WorldWideScience

Sample records for surface carboxylate groups

  1. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  2. Coupling of carboxylic groups onto the surface of polystyrene parts during fused filament fabrication

    Science.gov (United States)

    Nagel, Jürgen; Zimmermann, Philipp; Schubert, Oliver; Simon, Frank; Schlenstedt, Kornelia

    2017-11-01

    A method for the fabrication of polystyrene parts, modified with carboxylic groups during Fused Filament Fabrication (FFF), is being introduced. This method is based on the application of a thin layer of a reactive polymer carrying carboxylic groups on a substrate surface. A polystyrene film is printed on top of this layer. During contact between the hot melt and the reactive layer, a Friedel-Crafts type acylation using a green catalyst takes place, which attaches the reactive polymer to the polystyrene surface. The modified surface is homogeneous, hydrophilic and able to bind copper ions. The method could be used to fabricate unique parts of polystyrene with tailored surface functionalisation. It could be applied for laboratory use, e.g. for the manufacture of lab-on-a-chip devices.

  3. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  4. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  5. Carboxyl group reactivity in actin

    International Nuclear Information System (INIS)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs

  6. Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells

    Science.gov (United States)

    Jiang, Xiue; Musyanovych, Anna; Röcker, Carlheinz; Landfester, Katharina; Mailänder, Volker; Nienhaus, G. Ulrich

    2011-05-01

    Nanoparticle uptake by living cells is governed by chemical interactions between functional groups on the nanoparticle as well as the receptors on cell surfaces. Here we have investigated the uptake of anionic polystyrene (PS) nanoparticles of ~100 nm diameter by mesenchymal stem cells (MSCs) using spinning-disk confocal optical microscopy combined with a quantitative analysis of the fluorescence images. Two types of anionic PS nanoparticles with essentially identical sizes and ζ-potentials were employed in this study, carboxyl-functionalized nanoparticles (CPS) and plain PS nanoparticles, both coated with anionic detergent for stabilization. CPS nanoparticles were observed to internalize more rapidly and accumulate to a much higher level than plain PS nanoparticles. The relative importance of different uptake mechanisms for the two types of nanoparticles was investigated by using specific inhibitors. CPS nanoparticles were internalized mainly via the clathrin-mediated mechanism, whereas plain PS nanoparticles mainly utilized the macropinocytosis pathway. The pronounced difference in the internalization behavior of CPS and plain PS nanoparticles points to a specific interaction of the carboxyl group with receptors on the cell surface.

  7. Theoretical evaluation of flotation performance of carboxyl hydroxamic acids with different number of polar groups on the surfaces of diaspore (010) and kaolinite (001).

    Science.gov (United States)

    Wang, Fang-ping; Zhan, Guo-ping; Jiang, Yu-ren; Guo, Jing-nan; Yin, Zhi-gang; Feng, Rui

    2013-08-01

    The adsorption behaviors of three carboxyl hydroxamic acids on diaspore (010) and kaolinite (001) have been studied by density functional theory (DFT) and molecular dynamics (MD) method. The results indicated that carboxyl hydroxamic acids could adsorb on diaspore surface by ionic bonds and hydrogen bonds, and adsorb on kaolinite surface by hydrogen bonds. The models of carboxyl hydroxamic acids adsorbed on diaspore and kaolinite surfaces are proposed.

  8. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  9. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  10. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases

    Science.gov (United States)

    TAKAHASHI, Kenji

    2013-01-01

    A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

  11. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma

    2008-10-01

    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid in diluted solutions. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group or equivalently, one dissociable sulphate ester per molecule ranges from 250 to 310 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable hydrogen (i.e. of carboxyl groups and sulphate esters jointly in HULIS molecules was refined to be between 1.1 and 1.4 in acidic solutions.

  12. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  13. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando

    2006-01-01

    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...

  14. Determination of carboxyl groups in humic acids by FTIR spectrophotometry

    Czech Academy of Sciences Publication Activity Database

    Novák, František; Machovič, V.; Poledna, J.

    2005-01-01

    Roč. 1, č. 1 (2005), s. 141 ISSN 1336-7242. [Zjazd chemických spoločností /57./. 04.09.2005-08.09.2005, Tatranské Matliare] Institutional research plan: CEZ:AV0Z60660521 Keywords : carboxyl groups * humic acids * FTIR spectrophotometry Subject RIV: EH - Ecology, Behaviour

  15. Determination of carboxyl groups in wood fibers by headspace gas chromatography

    Science.gov (United States)

    X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia

    2003-01-01

    The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...

  16. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group.

    Science.gov (United States)

    Xiong, Zhipeng; Niu, Junfan; Liu, Hao; Xu, Zhihong; Li, Junkai; Wu, Qinglai

    2017-05-01

    Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1 H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC 50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC 50 values of 8.30mg/L, compared to the positive control PCA with its EC 50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  18. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-01-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+ 2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+ 2 . The complex structure of polyethylene with three functional groups and UO 2+ 2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  19. Carboxylic acids at the surface of comet 67P/CG?

    Science.gov (United States)

    Istiqomah, I.; Quirico, E.; Faure, A.; Theulé, P.; Poch, O.; Beck, P.; Bonal, L.; Schmitt, B.; Ciarniello, M.; Filacchione, G.; Capaccioni, F.

    2017-09-01

    A broad feature centered at 3.2 μm has been detected in the reflectance spectra of comet 67P/Churyumov-Gerasimenko collected by the VIRTIS/Rosetta imaging spectrometer. This band points to the presence of semi-volatile organics, however to date no firm identification of molecular species has been done. In this study, we have focused on the experimental spectral characterization of carboxylic acids, which have been proposed as candidates for the 3.2 μm broad band. We show that simple carboxylic acids are not viable candidates, because of their thermal stability in regard to the surface temperature, and/or due the shape/size of their 3 μm band that does not fit VIRTIS spectra. We infer that if carboxyl groups are the main carrier of the 3.2 μm band, it should be present in a low mass macromolecule, along with OH groups in side chains that favor hydrogen bond. A balance ratio between OH groups and aliphatics CH2/CH3 must also be respected. Last, intimate mixtures do not fit VIRTIS data, and small spots of semi-volatiles on the surface of opaque material must be considered to account for 3.2 μm band.

  20. Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing

    Science.gov (United States)

    Makhneva, Ekaterina; Obrusník, Adam; Farka, Zdeněk; Skládal, Petr; Vandenbossche, Marianne; Hegemann, Dirk; Zajíčková, Lenka

    2018-01-01

    Stable carboxyl-rich plasma polymers (PPs) were deposited onto the gold surface of surface plasmon resonance (SPR) chips under conditions that were chosen based on lumped kinetic model results. Carboxyl-rich films are of high interest for bio-applications thanks to their high reactivity, allowing the formation of covalent linkages between biomolecules and a surface. Accordingly, the monoclonal antibody, specific to human serum albumin (HSA), was immobilized and the performance of SPR immunosensors was evaluated by the immunoassay flow test. The developed sensors performed high level of stability and provided selective and high response to the HSA antigen solutions. The achieved results confirmed that the presented methodologies for the grafting of biomolecules on the gold surfaces have great potential for biosensing applications.

  1. Electrochemical analysis of the adsorption and desorption behaviors of carboxylic acid and anhydride monomers onto zinc surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, P. [Materials innovation institute (M2i), Mekelweg 2, 2628 CD Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Hauffman, T. [Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium); Mol, J.M.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Flores, J.R.; Hannour, F. [Tata Steel Research, Development and Technology, PO Box 10.000, 1970 CA IJmuiden (Netherlands); Wit, J.H.W. de [Materials innovation institute (M2i), Mekelweg 2, 2628 CD Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Terryn, H., E-mail: hterryn@irexchange.vub.ac.b [Materials innovation institute (M2i), Mekelweg 2, 2628 CD Delft (Netherlands); Vrije Universiteit Brussel, Department of Electrochemical and Surface Engineering, Pleinlaan 2, B-1050 Brussels (Belgium)

    2011-10-30

    The interfacial bondings formed between succinic acid and myristic acid, as well as succinic anhydride molecules with a set of differently treated zinc substrates have been investigated using infrared reflection absorption spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The compounds were selected to model typically used carboxylic-based adhesives and coatings. Moreover, the adsorption kinetic has been evaluated by means of chronoamperometry (CA) and chronovoltammetry measurements. XPS results showed a relation between the amount of carboxylates formed by adsorption of succinic acid/myristic acid and the hydroxyl fraction presented on the surfaces as proved by a higher electron transfer in CA. On the other hand a set of oxidative/reductive interactions was detected during the adsorption of succinic anhydride, in turn proving a spontaneous ring opening and adsorption mechanism. A clear relationship between the amount of adsorbents and surface hydroxyls/carbonates was detected for the adsorption of succinic anhydride. The extent to which the formed carboxylates resisted negative potentials was also investigated by cyclic voltammetry (CV) in an aqueous solution. The coordinative bonding of a bifunctional carboxylic acid group to the oxide surface was found to be not stable in the presence of a negative potential, while a monofunctional carboxylic acid group could resist displacement by water for a prolonged period of time. On the other hand, a low double layer capacitance was obtained after the adsorption of succinic anhydride, which was related to a change in potential of zero charge (PZC) upon the adsorption.

  2. Quantum chemical investigation of the thermal pyrolysis reactions of the carboxylic group in a brown coal model.

    Science.gov (United States)

    Liu, Shengyu; Zhang, Zhiqiang; Wang, Huifang

    2012-01-01

    Different reaction pathways of the carboxylic group in a brown coal model were investigated by applying density function quantum chemical theory, examining the possible cross-linking and decomposition reactions between the hydrogen bonded carboxylic group-carboxylic group and the carboxylic group-hydroxyl group during the thermal pyrolysis process. The results show that bimolecular dehydration and decarboxylation of hydrogen bonded carboxylic groups have distinctly lower activation barriers and therefore, proceed preferentially at low temperature. The esterification reaction between the hydrogen bonded carboxylic group and hydroxyl group, together with unimolecular decarboxylation of isolated single carboxylic groups were also possible at moderate temperature. Aryl-aryl coupling is thought to occur via radical pyrolysis and recombination at relatively high temperature.

  3. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  4. Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s)

    Energy Technology Data Exchange (ETDEWEB)

    O’Donnell, Ryan M. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Sampaio, Renato N. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Li, Guocan [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Johansson, Patrik G. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Ward, Cassandra L. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Meyer, Gerald J. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

    2016-03-10

    Excited state proton transfer studies of six Ru polypyridyl compounds with carboxylic acid/carboxylate group(s) revealed that some were photoacids and some were photobases. The compounds [RuII(btfmb)2(LL)]2+, [RuII(dtb)2(LL)]2+, and [RuII(bpy)2(LL)]2+, where bpy is 2,2'-bipyridine, btfmb is 4,4'-(CF3)2-bpy, and dtb is 4,4'-((CH3)3C)2-bpy, and LL is either dcb = 4,4'-(CO2H)2-bpy or mcb = 4-(CO2H),4'-(CO2Et)-2,2'-bpy, were synthesized and characterized. The compounds exhibited intense metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region and room temperature photoluminescence (PL) with long τ > 100 ns excited state lifetimes. The mcb compounds had very similar ground state pKa’s of 2.31 ± 0.07, and their characterization enabled accurate determination of the two pKa values for the commonly utilized dcb ligand, pKa1 = 2.1 ± 0.1 and pKa2 = 3.0 ± 0.2. Compounds with the btfmb ligand were photoacidic, and the other compounds were photobasic. Transient absorption spectra indicated that btfmb compounds displayed a [RuIII(btfmb–)L2]2+* localized excited state and a [RuIII(dcb–)L2]2+* formulation for all the other excited states. Time dependent PL spectral shifts provided the first kinetic data for excited state proton transfer in a transition metal compound. PL titrations, thermochemical cycles, and kinetic analysis (for the mcb compounds) provided self-consistent pKa* values. The ability to make a single ionizable group photobasic or photoacidic through ligand design was unprecedented and was understood based on the orientation of the lowest-lying MLCT excited state dipole relative to the ligand that contained the carboxylic acid group(s).

  5. Effect of carboxyl anchoring groups in asymmetric zinc phthalocyanine with large steric hindrance on the dye-sensitized solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wenye; Peng, Bosi; Lin, Li; Li, Renjie; Zhang, Jing, E-mail: jzhang03@whu.edu.cn; Peng, Tianyou, E-mail: typeng@whu.edu.cn

    2015-08-01

    Asymmetric zinc phthalocyanines containing tribenzonaphtho-condensed porphyrazine with six bulky diphenylphenoxy and one or two carboxyl groups are used as sensitizers for dye-sensitized solar cells (DSSCs). It is found that Zn-tri-PcNc-4 having two carboxyl groups shows a slight redshift in the Q-band absorption but a significantly decreased absorbance as compared with Zn-tri-PcNc-8 having one carboxyl group, and Zn-tri-PcNc-4 can be more stably and perpendicularly grafted onto the TiO{sub 2} surface than Zn-tri-PcNc-8, which further leads to the differences in the interfacial charge transfer dynamics and dye-loaded amount. Zn-tri-PcNc-4 with two carboxyl groups grafted onto the TiO{sub 2} electrode surface of DSSC results in a photovoltaic conversion efficiency of 3.22%, higher than that (3.01%) of the analog with one carboxyl group (Zn-tri-PcNc-8), which exhibits a lower short-circuit current but much higher open-circuit voltage. The additional carboxyl group in Zn-tri-PcNc-4 leads to the enhanced dye-loaded amount and the molecular orbital energy level shift toward positive direction, causing more efficient electron injection and higher short-circuit current than Zn-tri-PcNc-8; while the two carboxyl groups of Zn-tri-PcNc-4 would cause more protonation of TiO{sub 2} surface, which possibly leads to the downward shift of TiO{sub 2} conduction band edge, and then to the decreased open-circuit voltage. The present results demonstrate the molecular engineering aspect of ZnPc dyes in which the fine tuning of the energy levels and molecular structures is crucial for high conversion efficiency of DSSCs. - Highlights: • ZnPcs with six diphenylphenoxy and one/two carboxyl groups are used as dyes for DSSCs. • Effect of carboxyl group number on the ZnPc-sensitized cell property are scrutinized. • Grafting two carboxyl groups on ZnPc leads to the enhanced photocurrent and efficiency. • ZnPc with one COOH has a higher open-circuit voltage than its analog with two

  6. Study of carboxylic functionalization of polypropylene surface using the underwater plasma technique

    Science.gov (United States)

    Joshi, R. S.; Friedrich, J. F.; Wagner, M. H.

    2009-08-01

    Non-equilibrium solution plasma treatment of polymer surfaces in water offers the possibility of more dense and selective polymer surface functionalization in comparison to the well-known and frequently used low-pressure oxygen plasma. Functional groups are introduced when the polymer surface contacts the plasma moderated solution especially water solutions. The emission of ions, electrons, energy-rich neutrals and complexes, produced by the ion avalanche are limited by quenching, with the aid of the ambient water phase. The UV-radiation produced in plasma formation also helps to moderate the reaction solution further by producing additional excited, ionized/dissociated molecules. Thus, monotype functional groups equipped polymer surfaces, preferably OH groups, originating from the dissociated water molecules, could be produced more selectively. An interesting feature of the technique is its flexibility to use a wide variety of additives in the water phase. Another way to modify polymer surfaces is the deposition of plasma polymers carrying functional groups as carboxylic groups used in this work. Acetic acid, acrylic acid, maleic and itaconic acid were used as additive monomers. Acetic acid is not a chemically polymerizing monomer but it could polymerize by monomer/molecular fragmentation and recombination to a cross linked layer. The other monomers form preferably water-soluble polymers on a chemical way. Only the fragmented fraction of these monomers could form an insoluble coating by cross linking to substrate. The XPS analysis was used to track the alterations in -O-CO- bond percentage on the PP surface. To identify the -COOH groups on substrate surface unambiguously, which have survived the plasma polymerization process, the derivatization with trifluoroethanol was performed.

  7. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  8. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    International Nuclear Information System (INIS)

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-01-01

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF 3 /methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L -1 . Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices

  9. Grafting of carboxyl groups using CO2/C2H4/Ar pulsed plasma: Theoretical modeling and XPS derivatization

    Science.gov (United States)

    Manakhov, Anton; Kiryukhantsev-Korneev, Philip; Michlíček, Miroslav; Permyakova, Elizaveta; Dvořáková, Eva; Polčák, Josef; Popov, Zakhar; Visotin, Maxim; Shtansky, Dmitry V.

    2018-03-01

    The grafting of carboxyl groups enhances cell adhesion and can be used for immobilization of different biomolecules onto plasma-treated materials. The process, however, was not well optimized due to lack of clear understanding of the mechanisms of carboxylic group incorporation into plasma and their grafting to polymer surface. In this work the deposition of COOH plasma polymers from CO2/C2H4/Ar pulsed discharge has been studied depending on the gas mixture and duty cycle. We have demonstrated that the CO2/C2H4/Ar plasma with adjustable thickness of COOH functionalized layer and high stability of the grafted functions in water is a better solution for the COOH surface functionalization compared to the thoroughly analyzed CO2 plasma. The concentration of different carbon environments and the density of COOH groups have been measured by using chemical derivatization combined with X-ray photoelectron spectroscopy. It has been found that the CO2/C2H4/Ar plasma mainly contains ester groups (COOC), the COOH/COOC ratio being between 0.03 and 0.08. The water stability of the COOH groups was significantly higher compared to ester environment, so immersing in water for 24 h allowed to increase the COOH/COOC ratio by a factor of 3. The mechanisms of the CO2 molecule attachment to hydrocarbon chains on the polymer surface and those located inside the plasma were modeled using ab initio calculations.

  10. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    Science.gov (United States)

    Giresse Tetsassi Feugmo, Conrard; Champagne, Benoît; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J.; Liégeois, Vincent

    2012-03-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement.

  11. Towards modelling the vibrational signatures of functionalized surfaces: carboxylic acids on H-Si(111) surfaces

    International Nuclear Information System (INIS)

    Tetsassi Feugmo, Conrard Giresse; Champagne, Benoît; Liégeois, Vincent; Caudano, Yves; Cecchet, Francesca; Chabal, Yves J

    2012-01-01

    In this work, we investigate the adsorption process of two carboxylic acids (stearic and undecylenic) on a H-Si(111) surface via the calculation of structural and energy changes as well as the simulation of their IR and Raman spectra. The two molecules adsorb differently at the surface since the stearic acid simply physisorbs while the undecylenic acid undergoes a chemical reaction with the hydrogen atoms of the surface. This difference is observed in the change of geometry during the adsorption. Indeed, the chemisorption of the undecylenic acid has a bigger impact on the structure than the physisorption of the stearic acid. Consistently, the former is also characterized by a larger value of adsorption energy and a smaller value of the tilting angle with respect to the normal plane. For both the IR and Raman signatures, the spectra of both molecules adsorbed at the surface are in a first approximation the superposition of the spectra of the Si cluster and of the carboxylic acid considered individually. The main deviation from this simple observation is the peak of the stretching Si-H (ν(Si-H)) mode, which is split into two peaks upon adsorption. As expected, the splitting is bigger for the chemisorption than the physisorption. The modes corresponding to atomic displacements close to the adsorption site display a frequency upshift by a dozen wavenumbers. One can also see the disappearance of the peaks associated with the C=C double bond when the undecylenic acid chemisorbs at the surface. The Raman and IR spectra are complementary and one can observe here that the most active Raman modes are generally IR inactive. Two exceptions to this are the two ν(Si-H) modes which are active in both spectroscopies. Finally, we compare our simulated spectra with some experimental measurements and we find an overall good agreement. (paper)

  12. Ion effects in the adsorption of carboxylate on oxide surfaces, studied with quartz crystal microbalance

    NARCIS (Netherlands)

    Wang, Lei; Sîretanu, Igor; Duits, Michael H.G.; Cohen Stuart, Martinus Abraham; Mugele, Friedrich Gunther

    2016-01-01

    We chose water-soluble sodium hexanoate as a model organic molecule to study the role of salt ions (Ca2+, Na+, Cl−) in the adsorption of carboxylates to mineral surfaces (silica, alumina, gibbsite) of variable surface charge and chemistry. Quartz crystal microbalance (QCM-D) measurements reveal a

  13. Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide.

    Science.gov (United States)

    Sun, Xiaobo; Zhao, Chen; Pan, Wei; Wang, Jinping; Wang, Weijun

    2015-06-05

    In this paper, the structure difference between the polysaccharides isolated from fruit bodies (FGAP) and submerged fermentation system (SGAP) of Ganoderma applanatum was investigated by means of GPC, HPLC and IR, respectively. And their antitumor activities were evaluated against Sarcoma 180 in vivo. The results showed that FGAP and SGAP were typical polysaccharides with different molecular weights, monosaccharide components, and functional groups. Closely related to the distinct structures, FGAP exhibited a better antitumor activity than SGAP. Moreover, since FGAP contained carboxylate groups rather than SGAP, such groups were chemically introduced into SGAP (CSGAP) by carboxymethylation in order to identify their contribution to antitumor activity. The results demonstrated that the inhibition of CSGAP against Sarcoma 180 in vivo was significantly enhanced by comparison to the native SGAP and even higher than that of FGAP, suggesting that the carboxylate groups played a major role in antitumor activity of G. applanatum polysaccharide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantum chemical investigation of the primary thermal pyrolysis reactions of the sodium carboxylate group in a brown coal model.

    Science.gov (United States)

    Li, Jian; Zhang, Baisheng; Zhang, Zhiqiang; Yan, Kefeng; Kang, Lixun

    2014-12-01

    The primary pyrolysis mechanisms of the sodium carboxylate group in sodium benzoate-used as a model compound of brown coal-were studied by performing quantum chemical computations using B3LYP and the CBS method. Various possible reaction pathways involving reactions such as unimolecular and bimolecular decarboxylation and decarbonylation, crosslinking, and radical attack in the brown coal matrix were explored. Without the participation of reactive radicals, unimolecular decarboxylation to release CO2 was calculated to be the most energetically favorable primary reaction pathway at the B3LYP/6-311+G (d, p) level of theory, and was also found to be more energetically favorable than decarboxylation of an carboxylic acid group. When CBS-QBS results were included, crosslinking between the sodium carboxylate group and the carboxylic acid and the decarboxylation of the sodium carboxylate group (catalyzed by the phenolic hydroxyl group) were found to be possible; this pathway competes with unimolecular decarboxylation of the sodium carboxylate group. Provided that H and CH3 radicals are present in the brown coal matrix and can access the sodium carboxylate group, accelerated pyrolysis of the sodium carboxylate group becomes feasible, leading to the release of an Na atom or an NaCO2 radical at the B3LYP/6-311+G (d, p) or CBS-QB3 level of theory, respectively.

  15. Adsorption of uranyl ion by chelate-type adsorbent with amidoxime and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    Choi, S.H.; Choi, M.S.; Park, Y.T.; Lee, K.P.

    2002-01-01

    Complete text of publication follows. Uranium recovery from seawater is important for security of future energy supply. The main difficulty in the recovery process arises from the low concentration (∼3 ppb) of the uranyl ion in seawater, whereas other metal ions are abundantly present. Thus, development of selective adsorbents with a high adsorption rate and a large adsorption capacity is essential for the economic recovery uranyl ion. The polymeric adsorbents containing the amidoxime group are mostly promising, but information on their adsorption characterization in the presence of other abundantly metal ions such as sodium, calcium, etc. is still insufficient. In order to obtain uranium from seawater, the resins with amidoxime and amidoxime/carboxylic acid group were prepared by radiation-induced polymerization of aclylonitrile (AN) and AN/acrylic acid and by the subsequent amidoximation of cyano group of poly(AN), respectively. The resins with amidoxime and amidoxime/carboxylic acid groups were characterized by FT-IR, FT-Raman, solid state 13C-NMR, SEM, thermal (TGA/DSC) analysis, and elemental analysis, respectively. The adsorption of uranyl ion was examined. In resin with amidoxime group, the uranyl uptake increased with increasing amidoxime content. The adsorption rate of uranyl ion by resin with amidoxime/carboxylic acid was higher than that of resin with amidoxime group

  16. Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Tretiak, Sergei [Los Alamos National Laboratory

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it

  17. Two types of essential carboxyl groups in Rhodospirillum rubrum proton ATPase

    International Nuclear Information System (INIS)

    Ceccarelli, E.; Vallejos, R.H.

    1983-01-01

    Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum

  18. Calcium binding by human erythrocyte membranes. Significance of carboxyl, amino and thiol groups.

    Science.gov (United States)

    Forstner, J; Manery, J F

    1971-11-01

    1. The role of the ionized carboxyl groups of proteins of the erythrocyte membrane as Ca(2+) receptor sites was investigated. A water-soluble carbodi-imide [1-cyclohexyl-3-(2-morpholinoethyl)carbodi-imide methotoluene-p-sulphonate], referred to as carbodi-imide reagent, and glycine methyl ester were used to modify the free carboxyl groups of the membrane. The degree of modification was estimated from amino acid analyses, which showed the amount of glycine incorporated. As the concentration of carbodi-imide reagent was raised (0.1-0.4m) incorporation of glycine increased and Ca(2+) binding decreased by about 77%. At 0.4m-carbodi-imide reagent all of the binding of Ca(2+) to protein was abolished and it was estimated that about 37% of the side-chain carboxyl groups of aspartic acid plus glutamic acid had been blocked by glycine. 2. Acetylation of all of the free amino groups was achieved by incubating the erythrocyte ;ghosts' at pH10.3 with acetic anhydride (10-15mg/10mg of ;ghost' protein). Acetylation increased by 1.5-fold the capacity of the ;ghost' to bind Ca(2+), indicating that the remaining carboxyl groups of aspartic acid and glutamic acid were made available for Ca(2+) binding by this procedure. These findings support the concept that in normal ;ghosts', at pH7.4, Ca(2+) binding to free carboxyl groups is partially hindered by the presence of charged amino groups. 3. Treatment of ;ghosts' with N-acetylneuraminidase, which removed 94% of sialic acid residues, and treatment with 1mm-p-chloromercuribenzoate did not alter Ca(2+) binding. The major effect of 5.8mm-p-chloromercuribenzoate upon ;ghosts' was to cause a solubilization of a calcium-membrane complex, which included about one-third of the ;ghost' protein. The molar ratio of Ca(2+): protein in the solubilized material was the same as that in the intact (untreated) ;ghosts'.

  19. Preparation of carboxyl group-modified palladium nanoparticles in an aqueous solution and their conjugation with DNA

    Science.gov (United States)

    Wang, Zhifei; Li, Hongying; Zhen, Shuang; He, Nongyue

    2012-05-01

    The use of nanomaterials in biomolecular labeling and their corresponding detection has been attracting much attention, recently. There are currently very few studies on palladium nanoparticles (Pd NPs) due to their lack of appropriate surface functionalities for conjugation with DNA. In this paper, we thus firstly present an approach to prepare carboxyl group-modified Pd NPs (with an average size of 6 nm) by the use of 11-mercaptoundecanoic acid (MUDA) as a stabilizer in the aqueous solution. The effect of the various reducing reaction conditions on the morphology of the Pd NPs was investigated. The particles were further characterized by TEM, UV-vis, FT-IR and XPS techniques. DNA was finally covalently conjugated to the surface of the Pd NPs through the activation of the carboxyl group, which was confirmed by agarose gel electrophoresis and fluorescence analysis. The resulting Pd NPs-DNA conjugates show high single base pair mismatch discrimination capabilities. This work therefore sets a good foundation for further applications of Pd NPs in bio-analytical research.

  20. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups

    Science.gov (United States)

    Zhang, Lei; Wang, Qiaoyi

    2018-03-01

    We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.

  1. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  2. Effects of carboxyl and ester anchoring groups on solar conversion efficiencies of TiO2 dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sepehrifard, A.; Stublla, A.; Haftchenary, S.; Chen, S.; Potvin, P.; Morin, S. [York Univ., Toronto, ON (Canada). Dept. of Chemistry

    2008-07-01

    This paper reported on a study in which 2 new Ruthenium (Ru(2)) dyes bearing different anchoring groups were applied to sensitize TiO2 for dye-sensitized solar cells (DSSCs). The solar conversion efficiencies were measured. Results for 2 of the dyes which carried ester and carboxyl anchoring groups were presented. The extent and nature of the surface binding was studied using electrochemical, UV-visible, fluorescence and FTIR measurements. Solar cell performance was discussed in terms of surface concentration of chemisorbed dyes, electronic properties of the photoanodes and electrochemical properties of adsorbed dyes. The study showed that carboxylic acid groups offer better dye adsorption than ester groups. However, sensitization with warm solutions improved the adsorption of the esterified dye, most likely through transesterification. It was concluded that this may be a useful means of improving solar conversion efficiencies of ester-bearing dyes. 6 refs., 1 tab., 2 figs.

  3. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces

    Science.gov (United States)

    Kubicki, J. D.; Schroeter, L. M.; Itoh, M. J.; Nguyen, B. N.; Apitz, S. E.

    1999-09-01

    A suite of naturally-occurring carboxylic acids (acetic, oxalic, citric, benzoic, salicylic and phthalic) and their corresponding sodium salts were adsorbed onto a set of common mineral substrates (quartz, albite, illite, kaolinite and montmorillonite) in batch slurry experiments. Solution pH's of approximately 3 and 6 were used to examine the effects of pH on sorption mechanisms. Attenuated total reflectance Fourier-transform infrared (ATR FTIR) spectroscopy was employed to obtain vibrational frequencies of the organic ligands on the mineral surfaces and in solution. UV/visible spectroscopy on supernatant solutions was also employed to confirm that adsorption from solution had taken place for benzoic, salicylic and phthalic acids. Molecular orbital calculations were used to model possible surface complexes and interpret the experimental spectra. In general, the tectosilicates, quartz and albite feldspar, did not chemisorb (i.e., strong, inner-sphere adsorption) the carboxylate anions in sufficient amounts to produce infrared spectra of the organics after rinsing in distilled water. The clays (illite, kaolinite and montmorillonite) each exhibited similar ATR FTIR spectra. However, the illite sample used in this study reacted to form strong surface and aqueous complexes with salicylic acid before being treated to remove free Fe-hydroxides. Chemisorption of carboxylic acids onto clays is shown to be limited without the presence of Fe-hydroxides within the clay matrix.

  4. Intramolecular electron transfer through a bridging carboxylate group coordinated to two cobalt(III)-ions

    International Nuclear Information System (INIS)

    Wieghardt, K.

    1978-01-01

    Reduction of the binuclear μ-p-nitrobenzoato -di-μ-hydroxo -bis[triammine cobalt(III)] cation with (CH 3 ) 2 COH radicals yields a radical cation with the p-nitrobenzoato radical being coordinated to two cobalt(III) ions at the carboxylic group. The unprotonated form of this species undergoes intramolecular electron transfer producing Co(II) (k = (3.3 +- 0.3). x 10 3 s -1 ). The role of the carboxylate group in the intramolecular electron transfer process is tentatively assessed in terms of an intramolecular outer-sphere reaction because of lack of overlap of the donor orbitals (π) and the acceptor orbital (sigma). The protonated form of the radical cation (pKsub(a) = 2.5) disproportionates via a bimolecular process without production of Co(II). The effect of two coordinated Co(III) ions as compared to only one on the properties of the nitrobenzoate radical anion are discussed. (orig.) 891 HK 892 GM [de

  5. Carboxyl group modification significantly altered the kinetic properties of purified carboxymethylcellulase from Aspergillus niger.

    Science.gov (United States)

    Siddiqui; Saqib; Rashid; Rajoka

    2000-10-01

    Carboxymethylcellulase (CMCase) from Aspergillus niger NIAB280 was purified by a combination of ammonium sulphate precipitation, ion-exchange, hydrophobic interaction and gel filtration chromatography on FPLC with 9-folds increase in specific activity. Native and subunit molecular weights were found to be 36 kDa each. The purified CMCase was modified by 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) in the presence of glycinamide for 15 min (GAM15) and glycinamide plus cellobiose for 75 min (GAM75). Similarly, the enzyme was modified by EDC in the presence of ethylenediamine dihydrochloride plus cellobiose for 75 min (EDAM75). The neutralization (GAM15 and GAM75) and reversal (EDAM75) of negative charges of carboxyl groups of CMCase had profound effect on the specificity constant (k(cat)/K(m)), pH optima, pK(a)'s of the active-site residues and thermodynamic parameters of activation. The specificity constants of native, GAM15, GAM75, and EDAM75 were 143, 340, 804, and 48, respectively. The enthalpy of activation (DeltaH(#)) of Carboxymethylcellulose (CMC) hydrolysis of native (50 and 15 kJ mol(-1)) and GAM15 (41 and 16 kJ mol(-1)) were biphasic whereas those of GAM75 (43 kJ mol(-1)) and EDAM75 (41 k J mol(-1)) were monophasic. Similarly, the entropy of activation (DeltaS(#)) of CMC hydrolysis of native (-61 and -173 J mol(-1) K(-1)) and GAM15 (-91 and -171 J mol(-1) K(-1)) were biphasic whereas those of GAM75 (-82 J mol(-1) K(-1)) and EDAM75 (-106 J mol(-1) K(-1)) were monophasic. The pH optima/pK(a)'s of both acidic and basic limbs of charge neutralized CMCases increased compared with those of native enzyme. The CMCase modification in the presence of glycinamide and absence of cellobiose at different pH's periodically activated and inhibited the enzyme activity indicating conformational changes. We believe that the alteration of the surface charges resulted in gross movement of loops that surround the catalytic pocket, thereby inducing changes in the vicinity

  6. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain.

    Science.gov (United States)

    Pirazzini, Marco; Henke, Tina; Rossetto, Ornella; Mahrhold, Stefan; Krez, Nadja; Rummel, Andreas; Montecucco, Cesare; Binz, Thomas

    2013-11-29

    Botulinum neurotoxins translocate their enzymatic domain across vesicular membranes. The molecular triggers of this process are unknown. Here, we tested the possibility that this is elicited by protonation of conserved surface carboxylates. Glutamate-48, glutamate-653 and aspartate-877 were identified as possible candidates and changed into amide. This triple mutant showed increased neurotoxicity due to faster cytosolic delivery of the enzymatic domain; membrane translocation could take place at less acidic pH. Thus, neutralisation of specific negative surface charges facilitates membrane contact permitting a faster initiation of the toxin membrane insertion. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Electrochemical properties of polyolefine nonwoven fabric modified with carboxylic acid group for battery separator

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Park, Keung-Shik; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Pill-Kwang

    2000-01-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at ∼132degC and no more than about 40% of a second polypropylene having a lower melting temperature at ∼162degC, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  8. Electrochemical properties of polyolefin nonwoven fabric modified with carboxylic acid group for battery separator

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Kang, Hae-Jeong; Ryu, Eun-Nyoung; Lee, Kwang-Pill

    2001-01-01

    Carboxylic acid group was introduced by radiation-induced grafting of acrylic acid (AAc) onto polyolefine nonwoven fabric (PNF), wherein the PNF comprises at least about 60% of a polyethylene having a melting temperature at ∼132 deg. C and no more than about 40% of a second polypropylene having a lower melting temperature at ∼162 deg. C, for a battery separator. The AAc-grafted PNF was characterized by XPS, SEM, DSC, TGA and porosimeter. The wetting speed, electrolyte retention, electrical resistance, and tensile strength were evaluated after grafting of AAc. It was found that the wetting speed, electrolyte retention, thickness, and ion-exchange capacity increased, whereas the electrical resistance decreased with increasing grafting yield. The tensile strength decreased with increasing grafting yield, whereas the elongation decreased with increasing grafting yield. (author)

  9. Graphs, groups and surfaces

    CERN Document Server

    White, AT

    1985-01-01

    The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.

  10. Synthetic cannabinoids as designer drugs: new representatives of indol-3-carboxylates series and indazole-3-carboxylates as novel group of cannabinoids. Identification and analytical data.

    Science.gov (United States)

    Shevyrin, Vadim; Melkozerov, Vladimir; Nevero, Alexander; Eltsov, Oleg; Baranovsky, Alexander; Shafran, Yuri

    2014-11-01

    By means of gas chromatography with mass spectrometry detection (GC-MS), including high resolution mass spectrometry (GC-HRMS) together with ultra-high performance liquid chromatography in combination with high resolution tandem mass spectrometry (UHPLC-HRMS), nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FT-IR), structure of new synthetic cannabinoids, representatives of indol- and indazole-3-carboxylates groups, used in smoke mixtures, was determined. Obtained analytical data make reliable identification of these compounds in a course of analysis of criminal seizures possible. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun

    2016-06-01

    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  12. Beauville Surfaces and Groups 2012

    CERN Document Server

    Garion, Shelly; Vdovina, Alina

    2015-01-01

    This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces. Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and, after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject. These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville Surfaces and Groups 2012’, held at Newcastle University, UK in June 2012. This conference brought toge...

  13. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions and sulfonamide groups.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2010-01-01

    Temperature-dependent rate constants were estimated for the acid- and base-catalyzed and neutral hydrolysis reactions of perfluorinated telomer acrylates (FTAcrs) and phosphate esters (FTPEs), and the S(N)1 and S(N)2 hydrolysis reactions of fluorotelomer iodides (FTIs). Under some environmental conditions, hydrolysis of monomeric FTAcrs could be rapid (half-lives of several years in marine systems and as low as several days in some landfills) and represent a dominant portion of their overall degradation. Abiotic hydrolysis of monomeric FTAcrs may be a significant contributor to current environmental loadings of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Polymeric FTAcrs are expected to be hydrolyzed more slowly, with estimated half-lives in soil and natural waters ranging between several centuries to several millenia absent additional surface area limitations on reactivity. Poor agreement was found between the limited experimental data on FTPE hydrolysis and computational estimates, requiring more detailed experimental data before any further modeling can occur on these compounds or their perfluoroalkyl sulfonamidoethanol phosphate ester (PFSamPE) analogs. FTIs are expected to have hydrolytic half-lives of about 130 days in most natural waters, suggesting they may be contributing to substantial FTOH and PFCA inputs in aquatic systems. Perfluoroalkyl sulfonamides (PFSams) appear unlikely to undergo abiotic hydrolysis at the S-N, C-S, or N-C linkages under environmentally relevant conditions, although potentially facile S-N hydrolysis via intramolecular catalysis by ethanol and acetic acid amide substituents warrants further investigation.

  14. Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks.

    Science.gov (United States)

    Urgel, José I; Cirera, Borja; Wang, Yang; Auwärter, Willi; Otero, Roberto; Gallego, José M; Alcamí, Manuel; Klyatskaya, Svetlana; Ruben, Mario; Martín, Fernando; Miranda, Rodolfo; Ecija, David; Barth, Johannes V

    2015-12-16

    Lanthanide-based metal-organic compounds and architectures are promising systems for sensing, heterogeneous catalysis, photoluminescence, and magnetism. Herein, the fabrication of interfacial 2D lanthanide-carboxylate networks is introduced. This study combines low- and variable-temperature scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) experiments, and density functional theory (DFT) calculations addressing their design and electronic properties. The bonding of ditopic linear linkers to Gd centers on a Cu(111) surface gives rise to extended nanoporous grids, comprising mononuclear nodes featuring eightfold lateral coordination. XPS and DFT elucidate the nature of the bond, indicating ionic characteristics, which is also manifest in appreciable thermal stability. This study introduces a new generation of robust low-dimensional metallosupramolecular systems incorporating the functionalities of the f-block elements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel sulfonated poly(arylene ether ketone) copolymers bearing carboxylic or benzimidazole pendant groups for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Ma, Wenjia; Fu, Tiezhu; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China); Cui, Zhiming; Xing, Wei [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2009-09-05

    A novel strategy in which the benzimidazole group and sulfonic group are simultaneously attached to an aromatic polymer has been reported in this paper. For this purpose, sulfonated poly(arylene ether ketone) copolymers containing carboxylic acid groups (SPAEK-x-COOH, x refers to the molar percentage of sulfonated repeating units) are prepared by the aromatic nucleophilic polycondensation of sodium 5,5'-carbonyl-bis(2-fluobenzene-sulfonate) (SDFBP), 4,4'-difluorobenzophenone (DFBP) and phenolphthalin (PPL). Then the carboxylic acid groups attached to the SPAEK-x-COOH are transformed to benzimidazole units through condensation reactions (referred to as SPAEK-x-BI). Fourier transform infrared spectroscopy and {sup 1}H NMR measurements are used to characterize and confirm the structures of these copolymers. SPAEK-x-COOH membranes exhibit superior mechanical properties with maximum elongations at break up to 133%, meanwhile SPAEK-x-BI also shows good thermal and mechanical stability. The proton conductivity, swelling ratio and methanol permeability of the polymers with benzimidazole are lower than those with carboxylic groups, which indicated that there is an acid-base complex between benzimidazole and sulfonic acid groups. A balance of proton conductivity, methanol permeability, thermal and mechanical stabilities can be designed by incorporation of functional groups to meet the requirements for the applications in direct methanol fuel cells. (author)

  16. Quantum Chemical Calculation of p Kas of Environmentally Relevant Functional Groups: Carboxylic Acids, Amines and Thiols in Aqueous Solution.

    Science.gov (United States)

    Lian, Peng; Johnston, Ryne C; Parks, Jerry M; Smith, Jeremy C

    2018-04-10

    Developing accurate quantum chemical approaches for calculating p K a s is of broad interest. Useful accuracy can be obtained by using density functional theory (DFT) in combination with a polarizable continuum solvent model. However, some classes of molecules present problems for this approach, yielding errors greater than 5 p K units. Various methods have been developed to improve the accuracy of the combined strategy. These methods perform well, but either do not generalize or introduce additional degrees of freedom, increasing the computational cost. The Solvation Model based on Density (SMD) has emerged as one of the most commonly used continuum solvent models. Nevertheless, for some classes of organic compounds, e.g. thiols, the p K a s calculated with the original SMD model show errors of 6-10 p K units, and we traced these errors to inaccuracies in the solvation free energies of the anions. To improve the accuracy of p K a s calculated with DFT and the SMD model, we developed a scaled solvent-accessible surface approach for constructing the solute-solvent boundary. By using a 'direct' approach in which all quantities are computed in the presence of the continuum solvent, the use of thermodynamic cycles is avoided. Furthermore, no explicit water molecules are required. Three benchmark datasets of experimentally measured p K a values, including 28 carboxylic acids, 10 aliphatic amines, and 45 thiols, were used to assess the optimized SMD model, which we call SMD with a scaled solvent-accessible surface (SMD sSAS ). Of the methods tested, the M06-2X density functional approximation, 6-31+G(d,p) basis set, and SMD sSAS solvent model provided the most accurate p K a s for each set, yielding mean unsigned errors of 0.9, 0.4, and 0.5 p K units, respectively, for carboxylic acids, aliphatic amines, and thiols. This approach is therefore useful for efficiently calculating the p K a s of environmentally relevant functional groups.

  17. Dancing multiplicity states supported by a carboxylated group in dicopper structures bonded to O2

    KAUST Repository

    Poater, Albert

    2013-01-29

    The present study pretends to assign the correct multiplicity state to dinuclear copper complexes when interacting with free molecular oxygen. Recently, the formation of a bridge butterfly μ-η2: η2-peroxo dicopper core structure stabilized by the direct interaction of the counterion, a carboxylate group that allows the double bridge linking both metal-centre atoms, was characterized by crystallography. This system was assigned as a diradical singlet with Ms = 0. However, after new calculations it has turned out to be triplet (Ms = 1) despite the stabilization for this latter multiplicity state is not high. Here, the factors that contribute to make this structure display a multiplicity different with respect to the previously expected diradical singlet are described. In the present theoretical study, the roles of the αSp ligand constraints and the counterion are unravelled. On the other hand, the relative stability between the butterfly μ-η2: η2-peroxo structure and the isomeric bis(μ-oxo) species is also on discussion. Despite the relative stabilities of all these either structural or electronic isomeric species are supposed to depend on the computational method, which is a difficulty to reach a definite conclusion about the nature of the active species, all DFT methods using either pure or not pure DFT functionals here reach the same conclusion, favoring the triplet as the ground state for the butterfly μ-η2: η2-peroxo dicopper core structure, and the bis(μ-oxo) species when removing the benzoate counterion. © Springer-Verlag Berlin Heidelberg 2013.

  18. Mechanism of Macroscopic Motion of Oleate Helical Assemblies : Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives

    OpenAIRE

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-01-01

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in co-operation with azobenzene photoisomerization ca...

  19. In vitro mineralisation of grafted ePTFE membranes carrying carboxylate groups

    Directory of Open Access Journals (Sweden)

    Norsyahidah Mohd Hidzir

    2017-03-01

    Full Text Available In vitro mineralisation in simulated body fluid (SBF of synthetic polymers continues to be an important area of research as the outcomes cannot be predicted. This study evaluates a series of ePTFE membranes grafted with carboxylate-containing copolymers, specifically using acrylic acid and itaconic acid for grafting. The samples differ with regards to graft density, carboxylate density and polymer topology. The type and amount of mineral produced in 1.5 × SBF was dependent on the sample characteristics as evident from XPS, SEM/EDX, and FTIR spectroscopy. It was found that the graft density affects the mineral phases that form and that low graft density appear to cause co-precipitation of calcium carbonate and calcium phosphate. Linear and branched graft copolymer topology led to hydroxyapatite mineralisation whereas crosslinked graft copolymers resulted in formation of a mixture of calcium-phosphate phases. This study demonstrates that in vitro mineralisation outcomes for carboxylate-containing graft copolymers are complex. The findings of this study have implications for the design of bioactive coatings and are important for understanding the bone-biomaterial interface.

