It is feasible to perform high resolution 7T MRI of the wrist with parallel imaging. SNR and CNR decrease with higher AF, but image quality remains above-average.

  2. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  3. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    images used for mapping the vegetation cover types and other land cover types in Egypt. The mapping ranges from 1 km resolution to 30 m resolution. The aim is to provide satellite image mapping with land surface characteristics relevant for roughness mapping.......Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  4. Comparison of image quality in magnetic resonance imaging of the knee at 1.5 and 3.0 Tesla using 32-channel receiver coils

    International Nuclear Information System (INIS)

    Schoth, F.; Kraemer, N.; Niendorf, T.; Hohl, C.; Gunther, R.W.; Krombach, G.A.

    2008-01-01

    We examined to what degree the visualization of anatomic structures in the human knee is improved using 3.0-T magnetic resonance imaging (MRI) and many element RF receive coils as compared to 1.5 T. We imaged 20 knees at 1.5 and 3.0 T using T2-weighted STIR, T2-weighted gradient echo, T1-weighted spin-echo, true-FISP and T2-weighted fast spin echo techniques in conjunction with 32-element RF coil arrays. The 3.0-T examination was considerably faster than its 1.5-T counterpart. A superior subjective visibility at 3.0 T vs 1.5 T was found in 27 of 50 evaluated structures (meniscus, ligaments) with the exception of true-FISP techniques. The 3.0-T examination provided a better visibility (evaluated by blinded consensus-reading by two radiologists) of small structures such as the ligamentum transversum genu. Also, cartilage was better delineated at 3.0 T. A 23% increased average signal-to-noise ratio as assessed using a temporal filter was observed at 3.0 T as compared to 1.5 T. At 3.0 T, imaging of the human knee is faster and results in a subjective visibility of anatomic structures that is superior to and competitive with 1.5 T. (orig.)

  5. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  6. Initial results of 3-dimensional 1H-magnetic resonance spectroscopic imaging in the localization of prostate cancer at 3 Tesla: should we use an endorectal coil?

    NARCIS (Netherlands)

    Yakar, D.; Heijmink, S.W.T.P.J.; Hulsbergen-van de Kaa, C.A.; Huisman, H.J.; Barentsz, J.O.; Futterer, J.J.; Scheenen, T.W.J.

    2011-01-01

    PURPOSE: The purpose of this study was to compare the diagnostic performance of 3 Tesla, 3-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) in the localization of prostate cancer (PCa) with and without the use of an endorectal coil (ERC). MATERIALS AND METHODS: Our prospective study

  7. Structural and spectroscopic characterisations of the surface oxide scales and inclusions present on edge-burst hot-rolled steel coils

    International Nuclear Information System (INIS)

    Chowdhury, Anirban; Iyyappan, Ramasamy; Majumdar, Dipanwita; Singha, Achintya

    2014-01-01

    Detailed structural and spectroscopic characterisations have been carried out on the inclusions and the surface oxides present on edge-burst hot-rolled steel coils. Surface scales were characterised through X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. Evidence of different types of regular and non-stoichiometric Fe-oxides was found on the cracked surface of the steel wire. Along with the surface scales inclusions with calcium aluminate and spinel was characterized using Raman spectroscopy. The usefulness of Raman spectroscopy has been explored in detail for the characterisation of these inclusions; especially when XRD information ceases to be a limiting tool. The samples collected from the clogged nozzle area were found to be of grossite (CaO·2Al 2 O 3 ) phase and this was also observed in the inclusions in the finished coils. It was found that this particular calcium aluminate phase has a detrimental effect on casting and final finished steel products. - Highlights: • First investigation and surface study report on edge-bursting issue of steel coils. • Detailed characterisations of the inclusions and surface oxide scales in steel. • Influence of a particular type of calcium aluminate phase on process chemistry

  8. Appearance of choroidal melanoma on high resolution MRI using 1.5 T and a dedicated surface coil in 200 consecutive patients

    International Nuclear Information System (INIS)

    Lemke, A.J.; Hosten, N.; Frenzel, D.; Richter, M.; Felix, R.; Bornfeld, N.; Bechrakis, N.E.

    1998-01-01

    Purpose: Choroidal melanomas usually present a characteristic appearance in MRI. Differing characteristics can cause problems in differential diagnosis between melanomas and other masses in the globe. The purpose of this study was to evaluate the appearance of choroidal melanomas with MRI in a large consecutive patient group. Methods: In a prospective study, 200 patients with choroidal melanomas were investigated with MRI using a 1.5 T scanner and a 5 cm surface coil. Both quantitative and qualitative evaluation of the resulting images was performed. Results: 78.5% of the melanomas presented with homogeneous signal intensities within the tumor due to a homogeneous pigmentation whereas 21.5% of the melanomas demonstrated a mixed pigmentation. Signal intensities of the homogeneous melanomas in the plain T 1 -WI were moderately or markedly hyperintense compared to the vitreous in 29.3% and moderately or markedly hypointense in the T 2 -WI in 37.1%. An accompanying retinal detachment was found in 65.5% and an extraocular growth in 7.0%. Conclusions: In 10% to 37% we observed the typical well known MR appearance, including homogenous high signal in the T 1 -WI and low signals in the T 2 -WI. For further differentiation, morphological criteria (e.g. shape, size, and position) were used, which are also discussed. (orig.) [de

  9. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla.

    Science.gov (United States)

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2013-11-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.

  10. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil.

    Science.gov (United States)

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21. In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.

  11. Decoupling capabilities of split-loop resonator structure for 7 Tesla MRI surface array coils

    Science.gov (United States)

    Hurshkainen, A.; Kurdjumov, S.; Simovski, C.; Glybovski, S.; Melchakova, I.; van den Berg, C. A. T.; Raaijmakers, A.; Belov, P.

    2017-09-01

    In this work we studied electromagnetic properties of one-dimentional periodic structures composed of split-loop res-onators (SLRs) and investigated their capabilities in decoupling of two dipole antennas for full-body magnetic resonance imaging (MRI). Two different finite structures comprising a single-SLR and a double-SLR constitutive elements were studied. Numerical simulations of the structures were performed to evaluate their decoupling capabilities. As it was demonstrated two dipole antennas equipped with either a single or a double-SLR structure exhibit high isolation even for an electrically short distance between the dipoles. Double-SLR structure while dramatically improving isolation of the dipoles keeps the field created by each of the decoupled dipoles comparable with one of a single dipole inside the target area.

  12. MRI of prostate zonal anatomy with an endorectal surface coil; Anatomie zonale de la prostate par IRM endorectale

    Energy Technology Data Exchange (ETDEWEB)

    Cornud, F.; Belin, X.; Melki, P.; Helenon, O.; Cretien, Y.; Dufour, B.; Moreau, J.F. [Hopital Necker-Enfants-Malades, 75 - Paris (France)

    1995-01-01

    The development of an endorectal surface coil now permits a partial study of the anatomical model developed by McNeal. Axial and coronal views, which were used to establish the model can be obtained in a short period of time with fast spin echo sequences. Axial views are performed along the proximal urethra and coronal views are performed along the axis of the distal urethra and the ejaculatory duts. Anatomical boundaries of the transitional zone are well delineated on axial views, illustrating the concept of `inner gland`. The prostatic capsule and the neuro-vascular bundles, pathways of extension of the cancer out of the prostate are also well delineated. Coronal sections allow a very good anatomical study of the caudal junction of the vas deferens and the seminal vesicles (the so called weak space), pathway of tumor extension to the seminal vesicles. Differences in signal of the prostatic zones make the outer gland cancers very conspicuous as well as some transitional cancers which can show, in some cases, an homogeneous hyposignal. (authors). 15 refs., 14 figs.

  13. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits

    Science.gov (United States)

    McGee, Kiaran P.; Stormont, Robert S.; Lindsay, Scott A.; Taracila, Victor; Savitskij, Dennis; Robb, Fraser; Witte, Robert J.; Kaufmann, Timothy J.; Huston, John, III; Riederer, Stephen J.; Borisch, Eric A.; Rossman, Phillip J.

    2018-04-01

    The growth in the use of magnetic resonance imaging (MRI) data for radiation therapy (RT) treatment planning has been facilitated by scanner hardware and software advances that have enabled RT patients to be imaged in treatment position while providing morphologic and functional assessment of tumor volumes and surrounding normal tissues. Despite these advances, manufacturers have been slow to develop radiofrequency (RF) coils that closely follow the contour of a RT patient undergoing MR imaging. Instead, relatively large form surface coil arrays have been adapted from diagnostic imaging. These arrays can be challenging to place on, and in general do not conform to the patient’s body habitus, resulting in sub optimal image quality. The purpose of this study is to report on the characterization of a new flexible and highly decoupled RF coil for use in MR imaging of RT patients. Coil performance was evaluated by performing signal-to-noise ratio (SNR) and noise correlation measurements using two coil (SNR) and four coil (noise correlation) element combinations as a function of coil overlap distance and comparing these values to those obtained using conventional coil elements. In vivo testing was performed in both normal volunteers and patients using a four and 16 element RF coil. Phantom experiments demonstrate the highly decoupled nature of the new coil elements when compared to conventional RF coils, while in vivo testing demonstrate that these coils can be integrated into extremely flexible and form fitting substrates that follow the exact contour of the patient. The new coil design addresses limitations imposed by traditional surface coil arrays and have the potential to significantly impact MR imaging for both diagnostic and RT applications.

  14. Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Brisse, Herve J. [Institut Curie, Department of Radiology, Paris (France); Institut CURIE, Imaging Department, Paris (France); Graaf, Pim de; Rodjan, Firazia; Jong, Marcus C. de; Castelijns, Jonas A. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Galluzzi, Paolo [Neuroimaging and Neurointerventional Unit (NINT) Azienda Ospedaliera e Universitaria Senese, Siena (Italy); Cosker, Kristel; Savignoni, Alexia [Institut Curie, Department of Biostatistics, Paris (France); Maeder, Philippe [Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Department of Radiology, Lausanne (Switzerland); Goericke, Sophia [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Aerts, Isabelle [Institut Curie, Department of Pediatric Oncology, Paris (France); Desjardins, Laurence [Institut Curie, Department of Ophthalmology, Paris (France); Moll, Annette C. [VU University Medical Center, Department of Ophthalmology, Amsterdam (Netherlands); Hadjistilianou, Theodora [Azienda Ospedaliera Universitaria Senese, Department of Ophthalmology, Siena (Italy); Toti, Paolo [University of Siena, Department of Medical Biotechnologies, Pathology Unit, Siena (Italy); Valk, Paul van der [VU University Medical Center, Department of Pathology, Amsterdam (Netherlands); Sastre-Garau, Xavier [Institut Curie, Department of Biopathology, Paris (France); Collaboration: European Retinoblastoma Imaging Collaboration (ERIC)

    2015-05-01

    To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 x 0.3 mm{sup 2}). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. (orig.)

  15. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    International Nuclear Information System (INIS)

    Brown, Ryan; Storey, Pippa; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda; Geppert, Christian

    2013-01-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 x 1.1 x 1.1-1.6 mm 3 ), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. (orig.)

  16. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ryan; Storey, Pippa; McGorty, KellyAnne; Klautau Leite, Ana Paula; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda [New York University Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York, NY (United States); Geppert, Christian [Siemens Medical Solutions USA Inc., New York, NY (United States)

    2013-11-15

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 x 1.1 x 1.1-1.6 mm{sup 3}), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P {<=} 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. (orig.)

  17. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    Science.gov (United States)

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  18. MRI with microscopy coil of the proximal interphalangeal joints: preliminary study

    International Nuclear Information System (INIS)

    Liu Min; Sun Haixing; Liu Dimin; Hu Meiyu; Pan Shunping; Wang Ping; Huang Xiaoling; Men Quanfei; Chen Yingming

    2009-01-01

    Objective: To investigate the use of a microscopy coil in MR examination of proximal interphalangeal joints (PIJ) to collect evidence on micro-anatomical pathological changes for further MR diagnosis. Methods: Four PIJ in cadaver and 12 PIJ from 7 normal volunteers were scanned with a microscopy surface coil (23 mm in diameter) at 1.5 T MRI. Sagittal T 1 -weighted images were also obtained with a conventional surface coil using the same parameters for the volunteers. Based on the observation of sagittal, traverse, coronal PIJ imaging features of cadaver, the optimized sequences were chosen for the volunteer's application. Image quality of the PIJ structures from volunteers was analyzed by two radiologists on a 5-point scale (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) and compared with Wilcoxon signed tank test between the microscopy and C3 surface coil in sagittal direction. Results: With microscopy coil all sequences can visualize the main structures of PI J, and all the PIJ images were classified as good or excellent except for one as average, while all the 12 PIJ with C3 coil were classified as poor or invisible. PIJ structures (proximal phalanx head, middle phalanx base, cartilage, volar plate) from volunteers show higher scores of quality with microscopy coils than those with C3 coil, and the difference was significant (Z =-3.274, -3.274, -3.213, and -3.742 respectively, all P<0.01). Conclusion: High-resolution MRI of the normal PIJ with microscopy coil was superior to those with a conventional surface coil, and it can be a promising method to diagnose interphalangeal joints lesions. (authors)

  19. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    International Nuclear Information System (INIS)

    Rata, Mihaela; Salomir, Rares; Lafon, Cyril; Umathum, Reiner; Jenne, Juergen; Bock, Michael; Cotton, Francois

    2008-01-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 x 0.25 x 3 mm 3 ) and accurate thermometry data (the PRFS method with a voxel size of 0.5 x 0.5 x 5 mm 3 , 2.2 s/image, 0.3 deg. C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  20. Endoluminal ultrasound applicator with an integrated RF coil for high-resolution magnetic resonance imaging-guided high-intensity contact ultrasound thermotherapy

    Science.gov (United States)

    Rata, Mihaela; Salomir, Rares; Umathum, Reiner; Jenne, Jürgen; Lafon, Cyril; Cotton, François; Bock, Michael

    2008-11-01

    High-intensity contact ultrasound (HICU) under MRI guidance may provide minimally invasive treatment of endocavitary digestive tumors in the esophagus, colon or rectum. In this study, a miniature receive-only coil was integrated into an endoscopic ultrasound applicator to offer high-resolution MRI guidance of thermotherapy. A cylindrical plastic support with an incorporated single element flat transducer (9.45 MHz, water cooling tip) was made and equipped with a rectangular RF loop coil surrounding the active element. The integrated coil provided significantly higher sensitivity than a four-element extracorporeal phased array coil, and the standard deviation of the MR thermometry (SDT) improved up to a factor of 7 at 10 mm depth in tissue. High-resolution morphological images (T1w-TFE and IR-T1w-TSE with a voxel size of 0.25 × 0.25 × 3 mm3) and accurate thermometry data (the PRFS method with a voxel size of 0.5 × 0.5 × 5 mm3, 2.2 s/image, 0.3 °C voxel-wise SDT) were acquired in an ex vivo esophagus sample, on a clinical 1.5T scanner. The endoscopic device was actively operated under automatic temperature control, demonstrating a high level of accuracy (1.7% standard deviation, 1.1% error of mean value), which indicates that this technology may be suitable for HICU therapy of endoluminal cancer.

  1. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    International Nuclear Information System (INIS)

    Oghabian, M. A.; Mehdipour, Sh.; RiahicAlam, N.; Rafie, B.; Ghanaati, H.

    2005-01-01

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  2. Dental MRI using a dedicated RF-coil at 3 Tesla.

    Science.gov (United States)

    Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara

    2015-12-01

    To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI - a comparison with contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Eshed, Iris [The Sheba Medical Center, Department of Diagnostic Imaging, Tel Hashomer (Israel); Tel Aviv University, Sackler School of Medicine, Tel Aviv (Israel); Krabbe, Simon; Axelsen, Mette; Pedersen, Susanne Juhl [Copenhagen University Hospital Glostrup, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen (Denmark); Oestergaard, Mikkel [Copenhagen University Hospital Glostrup, Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen (Denmark); Copenhagen University Hospital Gentofte, Department of Rheumatology/C, Copenhagen (Denmark); Boeyesen, Pernille [Diakonhjemmet Hospital, Department of Rheumatology, Oslo (Norway); Moeller, Jakob M. [Copenhagen University Hospital at Herlev, Department of Radiology, Copenhagen (Denmark); Therkildsen, Flemming [Metropolitan University College, Copenhagen (Denmark); Madsen, Ole Rintek [Copenhagen University Hospital Gentofte, Department of Rheumatology/C, Copenhagen (Denmark)

    2015-04-01

    To explore if the reliability of synovitis assessment by unenhanced MRI is influenced by different MRI field-strengths, coil types and image resolutions in RA patients. Forty-one RA patients and 12 healthy controls underwent hand MRI (wrist and 2{sup nd}-5{sup th} metacarpophalangeal joints) at 4 different field-strengths (0.23 T/0.6 T/1.5 T/3.0 T) on the same day. Seven protocols using a STIR sequence with different field-strengths, coils (flex coils/dedicated phased-array extremity coils) and resolution were applied and scored blindly for synovitis (OMERACT-RAMRIS method). A 1.5 T post-contrast T1-weighted sequence was used as gold standard reference. Fair-good agreement (ICC=0.38-0.72) between the standard reference and the different STIR protocols (best agreement with extremity coil and small voxel size at 1.5 T). The accuracy for presence/absence of synovitis was very high per person (0.80-1.0), and moderate-high per joint (0.63-0.85), whereas exact agreements on scores were moderate (0.50-0.66). The intrareader agreement (15 patients and 3 controls) on presence/absence of synovitis was very high (0.87-1.0). Unenhanced MRI using STIR sequence is only moderately reliable for assessing hand synovitis in RA, when contrast-enhanced MRI is considered the gold standard reference. Contrast injection, field strength and coil type influence synovitis assessment, and should be considered before performing MRI in clinical trials and practice. (orig.)

