WorldWideScience

Sample records for surface attachment chemistry

  1. Attachment chemistry of aromatic compounds on a Silicon(100) surface

    Science.gov (United States)

    Henriksson, Anders; Nishiori, Daiki; Maeda, Hiroaki; Miyachi, Mariko; Yamanoi, Yoshinori; Nishihara, Hiroshi

    2018-03-01

    A mild method was developed for the chemical attachment of aromatic compounds directly onto a hydrogen-terminated Si(100) (H-Si(100)) surface. In the presence of palladium catalyst and base, 4-iodophenylferrocene and a π-conjugated iron complex were attached to H-Si(100) electrodes and hydrogen-terminated silicon nanowires (H-SiNWs), both of which have predominant dihydride species on their surfaces. The reactions were conducted in 1,4-dioxane at 100 °C and the immobilization of both 4-ferrocenylphenyl group and π-conjugated molecular wires were confirmed and quantified by XPS and electrochemical measurements. We reported densely packed monolayer whose surface coverage (Γ), estimated from the electrochemical measurements are in analogue to similar monolayers prepared via thermal or light induced hydrosilylation reactions with alkenes or alkynes. The increase in electrochemical response observed on nanostructured silicon surfaces corresponds well to the increase in surface area, those strongly indicating that this method may be applied for the functionalization of electrodes with a variety of surface topographies.

  2. Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy.

    Science.gov (United States)

    Lee, T M; Chang, E; Yang, C Y

    2004-01-01

    This study examined the cell attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V alloy as affected by the surface modifications. The modifications could alter simultaneously the surface chemistries of the alloy (elemental difference of Ti, Al, V, Cu and Ni about 300-600mum thick examined by EDS) as well as the XPS nano-surface characteristics of oxides on the metal surface (chemistries of oxides, amphoteric OH group adsorbed on oxides, and oxide thickness). Three materials including two from modifications and a control were examined. It is argued that a slight change of the nano-surface characteristics of oxides as a result of the modifications neither alters the in vitro capability of Ca and P ion adsorption nor affects the metal ion dissolution behavior of the alloy. This implies that any influence on the cytocompatibility of the materials should only be correlated to the effect of surface chemistries of the alloy and the associated metal ion dissolution behavior of the alloy. The experimental results suggest that the cell response of neonatal rat calvarial osteoblasts on the Ti6Al4V alloy should neither be affected by the variation of surface chemistries of the alloy in a range studied.

  3. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal.

    Science.gov (United States)

    Macgregor, Melanie; Williams, Rachel; Downes, Joni; Bachhuka, Akash; Vasilev, Krasimir

    2017-09-14

    The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.

  4. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  5. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  6. Surface-attachment sequence in Vibrio Cholerae

    Science.gov (United States)

    Utada, Andrew; Gibiansky, Maxsim; Wong, Gerard

    2013-03-01

    Vibrio cholerae is a gram-negative bacterium that causes the human disease cholera. It is found natively in brackish costal waters in temperate climates, where it attaches to the surfaces of a variety of different aquatic life. V. cholerae has a single polar flagellum making it highly motile, as well as a number of different pili types, enabling it to attach to both biotic and abiotic surfaces. Using in-house built tracking software we track all surface-attaching bacteria from high-speed movies to examine the early-time attachment profile of v. cholerae onto a smooth glass surface. Similar to previous work, we observe right-handed circular swimming trajectories near surfaces; however, in addition we see a host of distinct motility mechanisms that enable rapid exploration of the surface before forming a more permanent attachment. Using isogenic mutants we show that the motility mechanisms observed are due to a complex combination of hydrodynamics and pili-surface interactions. Lauga, E., DiLuzio, W. R., Whitesides, G. M., Stone, H. A. Biophys. J. 90, 400 (2006).

  7. Surface chemistry theory and applications

    CERN Document Server

    Bikerman, J J

    2013-01-01

    Surface Chemistry Theory and Applications focuses on liquid-gas, liquid-liquid, solid-gas, solid-liquid, and solid-solid surfaces. The book first offers information on liquid-gas surfaces, including surface tension, measurement of surface tension, rate of capillarity rise, capillary attraction, bubble pressure and pore size, and surface tension and temperature. The text then ponders on liquid-liquid and solid-gas surfaces. Discussions focus on surface energy of solids, surface roughness and cleanness, adsorption of gases and vapors, adsorption hysteresis, interfacial tension, and interfacial t

  8. Surface Chemistry of Gold Nanorods.

    Science.gov (United States)

    Burrows, Nathan D; Lin, Wayne; Hinman, Joshua G; Dennison, Jordan M; Vartanian, Ariane M; Abadeer, Nardine S; Grzincic, Elissa M; Jacob, Lisa M; Li, Ji; Murphy, Catherine J

    2016-10-04

    Gold nanorods have garnered a great deal of scientific interest because of their unique optical properties, and they have the potential to greatly impact many areas of science and technology. Understanding the structure and chemical makeup of their surfaces as well as how to tailor them is of paramount importance in the development of their successful applications. This Feature Article reviews the current understanding of the surface chemistry of as-synthesized gold nanorods, methods of tailoring the surface chemistry of gold nanorods with various inorganic and organic coatings/ligands, and the techniques employed to characterize ligands on the surface of gold nanorods as well as the associated measurement challenges. Specifically, we address the challenges of determining how thick the ligand shell is, how many ligands per nanorod are present on the surface, and where the ligands are located in regiospecific and mixed-ligand systems. We conclude with an outlook on the development of the surface chemistry of gold nanorods leading to the development of a synthetic nanoparticle surface chemistry toolbox analogous to that of synthetic organic chemistry and natural product synthesis.

  9. Surface Chemistry in Nanoscale Materials

    Science.gov (United States)

    Biener, Jürgen; Wittstock, Arne; Baumann, Theodore F.; Weissmüller, Jörg; Bäumer, Marcus; Hamza, Alex V.

    2009-01-01

    Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  10. Surface Chemistry in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Alex V. Hamza

    2009-12-01

    Full Text Available Although surfaces or, more precisely, the surface atomic and electronic structure, determine the way materials interact with their environment, the influence of surface chemistry on the bulk of the material is generally considered to be small. However, in the case of high surface area materials such as nanoporous solids, surface properties can start to dominate the overall material behavior. This allows one to create new materials with physical and chemical properties that are no longer determined by the bulk material, but by their nanoscale architectures. Here, we discuss several examples, ranging from nanoporous gold to surface engineered carbon aerogels that demonstrate the tuneability of nanoporous solids for sustainable energy applications.

  11. Surface chemistry in three dimensions

    DEFF Research Database (Denmark)

    Bollinger, Mikkel; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet

    2000-01-01

    the usual single surface ('2D') process because indirect adsorbate-adsorbate interactions in the transition state are absent in the '3D' case. The prospects for STM-induced single molecule chemistry and for '3D' catalysts are discussed. (C) 2000 Elsevier Science B.V. All rights reserved.......Based on self-consistent density functional calculations it is shown that a new dissociation process for CO adsorbed on a Ru(0001) surface is made possible when the distance to a second Ru(0001) surface placed just above it is below some critical value. This '3D' process is more facile than...

  12. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    International Nuclear Information System (INIS)

    Epstein, Alexander K; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-01-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1–100 mm s −1 ), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ∼ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ∼ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ∼ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ∼ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments. (paper)

  13. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    Science.gov (United States)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  14. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  15. Tailoring Patterns of Surface-Attached Multiresponsive Polymer Networks.

    Science.gov (United States)

    Chollet, Benjamin; D'Eramo, Loïc; Martwong, Ekkachai; Li, Mengxing; Macron, Jennifer; Mai, Thuy Quyen; Tabeling, Patrick; Tran, Yvette

    2016-09-21

    A new strategy for the fabrication of micropatterns of surface-attached hydrogels with well-controlled chemistry is reported. The "grafting onto" approach is preferred to the "grafting from" approach. It consists of cross-linking and grafting preformed and functionalized polymer chains through thiol-ene click chemistry. The advantage is a very good control without adding initiators. A powerful consequence of thiol-ene click reaction by UV irradiation is the facile fabrication of micropatterned hydrogel thin films by photolithography. It is achieved either with photomasks using common UV lamp or without photomasks by direct drawing due to laser technology. Our versatile approach allows the fabrication of various chemical polymer networks on various solid substrates. It is demonstrated here with silicon wafers, glass and gold surfaces as substrates, and two responsive hydrogels, poly(N-isopropylacrylamide) for its responsiveness to temperature and poly(acrylic acid) for its pH-sensitivity. We also demonstrate the fabrication of stable hydrogel multilayers (or stacked layers) in which each elementary layer height can widely range from a few nanometers to several micrometers, providing an additional degree of freedom to the internal architecture of hydrogel patterns. This facile route for the synthesis of micrometer-resolute hydrogel patterns with tailored architecture and multiresponsive properties should have a strong impact.

  16. Recent advances in quantum dot surface chemistry.

    Science.gov (United States)

    Hines, Douglas A; Kamat, Prashant V

    2014-03-12

    Quantum dot (QD) surface chemistry is an emerging field in semiconductor nanocrystal related research. Along with size manipulation, the careful control of QD surface chemistry allows modulation of the optical properties of a QD suspension. Even a single molecule bound to the surface can introduce new functionalities. Herein, we summarize the recent advances in QD surface chemistry and the resulting effects on optical and electronic properties. Specifically, this review addresses three main issues: (i) how surface chemistry affects the optical properties of QDs, (ii) how it influences the excited state dynamics, and (iii) how one can manipulate surface chemistry to control the interactions between QDs and metal oxides, metal nanoparticles, and in self-assembled QD monolayers.

  17. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture.

    Science.gov (United States)

    Boeneman, Kelly; Deschamps, Jeffrey R; Buckhout-White, Susan; Prasuhn, Duane E; Blanco-Canosa, Juan B; Dawson, Philip E; Stewart, Michael H; Susumu, Kimihiro; Goldman, Ellen R; Ancona, Mario; Medintz, Igor L

    2010-12-28

    The unique properties provided by hybrid semiconductor quantum dot (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor.

  18. Quantum Dot DNA Bioconjugates: Attachment Chemistry Strongly Influences the Resulting Composite Architecture

    Science.gov (United States)

    Boeneman, Kelly; Deschamps, Jeffrey R.; Buckhout-White, Susan; Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Stewart, Michael H.; Susumu, Kimihiro; Goldman, Ellen R.; Ancona, Mario; Medintz, Igor L.

    2010-01-01

    The unique properties provided by hybrid semiconductor quantum dot- (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD-biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor. PMID:21082822

  19. Surface Coordination Chemistry of Metal Nanomaterials.

    Science.gov (United States)

    Liu, Pengxin; Qin, Ruixuan; Fu, Gang; Zheng, Nanfeng

    2017-02-15

    Surface coordination chemistry of nanomaterials deals with the chemistry on how ligands are coordinated on their surface metal atoms and influence their properties at the molecular level. This Perspective demonstrates that there is a strong link between surface coordination chemistry and the shape-controlled synthesis, and many intriguing surface properties of metal nanomaterials. While small adsorbates introduced in the synthesis can control the shapes of metal nanocrystals by minimizing their surface energy via preferential coordination on specific facets, surface ligands properly coordinated on metal nanoparticles readily promote their catalysis via steric interactions and electronic modifications. The difficulty in the research of surface coordination chemistry of nanomaterials mainly lies in the lack of effective tools to characterize their molecular surface coordination structures. Also highlighted are several model material systems that facilitate the characterizations of surface coordination structures, including ultrathin nanostructures, atomically precise metal nanoclusters, and atomically dispersed metal catalysts. With the understanding of surface coordination chemistry, the molecular mechanisms behind various important effects (e.g., promotional effect of surface ligands on catalysis, support effect in supported metal nanocatalysts) of metal nanomaterials are disclosed.