  20. Effect of the number of phenyl groups per molecule on the reactivity of hydroxyl or carboxyl group in hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    Okada, Minoru; Imaizumi, Hiroshi; Oguma, Shuichi

    1989-01-01

    Hydrogen-exchange reactions in solid alcohols (or solid carboxylic acids) which contain phenyl group(s) in each molecule have been observed in a gas-solid system or liquid-solid system at 40 ≅ 80deg C. The data thus obtained have been analyzed by using the A''-McKay plot method, and 'the acidities based on kinetic logic' have been obtained for those compounds. From the acidities the following four characteristics have been determined. (1) The acidity increases with increases of temperature. (2) The reactivities of carboxylic acids are larger than those of alcohols at any temperature. (3) The effect of the number of phenyl groups on the reactivity of the functional group in the molecule in question is fairly large. (4) Acidity based on kinetic logic can be applied not only to gas-solid reactions, but also to liquid-solid reactions. (orig.)

  1. “Fifty Shades” of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties

    Directory of Open Access Journals (Sweden)

    Raffaella Micillo

    2016-05-01

    Full Text Available Recent advances in the chemistry of melanins have begun to disclose a number of important structure-property-function relationships of crucial relevance to the biological role of human pigments, including skin (photo protection and UV-susceptibility. Even slight variations in the monomer composition of black eumelanins and red pheomelanins have been shown to determine significant differences in light absorption, antioxidant, paramagnetic and redox behavior, particle morphology, surface properties, metal chelation and resistance to photo-oxidative wear-and-tear. These variations are primarily governed by the extent of decarboxylation at critical branching points of the eumelanin and pheomelanin pathways, namely the rearrangement of dopachrome to 5,6-dihydroxyindole (DHI and 5,6-dihydroxyindole-2-carboxylic acid (DHICA, and the rearrangement of 5-S-cysteinyldopa o-quinoneimine to 1,4-benzothiazine (BTZ and its 3-carboxylic acid (BTZCA. In eumelanins, the DHICA-to-DHI ratio markedly affects the overall antioxidant and paramagnetic properties of the resulting pigments. In particular, a higher content in DHICA decreases visible light absorption and paramagnetic response relative to DHI-based melanins, but markedly enhances antioxidant properties. In pheomelanins, likewise, BTZCA-related units, prevalently formed in the presence of zinc ions, appear to confer pronounced visible and ultraviolet A (UVA absorption features, accounting for light-dependent reactive oxygen species (ROS production, whereas non-carboxylated benzothiazine intermediates seem to be more effective in inducing ROS production by redox cycling mechanisms in the dark. The possible biological and functional significance of carboxyl retention in the eumelanin and pheomelanin pathways is discussed.

  2. Influence of indium-tin oxide surface structure on the ordering and coverage of carboxylic acid and thiol monolayers

    International Nuclear Information System (INIS)

    Cerruti, Marta; Rhodes, Crissy; Losego, Mark; Efremenko, Alina; Maria, Jon-Paul; Fischer, Daniel; Franzen, Stefan; Genzer, Jan

    2007-01-01

    This paper analyses the variability of self-assembled monolayers (SAMs) formation on ITO depending on the substrate surface features. In particular, we report on the formation of carboxylic acid- and thiol-based SAMs on two lots of commercially prepared indium-tin oxide (ITO) thin films. Contact angle measurements, electrochemical experiments, and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy showed that the quality of monolayers formed differed substantially between the two ITO batches. Only one of the two ITO substrates was capable of forming well-organized thiol- and carboxylic acid-based SAMs. In order to rationalize these observations, atomic force microscopy and x-ray diffraction analyses were carried out, and SAMs were prepared on ITO substrates fabricated by sputtering in our laboratories. An attempt was made to influence the film microstructure and surface morphology by varying substrate temperatures during ITO deposition. Good-quality thiol and carboxylic acid SAMs were obtained on one of the ITO substrates prepared in-house. While our characterization could not single out conclusively one specific parameter in ITO surface structure that could be responsible for good SAMs formation, we could point out homogeneous surface morphology as a relevant factor for the quality of the SAMs. Evidence was also found for ITO crystallographic orientation to be a parameter influencing SAMs organization

  3. Synthesis and herbicidal activity of isoindoline-1,3-dione substituted benzoxazinone derivatives containing a carboxylic ester group.

    Science.gov (United States)

    Huang, Ming-Zhi; Luo, Fei-Xian; Mo, Hong-Bo; Ren, Ye-Guo; Wang, Xiao-Guang; Ou, Xiao-Ming; Lei, Man-Xiang; Liu, Ai-Ping; Huang, Lu; Xu, Man-Cai

    2009-10-28

    A carboxylic ester group was introduced to three series of isoindolinedione substituted benzoxazinone derivatives. Some of these analogues exhibited good herbicidal activities, and the injury symptoms against weeds included leaf cupping, crinkling, bronzing, and necrosis, typical of protox inhibitor herbicides. Structurally, they were classified as Chemical Group A (4-carboxylic ester group-6-isoindolinyl-benzoxazinones), B (4-carboxylic ester group-7-isoindolinyl-benzoxazinones), and C (4-carboxylic ester group-6- tetrahydroisoindolinyl-benzoxazinones). All of the tested compounds were structurally confirmed by (1)H NMR, IR, mass spectroscopy, and elemental analysis. Preliminary bioassay data of these three classes of compounds showed that, in general, the order of the herbicidal effectiveness is C > A > B. Several of the lead compounds, for example, C10 (methyl 2-(6-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-7-fluoro-2-methyl-3-oxo-2H-benzo[b][1,4] oxazin-4(3H)-yl) propano-ate), C12 (ethyl 2-(6-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-7-fluoro-2- methyl-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl) propanoate), and C13 (ethyl 2-(6-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-7-fluoro-2-methyl-3-oxo-2H-benzo-[b][1,4]oxazin-4(3H)-yl) butanoate), exhibited greater than 80% control at 75 g a.i./ha in both pre- and postemergence treatments against dicotyledonous weeds, such as Abutilon theophrasti Medic, Chenopodium album L., and Amaranthus ascendens L., and monocotyledon weeds, such as Digitaria sanguinalis L., Echinochloa crus-galli L., and Setaria viridis L. On the basis of advanced screening tests and crop selectivity, compounds C10, C12, and C13 are safer to crops than flumioxazin. Compounds C10, C12, and C13 are potent to develop as pre-emergent herbicides used in peanut, soybean, maize, and cotton fields.

  4. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Tinca, E-mail: tbur@icmpp.ro [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Melinte, Violeta [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, 16 University Str., 700115 Iasi (Romania); Pelin, Irina M.; Buruiana, Emil C. [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1–F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and {sup 1}H ({sup 13}C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm{sup −3} (F1) and 40.52 μg mm{sup −3} (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82–49.14 μg mm{sup −3} (F1–F3-HAP) and 34.58–45.56 μg mm{sup −3}, respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. - Highlights: • Fluorinated urethane dimethacrylate with carboxylic units (UF-DMA) was proposed as co-monomer in dental adhesives. • UF-DMA exhibits good photoreactivity in mixture with commercial dental monomers. • Water sorption/solubility and diffusion coefficient depend on the amount of UF-DMA. • The infiltration of adhesive mixture into the dentin tubules was evidenced by SEM.

  5. Study on Utilization of Carboxyl Group Decorated Carbon Nanotubes and Carbonation Reaction for Improving Strengths and Microstructures of Cement Paste

    Directory of Open Access Journals (Sweden)

    Xiantong Yan

    2016-08-01

    Full Text Available Carbon nanotubes (CNTs have excellent mechanical properties and can be used to reinforce cement-based materials. On the other hand, the reaction product of carbonation with hydroxides in hydrated cement paste can reduce the porosity of cement-based materials. In this study, a novel method to improve the strength of cement paste was developed through a synergy of carbon nanotubes decorated with carboxyl group and carbonation reactions. The experimental results showed that the carboxyl group (–COOH of decorated carbon nanotubes and the surfactant can control the morphology of the calcium carbonate crystal of carbonation products in hydrated cement paste. The spindle-like calcium carbonate crystals showed great morphological differences from those observed in the conventional carbonation of cement paste. The spindle-like calcium carbonate crystals can serve as fiber-like reinforcements to reinforce the cement paste. By the synergy of the carbon nanotubes and carbonation reactions, the compressive and flexural strengths of cement paste were significantly improved and increased by 14% and 55%, respectively, when compared to those of plain cement paste.

  6. Fluorescence quantum efficiency of CdSe/ZnS quantum dots functionalized with amine or carboxyl groups

    International Nuclear Information System (INIS)

    Pilla, Viviane; Munin, Egberto

    2012-01-01

    The thermo-optical parameters of cadmium selenide/zinc sulfide (CdSe/ZnS) core–shell quantum dots (QDs) suspended in aqueous solutions were measured using a Thermal Lens (TL) technique. TL transient measurements were performed using the mode-mismatched dual-beam (excitation and probe) configuration. A He–Ne laser at λ p = 632.8 nm was used as the probe beam, and an Ar + laser (at λ e = 514.5 nm) was used as the excitation beam to study the effect of the core sizes (2–4 nm) of CdSe/ZnS nanocrystals functionalized with amine (R–NH 2 ) or carboxyl (R–COOH) groups. The average values of the thermal diffusivity D = (1.48 ± 0.06) × 10 −3 cm 2 /s obtained for QDs samples are in good agreement with the pure water solvent result. The fraction thermal load (φ) and radiative quantum efficiencies (η) of the functionalized CdSe/ZnS QDs were determined and compared with non-functionalized CdSe/ZnS QDs. The obtained η values for non-functionalized CdSe/ZnS are slightly higher than those for the QDs functionalized with amine or carboxyl groups.

  7. Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption.

    Science.gov (United States)

    An, Byungryul; Lee, Healim; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-11-15

    To investigate the competitive sorption of divalent metal ions such as Ca(2+), Cu(2+), Ni(2+), and Pb(2+) on alginate hydrogel beads, batch and column tests were conducted. The concentration of carboxyl group was found to be limited in the preparation of spherical hydrogel beads. From kinetic test results, 80% of sorption was observed within 4h, and equilibrium was attained in 48 h. According to the comparison of the total uptake and release, divalent metal ions were found to stoichiometrically interact with the carboxyl group in the alginate polymer chain. From the Langmuir equation, the maximum capacities of Pb(2+), Cu(2+), and Ni(2+) were calculated to be 1.1, 0.48, and 0.13 mmol/g, respectively. The separation factor (α) values for αPb/Cu, αPb/Ni, and αCu/Ni were 14.0, 98.9, and 7.1, respectively. The sorption capacity of Pb(2+) was not affected by the solution pH; however, the sorption capacities of Cu(2+) and Ni(2+) decreased with increasing solution pH, caused by competition with hydrogen. According to the result from the fixed column test, Pb(2+) exhibited the highest affinity, followed by Cu(2+) and Ni(2+), which is in exact agreement with those of kinetic and isotherm tests. The sorbent could be regenerated using 4% HCl, and the regenerated sorbent exhibited 90% capacity upto 9 cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Chemical derivatization of Athabasca oil sand asphaltene for analysis of hydroxyl and carboxyl groups via nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Desando, M.A.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Division of Chemistry

    2002-07-01

    Athabasca oil sand asphaltene was methylated with different base catalyst/solvent combinations in order to find an optimum procedure for analysis of the number and types of hydroxyl and carboxyl functional groups. High resolution carbon-13, fluorine-19, and silicon-29 NMR spectra were used to monitor the degree of methylation, trifluoroacetylation, trimethylsilylation, and aromaticity of asphaltenes. Tetra-n-butylammonium hydroxide as phase transfer base catalyst and tetrahydrofuran or dichloromethane as solvent result in enhanced O-methylation of asphaltene. At least two types of acidic oxygen containing functionality have been detected, namely, hydroxyl and carboxyl (aliphatic and aryl). On average there are few, {<=} 4-8, hydroxyl containing groups (including COOH) per asphaltene molecule. {sup 13}C NMR lineshapes suggest a broad asymmetric distribution of acidic sites. The NMR and elemental analyses allow for oxygen containing functionalities to be included in an average molecular structure. A sludge phase collected from aqueous and hydrochloric acid extractions of asphaltene has also been analyzed. A correlation is observed between the degree of O-methylation and the dielectric permittivity of the solvent and the acidity of the substrate reaction site. 62 refs., 9 figs., 2 tabs.

  9. Side chain dynamics of carboxyl and carbonyl groups in the catalytic function of Escherichia coli ribonuclease H

    Science.gov (United States)

    Stafford, Kate A.; Ferrage, Fabien; Cho, Jae-Hyun; Palmer, Arthur G.

    2014-01-01

    Many proteins use Asx and Glx (x = n, p, or u) side chains as key functional groups in enzymatic catalysis and molecular recognition. In this study, NMR spin relaxation experiments and molecular dynamics (MD) simulations are used to measure the dynamics of the side chain amide and carboxyl groups, 13Cγ/δ, in Escherichia coli ribonuclease HI (RNase H). Model-free analysis shows that the catalytic residues in RNase H are pre-organized on ps-ns timescales via a network of electrostatic interactions. However, chemical exchange line broadening shows that these residues display significant conformational dynamics on μs – ms timescales upon binding of Mg2+ ions. Two groups of catalytic residues exhibit differential linebroadening, implicating distinct reorganizational processes upon binding of metal ions. These results support the “mobile metal ion” hypothesis, which was inferred from structural studies of RNase H. PMID:24219366

  10. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    OpenAIRE

    Megumi Sakurai; Taro Sato; Jiawei Xu; Soichi Sato; Tatsuya Fujino

    2018-01-01

    Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO) as the matrix. Salicylic acid (Sal), glucuronic acid (Glu), ibuprofen (Ibu), and tyrosine (Tyr) were ionized as deprotonated species (carboxylate anions) by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe....

  11. Calculating the Ionization Constant of Functional Groups of Carboxyl Ion Exchangers

    Science.gov (United States)

    Meychik, N. R.; Stepanov, S. I.; Nikolaeva, Yu. I.

    2018-02-01

    The potentiometric titration of a weakly basic carboxyl cation exchanger, obtained via alkaline hydrolysis of an acrylonitrile copolymer with divinyl benzene (degree of crosslinking, 12%) in a wide range of variation in a solution of pH (2-12) and NaCl (concentration 0.01, 0.1, 0.5, 1 M), is considered. The maximum ion-exchange capacity of the ion exchanger for Na+ is determined (10.10 ± 0.088 mmol/g of the dry mass) and found to be independent of the solution's ionic strength. It is established that in the investigated range of NaCl concentrations and pH, the acid-base balance is adequately described by Gregor's equation. The parameters of this equation are calculated as a function of the NaCl concentration: p K a = 8.13 ± 0.04, n = 1.50 ± 0.02 for 0.01 M; p K a = 6.56 ± 0.04, n = 2.60 ± 0.07 for 0.1 M; and p K a = 5.66 ± 0.6, n = 2.62 ± 0.06 for 0.5 and 1 M. It is shown that to describe the acid-base balance correctly within the proposed model we must estimate the adequacy of the experimental and calculated values of the ion exchanger's capacity at each pH value according to the calculated parameters of Gregor's equation.

  12. Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media

    International Nuclear Information System (INIS)

    This work investigated the effects of solution pH and surface metal oxyhydroxides on the transport behaviors of carboxyl-functionalized graphene (GR) in saturated porous media. Column experiments were conducted to elucidate the transport behavior of functionalized GR in acid-cleaned and natural sand under different solution pH conditions (i.e., 5.6 and 8.3). The results showed that the functionalized GR was highly mobile in the acid-cleaned sand columns at both pH 5.6 and 8.3 with recovery rates close to 100 %. The deposition of the functionalized GR was higher in the natural sand columns, and the recovery rates were 88.4 and 96.5 % for pH 5.6 and 8.3, respectively. The reductions of the mobility of the functionalized GR in the natural sand columns could be caused by the interaction between carboxyl functional groups of the GR and the surface metal hydroxides on the sand grains, which is pH dependent. An advection–dispersion-reaction model was applied to the data and successfully simulated the transport of the functionalized GR through the acid-cleaned and natural sand columns

  13. Mechanism of Macroscopic Motion of Oleate Helical Assemblies: Cooperative Deprotonation of Carboxyl Groups Triggered by Photoisomerization of Azobenzene Derivatives.

    Science.gov (United States)

    Kageyama, Yoshiyuki; Ikegami, Tomonori; Kurokome, Yuta; Takeda, Sadamu

    2016-06-13

    Macroscopic and spatially ordered motions of self-assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter-scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self-assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    Science.gov (United States)

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    International Nuclear Information System (INIS)

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-01-01

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  16. Isotherm, thermodynamic, kinetics, and adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube.

    Science.gov (United States)

    Moradi, Omid; Fakhri, Ali; Adami, Saeideh; Adami, Sepideh

    2013-04-01

    The studies of kinetics and thermodynamics of adsorption of Ethidium bromide in aqueous solutions on single-walled carbon nanotube (SWCNT) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) surfaces were by UV-Vis spectroscopy. The adsorption kinetics for SWCNT-COOH and SWCNTs were well described by a intra-particle diffusion model, while Langmuir, Freundlich, Harkins-Jura, and Halsey isotherms described the adsorption isotherms, and the adsorption thermodynamic parameters of equilibrium constant (K0), standard free energy (ΔG0), standard enthalpy (ΔH0), and standard entropy changes (ΔS0) were measured. The maximum surface coverage for SWCNTs is 36.10% and for SWCNT-COOH is 38.42%. The values of ΔH0 and ΔG0 suggested that the adsorption of EtBr on SWCNT-COOH and SWCNTs was endothermic and spontaneous. The adsorption of EtBr on SWCNT-COOH is more than SWCNTs surfaces. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. THz and mid-IR spectroscopy of interstellar ice analogs: methyl and carboxylic acid groups.

    Science.gov (United States)

    Ioppolo, S; McGuire, B A; Allodi, M A; Blake, G A

    2014-01-01

    A fundamental problem in astrochemistry concerns the synthesis and survival of complex organic molecules (COMs) throughout the process of star and planet formation. While it is generally accepted that most complex molecules and prebiotic species form in the solid phase on icy grain particles, a complete understanding of the formation pathways is still largely lacking. To take full advantage of the enormous number of available THz observations (e.g., Herschel Space Observatory, SOFIA, and ALMA), laboratory analogs must be studied systematically. Here, we present the THz (0.3-7.5 THz; 10-250 cm(-1)) and mid-IR (400-4000 cm(-1)) spectra of astrophysically-relevant species that share the same functional groups, including formic acid (HCOOH) and acetic acid (CH3COOH), and acetaldehyde (CH3CHO) and acetone ((CH3)2CO), compared to more abundant interstellar molecules such as water (H2O), methanol (CH3OH), and carbon monoxide (CO). A suite of pure and mixed binary ices are discussed. The effects on the spectra due to the composition and the structure of the ice at different temperatures are shown. Our results demonstrate that THz spectra are sensitive to reversible and irreversible transformations within the ice caused by thermal processing, suggesting that THz spectra can be used to study the composition, structure, and thermal history of interstellar ices. Moreover, the THz spectrum of an individual species depends on the functional group(s) within that molecule. Thus, future THz studies of different functional groups will help in characterizing the chemistry and physics of the interstellar medium (ISM).

  18. Complexation of vanadium with amidoxime and carboxyl groups. Uncovering the competitive role of vanadium in uranium extraction from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Wu, Guo-Zhong [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2017-09-01

    At present, amidoxime-based adsorbents are considered to be the most promising materials for extraction of uranium from seawater. However, the high concentrations of transition metals especially vanadium strongly compete with uranium in the sequestration process, which is extremely limited the commercial use of amidoxime-based adsorbents. In this work, the coordination modes, bonding nature, and stabilities of possible vanadium(IV) (VO{sup 2+}) and (V) (VO{sub 2}{sup +}, VO{sup 3+}, V{sup 5+}) complexes with amidoximate (AO{sup -}), carboxyl (Ac{sup -}), glutarimidedioximate (HA{sup -}) and deprotonated glutarimidedioximate (A{sup 2-}) on single and double alkyl chains (R=C{sub 13}H{sub 26}) are systematically explored by quantum chemical calculations. Different from the uranyl (UO{sub 2}{sup 2+}) complexes, the AO{sup -} groups of the vanadium(IV) and (V) complexes prefer to coordinate as monodentate and chelate ligands, while few species with AO{sup -} groups in η{sup 2}-binding mode have been observed in the vanadium complexes. Besides, the vanadium complexes are predicted to have obvious covalent metal-ligand bonds. According to thermodynamic stability analysis, all the vanadium complexes with AO{sup -}, Ac{sup -}, HA{sup -} and A{sup 2-} ligands on double alkyl chains are found to be more stable than corresponding complexes with ligands on a single chain. The synergistic effect of the amidoxime and carboxyl groups can be observed in most of VO{sub 2}{sup +} and VO{sup 3+} complexes with mixed ligands (AO{sup -}/Ac{sup -}). The vanadium(IV) and (V) complexes are more stable than the corresponding uranyl complexes, and the adsorption capability of the amidoxime-based adsorbents toward vanadium(V) ions decrease in the order of VO{sub 2}{sup +}>VO{sup 3+}> V{sup 5+}. The dioxovanadium cation VO{sub 2}{sup +} is predicted to form multinuclear vanadium complex in the sequestration process, possibly resulting in higher stable VO{sub 2}{sup +} complexes. Therefore

  19. Complexation of vanadium with amidoxime and carboxyl groups. Uncovering the competitive role of vanadium in uranium extraction from seawater

    International Nuclear Information System (INIS)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun; Wu, Guo-Zhong

    2017-01-01

    At present, amidoxime-based adsorbents are considered to be the most promising materials for extraction of uranium from seawater. However, the high concentrations of transition metals especially vanadium strongly compete with uranium in the sequestration process, which is extremely limited the commercial use of amidoxime-based adsorbents. In this work, the coordination modes, bonding nature, and stabilities of possible vanadium(IV) (VO 2+ ) and (V) (VO 2 + , VO 3+ , V 5+ ) complexes with amidoximate (AO - ), carboxyl (Ac - ), glutarimidedioximate (HA - ) and deprotonated glutarimidedioximate (A 2- ) on single and double alkyl chains (R=C 13 H 26 ) are systematically explored by quantum chemical calculations. Different from the uranyl (UO 2 2+ ) complexes, the AO - groups of the vanadium(IV) and (V) complexes prefer to coordinate as monodentate and chelate ligands, while few species with AO - groups in η 2 -binding mode have been observed in the vanadium complexes. Besides, the vanadium complexes are predicted to have obvious covalent metal-ligand bonds. According to thermodynamic stability analysis, all the vanadium complexes with AO - , Ac - , HA - and A 2- ligands on double alkyl chains are found to be more stable than corresponding complexes with ligands on a single chain. The synergistic effect of the amidoxime and carboxyl groups can be observed in most of VO 2 + and VO 3+ complexes with mixed ligands (AO - /Ac - ). The vanadium(IV) and (V) complexes are more stable than the corresponding uranyl complexes, and the adsorption capability of the amidoxime-based adsorbents toward vanadium(V) ions decrease in the order of VO 2 + >VO 3+ > V 5+ . The dioxovanadium cation VO 2 + is predicted to form multinuclear vanadium complex in the sequestration process, possibly resulting in higher stable VO 2 + complexes. Therefore, the higher complexation ability of the amidoxime-based adsorbents toward vanadium over uranium is probably due to the differences in the

  20. Orientation of Pterin-6-Carboxylic Acid on Gold Capped Silicon Nanopillars Platforms: Surface Enhanced Raman Spectroscopy and Density Functional Theory Studies

    DEFF Research Database (Denmark)

    Castillo, John J.; Rozo, Ciro E.; Bertel, Linda

    2016-01-01

    The orientation of pterin-6-carboxylic acid on gold nanopillars was investigated by surface enhanced Raman spectroscopy and density functional theory methods. The experimentally vibrations from pterin-6-COOH free and attached to the Au surface display vibration features indicating chemical...

  1. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  2. Rapid Screening of Carboxylic Acids from Waste and Surface Waters by ESI-MS/MS Using Barium Ion Chemistry and On-Line Membrane Sampling.

    Science.gov (United States)

    Duncan, Kyle D; Volmer, Dietrich A; Gill, Chris G; Krogh, Erik T

    2016-03-01

    Negative ion tandem mass spectrometric analysis of aliphatic carboxylic acids often yields only non-diagnostic ([M - H](-)) ions with limited selective fragmentation. However, carboxylates cationized with Ba(2+) have demonstrated efficient dissociation in positive ion mode, providing structurally diagnostic product ions. We report the application of barium adducts followed by collision induced dissociation (CID), to improve selectivity for rapid screening of carboxylic acids in complex aqueous samples. The quantitative MS/MS method presented utilizes common product ions of [M - H + Ba](+) precursor ions. The mechanism of product ion formation is investigated using isotopically labeled standards and a series of structurally related carboxylic acids. The results suggest that hydrogen atoms in the β and γ positions yield common product ions ([BaH](+) and [BaOH](+)). Furthermore, the diagnostic product ion at m/z 196 serves as a qualifying ion for carboxylate species. This methodology has been successfully used in conjunction with condensed phase membrane introduction mass spectrometry (CP-MIMS), with barium acetate added directly to the methanol acceptor phase. The combination enables rapid screening of carboxylic acids directly from acidified water samples (wastewater effluent, spiked natural waters) using a capillary hollow fiber PDMS membrane immersion probe. We have applied this technique for the direct analysis of complex naphthenic acid mixtures spiked into natural surface waters using CP-MIMS. Selectivity at the ionization and tandem mass spectrometry level eliminate isobaric interferences from hydroxylated species present within the samples, which have been observed in negative electrospray ionization.

  3. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing

    International Nuclear Information System (INIS)

    Wang Li; Ye Yinjian; Zhu Haozhi; Song Yonghai; He Shuijian; Xu Fugang; Hou Haoqing

    2012-01-01

    Glucose detection is very important in biological analysis, clinical diagnosis and the food industry, and especially for the routine monitoring of diabetes. This work presents an electrochemical approach to the detection of glucose based on Prussian blue (PB) nanostructures/carboxylic group-functionalized carbon nanofiber (FCNF) nanocomposites. The hybrid nanocomposites were constructed by growing PB onto the FCNFs. The obtained PB–FCNF nanocomposites were characterized by scanning electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The mechanism of formation of PB–FCNF nanocomposites was investigated and is discussed in detail. The PB–FCNF modified glassy carbon electrode (PB–FCNF/GCE) shows good electrocatalysis toward the reduction of H 2 O 2 , a product from the reduction of O 2 followed by glucose oxidase (GOD) catalysis of the oxidation of glucose to gluconic acid. Further immobilizing GOD on the PB–FCNF/GCE, an amperometric glucose biosensor was achieved by monitoring the generated H 2 O 2 under a relatively negative potential. The resulting glucose biosensor exhibited a rapid response of 5 s, a low detection limit of 0.5 μM, a wide linear range of 0.02–12 mM, a high sensitivity of 35.94 μA cm −2 mM −1 , as well as good stability, repeatability and selectivity. The sensor might be promising for practical application. (paper)

  4. Preparation, Characterization, and In Vitro and Vivo Antitumor Activity of Oridonin-Conjugated Multiwalled Carbon Nanotubes Functionalized with Carboxylic Group

    Directory of Open Access Journals (Sweden)

    Chuanjin Wang

    2016-01-01

    Full Text Available Carbon nanotubes have shown great potential in tumor therapy. Oridonin (ORI is a poorly water-soluble diterpenoid compound (C20H28O6 used in the treatment of esophageal and hepatic carcinoma for decades. For the purpose of enhancing the antitumor potency and reducing cytotoxicity of ORI, multiwalled carbon nanotubes functionalized with carboxylic group (MWCNTs-COOH were used as ORI carrier. ORI was noncovalently encapsulated into (or onto the functionalized carbon nanotubes (MWCNTs-ORI. The obtained MWCNTs-ORI has been characterized. The ORI loading efficiency in MWCNTs-COOH carrier was studied to be about 82.6% (w/w. In vitro cytotoxicity assay on MWCNTs-ORI gave IC50 of 7.29±0.5 μg/mL and ORI-F gave IC50 of 14.5±1.4 μg/mL. The antitumor effect studies in vivo showed that MWCNTs-ORI improved antitumor activity of ORI in comparison with ORI-F. The tumor inhibition ratio for MWCNTs-ORI (1.68×10-2 g·Kg−1·d−1 was 86.4%, higher than that of ORI-F (1.68×10-2 g·Kg−1·d−1 which was 39.2%. This can greatly improve the pharmaceutical efficiency and reduce potential side effects.

  5. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vatanpour, Vahid, E-mail: vahidvatanpour@khu.ac.ir; Zoqi, Naser

    2017-02-28

    Highlights: • A commercial PA RO membrane was modified by grafting of hydrophilic acrylic acid. • COOH-MWCNTs were mixed in grafting layer to increase permeability and antifouling. • However, more increase of CNTs caused in reduction of flux of the membranes. • Effect of acrylic acid amount, contact time and curing time was optimized. - Abstract: In this study, modification of commercial seawater reverse osmosis membranes was carried out with simultaneous use of surface grafting and nanoparticle incorporation. Membrane grafting with a hydrophilic acrylic acid monomer and thermal initiator was used to increase membrane surface hydrophilicity. The used nanomaterial was carboxylated multiwalled carbon nanotubes (MWCNTs), which were dispersed in the grafting solution and deposited on membrane surface to reduce fouling by creating polymer brushes and hydrodynamic resistance. Effectiveness of the grafting process (formation of graft layer on membrane surface) was proved by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analyses. Increase of membrane surface hydrophilicity was approved with contact angle test. First, the grafting was performed on the membrane surfaces with different monomer concentrations, various contact times and several membrane curing times (three variables for optimization). The modified membranes were tested by a cross-flow setup using saline solution for permeability and rejection tests, and bovine serum albumin (BSA) solution for fouling test. The results showed that the modified membranes with 0.75 M of monomer, 3 min contact time and 80 min curing time in an oven at 50 °C presented the highest flux and lowest rejection decline related to the commercial reverse osmosis membrane. In the next step, the optimum grafting condition was selected and the nanotubes with different weight percentages were dispersed in the acrylic acid monomer solution. The membrane containing 0.25 wt% COOH-MWCNTs showed the

  6. Perfluorinated carboxylic and sulphonic acids in surface water media from the regions of Tibetan Plateau: Indirect evidence on photochemical degradation?

    Science.gov (United States)

    Yamazaki, Eriko; Falandysz, Jerzy; Taniyasu, Sachi; Hui, Ge; Jurkiewicz, Gabriela; Yamashita, Nobuyoshi; Yang, Yong-Liang; Lam, Paul K S

    2016-01-01

    Perfluorinated surfactants and repellents are synthetic substances that have found numerous industrial and customer applications. Due to their persistence, at least two groups of these substances-perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs)-are diffused widely in the environment. It is hypothesized that the Tibetan Plateau, is one of few unique places on the Earth, due to its topography, specifically the vast space and high elevation above sea level, geographic location, climate, high solar radiation, lack of industry, little urbanization and general lack of significant direct sources of pollution. There it is believed possible to gain an insight into atmospheric fate (possible photochemical degradation of higher molecular mass and formation of lower molecular mass PFCAs and PFSAs) of PFASs under un-disturbed environmental conditions. Ultratrace analytical method for PFCAs and PFSAs and use of transportation and field blanks, laboratory blanks and isotopically labelled surrogates for recovery control has allowed the determination of nine perfluorinated carboxylic acids and six perfluorinated sulfonic acids at ultra-trace levels in water based samples from the alpine dimension regions of the Tibetan Plateau, the eastern slope of Minya Konka peak at the eastern edge of the Tibetan Plateau, and also from the city of Chengdu from the lowland of the Sichuan Province in China. The specific compositional pattern of PFCAs and PFSAs and low levels of pollution with those compounds were observed in the central region of the Tibetan Plateau and in the region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau. The fingerprint of the compositional pattern of PFCAs and PFSAs in water samples in the central region of the Tibetan Plateau and in the alpine region adjacent to the peaks of Minya Konka in the Eastern Tibetan Plateau may be explained by the result of photochemical degradation with dealkylation of longer chain

  7. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Bonaventure Gustavo

    2009-11-01

    Full Text Available Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA and small polar molecules (e.g., jasmonic acid (JA, salicylic acid (SA containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the

  8. Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups.

    Science.gov (United States)

    Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei

    2013-01-01

    Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. The facile approach effectively prepares MSPs for magnetic separations.

  9. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS.

    Science.gov (United States)

    Kallenbach, Mario; Baldwin, Ian T; Bonaventure, Gustavo

    2009-11-25

    Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at least one free carboxyl group.

  10. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    OpenAIRE

    Kallenbach, Mario; Baldwin, Ian T; Bonaventure, Gustavo

    2009-01-01

    Abstract Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enri...

  11. Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups

    OpenAIRE

    Crisp, John; Wiest, Bert

    2003-01-01

    We prove by explicit construction that graph braid groups and most surface groups can be embedded in a natural way in right-angled Artin groups, and we point out some consequences of these embedding results. We also show that every right-angled Artin group can be embedded in a pure surface braid group. On the other hand, by generalising to right-angled Artin groups a result of Lyndon for free groups, we show that the Euler characteristic -1 surface group (given by the relation x^2y^2=z^2) nev...

  12. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Megumi Sakurai

    2018-03-01

    Full Text Available Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO as the matrix. Salicylic acid (Sal, glucuronic acid (Glu, ibuprofen (Ibu, and tyrosine (Tyr were ionized as deprotonated species (carboxylate anions by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe. Measurements of model peptides, angiotensin II (AngII and substance P (SubP, were also carried out but the obtained peak intensities were very low. In order to explain this result, the interaction between CdTe and AngII was confirmed by diffuse reflectance spectroscopy. The results suggest that electrostatic binding between semiconductor nanoparticles and AngII prevented the efficient desorption of AngII into the gas phase.

  13. Synthesis of purin-2-yl carboxylate from O6-methylguanosine.

    Science.gov (United States)

    Maruyama, Tokumi; Moriwaka, Nobuyasu; Demizu, Yosuke; Ohtsuka, Masami

    2005-01-01

    O6-methylguanosine derivative was treated with sodium nitrite or isoamylnitrite in the presence of the carboxylic acid to give the purin-2-yl carboxylate (2), an unusual product bearing a carboxylic group at 2-position of purine moiety.

  14. Synthesis and Biological Evaluation of Ru(II) and Pt(II) Complexes Bearing Carboxyl Groups as Potential Anticancer Targeted Drugs.

    Science.gov (United States)

    Martínez, Ma Ángeles; Carranza, M Pilar; Massaguer, Anna; Santos, Lucia; Organero, Juan A; Aliende, Cristina; de Llorens, Rafael; Ng-Choi, Iteng; Feliu, Lidia; Planas, Marta; Rodríguez, Ana M; Manzano, Blanca R; Espino, Gustavo; Jalón, Félix A

    2017-11-20

    The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in

  15. Grouping pursuit through a regularization solution surface.

    Science.gov (United States)

    Shen, Xiaotong; Huang, Hsin-Cheng

    2010-06-01

    Extracting grouping structure or identifying homogenous subgroups of predictors in regression is crucial for high-dimensional data analysis. A low-dimensional structure in particular-grouping, when captured in a regression model, enables to enhance predictive performance and to facilitate a model's interpretability Grouping pursuit extracts homogenous subgroups of predictors most responsible for outcomes of a response. This is the case in gene network analysis, where grouping reveals gene functionalities with regard to progression of a disease. To address challenges in grouping pursuit, we introduce a novel homotopy method for computing an entire solution surface through regularization involving a piecewise linear penalty. This nonconvex and overcomplete penalty permits adaptive grouping and nearly unbiased estimation, which is treated with a novel concept of grouped subdifferentials and difference convex programming for efficient computation. Finally, the proposed method not only achieves high performance as suggested by numerical analysis, but also has the desired optimality with regard to grouping pursuit and prediction as showed by our theoretical results.

  16. An investigation of the functional groups on the surface of activated carbons

    Directory of Open Access Journals (Sweden)

    MARYTE DERVINYTE

    2004-05-01

    Full Text Available Activated carbons were produced in the laboratory from wood using a 20-run Plackett–Burman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carboxyl, lactone and phenol. The linear regression equations reflecting the influence of each operation used for the synthesis on the amount of these functional groups in the obtained activated carbons were generated. The FTIR spectra were used in parallel for the evaluation of the amount and the type of the surface functional groups. Relationships between the two data sets obtained by potentiometric titration and FTIR spectroscopy were evaluated by correlation analysis. It was established that the amount of surface functional groups determined by potentiometric titration positively correlates with the intensity of the peaks of hydrophilic functional groups in the FTIR spectra. At the same time, the negative correlation between potentiometrically determined amount of surface functional groups and the intensity of peaks of hydrophobic functional groups was observed. Most probably, these non-polar formations can take part in the interaction of carbon surface with H+/OH- ions and diminish the strength of existent functional groups.

  17. Metabolic fate of the carboxyl groups of malate and pyruvate and their influence on δ13C of leaf respired CO2 during light enhanced dark respiration

    Directory of Open Access Journals (Sweden)

    Marco M Lehmann

    2016-06-01

    Full Text Available The enhanced CO2 release of illuminated leaves transferred into darkness, termed light enhanced dark respiration (LEDR, is often associated with an increase in the carbon isotope ratio of the respired CO2 (δ13CLEDR. The latter has been hypothesized to result from different respiratory substrates and decarboxylation reactions in various metabolic pathways, which are poorly understood so far. To provide a better insight into the underlying metabolic processes of δ13CLEDR, we fed position-specific 13C-labelled malate and pyruvate via the xylem stream to leaves of species with high and low δ13CLEDR values (Halimium halimifolium and Oxalis triangularis, respectively. During respective label application, we determined label-derived leaf 13CO2 respiration using laser spectroscopy and the 13C allocation to metabolic fractions during light-dark transitions. Our results clearly show that both carboxyl groups (C-1 and C-4 position of malate similarly influence respiration and metabolic fractions in both species, indicating possible isotope randomization of the carboxyl groups of malate by the fumarase reaction. While C-2 position of pyruvate was only weakly respired, the species-specific difference in natural δ13CLEDR patterns were best reflected by the 13CO2 respiration patterns of the C-1 position of pyruvate. Furthermore, 13C label from malate and pyruvate were mainly allocated to amino and organic acid fractions in both species and only little to sugar and lipid fractions. In summary, our results suggest that respiration of both carboxyl groups of malate (via fumarase by tricarboxylic acid cycle reactions or by NAD-malic enzyme influences δ13CLEDR. The latter supplies the pyruvate dehydrogenase reaction, which in turn determines natural δ13CLEDR pattern by releasing the C-1 position of pyruvate.

  18. Multi-technique Characterization of Self-assembled Carboxylic Acid Terminated Alkanethiol Monolayers on Nanoparticle and Flat Gold Surfaces.

    Science.gov (United States)

    Techane, Sirnegeda D; Gamble, Lara J; Castner, David G

    2011-04-21

    Gold nanoparticles (AuNPs) with 14, 25 and 40nm diameters were functionalized with different chain length (C6, C8, C11 and C16) carboxylic acid terminated alkanethiol self-assembled monolayers (COOH-SAMs). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to examine the changes in surface chemistry as both AuNP diameter and SAM chain length were varied. COOH-SAMs on flat gold surfaces were also examined and compared to the COOH-SAM on AuNP results. For a given surface, as the COOH-SAM chain length increased the XPS C/Au atomic ratio increased due to an increased number of carbon atoms per molecule in the overlayer and an increased attenuation of the Au substrate signal. For the C16 COOH-SAMs, as the size of AuNPs decreased the XPS C/Au atomic ratio and the apparent SAM thickness increased due to the increased curvature of the smaller AuNPs. The C16 COOH-SAMs on the flat Au had the lowest XPS C/Au atomic ratio and apparent SAM thickness of any C16 COOH-SAM covered Au surface. The effective take-off angles of the COOH-SAMs were also calculated by comparing the apparent thickness of COOH-SAMs with literature values. The effective take-off angle for C16 COOH-SAM on 14nm, 25nm and 40nm diameter AuNPs and flat Au were found to be 57°, 53°, 51° and 39°, respectively, for data acquired in a mode that collects a wide range of photoelectron take-off angles. The effective take-off angle for C16 COOH-SAM on 14nm AuNP and flat Au decreased to 52° and 0°, respectively, for data acquired in a mode that collects a narrow range of photoelectron take-off angles. The ToF-SIMS results showed similar changes in surface chemistry with COOH-SAM chain length and AuNP size. For example, the ratio of the sum of the C(1-4)H(x)O(y) positive ion intensities to the sum of the Au-containing positive ions intensities increased with decreasing AuNP size and increasing COOH-SAM chain length. Fourier transform IR spectroscopy in the

  19. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haidan; Zhao, Chengji; Na, Hui [Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin street 2699, Changchun 130012, Jilin (China)

    2010-06-01

    In this study, a new type of cross-linked composite membrane is prepared and considered for its potential applications in direct methanol fuel cell. Nafion and sulfonated poly(arylene ether ketone) bearing carboxylic acid groups (SPAEK-C) are blended and subsequently cross-linked by a Friedel-Craft reaction using the carboxylic acid groups in the SPAEK-C to achieve lower methanol permeability. The perfluoroalkyl sulfonic acid groups of Nafion act as a benign solid catalyst, which assist the cross-linking of SPAEK-C. The physical and chemical characterizations of the cross-linked composite membranes are performed by varying the contents of SPAEK-C. The c-Nafion-15% membrane exhibits appropriate water uptake (10.49-25.22%), low methanol permeability (2.57 x 10{sup -7} cm{sup 2} s{sup -1}), and high proton conductivity (0.179 S cm{sup -1} at 80 C). DSC and FTIR analyze suggest the cross-linking reaction. These results show that the self-cross-linking of SPAEK-C in the Nafion membrane can effectively reduce methanol permeability while maintaining high proton conductivity. (author)

  20. Determination of surface functional groups on mechanochemically activated carbon cloth by Boehm method

    Directory of Open Access Journals (Sweden)

    Đukić Anđelka B.

    2014-01-01

    Full Text Available In order to improve sorption properties of activated carbon cloth that can be used for wastewater purification, mechanochemical activation was performed in both inert and air atmosphere. Boehm method was used to follow the changes in the number and types of surface groups induced by mechanical milling. The number of the base groups of 0,2493 mmol/g is significantly smaller than the total amount of acidic functional groups, 2,5093 mmol/g. Among the acidic groups present on the surface, the most represented are phenolic groups (2.3846 mmol/g , ie . > 95 % , the carboxylic groups are present far less (0.1173 mmol /g, ie. 4.5 %, while the presence of the lactone group on the surface of ACC is negligible (0.0074 mmol/g ie. under 0.3 %. Mechanochemical activation lead to an increase in the number of acidic and basic groups on the surface of the ACC. The milling in inert atmosphere has dominant effect with respect to the changes in the total number of basic functional groups (compared to milling in an air atmosphere: the number of basic groups of the ACC was 0.8153 mmol/g milled under argon, 0.7933 mmol/g in the air; the number of acidic groups is 2.9807 mmol/g for a sample milled under argon and 3.5313 mmol/g for one milled in the air.

  1. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  2. Arsonic acid as a robust anchor group for the surface modification of Fe3O4.

    Science.gov (United States)

    Ahn, Jihoon; Moon, Doo-Sik; Lee, Jin-Kyu

    2013-12-03

    In order to use iron oxide nanoparticles (Fe3O4) in various applications, a surface modification that provides colloidal stability and additional functionality to the nanoparticles is necessary. For the modification of the nanoparticle surface with ligand molecules, the ligand molecule should contain an anchor group that has a strong affinity for the surface. However, currently used anchor groups have shown some problems such as low affinity and stability as well as reactivity with the surface. In this study, arsonic acid (RAsO(OH)2) was investigated as a novel anchor group. It was possible to introduce azide groups on the surface of iron oxide nanoparticles using 4-azidophenylarsonic acid, and the desired functional molecules could be chemically attached to the surface via copper-catalyzed azide-alkyne cycloaddition (click chemistry). By quantifying and comparing the amount of attached anchors on the surface, it was found that arsonic acid displays better affinity than other currently used anchors (catechol, carboxylic acid). Furthermore, we examined the binding reversibility, long-term anchoring stability, and anchoring stability at various pH values. It was revealed that arsonic acid is a stable anchor in various conditions.