  4. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI - a comparison with contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Eshed, Iris; Krabbe, Simon; Axelsen, Mette; Pedersen, Susanne Juhl; Oestergaard, Mikkel; Boeyesen, Pernille; Moeller, Jakob M.; Therkildsen, Flemming; Madsen, Ole Rintek

    2015-01-01

    To explore if the reliability of synovitis assessment by unenhanced MRI is influenced by different MRI field-strengths, coil types and image resolutions in RA patients. Forty-one RA patients and 12 healthy controls underwent hand MRI (wrist and 2 nd -5 th metacarpophalangeal joints) at 4 different field-strengths (0.23 T/0.6 T/1.5 T/3.0 T) on the same day. Seven protocols using a STIR sequence with different field-strengths, coils (flex coils/dedicated phased-array extremity coils) and resolution were applied and scored blindly for synovitis (OMERACT-RAMRIS method). A 1.5 T post-contrast T1-weighted sequence was used as gold standard reference. Fair-good agreement (ICC=0.38-0.72) between the standard reference and the different STIR protocols (best agreement with extremity coil and small voxel size at 1.5 T). The accuracy for presence/absence of synovitis was very high per person (0.80-1.0), and moderate-high per joint (0.63-0.85), whereas exact agreements on scores were moderate (0.50-0.66). The intrareader agreement (15 patients and 3 controls) on presence/absence of synovitis was very high (0.87-1.0). Unenhanced MRI using STIR sequence is only moderately reliable for assessing hand synovitis in RA, when contrast-enhanced MRI is considered the gold standard reference. Contrast injection, field strength and coil type influence synovitis assessment, and should be considered before performing MRI in clinical trials and practice. (orig.)

  5. High-resolution magnetic resonance of the extracranial facial nerve and parotid duct: demonstration of the branches of the intraparotid facial nerve and its relation to parotid tumours by MRI with a surface coil

    International Nuclear Information System (INIS)

    Takahashi, N.; Okamoto, K.; Ohkubo, M.; Kawana, M.

    2005-01-01

    AIM: To investigate the usefulness of high-resolution MR imaging in the evaluation of the extracranial facial nerve, compared with surgical findings. MATERIALS AND METHODS: Thirteen patients with benign parotid tumours were studied on a 1.5-T MR system with a 3 in circular surface coil. High-resolution T1-weighted spin-echo, T2-weighted fast spin-echo, and three-dimensional gradient-recalled acquisition in the steady state (GRASS) images were obtained in the axial planes. Oblique reformatted images were generated. Tumours, parotid ducts and facial nerves were identified on these images. The relationship of the tumours to the facial nerves was confirmed at surgery. RESULTS: Facial nerves appeared as linear structures of low intensity on all pulse sequences. The main trunks and cervicofacial and temporofacial divisions of the facial nerves were identified in 100%, 84.1% and 53.8% of GRASS images, respectively. Parotid ducts appeared as structures of low intensity on T1-weighted (66.6%) and GRASS images (81.8%), and as structures of very high intensity on T2-weighted images (91.7%). The relationships of the tumours to the facial nerves were correctly diagnosed in 11 (91.7%) of 12 cases. CONCLUSION: High-resolution MR imaging depicts the extracranial facial nerve and the parotid duct, and is useful for preoperative evaluation of parotid gland tumours

  6. High-resolution magnetic resonance of the extracranial facial nerve and parotid duct: demonstration of the branches of the intraparotid facial nerve and its relation to parotid tumours by MRI with a surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Department of Radiology, Niigata University Faculty of Medicine, Niigata (Japan) and Department of Radiology, Niigata City General Hospital, Niigata (Japan)]. E-mail: nandtr@hosp.niigata.niigata.jp; Okamoto, K. [Department of Radiology, Niigata University Faculty of Medicine, Niigata (Japan); Ohkubo, M. [Department of Radiotechnology, Niigata University Faculty of Medicine, Niigata (Japan); Kawana, M. [Department of Otorhinolaryngology, Niigata University Faculty of Medicine, Niigata (Japan)

    2005-03-01

    AIM: To investigate the usefulness of high-resolution MR imaging in the evaluation of the extracranial facial nerve, compared with surgical findings. MATERIALS AND METHODS: Thirteen patients with benign parotid tumours were studied on a 1.5-T MR system with a 3 in circular surface coil. High-resolution T1-weighted spin-echo, T2-weighted fast spin-echo, and three-dimensional gradient-recalled acquisition in the steady state (GRASS) images were obtained in the axial planes. Oblique reformatted images were generated. Tumours, parotid ducts and facial nerves were identified on these images. The relationship of the tumours to the facial nerves was confirmed at surgery. RESULTS: Facial nerves appeared as linear structures of low intensity on all pulse sequences. The main trunks and cervicofacial and temporofacial divisions of the facial nerves were identified in 100%, 84.1% and 53.8% of GRASS images, respectively. Parotid ducts appeared as structures of low intensity on T1-weighted (66.6%) and GRASS images (81.8%), and as structures of very high intensity on T2-weighted images (91.7%). The relationships of the tumours to the facial nerves were correctly diagnosed in 11 (91.7%) of 12 cases. CONCLUSION: High-resolution MR imaging depicts the extracranial facial nerve and the parotid duct, and is useful for preoperative evaluation of parotid gland tumours.

  7. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  8. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  9. In vivo field-cycling relaxometry using an insert coil for magnetic field offset.

    Science.gov (United States)

    Pine, Kerrin J; Goldie, Fred; Lurie, David J

    2014-11-01

    The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  10. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Fujii, Hirofumi; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8 x 4 one-cm 2 grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195 x 0.195 x 1 mm 3 ). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm 3 , and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm 3 by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research. (author)

  11. Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate.

    NARCIS (Netherlands)

    Fütterer, J.J.; Scheenen, T.W.J.; Huisman, H.J.; Klomp, D.W.J.; Dorsten, F.A. van; Hulsbergen-van de Kaa, C.A.; Witjes, J.A.; Heerschap, A.; Barentsz, J.O.

    2004-01-01

    RATIONALE AND OBJECTIVES: We sought to explore the feasibility of magnetic resonance imaging (MRI) of the prostate at 3T, with the knowledge of potential drawbacks of MRI at high field strengths. MATERIAL AND METHOD: MRI, dynamic MRI, and 1H-MR spectroscopic imaging were performed in 10 patients

  12. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Bongers, Malte Niklas [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2017-07-15

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  13. Follow-up CT and CT angiography after intracranial aneurysm clipping and coiling - improved image quality by iterative metal artifact reduction

    International Nuclear Information System (INIS)

    Bier, Georg; Hempel, Johann-Martin; Oergel, Anja; Hauser, Till-Karsten; Ernemann, Ulrike; Hennersdorf, Florian; Bongers, Malte Niklas

    2017-01-01

    This paper aims to evaluate a new iterative metal artifact reduction algorithm for post-interventional evaluation of brain tissue and intracranial arteries. The data of 20 patients that underwent follow-up cranial CT and cranial CT angiography after clipping or coiling of an intracranial aneurysm was retrospectively analyzed. After the images were processed using a novel iterative metal artifact reduction algorithm, images with and without metal artifact reduction were qualitatively evaluated by two readers, using a five-point Likert scale. Moreover, artifact strength was quantitatively assessed in terms of CT attenuation and standard deviation alterations. The qualitative analysis yielded a significant increase in image quality (p = 0.0057) in iteratively processed images with substantial inter-observer agreement (k = 0.72), while the CTA image quality did not differ (p = 0.864) and even showed vessel contrast reduction in six cases (30%). The mean relative attenuation difference was 27% without metal artifact reduction vs. 11% for iterative metal artifact reduction images (p = 0.0003). The new iterative metal artifact reduction algorithm enhances non-enhanced CT image quality after clipping or coiling, but in CT-angiography images, the contrast of adjacent vessels can be compromised. (orig.)

  14. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays.

    Science.gov (United States)

    Pohmann, Rolf; Speck, Oliver; Scheffler, Klaus

    2016-02-01

    Relaxation times, transmit homogeneity, signal-to-noise ratio (SNR) and parallel imaging g-factor were determined in the human brain at 3T, 7T, and 9.4T, using standard, tight-fitting coil arrays. The same human subjects were scanned at all three field strengths, using identical sequence parameters and similar 31- or 32-channel receive coil arrays. The SNR of three-dimensional (3D) gradient echo images was determined using a multiple replica approach and corrected with measured flip angle and T2 (*) distributions and the T1 of white matter to obtain the intrinsic SNR. The g-factor maps were derived from 3D gradient echo images with several GRAPPA accelerations. As expected, T1 values increased, T2 (*) decreased and the B1 -homogeneity deteriorated with increasing field. The SNR showed a distinctly supralinear increase with field strength by a factor of 3.10 ± 0.20 from 3T to 7T, and 1.76 ± 0.13 from 7T to 9.4T over the entire cerebrum. The g-factors did not show the expected decrease, indicating a dominating role of coil design. In standard experimental conditions, SNR increased supralinearly with field strength (SNR ∼ B0 (1.65) ). To take full advantage of this gain, the deteriorating B1 -homogeneity and the decreasing T2 (*) have to be overcome. © 2015 Wiley Periodicals, Inc.

  15. Tablet surface characterisation by various imaging techniques

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2003-01-01

    The aim of this study was to characterise tablet surfaces using different imaging and roughness analytical techniques including optical microscopy, scanning electron microscopy (SEM), laser profilometry and atomic force microscopy (AFM). The test materials compressed were potassium chloride (KCl......) and sodium chloride (NaCl). It was found that all methods used suggested that the KCl tablets were smoother than the NaCl tablets and higher compression pressure made the tablets smoother. Imaging methods like optical microscopy and SEM can give useful information about the roughness of the sample surface...

  16. In Vitro Magnetic Resonance Imaging Evaluation of Fragmented, Open-Coil, Percutaneous Peripheral Nerve Stimulation Leads.

    Science.gov (United States)

    Shellock, Frank G; Zare, Armaan; Ilfeld, Brian M; Chae, John; Strother, Robert B

    2018-04-01

    Percutaneous peripheral nerve stimulation (PNS) is an FDA-cleared pain treatment. Occasionally, fragments of the lead (MicroLead, SPR Therapeutics, LLC, Cleveland, OH, USA) may be retained following lead removal. Since the lead is metallic, there are associated magnetic resonance imaging (MRI) risks. Therefore, the objective of this investigation was to evaluate MRI-related issues (i.e., magnetic field interactions, heating, and artifacts) for various lead fragments. Testing was conducted using standardized techniques on lead fragments of different lengths (i.e., 50, 75, and 100% of maximum possible fragment length of 12.7 cm) to determine MRI-related problems. Magnetic field interactions (i.e., translational attraction and torque) and artifacts were tested for the longest lead fragment at 3 Tesla. MRI-related heating was evaluated at 1.5 Tesla/64 MHz and 3 Tesla/128 MHz with each lead fragment placed in a gelled-saline filled phantom. Temperatures were recorded on the lead fragments while using relatively high RF power levels. Artifacts were evaluated using T1-weighted, spin echo, and gradient echo (GRE) pulse sequences. The longest lead fragment produced only minor magnetic field interactions. For the lead fragments evaluated, physiologically inconsequential MRI-related heating occurred at 1.5 Tesla/64 MHz while under certain 3 Tesla/128 MHz conditions, excessive temperature elevations may occur. Artifacts extended approximately 7 mm from the lead fragment on the GRE pulse sequence, suggesting that anatomy located at a position greater than this distance may be visualized on MRI. MRI may be performed safely in patients with retained lead fragments at 1.5 Tesla using the specific conditions of this study (i.e., MR Conditional). Due to possible excessive temperature rises at 3 Tesla, performing MRI at that field strength is currently inadvisable. © 2017 International Neuromodulation Society.

  17. A Toolbox for Imaging Stellar Surfaces

    Science.gov (United States)

    Young, John

    2018-04-01

    In this talk I will review the available algorithms for synthesis imaging at visible and infrared wavelengths, including both gray and polychromatic methods. I will explain state-of-the-art approaches to constraining the ill-posed image reconstruction problem, and selecting an appropriate regularisation function and strength of regularisation. The reconstruction biases that can follow from non-optimal choices will be discussed, including their potential impact on the physical interpretation of the results. This discussion will be illustrated with example stellar surface imaging results from real VLTI and COAST datasets.

  18. Microembolic signal monitoring and the prediction of thromboembolic events following coil embolization of unruptured intracranial aneurysms: diffusion-weighted imaging correlation

    International Nuclear Information System (INIS)

    Cho, Jae-Hoon; Park, Jaechan; Kang, Dong-Hun; Kim, Yong-Won; Kim, Yong-Sun

    2015-01-01

    Microembolic signal (MES) monitoring with transcranial Doppler ultrasonography (TCD) may allow for early prediction of thromboembolisms following endovascular coiling of unruptured intracranial aneurysms (UIAs). However, the method has not gained widespread use and may benefit from correlation with diffusion-weighted imaging (DWI) of acute ischemic lesions after coiling. This purposed to evaluate the relationship between MESs and DWI-positive lesions more precisely. We conducted a prospective study on 45 consecutive patients. TCD was performed over the artery that is dependent on the site of aneurysm, but seven patients (15.6 %) could not be examined due to the lack of an adequate cranial window. Consequently, 38 patients were available to detect MESs immediately (MES-1) and 24 h (MES-2) after coiling for UIAs. We also checked DWI 1 day after the coiling and analyzed correlations between the TCD and DWI findings. MES-1 and MES-2 were positive in 25 (65.7 %) and 14 (36.8 %) patients, respectively. DWI-positive lesions were seen in 20 (52.6 %) patients, and only 1 (2.6 %) patient was symptomatic. MES-1 and MES-2 were strongly correlated with the number of DWI-positive lesions (Spearman's correlation coefficient = 0.79 and 0.70, P < 0.01 and P < 0.01, respectively). Additionally, there was a significant correlation between MES-1 and MES-2 (Spearman's correlation coefficient = 0.70). Based upon the significant correlation between MES and DWI findings, MES may have a role for early detection of ischemic complications after coiling of UIAs. In addition, future study for further validation with clinical application seems requiring. (orig.)

  19. Imaging the Surfaces of Stars from Space

    Science.gov (United States)

    Carpenter, Kenneth; Rau, Gioia

    2018-04-01

    Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.

  20. Changes in brain magnetic resonance imaging patterns for preterm infants after introduction of a magnetic resonance-compatible incubator coil system: 5-year experience at a single institution.

    Science.gov (United States)

    Cho, Hyun-Hae; Kim, In-One; Cheon, Jung-Eun; Choi, Young Hun; Lee, So Mi; Kim, Woo Sun

    2016-09-01

    To evaluate the changes in using patterns of brain magnetic resonance imaging (MRI) in preterm infants after introduction of a MR-compatible incubator coil system. Brain MRIs for preterm infants with the MR-compatible incubator coil from March 2010 to July 2014 (n=154, group A) were compared with MRIs prior to the introduction of the incubator coil, from March 2005 to February 2010 (n=65, group B). Clinical data, MRI findings, acquisition time, and incidence of adverse events during the study were retrospectively reviewed. For the qualitative analysis of the examinations, the presence of motion artefact, spatial resolution, and overall image quality were assessed. Signal uniformity of each sequence was evaluated for a quantitative comparison. Comparing with group B, Group A was significantly younger (36+3 vs. 38+3 weeks, pimage acquisition time was significantly shorter in group A (21.4±4.5 vs. 25.4±5.5min, pimage quality with decreased signal variation than group B (all pimage quality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.

    Science.gov (United States)

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Girard, Olivier; Darrasse, Luc

    2007-09-01

    Signal-to-noise ratio improvement is of major importance to achieve microscopic spatial resolution in magnetic resonance experiments. Magnetic resonance imaging of small animals is particularly concerned since it typically requires voxels of less than (100 microm)(3) to observe the small anatomical structures having size reduction by a factor of more than 10 as compared to human being. The signal-to-noise ratio can be increased by working at high static magnetic field strengths, but the biomedical interest of such high-field systems may be limited due to field-dependent contrast mechanisms and severe technological difficulties. An alternative approach that allows working in clinical imaging system is to improve the sensitivity of the radio-frequency receiver coil. This can be done using small cryogenically operated coils made either of copper or high-temperature superconducting material. We report the technological development of cryo-cooled superconducting coils for high-resolution imaging in a whole-body magnetic resonance scanner operating at 1.5 T. The technological background supporting this development is first addressed, including HTS coil design, simulation tools, cryogenic mean description and electrical characterization procedure. To illustrate the performances of superconducting coils for magnetic resonance imaging at intermediate field strength, in-vivo mouse images of various anatomic sites acquired with a 12 mm diameter cryo-cooled superconducting coil are presented.

  2. Decoupling Scheme for a Cryogenic Rx-Only RF Coil for 13C Imaging at 3T

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Søvsø Szocska Hansen, Esben; Laustsen, Christoffer

    In this study we evaluate the different active decoupling schemes that can be used to drive an Rx-only coil, in order to determine the optimal design for 13C MRI at 3T. Three different circuit schemes are studied: two known ones (with regular series and parallel tuning respectively), and a novel...... one which we found to be optimal for this case. The circuits have been cooled to 77K to reduce coil noise. Preliminary tests with the preamplifier cooled to 77K for reduction of noise figure, are also reported....

  3. Contrast-enhanced MR venography of the head using magnetization prepared rapid gradient echo imaging. Comparison between head and body radiofrequency transmitter coil systems

    International Nuclear Information System (INIS)

    Matsunobu, Satosi; Amanuma, Makoto; Tsukuda, Shunji

    2004-01-01

    The purpose of this study was to evaluate the image quality and vascular selectivity of MR venography of the head using an magnetization prepared rapid gradient echo (MP-RAGE) technique when obtained with a body radiofrequency transmitter coil system. A total of 24 patients were imaged with a head or body radiofrequency (RF) transmission system. Subtraction MR angiography (MRA) was processed with 0.1 mmol Gd-DTPA administration, and signal-to-noise ratios of the vascular system were measured. Venous demonstration and selectivity were also assessed. MP-RAGE MR venography with a body transmission system showed almost the same signal intensity for the venous and arterial systems, resulting in nonspecific vascular demonstration, while the head transmission system showed semi-selective venograms owing to inflow-induced high signal on precontrast images. However, MRA with a body transmission system provided a 1.5- to 2.5-fold higher signal-to-noise ratios based on higher gradient performance and excellent demonstration of the head veins, especially those below the skull base. Although selective venography was difficult, MRA with a body transmission coil provided excellent vascular images of the brain. (author)

  4. A novel target-field method for finite-length magnetic resonance shim coils: I. Zonal shims

    International Nuclear Information System (INIS)

    Forbes, Lawrence K.; Crozier, Stuart

    2001-01-01

    This paper presents a new approach for the design of genuinely finite-length shim and gradient coils, intended for use in magnetic resonance imaging equipment. A cylindrical target region is located asymmetrically, at an arbitrary position within a coil of finite length. A desired target field is specified on the surface of that region, and a method is given that enables winding patterns on the surface of the coil to be designed, to produce the desired field at the inner target region. The method uses a minimization technique combined with regularization, to find the current density on the surface of the coil. The method is illustrated for linear, quadratic and cubic magnetic target fields located asymmetrically within a finite-length coil. (author)

  5. E-coil: an inverse boundary element method for a quasi-static problem

    International Nuclear Information System (INIS)

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez; Power, Henry

    2010-01-01

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  6. E-coil: an inverse boundary element method for a quasi-static problem

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)

    2010-06-07

    Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.