  20. Scaling and biomechanics of surface attachment in climbing animals

    Science.gov (United States)

    Labonte, David; Federle, Walter

    2015-01-01

    Attachment devices are essential adaptations for climbing animals and valuable models for synthetic adhesives. A major unresolved question for both natural and bioinspired attachment systems is how attachment performance depends on size. Here, we discuss how contact geometry and mode of detachment influence the scaling of attachment forces for claws and adhesive pads, and how allometric data on biological systems can yield insights into their mechanism of attachment. Larger animals are expected to attach less well to surfaces, due to their smaller surface-to-volume ratio, and because it becomes increasingly difficult to distribute load uniformly across large contact areas. In order to compensate for this decrease of weight-specific adhesion, large animals could evolve overproportionally large pads, or adaptations that increase attachment efficiency (adhesion or friction per unit contact area). Available data suggest that attachment pad area scales close to isometry within clades, but pad efficiency in some animals increases with size so that attachment performance is approximately size-independent. The mechanisms underlying this biologically important variation in pad efficiency are still unclear. We suggest that switching between stress concentration (easy detachment) and uniform load distribution (strong attachment) via shear forces is one of the key mechanisms enabling the dynamic control of adhesion during locomotion. PMID:25533088

  1. Switching surface chemistry with supramolecular machines.

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, Timothy D.; Kelly, Michael James; Jeppesen, Jan O. (University of California, Los Angeles, CA); Bunker, Bruce Conrad; Matzke, Carolyn M.; Stoddart, J. Fraser; Huber, Dale L.; Kushmerick, James G.; Flood, Amar H. (University of California, Los Angeles, CA); Perkins, Julie (University of California, Los Angeles, CA); Cao, Jianguo (University of California, Los Angeles, CA)

    2005-07-01

    Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

  2. Development of antifouling surfaces to reduce bacterial attachment

    Science.gov (United States)

    Graham, Mary Viola

    Bacteria are exceptionally good at adhering to surfaces and forming complex structures known as biofilms. This process, known as biofouling, can cause problems for infrastructure (eg, clogging and damaging pipes), for the food industry (eg, contamination of processing surfaces and equipment, and for the medical industry (eg, contamination of indwelling medical devices). Accordingly, multiple strategies have been explored to combat biofouling, including chemical modification of surfaces, development of antibiotic coatings, and more recently, the use of engineered surface topography. When designed properly, engineered surface topographies can significantly reduce bacterial surface attachment, ultimately limiting surface colonization. In this work, we hypothesized that the morphology, size, spacing, and surface pre-treatment of topographical features should directly correlate with the size and shape of target organisms, in order to reduce biofouling. Topographical features with size and spacing from 0.25 to 2 mum were fabricated in silicone elastomer and tested against rod shaped bacteria with an average size of 0.5 x 2 mum and spherical bacteria (cocci) ranging from 0.5 - 1 μm in diameter. Antifouling properties of the different topographical features were tested in both static and flow-based assays, and under oxygen plasma-treated (hydrophilic) and untreated (hydrophobic) surface conditions. We found that surface pre-treatment universally affects the ability bacteria to attach to surfaces, while surface topography limits attachment in a manner dependent on the bacterial size/shape and the size/spacing of the topography.

  3. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  4. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.

    Directory of Open Access Journals (Sweden)

    Morten Alhede

    Full Text Available For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non

  5. Attachment of mycobacteria to fibronectin-coated surfaces.

    Science.gov (United States)

    Ratliff, T L; McGarr, J A; Abou-Zeid, C; Rook, G A; Stanford, J L; Aslanzadeh, J; Brown, E J

    1988-05-01

    This report investigates the extent of the expression of fibronectin (FN) binding properties among the mycobacteria and provides preliminary characteristics of the bacterial molecule(s) mediating attachment. Eight BCG substrains, three Mycobacterium tuberculosis strains and four other mycobacterial species all expressed FN-binding capacity. Treatment of organisms with detergent prior to the binding assay destroyed the FN-binding capacity of BCG but not that of Staphylococcus aureus. Trypsin pretreatment eliminated the FN-binding capacity of both BCG and S. aureus. [35S]Methionine-labelled material in supernatants from BCG and M. tuberculosis cultures attached to FN-coated surfaces. These culture supernatants inhibited the attachment of BCG but not S. aureus to FN-coated surfaces. This inhibitory activity of the supernatants was removed by affinity chromatography on FN-Sepharose but was not affected by similar passage over a control column (human serum albumin attached to Sepharose). These results demonstrate that the ability to bind FN is present in all mycobacterial species tested and suggest that attachment is mediated by trypsin-sensitive cell-surface component(s).

  6. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.

    Science.gov (United States)

    Zhang, Jing; Huang, Jinglin; Say, Carmen; Dorit, Robert L; Queeney, K T

    2018-06-01

    The nucleation of biofilms is known to be affected by both the chemistry and topography of the underlying substrate, particularly when topography includes nanoscale (topography vs. chemistry is complicated by concomitant variation in both as a result of typical surface modification techniques. Analyzing the behavior of biofilm-forming bacteria exposed to surfaces with systematic, independent variation of both topography and surface chemistry should allow differentiation of the two effects. Silicon surfaces with reproducible nanotopography were created by anisotropic etching in deoxygenated water. Surface chemistry was varied independently to create hydrophilic (OH-terminated) and hydrophobic (alkyl-terminated) surfaces. The attachment and proliferation of Psuedomonas aeruginosa to these surfaces was characterized over a period of 12 h using fluorescence and confocal microscopy. The number of attached bacteria as well as the structural characteristics of the nucleating biofilm were influenced by both surface nanotopography and surface chemistry. In general terms, the presence of both nanoscale features and hydrophobic surface chemistry enhance bacterial attachment and colonization. However, the structural details of the resulting biofilms suggest that surface chemistry and topography interact differently on each of the four surface types we studied. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Priming the Surface of Orthopedic Implants for Osteoblast Attachment in Bone Tissue Engineering.

    Science.gov (United States)

    Chan, Kiat Hwa; Zhuo, Shuangmu; Ni, Ming

    2015-01-01

    The development of better orthopedic implants is incessant. While current implants can function reliably in the human body for a long period of time, there are still a significant number of cases for which the implants can fail prematurely due to poor osseointegration of the implant with native bone. Increasingly, it is recognized that it is extremely important to facilitate the attachment of osteoblasts on the implant so that a proper foundation of extracellular matrix (ECM) can be laid down for the growth of new bone tissue. In order to facilitate the osseointegration of the implant, both the physical nanotopography and chemical functionalization of the implant surface have to be optimized. In this short review, however, we explore how simple chemistry procedures can be used to functionalize the surfaces of three major classes of orthopedic implants, i.e. ceramics, metals, and polymers, so that the attachment of osteoblasts on implants can be facilitated in order to promote implant osseointegration.

  8. Nanotopography effects on astrocyte attachment to nanoporous gold surfaces.

    Science.gov (United States)

    Kurtulus, Ozge; Seker, Erkin

    2012-01-01

    Nanoporous gold, synthesized by a self-assembly process, is a new biomaterial with desirable attributes, including tunable nanotopography, drug delivery potential, electrical conductivity, and compatibility with conventional microfabrication techniques. This study reports on the effect of nanotopography in guiding cellular attachment on nanoporous gold surfaces. While the changes in topography do not affect adherent cell density, average cell area displays a non-monotonic dependence on nanotopography.

  9. Grain surface chemistry in protoplanetary disks

    International Nuclear Information System (INIS)

    Reboussin, Laura

    2015-01-01

    Planetary formation occurs in the protoplanetary disks of gas and dust. Although dust represents only 1% of the total disk mass, it plays a fundamental role in disk chemical evolution since it acts as a catalyst for the formation of molecules. Understanding this chemistry is therefore essential to determine the initial conditions from which planets form. During my thesis, I studied grain-surface chemistry and its impact on the chemical evolution of molecular cloud, initial condition for disk formation, and protoplanetary disk. Thanks to numerical simulations, using the gas-grain code Nautilus, I showed the importance of diffusion reactions and gas-grain interactions for the abundances of gas-phase species. Model results combined with observations also showed the effects of the physical structure (in temperature, density, AV) on the molecular distribution in disks. (author)

  10. Operando chemistry of catalyst surfaces during catalysis.

    Science.gov (United States)

    Dou, Jian; Sun, Zaicheng; Opalade, Adedamola A; Wang, Nan; Fu, Wensheng; Tao, Franklin Feng

    2017-04-03

    Chemistry of a catalyst surface during catalysis is crucial for a fundamental understanding of mechanism of a catalytic reaction performed on the catalyst in the gas or liquid phase. Due to the pressure- or molecular density-dependent entropy contribution of gas or liquid phase of the reactants and the potential formation of a catalyst surface during catalysis different from that observed in an ex situ condition, the characterization of the surface of a catalyst under reaction conditions and during catalysis can be significant and even necessary for understanding the catalytic mechanism at a molecular level. Electron-based analytical techniques are challenging for studying catalyst nanoparticles in the gas or liquid phase although they are necessary techniques to employ. Instrumentation and further development of these electron-based techniques have now made in situ/operando studies of catalysts possible. New insights into the chemistry and structure of catalyst nanoparticles have been uncovered over the last decades. Herein, the origin of the differences between ex situ and in situ/operando studies of catalysts, and the technical challenges faced as well as the corresponding instrumentation and innovations utilized for characterizing catalysts under reaction conditions and during catalysis, are discussed. The restructuring of catalyst surfaces driven by the pressure of reactant(s) around a catalyst, restructuring in reactant(s) driven by reaction temperature and restructuring during catalysis are also reviewed herein. The remaining challenges and possible solutions are briefly discussed.

  11. Dissociative electron attachment on surfaces and in bulk media

    International Nuclear Information System (INIS)

    Fabrikant, Ilya I.

    2007-01-01

    A theory of dissociative electron attachment to molecules condensed at surfaces and embedded within bulk media is developed. The theory of low-energy electron diffraction is used to obtain the width for electron-molecule resonance scattering in the condensed phase from the width for the gas phase. It is then employed for the calculation of dissociative attachment in the framework of the nonlocal complex potential theory. Specific calculations using the effective mass approximation are carried out for electron attachment to CH 3 Cl and CF 3 Cl molecules physisorbed on the surface of a Kr film. The role of image states and image-potential resonances is analyzed. The results show an increase by several orders of magnitude in the cross section for physisorbed molecules as compared with gas-phase molecules. This is in general agreement with the measured cross sections. However, the position of the peak in the cross section for CH 3 Cl is significantly shifted towards higher energies as compared to experiment [K. Nagesha et al., J. Chem. Phys. 114, 4934 (2001)], and the magnitude of the calculated cross section for CF 3 Cl at the surface is significantly higher than the measured value. Possible reasons for disagreements are analyzed

  12. Active screen plasma nitriding enhances cell attachment to polymer surfaces

    International Nuclear Information System (INIS)

    Kaklamani, Georgia; Bowen, James; Mehrban, Nazia; Dong, Hanshan; Grover, Liam M.; Stamboulis, Artemis

    2013-01-01

    Active screen plasma nitriding (ASPN) is a well-established technique used for the surface modification of materials, the result of which is often a product with enhanced functional performance. Here we report the modification of the chemical and mechanical properties of ultra-high molecular weight poly(ethylene) (UHMWPE) using 80:20 (v/v) N 2 /H 2 ASPN, followed by growth of 3T3 fibroblasts on the treated and untreated polymer surfaces. ASPN-treated UHMWPE showed extensive fibroblast attachment within 3 h of seeding, whereas fibroblasts did not successfully attach to untreated UHMWPE. Fibroblast-coated surfaces were maintained for up to 28 days, monitoring their metabolic activity and morphology throughout. The chemical properties of the ASPN-treated UHMWPE surface were studied using X-ray photoelectron spectroscopy, revealing the presence of C-N, C=N, and C≡N chemical bonds. The elastic modulus, surface topography, and adhesion properties of the ASPN-treated UHMWPE surface were studied over 28 days during sample storage under ambient conditions and during immersion in two commonly used cell culture media.

  13. Criegee Chemistry on Aqueous Organic Surfaces.

    Science.gov (United States)

    Enami, Shinichi; Colussi, A J

    2017-04-06

    In the troposphere, the fate of gas-phase Criegee intermediates (CIs) is deemed to be determined by their reactions with water molecules. Here it is shown that CIs produced in situ on the surface of water/acetonitrile (W/AN) solutions react competitively with millimolar carboxylic acids. Present experiments probe, via online electrospray mass spectrometry, CIs' chemistry on the surface of α-humulene and β-caryophyllene in W/AN microjets exposed to O 3 (g) for competitiveness being an increasing function of n. Present findings demonstrate that CIs can react with species other than H 2 O on the surface of aqueous organic aerosols due to the low water concentrations prevalent in the outermost interfacial layers.

  14. From helical to planar chirality by on-surface chemistry

    Czech Academy of Sciences Publication Activity Database

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Vacek Chocholoušová, Jana; Jančařík, Andrej; Rybáček, Jiří; Kośmider, K.; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo

    2017-01-01

    Roč. 9, č. 3 (2017), s. 213-218 ISSN 1755-4330 R&D Projects: GA ČR(CZ) GC14-16963J; GA ČR(CZ) GA14-29667S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : chirality * AFM * STM * helicene * on surface chemistry * DFT Subject RIV: CF - Physical ; Theoretical Chemistry; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Physical chemistry; Organic chemistry (UOCHB-X) Impact factor: 25.870, year: 2016

  15. Streptococcus mutans attachment on a cast titanium surface

    Directory of Open Access Journals (Sweden)

    Sicknan Soares da Rocha

    2009-03-01

    Full Text Available This study examined by means of scanning electron microscopy (SEM, the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System. The surfaces of each metal were ground and polished with sandpaper (#300-4000 and alumina paste (0.3 µm. The roughness of the surface (Ra was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (10(9 cuf and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 µm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.