  3. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  4. The XPS study of physical and chemical forms of neptunium group on the surface of minerals

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The sorption behavior and the physical and chemical forms of neptunium on the surface of minerals of the two chlorate samples, biotite and kaolin, with different contents of Fe(II was studied. The liquid-liquid extraction and the X-ray photoelectron spectroscopy were employed to identify the valence forms of neptunium. On the basis of the obtained data the quantitative elemental composition of the surface of the studied minerals, as well as the ionic composition of the formed neptunium complexes was determined. It was shown that the Np(IV and Np(VI containing compounds did not form, while the complexes Np(VO+ -hydroxyl did form on the surface. The oxygen ions bonded with iron and oxygen belonging to water and/or of carboxyl were suggested to be present in the equatorial plane of the neptunyl group NpO+.

  5. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.

    Science.gov (United States)

    Saravanan, R; Ravikumar, L

    2016-10-01

    Chemically modified cellulose bearing metal binding sites like Schiff base and carboxylic acid groups was synthesized and characterized through Fourier transform infrared and solid state 13 C-nuclear magnetic resonance (NMR) analysis. The chemically modified cellulose (Cell-PA) adsorbent was examined for its metal ion uptake ability for Cu(II) and Pb(II) ions from aqueous solution. Kinetic and isotherm studies were carried out under optimum conditions. Pseudo-second-order kinetics and Langmuir isotherm fit well with the experimental data. Thermodynamic studies were also performed along with adsorption regeneration performance studies. The adsorbent (Cell-PA) shows high potential for the removal of Cu(II) and Pb(II) metal ions, and it shows antibacterial activity towards selected microorganisms.

  6. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Mierczynska-Vasilev, Agnieszka, E-mail: agnieszka.mierczynska-vasilev@awri.com.au; Smith, Paul A., E-mail: paul.smith@awri.com.au

    2016-11-15

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO{sub 3}H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH{sub 2} and NR{sub 3} groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR{sub 3} and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO{sub 3}H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH{sub 2} and −NR{sub 3} groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR{sub 3} and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  7. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    International Nuclear Information System (INIS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-01-01

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO 3 H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH 2 and NR 3 groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR 3 and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO 3 H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH 2 and −NR 3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR 3 and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  8. Surface-binding through polyfunction groups of Rhodamine B on composite surface and its high performance photodegradation

    Science.gov (United States)

    Wan, Yiqun; Wang, Xiaofen; Gu, Yun; Guo, Lan; Xu, Zhaodi

    2016-03-01

    A kind of novel composite ZnS/In(OH)3/In2S3 is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH)3 and In2S3 phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH)3/In2S3 with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH)3 and suppresses the recombination of photogenerated carrier. The possible adsorption modes of Rh B are discussed on the basis of the experiment results.

  9. A homoleptic chromium(iii) carboxylate.

    Science.gov (United States)

    Sydora, O L; Hart, R T; Eckert, N A; Martinez Baez, E; Clark, A E; Benmore, C J

    2018-04-03

    Structurally characterized chromium(iii) carboxylates form clusters with a variety of bridging groups introduced from aqueous reaction conditions. The first homoleptic monomeric chromium(iii) carboxylate has been prepared using an anhydrous salt metathesis synthetic route. The carboxylate groups coordinate the chromium in a bidentate chelate yielding an aliphatic soluble complex. The complex was characterized by a variety of methods including high energy X-ray diffraction, FD-MS, IR and Raman spectroscopy, complemented by DFT modeling.

  10. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  11. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    Science.gov (United States)

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  12. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  13. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    Science.gov (United States)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  14. Synthesis and Characterization of PEDOT Derivative with Carboxyl Group and Its Chemo/Bio Sensing Application as Nanocomposite, Immobilized Biological and Enhanced Optical Materials

    International Nuclear Information System (INIS)

    Zhang, Long; Wen, Yangping; Yao, Yuanyuan; Xu, Jingkun; Duan, Xuemin; Zhang, Ge

    2014-01-01

    indicate that chemo/bio-sensors based on PC4 possess excellent chemo/bio sensing performance and enhanced optical response, and its carboxylic group can realize the immobilization of biologically active species, self-assembly of inorganic nanomaterials

  15. Carboxylic ester hydrolases from hyperthermophiles

    NARCIS (Netherlands)

    Levisson, M.; Oost, van der J.; Kengen, S.W.M.

    2009-01-01

    Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the

  16. Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhao, Chengji; Shao, Ke; Li, Hongtao; Fu, Tiezhu; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China); Cui, Zhiming; Xing, Wei [Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2009-06-15

    A series of novel side-chain-type sulfonated poly(arylene ether ketone)s with pendant carboxylic acid groups copolymers (C-SPAEKs) were synthesized by direct copolymerization of sodium 5,5'-carbonyl-bis(2-fluorobenzenesulfonate), 4,4'-difluorobenzophenone and 4,4'-bis(4-hydroxyphenyl) valeric acid (DPA). The expected structure of the sulfonated copolymers was confirmed by FT-IR and {sup 1}H NMR. Membranes with good thermal and mechanical stability could be obtained by solvent cast process. It should be noted that the proton conductivity of these copolymers with high sulfonatation degree (DS > 0.6) was higher than 0.03 S cm{sup -1} and increased with increasing temperature. At 80 C, the conductivity of C-SPAEK-3 (DS = 0.6) and C-SPAEK-4 (DS = 0.8) reached up to 0.12 and 0.16 S cm{sup -1}, respectively, which were higher than that of Nafion 117 (0.10 S cm{sup -1}). Moreover, their methanol permeability was much lower than that of Nafion 117. These results showed that the synthesized materials might have potential applications as the proton exchange membranes for DMFCs. (author)

  17. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission

    KAUST Repository

    Hola, Katerina

    2014-04-01

    We present a simple molecular approach to control the lipophilic/ hydrophilic nature of photoluminescent carbon dots (CDs) based on pyrolysis of alkyl gallate precursors. Depending on the gallic acid derivative used, CDs with different alkyl groups (methyl, propyl, lauryl) on the surface can be obtained by isothermal heating at 270 C. This precursor-derived approach allows not only the control of lipophilicity but also the length of the particular alkyl chain enables the control over both the size and photoluminescence (PL) of the prepared CDs. Moreover, the alkyl chains on the CDs surface can be readily converted to carboxylate groups via a mild base hydrolysis to obtain water dispersible CDs with a record biocompatibility. The observed differences in PL properties of CDs and time-resolved PL data, including contributions from carbogenic cores and surface functional group, are rationalized and discussed in detail using time-dependent density functional theory (TD-DFT) calculations. © 2013 Elsevier Ltd. All rights reserved.

  18. First-principles investigation of the adsorption of the 2,5-pyridine di-carboxylic acid onto the Cu(011) surface

    Science.gov (United States)

    Tranca, D. C.; Keil, F. J.

    2011-03-01

    First-principles calculations within the density functional theory (DFT) framework have been performed in order to investigate various conformations of the 2,5-pyridine di-carboxylic acid (PDCA) molecule adsorbed onto the Cu(011) surface. By means of DFT calculations the adsorption geometry, the bond formation and the electronic properties of PDCA molecule conformations on the Cu(011) surface have been studied. The most important structural property is the orientation of the COOH H atom which can point either toward the aromatic ring or toward the vacuum. This H atom position determines the possible reactions in which the adsorbed molecule can get involved and also has a significant impact on the value of the Cu-molecule system work function. Thus, we find that simply by changing the H atom orientation (from up to down) the Cu-molecule system work function can be varied with more than 2.5 eV. This is a significant result as a lot of effort is put nowadays in finding efficient ways for the in situ variation of the systems work function. Scanning tunneling microscopy (STM) images, reflexion absorption infrared vibrational spectra (RAIRS) as well as various thermodynamic properties (adsorption entropies, enthalpies) have also been investigated in order to get a better insight into the system studied and to provide support to possible experimental studies (STM or RAIRS experiments).

  19. The influence of pendant carboxylic acid loading on surfaces of statistical poly(4-hydroxystyrene)-co-styrene)s

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren

    2008-01-01

    . In particular, aliphatic and aromatic pendant groups differ by 92°C in Tg• Contact angle measurements onspin coated films have shown a maximum effect of the functional groups in the advancing contact angle at a 75/100 copolymer loading. In addition to this, X-ray photoelectron spectroscopy shows the presence...

  20. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    Science.gov (United States)

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  1. High-Performance Supercapacitor of Functionalized Carbon Fiber Paper with High Surface Ionic and Bulk Electronic Conductivity: Effect of Organic Functional Groups

    International Nuclear Information System (INIS)

    Suktha, Phansiri; Chiochan, Poramane; Iamprasertkun, Pawin; Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Suksomboon, Montakan; Kaewsongpol, Tanon; Sirisinudomkit, Pichamon; Pettong, Tanut; Sawangphruk, Montree

    2015-01-01

    Highlights: • A supercapacitor of organic functionalized carbon fiber paper (f-CFP) exhibits high areal and volumetric capacitances. • The performance of the supercapacitor depends on the organic functional group on the surface of the f-CFP. • Hydroxyl and carboxylic groups modified on the surface of f-CFP have higher pseudocapacitive property than amide and amine functional groups. • The f-CFP exhibits high surface ionic and bulk electrical conductivities. - Abstract: Although carbon fiber paper (CFP) or nonwovens are widely used as a non-corrosive and conductive substrate or current collector in batteries and supercapacitors as well as a gas diffusion layer in proton exchange membrane fuel cells, the CFP cannot store charges due to its poor ionic conductivity and its hydrophobic surface. In this work, the chemically functionalized CFP (f-CFP) consisting of hydroxyl and carboxylic groups on its surface was produced by an oxidation reaction of CFP in a mixed concentrated acid solution of H 2 SO 4 :HNO 3 (3:1 v/v) at 60 °C for 1 h. Other amide and amine groups modified CFP were also synthesized for comparison using a dehydration reaction of carboxylic modified CFP with ethylenediamine and n-butylamine. Interestingly, it was found that hydroxyl and carboxylic groups modified CFP behave as a pseudocapacitor electrode, which can store charges via the surface redox reaction in addition to electrochemical double layer capacitance. The aqueous-based supercapacitor of f-CFP has high areal, volumetric, and specific energy (49.0 μW.h/cm 2 , 1960 mW.h/L, and 5.2 W.h/Kg) and power (3.0 mW/cm 2 , 120 W/L, and 326.2 W/Kg) based on the total geometrical surface area and volume as well as the total weight of positive and negative electrodes. High charge capacity of the f-CFP stems from high ionic charge and pseudocapacitive behavior due to hydroxyl and carboxylic groups on its surface and high bulk electronic conductivity (2.03 mS/cm) due to 1D carbon fiber paper. The

  2. Simultaneous Decolorization and Biohydrogen Production from Xylose by Klebsiella oxytoca GS-4-08 in the Presence of Azo Dyes with Sulfonate and Carboxyl Groups.

    Science.gov (United States)

    Yu, Lei; Cao, Ming-Yue; Wang, Peng-Tao; Wang, Shi; Yue, Ying-Rong; Yuan, Wen-Duo; Qiao, Wei-Chuan; Wang, Fei; Song, Xin

    2017-05-15

    Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anticounterfeiting paper, which further increases the complexity of wastewater. This study reports that xylose could serve as the sole carbon source for a pure culture of Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g liter -1 of xylose as the substrate, a maximum xylose utilization rate (UR xyl ) and a hydrogen molar yield (HMY) of 93.99% and 0.259 mol of H 2 mol of xylose -1 , respectively, were obtained. Biohydrogen kinetics and electron equivalent ( e - equiv) balance calculations indicated that methyl red (MR) penetrates and intracellularly inhibits both the pentose phosphate pathway and pyruvate fermentation pathway, while methyl orange (MO) acted independently of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period in the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain if the xylose is sufficient was also proved and was not affected by toxic substances which usually exist in such wastewater, except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes. IMPORTANCE The pulp and paper industry is a major industry in many developing countries, and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amounts of refractory contaminants, such as

  3. Reaction of Nα-acetyl-L-histidine with diazomethane: A model esterification reaction of carboxylic groups in the presence of imidazole rings

    Directory of Open Access Journals (Sweden)

    Zamora, R.

    1996-10-01

    Full Text Available The reaction of Nα-acetyl-L-histidine with diazomethane was studied in order to analyze the esterification reaction of a carboxylic group in the presence of an imidazole ring. The reaction produced the expected Nα-acetyl-L-histidine methyl ester (1 as a major product. However, important amounts of [S]-acetyl-1-methylimidazole-4-alanine methyl ester (2 and [S]-acetyl-1-methylimidazole-5-alanine methyl ester (3 were also produced. These compounds, which could be detected by capillary electrophoresis (HPCE and thin layer chromatography, were fractionated by column chromatography and identified by gas chromatography coupled with mass spectrometry (GC-MS, and 1H and 13C nuclear magnetic resonance spectroscopy. Structures for compounds 1-3 were confirmed by HPCE after acid hydrolysis. These results indicated that the use of diazomethane produces the methyl derivative of the heterocyclic ring in addition to the methyl ester. This reaction should be considered when preparing derivatives for GC-MS analysis.

    La reacción de la Nα-acetil-L-histidina con diazometano fue estudiada con objeto de conocer el comportamiento de la reacción de esterificación de un grupo carboxílico en presencia de un anillo de imidazol. La reacción produjo el esperado éster metílico de la Nα-acetil-L-histidina (1 como producto mayoritario. Sin embargo, también se observó la formación de cantidades importantes de los esteres metílicos de la [S]-acetil-1-metilimidazol- 4-alanina (2 y la [S]-acetil-1-metilimidazol-5-alanina (3. Estos compuestos que pudieron ser detectados por electroforesis capilar y cromatografía en capa fina, fueron separados por cromatografía en columna e identificados por cromatografía de gases acoplada a espectrometría de masas, y por espectroscopia de resonancia magnética nuclear de 1H y 13C. Las estructuras de los compuestos

  4. Emission of perfluoroalkyl carboxylic acids (PFCA) from heated surfaces made of polytetrafluoroethylene (PTFE) applied in food contact materials and consumer products.

    Science.gov (United States)

    Schlummer, Martin; Sölch, Christina; Meisel, Theresa; Still, Mona; Gruber, Ludwig; Wolz, Gerd

    2015-06-01

    Polytetrafluoroethylene (PTFE) has been widely discussed as a source of perfluorooctanoic acid (PFOA), which has been used in the production of fluoropolymers. PTFE may also contain unintended perfluoroalkyl carboxylic acids (PFCAs) caused by thermolysis of PTFE, which has been observed at temperatures above 300°C. Common PTFE coated food contact materials and consumer goods are operated at temperatures above 200°C. However, knowledge on possible emissions of PFCAs is limited. Therefore, it was the aim of this study to investigate and evaluate the emission of PFCAs from PTFE coated products with both, normal use and overheating scenarios. Four pans, claimed to be PFOA free, and nine consumer products were investigated. At normal use conditions (PTFE surfaces were trapped for 1h. Overheating scenarios (>260°C) recorded emissions during a 30min heating of empty pans on a stove. Emissions were analyzed by LC-ESI-MS. Results indicate the emission of PFCAs, whereas no perfluorinated sulfonic acids were traced. At normal use conditions total emissions of PFCAs accounted for 4.75ng per hour. Overheated pans, however, released far higher amounts with up to 12190ng PFCAs per hour at 370°C. Dominating contributors where PFBA and PFOA at normal use and PFBA and PFPeA during overheating. Temperature seems to be the main factor controlling the emission of PFCAs. A worst case estimation of human exposure revealed that emissions of PFCAs from heated PTFE surfaces would be far below the TDI of 1500ng PFOA per kg body weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Intersections of adelic groups on a surface

    International Nuclear Information System (INIS)

    Budylin, R Ya; Gorchinskiy, S O

    2013-01-01

    We solve a technical problem related to adeles on an algebraic surface. Given a finite set of natural numbers, one can associate with it an adelic group. We show that this operation commutes with taking intersections if the surface is defined over an uncountable field, and we provide a counterexample otherwise. Bibliography: 12 titles

  6. Surface field theories of point group symmetry protected topological phases

    Science.gov (United States)

    Huang, Sheng-Jie; Hermele, Michael

    2018-02-01

    We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.

  7. Surface-binding through polyfunction groups of Rhodamine B on composite surface and its high performance photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yiqun [College of Chemistry, Nanchang University, Nanchang 330031 (China); Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China); Wang, Xiaofen [College of Chemistry, Nanchang University, Nanchang 330031 (China); Gu, Yun; Guo, Lan [College of Chemistry, Nanchang University, Nanchang 330031 (China); Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China); Xu, Zhaodi, E-mail: xuzhaodi@ncu.edu.cn [Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China)

    2016-03-15

    Graphical abstract: The proper adsorption sites of Rh B depending on the phases of composites significantly enhance photodegradation activity under visible light. - Highlights: • The composites ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} were hydrothermally prepared. • Rhodamine B dye was effectively degraded by the composite under the visible light irradiation. • The three function groups of Rhodamine B bind on the composites ZnS/In(OH){sub 3}/In{sub 2}S{sub 3}. • The proper adsorption mode and site of Rhodamine B effectively suppress the combination of carrier. • A new degradation path of Rhodamine B on ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} is found. - Abstract: A kind of novel composite ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH){sub 3} and In{sub 2}S{sub 3} phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH){sub 3} and suppresses the recombination of photogenerated carrier. The possible

  8. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    Science.gov (United States)

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  9. Riemann surfaces, Clifford algebras and infinite dimensional groups

    International Nuclear Information System (INIS)

    Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.

    1990-01-01

    We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)

  10. Synthesis and characterization of ferroelectric liquid crystal dimers containing thioester and carboxylate linking groups in the inner side of the molecule

    Science.gov (United States)

    Senthil, S.; Kamalraj, V. R.; Wu, S. L.

    2008-08-01

    A homologous series of chiral unsymmetrical liquid crystal dimers possessing carboxyl and carbothiol linkages nearer to the chiral center were synthesized using ( S)-2-(6-methoxynapthyl-2) propionic acid as chiral starting material. All the dimers were characterized by usual spectral techniques, thermal methods and electro-optical studies. Structural effects on the mesomorphic and physicochemical properties were investigated in terms of variation of achiral chain length at both terminals and compared with our previous investigations that contain both carboxylate and both carbothiloate linkages. The microscopic investigation reveals that these dimeric compounds exhibit only SmC ∗ and SmA ∗ mesophases. The liquid crystalline behaviour of the dimers was further confirmed by DSC analysis. It was observed that the SmC ∗ phase range is increased significantly with increase in the achiral chain length. Whereas SmA ∗ phase range decreases with increase in achiral chain length. When comparing the mesomorphic behaviour of LC dimers containing -COO- and -COS- linkages, the present compounds do not exhibit metastable states but increased SmA ∗ and SmC ∗ mesophase stability. The spontaneous polarization ( Ps) and tilt angle values were also measured and a largest of 40.8 nCcm -2 and 44.5 deg were obtained, respectively.

  11. Double Hydrogen Bonding between Side Chain Carboxyl Groups in Aqueous Solutions of Poly (β-L-Malic Acid): Implication for the Evolutionary Origin of Nucleic Acids

    Science.gov (United States)

    Francis, Brian R.; Watkins, Kevin; Kubelka, Jan

    2017-01-01

    The RNA world hypothesis holds that in the evolutionary events that led to the emergence of life RNA preceded proteins and DNA and is supported by the ability of RNA to act as both a genetic polymer and a catalyst. On the other hand, biosynthesis of nucleic acids requires a large number of enzymes and chemical synthesis of RNA under presumed prebiotic conditions is complicated and requires many sequential steps. These observations suggest that biosynthesis of RNA is the end product of a long evolutionary process. If so, what was the original polymer from which RNA and DNA evolved? In most syntheses of simpler RNA or DNA analogs, the D-ribose phosphate polymer backbone is altered and the purine and pyrimidine bases are retained for hydrogen bonding between complementary base pairs. However, the bases are themselves products of complex biosynthetic pathways and hence they too may have evolved from simpler polymer side chains that had the ability to form hydrogen bonds. We hypothesize that the earliest evolutionary predecessor of nucleic acids was the simple linear polyester, poly (β-D-malic acid), for which the carboxyl side chains could form double hydrogen bonds. In this study, we show that in accord with this hypothesis a closely related polyester, poly (β-L-malic acid), uses carboxyl side chains to form robust intramolecular double hydrogen bonds in moderately acidic solution. PMID:29061955

  12. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  13. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  14. An updated and further developed theory and evidence for the close-contact, one-on-one association of nearly all cell K+ with beta- and gamma-carboxyl groups of intracellular proteins.

    Science.gov (United States)

    Ling, Gilbert N

    2005-01-01

    The primary focus of this communication is to present an updated and advanced version of the theory of close-contact association of molecules and ions through the spatial fixation and aggregation of the adsorbing sites. The last sections of the text also review a collection of relevant in vitro and in vivo experimental findings gathering since seventy years ago. Though some of these findings were published before the theory, old and new, they all support the theory that close-contact association with the beta-, and gamma-carboxyl groups of intracellular proteins causes the selective accumulation of potassium ions (K+) in living cells.

  15. Sunspot Groups as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last ...

  16. Sunspot Groups as Tracers of Sub Surface Processes .

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of. Astrophysics during the last decade or ...

  17. Carboxylic Acid-Functionalized Conducting-Polymer Nanotubes as Highly Sensitive Nerve-Agent Chemiresistors

    Science.gov (United States)

    Kwon, Oh Seok; Park, Chul Soon; Park, Seon Joo; Noh, Seonmyeong; Kim, Saerona; Kong, Hye Jeong; Bae, Joonwon; Lee, Chang-Soo; Yoon, Hyeonseok

    2016-09-01

    Organophosphates are powerful inhibitors of acetylcholinesterase, which is critical to nerve function. Despite continuous research for detecting the highly toxic organophosphates, a new and improved methodology is still needed. Herein we demonstrate simple-to-fabricate chemiresistive gas sensors using conducting-polymer polypyrrole (PPy) nanotube transducers, which are chemically specific and capable of recognizing sub-ppb concentrations (ca. 0.5 ppb) of dimethyl methylphosphonate (DMMP), a simulant of nerve agent sarin. Interestingly, the introduction of carboxylic groups on the surface of PPy nanotube transistors resulted in enhanced sensitivity to DMMP via intermolecular hydrogen bonding. Furthermore, it was found that the sensitivity of the nanotube transducer depended on the degree of the carboxylic group introduced. Finally, a sensor array composed of 5 different transducers including the carboxylated nanotubes exhibited excellent selectivity to DMMP in 16 vapor species.

  18. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Cha, I. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Hashimoto, K. [Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Fujiki, K. [Department of Environmental Science, Niigata Institute of Technology, 1719, Fujihashi, Kashiwazaki, Niigata 945-1195 (Japan); Yamauchi, T. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Tsubokawa, N., E-mail: ntsuboka@eng.niigata-u.ac.jp [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan)

    2014-02-14

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion.

  19. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    International Nuclear Information System (INIS)

    Cha, I.; Hashimoto, K.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N.

    2014-01-01

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion

  20. Carboxylic acids as substrates in homogeneous catalysis.

    Science.gov (United States)

    Goossen, Lukas J; Rodríguez, Nuria; Goossen, Käthe

    2008-01-01

    In organic molecules carboxylic acid groups are among the most common functionalities. Activated derivatives of carboxylic acids have long served as versatile connection points in derivatizations and in the construction of carbon frameworks. In more recent years numerous catalytic transformations have been discovered which have made it possible for carboxylic acids to be used as building blocks without the need for additional activation steps. A large number of different product classes have become accessible from this single functionality along multifaceted reaction pathways. The frontispiece illustrates an important reason for this: In the catalytic cycles carbon monoxide gas can be released from acyl metal complexes, and gaseous carbon dioxide from carboxylate complexes, with different organometallic species being formed in each case. Thus, carboxylic acids can be used as synthetic equivalents of acyl, aryl, or alkyl halides, as well as organometallic reagents. This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ. It serves to provide an invitation to complement, refine, and use these new methods in organic synthesis.

  1. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur

    2013-10-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  2. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  3. Carboxylated calixarenes bind strongly to CD69 and protect CD69+ killer cells from suicidal cell death induced by tumor cell surface ligands

    Czech Academy of Sciences Publication Activity Database

    Bezouška, K.; Šnajdrová, R.; Křenek, K.; Vančurová, Markéta; Kádek, A.; Adámek, D.; Lhoták, P.; Kavan, Daniel; Hofbauerová, Kateřina; Man, Petr; Bojarová, Pavla; Křen, Vladimír

    2010-01-01

    Roč. 18, č. 4 (2010), s. 1434-1440 ISSN 0968-0896 R&D Projects: GA MŠk OC 136; GA MŠk 1M0505; GA ČR GA303/09/0477; GA ČR GD305/09/H008; GA AV ČR IAA400200503; GA AV ČR KJB500200612 Institutional research plan: CEZ:AV0Z50200510 Keywords : Carboxylated calixarenes * Lymphocyte activation * Receptor cross-linking Subject RIV: CE - Biochemistry Impact factor: 2.978, year: 2010

  4. Integrable systems twistors, loop groups, and Riemann surfaces

    CERN Document Server

    Hitchin, NJ; Ward, RS

    2013-01-01

    This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do werecognize an integrable system? His own contribution then develops connections with algebraic geometry, and inclu

  5. Structural studies on actinides carboxylates

    International Nuclear Information System (INIS)

    Benetollo, F.; Bombieri, G.; Herrero, J.A.; Rojas, R.M.

    1979-01-01

    The synthesis, thermal behaviour and crystal structure of lithium glutaratehydrogenglutaratedioxouranate(VI) tetrahydrate is described. The compound crystallizes in the monoclinic system, space group P2 1 /n. The two glutarato ligands behave differently; one is bridging the uranyl groups in infinite chains running approximately in the a axis direction, the second is bridging the uranyl and the lithium ions. The carboxylic groups are chelated on the uranium and monodentate on the lithium. The structure is linked through a network of hydrogen bonding involving water molecules and oxygen atoms from the carboxylato groups. The geometry around the uranium is approximately hexagonal bipyramidal while the lithium is tetrahedrally coordinated with one glutarate oxygen and 3 water oxygens. (author)

  6. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  7. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  8. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  9. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    Science.gov (United States)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  10. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  11. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Niedziolka-Joensson, Joanna [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Boland, Susan; Leech, Donal [School of Chemistry, National University of Irland, Galway (Ireland); Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Szunerits, Sabine, E-mail: sabine.szunerits@iri.univ-lille1.f [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d' Ascq (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, UMR 8520), Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France)

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  12. Sensitive method for dosing carboxylic functions of carbons and its application to the study of thermally processed carbon blacks

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    This research thesis reports the development of a sensitive method for the dosing of carboxylic functions present at the surface of carbon blacks, and the use of this method to study the evolution of a carbon black during heat treatments. After a brief description of modes of fabrication of carbon blacks and of their structure, the author proposes an overview of knowledge on their oxidation and functional analysis. After having outlined that existing methods do not allow the measurement of function quantities less than ten micro-equivalent per gram of carbon, the author reports the development of a method which allows such measurements. By using this method, the author shows that carboxylic groups of a carbon black, oxidized by air or not, decompose during degassing by forming carbon dioxide, and that, reciprocally, the released carbon dioxide is exclusively produced by the decomposition of carboxylic groups [fr

  13. Surface group amalgams that (don't) act on 3-manifolds

    OpenAIRE

    Hruska, G. Christopher; Stark, Emily; Tran, Hung Cong

    2017-01-01

    We determine which amalgamated products of surface groups identified over multiples of simple closed curves are not fundamental groups of 3-manifolds. We prove each surface amalgam considered is virtually the fundamental group of a 3-manifold. We prove that each such surface group amalgam is abstractly commensurable to a right-angled Coxeter group from a related family. In an appendix, we determine the quasi-isometry classes among these surface amalgams and their related right-angled Coxeter ...

  14. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  15. Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane.

    Science.gov (United States)

    Stanca, Sarmiza E; Matthäus, Christian; Neugebauer, Ute; Nietzsche, Sandor; Fritzsche, Wolfgang; Dellith, Jan; Heintzmann, Rainer; Weber, Karina; Deckert, Volker; Krafft, Christoph; Popp, Jürgen

    2015-10-01

    Certain carboxyl groups of the plasma membrane are involved in tumorgenesis processes. A gold core-hydroxyapatite shell (AuHA) nanocomposite is introduced as chemo-spectroscopic sensor to monitor these carboxyl groups of the cell membrane. Hydroxyapatite (HA) plays the role both of a chemical detector and of a biocompatible Raman marker. The principle of detection is based on chemical interaction between the hydroxyl groups of the HA and the carboxyl terminus of the proteins. The AuHA exhibits a surface enhanced Raman scattering (SERS) signal at 954 cm(-1) which can be used for its localization. The bio-sensing capacity of AuHA towards human skin epidermoid carcinoma (A431) and Chinese hamster ovary (CHO) cell lines is investigated using Raman microspectroscopic imaging. The localization of AuHA on cells is correlated with scanning electron microscopy, transmission electron microscopy and structured illumination fluorescence microscopy. This qualitative approach is a step towards a quantitative study of the proteins terminus. This method would enable further studies on the molecular profiling of the plasma membrane, in an attempt to provide accurate cell identification. Using a gold core-hydroxyapatite shell (AuHA) nanocomposite, the authors in this paper showed the feasibility of detecting and differentiating cell surface molecules by surface enhanced Raman scattering. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  17. Luminescent Lariat Aza-Crown Ether Carboxylic Acid

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2010-03-01

    Full Text Available Lariat ethers are interesting recognition motifs in supramolecular chemistry. The synthesis of a luminescent lariat aza-crown ether with a carboxyl group appended by azide-alkyne (Huisgen cycloaddition is presented.

  18. Japan Flavour and Fragrance Materials Association's (JFFMA) safety assessment of food-flavouring substances uniquely used in Japan that belong to the class of aliphatic primary alcohols, aldehydes, carboxylic acids, acetals and esters containing additional oxygenated functional groups.

    Science.gov (United States)

    Saito, Kenji; Hasegawa-Baba, Yasuko; Sekiya, Fumiko; Hayashi, Shim-Mo; Mirokuji, Yoshiharu; Okamura, Hiroyuki; Maruyama, Shinpei; Ono, Atsushi; Nakajima, Madoka; Degawa, Masakuni; Ozawa, Shogo; Shibutani, Makoto; Maitani, Tamio

    2017-09-01

    We performed a safety evaluation using the procedure devised by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) of the following four flavouring substances that belong to the class of 'aliphatic primary alcohols, aldehydes, carboxylic acids, acetals, and esters containing additional oxygenated functional groups' and are uniquely used in Japan: butyl butyrylacetate, ethyl 2-hydroxy-4-methylpentanoate, 3-hydroxyhexanoic acid and methyl hydroxyacetate. Although no genotoxicity study data were found in the published literature, none of the four substances had chemical structural alerts predicting genotoxicity. All four substances were categorised as class I by using Cramer's classification. The estimated daily intake of each of the four substances was determined to be 0.007-2.9 μg/person/day by using the maximised survey-derived intake method and based on the annual production data in Japan in 2001, 2005 and 2010, and was determined to be 0.250-600.0 μg/person/day by using the single-portion exposure technique and based on average-use levels in standard portion sizes of flavoured foods. Both of these estimated daily intake ranges were below the threshold of toxicological concern for class I substances, which is 1800 μg/person/day. Although no information from in vitro and in vivo toxicity studies for the four substances was available, these substances were judged to raise no safety concerns at the current levels of intake.

  19. Mechanism of formation of humus coatings on mineral surfaces 1. Evidence for multidentate binding of organic acids from compost leachate on alumina

    Science.gov (United States)

    Wershaw, R. L.; Leenheer, J.A.; Sperline, R.P.; Song, Yuan; Noll, L.A.; Melvin, R.L.; Rigatti, G.P.

    1995-01-01

    Measurements of the infrared linear dichroism of carboxylate groups of organic acids from compost leachate adsorbed to an alumina surface and the enthalpy of adsorption of this reaction have been made. The linear dichroism measurements indicated that the carboxylate groups are not free to rotate. This limited rotation probably results from bidentate binding of the carboxylate groups. The molar enthalpy of adsorption of the acids is approximately −100 kJ mol−1. This high value for enthalpy of adsorption may best be explained by assuming that two or more carboxylate groups on a single dissolved organic carbon (DOC) molecule coordinate to the surficial aluminium ions.

  20. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  1. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Science.gov (United States)

    Zuend, A.; Marcolli, C.; Booth, A. M.; Lienhard, D. M.; Soonsin, V.; Krieger, U. K.; Topping, D. O.; McFiggans, G.; Peter, T.; Seinfeld, J. H.

    2011-09-01

    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl-, Br-, NO3-, HSO4-, and SO42-. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with

  2. New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2011-09-01

    Full Text Available We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H+, Li+, Na+, K+, NH4+, Mg2+, Ca2+, Cl, Br, NO3, HSO4, and SO42−. Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization

  3. E-Polytopes in Picard Groups of Smooth Rational Surfaces

    Directory of Open Access Journals (Sweden)

    Jae-Hyouk Lee

    2016-04-01

    Full Text Available In this article, we introduce special divisors (root, line, ruling, exceptional system and rational quartic in smooth rational surfaces and study their correspondences to subpolytopes in Gosset polytopes k 21 . We also show that the sets of rulings and exceptional systems correspond equivariantly to the vertices of 2 k 1 and 1 k 2 via E-type Weyl action.

  4. Graphs of groups on surfaces interactions and models

    CERN Document Server

    White, AT

    2001-01-01

    The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English

  5. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 2 (FGE.06Rev2): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The European Food Safety Authority (EFSA) asked the Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (the Panel) to provide scientific advice to the Commission on the implications for human health of chemically defined flavouring substances used in or on foodstuffs...... and 4, Annex I of the Commission Regulation (EC) No 1565/2000. The present Flavouring Group Evaluation deals with 48 straight- and branched-chain unsaturated primary alcohols, aldehydes, carboxylic acids and esters. Eight of the 48 flavouring substances possess a chiral centre [FL-no: 02.170, 02.175, 05...... in the commercial flavouring material. Forty-six candidate substances are classified into structural class I. The remaining two substances [FL-no: 05.143 and 09.884] are classified into structural class II. Thirty-eight of the flavouring substances in the present group have been reported to occur naturally...

  6. The Development of Nonlinear Surface and Internal Wave Groups.

    Science.gov (United States)

    1982-11-01

    porn (1971a3 observed groups of large amplitude waves propagating in Massachusetts Bay that seemed to rom tidal interaction with a submarine sill...provides a plan view of the tank and a platform for pictures or movies (Fig. 2.2). For these experiments the measurements from 18 wave height sensors

  7. Sunspot Groups as Tracers of Sub Surface Processes .

    Indian Academy of Sciences (India)

    tribpo

    work which is incomplete. 2. Solar magnetic cycle as global MHD oscillations. Using lifespan of a sunspot group as a measure of toroidal magnetic flux emerging during its life, and attaching to it the sign of polarity of bipolar magnetic regions in the respective wing of the butterfly diagram, Gokhale et al. (1992) determined.

  8. Homologie cyclique du produit croise algebrique et groupes de surfaces

    NARCIS (Netherlands)

    Bella Baci, A.

    1997-01-01

    Let a group G act on an associative algebra A One can form the algebraic crossed product A G cf which plays the role of a noncommutative quotient in Conness theory The cyclic homology of this algebra was studied extensively in a series of papers It is well known that this homology admits a

  9. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  10. A new carboxyl-copper-organic framework and its excellent selective absorbability for proteins

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Linyan [Department of Chemistry, Nankai University, Tianjin 300071 (China); Xin, Liangliang [School of Science, Tianjin University, Tianjin 300072 (China); Gu, Wen; Tian, Jinlei [Department of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin 300071 (China); Liao, Shengyun; Du, Peiyao; Tong, Yuzhang; Zhang, Yanping; Lv, Rui; Wang, Jingyao [Department of Chemistry, Nankai University, Tianjin 300071 (China); Liu, Xin, E-mail: liuxin64@nankai.edu.cn [Department of Chemistry, Nankai University, Tianjin 300071 (China); Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin 300071 (China)

    2014-10-15

    One-pot solvothermal treatments of CuCl{sub 2}·2H{sub 2}O, H{sub 2}L (5-(3-methyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-yl) isophthalic acid) and Sm(NO{sub 3}){sub 3}·6H{sub 2}O in water yielded a rare carboxyl-copper-organic framework, [Cu(HL)]{sub n}·nH{sub 2}O (1). The existence of carboxyl groups in compound 1 may be due to the interference of Sm(NO{sub 3}){sub 3}·6H{sub 2}O at the relatively high temperature and autogenous pressure of the reaction. Compound 1 has been characterized by single-crystal X-ray diffraction, PXRD, IR, and elemental analysis. Compound 1 is a 3D coordination polymer, and an xfe-4-Fddd, (4{sup 2}.6.8{sup 3}) topology in 1 is created. In addition, the optical properties have been investigated. Rhodamine B dyeing experiments exhibited that there were residual carboxyl groups on the surface of compound 1. UV–vis results showed that more lysozyme was adsorbed onto the surface of compound 1 than BSA at pH 7.4. At the same time, XPS spectra were also investigated to verify the results. - Graphical abstract: One-pot solvothermal treatments of CuCl{sub 2}·2H{sub 2}O, H2L (5-(3-methyl-5-(pyridin-4-yl)-4H-1, 2, 4-triazol-4-yl) isophthalic acid) and Sm(NO{sub 3}){sub 3}·6H{sub 2}O in water yielded a rare carboxyl-copper-organic framework, [Cu(HL)]n·nH{sub 2}O (1). The existence of carboxyl groups in compound 1 may be due to the interference of Sm(NO{sub 3}){sub 3}·6H{sub 2}O at the relatively high temperature and autogenous pressure of the reaction. Compound 1 has been characterized by single-crystal X-ray diffraction, XRPD, IR, and elemental analysis. Compound 1 is a 3D coordination polymer, and an xfe-4-Fddd, (4{sup 2}.6.8{sup 3}) topology in 1 is created. In addition, the optical properties have been investigated. Rhodamine B dyeing experiments exhibited that there were residual carboxyl groups on the surface of compound 1. UV-vis results showed that more lysozyme was adsorbed onto the surface of compound 1 than that of BSA at pH 7

  11. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2016-04-01

    Full Text Available Acrylonitrile-Styrene co-polymer was prepared by solution polymerization and fabricated into nanofibers using the electrospinning technique. The nanofiber polarization was enhanced through its surface functionalization with carboxylic acid groups by simple chemical modification. The carboxylic groups’ presence was dedicated using the FT-IR technique. SEM showed that the nanofiber attains a uniform and porous structure. The equilibrium and kinetic behaviors of basic violet 14 dye sorption onto the nanofibers were examined. Both Langmuir and Temkin models are capable of expressing the dye sorption process at equilibrium. The intraparticle diffusion and Boyd kinetic models specified that the intraparticle diffusion step was the main decolorization rate controlling the process.

  12. Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis.

    Science.gov (United States)

    Magni, Ruben; Espina, Benjamin H; Shah, Ketul; Lepene, Benjamin; Mayuga, Christine; Douglas, Temple A; Espina, Virginia; Rucker, Sally; Dunlap, Ross; Petricoin, Emanuel F Iii; Kilavos, Mary Frekko; Poretz, Donald M; Irwin, Gilbert R; Shor, Samuel M; Liotta, Lance A; Luchini, Alessandra

    2015-11-04

    Prompt antibiotic treatment of early stage Lyme borreliosis (LB) prevents progression to severe multisystem disease. There is a clinical need to improve the diagnostic specificity of early stage Lyme assays in the period prior to the mounting of a robust serology response. Using a novel analyte harvesting nanotechnology, Nanotrap particles, we evaluated urinary Borrelia Outer surface protein A (OspA) C-terminus peptide in early stage LB before and after treatment, and in patients suspected of late stage disseminated LB. We employed Nanotrap particles to concentrate urinary OspA and used a highly specific anti-OspA monoclonal antibody (mAb) as a detector of the C-terminus peptides. We mapped the mAb epitope to a narrow specific OspA C-terminal domain OspA236-239 conserved across infectious Borrelia species but with no homology to human proteins and no cross-reactivity with relevant viral and non-Borrelia bacterial proteins. 268 urine samples from patients being evaluated for all categories of LB were collected in a LB endemic area. The urinary OspA assay, blinded to outcome, utilized Nanotrap particle pre-processing, western blotting to evaluate the OspA molecular size, and OspA peptide competition for confirmation. OspA test characteristics: sensitivity 1.7 pg/mL (lowest limit of detection), % coefficient of variation (CV) = 8 %, dynamic range 1.7-30 pg/mL. Pre-treatment, 24/24 newly diagnosed patients with an erythema migrans (EM) rash were positive for urinary OspA while false positives for asymptomatic patients were 0/117 (Chi squared p antibiotic therapy, 10/10 were positive for urinary OspA. Urinary OspA of 8/8 patients switched from detectable to undetectable following symptom resolution post-treatment. Specificity of the urinary OspA test for the clinical symptoms was 40/40. Specificity of the urinary OspA antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e(-15)). 41 of 100 patients under

  13. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  14. The mechanism of mediated oxidation of carboxylates with ferrocene as redox catalyst in absence of grafting effects. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Hernández-Muñoz, Lindsay S.; Galano, Annia; Astudillo-Sánchez, Pablo D.; Abu-Omar, Mahdi M.; González, Felipe J.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of mediated oxidation of carboxylates. • Thermodynamics of the mediated Kolbe and Non-Kolbe mechanisms. • The oxidation of acetate and diphenylacetate ions by using ferrocene as redox catalyst. • Simulation and DFT calculations of the mediated oxidation of carboxylates. • Radical and carbocationic pathways in the carboxylate oxidation in acetonitrile. - Abstract: The oxidation of tetrabutylammonium carboxylates by using ferrocene derivatives as redox mediators has been recently used to perform the covalent grafting of carbon surfaces with organic and organometallic groups. Due to the intervention of this surface process, a partial description of the reaction mechanism has only been stated. Therefore, this article concerns about two features of the oxidation of carboxylates mediated by ferrocene. In the first part, it is discussed that in the oxidation of acetate ions by using ferrocene as redox catalyst, the gap between both oxidation potentials is very high, which means that the homogeneous electron transfer between the acetate ion and the electrochemically generated ferrocenium ion is energetically unfavorable. However, by using density functional theory calculations, it has been shown that the whole set of coupled chemical reactions involved either in a Kolbe or Non-Kolbe pathway drive the overall mechanisms towards a thermodynamically favorable situation. In order to avoid the strong covalent grafting process that occurs during the mediated oxidation of acetate ions, the second part of this work deals with the oxidation of tetrabutylammonium diphenylacetate by using ferrocene as a redox mediator in acetonitrile on glassy carbon electrodes. With this carboxylate, no electrode inhibition process occurs and, therefore cyclic voltammetry simulation was done to propose the electrochemical and chemical steps that are present when a carboxylate oxidation is performed in the presence of ferrocene derivatives

  15. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: semami@aut.ac.ir [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail: shahabeddin.faghihi@mail.mcgill.ca, E-mail: sfaghihi@nigeb.ac.ir [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)

    2015-02-15

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  16. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    International Nuclear Information System (INIS)

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-01-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite

  17. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  18. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  19. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Reed, David [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nie, Zimin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Schwarz, Ashleigh M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nandasiri, Manjula I. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Kizewski, James P. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Wang, Wei [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Thomsen, Edwin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Sprenkle, Vincent [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Li, Bin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA

    2016-05-17

    We decorated the surfaces of graphite felts with some oxygen-containing functional groups, such as C-OH, O=C and HO-C=O. And the mole ratios and amounts of these functional groups were effectively adjusted on the graphite surface by a particular method. The catalytic effects of amounts and mole ratio of different kinds of functional groups on VRB electrode performances were investigated in detail.

  20. Methyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Petr Štěpnička

    2009-10-01

    Full Text Available The title compound, [Fe(C5H5(C19H16O2P], obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate from methanol, crystallizes in the chiral space group P212121. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetry-related molecules are linked via weak C—H...O interactions.

  1. Trametes versicolor carboxylate reductase uncovered.

    Science.gov (United States)

    Winkler, Margit; Winkler, Christoph K

    The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli . The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced.

  2. Impact of Micro Silica Surface Hydroxyl Groups on the Properties of Calcium Silicate Products

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Jørgensen, Bianca; Yu, Donghong

    2017-01-01

    to be the limiting step, and therefore large SiO2 surface area is desired. However, other SiO2 surface structure, such as surface impurities (metal ions) and hydroxyl groups might also influence the reaction. In this work, we investigate the influence of micro silica surface hydroxyl groups in the synthesis...... of calcium silicate. We increase the hydroxyl groups by dispersing the micro silica in 10wt% H2O2 (CS10%), and we remove the hydroxyl groups by drying the micro silica at 650°C and then disperse it in water (CS650). A reference sample is also prepared from as-received micro silica dispersed in water (CSref...... by the increase in tobermorite crystal structure. H2O2 increase the micro silica surface area, and the number of hydroxyl groups on the micro silica surface. By removing hydroxyl groups from the silica surface, we tremendously decrease the surface area and the reactivity of micro silica. The results show...