  7. Thromboembolic events associated with single balloon-, double balloon-, and stent-assisted coil embolization of asymptomatic unruptured cerebral aneurysms: evaluation with diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Takigawa, Tomoji; Suzuki, Kensuke; Sugiura, Yoshiki; Suzuki, Ryotaro; Takano, Issei; Shimizu, Nobuyuki; Tanaka, Yoshihiro; Hyodo, Akio

    2014-01-01

    The introduction of the balloon remodeling and stent-assisted technique has revolutionized the approach to coil embolization for wide-neck aneurysms. The purpose of this study was to determine the frequency of thromboembolic events associated with single balloon-assisted, double balloon-assisted, and stent-assisted coil embolization for asymptomatic unruptured aneurysms. A retrospective review was undertaken by 119 patients undergoing coiling with an adjunctive technique for unruptured saccular aneurysms (64 single balloon, 12 double balloon, 43 stent assisted). All underwent diffusion-weighted imaging (DWI) within 24 h after the procedure. DWI showed hyperintense lesions in 48 (40 %) patients, and ten (21 %) of these patients incurred neurological deterioration (permanent, two; transient, eight). Hyperintense lesions were detected significantly more often in procedures with the double balloon-assisted technique (7/12, 58 %) than with the single balloon-assisted technique (16/64, 25 %, p = 0.05). Occurrence of new lesions was significantly higher with the use of stent-assisted technique (25/43, 58 %) than with the single balloon-assisted technique (p = 0.001). Symptomatic ischemic rates were similar between the three groups. The increased number of microcatheters was significantly related to the DWI abnormalities (two microcatheters, 15/63 (23.8 %); three microcatheters, 20/41 (48.8 %) (p = 0.008); four microcatheters, 12/15 (80 %) (p = 0.001)). Thromboembolic events detected on DWI related to coil embolization for unruptured aneurysms are relatively common, especially in association with the double balloon-assisted and stent-assisted techniques. Furthermore, the number of microcatheters is highly correlated with DWI abnormalities. The high rate of thromboembolic events suggests the need for evaluation of platelet reactivity and the addition or change of antiplatelet agents. (orig.)

  8. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume ³¹P/¹H radiofrequency coil in a clinical 3-T MRI system.

    Science.gov (United States)

    Jeong, Eun-Kee; Sung, Young-Hoon; Kim, Seong-Eun; Zuo, Chun; Shi, Xianfeng; Mellon, Eric A; Renshaw, Perry F

    2011-08-01

    High-energy phosphate metabolism, which allows the synthesis and regeneration of adenosine triphosphate (ATP), is a vital process for neuronal survival and activity. In particular, creatine kinase (CK) serves as an energy reservoir for the rapid buffering of ATP levels. Altered CK enzyme activity, reflecting compromised high-energy phosphate metabolism or mitochondrial dysfunction in the brain, can be assessed using magnetization transfer (MT) MRS. MT (31)P MRS has been used to measure the forward CK reaction rate in animal and human brain, employing a surface radiofrequency coil. However, long acquisition times and excessive radiofrequency irradiation prevent these methods from being used routinely for clinical evaluations. In this article, a new MT (31)P MRS method is presented, which can be practically used to measure the CK forward reaction rate constant in a clinical MRI system employing a volume head (31)P coil for spatial localization, without contamination from the scalp muscle, and an acquisition time of 30 min. Other advantages associated with the method include radiofrequency homogeneity within the regions of interest of the brain using a volume coil with image-selected in vivo spectroscopy localization, and reduction of the specific absorption rate using nonadiabatic radiofrequency pulses for MT saturation. The mean value of k(f) was measured as 0.320 ± 0.075 s(-1) from 10 healthy volunteers with an age range of 18-40 years. These values are consistent with those obtained using earlier methods, and the technique may be used routinely to evaluate energetic processes in the brain on a clinical MRI system. Copyright © 2010 John Wiley & Sons, Ltd.

  9. T1 weighted brain images at 7 Tesla unbiased for Proton Density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization.

    Science.gov (United States)

    Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-06-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition

  10. T1 weighted Brain Images at 7 Tesla Unbiased for Proton Density, T2* contrast and RF Coil Receive B1 Sensitivity with Simultaneous Vessel Visualization

    Science.gov (United States)

    Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen

    2009-01-01

    At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique

  11. Gradient coil system for nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  12. Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency.

    Science.gov (United States)

    Vaidya, Manushka V; Collins, Christopher M; Sodickson, Daniel K; Brown, Ryan; Wiggins, Graham C; Lattanzi, Riccardo

    2016-02-01

    In high field MRI, the spatial distribution of the radiofrequency magnetic ( B 1 ) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B 1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B 1 spatial distributions for surface coils and can provide guidance for RF engineers.

  13. Examination of measurement and its method of compensation of the sensitivity distribution using phased array coil for body scan

    CERN Document Server

    Kimura, T; Iizuka, A; Taniguchi, Y; Ishikuro, A; Hongo, T; Inoue, H; Ogura, A

    2003-01-01

    The influence on the quality of images by measurement of a sensitivity distribution and the use of a sensitivity compensation filter was considered using an opposite-type phased array coil and volume-type phased array coil. With the opposite-type phased array coil, the relation between coil interval and filter was investigated for the image intensity correction (IIC) filter, surface coil intensity correction (SCIC) filter (GE), and the Normalize filter (SIEMENS). The SCIC filter and Normalize filter showed distance dependability over the coil interval of signal-to-noise ratio (SNR) and uniformity was observed, and the existence of an optimal coil interval was suggested. Moreover, with the IIC filter, distance dependability over a coil interval was small, and the decrease in contrast with use was remarkable. On the other hand, with the volume-type phased array coil, the overlap of an array element was investigated to determine the influence it had on sensitivity distribution. Although the value stabilized in t...

  14. 3Tesla MRI surface coil: Is it sensitive for prostatic imaging??

    African Journals Online (AJOL)

    Mahmoud Agha

    2014-01-30

    Jan 30, 2014 ... MRI, in pre-sampling diagnosis of prostate cancer, in an attempt to use it ... approved by the ethics committee in Al-Mana General Hospital. ... scopy; NPV, negative predictive value; PACS, Picture archiving and ... Some inherited genes had been found to raise the risk for more ..... ciplinary perspective.

  15. MR imaging of rotator cuff tears

    International Nuclear Information System (INIS)

    Kumagai, Hideo

    1992-01-01

    A total of 115 patients with clinical symptoms and signs suggesting rotator cuff tears underwent MR imaging with a 1.5-Tesla system. The body coil was used as the receiver coil in 24 patients and a single 10 cm surface coil in 91. Arthrography or MR imaging with intra-articular Gd-DTPA (MR arthrography) was performed in 95 of the 115. T2-weighted images with the body coil showed high signal intensity lesions in rotator cuffs in only seven of the 10 patients who had tears demonstrated by arthrography or MR arthrography. On the other hand, T2-weighted images with the surface coil demonstrated high signal intensity lesions in cuffs in all 27 patients who were diagnosed to have tears by arthrography or MR arthrography. In 12 patietns, T2-wighted images with the surface coil showed high signal intensity lesions in cuffs, while arthrography and MR arthrography did not show tears. Surgery was performed in four of the 12 patients and partial tears were confirmed. A single 10 cm surface coil, 3 mm slice thickness and 2.5 second repetition time seem to account for the fine visualization of cuff tears by the T2-weighted images. These results suggest that T2-weighted images obtained with the surface coil are superior to arthrography and MR arthrography. (author)

  16. Method for Surface Scanning in Medical Imaging and Related Apparatus

    DEFF Research Database (Denmark)

    2015-01-01

    A method and apparatus for surface scanning in medical imaging is provided. The surface scanning apparatus comprises an image source, a first optical fiber bundle comprising first optical fibers having proximal ends and distal ends, and a first optical coupler for coupling an image from the image...

  17. Structured Light-Based Motion Tracking in the Limited View of an MR Head Coil

    DEFF Research Database (Denmark)

    Erikshøj, M.; Olesen, Oline Vinter; Conradsen, Knut

    2013-01-01

    A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions of the fac......A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions...

  18. Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils.

    Science.gov (United States)

    Buehler, Tania; Kreis, Roland; Boesch, Chris

    2015-02-01

    (31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are

  19. Pretreatment Endorectal Coil Magnetic Resonance Imaging Findings Predict Biochemical Tumor Control in Prostate Cancer Patients Treated With Combination Brachytherapy and External-Beam Radiotherapy

    International Nuclear Information System (INIS)

    Riaz, Nadeem; Afaq, Asim; Akin, Oguz; Pei Xin; Kollmeier, Marisa A.; Cox, Brett; Hricak, Hedvig; Zelefsky, Michael J.

    2012-01-01

    Purpose: To investigate the utility of endorectal coil magenetic resonance imaging (eMRI) in predicting biochemical relapse in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Methods and Materials: Between 2000 and 2008, 279 men with intermediate- or high-risk prostate cancer underwent eMRI of their prostate before receiving brachytherapy and supplemental intensity-modulated radiotherapy. Endorectal coil MRI was performed before treatment and retrospectively reviewed by two radiologists experienced in genitourinary MRI. Image-based variables, including tumor diameter, location, number of sextants involved, and the presence of extracapsular extension (ECE), were incorporated with other established clinical variables to predict biochemical control outcomes. The median follow-up was 49 months (range, 1–13 years). Results: The 5-year biochemical relapse-free survival for the cohort was 92%. Clinical findings predicting recurrence on univariate analysis included Gleason score (hazard ratio [HR] 3.6, p = 0.001), PSA (HR 1.04, p = 0.005), and National Comprehensive Cancer Network risk group (HR 4.1, p = 0.002). Clinical T stage and the use of androgen deprivation therapy were not correlated with biochemical failure. Imaging findings on univariate analysis associated with relapse included ECE on MRI (HR 3.79, p = 0.003), tumor size (HR 2.58, p = 0.04), and T stage (HR 1.71, p = 0.004). On multivariate analysis incorporating both clinical and imaging findings, only ECE on MRI and Gleason score were independent predictors of recurrence. Conclusions: Pretreatment eMRI findings predict for biochemical recurrence in intermediate- and high-risk prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Gleason score and the presence of ECE on MRI were the only significant predictors of biochemical relapse in this group of patients.

  20. Coil supporting device in a nuclear fusion device

    International Nuclear Information System (INIS)

    Takano, Hirohisa; Sasaki, Katsutoki.

    1976-01-01

    Object: To slide a vacuum vessel in the nuclear fusion device and a coil within the vacuum vessel and to mount the coil within the vacuum vessel in a manner that it may not be moved by an electromagnetic force, thereby preventing stress from being produced in the coil. Structure: A coil supporting plate mounted at upper and lower parts prevents damage to an insulation of the coil, said coil being held in a U-shaped groove, and can be moved integral with the coil by the action of a roller bearing with a plurality of needle-like rollers arranged in parallel. The coil supporting plate has a plurality of projections disposed on the lower surface thereof, and flat springs are placed in the projections one over another so that the spring action exerted in the lower plate causes the coil to be resiliently bias in a direction of an electromagnetic force applied thereto and to support the coil. (Yoshino, Y.)

  1. Numerical simulations on active shielding methods comparison and wrapped angle optimization for gradient coil design in MRI with enhanced shielding effect

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Guo, Lei; Chen, Zhifeng; Liu, Feng

    2018-05-01

    The switching of a gradient coil current in magnetic resonance imaging will induce an eddy current in the surrounding conducting structures while the secondary magnetic field produced by the eddy current is harmful for the imaging. To minimize the eddy current effects, the stray field shielding in the gradient coil design is usually realized by minimizing the magnetic fields on the cryostat surface or the secondary magnetic fields over the imaging region. In this work, we explicitly compared these two active shielding design methods. Both the stray field and eddy current on the cryostat inner surface were quantitatively discussed by setting the stray field constraint with an ultra-low maximum intensity of 2 G and setting the secondary field constraint with an extreme small shielding ratio of 0.000 001. The investigation revealed that the secondary magnetic field control strategy can produce coils with a better performance. However, the former (minimizing the magnetic fields) is preferable when designing a gradient coil with an ultra-low eddy current that can also strictly control the stray field leakage at the edge of the cryostat inner surface. A wrapped-edge gradient coil design scheme was then optimized for a more effective control of the stray fields. The numerical simulation on the wrapped-edge coil design shows that the optimized wrapping angles for the x and z coils in terms of our coil dimensions are 40° and 90°, respectively.

  2. Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Downey, Kate; Morgan, Veronica A.; Giles, Sharon L.; MacDonald, A.; DeSouza, Nandita M. [The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, CRUK Cancer Imaging Centre, Surrey (United Kingdom); Attygalle, Ayoma D. [The Royal Marsden NHS Foundation Trust, Department of Histopathology, London (United Kingdom); Davis, M. [Kingston Hospital, Department of Gynaecology, Kingston-upon-Thames, Surrey (United Kingdom); Ind, Thomas E.J.; Shepherd, John H. [The Royal Marsden NHS Foundation Trust, Gynecology Unit, London (United Kingdom)

    2016-04-15

    To compare sensitivity and specificity of endovaginal versus external-array coil T2-W and T2-W + DWI for detecting and staging small cervical tumours. Optimised endovaginal and external array coil MRI at 3.0-T was done prospectively in 48 consecutive patients with stage Ia/Ib1 cervical cancer. Sensitivity/specificity for detecting tumour and parametrial extension against histopathology for a reading radiologist were determined on coronal T2-W and T2W + DW images. An independent radiologist also scored T2-W images without and with addition of DWI for the external-array and endovaginal coils on separate occasions >2 weeks apart. Cohen's kappa assessed inter- and intra-observer agreement. Median tumour volume in 19/38 cases positive on subsequent histology was 1.75 cm{sup 3}. Sensitivity, specificity, PPV, NPV were: reading radiologist 91.3 %, 89.5 %, 91.3 %, 89.5 %, respectively; independent radiologist T2-W 82.6 %, 73.7 %, 79.1 %, 77.8 % for endovaginal, 73.9 %, 89.5 %, 89.5 %, 73.9 % for external-array coil. Adding DWI improved sensitivity and specificity of endovaginal imaging (78.2 %, 89.5 %); adding DWI to external-array imaging improved specificity (94.7 %) but reduced sensitivity (66.7 %). Inter- and intra-observer agreement on T2-W + DWI was good (kappa = 0.67 and 0.62, respectively). Endovaginal coil T2-W MRI is more sensitive than external-array coil for detecting tumours <2 cm{sup 3}; adding DWI improves specificity of endovaginal imaging but reduces sensitivity of external-array imaging. (orig.)

  3. Novel spirometry based on optical surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York 10031 (United States); Sullivan, James [Pulmonary Laboratories, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Zatcky, Joan; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2015-04-15

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV{sub torso} = ΔV{sub thorax} + ΔV{sub abdomen}) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP{sub v} = ΔV{sub thorax}/ΔV{sub torso}) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume

  4. Novel spirometry based on optical surface imaging

    International Nuclear Information System (INIS)

    Li, Guang; Huang, Hailiang; Li, Diana G.; Chen, Qing; Gaebler, Carl P.; Mechalakos, James; Wei, Jie; Sullivan, James; Zatcky, Joan; Rimner, Andreas

    2015-01-01

    Purpose: To evaluate the feasibility of using optical surface imaging (OSI) to measure the dynamic tidal volume (TV) of the human torso during free breathing. Methods: We performed experiments to measure volume or volume change in geometric and deformable phantoms as well as human subjects using OSI. To assess the accuracy of OSI in volume determination, we performed experiments using five geometric phantoms and two deformable body phantoms and compared the values with those derived from geometric calculations and computed tomography (CT) measurements, respectively. To apply this technique to human subjects, an institutional review board protocol was established and three healthy volunteers were studied. In the human experiment, a high-speed image capture mode of OSI was applied to acquire torso images at 4–5 frames per second, which was synchronized with conventional spirometric measurements at 5 Hz. An in-house MATLAB program was developed to interactively define the volume of interest (VOI), separate the thorax and abdomen, and automatically calculate the thoracic and abdominal volumes within the VOIs. The torso volume change (TV C = ΔV torso = ΔV thorax + ΔV abdomen ) was automatically calculated using full-exhalation phase as the reference. The volumetric breathing pattern (BP v = ΔV thorax /ΔV torso ) quantifying thoracic and abdominal volume variations was also calculated. Under quiet breathing, TVC should equal the tidal volume measured concurrently by a spirometer with a conversion factor (1.08) accounting for internal and external differences of temperature and moisture. Another MATLAB program was implemented to control the conventional spirometer that was used as the standard. Results: The volumes measured from the OSI imaging of geometric phantoms agreed with the calculated volumes with a discrepancy of 0.0% ± 1.6% (range −1.9% to 2.5%). In measurements from the deformable torso/thorax phantoms, the volume differences measured using OSI

  5. Conception of Brownian coil

    OpenAIRE

    Zhang, Jiayuan

    2018-01-01

    This article proposes a conception of Brownian coil. Brownian coil is a tiny coil with the same size of pollen. Once immersed into designed magnetic field and liquid, the coil will be moved and deformed macroscopically, due to the microscopic thermodynamic molecular collisions. Such deformation and movement will change the magnetic flux through the coil, by which an ElectroMotive Force (EMF) is produced. In this work, Brownian heat exchanger and Brownian generator are further designed to tran...

  6. Clinical evaluation of phased array multicoil for spine MR imaging

    International Nuclear Information System (INIS)

    Miller, G.M.; Forbes, G.S.; Onofrio, B.M.; Rasmusson, J.J.