  16. Ferroelectric based catalysis: Switchable surface chemistry

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  17. Photoswitchable method for the ordered attachment of proteins to surfaces

    Science.gov (United States)

    Camarero, Julio A.; De Yoreo, James J.; Kwon, Youngeun

    2010-04-20

    Described herein is a method for the attachment of proteins to any solid support with control over the orientation of the attachment. The method is extremely efficient, not requiring the previous purification of the protein to be attached, and can be activated by UV-light. Spatially addressable arrays of multiple protein components can be generated by using standard photolithographic techniques.

  18. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  19. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  20. Surface-Attached Molecules Control Staphylococcus aureus Quorum Sensing and Biofilm Development

    Science.gov (United States)

    Kim, Minyoung Kevin; Zhao, Aishan; Wang, Ashley; Brown, Zachary Z.; Muir, Tom W.; Stone, Howard A.; Bassler, Bonnie L.

    2017-01-01

    Bacteria use a process called quorum sensing to communicate and orchestrate collective behaviors including virulence factor secretion and biofilm formation. Quorum sensing relies on production, release, accumulation, and population-wide detection of signal molecules called autoinducers. Here, we develop concepts to coat surfaces with quorum-sensing-manipulation molecules as a method to control collective behaviors. We probe this strategy using Staphylococcus aureus. Pro- and anti-quorum-sensing molecules can be covalently attached to surfaces using click chemistry, where they retain their abilities to influence bacterial behaviors. We investigate key features of the compounds, linkers, and surfaces necessary to appropriately position molecules to interact with cognate receptors, and the ability of modified surfaces to resist long-term storage, repeated infections, host plasma components, and flow-generated stresses. Our studies highlight how this surface approach can be used to make colonization-resistant materials against S. aureus and other pathogens and how the approach can be adapted to promote beneficial behaviors of bacteria on surfaces. PMID:28530651

  1. A simple method to assess bacterial attachment to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak; Bhosle

    of ineubation. There was a highly significant positive linear relationship between crystal violet stained attached cells and the viable cell count of cells attached to aluminium panels (r = 0.9997; p less than 0.001: n = 6). The method is relatively simple...

  2. Surface chemistry: Key to control and advance myriad technologies

    Science.gov (United States)

    Yates, John T.; Campbell, Charles T.

    2011-01-01

    This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359

  3. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  4. Attachments

    International Nuclear Information System (INIS)

    2000-01-01

    In this attachment to the Annual report 1999 of the Nuclear Regulatory Authority of the Slovak Republic (UJD) the economic and personnel data of the UJD, used abbreviations, as well as the International nuclear event scales - INES are presented. Professional level of staff of the UJD is influenced by the education structure of its staff, when nearly 75% of the total number of staff has a university degree. A of 31.12.1999 there were 79 employees as average calculated number. Financing of the regulator in 1999 was mainly provided from the state budget, which represented 96% of all expenditures. The total volume of expenditures for UJD activity funded from the state budget achieved as of 31.12.1999 Slovak crowns (SK) 67 067 thousands. In the main category of expenditures an amount of SK 63 499 thous. was used for current activities, and the difference of SK 3 587 thous. was used for raising capital assets. Significant increase expenditures in the evaluated year compared to the 1998 was caused by a special purpose payment made by the Slovakia into the Fund for reconstruction of the Chernobyl cover (SK 19 996 thous.) funded through the budget chapter of the regulator. In the structure of current expenditures the highest share is taken by current transfers to abroad in total of SK 22 543 thous., i.e. contribution to reconstruction of Chernobyl cover made to the EBRD and contributions to the Fund of Technical Co-operation of the IAEA. For procurement of goods and services an amount of SK 19 814 thous. was spent, of which SK 7 054 thous. was used for funding science and technology tasks which were contracted out. The decision-making process in performing state supervision forced UJD to contact out various expert opinions and studies, for which UJD paid SK 2 058 thous. in total. Other expenditures in a volume of SK 10 702 thous. represent travel expenses, goods and services for UJD, rent for offices and other inevitable expenses. Salaries of staff represented SK 15 953

  5. Liquid flow along a solid surface reversibly alters interfacial chemistry.

    Science.gov (United States)

    Lis, Dan; Backus, Ellen H G; Hunger, Johannes; Parekh, Sapun H; Bonn, Mischa

    2014-06-06

    In nature, aqueous solutions often move collectively along solid surfaces (for example, raindrops falling on the ground and rivers flowing through riverbeds). However, the influence of such motion on water-surface interfacial chemistry is unclear. In this work, we combine surface-specific sum frequency generation spectroscopy and microfluidics to show that at immersed calcium fluoride and fused silica surfaces, flow leads to a reversible modification of the surface charge and subsequent realignment of the interfacial water molecules. Obtaining equivalent effects under static conditions requires a substantial change in bulk solution pH (up to 2 pH units), demonstrating the coupling between flow and chemistry. These marked flow-induced variations in interfacial chemistry should substantially affect our understanding and modeling of chemical processes at immersed surfaces. Copyright © 2014, American Association for the Advancement of Science.

  6. The Impact of Nanoparticle Surface Chemistry on Biological Systems

    Science.gov (United States)

    Thorn, Angie Sue Morris

    The unique properties of nanomaterials, such as their small size and large surface area-to-volume ratios, have attracted tremendous interest in the scientific community over the last few decades. Thus, the synthesis and characterization of many different types of nanoparticles has been well defined and reported on in the literature. Current research efforts have redirected from the basic study of nanomaterial synthesis and their properties to more application-based studies where the development of functionally active materials is necessary. Today such nanoparticle-based systems exist for a range of biomedical applications including imaging, drug delivery and sensors. The inherent properties of the nanomaterial, although important, aren't always ideal for specific applications. In order to optimize nanoparticles for biomedical applications it is often desirable to tune their surface properties. Researchers have shown that these surface properties (such as charge, hydrophobicity, or reactivity) play a direct role in the interactions between nanoparticles and biological systems can be altered by attaching molecules to the surface of nanoparticles. In this work, the effects of physicochemical properties of a wide variety of nanoparticles was investigated using in vitro and in vivo models. For example, copper oxide (CuO) nanoparticles were of interest due to their instability in biological media. These nanoparticles undergo dissolution when in an aqueous environment and tend to aggregate. Therefore, the cytotoxicity of two sizes of CuO NPs was evaluated in cultured cells to develop a better understanding of how these propertied effect toxicity outcomes in biological systems. From these studies, it was determined that CuO NPs are cytotoxic to lung cells in a size-dependent manner and that dissolved copper ions contribute to the cytotoxicity however it is not solely responsible for cell death. Moreover, silica nanoparticles are one of the most commonly used nanomaterials

  7. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    Science.gov (United States)

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  8. Surface wear of resin composites used for Invisalign® attachments.

    Science.gov (United States)

    Barreda, Graciela J; Dzierewianko, Elizabeth A; Muñoz, Karina A; Piccoli, Gisela I

    2017-08-01

    Orthodontic treatments with Invisalign® require the use of attachments, which are composite resin buttons attached to tooth surfaces. Attachments constitute one of the most powerful tools for improving the efficiency of orthodontic tooth movement. The main purpose of this study was to evaluate surface wear over six months in two resin composites (Filtek Z350 XT, 3MESPE and Amelogen Plus TW, Ultradent Products Inc. ) used for making Invisalign® attachments. These composites were selected for their esthetic and mechanical properties. Forty attachments were bonded to the buccal surface of maxillary teeth. Materials were randomized and assigned in a double blind manner. Impressions were taken of the attachments using a preestablished technique immediately after bonding and following 6 months of clinical use. The impressions were examined by Scanning Electron Microscopy (SEM) at 12-fold magnification to identify changes in surface texture and attachment shape. Data were analyzed using Mann-Whitney's test on the overall ranking of detected changes in those variables. Statistically significant differences (PAttachment shape did not change significantly in either material (P>0. 05). According to the results of this study, the alteration of the attachment surface during the first six months of treatment depends on the composite used, while attachment shape does not appear to be affected, so the clinical performance of the materials evaluated could be considered acceptable. Sociedad Argentina de Investigación Odontológica.

  9. Cell and fiber attachment to demineralized dentin from normal root surfaces.

    Science.gov (United States)

    Hanes, P J; Polson, A M; Ladenheim, S

    1985-12-01

    The study assessed connective tissue and epithelial responses to dentin specimens (obtained from normal roots of human teeth) after surface demineralization. Rectangular dental specimens with opposite faces of root and pulpal dentin were prepared from beneath root surfaces covered by periodontal ligament. One-half of the specimens were treated with citric acid, pH 1, for 3 minutes, while the remainder served as untreated control specimens. Specimens were implanted vertically into incisional wounds on the dorsal surface of rats with one end of the implant protruding through the skin. Four specimens in each group were available 1, 3, 5 and 10 days after implantation. Histologic and histometric analyses included counts of adhering cells, evaluation of connective tissue fiber relationships and assessment of epithelial migration. Analyses within each group comparing root and pulpal surfaces showed no differences between any of the parameters. Comparisons between experimental and control groups showed that demineralized surfaces had a greater number of cells attached, fiber attachment occurred and epithelial downgrowth was inhibited. The fiber attachment to experimental specimens differed morphologically from fiber attachment to normal root surfaces: the number of fibers attached per unit length and the diameter of attached fibers were significantly less on experimental specimens. Demineralized specimens at 10 days had a distinct eosinophilic surface zone. Surface demineralization of dentin predisposed toward a cell and fiber attachment system which inhibited migration of epithelium.

  10. Multivariate analysis of attachment of biofouling organisms in response to material surface characteristics.

    Science.gov (United States)

    Gatley-Montross, Caitlyn M; Finlay, John A; Aldred, Nick; Cassady, Harrison; Destino, Joel F; Orihuela, Beatriz; Hickner, Michael A; Clare, Anthony S; Rittschof, Daniel; Holm, Eric R; Detty, Michael R

    2017-12-29

    Multivariate analyses were used to investigate the influence of selected surface properties (Owens-Wendt surface energy and its dispersive and polar components, static water contact angle, conceptual sign of the surface charge, zeta potentials) on the attachment patterns of five biofouling organisms (Amphibalanus amphitrite, Amphibalanus improvisus, Bugula neritina, Ulva linza, and Navicula incerta) to better understand what surface properties drive attachment across multiple fouling organisms. A library of ten xerogel coatings and a glass standard provided a range of values for the selected surface properties to compare to biofouling attachment patterns. Results from the surface characterization and biological assays were analyzed separately and in combination using multivariate statistical methods. Principal coordinate analysis of the surface property characterization and the biological assays resulted in different groupings of the xerogel coatings. In particular, the biofouling organisms were able to distinguish four coatings that were not distinguishable by the surface properties of this study. The authors used canonical analysis of principal coordinates (CAP) to identify surface properties governing attachment across all five biofouling species. The CAP pointed to surface energy and surface charge as important drivers of patterns in biological attachment, but also suggested that differentiation of the surfaces was influenced to a comparable or greater extent by the dispersive component of surface energy.

  11. Surface chemistry: Single handedness in flatland

    Science.gov (United States)

    Ernst, Karl-Heinz

    2017-03-01

    Planar molecules may break mirror symmetry when aligned on a surface, but both right- and left-handed forms will be created. Starting with a single-handed precursor, chiral adsorbates of planar hydrocarbons with a single handedness are formed in on-surface reactions.

  12. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  13. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  14. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics.

    Science.gov (United States)

    Korogiannaki, Myrto; Zhang, Jianfeng; Sheardown, Heather

    2017-10-01

    Discontinuation of contact lens wear as a result of ocular dryness and discomfort is extremely common; as many as 26% of contact lens wearers discontinue use within the first year. While patients are generally satisfied with conventional hydrogel lenses, improving on-eye comfort continues to remain a goal. Surface modification with a biomimetic, ocular friendly hydrophilic layer of a wetting agent is hypothesized to improve the interfacial interactions of the contact lens with the ocular surface. In this work, the synthesis and characterization of poly(2-hydroxyethyl methacrylate) surfaces grafted with a hydrophilic layer of hyaluronic acid are described. The immobilization reaction involved the covalent attachment of thiolated hyaluronic acid (20 kDa) on acrylated poly(2-hydroxyethyl methacrylate) via nucleophile-initiated Michael addition thiol-ene "click" chemistry. The surface chemistry of the modified surfaces was analyzed by Fourier transform infrared spectroscopy-attenuated total reflectance and X-ray photoelectron spectroscopy. The appearance of N (1s) and S (2p) peaks on the low resolution X-ray photoelectron spectroscopy spectra confirmed successful immobilization of hyaluronic acid. Grafting hyaluronic acid to the poly(2-hydroxyethyl methacrylate) surfaces decreased the contact angle, the dehydration rate, and the amount of nonspecific sorption of lysozyme and albumin in comparison to pristine hydrogel materials, suggesting the development of more wettable surfaces with improved water-retentive and antifouling properties, while maintaining optical transparency (>92%). In vitro testing also showed excellent viability of human corneal epithelial cells with the hyaluronic acid-grafted poly(2-hydroxyethyl methacrylate) surfaces. Hence, surface modification with hyaluronic acid via thiol-ene "click" chemistry could be useful in improving contact lens surface properties, potentially alleviating symptoms of contact lens related dryness and discomfort during

  15. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide.