  3. The multilevel analysis of surface acting and mental health: A moderation of positive group affective tone

    Science.gov (United States)

    Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung

    2017-06-01

    The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.

  4. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    Science.gov (United States)

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  5. Efficient and convenient synthesis of symmetrical carboxylic ...

    African Journals Online (AJOL)

    An efficient and convenient procedure for the synthesis of symmetrical carboxylic anhydrides from carboxylic acids with sulfated zirconia by PEG-1000 phase transfer catalysis has been developed. The reactions proceeded under mild and solvent-free conditions to provide the carboxylic anhydrides in good to excellent ...

  6. Carboxylated aurone derivatives as potent inhibitors of xanthine oxidase.

    Science.gov (United States)

    Muzychka, Oksana V; Kobzar, Oleksandr L; Popova, Antonina V; Frasinyuk, Mykhaylo S; Vovk, Andriy I

    2017-07-15

    Xanthine oxidase is a potential target for treatment of hyperuricemia and gout. In this study, a number of A- and B-ring carboxylated aurone derivatives were synthesized and evaluated for their ability to inhibit xanthine oxidase in vitro. According to the results obtained, two different ranges of inhibitory activity were observed. The aurones with carboxylic acid group at the 4'-position of B-ring were found to be potent inhibitors of the enzyme with IC 50 values in the low micromolar range. The effects of these compounds were about 50 fold higher than of A-ring modified aurones with carboxymethoxy group at the 6-position. The binding modes of the carboxylated aurones in the active site of xanthine oxidase were explained using molecular docking calculations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  8. Constant Gaussian curvature surfaces in the 3-sphere via loop groups

    DEFF Research Database (Denmark)

    Brander, David; Inoguchi, Jun-Ichi; Kobayashi, Shimpei

    2014-01-01

    In this paper we study constant positive Gauss curvature K surfaces in the 3-sphere S3 with 0KK... by the second fundamental form if and only if K is constant. We give a uniform loop group formulation for all such surfaces with K≠0, and use the generalized d’Alembert method to construct examples. This representation gives a natural correspondence between such surfaces with KK

  9. Carboxylic acid reductase enzymes (CARs).

    Science.gov (United States)

    Winkler, Margit

    2018-04-01

    Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cure and mechanical properties of carboxylated nitrile rubber (XNBR) vulcanized by alkaline earth metal compounds

    Science.gov (United States)

    Tulyapitak, Tulyapong

    Compounds of carboxylated nitrile rubber (XNBR) with alkaline metal oxides and hydroxide were prepared, and their cure and mechanical properties were investigated. Magnesium oxide (MgO) with different specific surface areas (45, 65, and 140 m2/g) was used. Increased specific surface area and concentration of MgO resulted in higher cure rate. Optimum stiffness, tensile strength, and ultimate strain required an equimolar amount of acidity and MgO. The effect of specific surface area on tensile properties was not significant. Crosslink density of XNBR-MgO vulcanizates increased with increased amounts of MgO. ATR-IR spectroscopy showed that neutralization occurs in two steps: (1) During mixing and storage, MgO reacts with carboxyl groups (RCOOH) to give RCOOMgOH. (2) Upon curing, these react bimolecularly to form RCOOMgOOCR and Mg(OH)2. Dynamic mechanical thermal analysis revealed an ionic transition at higher temperature, in addition to the glass transition. The ionic transition shifts to higher temperature with increasing MgO concentration. Like MgO-XNBR systems, cure rates of XNBR-calcium hydroxide (Ca(OH)2) and XNBR-barium oxide (BaO) compounds increased with increased content of curing agents. Curing by these two agents resulted in ionic crosslinks. To ensure optimum tensile properties, equimolar amounts of carboxyl groups and curing agents were required. Dynamic mechanical analysis revealed the ionic transition in these two systems. It shifted to higher temperature with increased amounts of curing agents. In contrast to MgO, Ca(OH)2, and BaO, calcium oxide (CaO) gave results similar to those for thermally cured samples. No ionic transition was observed in XNBR-CaO systems. Tensile strength of XNBR depended on the strength of ionic crosslinks, which was dependent on the size of the alkaline metal ions.

  11. The Picard group of the moduli space of r-Spin Riemann surfaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2012-01-01

    An r-Spin Riemann surface is a Riemann surface equipped with a choice of rth root of the (co)tangent bundle. We give a careful construction of the moduli space (orbifold) of r-Spin Riemann surfaces, and explain how to establish a Madsen–Weiss theorem for it. This allows us to prove the “Mumford...... conjecture” for these moduli spaces, but more interestingly allows us to compute their algebraic Picard groups (for g≥10, or g≥9 in the 2-Spin case). We give a complete description of these Picard groups, in terms of explicitly constructed line bundles....

  12. XPS study of PBO fiber surface modified by incorporation of hydroxyl polar groups in main chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tao; Hu Dayong; Jin Junhong; Yang Shenglin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Li Guang, E-mail: lig@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Jiang Jianming [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2010-01-15

    Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.

  13. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...... investigations of ali the polymers in general exhibit [when poly(4-hydroxystyrene) is a subetantial parti significant changes in the glass-transition temperature from the polar poly(4-hydroxystyr- ene) (120—130 “C) to the much less polar alkyne polymers (46—60 DC). A direct correlation between the nature...

  14. Separation of certain carboxylic acids utilizing cation exchange membranes

    Science.gov (United States)

    Chum, Helena L.; Sopher, David W.

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  15. Synthesis and study of dioxouranium (6) carboxylate complexes with ammonia

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mazo, G.N.; Dunaev, K.M.; Santalova, N.A.

    1980-01-01

    Heterophase synthesis of a series of ammonia complexes of dioxouranium (6) carboxylates namely, UO 2 (HCOO) 2 x2NH 3 , UO 2 (CH 3 COO) 2 x2NH 3 , UO 2 (CH 3 CH 2 OO) 2 x2NH 3 is presented and their properties and structure are studied. Comparison of infrared spectra of dioxouranium (6) carboxylates and their ammonia complexes has shown that NH 3 molecule introduction changes in principle the coordination of azidoligand turning out bridge carboxylate groups into island ones and weakening their bonds with central cations. In spectra of all diammiacates the shift of bands of deformational and valent oscillations of N-H bond in comparison with spectrum of pure ammonia tells about NH 3 coordination with metal. Complexes thermolysis has been studied under iso- and polythermal conditions. General diagram of thermal decay is presented [ru

  16. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    cis positions are occupied by carboxylate groups and another two cis positions are by 1,10-phenanthroline. ... which the dicarboxylates are at para position to each other. The cationic part is a complex cation of tetra-aqua ..... nology, New Delhi, India for financial support. References. 1. Spivey A L and Andrews B I 2001 ...

  17. Preferential Interaction of Na+ over K+ to Carboxylate-functionalized Silver Nanoparticles

    Science.gov (United States)

    Elucidating mechanistic interactions between specific ions (Na+/ K+) and nanoparticle surfaces to alter particle stability in polar media has received little attention. We investigated relative preferential binding of Na+ and K+ to carboxylate-functionalized silver nanoparticles ...

  18. Effect of Zinc Oxide Modified Silica Particles on the Molecular Dynamics of Carboxylated Acrylonitrile-Butadiene Rubber Composites

    Directory of Open Access Journals (Sweden)

    Magdalena Gaca

    2017-11-01

    Full Text Available This work examines the molecular dynamics of carboxylated acrylonitrile-butadiene rubber crosslinked with zinc oxide modified silica particles. ZnO/SiO2 with the wide range of ZnO concentrations were used as both a crosslinking agent and filler. A series of thermal measurements were applied to the characterization of the samples: differential scanning calorimetry, dynamical mechanical thermal analysis, and dielectric relaxation spectroscopy. A complementary experimental technique, which is equilibrium swelling in solvents, confirms the presence of ionic crosslinks, which are created between zinc ions and the functional carboxyl groups of the rubber, within the structure of the vulcanizates. These interactions influenced not only the affinity of the vulcanizates to solvents, but also their dynamic mechanical and dielectric properties. In these investigations, the influence of concentration of ZnO on the surface of the ZnO/SiO2 on the properties of the vulcanizates are described.

  19. Effect of Alkyl Chain Length on Carboxylic Acid SAMs on Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Gavin A. Buckholtz

    2012-07-01

    Full Text Available The formation of methyl-terminated carboxylic acid self-assembled monolayers (SAMs with even numbers of carbons, from eighteen to thirty, was investigated on the oxide surface of Ti-6Al-4V and component metal oxides. Modified surfaces were characterized using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT, matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS and contact angle analysis. Infrared spectroscopy indicated that using aerosol spray deposition techniques, stable, all-trans SAMs of octacosanoic (28 carbons and triacontanoic (30 carbons acids were formed on the alloy. Films were similarly formed on titanium and aluminum oxide. The surface of vanadium oxide exhibited limited reactivity. MALDI-TOF MS confirmed that formed films were monolayers, without multilayers or aggregates present. Water contact angles are indicative of the presence of hydrophobic methyl groups at the interface. This stable carboxylic acid SAM formation could be a useful alternative to phosphonic acid SAMs for corrosion and other applications.

  20. Surface ferro (or antiferro) magnetism in bulk antiferro (or ferro) magnets: renormalization group analysis

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Tsallis, C.

    1985-01-01

    The renormalization group techniques are applied, for the first time, to surface magnetism in bulk magnets, for all signs of surface and bulk coupling constants. The g-state Potts model is specifically focused, and a interesting q-evolution of the phase diagram is exhibited. In particular the Ising model (q=2) presents a remarkable feature: surface ferro (or antiferro) magnetism can disappear while heating an antiferro (or ferro) magnet, and reappear again for higher temperatures, before entering in the paramagnetic phase. (Author) [pt

  1. Extrapolated renormalization group calculation of the surface tension in square-lattice Ising model

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Tsallis, C.; Levy, S.V.F.; Oliveira, M.J. de

    1980-06-01

    By using self-dual clusters (whose sizes are characterized by the numbers b=2, 3, 4, 5) within a real space renormalization group framework, the longitudinal surface tension of the square-lattice first-neighbour 1/2-spin ferromagnetic Ising model is calculated. The exact critical temperature T sub(c) is recovered for any value of b; the exact assymptotic behaviour of the surface tension in the limit of low temperatures is analytically recovered; the approximate correlation length critical exponents monotonically tend towards the exact value ν=1 (which, at two dimensions, coincides with the surface tension critical exponent μ) for increasingly large cells; the same behaviour is remarked in what concerns the approximate values for the surface tension amplitude in the limit T→T sub(c). Four different numerical procedures are developed for extrapolating to b→infinite the renormalization group results for the surface tension, and quite satisfactory agreement is obtained with Onsager's exact expression (error varying from zero to a few percent on the whole temperature domain). Furthermore the set of RG surface tensions is compared with a set of biased surface tensions (associated to appropriate misfit seams), and find only fortuitous coincidence among them. (Author) [pt

  2. 3-Carboxyquinolin-1-ium-2-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2012-03-01

    Full Text Available The title compound, C11H7NO4·H2O, contains a 3-carboxyquinolin-1-ium-2-carboxylate (qda zwitterion and one water molecule. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into inversion dimers, and these dimers are further connected by O—H...O hydrogen bonds into a three-dimensional supramolecular architecture. In addition, π–π interactions occur between pyridine and benzene rings from different qda ligands [centroid–centroid distance = 3.749 (1 Å] and the dihedral angles of the –CO2H and –CO2 groups to the quinoline system are 8.47 (3 and 88.16 (6°, respectively.

  3. A Chord Diagrammatic Presentation of the Mapping Class Group of a Once Bordered Surface

    DEFF Research Database (Denmark)

    Bene, Alex

    The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichm\\"uller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path...... groupoid of Teichm\\"uller space with a discrete set objects. In particular, it leads to an infinite, but combinatorially simple, presentation of the mapping class group of an orientable surface. In this note, we give a presentation of a full mapping class group equivariant subgroupoid of the Ptolemy...

  4. Influence of surface functional groups on lithium ion intercalation of carbon cloth

    International Nuclear Information System (INIS)

    Ventosa, Edgar; Xia, Wei; Klink, Stefan; La Mantia, Fabio; Muhler, Martin; Schuhmann, Wolfgang

    2012-01-01

    Commercial carbon cloth made of PAN-based carbon fibres was used as free-standing anode for lithium intercalation. The role of surface functional groups on the specific irreversible charge loss and reversible charge during the intercalation and de-intercalation of lithium ions into carbon cloth has been investigated. Oxygen groups have been introduced by nitric acid vapour treatment and subsequently gradually removed by thermal treatment at different temperatures in He or H 2 atmosphere as confirmed by X-ray photoelectron spectroscopy. A clear correlation between the amount of surface-bound oxygen groups and the irreversible specific charge was observed. Three irreversible processes were distinguished during the first cathodic scan: (i) reduction of oxygen groups, (ii) formation of the solid electrolyte interphase (SEI) and (iii) presumably exfoliation. The latter one was only observed for samples with low surface oxygen concentration, and its contribution to the irreversible capacity was small due to the low graphitization degree of the samples. An increased specific reversible charge upon increasing the amount of oxygen-containing groups was observed with the main improvement above 1.5 V.

  5. Enhanced Group Delay of the Pulse Reflection with Graphene Surface Plasmon via Modified Otto Configuration

    Directory of Open Access Journals (Sweden)

    Guimei Li

    2017-01-01

    Full Text Available In this paper, the group delay of the transverse magnetic (TM polarized wave reflected from a modified Otto configuration with graphene surface plasmon is investigated theoretically. The findings show that the optical group delay in this structure can be enhanced negatively and can be switched from negative to positive due to the excitation of surface plasmon by graphene. It is clear that the negative group delay can be actively tuned through the Fermi energy of the graphene. Furthermore, the delay properties can also be manipulated by changing either the relaxation time of graphene or the distance between the coupling prism and the graphene. These tunable delay characteristics are promising for fabricating grapheme-based optical delay devices and other applications in the terahertz regime.

  6. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  7. efficient and convenient synthesis of symmetrical carboxylic

    African Journals Online (AJOL)

    Preferred Customer

    strong acidity and high activity in light alkane conversions at relatively mild temperatures [36,. 37]. In this paper, we wish to report an efficient and convenient method for the preparation of symmetrical carboxylic anhydrides from the corresponding carboxylic acids with sulfated zirconia by phase transfer catalysis without any ...

  8. Simple surface modification of poly(dimethylsiloxane) for DNA hybridization

    Science.gov (United States)

    Zhou, Jinwen; Voelcker, Nicolas H.; Ellis, Amanda V.

    2010-01-01

    Here, we present a simple chemical modification of poly(dimethylsiloxane) (PDMS) by curing a mixture of 2 wt% undecylenic acid (UDA) in PDMS prepolymer on a gold-coated glass slide. This gold slide had been previously pretreated with a self-assembled hydrophilic monolayer of 3-mercaptopropionic acid (MPA). During curing of the UDA∕PDMS prepolymer, the hydrophilic UDA carboxyl moieties diffuses toward the hydrophilic MPA carboxyl moieties on the gold surface. This diffusion of the UDA within the PDMS prepolymer to the surface is a direct result of surface energy minimization. Once completely cured, the PDMS is peeled off the gold substrate, thereby exposing the interfacial carboxyl groups. These groups are then available for subsequent attachment of 5′-amino terminated DNA oligonucleotides via amide linkages. Our results show that the covalently tethered oligonucleotides can successfully capture fluorescein-labeled complementary oligonucleotides via hybridization, which are visualized using fluorescence microscopy. PMID:21264061

  9. Effect of the surface oxygen groups on methane adsorption on coals

    Energy Technology Data Exchange (ETDEWEB)

    Hao Shixiong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wen Jie [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu Xiaopeng [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We modified one coal with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. Black-Right-Pointing-Pointer The oxygen groups on coal surface were characterized by XPS. Black-Right-Pointing-Pointer The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Black-Right-Pointing-Pointer The adsorption behaviors were measured by volumetric method. Black-Right-Pointing-Pointer There was a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. - Abstract: To investigate the influence of surface oxygen groups on methane adsorption on coals, one bituminous coal was modified with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. The oxygen groups on coal surface were characterized by X-ray photoelectron spectroscopy (XPS). The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Their surface morphologies were analyzed by scanning electron microscopy (SEM). The methane adsorption behaviors of these coal samples were measured at 303 K in pressure range of 0-5.3 MPa by volumetric method. The adsorption data of methane were fitted to the Langmuir model and Dubinin-Astakhov (D-A) model. The fitting results showed that the D-A model fitted the isotherm data better than the Langmuir model. It was observed that there was, in general, a positive correlation between the methane saturated adsorption capacity and the micropore volume of coals while a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. The methane adsorption capacity was determined by the coal surface chemistry when the microporosity parameters of two samples were similar. Coal with a higher amount of oxygen surface groups, and consequently with a less

  10. Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mengjie [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu, Yalin; Feng, Qihang; Yang, Jiping; Zhang, Boming [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2017-01-15

    Highlights: • Carboxyl functionalized CF is acquired by simple chemical oxidation method. • These CF have preserved the tensile strength, better electrochemical properties. • The presence of H{sub 3}PO{sub 4} prevented the turbostratic carbon from over-oxidization. • There CF can be used as anodes of multifunctional structural battery. • The preservation and improvement is result from the hindered over-oxidization. - Abstract: Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical properties were acquired through a simple chemical oxidation method, and the proposed underlying mechanism was verified. The surface of carboxyl functionalizing carbon fibers is necessary in acquiring functional groups on the surface of carbon fibers to further improve the thermal, electrical or mechanical properties of the fibers. Functionalization should preserve the tensile strength and electrochemical properties of carbon fibers, because the anodes of structural batteries need to have high strength and electrochemical properties. Functionalized with mixed H{sub 2}SO{sub 4}/HNO{sub 3} considerably reduced the tensile strength of carbon fibers. By contrast, the appearance of H{sub 3}PO{sub 4} preserved the tensile strength of functionalized carbon fibers, reduced the dispersion level of tensile strength values, and effectively increased the concentration of functional acid groups on the surface of carbon fibers. The presence of phosphoric acid hindered the over-oxidation of turbostratic carbon, and consequently preserved the tensile strength of carbon fibers. The increased proportion of turbostratic carbon on the surface of carbon fibers concurrently enhanced the electrochemical properties of carbon fibers.

  11. Microstructuring of thermo-mechanically highly stressed surfaces final report of the DFG research group 576

    CERN Document Server

    Rienäcker, Adrian; Knoll, Gunter; Bach, Friedrich-Wilhelm; Maier, Hans; Reithmeier, Eduard; Dinkelacker, Friedrich

    2015-01-01

    This contributed volume presents the final research results of the DFG Research Group 576, which is a joint initiative of five different institutes of the Leibniz Universität Hannover and the Universität Kassel, Germany. The research of the DFG Research Group 576 focuses on improving the tribological behavior of thermomechanically highly stressed surfaces, particularly on cylinder liner for combustion engines. The target audience primarily comprises researchers and experts in the field but the book may also be beneficial for graduate students who want to specialize in the field.

  12. Combinatorial Methods for Detecting Surface Subgroups in Right-Angled Artin Groups

    OpenAIRE

    Bell, Robert W.

    2010-01-01

    We give a short proof of the following theorem of Sang-hyun Kim: if $A(\\Gamma)$ is a right-angled Artin group with defining graph $\\Gamma$, then $A(\\Gamma)$ contains a hyperbolic surface subgroup if $\\Gamma$ contains an induced subgraph $\\bar{C}_n$ for some $n \\geq 5$, where $\\bar{C}_n$ denotes the complement graph of an $n$-cycle. Furthermore, we give a new proof of Kim's co-contraction theorem.

  13. Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties.

    Science.gov (United States)

    Yan, Dong; Hu, Shihao; Zhou, Zhongzheng; Zeenat, Shah; Cheng, Feng; Li, Yang; Feng, Chao; Cheng, Xiaojie; Chen, Xiguang

    2018-02-01

    The hemostatic properties of surface modified chitosan nonwoven had been investigated. The succinyl groups, carboxymethyl groups and quaternary ammonium groups were introduced into the surface of chitosan nonwoven (obtained NSCS, CMCS and TMCS nonwoven, respectively). For blood clotting, absorbance value (0.105±0.03) of NSCS1 nonwoven was the smallest (CS 0.307±0.002, NSCS2 0.148±0.002, CMCS1 0.195±0.02, CMCS2 0.233±0.001, TMCS1 0.191±0.002, TMCS2 0.345±0.002), which indicated the stronger hemostatic potential. For platelet aggregation, adenosine diphosphate agonist was added to induce the nonwoven to adhered platelets. The aggregation of platelet with TMCS2 nonwoven was highest (10.97±0.16%). Further research of blood coagulation mechanism was discussed, which indicated NSCS and CMCS nonwoven could activate the intrinsic pathway of coagulation to accelerate blood coagulation. NSCS1 nonwoven showed the shortest hemostatic time (147±3.7s) and the lowest blood loss (0.23±0.05g) in a rabbit ear artery injury model. These results demonstrated that these surface modified chitosan nonwoven dressings could use as a promising hemostatic intervention, especially NSCS nonwoven dressing. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior

    International Nuclear Information System (INIS)

    Park, Soo-Jin; Kim, Byung-Joo

    2005-01-01

    The gas phase ozone treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces. The ozone treatment on carbon fibers was varied with the ozone concentration and treatment time. Surface analyses of the carbon fibers before and after treatments were performed by FT-IR, X-ray photoelectron spectrometer (XPS), and dynamic contact angle measurements. Mechanical interfacial properties of the fibers/polymer composites were investigated by using critical stress intensity factor (K IC ) and critical energy release rate (G IC ) measurements. From the results of FT-IR and XPS, it was observed that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the ozone treatment. The mechanical interfacial properties of the composites also showed higher values than those of untreated composites. Ozone treatment is attributed to the increase of both the acidic functional groups and the degree of adhesion at interfaces between the fibers and polymeric resin in composites

  15. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  16. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  17. Proton migration along the membrane surface in the absence of charged or titratable groups

    International Nuclear Information System (INIS)

    Springer, A.

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. For example, proton diffusion along membrane surfaces is considered to be the dominant mechanism of proton exchange between membrane sites of high and low proton concentrations. For the investigation of this mechanism, kinetic experiments on proton diffusion are evaluated to determine the ability of lipid membranes to retain protons on their surfaces. Experiments on different lipid bilayer membranes (DPhPC, DPhPE and GMO) are performed under the influence of two types of mobile buffer molecules (Capso, NH4CL). During these experiments the surface diffusion of photolytically released protons is visualized in terms of fluorescence changes of a lipid bound pH-sensitive dye (DHPE +fluorescein). The protons under investigation are released by flash photolysis of a hydrophobic caged compound (DMCM, caged diethyl phosphate). The experimental data confirm the existence of an energy barrier, which prevents the protons from escaping into the bulk. So far this effect was attributed to the proton binding to titrateable groups (e.g. ethanolamine) or electrostatic forces created by charged moieties (e.g. phosphate groups) on the membrane/water interface. However, upon removal of the titrateable groups and charged moieties from the membrane surface, a significant energy barrier remained as indicated by the experiments with glycerol monooleate (GMO) bilayers. To estimate the size of the barrier a semi-analytical model is presented that describes the two and three dimensional proton diffusion and the related physical and chemical processes. Common models describe surface proton diffusion as a series of subsequent hopping processes between membrane-anchored buffer molecules. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites s by fluorescence

  18. Investigation of carboxylation of carbon nanotube in the adsorption of anti-cancer drug: A theoretical approach

    Science.gov (United States)

    Hesabi, Maryam; Behjatmanesh-Ardakani, Reza

    2018-01-01

    Nowadays, an important process applied in the design of novel composite materials and drug delivery fields is the carboxylation of carbon nanotubes. In this work, we study the interaction of the anti-cancer drug hydroxyurea with carboxyl-functionalized zigzag carbon nanotubes (CNTs) by employing the method of the density functional theory (DFT) at B3LYP and CAM-B3LYP levels in gas and solvent phases. The results show that all complexes are energetically favorable, especially in the aqueous phase. The enthalpy energy values are negative in all cases, which indicate their exothermic adsorption nature. The presence of sbnd COOH groups would create enough free space on the nanotube surface for the adsorption between interacting atoms. Thus, these can increase the activity of CNTs. Data indicates that adsorption is dependent on the carboxyl sites of the nanotube as well as on the sites of the drug. Furthermore, the hydrogen-bonding interactions between drug and sbnd COOH-CNTs play an important role for the different kinds of adsorption observed.

  19. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of the coverage level of carboxylic acids as a modifier for barium titanate nanoparticles on the performance of poly(vinylidene fluoride)-based nanocomposites for energy storage applications.

    Science.gov (United States)

    Niu, Yujuan; Xiang, Feng; Wang, Yifei; Chen, Jie; Wang, Hong

    2018-02-28

    Surface modification on nanoparticle fillers with organic groups is important to improve the performance of ceramic/polymer nanocomposites. Due to the small coverage level of carboxylic acids on the nanoparticle surface, studies on the use of carboxylic acids as a surface modifier for ceramic nanoparticles have been rarely reported. However, there is no study that proves that a small amount of modifier on the surface of nanoparticles cannot adequately improve the dispersion as well as the compatibility of nanoparticles with the matrix. Herein, we used three carboxylic acids to treat the surface of BaTiO 3 (BT) nanoparticles and adjusted the coverage level of the modifiers on the surface of BT nanoparticles through different ways. The nanocomposite films synthesized from the modified BT nanoparticles dispersed in the poly(vinylidene fluoride) (PVDF) polymer matrix were analyzed by dielectric spectroscopy, breakdown strength, leakage currents, and D-E loop measurements. The results show that the molecule dipole moment and polarizability of the modifier greatly influence the permittivity of the nanocomposites as the surface coverage level of the modifiers increases. Due to many influential factors, changes in the breakdown strength of the nanocomposites show diversity for three modifiers as the modifier content increases. For the nanocomposites applied in energy storage, the optimal content of the modifier on the surface of the nanoparticles needs to be determined by combining various properties of the nanocomposites.

  1. Plastic scintillators with high loading of one or more metal carboxylates

    Science.gov (United States)

    Cherepy, Nerine; Sanner, Robert Dean

    2016-01-12

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.

  2. Documentation for The Group for High Resolution Sea Surface Temperature (GHRSST) data archived at NCEI (NCEI Accession 0123222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Group for High Resolution Sea Surface Temperature (GHRSST) is an international open group for SST data producers, users, and scientists. It brings together...

  3. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  4. Intramolecular carboxyl-catalyzed hydrolysis of sulfonamides

    OpenAIRE

    Graafland, Teunis

    1981-01-01

    Dit proefschrift beschrijft een studie van de intramoleculair carboxyl gekatalyseerde hydrolyse van sulfonamiden. Het onderzoek heeft zich toegespitst op het mechanisme van deze reactie én op de effecten die bepalend zijn voor de katalytische activiteit van de carboxylgroep. Daarbij is met name aandacht geschonken aan het effect van structuurveranderingen in het gedeelte van het molecuul,dat de carboxyl-en sulfonamidegroep met elkaar verbindt, op de reactiviteit van het systeem. Tevens is het...

  5. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  6. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  7. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been...... augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface....

  8. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    Science.gov (United States)

    Raza, Søren; Mortensen, N. Asger

    2016-03-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface.

  9. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  10. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  11. Heparainization of gas plasma-modified polystyrene surfaces and the interactions of these surfaces with proteins studied with surface plasmon resonance

    NARCIS (Netherlands)

    van Delden, C.J.; van Delden, C.J.; Lens, J.P.; Lens, J.P.; Kooyman, R.P.H.; Engbers, G.H.M.; Feijen, Jan

    1997-01-01

    Polystyrene surfaces obtained by spin-coating a solution of polystyrene in toluene on a gold layer were functionalized with carboxylic acid groups by preadsorption of the sodium salt of undecylenic acid, followed by an argon plasma treatment. A conjugate of albumin and heparin (alb-hep) was

  12. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Science.gov (United States)

    Li, Dan; Jia, Shaojie; Fodjo, Essy Kouadio; Xu, Hu; Wang, Yuhong; Deng, Wei

    2016-03-01

    In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from -0.3 to -0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from -0.3 to -0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  13. Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods

    DEFF Research Database (Denmark)

    Brander, David; Rossman, Wayne; Schmitt, Nicholas

    2010-01-01

    We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space $\\R^{2,1}$. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group $SU_2...... symmetry, as well as studying another class of surfaces for which the metric is rotationally invariant....

  14. Influence of deuterium on kinetics of methane isotope exchange with surface deuteroxy groups of Pt/SiO2 catalysts

    International Nuclear Information System (INIS)

    Musoyan, L.M.; Aliev, R.K.

    1990-01-01

    Reaction of isotope methane exchange with surface deuteroxy groups of 2 % Pt/SiO 2 catalyst was studied. It is shown that preliminarily chemisorbed deuterium does not decelerate the exchange reaction, but changes its mechanism. Activation energy of exchange on clean surface is equal to 25 kJ/mol; it grows in the presence of deuterium on the surface

  15. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  16. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines

    DEFF Research Database (Denmark)

    Janaszewska, Anna; Ciolkowski, Michal; Wróbel, Dominika

    2013-01-01

    Modification of the surface groups of dendrimers is one of the methods to improve their biocompatibility. This article presents results of experiments related to the toxicity of a modified polyamidoamine (PAMAM) dendrimer of the fourth generation with 4-carbomethoxypyrrolidone surface groups (PAM...

  17. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.

    Science.gov (United States)

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M; Nandasiri, Manjula I; Kizewski, James P; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-06-22

    A dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air. More importantly, by varying the oxidative techniques, the amount and type of oxygen groups was tailored and their effects were elucidated. It was found that O-C=O groups improve the cells performance whereas the C-O and C=O groups degrade it. The reason for the increased performance was found to be a reduction in the cell overpotential after functionalization of the graphite felt electrode. This work reveals a route for functionalizing carbon electrodes to improve the performance of VRB cells. This approach can lower the cost of VRB cells and pave the way for more commercially viable stationary energy storage systems that can be used for intermittent renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    Science.gov (United States)

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.

  19. Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment

    International Nuclear Information System (INIS)

    Vautard, F.; Ozcan, S.; Paulauskas, F.; Spruiell, J.E.; Meyer, H.; Lance, M.J.

    2012-01-01

    Highlights: ► Continuous thermo-chemical surface treatment used to functionalize different types of carbon fibers. ► Surface density of functional groups directly correlated to the size of the surface microstructure. ► Preferential creation of hydroxyls and carboxylic acids confirmed regardless of the type of carbon fiber. ► Effective surface treatment regardless of the fiber surface microstructure. ► Potential alternative to electro-chemical surface treatment. - Abstract: Carbon fibers made of textile and aerospace grade polyacrylonitrile precursor fibers were surface treated by a continuous gas phase thermochemical treatment. The surface chemistry generated by the surface treatment was characterized by X-ray photoelectron spectroscopy. The surface and the average entire microstructure of the fibers were characterized by Raman spectroscopy and X-ray diffraction, respectively. Depending on the grade of the precursor, the final surface concentration of oxygen was comprised between 14% and 24%, whereas the typical commercial electrochemical surface treatments led to concentrations of around 8% with the same fibers. The final concentration of oxygen was directly correlated to the size of the crystallites which was a function of the grade of the polyacrylonitrile precursor and to the corresponding surface microstructure. The thermochemical surface treatment enabled a better control of the nature of the oxygen-containing functionalities as well. Whatever the grade of the precursor, desired hydroxyl groups and carboxylic acid functionalities were preferably generated, which is observed to be difficult with electrochemical surface treatments.

  20. Hyphal responses of Neurospora crassa to micron-sized beads with functional chemical surface groups

    Science.gov (United States)

    Held, Marie; Edwards, Clive; Nicolau, Dan V.

    2011-02-01

    Filamentous fungi include serious plant and animal pathogens that explore their environment efficiently in order to penetrate the host. This environment is physically and chemically heterogeneous and the fungi rely on specific physical and chemical signals to find the optimal point/s of attack. This study presents a methodology to introduce distinct structures with dimensions similar to the hyphal diameter and specific chemical surface groups into a controllable environment in order to study the fungal response. We introduced 3.3 μm polystyrene beads covered with Epoxy surface groups into microfluidic channels made from PDMS by rapid replica molding. The experimental setup resulted in different areas with low and high densities of beads as well as densely packed patches. The observations of the fungus exploring the areas long-term showed that the growth parameters were altered significantly, compared with the values measured on agar. The fungus responded to both, the physical and chemical parameters of the beads, including temporary directional changes, increased branching angles, decreased branching distances, decreased apical extension velocities and occasional cell wall lysis. The wealth and magnitude of the observed responses indicates that the microfluidic structures provide a powerful platform for the investigation of micron-sized features on filamentous fungi.

  1. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  2. Simulated Solvation of Organic Ions II: Study of Linear Alkylated Carboxylate Ions in Water Nanodrops and in Liquid Water. Propensity for Air/Water Interface and Convergence to Bulk Solvation Properties.

    Science.gov (United States)

    Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2015-09-10

    We investigated the solvation of carboxylate ions from formate to hexanoate, in droplets of 50 to 1000 water molecules and neat water, by computations using standard molecular dynamics and sophisticated polarizable models. The carboxylate ions from methanoate to hexanoate show strong propensity for the air/water interface in small droplets. Only the ions larger than propanoate retain propensity for the interface in larger droplets, where their enthalpic stabilization by ion/water dispersion is reduced there by 3 kcal mol(-1) per CH2 group. This is compensated by entropy effects over +3.3 cal mol(-1) K(-1) per CH2 group. On the surface, the anionic headgroups are strongly oriented toward the aqueous core, while the hydrophobic alkyl chains are repelled into air and lose their structure-making effects. These results reproduce the structure-making effects of alkyl groups in solution, and suggest that the hydrocarbon chains of ionic headgroups and alkyl substituents solvate independently. Extrapolation to bulk solution using standard extrapolation schemes yields absolute carboxylate solvation energies. The results for formate and acetate yield a proton solvation enthalpy of about 270 kcal mol(-1), close to the experiment-based value. The largest carboxylate ions yield a value smaller by about 10 kcal mol(-1), which requires studies in much larger droplets.

  3. Synthesis and fluorescence study of phenylcoumarin/cyanophenylbenzocoumarin-3-carboxylates

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2012-01-01

    Full Text Available The absorption and fluorescence spectra of phenylcoumarin and cyanophenylbenzocoumarin-3-carboxylates 6a-f and 9a-e have been investigated in chloroform, acetonitrile and ethanol. The substituting groups with varying electron donating ability such as N,N-diethyl amine and morpholine at 7-position, in phenylcoumarin-3-carboxylate 6a-f exhibits fluorescence at a longer wavelength i.e. 420-460 nm in chloroform and 460-504 nm in acetonitrile. However the morpholine derivatives 6f-j did not show fluorescence in chloroform. In another series of cyanophenylbenzocoumarin-3-carboxylates 9a-e, the compound 9c exhibits fluorescence at 546 nm in ethanol and 256 nm in acetonitrile, and lower emission wavelength i.e. 356 nm in chloroform. Further the compounds 6e , 9b, 9d and 9e exhibited high quantum yield in ethanol i.e., Φ F = 0.79, 0.70, 0.80 and 0.74 respectively compare to Rhodamine B ( Φ F = 0.24 in ethanol.

  4. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    Directory of Open Access Journals (Sweden)

    Khodakhast Bibak

    2016-09-01

    Full Text Available Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT. Recently, Koch et al. (2013 [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an ‘equivalent’ form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  5. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    Science.gov (United States)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-06-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance.

  6. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    International Nuclear Information System (INIS)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-01-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance. (paper)

  7. Improvement of surface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups

    Energy Technology Data Exchange (ETDEWEB)

    Luo Kaiqing [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China); Jin Junhong [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China); Yang Shenglin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China); Li Guang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China)]. E-mail: lig@dhu.edu.cn; Jiang Jianming [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China)

    2006-07-25

    Modified poly(p-phenylene benzoxazole), SPBO, containing ionic sulfonate groups was synthesized by polycondensation of the corresponding monomers in polyphosphoric acid. SPBO fiber was spun via a dry-jet wet-spinning technique. The wetting property of poly(p-phenylene benzoxazole) (PBO) fiber and SPBO fiber were measured by contact angle analysis, and the interfacial shear strength (IFSS) between fibers and epoxy was determined by microbond pull-out testing. The contact angles of water and ethanol on SPBO fiber surface get smaller, and the wetting process becomes faster. The surface free energy of SPBO fiber increases to 38.9 mJ m{sup -2}, which is 9.6% higher than that of PBO fiber. Furthermore the ionic introducing leads to a 23% increase in IFSS from 8.2 MPa for PBO/epoxy to 10.1 MPa for SPBO/epoxy. It could be expected that the failure mode may change from fiber/matrix interface adhesive failure to partly cohesive failure mode.

  8. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups

    Science.gov (United States)

    van der Wel, Casper; van de Stolpe, Guido L.; Verweij, Ruben W.; Kraft, Daniela J.

    2018-03-01

    Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.

  9. Interaction of photoactive cis(CO)-trans(I)-Ru-(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 with anatase (1 0 1) surface

    Science.gov (United States)

    Haukka, Matti; Hirva, Pipsa

    2002-06-01

    The coordination of cis(CO)-trans(I)-Ru(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 on an anatase (1 0 1) surface was investigated using a computational density functional method. The adsorbate is able to interact with the anatase surface by one or two carboxylate substituents of the bipyridine ligand. Three of the studied coordination modes involved a single carboxylate as the binding group, including monodentate (1M), bidentate chelating (1BC) and bidentate bridging (1BB) modes. The possibility of monodentate binding via both carboxylate groups in (2M) was also studied. The results showed that the multidentate binding is clearly preferred over monodentate coordination. The stability of the modes increased in the order 1M, 1BC, 1BB and 2M. The flexibility of the bipyridine ligand was found to be the key factor in the binding via two carboxylate groups.

  10. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 3 (FGE.10Rev3): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing an additional oxygenated functional group and lactones from chemical groups 9, 13 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 63 flavouring substances in the Flavouring Group Evaluation 10, including additional two substances in this Revision 3, using the Procedure in Commission...

  11. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 10, Revision 2 (FGE.10Rev2): Aliphatic primary and secondary saturated and unsaturated alcohols, aldehydes, acetals, carboxylic acids and esters containing, an additional oxygenated functional group and lactones from chemical groups 9, 13 and 30

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 61 flavouring substances in the Flavouring Group Evaluation 10, Revision 2, using the Procedure in Commission Regulation (EC) No 1565/2000. None...

  12. Synthesis of carboxyl-capped and bright YVO4:Eu,Bi nanoparticles and their applications in immunochromatographic test strip assay

    International Nuclear Information System (INIS)

    Luo, Min; Sun, Tian-Ying; Wang, Jia-Hong; Yang, Peng; Gan, Liang; Liang, Li-Lei; Yu, Xue-Feng; Gong, Xing-Hou

    2013-01-01

    Graphical abstract: - Highlights: • The morphology and properties of YVO 4 :Eu,Bi nanoparticles were investigated. • YVO 4 :Eu,Bi were coupled with IgG for bioprobes due to their good properties. • YVO 4 :Eu,Bi were applied to immunochromatographic test strip assay. - Abstract: Carboxyl-capped YVO 4 :Eu,Bi nanoparticles with average diameter of ∼10 nm were synthesized via a copolymer of phosphono and carboxylic acid mediated hydrothermal method. Under a 350 nm ultraviolet light excitation, the YVO 4 :Eu,Bi NPs exhibit sharp and bright red emission peaked at 615 nm and with highest quantum yield of ∼43%. Furthermore, the nanoparticles show good water/buffer stability and feasible bioconjugation benefiting from the carboxylic groups on their surface. Based on these kind optical and surface properties of the YVO 4 :Eu,Bi nanoparticles, an immunochromatographic test strip assay for quantitative determination of human IgG was achieved. This protocol can be extended to other rare-earth nanoparticles with the purpose of developing bioprobes for desired applications

  13. Osteoblast response to oxygen functionalised plasma polymer surfaces

    CERN Document Server

    Kelly, J M

    2001-01-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma c...

  14. OPA quantification of amino groups at the surface of lipidic nanocapsules (LNCs) for ligand coupling improvement.

    Science.gov (United States)

    Perrier, Thomas; Fouchet, Florian; Bastiat, Guillaume; Saulnier, Patrick; Benoît, Jean-Pierre

    2011-10-31

    Lipidic NanoCapsules (LNCs) were prepared via an emulsion phase inversion method. Nanoparticles with hydrodynamic diameter of 25, 50 and 100 nm were easily obtained. Their surfaces are covered with short PEG chains (PEG 660) which are not bearing any chemical reactivities. Thus, in order to overcome this handicap towards post-functionalization possibilities, post-insertion of DSPE-PEG2000 amino (DSPA) can be employed. In order to characterize the insertion step, we have developed a chemical assay for the quantification of amino group inside the PEG shell of LNCs. Subsequently, the post-insertion yield was found to be comprised between 60 and 90% whatever the hydrodynamic diameter of the LNCs is. By means of simple calculations, the density of amino group is estimated to be closed to 0.2 and 1.2 molecules/nm(2). The formulation of LNCs and their controlled functionalization represent an interesting system for the development of bionanoconjugates in a short and effective process. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  16. Structural study of the self-assembled fullerene carboxylates: monoadducts versus bisadducts.

    Science.gov (United States)

    Zhou, Shuiqin; Ouyang, Jianying; Golas, Patricia; Wang, Feng; Pan, Yi

    2005-10-27

    Laser light scattering and transmission electronic microscopy have been used to study the self-assembled structures of mono- and bisadducts of fullerene carboxylic acids in tetrahydrofuran (THF) and their sodium salts in aqueous solutions, respectively. In THF, the self-association of monoadducts of fullerene carboxylic acid (MFCA) produces large but narrowly distributed particles with R(h) approximately 145 nm. The self-aggregates from the bisadducts of fullerene carboxylic acid (BFCA) in THF are relatively small in size (R(h) approximately 80 nm) due to the better solubility. After the ionization of carboxylic acid groups on the C(60) cage in dilute NaOH solutions, these aggregates dissolved and reorganized. The self-assembly of the monoadducts of sodium carboxylate fullerenes (MSCF) produces small solid spherical particles with R(h) approximately 32 nm. The ratio of R(g)/R(h) approximately 0.83 indicates that the particles have a nearly uniform density. The increase in concentrations leads to strong interparticle associations to form rodlike and irregularly shaped large aggregates. In contrast, the self-assembly of bisadducts of sodium carboxylate fullerenes (BSCF) results in hollow shells with mainly two different size scales of R(h) approximately 23 nm and R(h) approximately 104 nm. At high concentrations, the hollow shells associate and melt together to generate three-dimensional networks.

  17. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang

    2015-06-01

    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  18. rac-3-exo-Ammonio-7-anti-carboxytricyclo[2.2.1.0.2,6]heptane-3-endo-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2012-05-01

    Full Text Available The racemic title compound, C9H11NO4·H2O, a tricyclic rearranged aminonorbornane dicarboxylic acid, is a conformationally rigid analogue of glutamic acid and exists as an ammonium-carboxylate zwitterion, with the bridghead carboxylic acid group anti-related. In the crystal, N—H...O and O—H...O hydrogen bonds involving the ammonium, carboxylic acid and water donor groups with both water and carboxyl O-atom acceptors give a three-dimensional framework structure.

  19. Introduction of sulfate groups on poly(ethylene) surfaces by argon plasma immobilization of sodium alkyl sulfates

    NARCIS (Netherlands)

    Lens, J.P.; Lens, J.P.; Terlingen, J.G.A.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1998-01-01

    Sulfate groups were introduced at the surface of poly(ethylene) (PE) samples. This was accomplished by immobilizing a precoated layer of either sodium 10-undecene sulfate (S11(:)) or sodium dodecane sulfate (SDS) on the polymeric surface by means of an argon plasma treatment. For this purpose,

  20. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  1. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  2. (2S,4R-4-Fluoropyrrolidinium-2-carboxylate

    Directory of Open Access Journals (Sweden)

    David B. Hobart Jr

    2012-08-01

    Full Text Available The crystal structure of the title compound, C5H8FNO2, at 100 K, displays intermolecular N—H...O hydrogen bonding between the ammonium and carboxylate groups as a result of its zwitterionic nature in the solid state. The five-membered ring adopts an envelope conformation with the C atom at the 3-position as the flap. The compound is of interest with respect to the synthesis and structural properties of synthetic collagens. The absolute structure was determined by comparison with the commercially available material.

  3. New fluorene-based conjugated copolymers bearing carboxylic groups

    Czech Academy of Sciences Publication Activity Database

    Kukla, Stanislav; Pavlačková, Petra; Cimrová, Věra; Výprachtický, Drahomír

    2008-01-01

    Roč. 268, č. 1 (2008), s. 53-56 ISSN 1022-1360. [Microsymposium on Advanced Polymer Materials for Photonics and Electronics /47./. Prague, 15.07.2007-19.07.2007] R&D Projects: GA AV ČR IAA4050409; GA MŠk(CZ) 1M06031 Institutional research plan: CEZ:AV0Z40500505 Keywords : aggregation * conjugated polymers * fluorene * luminescence * Suzuki coupling Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Cloud Forming Potential of Aminium Carboxylate Aerosols

    Science.gov (United States)

    Gomez Hernandez, M. E.; McKeown, M.; Taylor, N.; Collins, D. R.; Lavi, A.; Rudich, Y.; Zhang, R.