    1990-01-01

    Often, it is necessary to image the entire spinal canal or cord. Current surface coil technology necessitates a small field of view (FOV) and multiple coil placements, prolonging the examination. The Phased Array Multicoil (General Electric, Milwaukee, Wis) allows for high-resolution imaging of a larger segment of the spinal axis (48 cm), negating the need for multiple coil placements. The purpose of this paper is to determine whether, this technology can produce higher-quality images with equal or better expediency in a high-volume clinical practice. The studies were performed with a modified 1.5-T system (General Electric, Milwaukee, Wis). Multiple small surface coils are electronically linked so that each coil images only a small segment of the spinal column. The individual images are then fused to display one high-resolution 512-matrix image with up to a 48-cm FOV. A variety of four coil arrays were tested, including a 24-cm FOV dedicated cervical coil, 48-cm FOV shaped cervical/thoracic and straight thoracic/lumbar coils, and a six-coil array 75-cm entire spine coil. The images were then evaluated for overall quality, resolution, signal-to-noise ratio, and area of coverage

  7. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  8. High-resolution imaging of the layers of the gastrointestinal wall of pig and human specimens using an endoluminal MR receiver coil. Correlation to histology

    International Nuclear Information System (INIS)

    Kramer, Sebastian; Palmowski, M.; Macher-Goeppinger, S.; Mueller, M.; Volke, F.; Duex, M.; Kauczor, H.U.; Grenacher, L.

    2009-01-01

    Purpose: High-resolution MR imaging of the layers of the gastrointestinal wall to provide a foundation for tumor staging based on morphological criteria. Materials and Methods: Over a period of 12 months, miscellaneous parts of the gastrointestinal tract of 15 human specimens and 30 porcine specimens were scanned using a 1.5 Tesla clinical MRI scanner combined with an endoluminal receiver coil. The sequences used were T1-weighted opposed-phase, T2-weighted turbo spin echo with fat saturation and fast T2-weighted inversion recovery. The number of differentiable layers, their width and the signal intensity were documented. Then, the results were compared with histological specimens in order to link the imaged wall layers to the anatomical layers. Spearman's Rank Correlation was used to determine the soundness of the link between the images and their related histology. Results: For both human and animal specimens, the MRI scanning produced 3 to 5, maximum 6 (pig), differentiable layers. The mucosa, submucosa and muscularis could be differentiated with a hyperintense, hypointense and intermediary signal, respectively. The subserosal layer displayed a hypointense signal. Conclusion: High-resolution MRI is able to produce differentiable images of the anatomical layers of the gastrointestinal wall in both humans and pigs. Accordingly, it is possible to use MR imaging to diagnose the extent of local tumor infiltration of the gastrointestinal wall. (orig.)

  9. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2016-01-01

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green

  10. Initial results of 3-dimensional 1H-magnetic resonance spectroscopic imaging in the localization of prostate cancer at 3 Tesla: should we use an endorectal coil?

    Science.gov (United States)

    Yakar, Derya; Heijmink, Stijn W T P J; Hulsbergen-van de Kaa, Christina A; Huisman, Henkjan; Barentsz, Jelle O; Fütterer, Jurgen J; Scheenen, Tom W J

    2011-05-01

    The purpose of this study was to compare the diagnostic performance of 3 Tesla, 3-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) in the localization of prostate cancer (PCa) with and without the use of an endorectal coil (ERC). Our prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Between October 2004 and January 2006, 18 patients with histologically proven PCa on biopsy and scheduled for radical prostatectomy were included and underwent 3D-MRSI with and without an ERC. The prostate was divided into 14 regions of interest (ROIs). Four readers independently rated (on a 5-point scale) their confidence that cancer was present in each of these ROIs. These findings were correlated with whole-mount prostatectomy specimens. Areas under the receiver-operating characteristic curve were determined. A difference with a P Tesla slightly but significantly increased the localization performance compared with not using an ERC.

  11. 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil

    Energy Technology Data Exchange (ETDEWEB)

    Notohamiprodjo, Mike, E-mail: mike.notohamiprodjo@med.uni-muenchen.de [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Horng, Annie; Kuschel, Bernhard [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Paul, Dominik [Siemens Healthcare, Erlangen, Henkestr. 127, 91054 Erlangen (Germany); Li, Guobin [Siemens Mindit Magnetic Resonance Ltd., Shenzhen, Guang Dong (China); Raya, Jose G. [Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Reiser, Maximilian F. [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Glaser, Christian [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States)

    2012-11-15

    Objectives: To evaluate the clinical usefulness of an optimized 3D-Fast-Spin-Echo-sequence (3D-SPACE) in combination with a 15-channel knee-coil for 3D-imaging of the knee at 3 T. Methods: 15 volunteers and 50 consecutive patients were examined at 3 T with fat-saturated moderately T2-weighted 3D-SPACE (Voxel-size (VS): 0.6 mm Multiplication-Sign 0.5 mm Multiplication-Sign 0.5 mm/acquisition-time (AT) 10:44 min) using a 15-channel knee-coil. Flip angle optimization and radial k-space reordering were applied. Signal- and contrast-to-noise-ratios (SNR, CNR) were compared to non-optimized 3D-SPACE (8-channel knee-coil) and conventional 2D-FSE (VS: 0.4 mm Multiplication-Sign 0.4 mm Multiplication-Sign 3 mm/total AT: 12 min). Two radiologists independently rated depiction of internal knee structures and assessed detection and depiction of cartilage and meniscus abnormalities compared to conventional 2D-FSE-sequences. Sensitivity and specificity were calculated for a subgroup with arthroscopy as reference standard. Statistical analysis was performed with paired t-tests, confidence intervals and weighted-{kappa}-coefficients. Results: SNR and CNR particularly of fluid/cartilage of optimized 3D-SPACE were significantly higher (p < 0.05) than of the non-optimized 3D-sequence and conventional 2D-sequence. Blurring and image inhomogeneity were reduced in the optimized sequence. The thin slice-thickness was beneficial for depiction of problematical anatomical structures such as meniscal roots. 3D-SPACE showed significantly higher diagnostic confidence (p < 0.05) for diagnosis of cartilage lesions of the femoral trochlea. Overall sensitivity and specificity of 3D-SPACE and 2D-FSE for cartilage lesions was 82.3%/80.2% and 79.4%/84.2% and 100%/86.4% and 92.3%/81.8% for meniscus lesions. Conclusions: Optimized 3D-SPACE provides significantly higher signal and contrast compared to conventional 2D-FSE, particularly for fluid and cartilage, leading to improved diagnostic confidence

  12. Comparative study of fast T 2-weighted images using respiratory triggered, breath-hold, fat suppression and phased array multi coil for liver evaluation by magnetic resonance imaging; Estudo comparativo das sequencias rapidas ponderadas em T2, utilizando-se sincronizacao respiratoria, apneia, supressao de gordura, bobina de corpo e bobina de sinergia para a avaliacao do figado pela ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Abbehusen, Cristiane L.; D' Ippolito, Giuseppe; Palacio, Glaucia A.S.; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina (EPM). Dept. de Diagnostico por Imagem]. E-mail: cabbehusen@hotmail.com

    2003-10-01

    The objective of this study was to compare both qualitatively and quantitatively six T 2-weighted turbo spin-echo sequences varying the respiratory compensation technique, associating or not fat tissue suppression and using different types of coils. We performed a prospective study of 71 consecutive patients that were submitted to MRI of the liver using a 1.5 T magnet. The six following pulse sequences were used: fat-suppressed respiratory triggered with conventional body coil; breath-hold fat-suppressed with conventional body coil; non-suppressed respiratory triggered with conventional body coil; breath-hold non fat-suppressed with conventional body coil; fat-suppressed respiratory triggered with phased-array multi coil; breath-hold fat-suppressed with phased-array multi coil. Images were analyzed quantitatively by measuring the signal-to-noise ratios and qualitatively by evaluating the sharpness of hepatic contours, visibility of intrahepatic vessels and other segmental landmarks, and the presence of artifacts. Results: the qualitative analysis showed that the mean values obtained with the six sequences were 7.8, 4.6, 7.9, 5.2, 6.7 and 4.6 respectively. The respiratory-triggered sequences were better than the breath-hold sequences in both qualitative and quantitative analysis (p < 0.001). No significant differences in the values of signal-to-noise ratios and in overall image quality were found between the sequences with and without fat suppression (p . 0.05). The sequences using the body coil were similar in terms of image quality (p . 0.05) and better regarding signal-to-noise ratios than those obtained with the phased=array multi coil (p ,0.001). Our qualitative and quantitative results suggest that the best MRI sequences for the valuation of the liver are the sequences with respiratory triggering using a conventional body coil, with or without fat suppression. (author)

  13. Absolute quantitation of phosphorus metabolites in the cerebral cortex of the newborn human infant and in the forearm muscles of young adults using a double-tuned surface coil

    Science.gov (United States)

    Cady, Ernest B.

    The application of a double-tuned surface coil with strong coupling for both 31P and 1H to the in vivo measurement of metabolite concentrations by NMR spectroscopy is demonstrated. It is shown that sample loading, although important for a coil tuned to a single frequency, does not necessarily have a significant effect on absolute quantitation results if the coil is strongly coupled to the sample for both nuclei. For the coil used in the present study, the spectrometer calibration coefficient is almost independent of loading and the 1H and 31P flip angles at the coil center produced by fixed length pulses could be arranged to be nearly equal over a range of loading conditions. In seven normal infants, of gestational plus postnatal age 35 to 37 weeks, the cerebral cortex nucleotide triphosphate concentration was 3.7 ± 0.6 m M/liter wet (mean ± SD). Metabolite concentrations were low in the cerebral cortex of a severely birth asphyxiated infant. The adenosine triphosphate concentration in the resting, fresh forearm muscles of six young adults was 6.3 ± 0.8 m M/liter wet.

  14. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard T.

    2017-01-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve

  15. Imaging method of brain surface anatomy structures using conventional T2-weighted MR images

    International Nuclear Information System (INIS)

    Hatanaka, Masahiko; Machida, Yoshio; Yoshida, Tadatoki; Katada, Kazuhiro.

    1992-01-01

    As a non-invasive technique for visualizing the brain surface structure by MRI, surface anatomy scanning (SAS) and the multislice SAS methods have been developed. Both techniques require additional MRI scanning to obtain images for the brain surface. In this paper, we report an alternative method to obtain the brain surface image using conventional T2-weighted multislice images without any additional scanning. The power calculation of the image pixel values, which is incorporated in the routine processing, has been applied in order to enhance the cerebrospinal fluid (CSF) contrast. We think that this method is one of practical approaches for imaging the surface anatomy of the brain. (author)

  16. Surface and borehole electromagnetic imaging of conducting contaminant plumes. 1997 annual progress report

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1997-01-01

    'Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component magnetic field detectors are deployed in other boreholes or on the surface. Sources and receivers are typically deployed in a configuration surrounding the region of interest. The goal of this procedure is to image electrical conductivity variations in the earth, much as x-ray tomography is used to image density variations through cross-sections of the body. Although such EM field techniques have been developed and applied, the algorithms for inverting the magnetic data to produce the desired images of electrical conductivity have not kept pace. One of the main reasons for the lag in the algorithm development has been the fact that the magnetic induction problem is inherently three dimensional: other imaging methods such as x-ray and seismic can make use of two-dimensional approximations that are not too far from reality, but the author does not have this luxury in EM induction tomography. In addition, previous field experiments were conducted at controlled test sites that typically do not have much external noise or extensive surface clutter problems often associated with environmental sites. To use the same field techniques in environments more typical of cleanup sites requires a new set of data processing tools to remove the effects of both noise and clutter. The goal of this project is to join theory and experiment to produce enhanced images of electrically conducting fluids underground, allowing better localization of contaminants and improved planning strategies for the subsequent remediation efforts. After explaining the physical context in more detail, this report will summarize the progress made in the first year of this project: (1) on code development and (2) on field tests of

  17. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  18. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  19. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  20. Whole surface image reconstruction for machine vision inspection of fruit

    Science.gov (United States)

    Reese, D. Y.; Lefcourt, A. M.; Kim, M. S.; Lo, Y. M.

    2007-09-01

    Automated imaging systems offer the potential to inspect the quality and safety of fruits and vegetables consumed by the public. Current automated inspection systems allow fruit such as apples to be sorted for quality issues including color and size by looking at a portion of the surface of each fruit. However, to inspect for defects and contamination, the whole surface of each fruit must be imaged. The goal of this project was to develop an effective and economical method for whole surface imaging of apples using mirrors and a single camera. Challenges include mapping the concave stem and calyx regions. To allow the entire surface of an apple to be imaged, apples were suspended or rolled above the mirrors using two parallel music wires. A camera above the apples captured 90 images per sec (640 by 480 pixels). Single or multiple flat or concave mirrors were mounted around the apple in various configurations to maximize surface imaging. Data suggest that the use of two flat mirrors provides inadequate coverage of a fruit but using two parabolic concave mirrors allows the entire surface to be mapped. Parabolic concave mirrors magnify images, which results in greater pixel resolution and reduced distortion. This result suggests that a single camera with two parabolic concave mirrors can be a cost-effective method for whole surface imaging.

  1. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  2. Fermi surface contours obtained from scanning tunneling microscope images around surface point defects

    International Nuclear Information System (INIS)

    Khotkevych-Sanina, N V; Kolesnichenko, Yu A; Van Ruitenbeek, J M

    2013-01-01

    We present a theoretical analysis of the standing wave patterns in scanning tunneling microscope (STM) images, which occur around surface point defects. We consider arbitrary dispersion relations for the surface states and calculate the conductance for a system containing a small-size tunnel contact and a surface impurity. We find rigorous theoretical relations between the interference patterns in the real-space STM images, their Fourier transforms and the Fermi contours of two-dimensional electrons. We propose a new method for reconstructing Fermi contours of surface electron states, directly from the real-space STM images around isolated surface defects. (paper)

  3. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  4. Free Surface Downgoing VSP Multiple Imaging

    Science.gov (United States)

    Maula, Fahdi; Dac, Nguyen

    2018-03-01

    The common usage of a vertical seismic profile is to capture the reflection wavefield (upgoing wavefield) so that it can be used for further well tie or other interpretations. Borehole Seismic (VSP) receivers capture the reflection from below the well trajectory, traditionally no seismic image information above trajectory. The non-traditional way of processing the VSP multiple can be used to expand the imaging above the well trajectory. This paper presents the case study of using VSP downgoing multiples for further non-traditional imaging applications. In general, VSP processing, upgoing and downgoing arrivals are separated during processing. The up-going wavefield is used for subsurface illumination, whereas the downgoing wavefield and multiples are normally excluded from the processing. In a situation where the downgoing wavefield passes the reflectors several times (multiple), the downgoing wavefield carries reflection information. Its benefit is that it can be used for seismic tie up to seabed, and possibility for shallow hazards identifications. One of the concepts of downgoing imaging is widely known as mirror-imaging technique. This paper presents a case study from deep water offshore Vietnam. The case study is presented to demonstrate the robustness of the technique, and the limitations encountered during its processing.

  5. Smooth embeddings with Stein surface images

    OpenAIRE

    Gompf, Robert E.

    2011-01-01

    A simple characterization is given of open subsets of a complex surface that smoothly perturb to Stein open subsets. As applications, complex 2-space C^2 contains domains of holomorphy (Stein open subsets) that are exotic R^4's, and others homotopy equivalent to the 2-sphere but cut out by smooth, compact 3-manifolds. Pseudoconvex embeddings of Brieskorn spheres and other 3-manifolds into complex surfaces are constructed, as are pseudoconcave holomorphic fillings (with disagreeing contact and...

  6. Quantitative sodium MR imaging of native versus transplanted kidneys using a dual-tuned proton/sodium (1H/23Na) coil: initial experience

    International Nuclear Information System (INIS)

    Moon, Chan Hong; Furlan, Alessandro; Kim, Jung-Hwan; Bae, Kyongtae Ty; Zhao, Tiejun; Shapiro, Ron

    2014-01-01

    To compare sodium ( 23 Na) characteristics between native and transplanted kidneys using dual-tuned proton ( 1 H)/sodium MRI. Six healthy volunteers and six renal transplant patients (3 normal function, 3 acute allograft rejection) were included. Proton/sodium MRI was obtained at 3 T using a dual-tuned coil. Signal to noise ratio (SNR), sodium concentration ([ 23 Na]) and cortico-medullary sodium gradient (CMSG) were measured. Reproducibility of [ 23 Na] measurement was also tested. SNR, [ 23 Na] and CMSG of the native and transplanted kidneys were compared. Proton and sodium images of kidneys were successfully acquired. SNR and [ 23 Na] measurements of the native kidneys were reproducible at two different sessions. [ 23 Na] and CMSG of the transplanted kidneys was significantly lower than those of the native kidneys: 153.5 ± 11.9 vs. 192.9 ± 9.6 mM (P = 0.002) and 8.9 ± 1.5 vs. 10.5 ± 0.9 mM/mm (P = 0.041), respectively. [ 23 Na] and CMSG of the transplanted kidneys with normal function vs. acute rejection were not statistically different. Sodium quantification of kidneys was reliably performed using proton/sodium MRI. [ 23 Na] and CMSG of the transplanted kidneys were lower than those of the native kidneys, but without a statistically significant difference between patients with or without renal allograft rejection. (orig.)

  7. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  8. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  9. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  10. Intelligent shell feedback control in EXTRAP T2R reversed field pinch with partial coverage of the toroidal surface by a discrete active coil array

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Drake, J. R.

    2006-01-01

    An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.

  11. Surface displacement imaging by interferometry with a light emitting diode

    International Nuclear Information System (INIS)

    Dilhaire, Stefan; Grauby, Stephane; Jorez, Sebastien; Lopez, Luis David Patino; Rampnoux, Jean-Michel; Claeys, Wilfrid

    2002-01-01

    We present an imaging technique to measure static surface displacements of electronic components. A device is supplied by a transient current that creates a variation of temperature, thus a surface displacement. To measure the latter, a setup that is based on a Michelson interferometer is used. To avoid the phenomenon of speckle and the drawbacks inherent to it, we use a light emitting diode as the light source for the interferometer. The detector is a visible CCD camera that analyzes the optical signal containing the information of surface displacement of the device. Combining images, we extract the amplitude of the surface displacement. Out-of-plane surface-displacement images of a thermoelectric device are presented

  12. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    Science.gov (United States)

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity

  13. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  14. Active internal corrector coils

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.; Dahl, P.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained

  15. Calibrating AIS images using the surface as a reference

    Science.gov (United States)

    Smith, M. O.; Roberts, D. A.; Shipman, H. M.; Adams, J. B.; Willis, S. C.; Gillespie, A. R.

    1987-01-01

    A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra.