    Directory of Open Access Journals (Sweden)

    Shiho Sugawara

    Full Text Available The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM. BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP. PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β and growth factors (EGF, VEGF on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface.

  16. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  18. Molecular dynamics simulations study of nano bubble attachment at hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Dang, Liem X.; Miller, Jan D.

    2018-01-01

    Bubble attachment phenomena are examined using Molecular Dynamics Simulations (MDS) for the first time. The simulation involves a nitrogen nano bubble containing 906 nitrogen molecules in a water phase with 74,000 water molecules at molybdenite surfaces. During a simulation period of 1 ns, film rupture and displacement occurs. The attached nanobubble at the hydrophobic molybdenite face surface results in a contact angle of about 90º. This spontaneous attachment is due to a “water exclusion zone” at the molybdenite face surface and can be explained by a van der Waals (vdW) attractive force, as discussed in the literature. In contrast, the film is stable at the hydrophilic quartz (001) surface and the bubble does not attach. Contact angles determined from MD simulations are reported, and these results agree well with experimental and MDS sessile drop results. In this way, film stability and bubble attachment are described with respect to interfacial water structure for surfaces of different polarity. Interfacial water molecules at the hydrophobic molybdenite face surface have relatively weak interactions with the surface when compared to the hydrophilic quartz (001) surface, as revealed by the presence of a 3 Å “water exclusion zone” at the molybdenite/water interface. The molybdenite armchair-edge and zigzag-edge surfaces show a comparably slow process for film rupture and displacement when compared to the molybdenite face surface, which is consistent with their relatively weak hydrophobic character.

  19. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  20. Methods of Attaching or Grafting Carbon Nanotubes to Silicon Surfaces and Composite Structures Derived Therefrom

    Science.gov (United States)

    Tour, James M. (Inventor); Chen, Bo (Inventor); Flatt, Austen K. (Inventor); Stewart, Michael P. (Inventor); Dyke, Christopher A. (Inventor); Maya, Francisco (Inventor)

    2012-01-01

    The present invention is directed toward methods of attaching or grafting carbon nanotubes (CNTs) to silicon surfaces. In some embodiments, such attaching or grafting occurs via functional groups on either or both of the CNTs and silicon surface. In some embodiments, the methods of the present invention include: (1) reacting a silicon surface with a functionalizing agent (such as oligo(phenylene ethynylene)) to form a functionalized silicon surface; (2) dispersing a quantity of CNTs in a solvent to form dispersed CNTs; and (3) reacting the functionalized silicon surface with the dispersed CNTs. The present invention is also directed to the novel compositions produced by such methods.

  1. Surface chemistry and microscopy of food powders

    Science.gov (United States)

    Burgain, Jennifer; Petit, Jeremy; Scher, Joël; Rasch, Ron; Bhandari, Bhesh; Gaiani, Claire

    2017-12-01

    Despite high industrial and scientific interest, a comprehensive review of the surface science of food powders is still lacking. There is a real gap between scientific concerns of the field and accessible reviews on the subject. The global description of the surface of food powders by multi-scale microscopy approaches seems to be essential in order to investigate their complexity and take advantage of their high innovation potential. Links between these techniques and the interest to develop a multi-analytical approach to investigate scientific questions dealing with powder functionality are discussed in the second part of the review. Finally, some techniques used in others fields and showing promising possibilities in the food powder domain will be highlighted.

  2. Quantification of air plasma chemistry for surface disinfection

    Science.gov (United States)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  3. Density functional theory in surface chemistry and catalysis

    Science.gov (United States)

    Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337

  4. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix

    2011-01-01

    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  5. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens

    2011-05-19

    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  6. Smart Surface Chemistries of Conducting Polymers

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of “click-chemistry” to modify...... film substrates. Complementing these findings, we introduce a novel technique for fabricating surface chemical gradients on PEDOT-N3 substrates. The technique is based on applying “electro-click chemistry” to locally induce covalent modifications. Further supplementing these results, we develop......-ethylene-glycol-coatings of the conducting polymer substrates. These coatings render the substrates resistant to protein adsorption. Hence, the choice of solvent is found to be a key parameter for achieving functional post-polymerization modifications of PEDOT-N3. The methods developed in this thesis are highly generic, and can therefore...

  7. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  8. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  9. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  10. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    Science.gov (United States)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-05-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.

  11. Recent advances in study of uranium surface chemistry in China

    International Nuclear Information System (INIS)

    Luo, Lizhu; Lai, Xinchun; Wang, Xiaolin

    2014-01-01

    Uranium is very important in nuclear energy industry; however, uranium and its alloys corrode seriously in various atmospheres because of their chemical reactivities. In China, continuous investigations focused on surface chemistry have been carried out for a thorough understanding of uranium in order to provide technical support for its engineering applications. Oxidation kinetics of uranium and its alloys in oxidizing atmospheres are in good agreement with those in the literature. In addition to the traditional techniques, non-traditional methods have been applied for oxidation kinetics of uranium, and it has been verified that spectroscopic ellipsometry and X-ray diffraction are effective and nondestructive tools for in situ kinetic studies. The inhibition efficiency of oxidizing gas impurities on uranium hydrogenation is found to follow the order CO 2 > CO > O 2 , and the broadening of XPS shoulders with temperature in depth profile of hydrogenated uranium surface is discussed, which is not mentioned in the literature. Significant progress on surface chemistry of alloyed uranium (U-Nb and U-Ti) in hydrogen atmosphere is reported, and it is revealed that the hydrating nucleation and subsequent growth of alloyed uranium are closely connected with the surface states, underlying metal matrix, and it is microstructure-dependent. In this review, the recent advances in uranium surface chemistry in China, published so far mostly in Chinese language, are briefly summarized. Suggestions for further study are made. (orig.)

  12. The attachment of colloidal particles to environmentally relevant surfaces and the effect of particle shape.

    Science.gov (United States)

    McNew, Coy P; Kananizadeh, Negin; Li, Yusong; LeBoeuf, Eugene J

    2017-02-01

    Despite the prevalence of nonspherical colloidal particles, the role of particle shape in the transport of colloids is largely understudied. This study investigates the attachment of colloidal particles onto environmentally relevant surfaces while varying particle shape and ionic strength. Using quartz crystal microbalance and atomic force microscopy measurements, the role of particle shape was elucidated and possible mechanisms discussed. The attachment of both spherical and stretched polystyrene colloidal particles onto a smooth alginate-coated silica surface showed qualitative agreement with DLVO theory. Attachment onto a Harpeth humic acid (HHA) surface, however, significantly deviated from DLVO theory due to its high surface heterogeneity and extended confirmation from the silica surface. This extended confirmation provided increased potential for spherical particle entanglement, while the enlarged major axis of the stretched particles hindered their ability to attach. As ionic strength increased, the HHA layer condensed and provided less potential for spherical particle entanglement and therefore the selectivity for spherical particle attachment vanished. The findings presented in this study suggest that colloidal particle shape may play a complex and important role in predicting the transport of colloidal particles, especially in the presence of natural organic matter-coated surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Surface chemical study on the covalent attachment of hydroxypropyltrimethyl ammonium chloride chitosan to titanium surfaces

    Science.gov (United States)

    Xu, Xiaofen; Wang, Ling; Guo, Shengrong; Lei, Lei; Tang, Tingting

    2011-10-01

    An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm -1 (-OH vibration), 1664 cm -1 (Amide I), 1165 cm -1 ( νas, C-O-C bridge), and the broad absorption bands between 958 cm -1 and 1155 cm -1 (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.

  14. Surface chemical study on the covalent attachment of hydroxypropyltrimethyl ammonium chloride chitosan to titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaofen; Wang Ling [School of Pharmacy, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240 (China); Guo Shengrong, E-mail: srguo@sjtu.edu.cn [School of Pharmacy, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240 (China); Lei Lei [School of Pharmacy, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240 (China); Tang Tingting, E-mail: tingtingtang@hotmail.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine (China)

    2011-10-01

    An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm{sup -1} (-OH vibration), 1664 cm{sup -1} (Amide I), 1165 cm{sup -1} ({nu}{sub as}, C-O-C bridge), and the broad absorption bands between 958 cm{sup -1} and 1155 cm{sup -1} (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.

  15. Surface and protein analyses of normal human cell attachment on PIII-modified chitosan membranes

    Energy Technology Data Exchange (ETDEWEB)

    Saranwong, N. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Inthanon, K. [Human and Animal Cell Technology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W., E-mail: weerah@chiangmai.ac.th [Human and Animal Cell Technology Research Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Nanotechnology Center of Excellence and Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90110 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    Surface of chitosan membrane was modified with argon (Ar) and nitrogen (N) plasma immersion ion implantation (PIII) for human skin fibroblasts F1544 cell attachment. The modified surfaces were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Cell attachment patterns were evaluated by scanning electron microscopy (SEM). The enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of focal adhesion kinase (FAK). The results showed that Ar PIII had an enhancement effect on the cell attachment while N-PIII had an inhibition effect. Filopodial analysis revealed more microfilament cytoplasmic spreading on the edge of cells attached on the Ar-treated membranes than N-treated membranes. Higher level FAK was found in Ar-treated membranes than that in N-treated membranes.

  16. Influence of surface structure and chemistry on water droplet splashing.

    Science.gov (United States)

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  17. Flagella and pili are both necessary for efficient attachment of Methanococcus maripaludis to surfaces.

    Science.gov (United States)

    Jarrell, Ken F; Stark, Meg; Nair, Divya B; Chong, James P J

    2011-06-01

    Methanococcus maripaludis has two surface appendages, namely flagella and pili. Flagella have been shown to be required for swimming, but no specific role has been assigned as yet to pili. In this report, wild-type M. maripaludis cells are compared with mutants lacking either pili or flagella or both surface appendages in their ability to attach to a variety of surfaces including nickel, gold and molybdenum grids as well as glass, silicon and mica. Wild-type cells attached to varying degrees to all surfaces tested, except mica, via their flagella as observed by scanning electron microscopy. Large cables of flagella were found to leave the cell and to be unwound on the surface. In addition, such cables were often found to connect cells. In contrast, cells lacking either flagella or pili or both surface appendages were unable to attach efficiently to any surfaces. This indicates a second role for flagella in addition to swimming in M. maripaludis, as well as a first role for pili in this organism, namely in surface attachment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. New developments for the site-specific attachment of protein to surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2005-05-12

    Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site-specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces.

  19. Next Steps Forward in Understanding Martian Surface and Subsurface Chemistry

    Science.gov (United States)

    Carrier, Brandi L.

    2017-09-01

    The presence of oxidants such as hydrogen peroxide (H2O2) and perchlorate (ClO4-), which have been detected on Mars, has significant implications for chemistry and astrobiology. These oxidants can increase the reactivity of the Martian soil, accelerate the decomposition of organic molecules, and depress the freezing point of water. The study by Crandall et al. "Can Perchlorates be Transformed to Hydrogen Peroxide Products by Cosmic Rays on the Martian Surface" reveals a new formation mechanism by which hydrogen peroxide and other potential oxidants can be generated via irradiation of perchlorate by cosmic rays. This study represents an important next step in developing a full understanding of Martian surface and subsurface chemistry, particularly with respect to degradation of organic molecules and potential biosignatures.

  20. Surface Chemistry of CWAs for Decon Enabling Sciences

    Science.gov (United States)

    2014-11-04

    Ultraviolet and Visible Photochemistry of Methanol at 3D Mesoporous Networks: TiO, The Journal of Physical Chemistry C, (07 2013): 15035. doi...A for none) Presentations since most recent interim report for this project: " Photochemistry of Methanol at 3-D Networked Aerogels of TiO2 and...evaporation • Studied the uptake, thermal, and photochemistry of agent simulants on TiO2 surfaces • Initiated experiments on the uptake and

  1. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-03-01

    Full Text Available Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  2. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  3. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  4. Cell and fiber attachment to demineralized dentin from periodontitis-affected root surfaces.

    Science.gov (United States)

    Polson, A M; Ladenheim, S; Hanes, P J

    1986-04-01

    This study assessed connective tissue and epithelial responses to dentin specimens obtained from periodontitis-affected roots of human teeth after surface demineralization. Rectangular dentin specimens with opposite faces of root and pulpal dentin were prepared from beneath root surfaces covered by sheets of calculus. One half of the specimens were treated with citric acid, pH 1, for 3 minutes, while the remainder served as untreated controls. Specimens were implanted vertically into incisional wounds on the dorsal surface of rats with one end of the implant protruding through the skin. Four specimens in each group were available 1, 3, 5 and 10 days after implantation. Histologic and histometric analyses included counts of adhering cells, evaluation of attached connective tissue fiber density and diameter, and assessment of epithelial migration. Analyses within each group comparing root and pulpal surfaces showed no differences between any of the parameters. Comparisons between experimental and control groups showed that demineralized surfaces had a greater number of cells attached, fiber attachment occurred and epithelial downgrowth was inhibited. Surface demineralization of dentin from periodontitis-affected roots predisposed toward a connective tissue attachment.