    2014-12-01

    Atmospheric aerosols affect visibility, air quality, human health, climate, and in particular the aerosol direct and indirect forcings represent the largest uncertainty in climate projections. In this paper, we present laboratory measurements of the hygroscopic growth factors (HGf) and cloud condensation nuclei (CCN) activity of a series of aminium carboxylate salt aerosols, utilizing a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) coupled to a Condensation Particle Counter (CPC) and a CCN counter. HGf measurements were conducted for size-selected aerosols with diameters ranging from 46 nm to 151 nm and at relative humidity (RH%) values ranging from 10 to 90%. In addition, we have calculated the CCN activation diameters for the aminium carboxylate aerosols and derived the hygroscopicity parameter (k or kappa) values for all species using three methods, i.e., the mixing rule approximation, HGf, and CCN results. Our results show that variations in the ratio of acid to base directly affect the activation diameter, HGf, and (k) values of the aminium carboxylate aerosols. Atmospheric implications of the variations in the chemical composition of aminium carboxylate aerosols on their cloud forming potential will be discussed.

  5. Methyl 3-(Quinolin-2-ylindolizine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Roumaissa Belguedj

    2015-12-01

    Full Text Available A novel compound, methyl 3-(quinolin-2-ylindolizine-1-carboxylate (2 has been synthesized by cycloaddition reaction of 1-(quinolin-2-ylmethylpyridinium ylide (1 with methyl propiolate in presence of sodium hydride in THF. The structure of this compound was established by IR, 1H-NMR, 13C-NMR and MS data

  6. Intramolecular carboxyl-catalyzed hydrolysis of sulfonamides

    NARCIS (Netherlands)

    Graafland, Teunis

    1981-01-01

    Dit proefschrift beschrijft een studie van de intramoleculair carboxyl gekatalyseerde hydrolyse van sulfonamiden. Het onderzoek heeft zich toegespitst op het mechanisme van deze reactie én op de effecten die bepalend zijn voor de katalytische activiteit van de carboxylgroep. Daarbij is met name

  7. efficient and convenient synthesis of symmetrical carboxylic

    African Journals Online (AJOL)

    Preferred Customer

    from carboxylic acids with sulfated zirconia by PEG-1000 phase transfer catalysis has been developed. The reactions proceeded ... The product can be isolated by a simple extraction with organic solvent, and the catalyst system ..... Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim; 2002. 2. Tarbel, D.S. ...

  8. The Group for High Resolution Sea Surface Temperature: Past, Present and Future.

    Science.gov (United States)

    Donlon, Craig; Casey, Kenneth; Minnett, Peter; Corlett, Gary

    2014-05-01

    In the last decade, satellite Agencies, science, operational user/producer and Sea Surface Temperature practitioner communities have come together within the Group for High Resolution SST (GHRSST) to create a new framework for generation, delivery and application of improved common format high-resolution (~1-10 km) satellite SST datasets for the benefit of society. The GHRSST data system is a mature, robust, and highly reliable near real time and delayed mode data system known as the GHRSST Regional/Global Task Sharing framework (R/GTS) and has operated in NRT since 2006. It consists of distributed Regional Data Assembly Centers (RDACs) around the world that submit their data to a Global Data Assembly Center (GDAC) maintained at the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC), where all the data are available for 30 days. After that they are transferred to the GHRSST Long Term Stewardship and Reanalysis Facility (LTSRF) at the U.S. National Oceanographic Data Center (NODC) for long-term preservation and distribution. The extensive user base includes many operational meteorological services, the scientific community, industry and Government. Since the R/GTS has operated, statistics show over 72,000 users have accessed the R/GTS in NRT, accessing over 100 million files amounting to more than 232 Tb of information. GHRSST has an organisation structure that has both fixed and flexible components allowing it to respond effectively and efficiently to new and emerging challenges. GHRSST has often been cited as a model for other Virtual Communities/Constellations. GHRSST is underpinned by an international Science Team and International Project Office together. Long-standing GHRSST Technical Advisory Groups (TAG) and ad hoc Working Groups (WG) are typically at the "cutting edge" of international SST activities delivering real coordination in space-based Earth observations for societal benefit through the prioritized

  9. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum

    Science.gov (United States)

    Persson, Ingemar; Näslund, Lars-Åke; Halim, Joseph; Barsoum, Michel W.; Darakchieva, Vanya; Palisaitis, Justinas; Rosen, Johanna; Persson, Per O. Å.

    2018-03-01

    The two-dimensional (2D) MXene Ti3C2T x is functionalized by surface groups (T x ) that determine its surface properties for, e.g. electrochemical applications. The coordination and thermal properties of these surface groups has, to date, not been investigated at the atomic level, despite strong variations in the MXene properties that are predicted from different coordinations and from the identity of the functional groups. To alleviate this deficiency, and to characterize the functionalized surfaces of single MXene sheets, the present investigation combines atomically resolved in situ heating in a scanning transmission electron microscope (STEM) and STEM simulations with temperature-programmed x-ray photoelectron spectroscopy (TP-XPS) in the room temperature to 750 °C range. Using these techniques, we follow the surface group coordination at the atomic level. It is concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O. Depending on the O/F ratio, the surface bare MXene is exposed as F desorbs, which enables a route for tailored surface functionalization.

  10. Acid-base properties and the chemical imaging of surface-bound functional groups studied with scanning force microscopy

    NARCIS (Netherlands)

    van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this paper we present a scanning force microscopy (SFM) study on electrostatic and hydrogen-bonding interactions between chemically modified SFM probes and surface functional groups. pH-dependent adhesion force measurements in aqueous media between various ionizable functional groups showed a

  11. Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility.

    Science.gov (United States)

    Zhijiang, Cai; Cong, Zhu; Jie, Guo; Qing, Zhang; Kongyin, Zhao

    2018-01-01

    Electrospun polyhydroxybutyrate (PHB)/carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate (CMWCNT-g-PHB) composite nanofibers scaffolds were fabricated by electrospinning technology. The grafted product CMWCNT-g-PHB was prepared by condensation reactions between the carboxyl groups of CMWCNT and hydroxyl groups of PHB molecules and characterized by FTIR, XRD, XPS, TG and TEM measurements. The surface morphology, hydrophilicity and tensile mechanical properties of the electrospun PHB/CMWCNT-g-PHB composite nanofibers membrane scaffolds were investigated. The values of tensile strength, breaking elongation rate, initial modulus and fracture energy of the composite nanofibers scaffolds can reach to 4.64MPa, 255.59%, 88MPa and 109.73kJ/m 2 , respectively. The biodegradability and cytocompatibility of the electrospun composite nanofibers scaffolds were preliminarily evaluated. The as-prepared electrospun PHB/CMWCNT-g-PHB composite nanofibers scaffolds with the characteristics of large specific area, high porosity, good biodegradability and cytocompatibility as well as sufficient mechanical properties should be more promising in the field of tissue engineering scaffolds and biological medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  13. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  14. Antimicrobial activities, DNA interactions, spectroscopic (FT-IR and UV-Vis) characterizations, and DFT calculations for pyridine-2-carboxylic acid and its derivates

    Science.gov (United States)

    Tamer, Ömer; Tamer, Sevil Arabacı; İdil, Önder; Avcı, Davut; Vural, Hatice; Atalay, Yusuf

    2018-01-01

    In this paper, pyridine- 2- carboxylic acid, also known as picolinic acid (pic), and its two derivate, 4- methoxy-pyridine- 2- carboxylic acid (4-Mpic) and 4- chloro-pyridine- 2- carboxylic acid (4-Clpic) have been characterized by FT-IR and UV-Vis spectroscopy techniques as well as DFT calculations. B3LYP level of Density Functional Theory (DFT) method was used to obtain ground state geometries, vibration wavenumbers, first order hyperpolarizabilities and molecular electrostatic potential (MEP) surfaces for pic, 4Clpic and 4Mpic. The electronic absorption wavelengths and HOMO-LUMO energies were investigated by time dependent B3LYP (TD-B3LYP) level with the conductor-like polarizable continuum model (CPCM). The effects of Cl atom and OCH3 group on HOMO-LUMO energy gaps and first order hyperpolarizability parameters of pic, 4Clpic and 4Mpic molecules were examined. All molecules were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains by using minimal inhibitory concentration method (MIC). All compounds (pic, 4Mpic and 4Clpic) have been found to be very active against to the Gram (+) and Gram (-) bacteria. The DNA interactions of pic, 4Clpic and 4Mpic were analyzed by molecular docking simulations, and the interaction of the 4Mpic molecule with DNA is found to be higher than 4Clpic and pic.

  15. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids.

    Science.gov (United States)

    Abbott, Andrew P; Boothby, David; Capper, Glen; Davies, David L; Rasheed, Raymond K

    2004-07-28

    Deep Eutectic Solvents (DES) can be formed between a variety of quaternary ammonium salts and carboxylic acids. The physical properties are significantly affected by the structure of the carboxylic acid but the phase behavior of the mixtures can be simply modeled by taking account of the mole fraction of carboxylic acid in the mixture. The physical properties such as viscosity, conductivity, and surface tension of these DES are similar to ambient temperature ionic liquids and insight into the cause of these properties is gained using hole-theory. It is shown that the conductivity and viscosity of these liquids is controlled by ion mobility and the availability of voids of suitable dimensions, and this is consistent with the fluidity of other ionic liquids and molten salts. The DES are also shown to be good solvents for metal oxides, which could have potential application for metal extraction.

  16. Adhesion of coagulase-negative staphylococci grouped according to physico-chemical surface properties

    NARCIS (Netherlands)

    van der Mei, HC; van de Belt-Gritter, B; Reid, G; Bialkowska-Hobrzanska, H; Busscher, HJ

    1997-01-01

    Physico-chemical cell surface properties of 23 coagulase-negative staphylococcal strains, including contact angles, zeta potentials and elemental cell surface composition were measured, together with the adhesion of all strains to hexadecane, The data were employed in a hierarchical cluster

  17. Nonwoven Carboxylated Agarose-Based Fiber Meshes with Antimicrobial Properties.

    Science.gov (United States)

    Forget, Aurelien; Arya, Neha; Randriantsilefisoa, Rotsiniaina; Miessmer, Florian; Buck, Marion; Ahmadi, Vincent; Jonas, Daniel; Blencowe, Anton; Shastri, V Prasad

    2016-12-12

    Hydrogel forming polysaccharides, such as the seaweed derived agarose, are well suited for wound dressing applications as they have excellent cell and soft tissue compatibility. For wound dressings, fibrous structure is desirable as the high surface area can favor adsorption of wound exudate and promote drug delivery. Although electrospinning offers a straightforward means to produce nonwoven fibrous polymeric structures, processing agarose and its derivatives into fibers through electrospinning is challenging as it has limited solubility in solvents other than water. In this study we describe the processing of carboxylated agarose (CA) fibers with antibacterial properties by electrospinning from a solution of the ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([Bmim] + Cl - ) possessing antimicrobial properties. The extent of carboxylation was found to impact fiber diameter, mesh elastic modulus, fiber swelling, and the loading and release of IL. IL-bearing CA fibers inhibited the growth of Staphylococcus aureus and Pseudomonas aeruginosa, bacteria commonly found in wound exudate. In sum, nonwoven CA fibers processed from IL are promising as biomaterials for wound dressing applications.

  18. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  19. Carboxylic acids from West Siberian crudes

    Energy Technology Data Exchange (ETDEWEB)

    Zhil' tsov, N.I.; Ershov, V.A.; Zakharova, T.F.

    1982-09-01

    The concentrates of acidic compounds were recovered from the raw crudes by extraction with a 2% solution of potassium hydroxide in 50% ethanol; the concentrates were then treated to remove neutral substances present as impurities and were separated into phenols and carboxylic acids by means of silica gel modified with caustic. The methyl and trimethylsilyl (TMS) esters of the carboxylic acids were analyzed by chromatography/mass spectrometry. It is assumed that in the West Siberian fields, along with catagenic processes, microbiological degradation processes are taking place. After a sample of Fedorovsk crude had been exposed to the bacterial action (60 days at 32/sup 0/C) of an accumulated culture of sulfate-reducing bacteria, followed by dehydration of the sample, the relative content of straight-chain fatty acids with an even number of carbon atoms had increased. There was a sharp increase in the contents of palmitic, palmitoleic, and oleic acids, which are characteristic products of the metabolism of microorganisms.

  20. Optimum design of amphiphilic polymers bearing hydrophobic groups for both cell surface ligand presentation and intercellular cross-linking.

    Science.gov (United States)

    Takeo, Masafumi; Li, Cuicui; Matsuda, Masayoshi; Nagai, Hiroko; Hatanaka, Wataru; Yamamoto, Tatsuhiro; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2015-01-01

    Amphiphilic polymers bearing hydrophobic alkyl groups are expected to be applicable for both ligand presentation on the cell surface and intercellular crosslinking. To explore the optimum design for each application, we synthesized eight different acyl-modified dextrans with varying molecular weight, alkyl length, and alkyl modification degree. We found that the behenate-modified polymers retained on the cell surface longer than the palmitate-modified ones. Since the polymers were also modified with biotin, streptavidin can be presented on the cell surface through biotin-streptavidin recognition. The duration of streptavidin on the cell surface is longer in the behenate-modified polymer than the palmitate-modified one. As for the intercellular crosslinking, the palmitate-modified polymers were more efficient than the behenate-modified polymers. The findings in this research will be helpful to design the acyl-modified polymers for the cell surface engineering.

  1. Dissociation and recombination rate constants for CN on Cu and Ni group transition metal surfaces

    Science.gov (United States)

    Sellers, Harrell

    2000-07-01

    We report dissociation and recombination reaction rate constants for CN on the fcc(111) surfaces of Ni, Pd, Pt, Cu, Ag and Au from molecular dynamics simulations employing our normalized bond index-reactive potential functions (NBI-RPF). The Arrhenius pre-exponentials for recombination of CN on these surfaces are about three orders of magnitude greater than the dissociation pre-exponentials. On the series of metals considered herein, the reaction energetics favor dissociation on the more active metals and favor recombination on the least active metals. However, the differences in the pre-exponentials of nearly a factor of 10 3 express the tendency of the reaction entropy to favor the recombination on the surfaces investigated. We also discuss the implications of these results in terms of the thermodynamics of the surface reactions.

  2. Surface Characterization for High Purity Fe-Cr Alloys

    OpenAIRE

    Iwai, H.; Oiwa, R.; Takaki, S.; Abiko, K.

    1995-01-01

    Fe-50mass%Cr was prepared in a cold crucible furnace with induction heating, then refined by floating-zone melting (FZM). The chemistries on the surface before and after FZM were compared by XPS measurement. C and O were observed on top surfaces both before and after as a hydrocarbon, carbonyl group and carboxyl group which are adsorbed chemical components. The other impurities were observed on the surface in both cases ; however, the number and level of impurities on the surface after FZM we...

  3. Extraction and solubility characteristics of metal aliphatic carboxylates in a hexane medium

    International Nuclear Information System (INIS)

    Moriya, Yoshio; Sugai, Mikio; Ohshima, Yozo; Ogawa, Nobuaki; Matsuo, Shigeki.

    1994-01-01

    Extractions of 30 metal ions with aliphatic carboxylic acids into hexane were carried out to understand their extraction behavior. Results were expressed in an area-graph form for metal partitions among the three (aqueous, organic and/or solid) phases in the range pH 1-9. The difference in half-extraction pH (pH 1/2 ) between various metals can be explained by the electrostatic effect (hard acids) and the polarizability. According to the solubility of the metal complexes into organic phase, the thirty metal ions were divided into two groups. The metal ions with high ionic potential (group A) were generally extractable by every carboxylic acid tested. The large size metal ions (group B) precipitated at the liquid/liquid interface by n-aliphatic carboxylic acids and were perfectly extracted by 2-ethylhexanoic acid. We propose that this difference in the group B is caused by interface-coagulation through inter-molecular hydrophobic bond formation in the former, while the branched chain in the carboxylic acid weakens the interaction in the latter. For group A, therefore, most of the extracted species would be origomers so that no coagulation would occur. (author)

  4. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ryan D. [Rush University Medical Center, Department of Anatomy and Cell Biology (United States); Cole, Lisa E.; Roeder, Ryan K., E-mail: rroeder@nd.edu [University of Notre Dame, Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program (United States)

    2012-10-15

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate (l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  5. Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids.

    Science.gov (United States)

    Oliver-Tomas, Borja; Renz, Michael; Corma, Avelino

    2017-09-18

    For the reaction mechanism of the ketonic decarboxylation of two carboxylic acids, a β-keto acid is favored as key intermediate in many experimental and theoretical studies. Hydrogen atoms in the α-position are an indispensable requirement for the substrates to react by following this mechanism. However, isolated observations with tertiary carboxylic acids are not consistent with it and these are revisited and discussed herein. The experimental results obtained with pivalic acid indicate that the ketonic decarboxylation does not occur with this substrate. Instead, it is consumed in alternative reactions such as disintegration into isobutene, carbon monoxide, and water (retro-Koch reaction). In addition, the carboxylic acid is isomerized or loses carbon atoms, which converts the tertiary carboxylic acid into carboxylic acids bearing α-proton atoms. Hence, the latter are suitable to react through the β-keto acid pathway. A second substrate, 2,2,5,5-tetramethyladipic acid, reacted by following the same retro-Koch pathway. The primary product was the monocarboxylic acid 2,2,5-trimethyl-4-hexenoic acid (and its double bond isomer), which might be further transformed into a cyclic enone or a lactone. The ketonic decarboxylation product, 2,2,5,5-tetramethylcyclopentanone was observed in traces (<0.2 % yield). Therefore, it can be concluded that the observed experimental results further support the proposed mechanism for the ketonic decarboxylation via the β-keto acid intermediate. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations

    Science.gov (United States)

    Diniz, Luan F.; Souza, Matheus S.; Carvalho, Paulo S.; da Silva, Cecilia C. P.; D'Vries, Richard F.; Ellena, Javier

    2018-02-01

    Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH-PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH-PNBA and INH-PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.

  7. [14C]-radiolabeling of {[trans-(8β)]-6-methyl-1-(1-methylethyl) ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-buteneidioate (1:1)}

    International Nuclear Information System (INIS)

    Marzoni, G.; Wheeler, W.J.; Garbrecht, W.L.

    1988-01-01

    The 5HT 2 -receptor antagonist, [ 14 C]-labeled brace[trans-(8β)]-6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 4-methoxycyclohexyl ester (Z)-2-butenedioate (1:1)brace (LY281067) was synthesized from unlabeled 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid. The [ 14 C] label was introduced into the carboxyl group attached to the 8 position of the ergoline nucleus. This site is stable to metabolism. The synthesis involves removal of an unlabeled carboxyl group and subsequent reinsertion of a [ 14 C]-labeled carboxyl group into the same position. The radiolabel is not introduced until near the end of the synthesis which allows for ease of handling and scale-up of intermediates. (author)

  8. Enhanced biocompatibility of multi-walled carbon nanotubes by surface modification: Future perspectives for drug delivery system

    Science.gov (United States)

    Anandhi, C. M. S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2017-05-01

    Surface modification of multi-walled carbon nanotubes (MWCNTs) was carried out by introducing mixture of concentrated sulphuric acid and nitric acid by ultrasonication process. The pristine and surface modified MWCNTs were characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), Raman spectroscopy and Scanning electron microscopy (SEM) techniques. FT-IR spectra revealed that the presence of carboxylic acid functional groups on the surface of MWCNTs. The integrated intensity ratio of pristine and surface modified MWCNTs was calculated by Raman spectroscopic analysis. XRD patterns examines the crystallinity of the surface modified MWCNTs. SEM analysis investigates the change in morphology of the surface modified MWCNTs compared with that of pristine, which is due to the attachment of the carboxylic acid functional groups. Surface modified MWCNTs acts as precursors for further functionalization with various biomolecules, which improves the biocompatibility and initiates the implementation of MWCNTs in the field of nanomedicine and targeted drug delivery.

  9. Influence of the pre-adsorption of group III metals on the growth of Ge nanostructures on vicinal Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz; Schmidt, Thomas; Flege, Jan Ingo; Heidmann, Inga; Hoecker, Jan; Wilkens, Torsten; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany)

    2010-07-01

    The employment of metals as surfactants (surface active agents) is a promising approach to influence the growth of Ge nanostructures on Si surfaces. Especially for group III and group V elements an enhanced or suppressed Stranski-Krastanov growth behaviour is found, respectively. For all group III metal on silicon systems presented in this study we observe a drastic change of the surface morphology after adsorption of a few monolayers. For the investigations we used a variety of surface sensitive techniques, e.g., scanning tunneling microscopy (STM), spot profile analysing low-energy electron diffraction (SPA-LEED), low-energy electron microscopy (LEEM), and X-ray standing waves (XSW). On the one hand, the adsorption of Ga and In leads to a smoothening of the intrinsically unstable Si(112) surface and the development of 1D metal chains. But on the other hand, the stable Si(113) is decomposed into a regular array of nanofacets after adsorption of Ga. For all cases shown here the possibility of growing highly anisotropic Ge Islands is demonstrated (Ga/Si(113),Ga/Si(112),In/Si(112)).

  10. Relaxation dynamics of carboxylated nitrile rubber filled with organomodified nanoclay

    Directory of Open Access Journals (Sweden)

    2008-05-01

    Full Text Available In order to improve the physical properties of elastomers and to get more insight into the polymer dynamics close to filler interphases a carboxylated nitrile rubber (XNBR was filled with up to 10 phr of layered silicate and investigated by dielectric and dynamic-mechanical analysis as well as by IR spectroscopy. Three relaxation processes have been detected beside the electrode polarization effect obtained in dielectric measurements. The relaxation process at low temperatures can be assigned to the β-process due to the rotational motion of side groups. Its temperature dependence follows an Arrhenius-like behaviour and there is no significant change in the shape of this process with the incorporation of filler. The glass transition at medium temperature shows a Vogel-Fulcher-dependence but seems to be independent of filler as well. At higher temperatures a new relaxation process was detected which is probably due to the formation of zinc-carboxyl-clusters. In dielectric and dynamic-mechanical measurements this process increases with increasing loading of organoclay and is shifted to higher temperature.

  11. Dirhodium(II) carboxylate catalyzed formation of 1,2,3-trisubstituted indoles from styryl azides.

    Science.gov (United States)

    Jones, Crystalann; Nguyen, Quyen; Driver, Tom G

    2014-01-13

    Dirhodium(II)-carboxylate complexes were discovered to promote the selective migration of acyl groups in trisubstituted styryl azides to form 1,2,3-trisubstituted indoles. The styryl azides are readily available in three steps from cyclobutanone and 2-iodoaniline. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interaction between two solid surfaces across PDMS : influence of chain length and end group

    NARCIS (Netherlands)

    Sun, G.X.; Stark, R.; Kappl, M.; Leermakers, F.A.M.; Butt, H.J.

    2005-01-01

    Forces between solid surfaces across polymer melts are poorly understood despite their importance for adhesion and composite materials. Using an atomic force microscope (AFM) this force was measured for poly(dimethyl siloxane) (PDMS) on silicon oxide. The influence of molecular weight (4.0-40 kDa)

  13. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li

    2016-01-01

    © 2016 The Royal Society of Chemistry. The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

  14. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-capping DBS groups

    International Nuclear Information System (INIS)

    Wang Baiqi; Jing Liqiang; Qu Yichun; Li Shudan; Jiang Baojiang; Yang Libin; Xin Baifu; Fu Honggang

    2006-01-01

    TiO 2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO 2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO 2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO 2 mass weight, respectively, and the linkage between DBS groups and TiO 2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO 2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO 2 is also related to the increase in the capability for adsorbing RhB

  15. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers.

    Science.gov (United States)

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-30

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  16. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Skorovarov, D.I.; Chumakova, G.M.; Rusin, L.I.; Ul'anov, V.S.; Sviridova, R.A.; Sviridov, A.L.

    1988-01-01

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C 7 -C 9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  17. Comment on Group Velocity Measurement of Surfac Waves by Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Taishi Okamoto

    2007-01-01

    Full Text Available Yamada and Yomogida (1997 applied the discrete wavelet transform (DWT to group velocity measurements for the first time. Although their study is one of the pioneering works in application of DWT to seismological analysis, their method gives an inaccurate value as a group velocity in some cases and requires modification. In this report, we point out the problem and propose a modified DWT method for overcoming the problem. In our method, DWT is carried out not for an analysed signal itself but for its complex envelope (Farnbach 1975. A computation algorithm for DWT coefficients for our method is given and shown to be almost the same as that by Yamada and Ohkitani (1991. The influence of the difference between the conventional method and our method on identification of group arrival times of a wave is also shown by a numerical experiment. If analysts want to identify group arrival times using DWT, our method must be adopted instead of the conventional method.

  18. A chord diagrammatic presentation of the mapping class group of a once bordered surface

    DEFF Research Database (Denmark)

    Bene, Alex

    2010-01-01

    The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichmüller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path groupo...

  19. The Exponential Map of the Group of Area-Preserving Diffeomorphisms of a Surface with Boundary

    Science.gov (United States)

    Benn, James; Misiołek, Gerard; Preston, Stephen C.

    2018-03-01

    We prove that the Riemannian exponential map of the right-invariant L 2 metric on the group of volume-preserving diffeomorphisms of a two-dimensional manifold with a nonempty boundary is a nonlinear Fredholm map of index zero.

  20. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  1. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    Science.gov (United States)

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  2. Adsorption of T4 bacteriophages on planar indium tin oxide surface via controlled surface tailoring.

    Science.gov (United States)

    Liana, Ayu Ekajayanthi; Chia, Ed Win; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2016-04-15

    The work investigates the influence of surface physicochemical properties of planar indium tin oxide (ITO) as a model substrate on T4 bacteriophage adsorption. A comparative T4 bacteriophage adsorption study shows a significant difference in bacteriophage adsorption observed on chemically modified planar ITO when compared to similarly modified particulate ITO, which infers that trends observed in virus-particle interaction studies are not necessarily transferrable to predict virus-planar surface adsorption behaviour. We also found that ITO surfaces modified with methyl groups, (resulting in increased surface roughness and hydrophobicity) remained capable of adsorbing T4 bacteriophage. The adsorption of T4 onto bare, amine and carboxylic functionalised planar ITO suggests the presence of a unique binding behaviour involving specific functional groups on planar ITO surface beyond the non-specific electrostatic interactions that dominate phage to particle interactions. The paper demonstrates the significance of physicochemical properties of surfaces on bacteriophage-surface interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    The structure of monomolecular layers of the protein streptavidin, specifically bound to biotin-functionalized lipid monolayers at aqueous surfaces, has been characterized. Neutron and X-ray reflectivity measurements allowed an assessment of the organization of these self-assembled systems...... with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...

  4. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Controlled Electrochemical Carboxylation of Graphene To Create a Versatile Chemical Platform for Further Functionalization

    DEFF Research Database (Denmark)

    Bjerglund Pedersen, Emil; Kongsfelt, Mikkel S.; Shimizu, Kyoko

    An electrochemical approach is introduced for the versatile carboxylation of multilayered graphene in 0.1 M Bu4NBF4/MeCN. First, the graphene substrate is negatively charged at −1.9 V vs. Ag/AgI to allow for intercalation of Bu4N+. In the second step, the strongly activated and nucleophilic graph...... in a multi-layered but expanded structure accessible for functionalization. On a more general level, this approach will provide a versatile way of forming new hybrid materials based on intimate bond coupling to graphene via carboxylate groups....... graphene is allowed to react with added CO2 in an addition reaction, introducing carboxylate groups stabilized by the Bu4N+ already present. This procedure may be carried out repetitively to further increase the carboxylation degree under controlled conditions. We observe an equal functionalization degree...... throughout the multilayered graphene structure, independent of the number of graphene sheets. This is assumed to be due to an opening of the entire graphene structure in response to the intercalation of Bu4N+. Hence, this electrochemical method offers a versatile procedure to make all graphene sheets...

  6. Chemoselective Boron-Catalyzed Nucleophilic Activation of Carboxylic Acids for Mannich-Type Reactions.

    Science.gov (United States)

    Morita, Yuya; Yamamoto, Tomohiro; Nagai, Hideoki; Shimizu, Yohei; Kanai, Motomu

    2015-06-10

    The carboxyl group (COOH) is an omnipresent functional group in organic molecules, and its direct catalytic activation represents an attractive synthetic method. Herein, we describe the first example of a direct catalytic nucleophilic activation of carboxylic acids with BH3·SMe2, after which the acids are able to act as carbon nucleophiles, i.e. enolates, in Mannich-type reactions. This reaction proceeds with a mild organic base (DBU) and exhibits high levels of functional group tolerance. The boron catalyst is highly chemoselective toward the COOH group, even in the presence of other carbonyl moieties, such as amides, esters, or ketones. Furthermore, this catalytic method can be extended to highly enantioselective Mannich-type reactions by using a (R)-3,3'-I2-BINOL-substituted boron catalyst.

  7. Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface

    International Nuclear Information System (INIS)

    Durdureanu-Angheluta, A.; Dascalu, A.; Fifere, A.; Coroaba, A.; Pricop, L.; Chiriac, H.; Tura, V.; Pinteala, M.; Simionescu, B.C.

    2012-01-01

    This manuscript deals with the synthesis of new hydrophilic magnetite particles by employing a two-step method: in the first step magnetite particles with hydrophobic shell formed in presence of oleic acid–oleylamine complex through a synthesis in mass, without solvent, in a mortar with pestle were obtained; while in the second step the hydrophobic shell was interchanged with an aminosilane monomer. The influence of the Fe 2+ /Fe 3+ molar ratio on the dimension of the particles of high importance for their potential applications was carefully investigated. This paper, also presents an alternative method of synthesis of new core-shell magnetite particles and the complete study of their structure and morphology by FT-IR, XPS, TGA, ESEM and TEM techniques. The rheological properties and magnetization analysis of high importance for magnetic particles were also investigated. - Highlights: ► Magnetite particles are superparamagnetic materials. ► Magnetite has significant role in nanotechnology due to surface properties and applicability in physical and chemical processes. ► We used an ecological method of synthesis, a reaction in mass, without solvent, in a mortar with pestle. ► We prepared hydrophilic magnetite particles, precursors for biomedical applications.

  8. The acid-base character of interactions between xenon and selected carboxylic and sulfonic acids

    Science.gov (United States)

    Gąszowski, Dawid; Ilczyszyn, Marek

    2017-05-01

    Interactions of Xe atoms with RCO2H and RSO3H (R = CH3 and CF3) acids in different solvents are examined by analysis of 129Xe chemical shifts extrapolated to zero solvent concentration. Obtained results are very sensitive to the Xe contacts with the methyl and trifluoromethyl groups as well as with the carboxylic and sulfonic groups of different acidity. The acid-base character of these acid-Xe interactions is considered.

  9. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF) ; Scientific Opinion on Flavouring Group Evaluation 06, Revision 4 (FGE.06Rev4 ): Straight - and branched - chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids and esters from chemical groups

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Binderup, Mona-Lise; Frandsen, Henrik Lauritz

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 56 flavouring substances in the Flavouring Group Evaluation 6, Revision 4, using the Procedure in Commission Regulation (EC) No 1565/2000. This revision is...

  10. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: pnavarre@vtr.ne [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica

    2010-07-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  11. Silver (I) and copper (II)-imidazolium carboxylates: Efficient catalysts ...

    Indian Academy of Sciences (India)

    The silver(I) and copper(II)-imidazolium carboxylate coordination assemblies were derived from the reaction between corresponding carboxylic acid ligands and metal salts. These new metal derivatives depict a novel structural motif with variable chemical and thermal properties. These metal complexes act as ...

  12. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    that either of the two isomeric acid products can be characterized in ... The carboxylates are bound to zinc in monoden- tate fashion. The fifth coordination sites of zinc(II) has water molecules. Comparison of this reaction to. O. O. O. + 2 H2N. O. HO ... logues reaction of zinc(II) the ring opened product has carboxylates at 1 ...

  13. Effects of carboxylic acids on nC60 aggregate formation

    International Nuclear Information System (INIS)

    Chang Xiaojun; Vikesland, Peter J.

    2009-01-01

    The discovery that negatively charged aggregates of C 60 fullerene (nC 60 ) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC 60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC 60 aggregates. - The effects of carboxylic acids on the formation of nC 60 aggregates are discussed

  14. Understanding colloidal charge renormilization from surface chemistry : experiment and theory

    OpenAIRE

    Gisler, Thomas; Schulz, S. F.; Borkovec, Michal; Sticher, Hans; Schurtenberger, Peter; D'Aguanno, Bruno; Klein, Rudolf

    1994-01-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stem capacitance) are determined from tits of a Stem ...

  15. Surface complexation of neptunium (V) onto whole cells and cell componets of Shewanella alga

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald Timothy [Los Alamos National Laboratory; Deo, Randhir P [ASU; Rittmann, Bruce E [ASU; Songkasiri, Warinthorn [UNAFFILIATED

    2008-01-01

    We systematically quantified surface complexation of neptunium(V) onto whole cells of Shewanella alga strain BrY and onto cell wall and extracellular polymeric substances (EPS) of S. alga. We first performed acid and base titrations and used the mathematical model FITEQL with constant-capacitance surface-complexation to determine the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl site associated with amino acids (pK{sub a} {approx} 2.4), a carboxyl group not associated with amino acids (pK{sub a} {approx} 5), a phosphoryl site (pK{sub a} {approx} 7.2), and an amine site (pK{sub a} > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components at different pHs. Results show that solution pH influenced the speciation of Np(V) and each of the surface functional groups. We used the speciation sub-model of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, NpO{sub 2}{sup +} was the dominant form of Np(V), and its log K values for the low-pK{sub a} carboxyl, other carboxyl, and phosphoryl groups were 1.75, 1.75, and 2.5 to 3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH3+, which complexed with NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-}. The log K for NpO{sub 2}(CO{sub 3}){sub 3}{sup 5-} complexed onto the amine groups was 3.1 to 3.6. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results point towards the important role of surface complexation in defining key actinide-microbiological interactions in the subsurface.

  16. Biodegradation of cycloalkane carboxylic acids in oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.C.; Costerton, J.W. (Calgary Univ., Dept. of Biological Sciences, AB (Canada)); Fedorak, P.M. (Alberta Univ., Dept. of Microbiology, AB (Canada))

    1993-01-01

    The biodegradation of both an n-alkane and several carboxylated cycloalkanes was examined experimentally within tailings produced by the extraction of bitumen from the Athabasca oil sands. The carboxylated cycloalkanes examined were structurally similar to naphthenic acids that have been associated with the acute toxicity of oil sand tailings. The biodegradation potential of naphthenic acids was estimated by determining the biodegradation of both the carboxylated cycloalkanes and hexadecane in oil sand tailings. Carboxylated cycloalkanes were biodegraded within oil sands tailings, although compounds with methyl substitutions on the cycloalkane ring were more resistant to microbial degradation. Microbial activity against hexadecane and certain carboxylated cycloalkanes was found to be nitrogen and phosphorus limited. 21 refs., 3 refs., 1 tab.

  17. Carboxyl-catalyzed prototropic rearrangements in histidine peptide radicals upon electron transfer: effects of peptide sequence and conformation.

    Science.gov (United States)

    Turecek, Frantisek; Panja, Subhasis; Wyer, Jean A; Ehlerding, Anneli; Zettergren, Henning; Nielsen, Steen Brøndsted; Hvelplund, Preben; Bythell, Benjamin; Paizs, Béla

    2009-11-18

    We report an unusual prototropic rearrangement in gas-phase radicals formed by collisional electron transfer from cesium atoms to protonated peptides HAL, AHL, and ALH at 50 keV. The rearrangement depends on the peptide amino acid sequence and presence or steric accessibility of a free carboxyl group. Upon electron transfer, protonated HAL and ALH rearrange to tautomers that are detected as nondissociated anions in charge-reversal mass spectra. The isomerization is minor in protonated ALH and virtually absent in HAL amide. Electron structure calculations indicate that the gas-phase ions are preferentially protonated in the His imidazole ring and consist of multiple conformers that differ in their hydrogen bonding patterns. Electron transfer to protonated HAL and AHL triggers an exothermic and dynamically barrierless transfer of the carboxyl proton onto the C-2' position of the His ring that occurs on a 120-240 ns time scale. The kinetics of this isomerization are controlled by internal rotations in the radicals to assume conformations favoring the proton transfer. The radical conformations also affect subsequent proton migrations in zwitterionic His imidazoline intermediates that reform the COOH group and result in His ring isomerization. This autocatalytic prototropic rearrangement in gas-phase peptide radicals is analogous to enzyme catalytic reactions involving His and acidic amino acid residues. In contrast to HAL and AHL, the C-2' position is sterically inaccessible in ALH radicals. These radicals undergo proton migrations to the His ring C-5' positions that have moderate energy barriers and are less efficient. RRKM calculations on the combined B3LYP and PMP2/6-311++G(2d,p) potential energy surface of the ground doublet electronic state of the peptide radicals provided rate constants that were quantitatively consistent with the dissociations observed in the gas phase. The formation of minor sequence z(1) and z(2) fragments from AHL was interpreted as occurring

  18. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5

  19. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5.

  20. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  1. Skidding accidents : considerations on road surface and vehicle characteristics : summary of the present situation. Provisional recommendation concerning skidding resistance of road surfaces investigation programme. Interim report of the SWOV Working Group "Tyres, road surfaces and skidding accidents"

    NARCIS (Netherlands)

    SWOV Working Group "Tyres, road surfaces and skidding accidents"

    1970-01-01

    This is the first report of SWOV Working Group "Tyres, road surfaces and skidding accidents". Skidding is considered to be an important contributory factor in traffic accidents. Skidding can in principle be prevented in two ways, viz: (1) reduction of the minimum necessary friction, and (2)

  2. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 06, Revision 3 (FGE.06Rev3): Straight- and branched-chain aliphatic unsaturated primary alcohols, aldehydes, carboxylic acids, and esters from chemical groups 1 and 4

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None of the subs......The Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids of the European Food Safety Authority was requested to evaluate 50 flavouring substances in the Flavouring Group Evaluation 6, Revision 3, using the Procedure in Commission Regulation (EC) No 1565/2000. None...... of the substances were considered to have genotoxic potential. The substances were evaluated through a stepwise approach (the Procedure) that integrates information on structure-activity relationships, intake from current uses, toxicological threshold of concern, and available data on metabolism and toxicity...... of these flavouring substances, the specifications for the materials of commerce have also been considered. For one substance [FL-no: 09.938] an identity test is missing and for two substances [FL-no: 05.226 and 09.950] the range of the specific gravity is too wide. Additional, the stereoisomeric mixture has not been...

  3. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  4. Synthesis of carboxylated flavonoids as new leads for LTD4 antagonists.

    NARCIS (Netherlands)

    Zwaagstra, M.E.; Timmerman, H.; Abdoelgafoer, R.S.; Zhang, M.Q.

    1996-01-01

    A series of 3'- and 5'-carboxylated chalcones, 6- or 8-carboxylated flavones and 6-carboxylated flavanones, -flavanols and -flavans were prepared. The compounds were tested for their inhibitory activities against leukotriene D

  5. Facile one-pot fabrication of nano-Fe3O4/carboxyl-functionalized baker's yeast composites and their application in methylene blue dye adsorption

    Science.gov (United States)

    Du, Zongjun; Zhang, Yue; Li, Zhengjie; Chen, Hui; Wang, Ying; Wang, Guangtu; Zou, Ping; Chen, Huaping; Zhang, Yunsong

    2017-01-01

    Nano-Fe3O4/carboxyl-functionalized baker's yeast composites (NF/CF-BYs) were prepared for the first time based on the ultrasonic cavitation assisted oxygen implosion method using single Fe2+ as iron source. The series of characterization analysis results showed that the obtained NF/CF-BYs had not only the superparamagnetic properties of nano-Fe3O4, but their surface also had plenty of functional groups (especially carboxyl groups) introduced by strong oxidization. The adsorption properties of NF/CF-BYs for methylene blue (MB) were also evaluated. The results displayed that the uptakes of NF/CF-BYs for MB were higher than that of pristine baker's yeast (P-BYs), and the adsorption process was followed by the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of NF/CF-BYs for MB was estimated to be 141.75 mg g-1 at pH 6. The regeneration efficiency of the obtained NF/CF-BYs was attained to be more than 90%.

  6. FTIR spectroscopy of alcohol and formate interactions with mesoporous TiO2 surfaces.

    Science.gov (United States)

    Brownson, Jeffrey R S; Tejedor-Tejedor, M Isabel; Anderson, Marc A

    2006-06-29

    The effects of pH and ultraviolet (UV) light with ligated formic acid on mesoporous TiO2 were characterized by transmission Fourier transform infrared (FTIR) spectroscopy and compared with adsorbed formate complexes. Surface-modified anatase thin films were prepared from acidic aqueous nanoparticulate anatase suspensions diluted with methanol and ethanol. Bands assigned to carboxylic acid groups displayed unique bonding character in the ligated formic acid on the anatase surface. For increased proton concentrations in the films, separation in -COO stretching bands (delta nu) for formic acid increased (increase in frequency for nuC=O and decrease in frequency for nuC-O). With UV exposure, surface-bound organics were rapidly removed by photocatalytic oxidation at 40 degrees C and 40% relative humidity (RH). In addition, the delta nu of the formic acid bands decreased as organics were mineralized to carbonates and CO2 with UV light. Aqueous formic acid adsorption experiments showed a distinctly different bonding environment lacking carbonate, and the delta nu for the carboxylic groups indicated a bridging bidentate coordination. The delta nu of the bands increased with increasing proton concentration, with both bands shifting to higher wavenumbers. The shifts may be ascribed to the influence of protonation on surface charge and the effect of that charge on the electronegativity of carboxylate groups bound to the surface. As alcohols are used in the mesoporous TiO2 solar cell preparation, implications of these surface modifications to dye-sensitized photovoltaics are discussed.

  7. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  8. Surface analyses of fluoroelastomer bearings exposed to geothermal environments

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T. [Energy Resources Division, Energy Science and Technology Department, Brookhaven National Laboratory, 11973 Upton, NY (United States)

    2001-08-01

    The surfaces of fluoroelastomers, used in bearings in the down-hole pumps which extract the energy resource from geothermal brine reservoirs at 150C, are hydrothermally oxidized by the attack of hot brine. In the inductive stage of the oxidation pathway, the incorporation of oxygen into the elastomers led to the scission and breakage of C-F and C-C bonds in the polyfluorocarbon chain structure, and was followed by the formation of polyfluorocarbony derivatives as the molecular fragments. Further oxidation resulted in the substitution of carbonyl groups in the derivative by carboxylic acid groups. Concurrently, the functional carboxylic acid groups reacted with the divalent Fe and Ca cations in the geothermal brine and the bearing to form Fe- and Ca-bridged polyfluorocarboxyl complexes. This sequence of fluorocarbon -> fluorocarbonyl -> fluorocarboxylic acid -> fluorocarboxylate complexes substitutive transition caused by oxidation was detrimental to the thermal stability of fluoroelastomers, lowering the onset of the thermal decomposition temperature by 120C.

  9. DFT Study of Binding and Electron Transfer from a Metal-Free Dye with Carboxyl, Hydroxyl, and Sulfonic Anchors to a Titanium Dioxide Nanocluster

    Directory of Open Access Journals (Sweden)

    Corneliu I. Oprea

    2013-01-01

    Full Text Available We report results of density functional theory (DFT calculations of a metal-free dye, 5-(4-sulfophenylazosalicylic acid disodium salt, known as Mordant Yellow 10 (MY-10, used as sensitizer for TiO2 dye-sensitized solar cells (DSSCs. Given the need to better understand the behavior of the dyes adsorbed on the TiO2 nanoparticle, we studied various single and double deprotonated forms of the dye bound to a TiO2 cluster, taking advantage of the presence of the carboxyl, hydroxyl, and sulfonic groups as possible anchors. We discuss various binding configurations to the TiO2 substrate and the charge transfer from the pigment to the oxide by means of DFT calculations. In agreement with other reports, we find that the carboxyl group tends to bind in bidentate bridging configurations. The salicylate uses both the carboxyl and hydroxyl substituent groups for either a tridentate binding to adjacent Ti(IV ions or a bidentate Ti-O binding together with an O-H-O binding, due to the rotation of the carboxyl group out of the plane of the dye. The sulfonic group prefers a tridentate binding. We analyze the propensity for electron transfer of the various dyes and find that for MY-10, as a function of the anchor group, the DSSC performance decreases in the order hydroxyl + carboxyl > carboxyl > sulfonate.

  10. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  11. Adsorption of Wine Constituents on Functionalized Surfaces.