  16. Visual tritium imaging of In-Vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C. A.; Zweben, S. J.; Skinner, C. H.; Young, K. M.; Langish, S. W.; Nishi, M. F.; Shu, W. M.; Parker, J.; Isobe, K.

    2000-01-01

    A imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  17. Visual tritium imaging of in-vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C.A.; Zweben, S.J.; Skinner, C.H.; Young, K.M.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Parker, J.; Isobe, K.

    2000-01-01

    An imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  18. Multiple interpretations of a pair of images of a surface

    Science.gov (United States)

    Longuet-Higgins, H. C.

    1988-07-01

    It is known that, if two optical images of a visually textured surface, projected from finitely separated viewpoints, allow more than one three-dimensional interpretation, then the surface must be part of a quadric passing through the two viewpoints. It is here shown that this quadric is either a plane or a ruled surface of a type first considered by Maybank (1985) in a study of ambiguous optic flow fields. In the latter case, three is the maximum number of distinct interpretations that the two images can sustain.

  19. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  20. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2008-07-21

    The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.

  1. 3D surface reconstruction using optical flow for medical imaging

    International Nuclear Information System (INIS)

    Weng, Nan; Yang, Yee-Hong; Pierson, R.

    1996-01-01

    The recovery of a 3D model from a sequence of 2D images is very useful in medical image analysis. Image sequences obtained from the relative motion between the object and the camera or the scanner contain more 3D information than a single image. Methods to visualize the computed tomograms can be divided into two approaches: the surface rendering approach and the volume rendering approach. A new surface rendering method using optical flow is proposed. Optical flow is the apparent motion in the image plane produced by the projection of the real 3D motion onto 2D image. In this paper, the object remains stationary while the scanner undergoes translational motion. The 3D motion of an object can be recovered from the optical flow field using additional constraints. By extracting the surface information from 3D motion, it is possible to get an accurate 3D model of the object. Both synthetic and real image sequences have been used to illustrate the feasibility of the proposed method. The experimental results suggest that the proposed method is suitable for the reconstruction of 3D models from ultrasound medical images as well as other computed tomograms

  2. Radiative MRI Coil Design Using Parasitic Scatterers

    DEFF Research Database (Denmark)

    Sanchez-Heredia, Juan D.; Avendal, Johan; Bibic, Adnan

    2018-01-01

    allows for antenna design techniques to be adapted to RF coil designs. This study proposes the use of parasitic scatterers to improve the performance of an existing 7T MRI coil called the single-sided adapted dipole (SSAD) antenna. The results reveal that scatterers arranged in a Yagi fashion can......Conventionally, radiofrequency (RF) coils used for magnetic resonance imaging (MRI) are electrically small and designed for nearfield operation. Therefore, existing antenna design techniques are mostly irrelevant for RF coils. However, the use of higher frequencies in ultrahigh field (UHF) MRI...... be applied to reduce local specific absorption rate (SAR) maxima of a reference SSAD by 40% with only a 6% decrease in the propagated B1 + field at the tissue depth of 15 cm. The higher directivity of the proposed design also decreasing the coupling with additional elements, making this antenna...

  3. Endorectal magnetic resonance imaging of the prostate and bladder

    International Nuclear Information System (INIS)

    Sugimura, Yoshiki; Hayashi, Norio; Yamashita, Atsushi; Kinbara, Hiroyuki; Arima, Kiminobu; Tochigi, Hiromi; Kawamura, Juichi

    1994-01-01

    Endorectal magnetic resonance imaging (MRI) using an endorectal surface coil has been evaluated basically and clinically. This new modality obtained increased resolution magnetic resonance images of the pathologic conditions of the prostate and bladder. Compared with images obtained with a body coil, the surface coil images clearly demonstrate prostatic intraglandular zonal anatomy. The clear images of prostatic capsule and neurovascular bundle seen on the surface coil may contribute to the local staging of prostate cancer. The staging diagnosis of bladder tumor located in the bladder neck will be the best candidate for endorectal MRI. Enhancement with gadolinium may improve the ability to differentiate superficial from deep bladder-wall tumors. We concluded that endorectal MRI is safely performed and is extremely useful for the local staging of prostate cancer and bladder neck tumor. Further studies will be required to evaluate the clinical significance of this new modality. (author)

  4. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  5. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  6. Fractal Image Coding Based on a Fitting Surface

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2014-01-01

    Full Text Available A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain blocks better than the previous fitting planes; this can result in smaller block matching errors and better decoded image quality. Since the no-search and quadtree techniques are adopted, smaller matching errors also imply less number of blocks matching which results in a faster encoding process. Moreover, by combining all the fitting surfaces, a fitting surface image (FSI is also proposed to speed up the fractal decoding. Experiments show that our proposed method can yield superior performance over the other three methods. Relative to range-averaged image, FSI can provide faster fractal decoding process. Finally, by combining the proposed fractal coding method with JPEG, a hybrid coding method is designed which can provide higher PSNR than JPEG while maintaining the same Bpp.

  7. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  8. Improved SNR of phased-array PERES coils via simulation study

    International Nuclear Information System (INIS)

    RodrIguez, Alfredo O; Medina, LucIa

    2005-01-01

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  9. Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart

    2018-04-01

    In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.

  10. Time-dependent image potential at a metal surface

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Transient effects in the image potential induced by a point charge suddenly created in front of a metal surface are studied. The time evolution of the image potential is calculated using linear response theory. Two different time scales are defined: (i) the time required for the creation of the image potential and (ii) the time it takes to converge to its stationary value. Their dependence on the distance of the charge to the surface is discussed. The effect of the electron gas damping is also analyzed. For a typical metallic density, the order of magnitude of the creation time is 0.1 fs, whereas for a charge created close to the surface the convergence time is around 1-2 fs

  11. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  12. Image Reconstruction and Evaluation: Applications on Micro-Surfaces and Lenna Image Representation

    Directory of Open Access Journals (Sweden)

    Mohammad Mayyas

    2016-09-01

    Full Text Available This article develops algorithms for the characterization and the visualization of micro-scale features using a small number of sample points, with the goal of mitigating the measurement shortcomings, which are often destructive or time consuming. The popular measurement techniques that are used in imaging of micro-surfaces include the 3D stylus or interferometric profilometry and Scanning Electron Microscopy (SEM, where both could represent the micro-surface characteristics in terms of 3D dimensional topology and greyscale image, respectively. Such images could be highly dense; therefore, traditional image processing techniques might be computationally expensive. We implement the algorithms in several case studies to rapidly examine the microscopic features of micro-surface of Microelectromechanical System (MEMS, and then we validate the results using a popular greyscale image; i.e., “Lenna” image. The contributions of this research include: First, development of local and global algorithm based on modified Thin Plate Spline (TPS model to reconstruct high resolution images of the micro-surface’s topography, and its derivatives using low resolution images. Second, development of a bending energy algorithm from our modified TPS model for filtering out image defects. Finally, development of a computationally efficient technique, referred to as Windowing, which combines TPS and Linear Sequential Estimation (LSE methods, to enhance the visualization of images. The Windowing technique allows rapid image reconstruction based on the reduction of inverse problem.

  13. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  14. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  15. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  16. Influence of field strength, coil type and image resolution on assessment of synovitis by unenhanced MRI--a comparison with contrast-enhanced MRI

    DEFF Research Database (Denmark)

    Eshed, Iris; Krabbe, Simon; Østergaard, Mikkel

    2015-01-01

    post-contrast T1-weighted sequence was used as gold standard reference. RESULTS: Fair-good agreement (ICC=0.38--0.72) between the standard reference and the different STIR protocols (best agreement with extremity coil and small voxel size at 1.5 T). The accuracy for presence/absence of synovitis...... is only moderately reliable for assessing hand synovitis in RA, when contrast-enhanced MRI is considered the gold standard reference. Contrast injection, field strength and coil type influence synovitis assessment, and should be considered before performing MRI in clinical trials and practice. KEY POINTS...

  17. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei

    2017-10-21

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve superresolution imaging of subwavelength scatterers if they are located less than about 1/2 of the shear wavelength from the source line. We also show that the TRM operation for a single frequency is equivalent to natural migration, which uses the recorded data to approximate the Green’s functions for migration, and only costs O(N4) algebraic operations for poststack migration compared to O(N6) operations for natural prestack migration. Here, we assume the sources and receivers are on an N × N grid and there are N2 trial image points on the free surface. Our theoretical predictions of superresolution are validated with tests on synthetic data. The field-data tests suggest that hidden faults at the near surface can be detected with subwavelength imaging of surface waves by using the TRM operation if they are no deeper than about 1/2 the dominant shear wavelength.

  18. Determining Surface Infiltration Rate of Permeable Pavements with Digital Imaging

    Directory of Open Access Journals (Sweden)

    Caterina Valeo

    2018-01-01

    Full Text Available Cell phone images of pervious pavement surfaces were used to explore relationships between surface infiltration rates (SIR measured using the ASTM C1701 standard test and using a simple falling head test. A fiber-reinforced porous asphalt surface and a highly permeable material comprised of stone, rubber and a polymer binder (Porous Pave were tested. Images taken with a high-resolution cellphone camera were acquired as JPEG files and converted to gray scale images in Matlab® for analysis. The distribution of gray levels was compared to the surface infiltration rates obtained for both pavements with attention given to the mean of the distribution. Investigation into the relationships between mean SIR and parameters determined from the gray level distribution produced in the image analysis revealed that mean SIR measured in both pavements were proportional to the inverse of the mean of the distribution. The relationships produced a coefficient of determination over 85% using both the ASTM and the falling head test in the porous asphalt surface. SIR measurements determined with the ASTM method were highly correlated with the inverse mean of the distribution of gray levels in the Porous Pave material as well, producing coefficients of determination of over 90% and Kendall’s tau-b of roughly 70% for nonparametric data.

  19. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  20. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  1. STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands.

    Science.gov (United States)

    Nguyen, Huy A; Banerjee, Progna; Nguyen, Duc; Lyding, Joseph W; Gruebele, Martin; Jain, Prashant K

    2018-04-19

    An optically modulated scanning tunneling microscopy technique developed for measurement of single-molecule optical absorption is used here to image the light absorption by individual Au nanoislands and Au nanostructures. The technique is shown to spatially map, with nanometer resolution, localized surface plasmons (LSPs) excited within the nanoislands. Electrodynamic simulations demonstrate the correspondence of the measured images to plasmonic near-field intensity maps. The optical STM imaging technique captures the wavelength, polarization, and geometry dependence of the LSP resonances and their corresponding near-fields. Thus, we introduce a tool for real-space, nanometer-scale visualization of optical energy absorption, transport, and dissipation in complex plasmonic nanostructures.

  2. Surface Nuclear Magnetic Resonance Imaging of Large Systems

    International Nuclear Information System (INIS)

    Weichman, P.B.; Lavely, E.M.; Ritzwoller, M.H.

    1999-01-01

    The general theory of surface NMR imaging of large electromagnetically active systems is considered, motivated by geophysical applications. A general imaging equation is derived for the NMR voltage response, valid for arbitrary transmitter and receiver loop geometry and arbitrary conductivity structure of the sample. When the conductivity grows to the point where the electromagnetic skin depth becomes comparable to the sample size, significant diffusive retardation effects occur that strongly affect the signal. Accounting for these now allows more accurate imaging than previously possible. It is shown that the time constant T 1 may in principle be inferred directly from the diffusive tail of the signal. copyright 1999 The American Physical Society

  3. Textural Analysis of Fatique Crack Surfaces: Image Pre-processing

    Directory of Open Access Journals (Sweden)

    H. Lauschmann

    2000-01-01

    Full Text Available For the fatique crack history reconstitution, new methods of quantitative microfractography are beeing developed based on the image processing and textural analysis. SEM magnifications between micro- and macrofractography are used. Two image pre-processing operatins were suggested and proved to prepare the crack surface images for analytical treatment: 1. Normalization is used to transform the image to a stationary form. Compared to the generally used equalization, it conserves the shape of brightness distribution and saves the character of the texture. 2. Binarization is used to transform the grayscale image to a system of thick fibres. An objective criterion for the threshold brightness value was found as that resulting into the maximum number of objects. Both methods were succesfully applied together with the following textural analysis.

  4. Transmit coil design for Wireless Power Transfer for medical implants.

    Science.gov (United States)

    Lemdiasov, Rosti; Venkatasubramanian, Arun

    2017-07-01

    A new design approach for the design of transmit coils for Wireless Power Transfer (WPT) is presented. The theoretical formulation involves a figure of merit that has to be maximized to solve for the surface current. Numerical predictions and comparisons with practical measurements for the coil parameters (inductance. resistance) underscore the success of this approach in terms of achieving strong coupling with a receive coil while maintaining low resistance.

  5. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    Science.gov (United States)

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  6. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  7. Comparison of the association of sac growth and coil compaction with recurrence in coil embolized cerebral aneurysms.

    Directory of Open Access Journals (Sweden)

    Anna L Hoppe

    Full Text Available In recurrent cerebral aneurysms treated by coil embolization, coil compaction is regarded as the presumptive mechanism. We test the hypothesis that aneurysm growth is the primary recurrence mechanism. We also test the hypothesis that the coil mass will translate a measurable extent when recurrence occurs.An objective, quantitative image analysis protocol was developed to determine the volumes of aneurysms and coil masses during initial and follow-up visits from 3D rotational angiograms. The population consisted of 15 recurrence and 12 non-recurrence control aneurysms initially completely coiled at a single center. An investigator sensitivity study was performed to assess the objectivity of the methods. Paired Wilcoxon tests (p<0.05, one-tailed were performed to assess for aneurysm and coil growth. The translation of the coil mass center at follow-up was computed. A Mann Whitney U-Test (p<0.05, one-tailed was used to compare translation of coil mass centers between recurrence and control subjects.Image analysis protocol was found to be insensitive to the investigator. Aneurysm growth was evident in the recurrence cohort (p=0.003 but not the control (p=0.136. There was no evidence of coil compaction in either the recurrence or control cohorts (recurrence: p=0.339; control: p=0.429. The translation of the coil mass centers was found to be significantly larger in the recurrence cohort than the control cohort (p=0.047.Aneurysm sac growth, not coil compaction, was the primary mechanism of recurrence following successful coil embolization. The coil mass likely translates to a measurable extent when recurrence occurs and has the potential to serve as a non-angiographic recurrence marker.

  8. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  9. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  10. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Directory of Open Access Journals (Sweden)

    Yoshikazu Ohara

    2017-06-01

    Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  11. Accounting for free-surface multiples in Marchenko imaging

    NARCIS (Netherlands)

    Singh, S.; Snieder, R; van der Neut, J.R.; Thorbecke, J.W.; Slob, E.C.; Wapenaar, C.P.A.

    2017-01-01

    Imagine placing a receiver at any location in the earth and recording the response at that location to sources on the surface. In such a world, we could place receivers around our reservoir to better image the reservoir and understand its properties. Realistically, this is not a feasible approach

  12. Surface Reconstruction and Image Enhancement via $L^1$-Minimization

    KAUST Repository

    Dobrev, Veselin

    2010-01-01

    A surface reconstruction technique based on minimization of the total variation of the gradient is introduced. Convergence of the method is established, and an interior-point algorithm solving the associated linear programming problem is introduced. The reconstruction algorithm is illustrated on various test cases including natural and urban terrain data, and enhancement oflow-resolution or aliased images. Copyright © by SIAM.

  13. A Novel Algorithm of Surface Eliminating in Undersurface Optoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Zhulina Yulia V

    2004-01-01

    Full Text Available This paper analyzes the task of optoacoustic imaging of the objects located under the surface covering them. In this paper, we suggest the algorithm of the surface eliminating based on the fact that the intensity of the image as a function of the spatial point should change slowly inside the local objects, and will suffer a discontinuity of the spatial gradients on their boundaries. The algorithm forms the 2-dimensional curves along which the discontinuity of the signal derivatives is detected. Then, the algorithm divides the signal space into the areas along these curves. The signals inside the areas with the maximum level of the signal amplitudes and the maximal gradient absolute values on their edges are put equal to zero. The rest of the signals are used for the image restoration. This method permits to reconstruct the picture of the surface boundaries with a higher contrast than that of the surface detection technique based on the maximums of the received signals. This algorithm does not require any prior knowledge of the signals' statistics inside and outside the local objects. It may be used for reconstructing any images with the help of the signals representing the integral over the object's volume. Simulation and real data are also provided to validate the proposed method.

  14. Investigation of synthetic aperture methods in ultrasound surface imaging using elementary surface types.

    Science.gov (United States)

    Kerr, W; Pierce, S G; Rowe, P

    2016-12-01

    Synthetic aperture imaging methods have been employed widely in recent research in non-destructive testing (NDT), but uptake has been more limited in medical ultrasound imaging. Typically offering superior focussing power over more traditional phased array methods, these techniques have been employed in NDT applications to locate and characterise small defects within large samples, but have rarely been used to image surfaces. A desire to ultimately employ ultrasonic surface imaging for bone surface geometry measurement prior to surgical intervention motivates this research, and results are presented for initial laboratory trials of a surface reconstruction technique based on global thresholding of ultrasonic 3D point cloud data. In this study, representative geometry artefacts were imaged in the laboratory using two synthetic aperture techniques; the Total Focusing Method (TFM) and the Synthetic Aperture Focusing Technique (SAFT) employing full and narrow synthetic apertures, respectively. Three high precision metallic samples of known geometries (cuboid, sphere and cylinder) which featured a range of elementary surface primitives were imaged using a 5MHz, 128 element 1D phased array employing both SAFT and TFM approaches. The array was manipulated around the samples using a precision robotic positioning system, allowing for repeatable ultrasound derived 3D surface point clouds to be created. A global thresholding technique was then developed that allowed the extraction of the surface profiles, and these were compared with the known geometry samples to provide a quantitative measure of error of 3D surface reconstruction. The mean errors achieved with optimised SAFT imaging for the cuboidal, spherical and cylindrical samples were 1.3mm, 2.9mm and 2.0mm respectively, while those for TFM imaging were 3.7mm, 3.0mm and 3.1mm, respectively. These results were contrary to expectations given the higher information content associated with the TFM images. However, it was

  15. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  16. Wear-less floating contact imaging of polymer surfaces

    International Nuclear Information System (INIS)

    Knoll, A; Rothuizen, H; Gotsmann, B; Duerig, U

    2010-01-01

    An atomic force microscopy (AFM) technique is described combining two operating modes that previously were mutually exclusive: gentle imaging of delicate surfaces requiring slow dynamic AFM techniques, and passive feedback contact mode AFM enabling ultra-fast imaging. A high-frequency force modulation is used to excite resonant modes in the MHz range of a highly compliant cantilever force sensor with a spring constant of 0.1 N m -1 . The high-order mode acts as a stiff system for modulating the tip-sample distance and a vibration amplitude of 1 nm is sufficient to overcome the adhesion interaction. The soft cantilever provides a force-controlled support for the vibrating tip, enabling high-speed intermittent contact force microscopy without feedback control of the cantilever bending. Using this technique, we were able to image delicate polymer surfaces and to completely suppress the formation of the ripple wear patterns that are commonly observed in contact AFM.