  5. New strategy for chemically attachment of Schiff base complexes on Multiwalled Carbon Nanotubes surfaces

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2014-06-01

    Full Text Available Chemically attachment of Schiff base complexes on multiwalled carbon nanotubes (MWCNTs surfaces through a convenient and simple method was studied. In the first step of this method, we present a new method for preparation of aminated MWCNTs in order to attachment of (new chlorinated salen Schiff bases. Amination of multiwalled carbon nanotubes performed under microwave (MW irradiation through a one pot two step reaction. The chemically attachment of salen Schiff bases on functionalized MWCNTs (salen@MWCNTs performed under a facile simple nucleophilic substitution reaction and complexation of attached salen Schiff bases (salen complex@MWCNTs in last step, have been occurred with reaction of transition metal salts and salen@MWCNTs. The obtained products were characterized in detail, using FTIR, XRD, UV-Vis absorption, SEM and EDX methods.

  6. The Chemistry and Biochemistry of Heme c: Functional Bases for Covalent Attachment

    OpenAIRE

    Bowman, Sarah E. J.; Bren, Kara L.

    2008-01-01

    A discussion of the literature concerning the synthesis, function, and activity of heme c-containing proteins is presented. Comparison of the properties of heme c, which is covalently bound to protein, is made to heme b, which is bound noncovalently. A question of interest is why nature uses biochemically expensive heme c in many proteins when its properties are expected to be similar to heme b. Considering the effects of covalent heme attachment on heme conformation and on the proximal histi...

  7. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Choi, Yu-Ri; Kwon, Jae-Sung; Song, Doo-Hoon; Choi, Eun Ha; Lee, Yong-Keun; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2013-01-01

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  8. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Ri [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kwon, Jae-Sung [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Song, Doo-Hoon [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Choi, Eun Ha [Plasma Bioscience Research Center Kwangwoon University, Seoul 139-701, 447-1 Wokgye-Dong, Nowon-Gu, Seoul (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn, E-mail: kmkim@yuhs.ac [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2013-11-29

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering.

  9. Recyclable surfaces for amine conjugation chemistry via redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Inseong; Yeo, Woon Seok [Dept. of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul (Korea, Republic of); Bae, Se Won [Green Materials and Process Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan (Korea, Republic of)

    2017-02-15

    In this study, we extended this strategy to present a switchable surface that allows surface functionalization and removal of functional groups repeatedly. The substrate presenting a benzoquinone acid group is first used to immobilize with an amine-containing (bio)molecule using well-known conjugation chemistry. The benzoquinone group is then converted to the corresponding hydroquinone by treating with a reducing agent. We have described a strategy for the dynamic control of surface properties with recyclability via a simple reduction/ oxidation reaction. A stimuli-responsive quinone derivative was harnessed for the repeated immobilization and release of (bio)molecules, and thus, for the repeated dynamic change of the surface properties according to the characteristics of the immobilized (bio)molecules.

  10. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    Science.gov (United States)

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  11. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yi; Jiang Tao; Zhou Yi; Zhang Zhen; Wang Zhejun [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tong Hua; Shen Xinyu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Wang Yining, E-mail: wang.yn@whu.edu.cn [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2011-07-20

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: {yields} Calcium carbonate coatings were prepared on titanium substrates. {yields} The coating process is simple and cost-effective. {yields} Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. {yields} Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  12. The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry

    Science.gov (United States)

    Eid, K. F.; Panth, M.; Sommers, A. D.

    2018-03-01

    This paper explores the fluid property commonly called surface tension, its effect on droplet shape and contact angle, and the major influences of contact angle behaviour (i.e. surface roughness and surface chemistry). Images of water droplets placed on treated copper surfaces are used to measure the contact angles between the droplets and the surface. The surface wettability is manipulated either by growing a self-assembled monolayer on the surface to make it hydrophobic or by changing the surface roughness. The main activities in this experiment, then, are (1) preparing and studying surfaces with different surface wettability and roughness; (2) determining the shape and contact angles of water droplets on these surfaces; and (3) demonstrating the spontaneous motion of water droplets using surface tension gradients.

  13. Generalized Protein Attachment Chemistry for Highly Sensitive Carbon Nanotube-Based Biosensors

    Science.gov (United States)

    Lerner, Mitchell; Pazina, Tatiana; Robinson, Matthew; Johnson, A. T. Charlie

    2012-02-01

    We developed a label free covalent functionalization procedure for attaching proteins to carbon nanotube field effect transistors (CNTFETs). Biomarker proteins are becoming increasingly useful for early diagnosis of disease, ranging from cancer to arthritis to stress. Current clinical immunoassays for measuring patient protein levels are costly and require significant processing time. Using diazonium salts followed by stabilization of carboxylic acid groups, we can attach a variety of proteins to carbon nanotubes as confirmed by atomic force microscopy. Proteins maintain the integrity of their epitope and bind to their corresponding complementary proteins. Carbon nanotube transistors are superior readout elements for such protein binding events due to their speed and comparable scale. Resulting changes in the electronic transport properties of CNTFETs demonstrate a concentration-dependent response. Binding of osteopontin (OPN), a biomarker for prostate cancer, to its complementary single chain variable fragment (scFv) can be detected down to 1 pg/mL with these methods. Moreover, these devices exhibit selectivity for OPN. Such high sensitivity biosensors could be used in parallel to test a single small volume patient sample for any number of potentially ominous biomarker proteins.

  14. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  15. Lightning attachment to wind turbine surfaces affected by internal blade conditions

    DEFF Research Database (Denmark)

    Garolera, Anna Candela; Holboell, Joachim; Madsen, Soren Find

    2012-01-01

    The efficiency of the blade lightning protection system depends to a great extend on the effectiveness of the receptor to intercept the lightning discharge. When the blade is exposed to a high electric field, streamers are mainly initiated from the receptor surface, but lightning attachment...

  16. Osteopontin adsorption to Gram-positive cells reduces adhesion forces and attachment to surfaces under flow

    DEFF Research Database (Denmark)

    Kristensen, M F; Zeng, G; Neu, T R

    2017-01-01

    The bovine milk protein osteopontin (OPN) may be an efficient means to prevent bacterial adhesion to dental tissues and control biofilm formation. This study sought to determine to what extent OPN impacts adhesion forces and surface attachment of different bacterial strains involved in dental...

  17. A dynamic duo: pairing click chemistry and postpolymerization modification to design complex surfaces.

    Science.gov (United States)

    Arnold, Rachelle M; Patton, Derek L; Popik, Vladimir V; Locklin, Jason

    2014-10-21

    Advances in key 21st century technologies such as biosensors, biomedical implants, and organic light-emitting diodes rely heavily on our ability to imagine, design, and understand spatially complex interfaces. Polymer-based thin films provide many advantages in this regard, but the direct synthesis of polymers with incompatible functional groups is extremely difficult. Using postpolymerization modification in conjunction with click chemistry can circumvent this limitation and result in multicomponent surfaces that are otherwise unattainable. The two methods used to form polymer thin films include physisorption and chemisorption. Physisorbed polymers suffer from instability because of the weak intermolecular forces between the film and the substrate, which can lead to dewetting, delamination, desorption, or displacement. Covalent immobilization of polymers to surfaces through either a "grafting to" or "grafting from" approach provides thin films that are more robust and less prone to degradation. The grafting to technique consists of adsorbing a polymer containing at least one reactive group along the backbone to form a covalent bond with a complementary surface functionality. Grafting from involves polymerization directly from the surface, in which the polymer chains deviate from their native conformation in solution and stretch away from the surface because of the high density of chains. Postpolymerization modification (PPM) is a strategy used by our groups over the past several years to immobilize two or more different chemical functionalities onto substrates that contain covalently grafted polymer films. PPM exploits monomers with reactive pendant groups that are stable under the polymerization conditions but are readily modified via covalent attachment of the desired functionality. "Click-like" reactions are the most common type of reactions used for PPM because they are orthogonal, high-yielding, and rapid. Some of these reactions include thiol-based additions

  18. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment

    Science.gov (United States)

    Utada, Andrew S.; Bennett, Rachel R.; Fong, Jiunn C. N.; Gibiansky, Maxsim L.; Yildiz, Fitnat H.; Golestanian, Ramin; Wong, Gerard C. L.

    2014-09-01

    We show that Vibrio cholerae, the causative agent of cholera, use their flagella and mannose-sensitive hemagglutinin (MSHA) type IV pili synergistically to switch between two complementary motility states that together facilitate surface selection and attachment. Flagellar rotation counter-rotates the cell body, causing MSHA pili to have periodic mechanical contact with the surface for surface-skimming cells. Using tracking algorithms at 5 ms resolution we observe two motility behaviours: ‘roaming', characterized by meandering trajectories, and ‘orbiting’, characterized by repetitive high-curvature orbits. We develop a hydrodynamic model showing that these phenotypes result from a nonlinear relationship between trajectory shape and frictional forces between pili and the surface: strong pili-surface interactions generate orbiting motion, increasing the local bacterial loiter time. Time-lapse imaging reveals how only orbiting mode cells can attach irreversibly and form microcolonies. These observations suggest that MSHA pili are crucial for surface selection, irreversible attachment, and ultimately microcolony formation.

  19. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  20. Therapeutic doses of radiation alter proliferation and attachment of osteoblasts to implant surfaces.

    Science.gov (United States)

    Ahmad, Mansur; Sampair, Christopher; Nazmul-Hossain, Abu N M; Khurana, Neerja; Nerness, Andrew; Wutticharoenmongkol, Patcharaporn

    2008-09-15

    Osseointegration of implants in irradiated bone is inadequate. The effect of radiation on cell-implant material interaction has not been adequately studied. The goal of this study was to investigate the effects of ionizing radiationon the proliferation, differentiation, and attachment of osteoblasts to commercially pure titanium (cpTi). Human fetal osteoblasts (hFOB) were irradiated either before or after plating in tissue culture (TC) dishes with or without cpTi disks. Radiation was single dose of 10 cGy, 25 cGy, 50 cGy, 1 Gy, 2 Gy, 4 Gy or 8 Gy. Cell proliferation was determined by counting trypsinized cells on 7 days after irradiation. Attachment of irradiated hFOB was measured indirectly by counting cells 2 and 6 h after plating. Differentiation was evaluated by alkaline phosphatase activity. Compared with nonirradiated sham controls, higher doses of radiation significantly reduced cell attachment and proliferation. Both proliferation and attachment were significantly lower on cpTi compared with TC. Attachment decreased based on the length of postirradiation period. Although differentiation was significantly enhanced by a dose of 8 Gy, proliferation was lowest. These initial studies show that effects of therapeutic doses of radiation on osteoblasts varied depending on the surface, time-elapsed, and amount of radiation.

  1. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment.

    Science.gov (United States)

    Gorb, Elena V; Gorb, Stanislav N

    2011-01-01

    The slippery zone in pitchers of the carnivorous plant Nepenthes alata bears scattered prominent lunate cells and displays continuous epicuticular crystalline wax coverage. The aim of this study was to examine the influence of the surface anisotropy, caused by the shape of lunate cells, on insect attachment ability. Traction tests with ladybird beetles Coccinella septempunctata were performed in two types of experiments, where surface samples of (1) intact pitchers, (2) chemically de-waxed pitchers, and (3) their polymer replicas were placed horizontally. Beetle traction forces were measured when they walked on test surfaces in either an upward (towards the peristome) or downward (towards the pitcher bottom) direction, corresponding to the upright or inverted positions of the pitcher. On intact pitcher surfaces covered with both lunate cells and wax crystals, experiments showed significantly higher forces in the direction towards the pitcher bottom. To distinguish between the contributions, from claw interlocking and pad adhesion, to insect attachment on the pitcher surfaces, intact versus claw-ablated beetles were used in the second type of experiment. On both de-waxed plant samples and their replicas, intact insects generated much higher forces in the downward direction compared to the upward one, whereas clawless insects did not. These results led to the conclusion that, (i) due to the particular shape of lunate cells, the pitcher surface has anisotropic properties in terms of insect attachment, and (ii) claws were mainly responsible for attachment enhancement in the downward pitcher direction, since, in this direction, they could interlock with overhanging edges of lunate cells.