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A

    2016-10-18

    The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS) and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  12. Adsorption of Wine Constituents on Functionalized Surfaces

    Directory of Open Access Journals (Sweden)

    Agnieszka Mierczynska-Vasilev

    2016-10-01

    Full Text Available The adsorption of macromolecules on solid surfaces is of great importance in the field of nanotechnology, biomaterials, biotechnological, and food processes. In the field of oenology adsorption of wine macromolecules such as polyphenols, polysaccharides, and proteins is much less desirable on membrane materials because of fouling and reduced filtering performance. On the other hand, adsorption of these molecules on processing aids is very beneficial for achieving wine clarity and stability. In this article, the effect of surface chemical functionalities on the adsorption of white, rosé, and red wine constituents was evaluated. Allylamine, acrylic acid, and ethanol were selected as precursors for plasma polymerization in order to generate coatings rich in amine, carboxyl, and hydroxyl chemical groups, respectively. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS and the ability of different surface chemical functionalities to adsorb wine constituents were characterized by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. The results demonstrated that the amine and carboxyl modified surfaces encourage adsorption of constituents from white wine. The hydroxyl modified surfaces have the ability to preferentially adsorb rosé wine constituents, whereas red wine adsorbed to the highest extent on acrylic acid surface.

  13. Examining Patients' and Other Group Members' Agreement about Their Alliance to the Group as a Whole and Changes in Patient Symptoms Using Response Surface Analysis

    Science.gov (United States)

    Lo Coco, Gianluca; Gullo, Salvatore; Kivlighan, Dennis M., Jr.

    2012-01-01

    There is a lack of research examining patients' and other group members' agreement about their therapeutic alliance. In the present study, the person-group (P-G) fit model was adopted to predict that the group member symptom reduction will be greater when the group member's and the other group members' perceptions of their alliance to the…

  14. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Elhadi, S. A.

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, 1 H-and 13 C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  15. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond

    Science.gov (United States)

    Liu, Kuang-Kai; Chen, Mei-Fang; Chen, Po-Yi; Lee, Tony J. F.; Cheng, Chia-Liang; Chang, Chia-Ching; Ho, Yen-Peng; Chao, Jui-I.

    2008-05-01

    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin (α-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor (α7-nAChR). The electrostatic binding of cND-α-BTX was mediated by the negative charge of the cND and the positive charge of the α-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that α-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled α-BTX presented a yellow color at the same location, which indicated that α-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human α7-nAChR proteins by microinjection with α7-nAChR mRNA. The cND-α-BTX complexes were bound to α7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked α7-nAChR-mediated inward currents of the oocytes were blocked by cND-α-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-α-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated α-BTX still preserves its biological activity in blocking the function of α7-nAChR, and provide a visual system showing the binding of α-BTX to α7-nAChR.

  16. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K-K; Chen, P-Y; Lee, Tony J F; Chao, J-I [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China); Chen, M-F [Neuro-Medical Scientific Center, Tzu Chi General Hospital, Hualien 970, Taiwan (China); Cheng, C-L [Department of Physics, National Dong Hwa University, Hualien 974, Taiwan (China); Chang, C-C [Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Ho, Y-P [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China)], E-mail: chaoji@mail.tcu.edu.tw

    2008-05-21

    Biological molecules conjugating with nanoparticles are valuable for applications including bio-imaging, bio-detection, and bio-sensing. Nanometer-sized diamond particles have excellent electronic and chemical properties for bio-conjugation. In this study, we manipulated the carboxyl group produced on the surface of nanodiamond (carboxylated nanodiamond, cND) for conjugating with alpha-bungarotoxin ({alpha}-BTX), a neurotoxin derived from Bungarus multicinctus with specific blockade of alpha7-nicotinic acetylcholine receptor ({alpha}7-nAChR). The electrostatic binding of cND-{alpha}-BTX was mediated by the negative charge of the cND and the positive charge of the {alpha}-BTX in physiological pH conditions. Sodium dodecyl sulfate-polyacrylamide gel analysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) spectra displayed that {alpha}-BTX proteins were conjugated with cND particles via non-covalent bindings. The green fluorescence of the cND particles combining with the red fluorescence of tetramethylrhodamine-labeled {alpha}-BTX presented a yellow color at the same location, which indicated that {alpha}-BTX proteins were conjugated with cND particles. Xenopus laevis's oocytes expressed the human {alpha}7-nAChR proteins by microinjection with {alpha}7-nAChR mRNA. The cND-{alpha}-BTX complexes were bound to {alpha}7-nAChR locating on the cell membrane of oocytes and human lung A549 cancer cells analyzed by laser scanning confocal microscopy. The choline-evoked {alpha}7-nAChR-mediated inward currents of the oocytes were blocked by cND-{alpha}-BTX complexes in a concentration-dependent manner using two-electrode voltage-clamp recording. Furthermore, the fluorescence intensity of cND-{alpha}-BTX binding on A549 cells could be quantified by flow cytometry. These results indicate that cND-conjugated {alpha}-BTX still preserves its biological activity in blocking the function of {alpha}7-nAChR, and provide a visual

  17. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cao Ye [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China); Sun Kang, E-mail: ksun@sjtu.edu.cn [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu Jiaxin; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610081 (China)

    2011-01-15

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO{sub 3}H) and zwitterionic sulfobetaine group ({sup +}N((CH{sub 3}){sub 2})(CH{sub 2}){sub 3}SO{sub 3}{sup Circled-Minus }) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO{sub 3}H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO{sub 3}H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  18. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    Science.gov (United States)

    Yang, Chao; Cao, Ye; Sun, Kang; Liu, Jiaxin; Wang, Hong

    2011-01-01

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO3H) and zwitterionic sulfobetaine group (⊕N((CH3)2)(CH2)3SO3⊖) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO3H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO3H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  19. Functional groups grafted nonwoven fabrics for blood filtration-The effects of functional groups and wettability on the adhesion of leukocyte and platelet

    International Nuclear Information System (INIS)

    Yang Chao; Cao Ye; Sun Kang; Liu Jiaxin; Wang Hong

    2011-01-01

    In this work, the effects of grafted functional groups and surface wettability on the adhesion of leukocyte and platelet were investigated by the method of blood filtration. The filter materials, poly(butylene terephthalate) nonwoven fabrics bearing different functional groups including hydroxyl (OH), carboxyl (COOH), sulfonic acid group (SO 3 H) and zwitterionic sulfobetaine group ( + N((CH 3 ) 2 )(CH 2 ) 3 SO 3 ⊖ ) with controllable wettability were prepared by UV radiation grafting vinyl monomers with these functional groups. Our results emphasized that both surface functional groups and surface wettability had significant effects on the adhesion of leukocyte and platelet. In the case of filter materials with the same wettability, leukocytes adhering to filter materials decreased in the order: the surface bearing OH only > the surface bearing both OH and COOH > the surface bearing sulfobetaine group > the surface bearing SO 3 H, while platelets adhering to filter materials decreased as the following order: the surface bearing SO 3 H > the surface bearing both OH and COOH > the surface bearing OH only > the surface bearing sulfobetaine group. As the wettability of filter materials increased, both leukocyte and platelet adhesion to filter materials declined, except that leukocyte adhesion to the surface bearing OH only remained unchanged.

  20. Characterization and reactivity of organic monolayers on gold and platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chien-Ching [Iowa State Univ., Ames, IA (United States)

    1995-12-06

    Purpose is to understand how the mobilization, dielectric, orientation, composition, coverage, and structure of self-assembled organic monolayers on metal surfaces affects the surface reactivities and properties of these films in order to facilitate the construction of desired films. Two model systems were used: tiols at Au and aromatic acids at Pt. Surface analysis methods, including contact angle, electrochemistry, ellipsometry, infrared reflection absorption spectroscopy (IRRAS), and x-ray photospectroscopy, were used to study the self-assembled organic monolayers on Au and Pt. IRRAS, contact angle, and electrochemistry were used to determine the surface pKa of phenylcarboxylic acids and pyridylcarboxylic acids monolayers on Pt. These techniques were also used to determine the orientation of polymethylene chain axis and the carboxylic follow the structural evolution of the chains and end group of the thiolate monolayers during formation. IRRAS was also used to assess the carboxylic acid group in terms of its possible existence as the non-hydrogen-bonded species, the hydrogen-bonded dimeric group, and the hydrogen-bonded polymeric group. These different forms of the end group were also followed vs coverage, as well as the reactivity vs solution pH. IRRAS and contact angle were used to calculate the rate constant of the esterification of carboxylic acid-terminated monolayers on Au.

  1. N-Alkylation Using Sodium Triacetoxyborohydride with Carboxylic Acids as Alkyl Sources.

    Science.gov (United States)

    Tamura, Satoru; Sato, Keigo; Kawano, Tomikazu

    2018-01-01

    A versatile N-alkylation was performed using sodium triacetoxyborohydride and carboxylic acid as an alkyl source. The combination of these reagents furnished products different from those given previously by a similar reaction. Moreover, the mild conditions of our method allowed some functional groups to remain through the reaction, whereas they would react and be converted into other moieties in the similar reductive N-alkylation reported previously. Herein, we provide a new procedure for the preparation of various compounds containing nitrogen atoms.

  2. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-05-26

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  3. Volatility of atmospherically relevant alkylaminium carboxylate salts.

    Science.gov (United States)

    Lavi, Avi; Segre, Enrico; Gomez-Hernandez, Mario; Zhang, Renyi; Rudich, Yinon

    2015-05-14

    Heterogeneous neutralization reactions of ammonia and alkylamines with sulfuric acid play an important role in aerosol formation and particle growth. However, little is known about the physical and chemical properties of alkylaminium salts of organic acids. In this work we studied the thermal stability and volatility of alkylaminium carboxylate salts of short aliphatic alkylamines with monocarboxylic and dicarboxylic acids. The enthalpy of vaporization and saturation vapor pressure at 298 K were derived using the kinetic model of evaporation and the Clausius-Clapeyron relation. The vapor pressure of alkylaminium dicarboxylate salts is ∼10(-6) Pa, and the vaporization enthalpy ranges from 73 to 134 kJ mol(-1). Alkylaminium monocarboxylate salts show high thermal stability, and their thermograms do not follow our evaporation model. Hence, we inferred their vapor pressure from their thermograms as comparable to that of ammonium sulfate (∼10(-9) Pa). Further characterization showed that alkylaminium monocarboxylates are room temperature protic ionic liquids (RTPILs) that are more hygroscopic than ammonium sulfate (AS). We suggest that the irregular thermograms result from an incomplete neutralization reaction leading to a mixture of ionic and nonionic compounds. We conclude that these salts are expected to contribute to new particle formation and particle growth under ambient conditions and can significantly enhance the CCN activity of mixed particles in areas where SO2 emissions are regulated.

  4. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  5. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide.

    Science.gov (United States)

    Senthilkumar, S; Rajesh, S; Jayalakshmi, A; Mohan, D

    2013-10-01

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Biocompatible and detectable carboxylated nanodiamond on human cell

    International Nuclear Information System (INIS)

    Liu, K-K; Cheng, C-L; Chang, C-C; Chao, J-I

    2007-01-01

    Surface-modified carboxylated nanometre-sized diamond (cND) has been applied for the conjugation of biological molecules such as DNA and protein. In this study, we evaluated the biocompatibility and detection of cNDs and carbon nanotubes on human lung A549 epithelial cells and HFL-1 normal fibroblasts. Treatment with 5 or 100 nm cND particles, 0.1-100 μg ml -1 , did not reduce the cell viability and alter the protein expression profile in lung cells; however, carbon nanotubes induced cytotoxicity in these cells. The cNDs particles were accumulated in A549 cells, which were observed by atomic force microscopy and laser scanning confocal microscopy. Both 5 and 100 nm cNDs particles exhibited the green fluorescence and were ingested into cells. Moreover, the fluorescence intensities were increased in cells via a concentration-dependent manner after treatment with 5 and 100 nm cNDs, which can be detected by flow cytometer analysis. The fluorescence intensities of 5 nm cNDs were relative higher than 100 nm cNDs in cells at equal concentration treatment. The observation demonstrated that cND-interacting with cell is detectable by a confocal microscope, flow cytometer and atomic force microscope. These nanoparticles may be useful for further biomedical applications based on the properties of uptake ability, detectability and little cytotoxicity in human cells

  7. Biocompatible and detectable carboxylated nanodiamond on human cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K-K [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China); Cheng, C-L [Department of Physics, National Dong Hwa University, Hualien 974, Taiwan (China); Chang, C-C [Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Chao, J-I [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China)

    2007-08-15

    Surface-modified carboxylated nanometre-sized diamond (cND) has been applied for the conjugation of biological molecules such as DNA and protein. In this study, we evaluated the biocompatibility and detection of cNDs and carbon nanotubes on human lung A549 epithelial cells and HFL-1 normal fibroblasts. Treatment with 5 or 100 nm cND particles, 0.1-100 {mu}g ml{sup -1}, did not reduce the cell viability and alter the protein expression profile in lung cells; however, carbon nanotubes induced cytotoxicity in these cells. The cNDs particles were accumulated in A549 cells, which were observed by atomic force microscopy and laser scanning confocal microscopy. Both 5 and 100 nm cNDs particles exhibited the green fluorescence and were ingested into cells. Moreover, the fluorescence intensities were increased in cells via a concentration-dependent manner after treatment with 5 and 100 nm cNDs, which can be detected by flow cytometer analysis. The fluorescence intensities of 5 nm cNDs were relative higher than 100 nm cNDs in cells at equal concentration treatment. The observation demonstrated that cND-interacting with cell is detectable by a confocal microscope, flow cytometer and atomic force microscope. These nanoparticles may be useful for further biomedical applications based on the properties of uptake ability, detectability and little cytotoxicity in human cells.

  8. Quantitative chemical derivatization technique in time-of-flight secondary ion mass spectrometry for surface amine groups on plasma-polymerized ethylenediamine film.

    Science.gov (United States)

    Kim, Jinmo; Shon, Hyun Kyong; Jung, Donggeun; Moon, Dae Won; Han, Sang Yun; Lee, Tae Geol

    2005-07-01

    A chemical derivatization technique in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been developed to quantify the surface density of amine groups of plasma-polymerized ethylenediamine thin film deposited on a glass surface by inductively coupled plasma chemical vapor deposition. Chemical tags of 4-nitrobenzaldehyde or pentafluorobenzaldehyde were hybridized with the surface amine groups and were detected in TOF-SIMS spectra as characteristic molecular secondary ions. The surface amine density was controlled in a reproducible manner as a function of deposition plasma power and was also quantified using UV-visible spectroscopy. A good linear correlation was observed between the results of TOF-SIMS and UV-visible measurements as a function of plasma power. This shows that the chemical derivatization technique in TOF-SIMS analysis would be useful in quantifying the surface density of specific functional groups that exist on the organic surface.

  9. The Optimisation of the Expression of Recombinant Surface Immunogenic Protein of Group B Streptococcus in Escherichia coli by Response Surface Methodology Improves Humoral Immunity.

    Science.gov (United States)

    Díaz-Dinamarca, Diego A; Jerias, José I; Soto, Daniel A; Soto, Jorge A; Díaz, Natalia V; Leyton, Yessica Y; Villegas, Rodrigo A; Kalergis, Alexis M; Vásquez, Abel E

    2018-03-01

    Group B Streptococcus (GBS) is the leading cause of neonatal meningitis and a common pathogen in livestock and aquaculture industries around the world. Conjugate polysaccharide and protein-based vaccines are under development. The surface immunogenic protein (SIP) is a conserved protein in all GBS serotypes and has been shown to be a good target for vaccine development. The expression of recombinant proteins in Escherichia coli cells has been shown to be useful in the development of vaccines, and the protein purification is a factor affecting their immunogenicity. The response surface methodology (RSM) and Box-Behnken design can optimise the performance in the expression of recombinant proteins. However, the biological effect in mice immunised with an immunogenic protein that is optimised by RSM and purified by low-affinity chromatography is unknown. In this study, we used RSM for the optimisation of the expression of the rSIP, and we evaluated the SIP-specific humoral response and the property to decrease the GBS colonisation in the vaginal tract in female mice. It was observed by NI-NTA chromatography that the RSM increases the yield in the expression of rSIP, generating a better purification process. This improvement in rSIP purification suggests a better induction of IgG anti-SIP immune response and a positive effect in the decreased GBS intravaginal colonisation. The RSM applied to optimise the expression of recombinant proteins with immunogenic capacity is an interesting alternative in the evaluation of vaccines in preclinical phase, which could improve their immune response.

  10. Highly surface functionalized carbon nano-onions for bright light bioimaging

    International Nuclear Information System (INIS)

    Frasconi, Marco; Maffeis, Viviana; Bartelmess, Juergen; Giordani, Silvia; Echegoyen, Luis

    2015-01-01

    Carbon-based nanomaterials functionalized with fluorescent and water-soluble groups have emerged as platforms for biological imaging because of their low toxicity and ability to be internalized by cells. The development of imaging probes based on carbon nanomaterials for biomedical studies requires the understanding of their biological response as well as the efficient and safety exposition of the nanomaterial to the cell compartment where it is designed to operate. Here, we present a fluorescent probe based on surface functionalized carbon nano-onions (CNOs) for biological imaging. The modification of CNOs by chemical oxidation of the defects on the outer shell of these carbon nanoparticles results in an extensive surface functionalization with carboxyl groups. We have obtained fluorescently labelled CNOs by a reaction involving the amide bond formation between fluoresceinamine and the carboxylic acids groups on the surface of the CNOs. The functionalized CNOs display high emission properties and dispersability in water due to the presence of high surface coverage of carboxylic acid groups that translate in an efficient fluorescent probe for in vitro imaging of HeLa cells, without significant cytotoxicity. The resulting nanomaterial represents a promising platform for biological imaging applications due to the high dispersability in water, its efficient internalization by cancer cells and localization in specific cell compartments. (paper)

  11. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    Dehydrogenative synthesis of carboxylic acids catalyzed by a ruthenium N- heterocycliccarbene complex. A new methodology for the synthesis of carboxylic acids from primary alcohols and hydroxide has been developed. The reaction is catalyzed by the ruthenium N-heterocycliccarbene complex [RuCl2(Ii...... to the carboxylic acids can be explained by the involvement of a competing Cannizzaro reaction. The scope of the dehydrogenation was further extended to linear and branched saturated aliphatic alcohols, although longer reaction times are necessary to ensure complete substrate conversions. The kinetic isotope effect...... the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...

  12. Expression of a 1-aminocyclopropane-1-carboxylate (ACC) oxidase ...

    African Journals Online (AJOL)

    Expression of a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene in peach ( Prunus persica L.) fruit in response to treatment with carbon dioxide and 1-methylcyclopropene: possible role of ethylene.

  13. Direct esterification of ammonium salts of carboxylic acids

    Science.gov (United States)

    Halpern, Yuval [Skokie, IL

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  14. Cloning of phenazine carboxylic acid genes of Fusarium fujikuroi ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    PCA), which is active against a variety of fungal root pathogens. ... The antibiotics phenazine-1- carboxylic acid (PCA) and 2 .... presence of genes involved in the biosynthesis of phenazine-derivatives described in P.

  15. Vocalization characteristics of North Atlantic right whale surface active groups in the calving habitat, southeastern United States.

    Science.gov (United States)

    Trygonis, Vasilis; Gerstein, Edmund; Moir, Jim; McCulloch, Stephen

    2013-12-01

    Passive acoustic surveys were conducted to assess the vocal behavior of North Atlantic right whales (Eubalaena glacialis) in the designated critical calving habitat along the shallow coastal waters of southeastern United States. Underwater vocalizations were recorded using autonomous buoys deployed in close proximity to surface active groups (SAGs). Nine main vocalization types were identified with manual inspection of spectrograms, and standard acoustic descriptors were extracted. Classification trees were used to examine the distinguishing characteristics of calls and quantify their variability within the SAG vocal repertoire. The results show that descriptors of frequency, bandwidth, and spectral disorder are the most important parameters for partitioning the SAG repertoire, contrary to duration-related measures. The reported source levels and vocalization statistics provide sound production data vital to inform regional passive acoustic monitoring and conservation for this endangered species.

  16. The influence of the addition of dye surface modifier on the performance of transparent dye sensitized solar cells

    Science.gov (United States)

    Rosa, Erlyta Septa; Shobih, Retnaningsih, Lilis; Muliani, Lia; Hidayat, Jojo

    2017-11-01

    The light-harvesting properties and charge injection kinetics of dye molecules play a significant role to improve the performance of dye-sensitized solar cells (DSSC). Dyes based on metal complexes with ruthenium complexes also a variety of metal-organic dyes such as Zn-porphyrin derivatives have been used. The requirements for dye to function as a photosensitizer in DSSC are the absorption in the visible or near-infrared regions of the solar spectrum and the binding to the semiconductor TiO2. In order to interact with the TiO2 surface it is preferable that the dye has a functional group as anchoring group such as carboxylic or other peripheral acidic. The carboxylic group is the most frequently used anchoring group, as in ruthenium-complex based dyes. However, carboxylic acid as an anchoring group is still not enough for conducting in electron injection to TiO2. In this research, 0.87 mg phosphonic acid is added to N719 and Z907 ruthenium-complex based dyes, rspectively, as a surface modifier to strengthen the anchoring group. The addition of dyes surface modifier on the transparent DSSC device performance is investigated. Under illumination of 500 Wm-2, the power conversion efficiency (PCE) of DSSC using N719 ruthenium increases from 2.09 % to 3.22 % by the addition of surface modifier. However, different results are obtained on Z907 dye, where efficiency decreases from 2.02 % to 1.58 %.

  17. Two dialkylammonium salts of 2-amino-4-nitrobenzoic acid: crystal structures and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2016-12-01

    Full Text Available The crystal structures of two ammonium salts of 2-amino-4-nitrobenzoic acid are described, namely dimethylazanium 2-amino-4-nitrobenzoate, C2H8N+·C7H5N2O4−, (I, and dibutylazanium 2-amino-4-nitrobenzoate, C8H20N+·C7H5N2O4−, (II. The asymmetric unit of (I comprises a single cation and a single anion. In the anion, small twists are noted for the carboxylate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13 and 3.71 (15°, respectively; the dihedral angle between the substituents is 7.9 (2°. The asymmetric unit of (II comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+-antiperiplanar] conformation, while one has a distinctive kink resulting in a (+-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxylate and nitro groups and the ring being 12.73 (6 and 4.30 (10°, respectively, for the first anion and 8.1 (4 and 12.6 (3°, respectively, for the second. The difference between anions in (I and (II is that in the anions of (II, the terminal groups are conrotatory, forming dihedral angles of 17.02 (8 and 19.0 (5°, respectively. In each independent anion of (I and (II, an intramolecular amino-N—H...O(carboxylate hydrogen bond is formed. In the crystal of (I, anions are linked into a jagged supramolecular chain by charge-assisted amine-N—H...O(carboxylate hydrogen bonds and these are connected into layers via charge-assisted ammonium-N—H...O(carboxylate hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N—O...π(arene and methyl-C—H...O(nitro interactions. In the crystal of (II, the anions are connected into four-ion aggregates by charge-assisted amino-N—H...O(carboxylate hydrogen bonding. The formation of ammonium-N—H...O(carboxylate hydrogen bonds, involving

  18. Mechanistic Investigation into the Decarboxylation of Aromatic Carboxylic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P F; Buchanan, III, A C; Eskay, T P; Mungall, W S

    1999-08-22

    It has been proposed that carboxylic acids and carboxylates are major contributors to cross-linking reactions in low-rank coals and inhibit its thermochemical processing. Therefore, the thermolysis of aromatic carboxylic acids was investigated to determine the mechanisms of decarboxylation at temperatures relevant to coal processing, and to determine if decarboxylation leads to cross-linking (i.e., formation of more refractory products). From the thcrmolysis of simple and polymeric coal model compounds containing aromatic carboxylic acids at 250-425 °C, decarboxylation was found to occur primarily by an acid promoted ionic pathway. Carboxylate salts were found to enhance the decarboxylation rate, which is consistent with the proposed cationic mechanism. Thermolysis of the acid in an aromatic solvent, such as naphthalene, produced a small amount of arylated products (~5 mol%)), which constitute a low-temperature cross-link. These arylated products were formed by the rapid decomposition of aromatic anhydrides, which are in equilibrium with the acid. These anhydrides decompose by a free radical induced decomposition pathway to form atyl radicals that can add to aromatic rings to form cross-links or abstract hydrogen. Large amounts of CO were formed in the thennolysis of the anhydrides which is consistent with the induced decomposition pathway. CO was also formed in the thermolysis of the carboxylic acids in aromatic solvents which is consistent with the formation and decomposition of the anhydride. The formation of anhydride linkages and cross-links was found to be very sensitive to the reactions conditions. Hydrogen donor solvents, such as tetralin, and water were found to decrease the formation of arylated products. Silar reaction pathways were also found in the thermolysis of a polymeric model that contained aromatic carboxylic acids. In this case, anhydride formation and decomposition produced an insoluble polymer, while the O-methylated polymer and the non-carboxylated

  19. Model for the origin of carboxylic acids in basinal brines

    Science.gov (United States)

    Seewald, Jeffrey S.

    2001-11-01

    Carboxylic acids are ubiquitous in basinal brines from petroleum-producing sedimentary basins. Although the absolute concentrations of individual short-chain acids vary systematically over many orders of magnitude, relative abundances are characterized by approximately constant ratios. Laboratory experiments have demonstrated that oxidation of aqueous n-alkanes proceeds through a sequence of reactions involving alkene, alcohol, ketone, and carboxylic acid reaction intermediaries. The highly specific nature of these reactions allows the relative distribution of carboxylic acids produced during oxidation of n-alkanes to be predicted quantitatively as a function of petroleum composition. A model based on the results of laboratory experiments was developed to account for the thermogenic production of aqueous carboxylic acids in sedimentary basins. Model predictions are highly consistent with the distribution of carboxylic acids observed in nature. This result suggests that hydrocarbon oxidation reactions may be pervasive during petroleum maturation in sedimentary basins. Likely oxidizing agents include ferric iron-bearing aluminosilicates, oxides, and hydroxides, pyrite, sulfate-bearing minerals, and water. Such chemical interactions allow inorganic sedimentary components to act as sources of oxygen for the formation of oxygenated organic alteration products. Accordingly, the absolute amount and timing of carboxylic acid generation may not be limited by the compositional evolution of kerogen, as suggested by previous models.

  20. Controlled Electrochemical Carboxylation of Graphene To Create a Versatile Chemical Platform for Further Functionalization

    DEFF Research Database (Denmark)

    Bjerglund Pedersen, Emil; Kongsfelt, Mikkel; Shimizu, Kyoko

    2014-01-01

    An electrochemical approach is introduced for the versatile carboxylation of multi-layered graphene in 0.1 M Bu4NBF4/MeCN. First, the graphene substrate (i.e., graphene chemically vapor-deposited on Ni) is negatively charged at -1.9 V versus Ag/AgI in a degassed solution to allow for intercalation...... of Bu4N+ and, thereby, separation of the individual graphene sheets. In the next step, the strongly activated and nucleophilic graphene is allowed to react with added carbon dioxide in an addition reaction, introducing carboxylate groups stabilized by Bu4N+ already present. This procedure may be carried...... solution at the graphene electrode for a given time. The same functionalization degree is obtained for all multi-layered regions, independent of the number of graphene sheets, which is due to the fact that the entire graphene structure is opened in response to the intercalation of Bu4N+. Hence...

  1. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  2. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): Heavy atom effect

    Science.gov (United States)

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-12-01

    In this study the effect of carboxylic group substitution in the 2 and 5 position of indole ring on the photophysics of the parent indole chromophore has been studied. The photophysical parameters crucial in triplet state decay mechanism of aqueous indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C) have been determined applying our previously proposed methodology based on the heavy atom effect and fluorescence and phosphorescence decay kinetics [Kowalska-Baron et al., 2012]. The determined time-resolved phosphorescence spectra of I2C and I5C are red-shifted as compared to that of the parent indole. This red-shift was especially evident in the case of I2C and may indicate the possibility of hydrogen bonded complex formation incorporating carbonyl Cdbnd O, the NH group of I2C and, possibly, surrounding water molecules. The possibility of the excited state charge transfer process and the subsequent electronic charge redistribution in such a hydrogen bonded complex may also be postulated. The resulting stabilization of the I2C triplet state is manifested by its relatively long phosphorescence lifetime in aqueous solution (912 μs). The relatively short phosphorescence lifetime of I5C (56 μs) may be the consequence of more effective ground-state quenching of I5C triplet state. This hypothesis may be strengthened by the significantly larger value of the determined rate constant of I5C triplet state quenching by its ground-state (4.4 × 108 M-1 s-1) as compared to that for indole (6.8 × 107 M-1 s-1) and I2C (2.3 × 107 M-1 s-1). The determined bimolecular rate constant for triplet state quenching by iodide kqT1 is equal to 1 × 104 M-1 s-1; 6 × 103 M-1 s-1 and 2.7 × 104 M-1 s-1 for indole, I2C and I5C, respectively. In order to obtain a better insight into iodide quenching of I2C and I5C triplet states in aqueous solution, the temperature dependence of the bimolecular rate constants for iodide quenching of the triplet states has been expressed in

  3. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  4. Stomatin inhibits pannexin-1-mediated whole-cell currents by interacting with its carboxyl terminal.

    Directory of Open Access Journals (Sweden)

    Haiying Zhan

    Full Text Available The pannexin-1 (Panx1 channel (often referred to as the Panx1 hemichannel is a large-conductance channel in the plasma membrane of many mammalian cells. While opening of the channel is potentially detrimental to the cell, little is known about how it is regulated under physiological conditions. Here we show that stomatin inhibited Panx1 channel activity. In transfected HEK-293 cells, stomatin reduced Panx1-mediated whole-cell currents without altering either the total or membrane surface Panx1 protein expression. Stomatin coimmunoprecipitated with full-length Panx1 as well as a Panx1 fragment containing the fourth membrane-spanning domain and the cytosolic carboxyl terminal. The inhibitory effect of stomatin on Panx1-mediated whole-cell currents was abolished by truncating Panx1 at a site in the cytosolic carboxyl terminal. In primary culture of mouse astrocytes, inhibition of endogenous stomatin expression by small interfering RNA enhanced Panx1-mediated outward whole-cell currents. These observations suggest that stomatin may play important roles in astrocytes and other cells by interacting with Panx1 carboxyl terminal to limit channel opening.

  5. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested a...

  6. Crystal structure of 7,7-dimethyl-6-methylidenetricyclo[6.2.1.01,5]undecane-2-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Noureddine Beghidja

    2015-02-01

    Full Text Available In the title compound, C15H22O2, both five-membered rings display an envelope conformation whereas the six-membered ring displays a chair conformation. In the crystal, pairs of O—H...O hydrogen bonds between carboxylic groups link molecules, related by a twofold rotation axis, into supramolecular dimers.

  7. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang

    2014-11-07

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  8. Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

    KAUST Repository

    Aljohani, Hind Abdullah

    2016-05-22

    Nanoparticles (NPs) are the basis of nanotechnology and finding numerous applications in various fields such as health, electronics, environment, personal care products, transportation, and catalysis. To fulfill these functions, the nanoparticles must be synthesized, passivated to control their chemical reactivity, stabilized against aggregation and functionalized to achieve specific performances. The chemistry of metal nanoparticles especially that of noble metals (Gold, Platinum…) is a growing field. The nanoparticles have indeed different properties from those of the corresponding bulk material. These properties are largely influenced by several parameters; the most important are the size, shape, and the local environment of the nanoparticles. One of the most common synthetic methods for the preparation of gold nanoparticles (AuNPs) is based on stabilization by citrate. Since it was reported first by Turkevich et al. in 1951, this synthetic scheme has been widely used, studied and a substantial amount of important information regarding this system has been reported in the literature. The most popular method developed by Frens for controlling the size of the noble gold nanoparticles based on citrate was achieved by varying the concentration of sodium citrate. Despite a large number of investigations focused on utilizing Cit-AuNPs, the structural details of citrate anions adsorbed on the AuNP surface are still unknown. It is known only that citrate anions “coordinate” to the metal surface by inner sphere complexation of the carboxylate groups and there are trace amounts of AuCl4−, Cl−, and OH− on the metal surface. Moreover, it is generally accepted that the ligand shell morphology of Au nanoparticles can be partly responsible for important properties such as oxidation of carbon monoxide. The use of Au-NPs in heterogeneous catalysis started mostly with Haruta who discovered the effect of particle size on the activity for carbon monoxide oxidation at

  9. Chemical Force Microscopy Study on the Interactions of COOH Functional Groups with Kaolinite Surfaces: Implications for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nipada Santha

    2017-12-01

    Full Text Available Clay–oil interactions play a critical role in determining the wettability of sandstone oil reservoirs, which, in turn, governs the effectiveness of enhanced oil recovery methods. In this study, we have measured the adhesion between –COOH functional groups and the siloxane and aluminol faces of kaolinite clay minerals by means of chemical force microscopy as a function of pH, salinity (from 0.001 M to 1 M and cation identity (Na+ vs. Ca2+. Results from measurements on the siloxane face show that Ca2+ displays a reverse low-salinity effect (adhesion decreasing at higher concentrations at pH 5.5, and a low salinity effect at pH 8. At a constant Ca2+ concentration of 0.001 M, however, an increase in pH leads to larger adhesion. In contrast, a variation in the Na+ concentration showed less effect in varying the adhesion of –COOH groups to the siloxane face. Measurements on the aluminol face showed a reverse low-salinity effect at pH 5.5 in the presence of Ca2+, whereas an increase in pH with constant ion concentration resulted in a decrease in adhesion for both Ca2+ and Na+. Results are explained by looking at the kaolinite’s surface complexation and the protonation state of the functional group, and highlight a more important role of the multicomponent ion exchange mechanism in controlling adhesion than the double layer expansion mechanism.

  10. Pd(II)-catalyzed ligand controlled synthesis of pyrazole-4-carboxylates and benzo[b]thiophene-3-carboxylates.

    Science.gov (United States)

    Dhage, Yogesh Daulat; Daimon, Hiroki; Peng, Cheng; Kusakabe, Taichi; Takahashi, Keisuke; Kanno, Yuichiro; Inouye, Yoshio; Kato, Keisuke

    2014-11-21

    Cyclization-carbonylation of α,β-alkynic hydrazones and (o-alkynylphenyl) (methoxymethyl) sulfides with Pd(tfa)2 in DMSO/MeOH afforded methyl pyrazole-4-carboxylates and benzo[b]thiophene-3-carboxylates, respectively, in good yields. A simple change of the ligand (solvent) allowed controlled, effective switching between cyclization-carbonylation-cyclization-coupling (CCC-coupling) reactions and cyclization-carbonylation reactions.

  11. Surface structure determination of group 11 metals adsorbed on a rhenium(10 anti 10) surface by low-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Messahel, Lyria

    2012-11-12

    This thesis deals with the computational surface determination of various long-range ordered phases formed by thin films of copper, silver, and gold adsorbed on the rhenium- (10 anti 10) surface. It is based upon LEED-I,V curves for these phases that were recorded in the course of detailed experimental investigations of the respective films carried out in our group (using techniques such as LEED, MEED, and TPD). In order to solve the intricate puzzle of surface structural analysis, the electron elastic scattering behaviour of the investigated coinage metal phases was calculated using the Erlangen TensErLEED program package. Thereby first a set of theoretical LEED-I,V curves is derived for a guessed reference structure. Subsequently its structural input parameters are varied in a trial-and-error procedure until optimal agreement between experiment and theory is attained. The (1 x 1) phases formed by the deposited metals were tackled first to establish an absolute coverage calibration and to elucidate the respective growth modes on the Re(10 anti 10) surface. In all three cases the (1 x 1) structure is developed best at a coverage {Theta}{sub Cu,Ag,Au}=2 ML=1 BL. Extension of the investigation to experimental I,V curves for higher Cu coverages revealed that this element continues to grow bilayerwise, thereby retaining the Re hcp morphology. Ag, in contrast to Cu and Au, happens not to grow as homogeneously, and the TPD data suggest that Ag films exhibit the so-called simultaneous-multilayer (SM) growth mode. The following analysis of the sub-bilayer coverage range shows that the three systems exhibit considerable differences. While Cu, having a negative lattice misfit compared to Re, shows no long-range ordered superstructures, Ag and Au with a similar positive misfit form a couple of such phases. Ag features both a (1 x 4) phase, stable at ambient temperatures, that upon heating transforms into a c(2 x 2) phase that only exists at elevated temperatures. The

  12. Surface structure determination of group 11 metals adsorbed on a rhenium(10 anti 10) surface by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Messahel, Lyria

    2012-01-01

    This thesis deals with the computational surface determination of various long-range ordered phases formed by thin films of copper, silver, and gold adsorbed on the rhenium- (10 anti 10) surface. It is based upon LEED-I,V curves for these phases that were recorded in the course of detailed experimental investigations of the respective films carried out in our group (using techniques such as LEED, MEED, and TPD). In order to solve the intricate puzzle of surface structural analysis, the electron elastic scattering behaviour of the investigated coinage metal phases was calculated using the Erlangen TensErLEED program package. Thereby first a set of theoretical LEED-I,V curves is derived for a guessed reference structure. Subsequently its structural input parameters are varied in a trial-and-error procedure until optimal agreement between experiment and theory is attained. The (1 x 1) phases formed by the deposited metals were tackled first to establish an absolute coverage calibration and to elucidate the respective growth modes on the Re(10 anti 10) surface. In all three cases the (1 x 1) structure is developed best at a coverage Θ Cu,Ag,Au =2 ML=1 BL. Extension of the investigation to experimental I,V curves for higher Cu coverages revealed that this element continues to grow bilayerwise, thereby retaining the Re hcp morphology. Ag, in contrast to Cu and Au, happens not to grow as homogeneously, and the TPD data suggest that Ag films exhibit the so-called simultaneous-multilayer (SM) growth mode. The following analysis of the sub-bilayer coverage range shows that the three systems exhibit considerable differences. While Cu, having a negative lattice misfit compared to Re, shows no long-range ordered superstructures, Ag and Au with a similar positive misfit form a couple of such phases. Ag features both a (1 x 4) phase, stable at ambient temperatures, that upon heating transforms into a c(2 x 2) phase that only exists at elevated temperatures. The structure

  13. Preparation of polybutylene terephthalate/silica nanocomposites by melt compounding: Evaluation of surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Hajiraissi, Roozbeh [Young Researchers Club, Islamic Azad University, Bushehr Branch, Bushehr (Iran, Islamic Republic of); Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of)

    2011-08-01

    Influence of nanosilica on surface properties of poly(butylene terephthalate) was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). FTIR results indicated that surface groups of silica have some interfacial interactions and bonding with carboxyl or hydroxyl end groups of PBT chains. AFM and SEM figures of the resultant nanocomposites illustrated increased surface roughness compared to pure PBT. Optical properties of nanocomposite films were finally determined by the aid of reflectance spectrophotometer.

  14. Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility

    International Nuclear Information System (INIS)

    Mochizuki, Akira; Ogawa, Tatsuhisa; Okamoto, Keishi; Nakatani, Tatsuyuki; Nitta, Yuki

    2011-01-01

    From the knowledge that zwitterion-type polymers show good blood compatibility, the introduction of both cationic and anionic functional groups onto diamond-like carbon (DLC) surface is expected to improve blood compatibility. Thus, DLC films were treated with oxygen and ammonia gas plasmas. The surfaces were characterized in terms of chemical composition by XPS, contact angle, and zeta potential. XPS analysis showed the introductions of a carboxyl group by oxygen plasma treatment and nitrogen atoms by ammonia plasma treatment. The evaluation of blood compatibility for the DLC surfaces was carried out in terms of platelets and the coagulation system. Excellent improvement of platelet compatibility was observed by the treatment with the gas plasmas, regardless of the plasma species. As for the compatibility with the coagulation system, DLC surfaces with a high concentration of carboxyl groups (COOH) markedly activated the system via the intrinsic pathway. However, the surfaces treated with ammonia plasma did not activate the system even though they had high COOH concentration. Measurement of the zeta potential revealed that the ammonia plasma treatment raised the potential from a negative value to a positive one. Though the introduction of amino groups to the surface was not detected directly, the treatment of ammonia plasma changed the electrical state of the DLC surface having COOH group, causing a difference in blood compatibility among the DLCs obtained by various plasma conditions.

  15. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Science.gov (United States)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-11-01

    The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  16. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    Energy Technology Data Exchange (ETDEWEB)

    Cuiqin, Fang; Jinxian, Wu [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Julin, Wang, E-mail: wjl@mail.buct.edu.cn [Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Tao, Zhang [Beijing Institute of Ancient Architecture, Beijing 100050 (China)

    2015-11-30

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  17. Modification of carbon fiber surfaces via grafting with Meldrum's acid

    International Nuclear Information System (INIS)

    Cuiqin, Fang; Jinxian, Wu; Julin, Wang; Tao, Zhang

    2015-01-01

    Graphical abstract: - Highlights: • The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated. • The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid. • The relative content of carboxylic groups on carbon fiber surfaces was increased. • The surfaces of carbon fibers neither etched nor generated coating. • Tensile strength of carbon fibers was preserved after grafting reaction. - Abstract: The mechanism of Meldrum's acid modifying carbon fiber surfaces was investigated in this work. The existing carbonyl groups of carbon fibers were grafted with Meldrum's acid to create carboxylic functionalized surfaces. The surface functionalization effect was detected with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). The XPS results showed that the relative content of carboxylic groups on carbon fiber surfaces was increased from initial 1.41% to 7.84%, however, that of carbonyl groups was decreased from 23.11% to 13.28% after grafting reaction. The SEM, AFM and TGA results indicated that the surfaces of carbon fibers neither etched nor generated coating. The tensile strength of carbon fibers was preserved after grafting reaction according to single fiber tensile strength tests. The fibers were well combined with matrix and the maximal interlaminar shear strength (ILSS) of carbon fiber/epoxy resin composites was sharply increased approximately 74% after functionalization. The effects of acetic acid and sonication on the degree of the surface functionalization were also studied.

  18. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    Science.gov (United States)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  19. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    Science.gov (United States)

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  20. Synthesis and Optical Properties of Pentamethine Cyanine Dyes With Carboxylic Acid Moieties

    Directory of Open Access Journals (Sweden)

    Tyler L Dost

    2017-05-01

    Full Text Available Cyanine dyes possessing carboxylic acid groups have been used in many different fields of study. The acid groups can act as handles for bioconjugation or as metal chelators. Several pentamethine cyanine dyes with propionic acid handles were synthesized and their optical properties were studied to determine their usefulness as fluorescent probes. The optical properties studies performed include the absorbance and emission maxima values as well as the calculation of quantum yield and molecular brightness levels. Molecular models were also calculated to help analyze the dyes’ behavior and were compared with similar dyes with varying alkyl chain lengths replacing the acid moieties.

  1. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  2. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m...

  3. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    OpenAIRE

    Song, Min; Xu, Juan; Wu, Changzi

    2012-01-01

    In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH), thiol-functionalized graphene (graphene-SH), and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene sus...

  4. Syn vs Anti Carboxylic Acids in Hybrid Peptides: Experimental and Theoretical Charge Density and Chemical Bonding Analysis.

    Science.gov (United States)

    Pal, Rumpa; Reddy, M B Madhusudana; Dinesh, B; Venkatesha, Manjunath A; Grabowsky, Simon; Jelsch, Christian; Guru Row, Tayur N

    2018-04-12

    A comparative study of syn vs anti carboxylic acids in hybrid peptides based on experimental electron density studies and theoretical calculations shows that, in the anti form, all three bond angles surrounding C carboxyl of the -COOH group are close to ∼120°, as expected for a C-sp 2 atom, whereas in the syn form, the ∠C α -C(O)-O hydroxyl angle is significantly smaller by 5-10°. The oxygen atom in the carboxyl group is more electronegative in the anti form, so the polarity of the acidic O-H bond is higher in the anti form compared to the syn form, as observed within the limitations of H atom treatment in X-ray diffraction. Consequently, the investigated anti carboxylic acid forms the strongest O-H···O hydrogen bond among all model compounds. Furthermore, according to natural bond orbital analysis, the oxygen lone pairs are clearly nonequivalent, as opposed to the general notion of hybridization of equivalent sp 2 and sp 3 lone pairs on carbonyl or hydroxyl oxygen atoms. The hybridization of the lone pairs is directly related to the directionality and strength of hydrogen bonds.

  5. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst.

    Science.gov (United States)

    Korstanje, Ties J; van der Vlugt, Jarl Ivar; Elsevier, Cornelis J; de Bruin, Bas

    2015-10-16

    The reduction of esters and carboxylic acids to alcohols is a highly relevant conversion for the pharmaceutical and fine-chemical industries and for biomass conversion. It is commonly performed using stoichiometric reagents, and the catalytic hydrogenation of the acids previously required precious metals. Here we report the homogeneously catalyzed hydrogenation of carboxylic acids to alcohols using earth-abundant cobalt. This system, which pairs Co(BF4)2·6H2O with a tridentate phosphine ligand, can reduce a wide range of esters and carboxylic acids under relatively mild conditions (100°C, 80 bar H2) and reaches turnover numbers of up to 8000. Copyright © 2015, American Association for the Advancement of Science.

  6. Analytical study of zirconium and hafnium α-hydroxy carboxylates

    International Nuclear Information System (INIS)

    Terra, V.R.