  17. Three dimensional imaging of surface geometry in SEM

    International Nuclear Information System (INIS)

    Slowko, W.

    1997-01-01

    A great advantage of scanning electron microscopy (SEM) is its ability of the surface topography in the way as a human eye is accustomed to see lights and shadows on macroobjects. However, SEM's can hardly display vertical dimensions of the structures. One of possible solutions is reconstruction of the surface profiles by directional detection of secondary electrons and proper signal processing. However, the surface profile still gives two dimensional information and the method should be extended to obtain fully three dimensional imaging. The extension consists in a simultaneous reconstruction of the surface profiles in two perpendicular directions (x and y) and their superposition. The solution proposed is based on a quadrupole detector system and a computer or analogue system for signal processing. Quantitative data of the surface topography can be displayed in many manners in the system of two or three co-ordinates with use of pseudo-colour for the altitude coding. (author)

  18. Distance of the image plane from metal surfaces

    International Nuclear Information System (INIS)

    Smith, N.V.; Chen, C.T.; Weinert, M.

    1989-01-01

    The data base of surface-state energies on the metals Cu, Ag, Au, Ni, Pd, and Pt is assembled and, with the aid of a simple model, is used to estimate the distance of the image plane and its trends from surface to surface and metal to metal. The model combines a nearly-free-electron representation of the crystal with a Jones-Jennings-Jepsen ansatz for the saturated image barrier. The projected bulk-band gaps are taken from published determinations. Constraints are placed on the surface barrier parameters by appeal to the results of self-consistent first-principles slab calculations. The general experimental trend observed is for the image-plane distance z 0 to decrease in the sequence (111) to (001) to (110), in the same sense but not as rapidly as z J , the distance of the effective jellium edge. This trend is rationalized using a simple model of the tail of the surface charge density. Typical values for z 0 -z J fall in the range -0.2 to +0.5 a.u., with the larger values occurring for the 3d metals Cu and Ni

  19. Detection of cracks on concrete surfaces by hyperspectral image processing

    Science.gov (United States)

    Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo

    2017-06-01

    All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly

  20. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  1. Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images

    Science.gov (United States)

    Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.

    2018-04-01

    Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.

  2. Spectrally enhanced image resolution of tooth enamel surfaces

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    2012-01-01

    Short-wavelength 405 nm laser illumination of surface dental enamel using an ultrathin scanning fiber endoscope (SFE) produced enhanced detail of dental topography. The surfaces of human extracted teeth and artificial erosions were imaged with 405 nm, 444 nm, 532 nm, or 635 nm illumination lasers. The obtained images were then processed offline to compensate for any differences in the illumination beam diameters between the different lasers. Scattering and absorption coefficients for a Monte Carlo model of light propagation in dental enamel for 405 nm were scaled from published data at 532 nm and 633 nm. The value of the scattering coefficient used in the model was scaled from the coefficients at 532 nm and 633 nm by the inverse third power of wavelength. Simulations showed that the penetration depth of short-wavelength illumination is localized close to the enamel surface, while long-wavelength illumination travels much further and is backscattered from greater depths. Therefore, images obtained using short wavelength laser are not contaminated by the superposition of light reflected from enamel tissue at greater depths. Hence, the SFE with short-wavelength illumination may make it possible to visualize surface manifestations of phenomena such as demineralization, thus better aiding the clinician in the detection of early caries.

  3. Coil optimisation for transcranial magnetic stimulation in realistic head geometry.

    Science.gov (United States)

    Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J

    Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A monthly quality assurance procedure for 3D surface imaging.

    Science.gov (United States)

    Wooten, H Omar; Klein, Eric E; Gokhroo, Garima; Santanam, Lakshmi

    2010-12-21

    A procedure for periodic quality assurance of a video surface imaging system is introduced. AlignRT is a video camera-based patient localization system that captures and compares images of a patient's topography to a DICOM-formatted external contour, then calculates shifts required to accurately reposition the patient. This technical note describes the tools and methods implemented in our department to verify correct and accurate operation of the AlignRT hardware and software components. The procedure described is performed monthly and complements a daily calibration of the system.

  5. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  6. Planetary surface photometry and imaging: progress and perspectives.

    Science.gov (United States)

    Goguen, Jay D

    2014-10-01

    Spacecraft have visited and returned many thousands of images and spectra of all of the planets, many of their moons, several asteroids, and a few comet nuclei during the golden age of planetary exploration. The signal in each pixel of each image or spectral channel is a measurement of the radiance of scattered sunlight into a specific direction. The information on the structure and composition of the surface that is contained in variation of the radiance with scattering geometry and wavelength, including polarization state, has only just begun to be exploited and is the topic of this review. The uppermost surfaces of these bodies are mainly composed of particles that are continuously generated by impacts of micrometeoroids and larger impactors. Models of light scattering by distributions of sizes and irregular shapes of particles and by closely packed particles within a surface are challenging. These are active topics of research where considerable progress has recently been made. We focus on the surfaces of bodies lacking atmospheres.These surfaces are diverse and their morphologies give evidence of their evolution by impacts and resurfacing by a variety of processes including down slope movement and electrostatic transport of particles, gravitational accumulation of debris, volatile outgassing and migration, and magnetospheric interactions. Sampling of scattering geometries and spatial resolution is constrained by spacecraft trajectories. However, the large number of archived images and spectra demand more quantitative interpretation. The scattering geometry dependence of the radiance is underutilized and promises constraints on the compositions and structure of the surface for materials that lack diagnostic wavelength dependence. The general problem is considered in terms of the lunar regolith for which samples have been returned to Earth.

  7. Localized surface plasmon enhanced cellular imaging using random metallic structures

    Science.gov (United States)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  8. Metal surface corrosion grade estimation from single image

    Science.gov (United States)

    Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu

    2018-04-01

    Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.

  9. Efficiency evaluation of a 13C Magnetic Resonance birdcage coil: Theory and comparison of four methods

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Hartwig, Valentina

    2013-01-01

    Radiofrequency coils in Magnetic Resonance systems are used to produce a homogeneous B1 field for exciting the nuclei and to pick up the signals emitted by the nuclei with high signal-to-noise ratio. Accordingly, coil performance affects strongly the quality of the obtained data and images.Coil e...

  10. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  11. Three-Dimensional Isotropic Fat-Suppressed Proton Density-Weighted MRI at 3 Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging.

    Science.gov (United States)

    Homsi, R; Gieseke, J; Luetkens, J A; Kupczyk, P; Maedler, B; Kukuk, G M; Träber, F; Agha, B; Rauch, M; Rajakaruna, N; Willinek, W; Schild, H H; Hadizadeh, D R

    2016-10-01

    To evaluate whether a 3 D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9 ± 14.5years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40 - 0.63 × 0.44 - 0.89 × 3mm³) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 × 0.68 × 0.63mm³). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p Tesla Using a T/R-Coil Can Replace Multiple Plane Two-Dimensional Sequences in Knee Imaging. Fortschr Röntgenstr 2016; 188: 949 - 956. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Poster - Thur Eve - 13: Quantifying specific absorption rate of shielded RF coils through electromagnetic simulations for 7-T MRI.

    Science.gov (United States)

    Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S

    2012-07-01

    Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.

  13. Coil Array Design Inspired on the Kepler's Lenten Pretzel

    International Nuclear Information System (INIS)

    Vazquez, F.; Solis, S. E.; Rodriguez, A. O.

    2008-01-01

    The RF coil arrays are an important part in Magnetic Resonance Imaging, since they are the main device for transmission and reception of the magnetic resonance signal. An RF coil array with a new configuration based on the Kepler's Lenten pretzel for the geocentric path of Mars is proposed in this work. The evenly distributed trajectories may serve as the basic configuration to form a coil array to adequately cover a region of interest for magnetic resonance experiments. The main goal is to investigate the electromagnetic properties of this coil array geometry to obtain an optimal design for its further construction. Hence, the electromagnetic properties of the coil array were numerical simulated using the finite element method and the quasi-static approach. Resulting simulations showed that there is an important concentration of magnetic field lines at the centre of the coil array. This is an advantage over other coil arrays where the magnetic field usually decreased at their geometrical centre. Both the electric and magnetic fields had also a very good uniformity. These characteristics made this coil design a good candidate for applications where the use of multi-coil technology is mandatory

  14. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  15. Trim coil power supplies

    International Nuclear Information System (INIS)

    Haisler, R.; Peeler, H.; Zajicek, W.

    1985-01-01

    The 18 trim coil power supplies have been constructed and are now in place in the K500 pit and pit mezzanine. Final wiring of the primary power and control power is proceeding along with installation of cooling water supplies. The supplies are expected to be ready for final testing into resistive loads at the beginning of June, 1985

  16. Chemical imaging and solid state analysis at compact surfaces using UV imaging

    DEFF Research Database (Denmark)

    Wu, Jian X.; Rehder, Sönke; van den Berg, Frans

    2014-01-01

    and excipients in a non-invasive way, as well as mapping the glibenclamide solid state form. An exploratory data analysis supported the critical evaluation of the mapping results and the selection of model parameters for the chemical mapping. The present study demonstrated that the multi-wavelength UV imaging......Fast non-destructive multi-wavelength UV imaging together with multivariate image analysis was utilized to visualize distribution of chemical components and their solid state form at compact surfaces. Amorphous and crystalline solid forms of the antidiabetic compound glibenclamide...

  17. Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface

    Science.gov (United States)

    Lee, Gil Ju; Nam, Won Il; Song, Young Min

    2017-11-01

    Curved image sensors inspired by animal and insect eyes have provided a new development direction in next-generation digital cameras. It is known that natural fish eyes afford an extremely wide field of view (FOV) imaging due to the geometrical properties of the spherical lens and hemispherical retina. However, its inherent drawbacks, such as the low off-axis illumination and the fabrication difficulty of a 'dome-like' hemispherical imager, limit the development of bio-inspired wide FOV cameras. Here, a new type of fisheye imaging system is introduced that has simple lens configurations with a curvilinear image surface, while maintaining high off-axis illumination and a wide FOV. Moreover, through comparisons with commercial conventional fisheye designs, it is determined that the volume and required number of optical elements of the proposed design is practical while capturing the fundamental optical performances. Detailed design guidelines for tailoring the proposed optic system are also discussed.

  18. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2017-01-01

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  19. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  20. Skin surface and sub-surface strain and deformation imaging using optical coherence tomography and digital image correlation

    Science.gov (United States)

    Hu, X.; Maiti, R.; Liu, X.; Gerhardt, L. C.; Lee, Z. S.; Byers, R.; Franklin, S. E.; Lewis, R.; Matcher, S. J.; Carré, M. J.

    2016-03-01

    Bio-mechanical properties of the human skin deformed by external forces at difference skin/material interfaces attract much attention in medical research. For instance, such properties are important design factors when one designs a healthcare device, i.e., the device might be applied directly at skin/device interfaces. In this paper, we investigated the bio-mechanical properties, i.e., surface strain, morphological changes of the skin layers, etc., of the human finger-pad and forearm skin as a function of applied pressure by utilizing two non-invasive techniques, i.e., optical coherence tomography (OCT) and digital image correlation (DIC). Skin deformation results of the human finger-pad and forearm skin were obtained while pressed against a transparent optical glass plate under the action of 0.5-24 N force and stretching naturally from 90° flexion to 180° full extension respectively. The obtained OCT images showed the deformation results beneath the skin surface, however, DIC images gave overall information of strain at the surface.

  1. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  2. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  3. Performance of external and internal coil configurations for prostate investigations at 7 Tesla

    Science.gov (United States)

    Metzger, Gregory J.; van de Moortele, Pierre-Francois; Akgun, Can; Snyder, Carl J.; Moeller, Steen; Strupp, John; Andersen, Peter; Shrivastava, Devashish; Vaughan, Tommy; Ugurbil, Kamil; Adriany, Gregor

    2010-01-01

    Three different coil configurations were evaluated through simulation and experimentally to determine safe operating limits and evaluate subject size dependent performance for prostate imaging at 7 Tesla. The coils included a transceiver endorectal coil (trERC), a 16 channel transceiver external surface array (trESA) and a trESA combined with a receive-only ERC (trESA+roERC). While the transmit B1 (B1+) homogeneity was far superior for the trESA, the maximum achievable B1+ is subject size dependent and limited by transmit chain losses and amplifier performance. For the trERC, limitations in transmit homogeneity greatly compromised image quality and limited coverage of the prostate. Despite these challenges, the high peak B1+ close to the trERC and subject size independent performance provides potential advantages especially for spectroscopic localization where high bandwidth RF pulses are required. On the receive side, the combined trESA+roERC provided the highest SNR and improved homogeneity over the trERC resulting in better visualization of the prostate and surrounding anatomy. In addition, the parallel imaging performance of the trESA+roERC holds strong promise for diffusion weighted imaging and dynamic contrast enhanced MRI. PMID:20740657

  4. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo D. [Yale Univ., New Haven, CT (United States). Dept. of Mechanical Engineering and Materials Science; Altman, Eric I. [Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3DAFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  5. Image statistics and the perception of surface gloss and lightness.

    Science.gov (United States)

    Kim, Juno; Anderson, Barton L

    2010-07-01

    Despite previous data demonstrating the critical importance of 3D surface geometry in the perception of gloss and lightness, I. Motoyoshi, S. Nishida, L. Sharan, and E. H. Adelson (2007) recently proposed that a simple image statistic--histogram or sub-band skew--is computed by the visual system to infer the gloss and albedo of surfaces. One key source of evidence used to support this claim was an experiment in which adaptation to skewed image statistics resulted in opponent aftereffects in observers' judgments of gloss and lightness. We report a series of adaptation experiments that were designed to assess the cause of these aftereffects. We replicated their original aftereffects in gloss but found no consistent aftereffect in lightness. We report that adaptation to zero-skew adaptors produced similar aftereffects as positively skewed adaptors, and that negatively skewed adaptors induced no reliable aftereffects. We further find that the adaptation effect observed with positively skewed adaptors is not robust to changes in mean luminance that diminish the intensity of the luminance extrema. Finally, we show that adaptation to positive skew reduces (rather than increases) the apparent lightness of light pigmentation on non-uniform albedo surfaces. These results challenge the view that the adaptation results reported by Motoyoshi et al. (2007) provide evidence that skew is explicitly computed by the visual system.

  6. Multifractural analysis of AFM images of Nb thin film surfaces

    International Nuclear Information System (INIS)

    Altajskij, M.V; Chernenko, L.P.; Balebanov, V.M.; Erokhin, N.S.; Moiseev, S.S.

    2000-01-01

    The multifractal analysis of the atomic Force Microscope (AFM) images of the Niobium (Nb) thin film surfaces has been performed. These Nb films are being used for the measurements of the London penetration depth of stationary magnetic field by polarized neutron reflectometry. The analysis shows the behavior of Renyi dimensions of images (in the range of available scales 6-2000 nm), like the known multifractal p-model, with typical Hausdorff dimension of prevalent color in the range of 1.6-1.9. This indicates the fractal nature of film landscape on those scales. The perspective of new mechanism of order parameter suppression on superconductor-vacuum boundary, manifested in anomalous magnetic field penetration in discussed

  7. Photometric imaging in particle size measurement and surface visualization.

    Science.gov (United States)

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Surface flaw evaluation by vectorized eddy current testing image

    International Nuclear Information System (INIS)

    Endo, Hisashi; Takagi, Toshiyuki

    2006-01-01

    A method of eddy current testing (ECT) data mapping for surface breaking evaluation is studied. The multicoil ECT probe utilized in this paper consists of Transmit-Receive (TR) type sensors as array elements to obtain the information on crack directions. Switching two directional scans, U- and T- modes, gives two-dimensional vector mapping as ECT images. The ECT signals of the TR type sensor also give the information on crack directions from their variation displayed on the complex number plane. Extracting a complex number component of the signals makes it possible to visualize directions of numerically simulated proximate EDM slits. (author)

  9. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  10. Computer screen photo-excited surface plasmon resonance imaging.

    Science.gov (United States)

    Filippini, Daniel; Winquist, Fredrik; Lundström, Ingemar

    2008-09-12

    Angle and spectra resolved surface plasmon resonance (SPR) images of gold and silver thin films with protein deposits is demonstrated using a regular computer screen as light source and a web camera as detector. The screen provides multiple-angle illumination, p-polarized light and controlled spectral radiances to excite surface plasmons in a Kretchmann configuration. A model of the SPR reflectances incorporating the particularities of the source and detector explain the observed signals and the generation of distinctive SPR landscapes is demonstrated. The sensitivity and resolution of the method, determined in air and solution, are 0.145 nm pixel(-1), 0.523 nm, 5.13x10(-3) RIU degree(-1) and 6.014x10(-4) RIU, respectively, encouraging results at this proof of concept stage and considering the ubiquity of the instrumentation.

  11. Cooling a solar telescope enclosure: plate coil thermal analysis

    Science.gov (United States)

    Gorman, Michael; Galapon, Chriselle; Montijo, Guillermo; Phelps, LeEllen; Murga, Gaizka

    2016-08-01

    The climate of Haleakalā requires the observatories to actively adapt to changing conditions in order to produce the best possible images. Observatories need to be maintained at a temperature closely matching ambient or the images become blurred and unusable. The Daniel K. Inouye Solar Telescope is a unique telescope as it will be active during the day as opposed to the other night-time stellar observatories. This means that it will not only need to constantly match the ever-changing temperature during the day, but also during the night so as not to sub-cool and affect the view field of other telescopes while they are in use. To accomplish this task, plate coil heat exchanger panels will be installed on the DKIST enclosure that are designed to keep the temperature at ambient temperature +0°C/-4°C. To verify the feasibility of this and to validate the design models, a test rig has been installed at the summit of Haleakalā. The project's purpose is to confirm that the plate coil panels are capable of maintaining this temperature throughout all seasons and involved collecting data sets of various variables including pressures, temperatures, coolant flows, solar radiations and wind velocities during typical operating hours. Using MATLAB, a script was written to observe the plate coil's thermal performance. The plate coil did not perform as expected, achieving a surface temperature that was generally 2ºC above ambient temperature. This isn't to say that the plate coil does not work, but the small chiller used for the experiment was undersized resulting in coolant pumped through the plate coil that was not supplied at a low enough temperature. Calculated heat depositions were about 23% lower than that used as the basis of the design for the hillers to be used on the full system, a reasonable agreement given the fact that many simplifying assumptions were used in the models. These were not carried over into the testing. The test rig performance showing a 23% margin

  12. Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods

    Science.gov (United States)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.