  2. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

    Directory of Open Access Journals (Sweden)

    Elena V. Gorb

    2011-06-01

    Full Text Available The slippery zone in pitchers of the carnivorous plant Nepenthes alata bears scattered prominent lunate cells and displays continuous epicuticular crystalline wax coverage. The aim of this study was to examine the influence of the surface anisotropy, caused by the shape of lunate cells, on insect attachment ability. Traction tests with ladybird beetles Coccinella septempunctata were performed in two types of experiments, where surface samples of (1 intact pitchers, (2 chemically de-waxed pitchers, and (3 their polymer replicas were placed horizontally. Beetle traction forces were measured when they walked on test surfaces in either an upward (towards the peristome or downward (towards the pitcher bottom direction, corresponding to the upright or inverted positions of the pitcher. On intact pitcher surfaces covered with both lunate cells and wax crystals, experiments showed significantly higher forces in the direction towards the pitcher bottom. To distinguish between the contributions, from claw interlocking and pad adhesion, to insect attachment on the pitcher surfaces, intact versus claw-ablated beetles were used in the second type of experiment. On both de-waxed plant samples and their replicas, intact insects generated much higher forces in the downward direction compared to the upward one, whereas clawless insects did not. These results led to the conclusion that, (i due to the particular shape of lunate cells, the pitcher surface has anisotropic properties in terms of insect attachment, and (ii claws were mainly responsible for attachment enhancement in the downward pitcher direction, since, in this direction, they could interlock with overhanging edges of lunate cells.

  3. Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wang, Robert Y

    2015-12-22

    We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from ∼0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand-ligand interface between neighboring NCs.

  4. Surface roughness and adaptation of different materials to secure implant attachment housings.

    Science.gov (United States)

    Ozkir, Serhat Emre; Yilmaz, Burak; Kurkcuoglu, Isin; Culhaoglu, Ahmet; Unal, Server Mutluay

    2017-01-01

    Various materials are available to secure implant attachment housings in overdentures. Surface roughness and the adaptation of these materials to the denture base and the housings may increase the microcracks and bacterial adhesion at the interfaces in the long term. The surface characteristics of the interface between the denture base orientation material and the attachment housing have not been extensively studied. The purpose of this in vitro study was to evaluate the surface roughness and the adaptation of 5 different housing orientation materials to the housings and the denture base. Fifty-five poly(methyl methacrylate) (PMMA) specimens (15 mm in diameter and 4 mm in height) were prepared with a clearance inside to allow the insertion of overdenture housings. Five different materials were used for housing orientation (Quick Up, Ufi Gel Hard, Tokuyama Rebase II Fast, Meliodent, and Paladent). The specimens were thermocycled 5000 times between 5°C and 55°C. The surface roughness (Ra values) of the specimens was measured with a noncontact profilometer. Scanning electron images were made in order to inspect the PMMA-orientation material-housing interfaces. The Kruskal-Wallis test was used to investigate the differences between the surface roughness values of the orientation materials, and the Iman-Conover test was used for pairwise comparisons (α=.05). The surface roughness values significantly differed between Quick up and Ufi Gel orientation materials only, and Quick up had smaller surface roughness values than Ufi Gel (P=.009). Microcracks were observed among the groups only at the junction of the orientation material and the housing after thermocycling. Ufi Gel Hard showed the roughest surfaces around the overdenture attachment housings. The adaptation between the orientation material and the housing may deteriorate, and increased surface roughness and microcrack formation may be seen around the housings. Copyright © 2016 Editorial Council for the

  5. Photopatterning of self assembled monolayers on oxide surfaces for the selective attachment of biomolecules.

    Science.gov (United States)

    Hazarika, Pompi; Behrendt, Jonathan M; Petersson, Linn; Wingren, Christer; Turner, Michael L

    2014-03-15

    The immobilization of functional biomolecules to surfaces is a critical process for the development of biosensors for disease diagnostics. In this work we report the patterned attachment of single chain fragment variable (scFv) antibodies to the surface of metal oxides by the photodeprotection of self-assembled monolayers, using near-UV light. The photodeprotection step alters the functionality at the surface; revealing amino groups that are utilized to bind biomolecules in the exposed regions of the substrate only. The patterned antibodies are used for the detection of specific disease biomarker proteins in buffer and in complex samples such as human serum. © 2013 Elsevier B.V. All rights reserved.

  6. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  7. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  8. Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example.

    Science.gov (United States)

    Goulter, R M; Gentle, I R; Dykes, G A

    2009-07-01

    An understanding of the mechanisms which facilitate the attachment of Escherichia coli and other bacterial species to abiotic surfaces is desired by numerous industries including the food and medical industries. Numerous studies have attempted to explain bacterial attachment as a function of bacterial properties such as cellular surface charge, hydrophobicity and outer membrane proteins amongst others. Conflicting evidence in the literature both for and against a positive relationship may arise from the nature of the test methods used to measure them. A handful of recent studies utilizing technologies such as atomic force microscopy have begun to look at bacterial attachment at a single cell and molecular level. These studies may provide the information required to fully understand the underlying factors which influence bacterial cell attachment to abiotic surfaces. A number of issues in determining the influential factors of bacterial attachment have been identified from the literature: a lack of standardization and sensitivity of methods, as well as the value of measuring bulk properties of a number of cells rather than the behaviour of single cells which may overlook key interactions at a molecular level. These issues will need to be addressed in future studies in this area.

  9. Surface modification-a novel way of attaching cocatalysts on CdS semiconductors for photocatalytic hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-22

    Noble metals as cocatalysts for hydrogen evolution are widely investigated for semiconductor photocatalytic water splitting. In this paper, we present a novel way to attach not only noble metals, but also transitional metals onto CdS nanocrystals as cocatalysts for hydrogen evolution. The hydrogen evolution performances for each metal were compared and result shows that Pd attached CdS gives the highest hydrogen evolution rate of 250 μmol/h. The amounts of metal ions attached on the surface were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). This work confirms that surface modification is a promising way of attaching cocatalysts onto semiconductor photocatalysts.

  10. An SU-8-based microprobe with a nanostructured surface enhances neuronal cell attachment and growth

    Science.gov (United States)

    Kim, Eunhee; Kim, Jin-Young; Choi, Hongsoo

    2017-12-01

    Microprobes are used to repair neuronal injury by recording electrical signals from neuronal cells around the surface of the device. Following implantation into the brain, the immune response results in formation of scar tissue around the microprobe. However, neurons must be in close proximity to the microprobe to enable signal recording. A common reason for failure of microprobes is impaired signal recording due to scar tissue, which is not related to the microprobe itself. Therefore, the device-cell interface must be improved to increase the number of neurons in contact with the surface. In this study, we developed nanostructured SU-8 microprobes to support neuronal growth. Nanostructures of 200 nm diameter and depth were applied to the surface of microprobes, and the attachment and neurite outgrowth of PC12 cells on the microprobes were evaluated. Neuronal attachment and neurite outgrowth on the nanostructured microprobes were significantly greater than those on non-nanostructured microprobes. The enhanced neuronal attachment and neurite outgrowth on the nanostructured microprobes occurred in the absence of an adhesive coating, such as poly- l-lysine, and so may be useful for implantable devices for long-term use. Therefore, nanostructured microprobes can be implanted without adhesive coating, which can cause problems in vivo over the long term.

  11. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    Science.gov (United States)

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

  12. Influence of Surface Properties on Adhesion Forces and Attachment of Streptococcus mutans to Zirconia In Vitro

    Science.gov (United States)

    Yu, Pei; Wang, Chuanyong; Zhou, Jinglin; Jiang, Li

    2016-01-01

    Zirconia is becoming a prevalent material in dentistry. However, any foreign bodies inserted may provide new niches for the bacteria in oral cavity. The object of this study was to explore the effect of surface properties including surface roughness and hydrophobicity on the adhesion and biofilm formation of Streptococcus mutans (S. mutans) to zirconia. Atomic force microscopy was employed to determine the zirconia surface morphology and the adhesion forces between the S. mutans and zirconia. The results showed that the surface roughness was nanoscale and significantly different among tested groups (P Medium (17.00 ± 3.81 nm) > Fine (11.89 ± 1.68 nm). The contact angles of the Coarse group were the highest, followed by the Medium and the Fine groups. Increasing the surface roughness and hydrophobicity resulted in an increase of adhesion forces and early attachment (2 h and 4 h) of S. mutans on the zirconia but no influence on the further development of biofilm (6 h~24 h). Our findings suggest that the surface roughness in nanoscale and hydrophobicity of zirconia had influence on the S. mutans initial adhesion force and early attachment instead of whole stages of biofilm formation. PMID:27975061

  13. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  14. Surface chemistry governs cellular tropism of nanoparticles in the brain

    Science.gov (United States)

    Song, Eric; Gaudin, Alice; King, Amanda R.; Seo, Young-Eun; Suh, Hee-Won; Deng, Yang; Cui, Jiajia; Tietjen, Gregory T.; Huttner, Anita; Saltzman, W. Mark

    2017-05-01

    Nanoparticles are of long-standing interest for the treatment of neurological diseases such as glioblastoma. Most past work focused on methods to introduce nanoparticles into the brain, suggesting that reaching the brain interstitium will be sufficient to ensure therapeutic efficacy. However, optimized nanoparticle design for drug delivery to the central nervous system is limited by our understanding of their cellular deposition in the brain. Here, we investigated the cellular fate of poly(lactic acid) nanoparticles presenting different surface chemistries, after administration by convection-enhanced delivery. We demonstrate that nanoparticles with `stealth' properties mostly avoid internalization by all cell types, but internalization can be enhanced by functionalization with bio-adhesive end-groups. We also show that association rates measured in cultured cells predict the extent of internalization of nanoparticles in cell populations. Finally, evaluating therapeutic efficacy in an orthotopic model of glioblastoma highlights the need to balance significant uptake without inducing adverse toxicity.

  15. Surface properties correlated with the human gingival fibroblasts attachment on various materials for implant abutments: a multiple regression analysis.

    Science.gov (United States)

    Kim, Young-Sung; Shin, Seung-Yun; Moon, Seung-Kyun; Yang, Seung-Min

    2015-01-01

    To reveal the suitable surface condition of an implant abutment for fibroblast attachment, the correlation between the surface characteristics of various materials and the human gingival fibroblast (HGF-1) attachment to the surfaces were analyzed. Six kinds of surfaces comprised of machined titanium alloy (SM), machined Co-Cr-Mo alloy (CCM), titanium nitride coated titanium alloy (TiN), anodized titanium alloy (AO), composite resin coating on titanium alloy (R) and zirconia (Zr) were used. The measured surface parameters were Sa, Sq, Sz, Sdr, Sdq, Sal, Str and water contact angle (WCA). The HGF-1 cell attachment was investigated and the correlations were analyzed using a multiple regression analysis. The HGF-1 cell attachment was greater in the SM, TiN and Zr groups than the other groups and smallest in the CCM group (p = 0.0096). From the multiple regression analysis, the HGF-1 cell attachment was significantly correlated with Sdr, Sdq and WCA. When the R group was excluded, only WCA showed significant correlation with the fibroblast attachment. Within the limitations of this study, the cell attachment of human gingival fibroblasts was correlated with WCA, developed interfacial area ratio and surface slope. When the surfaces with Sa values of ∼ 0.2 μm or less were concerned, only WCA showed a correlation in a third order manner.

  16. Biofilm formation by Psychrobacter arcticus and the role of a large adhesin in attachment to surfaces.

    Science.gov (United States)

    Hinsa-Leasure, Shannon M; Koid, Cassandra; Tiedje, James M; Schultzhaus, Janna N

    2013-07-01

    Psychrobacter arcticus strain 273-4, an isolate from a Siberian permafrost core, is capable of forming biofilms when grown in minimal medium under laboratory conditions. Biofilms form at 4 to 22°C when acetate is supplied as the lone carbon source and with 1 to 7% sea salt. P. arcticus is also capable of colonizing quartz sand. Transposon mutagenesis identified a gene important for biofilm formation by P. arcticus. Four transposon mutants were mapped to a 20.1-kbp gene, which is predicted to encode a protein of 6,715 amino acids (Psyc_1601). We refer to this open reading frame as cat1, for cold attachment gene 1. The cat1 mutants are unable to form biofilms at levels equivalent to that of the wild type, and there is no impact on the planktonic growth characteristics of the strains, indicating a specific role in biofilm formation. Through time course studies of the static microtiter plate assay, we determined that cat1 mutants are unable to form biofilms equivalent to that of the wild type under all conditions tested. In flow cell experiments, cat1 mutants initially are unable to attach to the surface. Over time, however, they form microcolonies, an architecture very different from that produced by wild-type biofilms. Our results demonstrate that Cat1 is involved in the initial stages of bacterial attachment to surfaces.

  17. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    Science.gov (United States)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  18. Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry

    Science.gov (United States)

    Chang, Q.; Cuppen, H. M.; Herbst, E.