    1991-01-01

    The analytical study of zirconium and hafnium α-hydroxy carboxylates was described. For this purpose dl-mandelic, dl-p-bromo mandelic, dl-2-naphthyl glycolic, and benzilic acids were prepared. These were used in conjunction with glycolic, dl-lactic, dl-2-hydroxy isovaleric, dl-2-hydroxy hexanoic, and dl-2-hydroxy dodecanoic acids in order to synthesize the zirconium(IV) and hafnium(IV) tetrakis(α-hydroxy carboxylates). The compounds were characterized by melting point determination, infrared spectroscopy, thermogravimetric analysis, calcination to oxides and X-ray diffractometry by the powder method. (C.G.C)

  7. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess....... Consequently, the observed endothermic dissolution process is mainly attributed to the hindering of polar interactions. Furthermore, upon mixing of two carboxylic acids, the rearrangement of hydrogen bonds due to the formation of cross associating species results in an insignificant contribution to the heats...

  8. Aliphatic carboxylic acids and ketones from sapropelitic coals

    Energy Technology Data Exchange (ETDEWEB)

    Bodoev, N.V.; Rokosov, Y.V.; Koptyug, V.A. (USSR Academy of Sciences, Kemerovo (USSR). Institute of Coal)

    1990-02-01

    Normal aliphatic carboxylic acids and ketones obtained from the extraction of Taimylyr (Lensky basin, USSR) or Matagan (Irkutsky basin, USSR) sapropelitic coal with water and sodium hydroxide at elevated pressure and temperatures from 400 to 450{degree}C were investigated. The compositions of these compounds were studied by i.r. and n.m.r. spectroscopy, and combined g.c.-m.s.. The possible pathways of aliphatic carboxylic acids and ketones formation during the fossilization process are discussed. 9 refs., 6 figs., 1 tab.

  9. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  10. First principles-based adsorption comparison of group IV elements (C, Si, Ge, and Sn) on Au(111)/Ag(111) surface

    International Nuclear Information System (INIS)

    Chakraborty, Sudip; Rajesh, Ch.

    2012-01-01

    We have reported a first-principle investigation of the structural properties of monomer and dimer for group IV elements (C, Si, Ge, and Sn) adsorbed on the Au(111) and Ag(111) surfaces. The calculations were performed by means of a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of adatom to be adsorbed on the hexagonal closed packed site of the metal (111) surfaces with strong binding energy. The structures introduce interlayer forces in the adsorbate. The strong bonding with the surface atoms is a result of p–d hybridization. The adsorption energy follows a sequence as one goes down in the group IV elements which imply that the interaction of the group IV elements with Au/Ag is decreasing as the atomic number increases.

  11. Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon.

    Science.gov (United States)

    Tang, Lin; Zhang, Sheng; Zeng, Guang-Ming; Zhang, Yi; Yang, Gui-De; Chen, Jun; Wang, Jing-Jing; Wang, Jia-Jia; Zhou, Yao-Yu; Deng, Yao-Cheng

    2015-05-01

    The ordered mesoporous carbon composite functionalized with carboxylate groups and iron oxide nanoparticles (Fe/OMC) was successfully prepared and used to adsorb 2,4-dichlorophenoxyacetic acid (2,4-D) from wastewater. The resultant adsorbent possessed high degree of order, large specific surface area and pore volume, and good magnetic properties. The increase in initial pollutant concentration and contact time would make the adsorption capacity increase, but the pH and temperature are inversely proportional to 2,4-D uptake. The equilibrium of adsorption was reached within 120 min, and the equilibrated adsorption capacity increased from 99.38 to 310.78 mg/g with the increase of initial concentration of 2,4-D from 100 to 500 mg/L. Notablely, the adsorption capacity reached 97% of the maximum within the first 5 min. The kinetics and isotherm study showed that the pseudo-second-order kinetic and Langmuir isotherm models could well fit the adsorption data. These results indicate that Fe/OMC has a good potential for the rapid adsorption of 2,4-D and prevention of its further diffusion. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications.

    Science.gov (United States)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H

    2014-06-21

    Biosensor chips for immune-based assay systems have been investigated for their application in early diagnostics. The development of such systems strongly depends on the effective protein immobilization on polymer substrates. In order to achieve this complex heterogeneous interaction the polymer surface must be functionalized with chemical groups that are reactive towards proteins in a way that surface functional groups (such as carboxyl, -COOH; amine, -NH2; and hydroxyl, -OH) chemically or physically anchor the proteins to the polymer platform. Since the proteins are very sensitive towards their environment and can easily lose their activity when brought in close proximity to the solid surface, effective surface functionalization and high level of control over surface chemistry present the most important steps in the fabrication of biosensors. This paper reviews recent developments in surface functionalization and preparation of polymethacrylates for protein immobilization. Due to their versatility and cost effectiveness, this particular group of plastic polymers is widely used both in research and in industry.

  13. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-10-15

    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  14. Molecular Engineering of Smart Polymer Surfaces

    National Research Council Canada - National Science Library

    Koberstein, Jeffrey

    1999-01-01

    ...; when the surface is placed against poly(methyl methacrylate), release behavior is observed. Bonding to the latter substrate can be enhanced by replacing the silane functionality with a carboxylic acid...

  15. 6-(Hex-5-enyloxynaphthalene-2-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Md. Lutfor Rahman

    2014-06-01

    Full Text Available The asymmetric unit of the title compound, C17H18O3, comprises three independent molecules with similar geometries. In each molecule, the carbonyl group is twisted away from the napthalene ring system, making dihedral angles of 1.0 (2, 1.05 (19° and 1.5 (2°. The butene group in all three molecules are disordered over two sets of sites, with a refined occupancy ratio of 0.664 (6:0.336 (6. In the crystal, molecules are oriented with respect to their carbonyl groups, forming head-to-head dimers via O—H...O hydrogen bonds. Adjacent dimers are further interconnected by C—H...O hydrogen bonds into chains along the a-axis direction. The crystal structure is further stabilized by weak C—H...π interactions.

  16. Engineering Copper Carboxylate Functionalities on Water Stable Metal–Organic Frameworks for Enhancement of Ammonia Removal Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jayraj N.; Garcia-Gutierrez, Erika Y.; Moran, Colton M.; Deneff, Jacob I.; Walton, Krista S.

    2017-02-02

    Functionalization of copper carboxylate groups on a series of UiO-66 metal organic framework (MOF) analogues and their corresponding impact on humid and dry ammonia adsorption behavior were studied. Relative locations of possible carboxylic acid binding sites for copper on the MOF analogues were varied on ligand and missing linker defect sites. Materials after copper incorporation exhibited increased water vapor and ammonia affinity during isothermal adsorption and breakthrough experiments, respectively. The introduction of copper markedly increased ammonia adsorption capacities for all adsorbents possessing carboxyl binding sites. In particular, the new MOF UiO-66-(COOCu)2 displayed the highest ammonia breakthrough capacities of 6.38 and 6.84 mmol g–1 under dry and humid conditions, respectively, while retaining crystallinity and porosity. Relative carboxylic acid site locations were also found to impact sorbent stability, as missing linker defect functionalized materials degraded under humid conditions after copper incorporation. Postsynthetic metal insertion provides a method for adding sites that are analogous to open metal sites while maintaining good structural stability.

  17. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A temperature induced ferrocene–ferrocenium interconversion in a ferrocene functionalized μ3-O chromium carboxylate

    International Nuclear Information System (INIS)

    Mereacre, Valeriu; Schlageter, Martin; Powell, Annie K.

    2015-01-01

    The infrared spectra and 57 Fe Mössbauer measurements of a ferrocenecarboxylate functionalized {Cr 3 O} complex in solid state are reported. It was established that conjugation of ferrocene Cp orbitals with the π orbitals of the adjacent carboxylic group stabilizes the trapped mixed-valence state leading to an intriguing coexistence of ferrocene and ferrocenium species giving rise to a new type of compound showing valence tautomerism in the solid state. - Highlights: • A stabilized ferrocene trapped mixed-valence state is reported. • New type of compound showing valence tautomerism in solid state. • A thermally induced electron transfer and a mixed-valence state near room temperature

  19. and copper(II)-imidazolium carboxylates: Efficient catalysts in ...

    Indian Academy of Sciences (India)

    GANESAN PRABUSANKAR

    Copper(II); Silver(I); Coordination polymer; Imidazolium ion; Ullmann coupling. 1. Introduction ... modified cobalt-imdizolium carboxylate-mediated syn- thesis of .... Coordination polymer as catalyst. 555 the crude compound. The crude compound was adsorbed on silica gel (100–200 mesh) for purification; then, petroleum.

  20. Sodium borohydride reduction of aromatic carboxylic acids via ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A number of important aromatic carboxylic acids precursors, or intermediates in the syntheses of natural products, are converted into methyl esters and reduced to the corresponding primary alcohols using a sodium borohydride–THF–methanol system. The alcohols are obtained in 70–92% yields in 2–. 5 hours, in ...

  1. Carboxylic acid terminated, solution exfoliated graphite by organic ...

    Indian Academy of Sciences (India)

    under mild conditions using succinic anhydride as acylating agent and anhydrous aluminum chloride as Lewis acid. Such reaction renders towards the carboxylic acid terminated graphite nanosheets (SEGn–FC) that usually requires harsh reaction conditions. The product thus obtained was characterized using various ...

  2. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph...

  3. Modification of polysulfone with pendant carboxylic acid functionality ...

    Indian Academy of Sciences (India)

    271–276. c Indian Academy of Sciences. Modification of polysulfone with pendant carboxylic acid functionality for ultrafiltration membrane applications. ANNADANAM V SESHA SAINATH†,∗ and A V R REDDY. ∗. Reverse Osmosis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364 002, ...

  4. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 2 ... Metal carboxylates; ring opening reactions; cyclic anhydrides; structural study. Abstract. Hydrolytic and solvolytic ring opening reactions of phthalic anhydride, pyromellitic dianhydride and 2,3-pyridine dicarboxylic anhydride in the presence of various ...

  5. Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus

    Science.gov (United States)

    The fungus Rhizopus is frequently used for fermentative production of lactic acid, but little is known about the mechanisms or proteins for transporting this carboxylic acid. Since transport of the lactate anion across the plasma membrane is critical to prevent acidification of the cytoplasm, we ev...

  6. Amplification of 1-amino-cyclopropane-1-carboxylic (ACC ...

    African Journals Online (AJOL)

    Experiments were conducted in pots to determine the growth effect of different rhizobacteria on maize under Striga hermonthica infestation. Three bacteria were selected based on their plant growth promoting effects. Whole bacterial cells of the rhizobacteria were used to amplify 1-amino-cyclopropane-1-carboxylic acid ...

  7. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  8. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Oxalate and malonate inPM2.5 and acetate in PM10 were most abundant carboxylates accounting for 64% and 62 % of total acids, respectively. Mg2+ was most important cation in PM2.5 and PM10 accounting for 44 % and 24 % of total water-soluble ions, respectively, whereas SO4 2- was the main anionic component ...

  9. Spectroscopic Study of the Interaction of Carboxyl-Modified Gold Nanoparticles with Liposomes of Different Chain Lengths and Controlled Drug Release by Layer-by-Layer Technology.

    Science.gov (United States)

    Kanwa, Nishu; De, Soumya Kanti; Adhikari, Chandan; Chakraborty, Anjan

    2017-12-21

    In this article, we investigate the interactions of carboxyl-modified gold nanoparticles (AuC) with zwitterionic phospholipid liposomes of different chain lengths using a well-known membrane probe PRODAN by steady-state and time-resolved spectroscopy. We use three zwitterionic lipids, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), which are widely different in their phase transition temperatures to form liposome-AuC assemblies. The steady-state and time-resolved studies indicate that the AuC brings in stability toward liposomes by local gelation. We observe that the bound AuC detach from the surface of the liposomes under pH ≈ 5 due to protonation of the carboxyl group, thus eliminating the electrostatic interaction between nanoparticles and head groups of liposomes. The detachment rate of AuC from the liposome-AuC assemblies is different for the aforementioned liposomes due to differences in their fluidity. We exploited the phenomena for the controlled release of a prominent anticancer drug Doxorubicin (DOX) under acidic conditions for different zwitterionic liposomes. The drug release rate was further optimized by coating of liposome-AuC assemblies with oppositely charged polymer (P), polydiallyldimethylammonium chloride, followed by a mixture of lipids L (DMPC:DMPG) and again with a polymer in a layer-by-layer fashion to obtain capsule-like structures. This system is highly stable for weeks, as confirmed by field-emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM) imaging, and inhibits premature release. The layer coating was confirmed by hydrodynamic size and zeta potential measurements of the systems. The capsules obtained are of immense importance as they can control release of the drug from the systems to a large extent.

  10. Carbon Nanotube Web with Carboxylated Polythiophene "Assist" for High-Performance Battery Electrodes.

    Science.gov (United States)

    Kwon, Yo Han; Park, Jung Jin; Housel, Lisa M; Minnici, Krysten; Zhang, Guoyan; Lee, Sujin R; Lee, Seung Woo; Chen, Zhongming; Noda, Suguru; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C; Reichmanis, Elsa

    2018-01-19

    A carbon nanotube (CNT) web electrode comprising magnetite spheres and few-walled carbon nanotubes (FWNTs) linked by the carboxylated conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was designed to demonstrate benefits derived from the rational consideration of electron/ion transport coupled with the surface chemistry of the electrode materials components. To maximize transport properties, the approach introduces monodispersed spherical Fe 3 O 4 (sFe 3 O 4 ) for uniform Li + diffusion and a FWNT web electrode frame that affords characteristics of long-ranged electronic pathways and porous networks. The sFe 3 O 4 particles were used as a model high-capacity energy active material, owing to their well-defined chemistry with surface hydroxyl (-OH) functionalities that provide for facile detection of molecular interactions. PPBT, having a π-conjugated backbone and alkyl side chains substituted with carboxylate moieties, interacted with the FWNT π-electron-rich and hydroxylated sFe 3 O 4 surfaces, which enabled the formation of effective electrical bridges between the respective components, contributing to efficient electron transport and electrode stability. To further induce interactions between PPBT and the metal hydroxide surface, polyethylene glycol was coated onto the sFe 3 O 4 particles, allowing for facile materials dispersion and connectivity. Additionally, the introduction of carbon particles into the web electrode minimized sFe 3 O 4 aggregation and afforded more porous FWNT networks. As a consequence, the design of composite electrodes with rigorous consideration of specific molecular interactions induced by the surface chemistries favorably influenced electrochemical kinetics and electrode resistance, which afforded high-performance electrodes for battery applications.

  11. Structural and Functional Models of Non-Heme Iron Enzymes : A Study of the 2-His-1-Carboxylate Facial Triad Structural Motif

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.

    2007-01-01

    The structural and functional modeling of a specific group of non-heme iron enzymes by the synthesis of small synthetic analogues is the topic of this thesis. The group of non-heme iron enzymes with the 2-His-1-carboxylate facial triad has recently been established as a common platform for the

  12. New photoresponsive (meth)acrylate (co)polymers containing azobenzene pendant sidegroups with carboxylic and dimethylamino substituents .2. Synthesis and characterization of polymers and copolymers

    NARCIS (Netherlands)

    Haitjema, HJ; Buruma, R; VanEkenstein, GORA; Tan, YY; Challa, G

    1996-01-01

    The title (co)polymers, used for our investigations on their photoresponsive behaviour were obtained by free radical (co)polymerization. The monomer was either an acrylate or a methacrylate to which an azobenzene group, modified with a para-placed dimethylamino or a carboxylic pendant group, was

  13. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....... on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains...

  14. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kaleekkal, Noel Jacob, E-mail: noeljacob89@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Thanigaivelan, A., E-mail: thanichemstar@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Rana, Dipak, E-mail: rana@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, K1N 6N5 (Canada); Mohan, D., E-mail: mohantarun@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India)

    2017-01-15

    In this work the graphene oxide prepared by the modified Hummers’ method was effectively carboxylated. These carboxylated graphene oxide (c-GO) microsheets was characterized by X-ray diffraction analysis, Raman shift, zeta potential, and their morphology was observed using a high resolution scanning/transmission electron microscopy. Polyetherimide mixed matrix membranes (MMMs) were fabricated by the non-solvent induced phase separation technique with varying concentration of this microsheet. The presence of these microsheets on the membrane surface was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and could also be confirmed visually by optical images. The membranes were further characterized; they showed a greater water flux, higher porosity, and sufficient thermal stability. Incorporation of these microsheets improved the hydrophilicity of the membrane confirmed by the lower contact angle values, which in turn explained the lower interfacial free energy, the increase in work of adhesion, the higher solid-vapor free energy and the spreading coefficient. Membranes loaded with 0.3 wt% of c-GO showed a flux recovery of 94% and only a small flux decline even after 180 min of filtration of humic acid (HA) solution. The efficiency of these membranes in removal of HA, toxic metal ions was also investigated. The bacterial anti-adhesion property of c-GO in the membranes was also explored using Escherichia coli, as a model bio-foulant. The charge of the microsheets and their unique architecture imparts higher hydrophilicity and greater fouling resistance along with improved permeation flux when incorporated into the polymer matrix. - Highlights: • Novel membranes by incorporating carboxylated GO into polyetherimide matrix. • Modified membranes exhibited greater porosity, flux and high humic acid rejection. • Nanoplatelets improved the flux recovery ratio to >94%. • Liquid phase polymer based retention utilized for toxic heavy metal

  15. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Junkuo [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ye, Kaiqi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); He, Mi [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xiong, Wei-Wei; Cao, Wenfang; Lee, Zhi Yi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Yue [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); Wu, Tom [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Huo, Fengwei [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Xiaogang [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore); Institute of Materials Research Engineering, Agency for Science, Technology and Research, Singapore 117602 (Singapore); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2013-10-15

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal–organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D) MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η{sup 1} mode to tetra-donor coordination µ{sub 3}-η{sup 1}:η{sup 2}:η{sup 1} mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (T{sub c}) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. - Graphical abstract: Surfactants have been used as reaction media to grow MOF single crystals for the first time. Eight new two-dimensional or three-dimensional MOFs were successfully synthesized in surfactant polyethylene glycol-200 (PEG-200). Coordination modes of carboxylates up to eight were founded. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. Display Omitted - Highlights: • Surfactant-thermal synthesis of crystalline metal–organic frameworks. • Eight new 2-D or 3-D metal–organic frameworks

  16. Investigating the interaction of aminopolycarboxylic acid (APCA) ligands with silver nanoparticles: A Raman, surface-enhanced Raman and density functional theoretical study

    Science.gov (United States)

    Maiti, Nandita; Malkar, Vishwabharati V.; Mukherjee, Tulsi; Kapoor, Sudhir

    2018-03-01

    Aminopolycarboxylic acid (APCA) ligands are polydentate chelating agents that have multiple binding sites viz. nitrogen atoms and short chain carboxylic groups and hence can form very stable complexes with metal ions. The interactions of these APCAs with silver nanoparticles have been investigated using surface-enhanced Raman scattering (SERS) which is supported with density functional theoretical (DFT) calculations using B3LYP functional and LANL2DZ basis set. From the observed enhancement of the CO2 symmetric stretching vibration, in addition to the red shift of ∼14-35 cm-1 for the various APCAs in the SERS spectra as well as theoretical calculations, it has been inferred that the APCAs are chemisorbed to the silver surface directly through the oxygen atoms of the carboxylate groups as well as the N atom of the substituted amino groups. The apparent enhancement factors for the CO2 symmetric stretching vibration of the APCAs are of the order of 106.

  17. Electrochemical immobilization of biomolecules on gold surface modified with monolayered L-cysteine

    International Nuclear Information System (INIS)

    Honda, Mitsunori; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Hirao, Norie

    2014-01-01

    Immobilization of organic molecules on the top of a metal surface is not easy because of lattice mismatch between organic and metal crystals. Gold atoms bind to thiol groups through strong chemical bonds, and a self-assembled monolayer of sulfur-terminated organic molecules is formed on the gold surface. Herein, we suggested that a monolayer of L-cysteine deposited on a gold surface can act as a buffer layer to immobilize biomolecules on the metal surface. We selected lactic acid as the immobilized biomolecule because it is one of the simplest carboxyl-containing biomolecules. The immobilization of lactic acid on the metal surface was carried out by an electrochemical method in an aqueous environment under the potential range varying from − 0.6 to + 0.8 V. The surface chemical states before and after the electrochemical reaction were characterized using X-ray photoelectron spectroscopy (XPS). The N 1s and C 1s XPS spectra showed that the L-cysteine-modified gold surface can immobilize lactic acid via peptide bonds. This technique might enable the immobilization of large organic molecules and biomolecules. - Highlights: • Monolayer l-cysteine deposited on Au surface as a buffer layer to immobilize biomolecules. • Lactic acid as the immobilized biomolecule as it is simple carboxyl-containing biomolecule. • X-ray photoelectron spectroscopy (XPS) of surface chemical states, before and after. • L-cysteine-modified Au surface can immobilize lactic acid via peptide bonds

  18. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    Energy Technology Data Exchange (ETDEWEB)

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. To assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.

  19. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  20. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  1. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  2. Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide.

    Science.gov (United States)

    Zhang, Honglei; Luo, Xiang; Shi, Kaiqi; Wu, Tao; He, Feng; Zhou, Shoubin; Chen, George Z; Peng, Chuang

    2017-09-11

    A new sulfonic/carboxylic dual-acid catalyst based on sulfur-rich graphene oxide (GO-S) was readily prepared and used as a highly efficient and reusable solid acid catalyst toward the esterification of oleic acid with methanol for biodiesel production. Higher yields of methyl oleate (98 %) and over 3 times higher turnover frequencies (TOFs) were observed for the GO-S dual-acid catalyst, compared to liquid sulfuric acid or other carbon-based solid acid catalysts. The "acidity" of sulfonic acid groups was enhanced by the addition of carboxylic acid groups as the combination of the two acids enhances their inherent activity by associative interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors.

    Science.gov (United States)

    Liu, Xia; Huang, Renliang; Su, Rongxin; Qi, Wei; Wang, Libing; He, Zhimin

    2014-08-13

    Antifouling surfaces capable of reducing nonspecific protein adsorption from natural complex media are highly desirable in surface plasmon resonance (SPR) biosensors. A new protein-resistant surface made through the chemical grafting of easily available hyaluronic acid (HA) onto gold (Au) substrate demonstrates excellent antifouling performance against protein adsorption. AFM images showed the uniform HA layer with a thickness of ∼10.5 nm on the Au surface. The water contact angles of Au surfaces decreased from 103° to 12° with the covalent attachment of a carboxylated HA matrix, indicating its high hydrophilicity mainly resulted from carboxyl and amide groups in the HA chains. Using SPR spectroscopy to investigate nonspecific adsorption from single protein solutions (bovine serum albumin (BSA), lysozyme) and complex media (soybean milk, cow milk, orange juice) to an HA matrix, it was found that ultralow or low protein adsorptions of 0.6-16.1 ng/cm(2) (e.g., soybean milk: 0.6 ng/cm(2)) were achieved on HA-Au surfaces. Moreover, anti-BSA was chosen as a model recognition molecule to characterize the immobilization capacity and the antifouling performance of anti-BSA/HA surfaces. The results showed that anti-BSA/HA sensor surfaces have a high anti-BSA loading of 780 ng/cm(2), together with achieving the ultralow (<3 ng/cm(2) for lysozyme and soybean milk) or low (<17 ng/cm(2) for cow milk and 10% blood serum) protein adsorptions. Additionally, the sensor chips also exhibited a high sensitivity to BSA over a wide range of concentrations from 15 to 700 nM. Our results demonstrate a promising antifouling surface using extremely hydrophilic HA as matrix to resist nonspecific adsorption from complex media in SPR biosensors.

  4. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  5. Influence of Group-III-metal and Ag adsorption on the Ge growth on Si(111) and its vicinal surface

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz

    2011-12-15

    In the framework of this thesis the surfactant-mediated heteroepitaxial growth of Ge on different Si surfaces has been investigated by means of low-energy electron microscopy, low-energy electron diffraction, spot-profile analysing low-energy electron diffraction, X-ray standing waves, grazing-incidence X-ray diffraction, x-ray photoemission electron microscopy, X-ray photoemission spectroscopy, scanning tunneling microscopy, scanning electron microscopy, transmission electron microscopy, and density functional theory calculations. As surfactants gallium, indium, and silver were used. The adsorption of Ga or In on the intrinsically faceted Si(112) surface leads to a smoothing of the surface and the formation of (N x 1) reconstructions, where a mixture of building blocks of different sizes is always present. For both adsorbates the overall periodicity on the surface is strongly dependent on the deposition temperature and the coverage. For the experimental conditions chosen here, the periodicities are in the range of 5.2{<=}N{<=}6.5 and 3.4{<=}N{<=}3.7 for Ga and In, respectively. The (N x 1) unit cells of Ga/Si(112) and In/Si(112) are found to consist of adsorbate atoms on terrace and step-edge sites, forming two atomic chains along the [110] direction. In the Ga-induced structures two Ga-vacancies per unit cell (one in the terrace and one in the step-edge site) are found and a continuous vacancy line on the surface is formed. In the In/Si(112) structure only one vacancy per unit cell in the step-edge site exists and, thus, a continuous adsorbate chain on the terrace sites is present. The adsorption of Ga or In on Si(112) strongly influences the subsequent Ge growth. Ge deposition on the Ga-terminated Si(112) surface leads to the formation of Ge nanowires, which are elongated along the Ga chains and reach lengths of up to 2000 nm for a growth temperature of 600 C. On In-covered Si(112), both small dash-like Ge islands and triangularly shaped islands are found, where

  6. Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Thery, J.; Faucheux, V.; Truffier-Boutry, D.; Martinent, A.; Laurent, J.-Y. [Laboratory of Printed Component, LITEN, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 09 (France); Martin, S.; Le Van Jodin, L. [Laboratory of Components for the Micro-storage of Energy, LITEN, CEA Grenoble, 17 rue des martyrs, 38054 Grenoble Cedex 09 (France)

    2010-09-01

    Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion {sup registered}. The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 {mu}m Nafion {sup registered} layers was reached for 10 {mu}m thick carboxylic membranes. Power outputs around 3 mW cm{sup -2} were measured. We discuss the results regarding the gas barrier effect and the power outputs. (author)

  7. Fluorinated carboxylic membranes deposited by plasma enhanced chemical vapour deposition for fuel cell applications

    Science.gov (United States)

    Thery, J.; Martin, S.; Faucheux, V.; Le Van Jodin, L.; Truffier-Boutry, D.; Martinent, A.; Laurent, J.-Y.

    Among the fuel cell technologies, the polymer electrolyte membrane fuel cells (PEMFCs) are particularly promising because they are energy-efficient, clean, and fuel-flexible (i.e., can use hydrogen or methanol). The great majority of PEM fuel cells rely on a polymer electrolyte from the family of perfluorosulfonic acid membranes, nevertheless alternative materials are currently being developed, mainly to offer the alternative workout techniques which are required for the portable energy sources. Plasma polymerization represents a good solution, as it offers the possibility to deposit thin layer with an accurate and homogeneous thickness, even on 3D surfaces. In this paper, we present the results for the growth of proton conductive fluoro carboxylic membranes elaborated by plasma enhanced chemical vapour deposition. These membranes present conductivity values of the same order than the one of Nafion ®. The properties of the membrane, such as the chemical composition, the ionic conductivity, the swelling behaviour and the permeability were correlated to the plasma process parameters. The membranes were integrated in fuel cells on porous substrates and we present here the results regarding the barrier effect and the power output. Barrier effect similar to those of 40 μm Nafion ® layers was reached for 10 μm thick carboxylic membranes. Power outputs around 3 mW cm -2 were measured. We discuss the results regarding the gas barrier effect and the power outputs.

  8. Variation in chemical, colloidal and electrochemical properties of carbon nanotubes with the degree of carboxylation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheqiong; Wang, Zhiqian; Yu, Fang; Thakkar, Megha; Mitra, Somenath, E-mail: mitra@njit.edu [New Jersey Institute of Technology, Department of Chemistry and Environmental Science (United States)

    2017-01-15

    Multiwalled carbon nanotubes (CNTs) were carboxylated via microwave irradiation where the treatment time was varied to alter the degree of functionalization, and as many as one in 15 carbons in the CNT could be oxidized. Chemical, physical, electrochemical, and colloidal behavior of the carboxylated CNTs was studied. All properties changed with the degree of functionalization to a point beyond which they appeared to remain constant. The surface area increased from 173.9 to 270.9 m{sup 2}/g while the critical coagulation concentration (CCC) values increased from 142.14 to 168.69 mM in the presence of NaCl, and the corresponding increase was from 0.97 to 5.32 mM in the presence of MgCl{sub 2}. As seen from cyclic voltammetry curves, the functionalized CNTs showed mainly non-Faradic interactions with Na{sub 2}SO{sub 4,} but showed Faradic behaviors in alkaline KOH.

  9. Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities.

    Science.gov (United States)

    Nypelö, Tiina; Amer, Hassan; Konnerth, Johannes; Potthast, Antje; Rosenau, Thomas

    2018-03-12

    Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose "Janus" film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.

  10. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  11. Giant regular polyhedra from calixarene carboxylates and uranyl

    Science.gov (United States)

    Pasquale, Sara; Sattin, Sara; Escudero-Adán, Eduardo C.; Martínez-Belmonte, Marta; de Mendoza, Javier

    2012-01-01

    Self-assembly of large multi-component systems is a common strategy for the bottom-up construction of discrete, well-defined, nanoscopic-sized cages. Icosahedral or pseudospherical viral capsids, built up from hundreds of identical proteins, constitute typical examples of the complexity attained by biological self-assembly. Chemical versions of the so-called 5 Platonic regular or 13 Archimedean semi-regular polyhedra are usually assembled combining molecular platforms with metals with commensurate coordination spheres. Here we report novel, self-assembled cages, using the conical-shaped carboxylic acid derivatives of calix[4]arene and calix[5]arene as ligands, and the uranyl cation UO22+ as a metallic counterpart, which coordinates with three carboxylates at the equatorial plane, giving rise to hexagonal bipyramidal architectures. As a result, octahedral and icosahedral anionic metallocages of nanoscopic dimensions are formed with an unusually small number of components. PMID:22510690

  12. Esters production via carboxylates from anaerobic paper mill wastewater treatment.

    Science.gov (United States)

    Cabrera-Rodríguez, Carlos I; Moreno-González, Mónica; de Weerd, Florence A; Viswanathan, Vidhvath; van der Wielen, Luuk A M; Straathof, Adrie J J

    2017-08-01

    This paper describes a new option for integrated recovery and esterification of carboxylates produced by anaerobic digestion at a pH above the pK a . The carboxylates (acetate, propionate, butyrate, valerate and lactate) are recovered using a strong anion exchange resin in the bicarbonate form, and the resin is regenerated using a CO 2 -expanded alcohol technique, which allows for low chemicals consumption and direct esterification. Paper mill wastewater was used to study the effect of pH and the presence of other inorganic anions and cations on the adsorption and desorption with CO 2 -expanded methanol. Calcium, which is present in paper mill wastewater, can cause precipitation problems, especially at high pH. Esters yields ranged from 1.08±0.04mol methyl acetate/mol of acetate in to 0.57±0.02mol methyl valerate/mol of valerate in . Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    . Consequently, the observed endothermic dissolution process is mainly attributed to the hindering of polar interactions. Furthermore, upon mixing of two carboxylic acids, the rearrangement of hydrogen bonds due to the formation of cross associating species results in an insignificant contribution to the heats...... enthalpies and the vapor-liquid equilibrium of relevant binary mixtures containing low molecular weight organic acids. The model sheds light on the interplay of intermolecular interactions through the calculation of the various contributions to the mixing enthalpies, namely from hydrogen bonding and non......-hydrogen bonding (dipolar, induced polar or dispersive) interactions. According to model predictions, the acid molecules are so strongly associated that the addition of inert solvents to carboxylic acids with small carbon numbers at ambient temperature does not dramatically alter their degree of association...

  14. Genetic Variations in the Human G Protein-coupled Receptor Class C, Group 6, Member A (GPRC6A) Control Cell Surface Expression and Function

    DEFF Research Database (Denmark)

    Jorgensen, Stine; Have, Christian Theil; Underwood, Christina Rye

    2017-01-01

    GPRC6A is a G protein-coupled receptor activated by l-amino acids, which, based on analyses of knock-out mice, has been suggested to have physiological functions in metabolism and testicular function. The human ortholog is, however, mostly retained intracellularly in contrast to the cell surface...... of the human ortholog. Genetic analyses of the 1000 genome database and the Inter99 cohort of 6,000 Danes establish the distribution of genotypes among ethnic groups, showing that the cell surface-expressed and functional variant is much more prevalent in the African population than in European and Asian...

  15. Identification of Key Residues for Enzymatic Carboxylate Reduction

    Directory of Open Access Journals (Sweden)

    Holly Stolterfoht

    2018-02-01

    Full Text Available Carboxylate reductases (CARs, E.C. 1.2.1.30 generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.

  16. Identification of Key Residues for Enzymatic Carboxylate Reduction.

    Science.gov (United States)

    Stolterfoht, Holly; Steinkellner, Georg; Schwendenwein, Daniel; Pavkov-Keller, Tea; Gruber, Karl; Winkler, Margit

    2018-01-01

    Carboxylate reductases (CARs, E.C. 1.2.1.30) generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro . Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of Nc CAR variants when replaced by alanine. Finally, we showed that Nc CAR wild-type and mutants efficiently reduce aliphatic acids.

  17. Mechanism of Decomposition of Surface Ethoxy Species to Ethene and Acidic OH Groups on H-ZSM-5.

    Science.gov (United States)

    Kondo, Junko N; Yamazaki, Hiroshi; Osuga, Ryota; Yokoi, Toshiyuki; Tatsumi, Takashi

    2015-06-18

    The reaction mechanism of the decomposition of ethoxy species to ethene and acidic OH groups on H-ZSM-5 was studied by IR spectroscopy using isotope-labeled ethanol. The concerted mechanism occurring on both the ethoxy (acid) site and the counterpart lattice oxygen was suggested by GC-MS analysis of evolved d2-ethene and IR observation of the recovery of OH s groups on acid sites from the decomposition of CH3CD2O- ethoxy species. The concerted mechanism was further confirmed by the estimation of activation energy for decomposition of CH3CH2O-, CH3CD2O-, and CD3CD2O- ethoxy species, 122 ± 3, 125 ± 3, and 140 ± 5 kJ mol(-1), respectively, where the kinetic isotope effect was observed for the cleavage of the CH or CD bond of the methyl group of the ethoxy species.

  18. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  19. Cellular uptake and anticancer activity of carboxylated gallium corroles

    Science.gov (United States)

    Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit

    2016-01-01

    We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076

  20. Covalent attachment of a peptide to the surface of gallium nitride

    Science.gov (United States)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Lindsey, Jason A.; Bernhard, Jonathan C.; Hagen, Evan M.; Chan, Burke K.; Petersohn, Adam A.; Medow, Matthew R.; Wendel, Lindsay E.; Chen, Dafang; Canter, Jamie M.; Ivanisevic, Albena

    2011-08-01

    The properties of GaN have made it not only an ideal material for high power and high frequency electronic devices, but also a semiconductor suitable for application in biosensing devices. The utilization of GaN in electronic biosensors has increased the importance of characterizing robust and easily implemented organic functionalization methods for GaN surfaces. This work demonstrates and characterizes a route to functionalize the GaN (0001) surface with two organic molecules, hexylamine and a peptide, through olefin cross-metathesis with Grubbs first generation catalyst. The GaN (0001) surface was chlorinated, functionalized with a terminal alkene group using a Grignard reaction, and then terminated with a carboxyl group using an olefin cross-metathesis reaction. With a condensation reaction, the final step in the reaction scheme bound hexylamine or a peptide to the carboxyl terminated GaN surface. Qualitative and quantitative X-ray photoelectron spectroscopy (XPS) data verified the success of each step in the reaction scheme. Surface element composition, adlayer coverages, and adlayer thicknesses were calculated based on the XPS data. At least a monolayer of surface molecules covered the GaN surface.

  1. In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO 2, ZrO 2, Al 2O 3, and Ta 2O 5 from aqueous solutions

    Science.gov (United States)

    Dobson, Kevin D.; McQuillan, A. James

    2000-02-01

    In situ infrared spectroscopy has been used to investigate the adsorption of a range of simple aromatic carboxylic acids from aqueous solution to metal oxides. Thin films of TiO 2, ZrO 2, Al 2O 3 and Ta 2O 5 were prepared by evaporation of aqueous sols on single reflection ZnSe prisms. Benzoic acid adsorbed very strongly to ZrO 2, in a bridging bidentate fashion, but showed only weak adsorption to TiO 2 and Ta 2O 5. Substituted aromatic carboxylic acids; salicylic, phthalic and thiosalicylic, were found to adsorb to each metal oxide. Salicylic and phthalic acids adsorbed to the metal oxides via bidentate interactions, involving coordination through both carboxylate and substituent groups. Thiosalicylic acid adsorbed to the metal oxides as a bridging bidentate carboxylate with no coordination through the thiol substituent group.

  2. A simple one-step modification of various materials for introducing effective multi-functional groups.

    Science.gov (United States)

    Chen, Si; Li, Xin; Yang, Zhilu; Zhou, Shuo; Luo, Rifang; Maitz, Manfred F; Zhao, Yuancong; Wang, Jin; Xiong, Kaiqin; Huang, Nan

    2014-01-01

    Covalent immobilization of various biomolecules is a desired strategy for bio-multifunctional surface modification. Multi-functionalization of a material surface is considered to be the premise of immobilizing a variety of biomolecules. However, currently adopted methods, used to introduce proper reactive functional groups on material surfaces, mostly are hard to be carried out and frequently can only introduce insufficient functional groups. In this work, we successfully develop the films (GAHD films) prepared via the simple copolymerization of gallic acid (GA) and hexamethylenediamine (HD), which can be deposited on different kinds of material surfaces including metals, ceramics and polymers by a one-step dip-coating method. Moreover, these copolymerized GAHD films possess high concentration of multi-functional groups like carboxyl (COOH), primary amine (-NH2) and quinone groups on the surfaces. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) results prove either the occurrence of Michael addition reaction, Schiff base reaction in the film-forming process, or the existence of COOH, NH2 and quinone groups on the surfaces. The maximum contents of carboxyl and amine on the GAHD film are 24.9 nmol/cm(2) and 31.7 nmol/cm(2) respectively. After dynamical immersion for 30 days, slight swellings can be observed, which reveals that the GAHD films possess good stability. Moreover, Heparin (Hep), fibronectin (Fn) and laminin (Ln) are successfully immobilized on the GAHD film surfaces. The results of cell counting kit-8 (CCK-8) and rhodamine fluorescence photograph indicate that the 1:1.62 GAHD film has good cytocompatibility. Copyright © 2013. Published by Elsevier B.V.

  3. Whistle emissions of Indo-Pacific bottlenose dolphins (Tursiops aduncus) differ with group composition and surface behaviors.

    Science.gov (United States)

    Hawkins, Elizabeth R; Gartside, Donald F

    2010-04-01

    The intricate and highly developed acoustic communication system of bottlenose dolphins reflects the complexities of their social organization. Indo-Pacific bottlenose dolphins (Tursiops aduncus) produce numerous types of acoustic emissions, including a diverse repertoire of whistles used for communicative purposes. The influence of group composition on whistle production and the function of different whistles produced by dolphins in wild contexts are relatively unknown. Recordings of acoustic emissions and behavior of dolphins were made concurrently during vessel-based surveys along the coast of northern New South Wales, Australia. Whistles were divided into five tonal classes (sine, rise, down-sweep, flat, and concave) and categorized into distinct whistle types. It is shown that while whistle repetition rate and whistle diversity was influenced by group composition, it is not influenced by behavior. Noncalf groups produced a significantly higher whistle repetition rate and whistle diversity than calf groups. In contrast, the types of whistles produced were related to the behavior in which the dolphins were engaged in: some tonal classes and distinct whistle types were related to different behavior states. Findings suggested that some whistle types may be used to communicate specific information on the behavioral context of the individuals involved.

  4. Studies on the physico-mechanical and thermal characteristics of blends of DGEBA epoxy, 3,4 epoxy cyclohexylmethyl, 3',4'-epoxycylohexane carboxylate and carboxyl terminated butadiene co-acrylonitrile (CTBN)

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Garima [Department of Plastic Technology, H. B. Technological Institute, Kanpur 208002 (India); Srivastava, Deepak [Department of Plastic Technology, H. B. Technological Institute, Kanpur 208002 (India)], E-mail: deepak_sri92@rediffmail.com

    2008-11-25

    Toughening of blend of diglycidyl ether of bisphenol-A (DGEBA) and 3,4 epoxy cyclohexylmethyl, 3',4'-epoxycylohexane carboxylate, i.e. cycloaliphatic epoxy resin (CAE) with varying weight ratios (0-25 wt%) of carboxyl terminated butadiene acrylonitrile (CTBN) copolymer have been investigated. Fourier transform infrared (FTIR) spectroscopic analysis established that the interaction between oxirane groups of DGEBA, CAE and CTBN were responsible for characteristics peak shifts in the blends compared to their counterparts. Physico-mechanical properties of the prepared samples, e.g. tensile, flexural and impact strengths showed an optimum concentration of CTBN (15 wt%) into epoxy matrix, which offered maximum toughening. Thermal stability of the prepared samples was analyzed by dynamic thermogravimetric runs. Cross-sections of the cured samples which failed during impact testing have been critically studied through scanning electron microscopic (SEM) analysis to gain insight into the phase morphology.

  5. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions

    Science.gov (United States)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi

    2017-08-01

    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  6. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  7. The Effect of Surface Functionalization on the Immobilization of Gold Nanoparticles on Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Min Song

    2012-01-01

    Full Text Available In our study, graphene oxide is synthesized by Hummers method. And then, carboxylic acid functionalized graphene (graphene-COOH, thiol-functionalized graphene (graphene-SH, and highly dispersive graphene are prepared by chemical modification of respective groups on the graphene surface. Furthermore, we explore a solution-based approach to prepare three differently functionalized graphene-gold composites by one-step chemical reduction of AuCl4 - ions in respective functionalized graphene suspensions, where the gold nanoparticles are deposited on the functionalized graphene surface during their synthesis process. In addition, we compare the influence of surface functionalization on the growth of gold nanoparticles on graphene surface. Transmission electron morphology (TEM and ultraviolet-visible (UV-Vis spectroscopy are employed to study the effect of surface functionalities on AuNPs distribution onto the graphene surface and demonstrate the successful immobilization of AuNPs on graphene surface.

  8. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

    Science.gov (United States)

    Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L

    2013-11-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

  9. Binding affinity of surface functionalized gold nanoparticles to hydroxyapatite.

    Science.gov (United States)

    Ross, Ryan D; Roeder, Ryan K

    2011-10-01

    Gold nanoparticles (Au NPs) have been investigated for a number of biomedical applications, including drug and gene delivery vehicles, thermal ablation therapy, diagnostic sensors, and imaging contrast agents. Surface functionalization with molecular groups exhibiting calcium affinity can enable targeted delivery of Au NPs to calcified tissue, including damaged bone tissue. Therefore, the objective of this study was to investigate the binding affinity of functionalized Au NPs for targeted delivery to bone mineral, using hydroxyapatite (HA) crystals as a synthetic analog in vitro. Au NPs were synthesized to a mean particle size of 10-15 nm and surface functionalized with either L-glutamic acid, 2-aminoethylphosphonic acid, or alendronate, which exhibit a primary amine for binding gold opposite carboxylate, phosphonate, or bisphosphonate groups, respectively, for targeting calcium. Bisphosphonate functionalized Au NPs exhibited the most rapid binding kinetics and greatest binding affinity to HA, followed by glutamic acid and phosphonic acid. All functional groups reached complete binding after 24 h. Equilibrium binding constants in de-ionized water, determined by nonlinear regression of Langmuir isotherms, were 3.40, 0.69, and 0.25 mg/L for bisphosphonate, carboxylate, and phosphonate functionalized Au NPs, respectively. Functionalized Au NPs exhibited lower overall binding in fetal bovine serum compared to de-ionized water, but relative differences between functional groups were similar. Copyright © 2011 Wiley Periodicals, Inc.