  13. A quantitative experimental phantom study on MRI image uniformity.

    Science.gov (United States)

    Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei

    2018-05-02

    Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e., Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included Spin Echo (SE) and gradient echo (GRE) scanned in three planes (i.e., Axial, Coronal, and Sagittal). Moreover, three surface coil types (i.e., Head and Neck or HN, Brain, and TMJ coils) and two image correction methods (i.e., Surface Coil Intensity Correction or SCIC, Phased array Uniformity Enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the NEMA peak-deviation non-uniformity method. Results showed that TMJ coils elicited the least uniform image and Brain coils outperformed HN coils when metallic materials were present. Additionally, when metallic materials were present, SE outperformed GRE especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e., no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g., coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.

  14. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    Science.gov (United States)

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  15. Impedance of curved rectangular spiral coils around a conductive cylinder

    Science.gov (United States)

    Burke, S. K.; Ditchburn, R. J.; Theodoulidis, T. P.

    2008-07-01

    Eddy-current induction due to a thin conformable coil wrapped around a long conductive cylinder is examined using a second-order vector potential formalism. Compact closed-form expressions are derived for the self- and mutual impedances of curved rectangular spiral coils (i) in free space and (ii) when wrapped around the surface of the cylindrical rod. The validity of these expressions was tested against the results of a systematic series of experiments using a cylindrical Al-alloy rod and conformable coils manufactured using flexible printed-circuit-board technology. The theoretical expressions were in very good agreement with the experimental measurements. The significance of the results for eddy-current nondestructive inspection using flexible coils and flexible coil arrays is discussed.

  16. BUILDING DETECTION USING AERIAL IMAGES AND DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    J. Mu

    2017-05-01

    Full Text Available In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method.

  17. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    Science.gov (United States)

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  18. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    Science.gov (United States)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  19. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    Science.gov (United States)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  20. Towards a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging with a 32-element coil array: feasibility and initial comparative evaluation.

    Science.gov (United States)

    Xu, Jian; Kim, Daniel; Otazo, Ricardo; Srichai, Monvadi B; Lim, Ruth P; Axel, Leon; Mcgorty, Kelly Anne; Niendorf, Thoralf; Sodickson, Daniel K

    2013-07-01

    To evaluate the feasibility and perform initial comparative evaluations of a 5-minute comprehensive whole-heart magnetic resonance imaging (MRI) protocol with four image acquisition types: perfusion (PERF), function (CINE), coronary artery imaging (CAI), and late gadolinium enhancement (LGE). This study protocol was Health Insurance Portability and Accountability Act (HIPAA)-compliant and Institutional Review Board-approved. A 5-minute comprehensive whole-heart MRI examination protocol (Accelerated) using 6-8-fold-accelerated volumetric parallel imaging was incorporated into and compared with a standard 2D clinical routine protocol (Standard). Following informed consent, 20 patients were imaged with both protocols. Datasets were reviewed for image quality using a 5-point Likert scale (0 = non-diagnostic, 4 = excellent) in blinded fashion by two readers. Good image quality with full whole-heart coverage was achieved using the accelerated protocol, particularly for CAI, although significant degradations in quality, as compared with traditional lengthy examinations, were observed for the other image types. Mean total scan time was significantly lower for the Accelerated as compared to Standard protocols (28.99 ± 4.59 min vs. 1.82 ± 0.05 min, P simplified scan prescription and high spatial and temporal resolution enabled by highly parallel imaging technology. The study also highlights technical hurdles that remain to be addressed. Although image quality remained diagnostic for most scan types, the reduced image quality of PERF, CINE, and LGE scans in the Accelerated protocol remain a concern. Copyright © 2012 Wiley Periodicals, Inc.

  1. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  2. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla.

    Science.gov (United States)

    Schmitt, Melanie; Potthast, Andreas; Sosnovik, David E; Polimeni, Jonathan R; Wiggins, Graham C; Triantafyllou, Christina; Wald, Lawrence L

    2008-06-01

    A 128-channel receive-only array coil is described and tested for cardiac imaging at 3T. The coil is closely contoured to the body with a "clam-shell" geometry with 68 posterior and 60 anterior elements, each 75 mm in diameter, and arranged in a continuous overlapped array of hexagonal symmetry to minimize nearest neighbor coupling. Signal-to-noise ratio (SNR) and noise amplification for parallel imaging (G-factor) were evaluated in phantom and volunteer experiments. These results were compared to those of commercially available 24-channel and 32-channel coils in routine use for cardiac imaging. The in vivo measurements with the 128-channel coil resulted in SNR gains compared to the 24-channel coil (up to 2.2-fold in the apex). The 128- and 32-channel coils showed similar SNR in the heart, likely dominated by the similar element diameters of these coils. The maximum G-factor values were up to seven times better for a seven-fold acceleration factor (R=7) compared to the 24-channel coil and up to two-fold improved compared to the 32-channel coil. The ability of the 128-channel coil to facilitate highly accelerated cardiac imaging was demonstrated in four volunteers using acceleration factors up to seven-fold (R=7) in a single spatial dimension. Copyright (c) 2008 Wiley-Liss, Inc.

  3. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    Science.gov (United States)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  4. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  5. Generation of uniform magnetic field using a spheroidal helical coil structure

    International Nuclear Information System (INIS)

    Öztürk, Yavuz; Aktaş, Bekir

    2016-01-01

    Uniformity of magnetic fields are of great importance especially in magnetic resonance studies, namely in magnetic resonance spectroscopy applications (NMR, FMR, ESR, EPR etc.) and magnetic resonance imaging applications (MRI, FMRI). Field uniformity is also required in some other applications such as eddy current probes, magnetometers, magnetic traps, particle counters etc. Here we proposed a coil winding regime, which follows the surface of a spheroid (an ellipsoid of rotation); in light of previous theoretical studies suggesting perfect uniformity for a constant ampere per turn in the axial direction thereof. We demonstrated our theoretical results from finite element calculations suggesting 0.15% of field uniformity for the proposed structure, which we called a Spheroidal Helical Coil. (paper)

  6. Device for supporting a toroidal coil in a toroidal type nuclear fusion device

    International Nuclear Information System (INIS)

    Kitazawa, Hakaru; Sato, Hiroshi.

    1975-01-01

    Object: To easily manufacture a center block having a strength sufficient to withstand an electromagnetic force exerted on the center of toroidal of a toroidal coil and to increase its reliability. Structure: In a device for supporting toroidal coils wherein the electromagnetic force exerted on the center of toroidal of a plurality of toroidal coils arranged in toroidal fashion, the contact surface between the toroidal coil and the center block is arranged parallel to the center axis of toroidal so as to receive the electromagnetic force exerted on the center of toroidal of the toroidal coil as the component of force in a radial direction. (Taniai, N.)

  7. Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils

    International Nuclear Information System (INIS)

    Salinas, F S; Lancaster, J L; Fox, P T

    2007-01-01

    Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)

  8. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  9. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  10. Development work for the Japanese LCT coil and its design and construction

    International Nuclear Information System (INIS)

    Shimamoto, Susumu; Ando, Toshinari; Tsuji, Hiroshi; Yasukochi, Ko

    1984-01-01

    This paper describes design, verification tests, and construction of the Japanese test coil for the Large Coil Task (LCT). Japan Atomic Energy Research Institute (JAERI) signed on the LCT international agreement under the International Energy Agency (IEA) in 1978, and since then JAERI has been working to develop the Japanese LCT coil to explore the problems of design and construction of tokamak toroidal coil. Based on the common requirements of the LCT, the Japanese LCT coil was designed to be a pool-cooled NbTi fully-stabilized coil whose operating current is 10,220 A at 8 T. Through research and development of the Japanese LCT coil, new advances in the super-conducting coil technology were obtained, such as mechanically and chemically treated conductor surface that has high heat transfer about four times as much as usual ones, nitrogen-strengthened stainless steel that has the yield strength twice as much as usual stainless steel, NbTi filaments those have the critical current density twice as much as those before LCT, and so on. These advances have enabled to construct the Japanese LCT coil and it was completed in the spring of 1982. During the construction of the coil, new fabrication techniques were obtained to wind large current conductor into a mechanically rigid coil and thus to construct a totally stable large coil. (author)

  11. Is the body-coil at 3 Tesla feasible for the MRI evaluation of the painful knee? A comparative study

    International Nuclear Information System (INIS)

    Lutterbey, G.; Behrends, K.; Falkenhausen, M.V.; Wattjes, M.P.; Morakkabati, N.; Schild, H.; Gieseke, J.

    2007-01-01

    The purpose of this study was to compare the in-built body coil of the 3.0-Tesla (T) scanner with a dedicated surface coil of a 1.5 T system regarding knee imaging. We performed an intraindividual prospective clinical trial on 17 patients with knee pain using magnetic resonance imaging (MRI) at 1.5 and 3.0 T systems equipped with identical gradient systems. Proton-density-weighted turbo spin echo sequences with the same spatial resolution and comparable contrast parameters were used. A quantitative measurement of signal to noise ratio (SNR), relative contrast (RC) and contrast to noise ratio (CNR) between muscle and bone marrow was performed, followed by a qualitative assessment of anatomic/pathologic structures and the extent of artefacts. At 3.0 T, 30 lesions (91%) compared to 33 lesions at 1.5 T were detected. The SNR/CNR/RC were moderately reduced at 3.0 T versus 1.5 T (muscle 42 vs 47 and bone 83 vs 112/46 vs 69/0.33 vs 0.43). Motion artefacts from the pulsating popliteal artery were significantly increased at 3.0 T. A visible and measurable signal loss occurred at 3.0 T using the built-in body coil compared with the dedicated 1.5 T knee coil, but nearly all clinically important information could be obtained. (orig.)

  12. Is the body-coil at 3 Tesla feasible for the MRI evaluation of the painful knee? A comparative study.

    Science.gov (United States)

    Lutterbey, G; Behrends, K; Falkenhausen, M V; Wattjes, M P; Morakkabati, N; Gieseke, J; Schild, H

    2007-02-01

    The purpose of this study was to compare the in-built body coil of the 3.0-Tesla (T) scanner with a dedicated surface coil of a 1.5 T system regarding knee imaging. We performed an intraindividual prospective clinical trial on 17 patients with knee pain using magnetic resonance imaging (MRI) at 1.5 and 3.0 T systems equipped with identical gradient systems. Proton-density-weighted turbo spin echo sequences with the same spatial resolution and comparable contrast parameters were used. A quantitative measurement of signal to noise ratio (SNR), relative contrast (RC) and contrast to noise ratio (CNR) between muscle and bone marrow was performed, followed by a qualitative assessment of anatomic/pathologic structures and the extent of artefacts. At 3.0 T, 30 lesions (91%) compared to 33 lesions at 1.5 T were detected. The SNR/CNR/RC were moderately reduced at 3.0 T versus 1.5 T (muscle 42 vs 47 and bone 83 vs 112/46 vs 69/0.33 vs 0.43). Motion artefacts from the pulsating popliteal artery were significantly increased at 3.0 T. A visible and measurable signal loss occurred at 3.0 T using the built-in body coil compared with the dedicated 1.5 T knee coil, but nearly all clinically important information could be obtained.

  13. High-resolution magnetic resonance angiography of the lower extremities with a dedicated 36-element matrix coil at 3 Tesla.

    Science.gov (United States)

    Kramer, Harald; Michaely, Henrik J; Matschl, Volker; Schmitt, Peter; Reiser, Maximilian F; Schoenberg, Stefan O

    2007-06-01

    Recent developments in hard- and software help to significantly increase image quality of magnetic resonance angiography (MRA). Parallel acquisition techniques (PAT) help to increase spatial resolution and to decrease acquisition time but also suffer from a decrease in signal-to-noise ratio (SNR). The movement to higher field strength and the use of dedicated angiography coils can further increase spatial resolution while decreasing acquisition times at the same SNR as it is known from contemporary exams. The goal of our study was to compare the image quality of MRA datasets acquired with a standard matrix coil in comparison to MRA datasets acquired with a dedicated peripheral angio matrix coil and higher factors of parallel imaging. Before the first volunteer examination, unaccelerated phantom measurements were performed with the different coils. After institutional review board approval, 15 healthy volunteers underwent MRA of the lower extremity on a 32 channel 3.0 Tesla MR System. In 5 of them MRA of the calves was performed with a PAT acceleration factor of 2 and a standard body-matrix surface coil placed at the legs. Ten volunteers underwent MRA of the calves with a dedicated 36-element angiography matrix coil: 5 with a PAT acceleration of 3 and 5 with a PAT acceleration factor of 4, respectively. The acquired volume and acquisition time was approximately the same in all examinations, only the spatial resolution was increased with the acceleration factor. The acquisition time per voxel was calculated. Image quality was rated independently by 2 readers in terms of vessel conspicuity, venous overlay, and occurrence of artifacts. The inter-reader agreement was calculated by the kappa-statistics. SNR and contrast-to-noise ratios from the different examinations were evaluated. All 15 volunteers completed the examination, no adverse events occurred. None of the examinations showed venous overlay; 70% of the examinations showed an excellent vessel conspicuity

  14. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  15. Materials and methods for higher performance screen-printed flexible MRI receive coils.

    Science.gov (United States)

    Corea, Joseph R; Lechene, P Balthazar; Lustig, Michael; Arias, Ana C

    2017-08-01

    To develop methods for characterizing materials used in screen-printed MRI coils and improve signal-to-noise ratio (SNR) with new lower-loss materials. An experimental apparatus was created to characterize dielectric properties of plastic substrates used in receive coils. Coils were fabricated by screen printing conductive ink onto several plastic substrates. Unloaded and sample loaded quality factor (Q Unloaded /Q Loaded ) measurements and scans on a 3T scanner were used to characterize coil performance. An experimental method was developed to describe the relationship between a coil's Q Unloaded and the SNR it provides in images of a phantom. In addition, 3T scans of a phantom and the head of a volunteer were obtained with a proof-of-concept printed eight-channel array, and the results were compared with a commercial 12-channel array. Printed coils with optimized substrates exhibited up to 97% of the image SNR when compared with a traditional coil on a loading phantom. Q Unloaded and the SNR of coils were successfully correlated. The printed array resulted in images comparable to the quality given by the commercial array. Using the proposed methods and materials, the SNR of printed coils approached that of commercial coils while using a new fabrication technique that provided more flexibility and close contact with the patient's body. Magn Reson Med 78:775-783, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Coil response inversion for very early time modelling of helicopter-borne time-domain electromagnetic data and mapping of near-surface geological layers

    DEFF Research Database (Denmark)

    Schamper, Cyril Noel Clarence; Auken, Esben; Sørensen, Kurt Ingvard K.I.

    2014-01-01

    Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric cu...... resolution of shallow geological layers in the depth interval 0-20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.......Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric...

  17. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  18. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  19. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  20. Three-dimensional surface reconstruction imaging for evaluation of congenital heart disease from ECG-triggered MR images

    International Nuclear Information System (INIS)

    Vannier, M.W.; Laschinger, J.; Knapp, R.H.; Gutierrez, F.R.; Gronnemeyer, S.A.

    1987-01-01

    Three-dimensional surface reconstruction images of the heart and great vessels were produced from contiguous sequences of electrocardiographically triggered MR images in 25 patients with congenital heart disease and in three healthy subjects. The imaging data were semiautomatically processed to separate the epicardial and endocardial surfaces and to define the outline of the enclosed blood volumes on a section by section basis. Images were obtained at 5-mm intervals in patients aged 3 months to 30 years with anomalies of the great vessels, tetralogy of Fallot, septal defects, pulmonary atresia, and other congenital heart malformations. The results were used to facilitate the surgical treatment of these patients and were compared with echocardiographic and cineradiographic studies, and with surgical findings or pathologic specimens. These surface reconstruction images were useful for communicating the results of diagnostic examinations to cardiac surgeons, for sizing and location of intracardiac defects, for imaging the pulmonary venous drainage, and for assessing regional and global function

  1. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  2. A hybrid optimization method for biplanar transverse gradient coil design

    International Nuclear Information System (INIS)

    Qi Feng; Tang Xin; Jin Zhe; Jiang Zhongde; Shen Yifei; Meng Bin; Zu Donglin; Wang Weimin

    2007-01-01

    The optimization of transverse gradient coils is one of the fundamental problems in designing magnetic resonance imaging gradient systems. A new approach is presented in this paper to optimize the transverse gradient coils' performance. First, in the traditional spherical harmonic target field method, high order coefficients, which are commonly ignored, are used in the first stage of the optimization process to give better homogeneity. Then, some cosine terms are introduced into the series expansion of stream function. These new terms provide simulated annealing optimization with new freedoms. Comparison between the traditional method and the optimized method shows that the inhomogeneity in the region of interest can be reduced from 5.03% to 1.39%, the coil efficiency increased from 3.83 to 6.31 mT m -1 A -1 and the minimum distance of these discrete coils raised from 1.54 to 3.16 mm

  3. Three-dimensional isotropic fat-suppressed proton density-weighted MRI at 3 tesla using a T/R-coil can replace multiple plane two-dimensional sequences in knee imaging

    Energy Technology Data Exchange (ETDEWEB)

    Homsi, R.; Luetkens, J.A. [Bonn Univ. (Germany). Dept. of Radiology; Gieseke, J. [Philips Healthcare, Hamburg (Germany); and others

    2016-10-15

    To evaluate whether a 3D proton density-weighted fat-suppressed sequence (PDwFS) of the knee is able to replace multiplanar 2D-PDwFS. 52 patients (26 men, mean age: 41.9±14.5 years) underwent magnetic resonance imaging (MRI) of the knee at 3.0 Tesla using a T/R-coil. The imaging protocol included 3 planes of 2D-PDwFS (acquisition time (AT): 6:40 min; voxel sizes: 0.40-0.63 x 0.44-0.89 x 3 mm{sup 3}) and a 3D-PDwFS (AT: 6:31 min; voxel size: 0.63 x 0.68 x 0.63 mm{sup 3}). Homogeneity of fat suppression (HFS), artifacts, and image sharpness (IS) were evaluated on a 5-point scale (5[excellent] - 1[non-diagnostic]). The sum served as a measure for the overall image quality (OIQ). Contrast ratios (CR) compared to popliteal muscle were calculated for the meniscus (MEN), anterior (ACL) and posterior cruciate ligaments (PCL). In 13 patients who underwent arthroscopic knee surgery, two radiologists evaluated the presence of meniscal, ligamental and cartilage lesions to estimate the sensitivity and specificity of lesion detection. The CR was higher in the ACL, PCL and MEN in 3D- PDwFS compared to 2D-PDwFS (p<0.01 for ACL and PCL; p=0.07 for MEN). Compared to 2D images, the OIQ was rated higher in 3D-PDwFS images (p<0.01) due to fewer artifacts and HFS despite the lower IS (p<0.01). The sensitivity and specificity of lesion detection in 3D- and 2D-PDwFS were similar. Compared to standard multiplanar 2D-PDwFS knee imaging, isotropic high spatial resolution 3D-PDwFS of the knee at 3.0T can be acquired with high image quality in a reasonable scan time. Multiplanar reformations in arbitrary planes may serve as an additional benefit of 3D-PDwFS.