    2007-07-01

    Aims:We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. Methods: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. Results: We determine the mantle abundances of assorted molecules as a function of time through 2 × 105 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

  19. Surface modification and its effect on attachment, spreading, and proliferation of human gingival fibroblasts.

    Science.gov (United States)

    Zhang, Feng; Huang, Ying; Li, Xiaodong; Zhao, Shifang

    2011-01-01

    The purpose of this study was to exploit potential methods of surface modification for improving the seal between the neck portion of a dental implant and the surrounding soft tissue. Titanium surfaces were modified by machining (SM-Ti group); machining and acid etching (AE-Ti group); or machining, acid etching, and depositing 4.5 collagen/hyaluronic acid (col/HA) polyelectrolyte bilayers (CHC-Ti group). These were analyzed using scanning electron microscopy, scanning force microscopy, x-ray photoelectron spectroscopy, contact angle measurement, and quartz crystal microbalance measurement. The degradation behavior of the col/HA multilayer coating was measured. Next, human gingival fibroblasts (HGFs) were cultured on the different surfaces, and cell morphology and spreading were observed using fluorescence microscopy and a shape factor measurement. Cell proliferation was examined by fluorometric quantification of the amount of cellular DNA. Matrix formation of HGFs was determined via enzyme-linked immunosorbent assay. Gene expression was analyzed via reverse transcriptase polymerase chain reaction. Similar surface topology for these three groups was observable on a microscopic scale, and morphologic differences were apparent on the nanoscale. Both acid etching and col/HA deposition improved the hydrophilicity of the titanium surface, in contrast to machining alone. Each col/HA bilayer was about 5 nm thick. The col/HA coating degraded in about a week. Attachment and spreading of HGFs was better on the CHC-Ti surface than on the SM-Ti or AE-Ti surfaces. Moreover, the proliferation and differentiation of HGFs were greatly stimulated when cultured on CHC-Ti. In contrast to two control surfaces (one machined, one machined and acid-etched), col/HA treatment of Ti improved the attachment, spreading, proliferation, and differentiation of HGFs.

  20. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-09-01

    Full Text Available Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM before and after EPS removal. Surface properties of these cells were assessed by measurements of the contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR and acid-base titration. Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS control the surface properties of the cells. In addition, the surface properties are decisive for adhesion. The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS, which was not dependent on the preculture.

  1. Influence of surface modified dental implant abutments on connective tissue attachment: A systematic review.

    Science.gov (United States)

    Blázquez-Hinarejos, Mónica; Ayuso-Montero, Raúl; Jané-Salas, Enric; López-López, José

    2017-08-01

    Determine whether surface modified prosthetic abutments for dental implants influence connective tissue attachment to the implant-abutment system. A systematic review was conducted using the MEDLINE-PubMed database, with two independent reviewers filtering the titles and abstracts. Two reviewers assessed all potentially relevant articles. An assessment was carried out on the level of evidence of the research according to the guidelines of the Oxford Centre for Evidence-Based Medicine (OCEBM). After an initial search, 109 potentially relevant articles were found. After reading the titles and abstracts, 99 articles were excluded because the surface treatment was limited to the implant and not to the abutment, or because different materials were analysed instead of surface treatments; 28 were also duplicate articles. An additional 6 research studies were included that were of interest and were found by reading the references of the included articles. The studies included are: 7 in vitro studies, 5 experimental studies in animals, 2 clinical trials in humans and 2 clinical cases. Surface modification for prosthetic abutments on dental implants can achieve connective tissue attachment to the abutment; however, more studies should be conducted in humans to obtain more and better evidence of these results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    Science.gov (United States)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  3. Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis

    Science.gov (United States)

    Voigt, Dagmar; Gorb, Stanislav

    2010-01-01

    Plant surfaces covered with crystalline epicuticular waxes are known to be anti-adhesive, hardly wettable and preventing insect attachment. But there are insects that are capable of gluing their eggs to these surfaces by means of proteinaceous secretions. In this study, we analysed the bonding region between the eggs of Crioceris asparagi and the plant surface of Asparagus officinalis using light and cryo-scanning electron microscopy. The wettability of the plant surface by egg secretion was compared with that by Aqua Millipore water, aqueous sugar solution and chicken egg white. Furthermore, the force required to remove C. asparagi eggs from the plant surface was measured, in order to evaluate the egg's bonding strength. Mean pull-off force was 14.7 mN, which is about 8650 times higher than the egg weight. Egg glue was observed spreading over the wax crystal arrays on the plant cladophyll and wetting them. Similar wetting behaviour on the A. officinalis surface was observed for chicken egg white. Our results support the hypothesis that the mechanism of insect egg adhesion on micro- and nanostructured hydrophobic plant surfaces is related to the proteinaceous nature of adhesive secretions of insect eggs. The secretion wets superhydrophobic surfaces and after solidifying builds up a composite, consisting of the solidified glue and wax crystals, at the interface between the egg and plant cuticle. PMID:19923132

  4. Relation between attractive force and keeper surface characteristics of iron-neodymium-boron magnetic attachment systems.

    Science.gov (United States)

    Ohashi, Norihisa; Koizumi, Hiroyasu; Ishikawa, Yumi; Furuchi, Mika; Matsumura, Hideo; Tanoue, Naomi

    2007-05-01

    The purpose of this study was to evaluate the influence of heating, cast bonding, and subsequent polishing procedures on attractive force of magnetic attachments. Two magnetic attachment systems with keepers of different chemical compositions (Hicorexslim 3013, 447J1; Magfit EX400, AUM20) were employed. Keepers examined were: (1) untreated; (2) heated; (3) cast-bonded with Ag-Pd alloy; (4) cast-bonded with Ag-Pd alloy and polished; (5) cast-bonded with gold alloy; and (6) cast-bonded with gold alloy and polished. Attractive force was determined with a force gauge, and surface structure was evaluated with scanning laser and electron microscopes. Attractive force of the Hicorex system was reduced by cast bonding, whereas that of the Magfit system was reduced by both heating and cast bonding. However, attractive force of both systems was somewhat recovered through the polishing process. Based on the findings of this study, it was suggested that careful polishing after cast bonding was indispensable to the recovery of attractive force for both attachment systems.

  5. Don Quixote Pond Sediments: Surface and Subsurface Chemistry and Mineralogy

    Science.gov (United States)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2014-12-01

    Don Quixote Pond, like Don Juan Pond in the South Fork of Wright Valley, Antarctica, is a model for calcium and chlorine weathering and distribution on Mars. It is located in the western part of the North Fork about 100 m above Mean Seawater Level; its brine is seasonally frozen [1]. Field observations show zones of discoloration which grow lighter with distance from the pond edges. Four sediment cores, a set of radial surface samples, special surface samples, and samples of local rocks were obtained [2]. We report on chemical and mineral analyses of traverse samples and on two cores. Core DQ20 is a northeastern shoreline core. Its soluble salt concentration exceeds 200 micromoles/g in the top 5 cm, and then falls to less than 70 micromoles/g at the permafrost depth of 15 cm. These concentrations are low when compared to similarly positioned locations at Don Juan Pond and to cores from Prospect Mesa close to Lake Vanda, Wright Valley. Halite, soda niter, tachyhydrite and/bischovite are suggested from the ionic molar relationships Measured halite concentrations of surface samples, collected along a traverse of 35 m from the pond outwards, range from over 5% to trace amounts, decreasing with distance. Gypsum is also present in almost all of these samples ranging from 0.2% to 2.6%, but does not exhibit a trend. However, in core DQ35, located at a distance of 15 m along the traverse, gypsum decreases from 2.5% to 0.6% from the surface to the permafrost depth of 12 cm. While DQ35 and radial samples show high quartz and albite abundance, samples that contained visible encrustations and evaporites are low in these minerals and rich in highly diverse alteration products. Don Juan Basin ponds may have formed by a complex surface water mobilization of weathering products [3] and local groundwater action [4,5]. In contrast, Don Quixote pond mineralogy and chemistry may be consistent with a less complex shallow and deep groundwater system origin [1]. [1] Harris H

  6. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were in...

  7. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes--a review.

    Science.gov (United States)

    Nagl, Andreas; Hemelaar, Simon Robert; Schirhagl, Romana

    2015-10-01

    Diamonds are widely used for jewelry owing to their superior optical properties accounting for their fascinating beauty. Beyond the sparkle, diamond is highly investigated in materials science for its remarkable properties. Recently, fluorescent defects in diamond, particularly the negatively charged nitrogen-vacancy (NV(-)) center, have gained much attention: The NV(-) center emits stable, nonbleaching fluorescence, and thus could be utilized in biolabeling, as a light source, or as a Förster resonance energy transfer donor. Even more remarkable are its spin properties: with the fluorescence intensity of the NV(-) center reacting to the presence of small magnetic fields, it can be utilized as a sensor for magnetic fields as small as the field of a single electron spin. However, a reproducible defect and surface and defect chemistry are crucial to all applications. In this article we review methods for using nanodiamonds for different imaging purposes. The article covers (1) dispersion of particles, (2) surface cleaning, (3) particle size selection and reduction, (4) defect properties, and (5) functionalization and attachment to nanostructures, e.g., scanning probe microscopy tips.

  8. Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment

    International Nuclear Information System (INIS)

    Vautard, F.; Ozcan, S.; Paulauskas, F.; Spruiell, J.E.; Meyer, H.; Lance, M.J.

    2012-01-01

    Highlights: ► Continuous thermo-chemical surface treatment used to functionalize different types of carbon fibers. ► Surface density of functional groups directly correlated to the size of the surface microstructure. ► Preferential creation of hydroxyls and carboxylic acids confirmed regardless of the type of carbon fiber. ► Effective surface treatment regardless of the fiber surface microstructure. ► Potential alternative to electro-chemical surface treatment. - Abstract: Carbon fibers made of textile and aerospace grade polyacrylonitrile precursor fibers were surface treated by a continuous gas phase thermochemical treatment. The surface chemistry generated by the surface treatment was characterized by X-ray photoelectron spectroscopy. The surface and the average entire microstructure of the fibers were characterized by Raman spectroscopy and X-ray diffraction, respectively. Depending on the grade of the precursor, the final surface concentration of oxygen was comprised between 14% and 24%, whereas the typical commercial electrochemical surface treatments led to concentrations of around 8% with the same fibers. The final concentration of oxygen was directly correlated to the size of the crystallites which was a function of the grade of the polyacrylonitrile precursor and to the corresponding surface microstructure. The thermochemical surface treatment enabled a better control of the nature of the oxygen-containing functionalities as well. Whatever the grade of the precursor, desired hydroxyl groups and carboxylic acid functionalities were preferably generated, which is observed to be difficult with electrochemical surface treatments.

  9. Surface chemistry of rare-earth oxide surfaces at ambient conditions: reactions with water and hydrocarbons.

    Science.gov (United States)

    Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A; Wäckerlin, Aneliia; Meyer, Ernst

    2017-03-22

    Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C 18 H 12 ) on a Gd 2 O 3 . Our study evidences a novel effect - oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.

  10. Models of gas-grain chemistry in interstellar cloud cores with a stochastic approach to surface chemistry

    Science.gov (United States)

    Stantcheva, T.; Herbst, E.

    2004-08-01

    We present a gas-grain model of homogeneous cold cloud cores with time-independent physical conditions. In the model, the gas-phase chemistry is treated via rate equations while the diffusive granular chemistry is treated stochastically. The two phases are coupled through accretion and evaporation. A small network of surface reactions accounts for the surface production of the stable molecules water, formaldehyde, methanol, carbon dioxide, ammonia, and methane. The calculations are run for a time of 107 years at three different temperatures: 10 K, 15 K, and 20 K. The results are compared with those produced in a totally deterministic gas-grain model that utilizes the rate equation method for both the gas-phase and surface chemistry. The results of the different models are in agreement for the abundances of the gaseous species except for later times when the surface chemistry begins to affect the gas. The agreement for the surface species, however, is somewhat mixed. The average abundances of highly reactive surface species can be orders of magnitude larger in the stochastic-deterministic model than in the purely deterministic one. For non-reactive species, the results of the models can disagree strongly at early times, but agree to well within an order of magnitude at later times for most molecules. Strong exceptions occur for CO and H2CO at 10 K, and for CO2 at 20 K. The agreement seems to be best at a temperature of 15 K. As opposed to the use of the normal rate equation method of surface chemistry, the modified rate method is in significantly better agreement with the stochastic-deterministic approach. Comparison with observations of molecular ices in dense clouds shows mixed agreement.

  11. Pyridine coordination chemistry for molecular assemblies on surfaces.

    Science.gov (United States)

    de Ruiter, Graham; Lahav, Michal; van der Boom, Milko E

    2014-12-16

    CONSPECTUS: Since the first description of coordination complexes, many types of metal-ligand interactions have creatively been used in the chemical sciences. The rich coordination chemistry of pyridine-type ligands has contributed significantly to the incorporation of diverse metal ions into functional materials. Here we discuss molecular assemblies (MAs) formed with a variety of pyridine-type compounds and a metal containing cross-linker (e.g., PdCl2(PhCN2)). These MAs are formed using Layer-by-Layer (LbL) deposition from solution that allows for precise fitting of the assembly properties through molecular programming. The position of each component can be controlled by altering the assembly sequence, while the degree of intermolecular interactions can be varied by the level of π-conjugation and the availability of metal coordination sites. By setting the structural parameters (e.g., bond angles, number of coordination sites, geometry) of the ligand, control over MA structure was achieved, resulting in surface-confined metal-organic networks and oligomers. Unlike MAs that are constructed with organic ligands, MAs with polypyridyl complexes of ruthenium, osmium, and cobalt are active participants in their own formation and amplify the growth of the incoming molecular layer. Such a self-propagating behavior for molecular systems is rare, and the mechanism of their formation will be discussed. These exponentially growing MAs are capable of storing metal salts that can be used during the buildup of additional molecular layers. Various parameters influencing the film growth mechanism will be presented, including (i) the number of binding sites and geometry of the organic ligands, (ii) the metal and the structure of the polypyridyl complexes, (iii) the influence of the metal cross-linker (e.g., second or third row transition metals), and (iv) the deposition conditions. By systematic variation of these parameters, switching between linear and exponential growth could

  12. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review.