  10. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay

    Directory of Open Access Journals (Sweden)

    Wang S

    2011-12-01

    Full Text Available Shige Wang1, Shihui Wen2, Mingwu Shen2, Rui Guo2, Xueyan Cao2, Jianhua Wang3, Xiangyang Shi1,2,41State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 3Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China; 4Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, PortugalBackground: We report on aminopropyltriethoxysilane (APTS-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS.Ac or negatively charged (n-HA-APTS.SAH nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements.Results: In vitro 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization.Conclusion: APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of

  11. Quantification of variable functional-group densities of mixed-silane monolayers on surfaces via a dual-mode fluorescence and XPS label.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Streeck, Cornelia; Ray, Santanu; Nutsch, Andreas; Shard, Alex; Beckhoff, Burkhard; Unger, Wolfgang E S; Rurack, Knut

    2015-03-03

    The preparation of aminated monolayers with a controlled density of functional groups on silica surfaces through a simple vapor deposition process employing different ratios of two suitable monoalkoxysilanes, (3-aminopropyl)diisopropylethoxysilane (APDIPES) and (3-cyanopropyl)dimethylmethoxysilane (CPDMMS), and advances in the reliable quantification of such tailored surfaces are presented here. The one-step codeposition process was carried out with binary silane mixtures, rendering possible the control over a wide range of densities in a single step. In particular, APDIPES constitutes the functional silane and CPDMMS the inert component. The procedure requires only small amounts of silanes, several ratios can be produced in a single batch, the deposition can be carried out within a few hours and a dry atmosphere can easily be employed, limiting self-condensation of the silanes. Characterization of the ratio of silanes actually bound to the surface can then be performed in a facile manner through contact angle measurements using the Cassie equation. The reliable estimation of the number of surface functional groups was approached with a dual-mode BODIPY-type fluorescence label, which allows quantification by fluorescence and XPS on one and the same sample. We found that fluorescence and XPS signals correlate over at least 1 order of magnitude, allowing for a direct linking of quantitative fluorescence analysis to XPS quantification. Employment of synchrotron-based methods (XPS; reference-free total reflection X-ray fluorescence, TXRF) made the traceable quantification of surface functional groups possible, providing an absolute reference for quantitative fluorescence measurements through a traceable measurement chain.

  12. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  13. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  14. Using a nitrilase for the surface modification of acrylic fibres.

    Science.gov (United States)

    Matamá, Teresa; Carneiro, Filipa; Caparrós, Cristina; Gübitz, Georg M; Cavaco-Paulo, Artur

    2007-03-01

    The surface of an acrylic fibre was modified with a commercial nitrilase (EC 3.5.5.1). The effect of fibre solvents and polyols on nitrilase catalysis efficiency and stability was investigated. The nitrilase action on the acrylic fabric was improved by the combined addition of 1 M sorbitol and 4% N, N-dimethylacetamide. The colour levels for samples treated with nitrilase increased 156% comparing to the control samples. When the additives were introduced in the treatment media, the colour levels increased 199%. The enzymatic conversion of nitrile groups into the corresponding carboxylic groups, on the fibre surface, was followed by the release of ammonia and polyacrylic acid. A surface erosion phenomenon took place and determined the "oscillatory" behaviour of the amount of dye uptake with time of treatment. These results showed that the outcome of the application of the nitrilase for the acrylic treatment is intimately dependent on reaction media parameters, such as time, enzyme activity and formulation.

  15. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    Science.gov (United States)

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  17. Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Santilli, Carola; Makarov, Ilya; Fristrup, Peter

    2016-01-01

    Primary alcohols have been reacted with hydroxide and the ruthenium complex [RuCl2(IiPr)(p-cymene)] to afford carboxylic acids and dihydrogen. The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation and extraction. The transformat......Primary alcohols have been reacted with hydroxide and the ruthenium complex [RuCl2(IiPr)(p-cymene)] to afford carboxylic acids and dihydrogen. The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation and extraction....... The transformation can be applied to a range of benzylic and saturated aliphatic alcohols containing halide and (thio)ether substituents, while olefins and ester groups are not compatible with the reaction conditions. Benzylic alcohols undergo faster conversion than other substrates, and a competing Cannizzaro...

  18. Methyl 4-methyl-2-oxo-3,4-dihydrodibenzo[b,d]furan-4a(2H-carboxylate

    Directory of Open Access Journals (Sweden)

    Yidong Jiang

    2017-03-01

    Full Text Available The title compound, C15H14O4, has structural similarities to the alkaloid galanthamine, used in the treatment of Alzheimer's disease. The structure consists of a fused three-ring system comprising benzene and cyclohexenone fused to a central furan ring. The furan ring exhibits an envelope conformation with the carboxylate-substituted C atom as the flap, deviating by 0.352 (3 Å from the mean plane of other four furan-ring atoms. The cyclohexenone ring also exhibits an envelope conformation, with the methyl-substituted C atom as the flap. The methyl and carboxylate groups are on opposite side of the plane of the other five atoms of the cyclohexenone ring. In the crystal, other than van der Waals contacts, there are weak intermolecular C—H...O interactions present linking the molecules to form a one-dimensional zigzag chain along the b-axis direction.

  19. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  20. Readiness Review Plan for the Interim Remedial Action on Surface Debris in Waste Area Grouping 11 at Oak Ridge National Laboratory, Oak Ridge, TN

    International Nuclear Information System (INIS)

    1993-10-01

    This Readiness Review Plan was prepared by the Waste Area Grouping (WAG) 11 Site Project Readiness Review Team as an overview of the Interim Remedial Action on Surface Debris in WAG 11 project at Oak Ridge National Laboratory, including major readiness milestones, criteria development methodology, and a list of events to occur as part of the review process for determining readiness for each project phase

  1. Synthesis and crystal structures of 2-methyl-4-aryl-5-oxo-5H-indeno [1,2-b] pyridine carboxylate derivatives

    DEFF Research Database (Denmark)

    Pandian, Ramesh; Naushad, Edayadulla; Vijayakumar, Vinodhkumar

    2014-01-01

    pyridine derivatives through oxidation. Consequently, the interest in this aromatization reaction, investigation of a wide range of 1, 4-DHPs continues to attract the attention of researchers. Herein, we report the preparation of pyridine derivatives and the crystal structures determined by X-ray...... crystallographic methods.Results: The crystal structures and conformational studies of two organic compounds, namely ethyl 2-methyl-4-phenyl-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (I) and ethyl 2-methyl-4-(4 chlorophenyl)-5-oxo-5H-indeno [1,2-b] pyridine-3-carboxylate (II) are reported. The terminal ethyl...... is disordered. In compound II, the substitution of Cl atom in the phenyl ring alters the configuration of carboxylate group with respect to the pyridine indane ring. © 2014 Pandian et al.; licensee Chemistry Central Ltd....

  2. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  3. Coordination polymers: trapping of radionuclides and chemistry of tetravalent actinides (Th, U) carboxylates

    International Nuclear Information System (INIS)

    Falaise, Clement

    2014-01-01

    The use of nuclear energy obviously raises the question of the presence of radionuclides in the environment. Currently, their mitigation is a major issue associated with nuclear chemistry. This thesis focuses on both the trapping of radionuclides by porous solids called Metal-Organic Frameworks (MOF) and the crystal chemistry of the carboxylate of tetravalent actinides (AnIV). The academic knowledge of the reactivity of carboxylate of AnIV could help the understanding of actinides speciation in environment. We focused on the sequestration of iodine by aluminum based MOF. The functionalization (electron-donor group) of the MOF drastically enhances the iodine capture capacity. The removal of light actinides (Th and U) from aqueous solution was also investigated as well as the stability of (Al)-MOF under γ radiation. More than twenty coordination polymers based on tetravalent actinides have been synthesized and characterized by single crystal X-ray diffraction. The use of controlled hydrolysis promotes the formation of coordination polymers exhibiting polynuclear cluster ([U 4 ], [Th 6 ], [U 6 ] and [U 38 ]). In order to understand the formation of the largest cluster, the ex-situ study of the solvo-thermal synthesis of compound {U 38 } has also been investigated. (author)

  4. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  5. Osteoblast cell response to surface-modified carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Faming; Weidmann, Arne; Nebe, J. Barbara; Burkel, Eberhard

    2012-01-01

    In order to investigate the interaction of cells with modified multi-walled carbon nanotubes (MWCNTs) for their potential biomedical applications, the MWCNTs were chemically modified with carboxylic acid groups (–COOH), polyvinyl alcohol (PVA) polymer and biomimetic apatite on their surfaces. Additionally, human osteoblast MG-63 cells were cultured in the presence of the surface-modified MWCNTs. The metabolic activities of osteoblastic cells, cell proliferation properties, as well as cell morphology were studied. The surface modification of MWCNTs with biomimetic apatite exhibited a significant increase in the cell viability of osteoblasts, up to 67.23%. In the proliferation phases, there were many more cells in the biomimetic apatite-modified MWCNT samples than in the MWCNTs–COOH. There were no obvious changes in cell morphology in osteoblastic MG-63 cells cultured in the presence of these chemically-modified MWCNTs. The surface modification of MWCNTs with apatite achieves an effective enhancement of their biocompatibility.

  6. CARBOXYLATION OF SILVER NANOPARTICLES FOR THE IMMOBILIZATION OF β-GALACTOSIDASE AND ITS EFFICACY IN GALACTO-OLIGOSACCHARIDES PRODUCTION

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed Ansari

    2015-03-01

    Full Text Available The present study investigated the carboxylation of silver nanoparticles (AgNPs by 1:3 nitric acid-sulfuric acid mixtures for immobilizing Aspergillus oryzae β-galactosidase. Carboxylated AgNPs retained 93% enzyme upon immobilization and the enzyme did not leach out appreciably from the modified nanosupport in the presence of 100 mmol L-1 NaCl. Atomic force micrograph revealed the binding of β-galactosidase on the modified AgNPs. The optimal pH for soluble and carboxylated AgNPs adsorbed β-galactosidase (IβG was observed at pH 4.5 while the optimal operating temperature was broadened from 50 ºC to 60 ºC for IβG. Michaelis constant, Km was increased two and a half fold for IβG while Vmax decreases slightly as compared to soluble enzyme. β-galactosidase immobilized on surface functionalized AgNPs retained 70% biocatalytic activity even at 4% galactose concentration as compared to enzyme in solution. Our study showed that IβG produces greater amount of galacto-oligosaccharides at higher temperatures (50 ºC and 60 ºC from 0.1 mol L-1 lactose solution at pH 4.5 as compared to previous reports.

  7. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids.

    Science.gov (United States)

    Liu, Rui; Yang, Zhenyu; Ni, Yuxin; Song, Kaixuan; Shen, Kai; Lin, Shaohui; Pan, Qinmin

    2017-08-04

    Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carboxylic acids (including β,β-disubstituted acrylic acids) was developed and optimized, which provided a mild and convenient method for the highly challenging synthesis of β-quaternary carbons substituted carboxylic acids.

  8. Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands

    Science.gov (United States)

    Sullivan, Matthew R.; Sokkalingam, Punidha; Nguyen, Thong; Donahue, James P.; Gibb, Bruce C.

    2017-01-01

    In participation of the fifth statistical assessment of modeling of proteins and ligands (SAMPL5), the strength of association of six guests ( 3- 8) to two hosts ( 1 and 2) were measured by 1H NMR and ITC. Each host possessed a unique and well-defined binding pocket, whilst the wide array of amphiphilic guests possessed binding moieties that included: a terminal alkyne, nitro-arene, alkyl halide and cyano-arene groups. Solubilizing head groups for the guests included both positively charged trimethylammonium and negatively charged carboxylate functionality. Measured association constants ( K a ) covered five orders of magnitude, ranging from 56 M-1 for guest 6 binding with host 2 up to 7.43 × 106 M-1 for guest 6 binding to host 1.

  9. Surface excitons on a ZnO (000-1) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, S., E-mail: skuehn@mbi-berlin.de; Friede, S.; Elsaesser, T. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2A, Berlin D-12489 (Germany); Sadofev, S.; Blumstengel, S.; Henneberger, F. [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, Berlin D-12489 (Germany)

    2013-11-04

    Elementary excitations at the polar (000-1) surface of a 20 nm pseudomorphically grown ZnO thin film are examined by steady state and time-resolved photoluminescence spectroscopy at low temperature. We control the density of emission centers through the deposition of prototypical organic molecules with a carboxylic acid anchor group by the Langmuir-Blodgett technique. Knowledge of the precise film thickness, defect concentrations and number density of deposited molecules leads us to associate the surface exciton emission to defect-related localization centers that are generated through a photochemical process.

  10. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics

    Science.gov (United States)

    Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.

  11. Photoelectrochemical Immunosensor for Detection of Carcinoembryonic Antigen Based on 2D TiO2 Nanosheets and Carboxylated Graphitic Carbon Nitride

    Science.gov (United States)

    Wang, Huan; Wang, Yaoguang; Zhang, Yong; Wang, Qi; Ren, Xiang; Wu, Dan; Wei, Qin

    2016-01-01

    Carcinoembryonic antigen (CEA) was used as the model, an ultrasensitive label-free photoelectrochemical immunosensor was developed using 2D TiO2 nanosheets and carboxylated graphitic carbon nitride (g-C3N4) as photoactive materials and ascorbic acid as an efficient electron donor. 2D TiO2 nanosheets was sythsized by surfactant self-assembly method and proved to have higher photoelectrochemical signals than TiO2 nanoparticles. Firstly, carboxylated g-C3N4 could be attached to 2D TiO2 nanosheets through the bond formed between carboxyl group of carboxylated g-C3N4 and TiO2. And the photocurrent of g-C3N4/TiO2 drastically enhances compared to carboxylated g-C3N4 and TiO2. Then, antibody of CEA was bonded to TiO2 through the dentate bond formed between carboxyl group of anti-CEA and TiO2, leading to the decrease of the photocurrents. As proven by PEC experiments and electrochemical impedance spectroscopy (EIS) analysis, the fabrication process of the immunosensor is successful. Under the optimal conditions, the intensity decreased linearly with CEA concentration in the range of 0.01~10 ng/mL. The detection limit is 2.1 pg/mL. The work provides an effective method for the detection of tumor markers and can be extended for the application in food safety and environmental monitoring analysis. PMID:27263659

  12. 2-substituted thiazolidine-4(R)-carboxylic acids as prodrugs of L-cysteine. Protection of mice against acetaminophen hepatotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H.T.; Goon, D.J.; Muldoon, W.P.; Zera, R.T.

    1984-05-01

    A number of 2-alkyl- and 2-aryl-substituted thiazolidine-4(R)-carboxylic acids were evaluated for their protective effect against hepatotoxic deaths produced in mice by LD/sub 90/ doses of acetaminophen. 2(RS)-Methyl-, 2(RS)-n-propyl-, and 2(RS)-n- pentylthiazolidine -4(R)-carboxylic acids (compounds 1b,d,e, respectively) were nearly equipotent in their protective effect based on the number of surviving animals at 48 h as well as by histological criteria. 2(RS)-Ethyl-, 2(RS)-phenyl-, and 2(RS)-(4-pyridyl)thiazolidine-4(R)-carboxylic acids (compounds 1c,f,g) were less protective. The enantiomer of 1b, viz., 2(RS)- methylthiazolidine -4(S)-carboxylic acid (2b), was totally ineffective in this regard. Thiazolidine-4(R)-carboxylic acid (1a), but not its enantiomer, 2a, was a good substrate for a solubilized preparation of rat liver mitochondrial proline oxidase (K/sub m/ 1.1 x 10(-4) M; V/sub max/ . 5.4 mumol min-1 (mg of protein)-1). Compound 1b was not a substrate for proline oxidase but dissociated to L-cysteine in this system. At physiological pH and temperature, the hydrogens on the methyl group of 1b underwent deuterium exchange with solvent D/sub 2/O (k1 . 2.5 X 10(-5) s), suggesting that opening of the thiazolidine ring must have taken place. Indeed, 1b labeled with /sup 14/C in the 2 and methyl positions was rapidly metabolized by the rat to produce /sup 14/CO/sub 2/, 80% of the dose being excreted in this form in the expired air after 24 h. It is suggested that these 2-substituted thiazolidine-4(R)-carboxylic acids are prodrugs of L-cysteine that liberate this sulfhydryl amino acid in vivo by nonenzymatic ring opening, followed by solvolysis.

  13. Leucine, starch and bicarbonate utilization by specific bacterial groups in surface shelf waters off Galicia (NW Spain).

    Science.gov (United States)

    Teira, E; Hernando-Morales, V; Guerrero-Feijóo, E; Varela, M M

    2017-06-01

    The capability of different bacterial populations to degrade abundant polymers, such as algal-derived polysaccharides, or to utilize preferentially polymers over monomers, remains largely unknown. In this study, microautoradiography was combined with fluorescence in situ hybridization (MAR-FISH) to evaluate the ability of Bacteroidetes, SAR11, Roseobacter spp., Gammaproteobacteria and SAR86 cells to use bicarbonate, leucine and starch under natural light conditions at two locations in shelf surface waters off NW Spain. The percentage of cells incorporating bicarbonate was relatively high (mean 32% ± 4%) and was positively correlated with the intensity of solar radiation. The proportion of cells using starch (mean 56% ± 4%) or leucine (mean 47% ± 4%) was significantly higher than that using bicarbonate. On average, SAR11, Roseobacter spp. and Gammaproteobacteria showed a similarly high percentage of cells using leucine (47%-65% of hybridized cells) than using starch (51%-64% of hybridized cells), while Bacteroidetes and SAR86 cells preferentially used starch (53% of hybridized cells) over leucine (34%-40% of hybridized cells). We suggest that the great percentage of bacteria using starch is related to a high ambient availability of polymers associated to algal cell lysis, which, in turn, weakens the short-term coupling between phytoplankton release and bacterial production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Preparation and surface active properties of oxypropylated diol monoesters of fatty acids with an amide oxime terminal group

    Directory of Open Access Journals (Sweden)

    Eissa, A. M.F.

    1994-10-01

    Full Text Available Locally produced non-edible oil, namely, rice bran oil (R.B.O. was utilized as starting materials for preparing new nonionic surfactant. Oxypropylated diol monoesters of linoleic and rice bran oil fatty acids were prepared. Also amide oxime derivatives were obtained. Surface active properties of these compounds were measured. Under neutral condition amide eximes served as nonionic surfactants and their properties were similar to other oxypropylated monoesters.

    Se ha utilizado un aceite no comestible de producción local, denominado, aceite de salvado de arroz (R.B.O. como materia prima para la preparación de nuevos tensioactivos no iónicos. Se prepararon diol monoésteres oxipropilados de ácido linoleico y ácidos grasos de aceite de salvado de arroz. También se obtuvieron los derivados de amido oxima. Se midieron las propiedades de tensión superficial de estos compuestos. Bajo condiciones neutras las amido eximas sirvieron como tensioactivos no iónicos y sus propiedades fueron similares a los de otros monoésteres oxipropilados.

  15. Design of co-crystals/salts of some Nitrogenous bases and some derivatives of thiophene carboxylic acids through a combination of hydrogen and halogen bonds.

    Science.gov (United States)

    Jennifer, Samson Jegan; Muthiah, Packianathan Thomas

    2014-01-01

    The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The

  16. Surface properties of ionomers based on styrene-b-acrylic acid copolymers obtained by copolymerization in emulsion

    International Nuclear Information System (INIS)

    Kowalonek, Jolanta; Suchocka-Galas, Kazimiera

    2009-01-01

    Surface properties of styrene-b-acrylic acid copolymers obtained in emulsion and suitable ionomers before and after UV-irradiation were studied by measurements of contact angles and FTIR-ATR spectroscopy. The research focused on the influence of different content of carboxylic acid groups in copolymers, of various types and contents of alkali metal salts in ionomers and of cesium acrylate or methacrylate in ionomers on hydrophilicity of the surfaces of these samples and the course of photodegradation in them. Hydrophilicity of initial copolymer surfaces was higher than this of polystyrene as a result of presence of carboxylic acid groups, which also made the surfaces of these copolymers more sensitive to UV-irradiation. Hydrophilicity of the surfaces of ionomers containing cesium acrylates depended on the content of cesium salt in the samples. The course of ionomer photooxidation was also dependent on the content of this salt. The surface of ionomer containing cesium methacrylate was more polar than this of ionomer containing cesium acrylate. Styrene-based ionomers containing 3.7 mol% of various alkali metal acrylates had less polar surfaces than initial copolymer and they were also more resistant to UV-irradiation in comparison to the initial copolymer. Copolymers obtained in emulsion and suitable ionomers had more polar surfaces and they were more sensitive to UV-light compared to copolymers obtained in bulk and their ionomers.

  17. Surface properties of ionomers based on styrene-b-acrylic acid copolymers obtained by copolymerization in emulsion

    Science.gov (United States)

    Kowalonek, Jolanta; Suchocka-Gałaś, Kazimiera

    2009-08-01

    Surface properties of styrene-b-acrylic acid copolymers obtained in emulsion and suitable ionomers before and after UV-irradiation were studied by measurements of contact angles and FTIR-ATR spectroscopy. The research focused on the influence of different content of carboxylic acid groups in copolymers, of various types and contents of alkali metal salts in ionomers and of cesium acrylate or methacrylate in ionomers on hydrophilicity of the surfaces of these samples and the course of photodegradation in them. Hydrophilicity of initial copolymer surfaces was higher than this of polystyrene as a result of presence of carboxylic acid groups, which also made the surfaces of these copolymers more sensitive to UV-irradiation. Hydrophilicity of the surfaces of ionomers containing cesium acrylates depended on the content of cesium salt in the samples. The course of ionomer photooxidation was also dependent on the content of this salt. The surface of ionomer containing cesium methacrylate was more polar than this of ionomer containing cesium acrylate. Styrene-based ionomers containing 3.7 mol% of various alkali metal acrylates had less polar surfaces than initial copolymer and they were also more resistant to UV-irradiation in comparison to the initial copolymer. Copolymers obtained in emulsion and suitable ionomers had more polar surfaces and they were more sensitive to UV-light compared to copolymers obtained in bulk and their ionomers.

  18. nPEG-TiO₂ nanoparticles: a facile route to elaborate nanostructured surfaces for biological applications.

    Science.gov (United States)

    Spadavecchia, J; Boujday, S; Landoulsi, J; Pradier, C-M

    2011-07-01

    We report the synthesis of diacid-terminated PEG-functionalized cubic TiO(2) nanocrystals by a simple one-step solvothermal method, and their further use to form nanostructured surfaces for protein immobilization. The relevance and major interest of the so-obtained nanocrystals are the presence of terminal carboxylic acid groups at their surface, as confirmed by infrared analyses, in addition to the surrounding PEG chains, essential to avoid non specific interactions. These functional chemical groups were used to (i) immobilize the synthesized nanocubes on a cysteamine-modified Au surface, and to (ii) attach proteins via a presumable covalent link. AFM images show that the shapes and the narrow size distribution of the nanocubes, observed by TEM, were preserved after their immobilization on the modified Au surface. Moreover, the efficiency and specificity of antigen recognition were demonstrated using spectroscopic analyses. Our successful approach provides a versatile and facile way to elaborate specific and sensitive nanostructured surfaces for biosensors.

  19. Aminopropyltriethoxysilane-mediated surface functionalization of hydroxyapatite nanoparticles: synthesis, characterization, and in vitro toxicity assay.

    Science.gov (United States)

    Wang, Shige; Wen, Shihui; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Wang, Jianhua; Shi, Xiangyang

    2011-01-01

    We report on aminopropyltriethoxysilane (APTS)-mediated surface modification of nanohydroxyapatite with different surface functional groups for potential biomedical applications. In this study, nanohydroxyapatite covalently linked with APTS (n-HA-APTS) was reacted with acetic anhydride or succinic anhydride to produce neutralized (n-HA-APTS. Ac) or negatively charged (n-HA-APTS.SAH) nanohydroxyapatite, respectively. Nanohydroxyapatite formed with amine, acetyl, and carboxyl groups was extensively characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, (1)H nuclear magnetic resonance spectroscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectroscopy, and zeta potential measurements. In vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay revealed that the slight toxicity of the amine-functionalized n-HA-APTS could be eliminated by post-functionalization of APTS amines to form acetyl and carboxyl groups. Blood compatibility assessment demonstrated that the negligible hemolytic activity of the pristine nanohydroxyapatite particles did not appreciably change after APTS-mediated surface functionalization. APTS-mediated functionalization of nanohydroxyapatite with different surface groups may be useful for further functionalization of nanohydroxyapatite with biologically active materials, thereby providing possibilities for a broad range of biomedical applications.

  20. Engineering a Zirconium MOF through Tandem "Click" Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface.

    Science.gov (United States)

    Zhang, Yingfan; Gui, Bo; Chen, Rufan; Hu, Guiping; Meng, Yi; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2018-02-19

    Metal-organic frameworks (MOFs) assembled from linkers of identical length but with different functional groups have gained increasing interests recently. However, it is very challenging for precise control of the ratios of different functionalities. Herein, we reported a stable azide- and alkyne-appended Zr-MOF that can undergo quantitative tandem click reactions on the different functional sites, thus providing a unique platform for quantitative loading of bifunctional moieties. As an added advantage, the same MOF product can be obtained via two independent routes. The method is versatile and can tolerate a wide variety of functional groups, and furthermore, a heterogeneous acid-base MOF organocatalyst was synthesized by tandemly introducing both acidic and basic groups onto the predesigned pore surface. The presented strategy provides a general way toward the construction of bifunctional MOFs with a precise control of ratio of different functionalities for desirable applications in future.

  1. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations.

    Science.gov (United States)

    Cui, Wenguo; Li, Xiaohong; Xie, Chengying; Zhuang, Huihui; Zhou, Shaobing; Weng, Jie

    2010-06-01

    Controlled nucleation and growth of hydroxyapatite (HA) crystals on electrospun fibers should play important roles in fabrication of composite scaffolds for bone tissue engineering, but no attempt has been made to clarify the effects of chemical group densities and the cooperation of two and more groups on the biomineralization process. The aim of the current study was to investigate into HA nucleation and growth on electrospun poly(dl-lactide) fibers functionalized with carboxyl, hydroxyl and amino groups and their combinations. Electrospun fibers with higher densities of carboxyl groups, combination of hydroxyl and carboxyl groups with the ratio of 3/7, and combination of amino, hydroxyl and carboxyl groups with the ratio of 2/3/5 were favorable for HA nucleation and growth, resulting in higher content and lower crystal size of formed HA. Carboxyl groups were initially combined with calcium ions through electrostatic attraction, and the introduction of hydroxyl groups could modulate the distance between carboxyl groups. The introduction of amino groups may lead to the inner ionic bonding with carboxyl groups, but can accelerate phosphate ions to form HA through a chelate ring with the calcium ion and carbonyl oxygen. The biological evaluation indicated that the mineralized scaffolds acted as an excellent cell support to maintain desirable cell-substrate interactions, to provide favorable conditions for cell proliferation and to stimulate the osteogenic differentiation. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Method of reprocessing of irradiated nuclear fission products of the uranium, plutonium and thorium group

    International Nuclear Information System (INIS)

    Koch, G.

    1970-01-01

    A solvent extraction is used to separate irradiated nuclear fission materials of the group uranium, plutonium, thorium from radioactive fission products which are present together in an aqueous solution. An improvement on the known mehod is proposed in which a carboxylic nitrile, carboxylic ester, carboxylic amide, or a mixture of these substances is added to the organic phase which is mixed with a non-polar diluting agent as a polar modificator, where the modificators are derived from mono- or polycarboxylic acids or also from substituted carboxylic acids. Amyl acetate, N-N dimethyl caprylic acid amide, and adiponitrile are particularly suitable. (UW/LH) [de

  3. Vibrational Spectra of Oxo-Centered Trinuclear Carboxylate Complexes

    Science.gov (United States)

    Chaisa-Ard, Nittayaporn

    1990-01-01

    Available from UMI in association with The British Library. The work presented in this thesis has been undertaken with an aim of studying vibrational spectroscopy of oxo -centered trinuclear carboxylate complexes. Resonance Raman spectra of the mixed-metal complex (Fe_2NiO(OOCCH_3 )_6(C_5H _5N)_3) (C _5H_5N) and of the complex (Fe_3O(OOCCH _3)_6(C_5 H_5N)_3) NO_3 have been recorded with different exciting lines. Mode assignments of these complexes have been made in conjunction with previously reported electronic diffuse reflectance spectra. For the (Fe_2 NiO(OOCCH_3)_6 (C_5H_5N) _3) (C_5H _5N) complex we found two components of the vibration nu_ {rm as}(Fe_2NiO) and we assigned the higher frequency as the A_1 component while the lower is the B_2 component. For the (Fe_3O(OOCCH _3)_6(C _5H_5N)_3 ) NO_3 complex we found that there is only a single band at 570 cm^{ -1} and it is visible only with the use of exciting lines below 15500 cm^{-1} . We assigned this band to nu_ {rm as}(Fe_3O), doubly degenerate (E^'). Infrared spectra of (Cr_3O(OOCCH _3)_6(H _2O)_3) Cl.6H _2O were carried out at room and low temperature and inelastic neutron scattering spectra at 20 K. INS spectra of the (Cr_3O(OOCCH _3)_6(H_2 O)_3) Cl.6H_2 O and three related complexes with the Fe _3^{III} and mixed-valence Fe_2^{III}Fe ^{II} cluster show a large number of well-resolved peaks throughout the frequency range of conventional vibrational spectroscopy, and the frequencies agree with IR and Raman measurements. As a result the mode assignments in this series of compounds can be reassessed. Synthesis and characterisation of the guanidinium salt of the mu_3-oxo hexapropionato trifluoro chromium(III) complex, (Cr_3O(OOCC _2H_5) _6F_3) (C(NH _2)_3) _2 have been done. Elemental analysis was satisfactory. Mode assignments were studied by spectroscopic methods, and the Cr-F stretching frequency was found. Finally, the structure determination was done by X-ray crystallography. The space group was found

  4. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Sladkov, V.; Fourest, B.

    2006-01-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  5. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  6. Effect of organic bases on extraction of gadolinium carboxylates

    International Nuclear Information System (INIS)

    Sukhan, V.V.; Frankovskij, V.A.

    1982-01-01

    The effect of pyridine, 2-aminopyridine, benzylamine, antipyrine and o-phenanthroline on the extraction of capronates and bromocapronates of gadolinium with chloroform is studied. Out of the studied organic bases benzylamine produces the highest synergetic effect. In the absence of organic bases gadolinium carboxylates, solvated by three molecules of carbonic acids, are extracted into organic phase. A possihility of extractional separation of gadolinium from comparable amounts of iron with the mixture of 1 M solutions of caproic or bromocaproic acids with 1 M benzylamine from 0.1 M solution of tartaric acids is shown [ru

  7. Nature Inspired Surface Coatings

    Science.gov (United States)

    Rubner, Michael

    2011-04-01

    Materials Scientists more and more are looking to nature for clues on how to create highly functional surface coatings with exceptional properties. The fog harvesting capabilities of the Namib Desert beetle, the beautiful iridescent colors of the hummingbird, and the super water repellant abilities of the Lotus leaf are but a few examples of the amazing properties developed over many years in the natural world. Nature also makes extensive use of the pH-dependent behavior of weak functional groups such as carboxylic acid and amine functional groups. This presentation will explore synthetic mimics to the nano- and microstructures responsible for these fascinating properties. For example, we have demonstrated a pH-induced porosity transition that can be used to create porous films with pore sizes that are tunable from the nanometer scale to the multiple micron scale. The pores of these films, either nano- or micropores, can be reversibly opened and closed by changes in solution pH. The ability to engineer pH-gated porosity transitions in heterostructured thin films has led to the demonstration of broadband anti-reflection coatings that mimic the anti-reflection properties of the moth eye and pH-tunable Bragg reflectors with a structure and function similar to that found in hummingbird wings and the Longhorn beetle. In addition, the highly textured honeycomb-like surfaces created by the formation of micron-scale pores are ideally suited for the creation of superhydrophobic surfaces that mimic the behavior of the self-cleaning lotus leaf. The development of synthetic "backbacks" on immune system cells that may one day ferry drugs to disease sites will also be discussed.

  8. Synthesis and complexation properties towards uranyl cation of carboxylic acid derivatives of p-tert-butyl-calix[6]arene

    International Nuclear Information System (INIS)

    Souane, R.

    2005-03-01

    In the fuel reprocessing plants radioactive metals, and more particularly, uranium in UO 2 2+ form in the various installations, have many varied physico-chemical forms and there is a risk of exposure and internal contamination in the nuclear industry. It is necessary to exert a medical control to ensure the protection of the health of the workers. This medical control is done by dosing uranyl cation in the urine of the exposed people. This work forms part of this context. Indeed, we prepared a ligand able to complex the ion uranyl and which is also to be grafted on a solid support. In the family of calixarenes, the calix[6]arenes functionalized by three or four carboxylic functions were selected like chelating molecules of the ion uranyl. The properties of complexation of these calixarenes were studied by potentiometry in methanol, under these conditions balances of protonation and complexation were determined and the constant partners were obtained using the Hyperquad program. We synthesized tri-carboxylic calix[6]arenes comprising of the groupings nitro (NO 2 ) in para position of phenol in order to see the influence of a substitution in para position on the complexation. We also synthesized calix[6]arenes tetra-carboxylic in order to show the role of an additional carboxylic acid grouping. The potentiometric study determined thermodynamic parameters of protonation and complexation of carboxylic calix[6]arenes. The results of the complexation highlighted which complex UO 2 L corresponding to the ligand para-tert-butyl-calix[6]arene tetra-acid is more stable than that corresponding to the ligand mono-nitro calix[6]arene tri-acid (ΔlogΒ110 = 4.3), and than the effect of the groupings nitro in para position has low influence on the complexation of UO 2 2+ . This makes it possible to consider as possible the grafting of the calix[6]arenes which one knows the behaviour of trapping. To this end we synthesized the ligand 23. (author)

  9. Effect of growth at low pH on the cell surface properties of a typical strain of Lactobacillus casei group.

    Science.gov (United States)

    Hossein Nezhad, M; Stenzel, Dj; Britz, Ml

    2010-09-01

    Although members of the Lactobacillus casei group are known to survive under acidic conditions, the underlying mechanisms of growth at acidic condition and the impact of low pH on the relative level of protein expression at the cell surface remain poorly studied. After confirming the taxonomy of L. casei strain GCRL 12 which was originally isolated from cheese and confirmed by 16S rRNA sequence analysis, the impact of acidic pH on growth rate was determined. Late log-phase cells cultured at pH 4.0 showed obvious changes in Gram staining properties while transmission electron microscopy analysis revealed evidence of structural distortions of the cell surface relative to the controls cultured at pH 6.5. When comparing cytosolic or whole cell preparations on SDS-PAGE, few changes in protein profiles were observed under the two growth conditions. However, analysis of surface protein extracted by 5M LiCl demonstrated changes in the proportions of proteins present in the molecular weight range of 10 to 80 kDa, with some proteins more dominant at pH 6.5 and other at pH 4. These data suggest that surface proteins of this strain are associated with growth and survival at low pH. The function of these proteins is subject to further investigation.

  10. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China)

    2016-12-01

    Highlights: • All dehydrogenation reactions in vinyl acetate synthesis on Pd(1 0 0) were studied. • The energy barriers of the transition state of the three reactions were calculated. • The influence of surface Os and OHs on all dehydrogenation actions was discussed. - Abstract: On the basis of a Langmuir–Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir–Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir–Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  11. Density functional theory prediction of pKa for carboxylated single-wall carbon nanotubes and graphene

    Science.gov (United States)

    Li, Hao; Fu, Aiping; Xue, Xuyan; Guo, Fengna; Huai, Wenbo; Chu, Tianshu; Wang, Zonghua

    2017-06-01

    Density functional calculations have been performed to investigate the acidities for the carboxylated single-wall carbon nanotubes and graphene. The pKa values for different COOH-functionalized models with varying lengths, diameters and chirality of nanotubes and with different edges of graphene were predicted using the SMD/M05-2X/6-31G* method combined with two universal thermodynamic cycles. The effects of following factors, such as, the functionalized position of carboxyl group, the Stone-Wales and single vacancy defects, on the acidity of the functionalized nanotube and graphene have also been evaluated. The deprotonated species have undergone decarboxylation when the hybridization mode of the carbon atom at the functionalization site changed from sp2 to sp3 both for the tube and graphene. The knowledge of the pKa values of the carboxylated nanotube and graphene could be of great help for the understanding of the nanocarbon materials in many diverse areas, including environmental protection, catalysis, electrochemistry and biochemistry.

  12. Hydrazinium 2-amino-4-nitrobenzoate dihydrate: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2017-04-01

    Full Text Available In the anion of the title salt hydrate, H5N2+·C7H5N2O4−·2H2O, the carboxylate and nitro groups lie out of the plane of the benzene ring to which they are bound [dihedral angles = 18.80 (10 and 8.04 (9°, respectively], and as these groups are conrotatory, the dihedral angle between them is 26.73 (15°. An intramolecular amino-N—H...O(carboxylate hydrogen bond is noted. The main feature of the crystal packing is the formation of a supramolecular chain along the b axis, with a zigzag topology, sustained by charge-assisted water-O—H...O(carboxylate hydrogen bonds and comprising alternating twelve-membered {...OCO...HOH}2 and eight-membered {...O...HOH}2 synthons. Each ammonium-N—H atom forms a charge-assisted hydrogen bond to a water molecule and, in addition, one of these forms a hydrogen bond with a nitro-O atom. The amine-N—H atoms form hydrogen bonds to carboxylate-O and water-O atoms, and the amine N atom accepts a hydrogen bond from an amino-H atom. The hydrogen bonds lead to a three-dimensional architecture. An analysis of the Hirshfeld surface highlights the major contribution of O...H/H...O hydrogen bonding to the overall surface, i.e. 46.8%, compared with H...H contacts (32.4%.

  13. Traffic accidents and road surface skidding resistance : an investigation into the statistical relationship between the skidding resistance of the road surface and relative road risk. Summary of the research report of Sub-committee V of the Working Group on Tyres, Road Surfaces and Skidding Accidents of the Institute for Road Safety Research, SWOV

    NARCIS (Netherlands)

    Schlösser, L.H.M

    1975-01-01

    This study forms part of an extended research programme of the Working Group on Tyres, Road-surfaces and Skidding accidents. According to the terms of reference a statistical relationship had to be established between the skidding resistance of a road-surface and the number of accidents per million

  14. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods

    Science.gov (United States)

    Wang, Peng; Zhao, Jinjin; Liu, Jinxi; Wei, Liyu; Liu, Zhenghao; Guan, Lihao; Cao, Guozhong

    2017-01-01

    Perovskite solar cells have advanced rapid in the last few years, however the thermal instability of perovskite film on ZnO nanorods (NRs) remains a big challenge limiting its commercialization. The present work demonstrated effective suppression of the decomposition of CH3NH3PbI3 perovskite through inserting a thin tin oxide (SnO2) passivation layer between ZnO NRs and perovskite films. Although X-ray photoelectron spectroscopy (XPS) results showed no distinct difference in the amount of hydroxyl groups and oxygen vacancies on the surface of ZnO NRs and ZnO@SnO2 NRs, Raman spectra suggested the hydroxyl groups might be trapped in oxygen vacancies on SnO2 surface, preventing the decomposition of CH3NH3PbI3 perovskite through reacting with the hydroxyl groups. The power conversion efficiency of perovskite solar cells was significantly increased from 6.92% to 12.17% and became hysteresis-free by applying SnO2 passivating layer between perovskite and ZnO layers.

  15. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5.

  16. Formation and High-order Carboxylic Acids (RCOOH) in Interstellar Analogous Ices of Carbon Dioxide (CO2) and Methane(CH4)

    Science.gov (United States)

    Zhu, Cheng; Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2018-01-01

    This laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar analogous ices of carbon dioxide (CO2) and methane (CH4) at 10 K upon exposure to energetic electrons. The chemical processing of the ices and the subsequent warm-up phase were monitored online and in situ, exploiting Fourier Transform Infrared Spectrometry and quadrupole mass spectrometry. Characteristic absorptions of functional groups of carboxylic acids (RCOOH) were observed in the infrared spectra of the irradiated ice. Two proposed reaction mechanisms replicated the kinetic profiles of the carboxylic acids along with the decay profile of the precursors during the irradiation via hydrocarbon formation, followed by carboxylation and/or through acetic acid along with mass growth processes of the alkyl chain. Mass spectra recorded during the warm-up phase demonstrated that these acids are distributed from acetic acid (CH3COOH) up to decanoic acid (C9H19COOH). High-dose irradiation studies (91 ± 14 eV) converted low-molecular-weight acids such as acetic acid (CH3COOH) and propionic acid (C2H5COOH) to higher-molecular-weight carboxylic acids, compared to low-dose irradiation studies (18 ± 3 eV). The traces of the {{{H}}}2{{C}}= {{C}}({OH}{)}2+ (m/z = 60) fragment—a link to linear carboxylic acids—implied that higher-order acids (C n H2n+1COOH, n ≥ 5) are likely branched, which correlates with the recent analysis of the structures of the monocarboxylic acids in the Murchison meteorite.

  17. Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Jin, Ru-Na; Ouyang, Xiao-kun, E-mail: xkouyang@zjou.edu.cn; Wang, Yang-Guang

    2017-06-30

    Highlights: • A carboxylated cellulose nanocrystal-polyethyleneimine composite (CCN-PEI) was prepared. • The as-prepared CCN-PEI was characterized by SEM, TEM, FT-IR, and XPS. • Results suggested that the reusable CCN-PEI could remove Cr(VI) from aqueous solutions with a high adsorption capacity. • The adsorption isotherm, thermodynamics, and kinetics of the adsorption process are also discussed. - Abstract: In this study, a composite adsorbent (CCN-PEI) composed of carboxylated cellulose nanocrystals (CCN) and polyethyleneimine (PEI) was prepared through an amidation reaction between the carboxyl groups of the CCN and the amine groups of the PEI. The adsorption performance of the CCN-PEI was tested by removing Cr(VI) ions from aqueous solutions. The physicochemical properties of the CCN and the Cr(VI) ion-loaded CCN-PEI were studied using scanning electron microscopy (SEM), transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. To investigate the adsorption kinetics of Cr(VI) ions onto this newly developed CCN-PEI, we performed experiments under different adsorption conditions, by varying the contact time, solution pH, initial Cr(VI) ion concentration, and adsorption temperature. The prepared CCN-PEI exhibited an encouraging uptake capacity of 358.42 mg × g{sup −1}. The adsorption process was fast: within the first 100 min, Cr(VI) ion adsorption onto the CCN-PEI was about 65%, and the adsorption equilibrium was reached within 250 min. Kinetics experiments indicated that the adsorption process could be described by a pseudo-second-order kinetic model. Furthermore, our adsorption equilibrium data fit the Langmuir isotherms well. The calculated thermodynamic parameters, such as the free energy change (ΔG = −2.93 kJ × mol{sup −1}), enthalpy change (ΔH = −5.69 kJ × mol{sup −1}), and entropy change (ΔS = −9.14 kJ × mol{sup −1}), indicate that the adsorption of Cr(VI) ions onto CCN

  18. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  19. Monte carlo simulation of carboxylic acid phase equilibria.

    Science.gov (United States)

    Clifford, Scott; Bolton, Kim; Ramjugernath, Deresh

    2006-11-02

    Configurational-bias Monte Carlo simulations were carried out in the Gibbs ensemble to generate phase equilibrium data for several carboxylic acids. Pure component coexistence densities and saturated vapor pressures were determined for acetic acid, propanoic acid, 2-methylpropanoic acid, and pentanoic acid, and binary vapor-liquid equilibrium (VLE) data for the propanoic acid + pentanoic acid and 2-methylpropanoic acid + pentanoic acid systems. The TraPPE-UA force field was used, as it has recently been extended to include parameters for carboxylic acids. To simulate the branched compound 2-methylpropanoic acid, certain minor assumptions were necessary regarding angle and torsion terms involving the -CH- pseudo-atom, since parameters for these terms do not exist in the TraPPE-UA force field. The pure component data showed good agreement with the available experimental data, particularly with regard to the saturated liquid densities (mean absolute errors were less than 1.1%). On average, the predicted critical temperature and density were within 1% of the experimental values. All of the binary simulations showed good agreement with the experimental x-y data. However, the TraPPE-UA force field predicts saturated vapor pressures of pure components that are larger than the experimental values, and consequently the P-x-y and T-x-y data of the binary systems also deviate from the measured data.

  20. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations

    International Nuclear Information System (INIS)

    Ogita, Takeshi; Knowles, J.R.

    1988-01-01

    In the ATP-dependent carboxylation of biotin that is catalyzed by most biotin-dependent carboxylases, a fundamental mechanistic question is whether the ATP activates bicarbonate (via the formation of carboxyphosphate as an intermediate) or whether the ATP activates biotin (via the formation of O-phosphobiotin). The authors have resorted to three mechanistic tests using the biotin carboxylase subunit of acetyl-CoA carboxylase from Escherichia coli: positional isotope exchange, intermediate trapping, and 18 O tracer experiments on the ATPase activity. First, no catalysis of positional isotope exchange in adenosine 5'-([α,β- 18 O,β,β- 18 O 2 ]triphosphate) was observed when either biotin or bicarbonate was absent, nor was any exchange seen in the presence of both N-1-methylbiotin and bicarbonate. Second, the putative carboxyphosphate intermediate could not be trapped as its trimethyl ester, under conditions of incubation and analysis where the authentic triester was shown to be adequately stable. In the third test, however, they showed that the ATPase activity of biotin carboxylase that is seen in the absence of biotin, an activity that is known to parallel the normal carboxylase reaction when biotin is present, occurs with the transfer of an 18 O label directly from [ 18 O]bicarbonate into the product P i . This result suggests that the bicarbonate-dependent biotin-independent ATPase reaction catalyzed by biotin carboxylase goes via carboxyphosphate and that the carboxylation of biotin itself may proceed analogously