  4. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    Science.gov (United States)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  5. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.

    Science.gov (United States)

    Wiggins, Graham C; Polimeni, Jonathan R; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L

    2009-09-01

    The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images.

  6. Imaging by Electrochemical Scanning Tunneling Microscopy and Deconvolution Resolving More Details of Surfaces Nanomorphology

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    observed in high-resolution images of metallic nanocrystallites may be effectively deconvoluted, as to resolve more details of the crystalline morphology (see figure). Images of surface-crystalline metals indicate that more than a single atomic layer is involved in mediating the tunneling current......Upon imaging, electrochemical scanning tunneling microscopy (ESTM), scanning electrochemical micro-scopy (SECM) and in situ STM resolve information on electronic structures and on surface topography. At very high resolution, imaging processing is required, as to obtain information that relates...... to crystallographic-surface structures. Within the wide range of new technologies, those images surface features, the electrochemical scanning tunneling microscope (ESTM) provides means of atomic resolution where the tip participates actively in the process of imaging. Two metallic surfaces influence ions trapped...

  7. Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Michael P.; Ajay, Gautam; Gellings, Jaclyn A.; Rayment, Ivan (UW)

    2017-12-01

    X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 – Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.

  8. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  9. Coil end design for the LHC dipole magnet

    International Nuclear Information System (INIS)

    Brandt, J.S.

    1996-01-01

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed

  10. Hierarchical clustering of RGB surface water images based on MIA ...

    African Journals Online (AJOL)

    2009-11-25

    Nov 25, 2009 ... similar water-related images within a testing database of 126 RGB images. .... consequently treated by SVD-based PCA and the PCA outputs partitioned into .... green. Other colours, mostly brown and grey, dominate in.

  11. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  12. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    Science.gov (United States)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  13. Surface stress mediated image force and torque on an edge dislocation

    Science.gov (United States)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  14. High-resolution morphological and biochemical imaging of articular cartilage of the ankle joint at 3.0 T using a new dedicated phased array coil: in vivo reproducibility study

    International Nuclear Information System (INIS)

    Welsch, Goetz H.; Trattnig, Siegfried; Mamisch, Tallal C.; Weber, Michael; Horger, Wilhelm; Bohndorf, Klaus

    2008-01-01

    The objective of this study was to evaluate the feasibility and reproducibility of high-resolution magnetic resonance imaging (MRI) and quantitative T2 mapping of the talocrural cartilage within a clinically applicable scan time using a new dedicated ankle coil and high-field MRI. Ten healthy volunteers (mean age 32.4 years) underwent MRI of the ankle. As morphological sequences, proton density fat-suppressed turbo spin echo (PD-FS-TSE), as a reference, was compared with 3D true fast imaging with steady-state precession (TrueFISP). Furthermore, biochemical quantitative T2 imaging was prepared using a multi-echo spin-echo T2 approach. Data analysis was performed three times each by three different observers on sagittal slices, planned on the isotropic 3D-TrueFISP; as a morphological parameter, cartilage thickness was assessed and for T2 relaxation times, region-of-interest (ROI) evaluation was done. Reproducibility was determined as a coefficient of variation (CV) for each volunteer; averaged as root mean square (RMSA) given as a percentage; statistical evaluation was done using analysis of variance. Cartilage thickness of the talocrural joint showed significantly higher values for the 3D-TrueFISP (ranging from 1.07 to 1.14 mm) compared with the PD-FS-TSE (ranging from 0.74 to 0.99 mm); however, both morphological sequences showed comparable good results with RMSA of 7.1 to 8.5%. Regarding quantitative T2 mapping, measurements showed T2 relaxation times of about 54 ms with an excellent reproducibility (RMSA) ranging from 3.2 to 4.7%. In our study the assessment of cartilage thickness and T2 relaxation times could be performed with high reproducibility in a clinically realizable scan time, demonstrating new possibilities for further investigations into patient groups. (orig.)

  15. Depletion-Mode GaN HEMT Q-Spoil Switches for MRI Coils.

    Science.gov (United States)

    Lu, Jonathan Y; Grafendorfer, Thomas; Zhang, Tao; Vasanawala, Shreyas; Robb, Fraser; Pauly, John M; Scott, Greig C

    2016-12-01

    Q-spoiling is the process of decoupling an MRI receive coil to protect the equipment and patient. Conventionally, Q-spoiling is performed using a PIN diode switch that draws significant current. In this work, a Q-spoiling technique using a depletion-mode Gallium Nitride HEMT device was developed for coil detuning at both 1.5 T and 3 T MRI. The circuits with conventional PIN diode Q-spoiling and the GaN HEMT device were implemented on surface coils. SNR was measured and compared for all surfaces coils. At both 1.5 T and 3 T, comparable SNR was achieved for all coils with the proposed technique and conventional Q-spoiling. The GaN HEMT device has significantly reduced the required power for Q-spoiling. The GaN HEMT device also provides useful safety features by detuning the coil when unpowered.

  16. Technical validation of the Di3D stereophotogrammetry surface imaging system

    DEFF Research Database (Denmark)

    Winder, R.J.; Darvann, Tron Andre; McKnight, W.

    2008-01-01

    The purpose of this work was to assess the technical performance of a three-dimensional surface imaging system for geometric accuracy and maximum field of view. The system was designed for stereophotogrammetry capture of digital images from three-dimensional surfaces of the head, face, and neck...

  17. Coil for LEAR extraction septum

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    Which way does the current flow ? This intriguing object is the coil for the LEAR extraction septum. There were two septa, first a thin one, then this one, not so thin, somewhat on the borderline between septum and bending magnet.

  18. First coil for the SC

    CERN Multimedia

    CERN PhotoLab

    1955-01-01

    The coils for the SC magnet were stored in the large hangar of the Cointrin Airport (to make sure that they would be available before snow and ice would block the roads and canals from Belgium, where they were built).

  19. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  20. The Swiss LCT-coil

    International Nuclear Information System (INIS)

    Vecsey, G.; Benz, H.; Horvath, I.

    1985-01-01

    With delivery of the coil to ORNL on February 4, 1984, the second phase of the Swiss Large Coil Program - design and construction - was terminated. Mainlines of the Swiss design concept are summarized and related to theoretical calculations, experimental results of the supporting program, fabricational experience and first successful test results. An attempt is made to draw preliminary conclusions with regard to the design of future toroidal systems such as NET

  1. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils

    International Nuclear Information System (INIS)

    Han, B H; Lee, S Y; Park, S

    2008-01-01

    Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path

  2. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  3. Distinction of heterogeneity on Au nanostructured surface based on phase contrast imaging of atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Mi; Choi, Jeong-Woo

    2010-01-01

    The discrimination of the heterogeneity of different materials on nanostructured surfaces has attracted a great deal of interest in biotechnology as well as nanotechnology. Phase imaging through tapping mode of atomic force microscopy (TMAFM) can be used to distinguish the heterogeneity on a nanostructured surface. Nanostructures were fabricated using anodic aluminum oxide (AAO). An 11-mercaptoundecanoic acid (11-MUA) layer adsorbed onto the Au nanodots through self-assembly to improve the bio-compatibility. The Au nanostructures that were modified with 11-MUA and the concave surfaces were investigated using the TMAFM phase images to compare the heterogeneous and homogeneous nanostructured surfaces. Although the topography and phase images were taken simultaneously, the images were different. Therefore, the contrast in the TMAFM phase images revealed the different compositional materials on the heterogeneous nanostructure surface.

  4. Surface Distresses Detection of Pavement Based on Digital Image Processing

    OpenAIRE

    Ouyang , Aiguo; Luo , Chagen; Zhou , Chao

    2010-01-01

    International audience; Pavement crack is the main form of early diseases of pavement. The use of digital photography to record pavement images and subsequent crack detection and classification has undergone continuous improvements over the past decade. Digital image processing has been applied to detect the pavement crack for its advantages of large amount of information and automatic detection. The applications of digital image processing in pavement crack detection, distresses classificati...

  5. Multispectral UV imaging for surface analysis of MUPS tablets with special focus on the pellet distribution

    DEFF Research Database (Denmark)

    Novikova, Anna; Carstensen, Jens Michael; Rades, Thomas

    2016-01-01

    In the present study the applicability of multispectral UV imaging in combination with multivariate image analysis for surface evaluation of MUPS tablets was investigated with respect to the differentiation of the API pellets from the excipients matrix, estimation of the drug content as well as p...... image analysis is a promising approach for the automatic quality control of MUPS tablets during the manufacturing process....

  6. Downscaling of Aircraft, Landsat, and MODIS-bases Land Surface Temperature Images with Support Vector Machines

    Science.gov (United States)

    High spatial resolution Land Surface Temperature (LST) images are required to estimate evapotranspiration (ET) at a field scale for irrigation scheduling purposes. Satellite sensors such as Landsat 5 Thematic Mapper (TM) and Moderate Resolution Imaging Spectroradiometer (MODIS) can offer images at s...

  7. The SMES model coil. Fabrication

    International Nuclear Information System (INIS)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji

    1998-01-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  8. The SMES model coil. Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji [Toshiba Corp., Yokohama, Kanagawa (Japan)] [and others

    1998-07-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  9. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    OpenAIRE

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  10. Equilibrium field coil concepts for INTOR

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Brown, T.G.

    1981-08-01

    Methods are presented for reducing ampere-turn requirements in the EF coil system. It is shown that coil currents in an EF coil system external to the toroidal field coils can be substantially reduced by relaxing the triangularity of a D-shaped plasma. Further reductions are realized through a hybrid EF coil system using both internal and external coils. Equilibrium field coils for a poloidally asymmetric, single-null INTOR configuration are presented. It is shown that the shape of field lines in the plasma scrapeoff region and divertor channel improves as triangularity is reduced, but it does so at the possible expense of achievable stable beta values

  11. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Murphy, W.A.

    1988-01-01

    After only a few years, MR imaging has proved to be an important method for imaging disorders of the musculoskeletal tissues. The images are characterized by great inherent contrast, excellent spatial resolution, and exquisite anatomic display - major reasons why MR imaging compares favorably with other imaging methods, such as radionuclide bone scanning and CT. MR imaging is particularly sensitive to bone marrow alterations and is very effective for detection and characterization of a wide variety of soft tissue conditions. Advances in surface coil technology will increase the usefulness of MR imaging in the evaluation of articular disease. In addition, chemical shift imaging and spectroscopy will add physiologic information to the anatomic features demonstrated by proton imaging

  12. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  13. The Application of Three-Dimensional Surface Imaging System in Plastic and Reconstructive Surgery.

    Science.gov (United States)

    Li, Yanqi; Yang, Xin; Li, Dong

    2016-02-01

    Three-dimensional (3D) surface imaging system has gained popularity worldwide in clinical application. Unlike computed tomography and magnetic resonance imaging, it has the ability to capture 3D images with both shape and texture information. This feature has made it quite useful for plastic surgeons. This review article is mainly focusing on demonstrating the current status and analyzing the future of the application of 3D surface imaging systems in plastic and reconstructive surgery.Currently, 3D surface imaging system is mainly used in plastic and reconstructive surgery to help improve the reliability of surgical planning and assessing surgical outcome objectively. There have already been reports of its using on plastic and reconstructive surgery from head to toe. Studies on facial aging process, online applications development, and so on, have also been done through the use of 3D surface imaging system.Because different types of 3D surface imaging devices have their own advantages and disadvantages, a basic knowledge of their features is required and careful thought should be taken to choose the one that best fits a surgeon's demand.In the future, by integrating with other imaging tools and the 3D printing technology, 3D surface imaging system will play an important role in individualized surgical planning, implants production, meticulous surgical simulation, operative techniques training, and patient education.

  14. Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation

    Science.gov (United States)

    Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.

    2018-06-01

    Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.

  15. Surface Explorations : 3D Moving Images as Cartographies of Time

    NARCIS (Netherlands)

    Verhoeff, N.

    2016-01-01

    Moving images of travel and exploration have a long history. In this essay I will examine how the trope of navigation in 3D moving images can work towards an intimate and haptic encounter with other times and other places – elsewhen and elsewhere. The particular navigational construction of space in

  16. Dynamic multi-channel TMS with reconfigurable coil.

    Science.gov (United States)

    Jiang, Ruoli; Jansen, Ben H; Sheth, Bhavin R; Chen, Ji

    2013-05-01

    Investigations of the causal involvement of particular brain areas and interconnections in behavior require an external stimulation system with reasonable spatio-temporal resolution. Current transcranial magnetic stimulation (TMS) technology is limited to stimulating a single brain area once in a given trial. Here, we present a feasibility study for a novel TMS system based on multi-channel reconfigurable coils. With this hardware, researchers will be able to stimulate multiple brain sites in any temporal order in a trial. The system employs a wire-mesh coil, constructed using x- and y-directional wires. By varying the current direction and/or strength on each wire, we can configure the proposed mesh-wire coil into a standard loop coil and figure-eight coil of varying size. This provides maximum flexibility to the experimenter in that the location and extent of stimulation on the brain surface can be modified depending on experimental requirement. Moreover, one can dynamically and automatically modify the site(s) of stimulation several times within the span of seconds. By pre-storing various sequences of excitation patterns inside a control unit, one can explore the effect of dynamic TMS on behavior, in associative learning, and as rehabilitative therapy. Here, we present a computer simulation and bench experiments that show the feasibility of the dynamically-reconfigurable coil.

  17. Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla.

    Science.gov (United States)

    Shajan, G; Mirkes, Christian; Buckenmaier, Kai; Hoffmann, Jens; Pohmann, Rolf; Scheffler, Klaus

    2016-02-01

    A multinuclei imaging setup with the capability to acquire both sodium ((23) Na) and proton ((1) H) signals at 9.4 Tesla is presented. The main objective was to optimize coil performance at the (23) Na frequency while still having the ability to acquire satisfactory (1) H images. The setup consisted of a combination of three radio frequency (RF) coils arranged in three layers: the innermost layer was a 27-channel (23) Na receive helmet which was surrounded by a four-channel (23) Na transceiver array. The outer layer consisted of a four-channel (1) H dipole array for B0 shimming and anatomical localization. Transmit and receive performance of the (23) Na arrays was compared to a single-tuned (23) Na birdcage resonator. While the transmit efficiency of the (23) Na transceiver array was comparable to the birdcage, the (23) Na receive array provided substantial signal-to-noise ratio (SNR) gain near the surface and comparable SNR in the center. The utility of this customized setup was demonstrated by (23) Na images of excellent quality. High SNR, efficient transmit excitation and B0 shimming capability can be achieved for (23) Na MRI at 9.4T using novel coil combination. This RF configuration is easily adaptable to other multinuclei applications at ultra high field (≥ 7T). © 2015 Wiley Periodicals, Inc.

  18. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  19. MRI performed on dedicated knee coils is inaccurate for the measurement of tibial tubercle trochlear groove distance

    International Nuclear Information System (INIS)

    Aarvold, A.; Pope, A.; Sakthivel, V.K.; Ayer, R.V.

    2014-01-01

    Tibial tubercle trochlear groove distance (TTD) is a significant factor in patello-femoral instability. Initially described on CT scans with the knee in full extension, the measurement has been validated on MR scans. Dedicated knee MRI coils have subsequently superseded both CT and MRI body coils for knee imaging. However, the knee rests in partial flexion within the dedicated knee coil. The objective of this study is to investigate whether images from dedicated knee MRI coils produce different TTD measurements from MR body coils. Thirty-two symptomatic knees (27 patients) had simultaneous knee MR scans performed in both a dedicated knee coil and a body coil. TTD measurements were independently compared to assess whether the coil type used affected TTD. Patients' ages ranged from 10 to 27 years (mean 15 years). Mean TTD in the dedicated knee coil (partially flexed knee) was 11.3 mm compared with 19.9 mm in the body coil (that permits full knee extension). The mean difference was 8.6 mm, which was highly significant (p < 0.0001, unpaired t test). Inter-rater correlation co-efficient was 96 %. Of the knees that recorded a ''normal'' TTD on the dedicated knee coil, 60-100 % recorded a ''pathological'' TTD on body coil images, depending on which diagnostic value for ''normal'' cut-off was used. This study has identified a highly significant difference in TTD measurement when knees are scanned in a dedicated knee coil with the knee partially flexed, compared with an MR body coil. It is critical for surgeons and radiologists managing patello-femoral instability to appreciate this profound difference. TTD measurement taken from knees scanned in dedicated knee coils may lead to patients being falsely re-assured or erroneously denied surgery. (orig.)

  20. A trial fabrication of activity standard surface sources and positional standard surface sources for an imaging plate system

    International Nuclear Information System (INIS)

    Sato, Yasushi; Hino, Yoshio; Yamada, Takahiro; Matsumoto, Mikio

    2003-01-01

    An imaging plate system can detect low level activity, but quantitative analysis is difficult because there are no adequate standard surface sources. A new fabrication method was developed for standard surface sources by printing on a sheet of paper using an ink-jet printer with inks in which a radioactive material was mixed. The fabricated standard surface sources had high uniformity, high positional resolution arbitrary shapes and a broad intensity range. The standard sources were used for measurement of surface activity as an application. (H. Yokoo)

  1. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in