    Science.gov (United States)

    Liu, Junzhuo; Wu, Yonghong; Wu, Chenxi; Muylaert, Koenraad; Vyverman, Wim; Yu, Han-Qing; Muñoz, Raúl; Rittmann, Bruce

    2017-10-01

    Innovative and cost-effective technologies for advanced nutrient removal from surface water are urgently needed for improving water quality. Conventional biotechnologies, such as ecological floating beds, or constructed wetlands, are not effective in removing nutrients present at low-concentration. However, microalgae-bacteria consortium is promising for advanced nutrient removal from wastewater. Suspended algal-bacterial systems can easily wash out unless the hydraulic retention time is long, attached microalgae-bacteria consortium is more realistic. This critical review summarizes the fundamentals and status of attached microalgae-bacteria consortium for advanced nutrient removal from surface water. Key advantages are the various nutrient removal pathways, reduction of nutrients to very low concentration, and diversified photobioreactor configurations. Challenges include poor identification of functional species, poor control of the community composition, and long start-up times. Future research should focus on the selection and engineering of robust microbial species, mathematical modelling of the composition and functionality of the consortium, and novel photobioreactor configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces.

    Science.gov (United States)

    Liu, Runhui; Masters, Kristyn S; Gellman, Samuel H

    2012-04-09

    Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study, we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast attachment on modified surfaces and that at the optimal chain lengths less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications.

  14. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Walters, Keisha B.

    2008-01-01

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  15. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  16. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  17. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces.

    Science.gov (United States)

    An, Na; Rausch-fan, Xiaohui; Wieland, Marco; Matejka, Michael; Andrukhov, Oleh; Schedle, Andreas

    2012-12-01

    A tight seal between the epithelium and the dental implant surface is required to prevent bacterial inflammation and soft tissue recession and therefore to demonstrate a long-term success. Surface hydrophilicity was recently shown to promote osseointegration. The aim of this study was to investigate the influence of surface hydrophilicity in combination with surface topography of Ti implant surfaces on the behavior and activation/differentiation of epithelial cells using a set of in vitro experiments mimicking the implant-soft tissue contact. Hydrophobic acid-etched (A) and coarse-grit-blasted, acid-etched (SLA) surfaces and hydrophilic acid-etched (modA) and modSLA surfaces were produced. The behavior of an oral squamous cell carcinoma cell line (HSC-2) grown on all surfaces was compared through determination of cell attachment and proliferation/viability (CCK-8 and MTT assay), time-lapse microscopy of fluorescence labeled cells and determination of gene expression by real time polymerase chain reaction. Within the surfaces with similar wettability cell spreading and cell movements observed by time-lapse microscopy after one day of incubation were most pronounced on smoother (A and modA) surfaces compared to rougher (SLA and modSLA) surfaces. Within the surfaces with similar roughness the hydrophilic surfaces (modA and modSLA) showed more cell spreading and cell activity compared to the hydrophobic surfaces (A and SLA). The relative gene expressions of cytokeratin14, integrin α6, integrin β4, vinculin, transforming growth factor (TGF)-β, TGF-β1, and TGF-β3 were decreased in HSC-2 on all four types of Ti surfaces compared to control surfaces (tissue culture polystyrene; pmodA). These results suggest that surface hydrophilicity might positively influence the epithelial seal around dental implants. All tested titanium surfaces downregulate cell attachment, cell proliferation, expression of adhesion promoters, and cytokines involved in wound healing in HSC-2

  18. Toroidal surface complexes of bacteriophage φ12 are responsible for host-cell attachment

    International Nuclear Information System (INIS)

    Leo-Macias, Alejandra; Katz, Garrett; Wei Hui; Alimova, Alexandra; Katz, A.; Rice, William J.; Diaz-Avalos, Ruben; Hu Guobin; Stokes, David L.; Gottlieb, Paul

    2011-01-01

    Cryo-electron tomography and subtomogram averaging are utilized to determine that the bacteriophage φ12, a member of the Cystoviridae family, contains surface complexes that are toroidal in shape, are composed of six globular domains with six-fold symmetry, and have a discrete density connecting them to the virus membrane-envelope surface. The lack of this kind of spike in a reassortant of φ12 demonstrates that the gene for the hexameric spike is located in φ12's medium length genome segment, likely to the P3 open reading frames which are the proteins involved in viral-host cell attachment. Based on this and on protein mass estimates derived from the obtained averaged structure, it is suggested that each of the globular domains is most likely composed of a total of four copies of P3a and/or P3c proteins. Our findings may have implications in the study of the evolution of the cystovirus species in regard to their host specificity. - Research Highlights: → Subtomogram averaging reveals enhanced detail of a φ12 cystovirus surface protein complex. → The surface protein complex has a toroidal shape and six-fold symmetry. → It is encoded by the medium-size genome segment. → The proteins of the surface complex most likely are one copy of P3a and three copies of P3c.

  19. Chemistry and catalysis at the surface of nanomaterials

    Science.gov (United States)

    White, Brian Edward

    This thesis will delve into three main areas of nanomaterials research: (I) Designing, building, and utilizing a chemical vapor deposition (CVD) system for the growth of CNTs; (II) Aqueous suspensions of carbon nanotubes (CNT) solubilized by various surfactants, and the oxidative chemistry that can occur at CNT surfaces; (III) Catalytic CO oxidation over supported Cu2O nanoparticle systems. An introduction to nanomaterials in general, with a particular emphasis on carbon nanotubes and nanoparticles will be given in Chapter one. Chapter two provides a summary of common techniques used to grow carbon nanotubes, and introduces a new method we have developed. This method is based on previous chemical vapor deposition techniques, but uses liquids, specifically ethanol, as the carbon source. Using ethanol has several advantages, including ease of use and safety, as well as chemical benefits. Our new process affords long, aligned, single-walled nanotubes, with a relatively narrow diameter distribution. This method can also be used to grow CNTs across slits, which can then be studied spectroscopically. In Chapter three CNT-surfactant aqueous suspensions will be discussed in depth, including a new robust polymer surfactant. Poly(maleic acid/octyl vinyl ether) (PMAOVE) is stable over a large range of temperatures and pH values, and is well suited for the study of the oxidative chemistry that can occur on SWNT surfaces. Our aqueous suspensions were found to be quite stable by zeta potential studies and their emissive properties exhibited a pH dependence, quenching at higher concentrations of H+. We attribute this dependence to chemisorbed oxygen and its protonation at lower pH values. By heating the suspensions of SWNTs, O2 can be driven off, thus eliminating the dependence on pH. We also reproducibly add oxygen back into the system in the form of 1DeltaO2 , obtained from an endoperoxide. This method allows us to calculate the number of oxygen molecules needed for

  20. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    -support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  1. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    Science.gov (United States)

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  2. Plasma of Argon Increases Cell Attachment and Bacterial Decontamination on Different Implant Surfaces.

    Science.gov (United States)

    Canullo, Luigi; Genova, Tullio; Wang, Hom-Lay; Carossa, Stefano; Mussano, Federico

    osteoblast attachment and spreading, suggesting this may be a possible approach to clean a peri-implantitis-contaminated implant surface.

  3. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  4. Cell and fiber attachment to demineralized dentin. A comparison between normal and periodontitis-affected root surfaces.

    Science.gov (United States)

    Polson, A M; Hanes, P J

    1987-07-01

    The purpose of the present study was to compare and contrast cellular, connective tissue, and epithelial responses to dentin specimens derived from the roots of either normal or periodontitis-affected human teeth after surface demineralization. Rectangular dentin specimens, with opposite faces of root and pulpal dentin, were derived from beneath root surfaces covered by periodontal ligament (normal) or calculus-covered areas of periodontitis-affected teeth. In each of the groups, the specimens were treated with citric acid (pH 1 for 3 min), whereupon they were implanted transcutaneously into incisional wounds on the dorsal surface of rats with one end of the implant protruding through the skin. 4 specimens were available in each group at 10 days after implantation. Histologic and histometric analyses of the root surfaces of the implants included counts of adhering cells, evaluation of connective tissue fiber relationships, and assessment of epithelial migration. New connective tissue attachment with inhibition of epithelial migration occurred in both groups. Cementum formation was not present. Comparisons between the groups showed no significant differences regarding length of implant surface adjacent to connective tissue, number of attached cells, or density and diameter of attached fibers. The fiber attachment system which had developed on these demineralized surfaces seemed intrinsic to the connective tissue location, and differed morphologically from corresponding fibers attaching the root surface in a normal periodontium. It was concluded that there were no observable differences between the new connective tissue attachment systems which developed on demineralized dentin from either normal or periodontitis-affected root surfaces.

  5. Tarsal morphology and attachment ability of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces.

    Science.gov (United States)

    Al Bitar, Loris; Voigt, Dagmar; Zebitz, Claus P W; Gorb, Stanislav N

    2009-11-01

    Despite several studies on the attachment ability of different insect taxa, little is known about this phenomenon in adult Lepidoptera. In this study we combined morphological and experimental analyses of tarsal adhesive devices and the attachment ability of the codling moth Cydia pomonella (L.) (Lepidoptera, Tortricidae) to smooth surfaces. Pretarsi of C. pomonella attach to smooth substrates by means of their smooth, flexible and well developed arolia. Using the centrifugal force measurement technique, friction forces of males and females were assessed on hydrophobic and hydrophilic glass surfaces. Adults of both sexes generated similar forces in spite of the noticeable difference in their body masses. That is why males showed significantly higher safety factors (attachment force divided by body weight) compared to those of females. Hydrophobicity of the substrate had no considerable effect on friction forces. For females, friction forces (sliding parallel to the substrate plane) were compared with adhesive forces (pulling off perpendicularly from the substrate plane) measured on Plexiglas surfaces. It can be concluded that the attachment system of C. pomonella is rather robust against physico-chemical properties of the substrate and is able to achieve a very good attachment on vertical and horizontal substrata.

  6. The effect of surface treatment of silicone hydrogel contact lenses on the attachment of Acanthamoeba castellanii trophozoites.

    Science.gov (United States)

    Beattie, Tara K; Tomlinson, Alan

    2009-11-01

    To determine if plasma surface treatment of Focus Night & Day silicone hydrogel contact lenses affects the attachment of Acanthamoeba. Unworn lotrafilcon A contact lenses with (Focus Night & Day) and without surface treatment and Acuvue, conventional hydrogel lenses, were quartered before 90-min incubation with Acanthamoeba castellanii trophozoites. After incubation and rinsing, the trophozoites attached to one surface of each quarter were counted by direct light microscopy. Sixteen replicates were observed for each lens type. Logarithmic transformation of data allowed the use of parametric analysis of variance. No significant difference in attachment was established between the untreated lotrafilcon A and the conventional hydrogel lenses (Ptreatment of the native Focus Night & Day material produced a significant increase in attachment (Ptreatment to reduce lens hydrophobicity; however, this procedure results in an enhanced acanthamoebal attachment. It is possible that the silicone hydrogel lens could be at a greater risk of promoting Acanthamoeba infection if exposed to the organism because of the enhanced attachment characteristic of this material. Eye care professionals should be aware of the enhanced affinity that Acanthamoeba show for this lens and accordingly emphasise to patients the significance of appropriate lens hygiene. This is particularly important where lenses are worn in a regime that could increase the chance of exposure to the organism, i.e., 6 nights/7 days extended wear or daily wear, where lenses will be stored in a lens case, or where lenses are worn when in contact with potentially contaminated water sources, i.e., swimming or showering.

  7. Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Braunová, Alena; Laga, Richard; Pechar, Michal; Ulbrich, Karel

    2014-01-01

    Roč. 5, č. 4 (2014), s. 1340-1350 ISSN 1759-9954 Grant - others:AV ČR(CZ) AP0802 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61389013 Keywords : click chemistry * RAFT polymerization * hydrophilic polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.520, year: 2014

  8. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    Science.gov (United States)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; (Ken Ostrikov, Kostya; Vasilev, Krasimir

    2016-08-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces.

  9. Bactericidal effects of plasma-modified surface chemistry of silicon nanograss

    International Nuclear Information System (INIS)

    Ostrikov, Kola; Macgregor-Ramiasa, Melanie; Cavallaro, Alex; Ostrikov, Kostya; Vasilev, Krasimir

    2016-01-01

    The surface chemistry and topography of biomaterials regulate the adhesion and growth of microorganisms in ways that are still poorly understood. Silicon nanograss structures prepared via inductively coupled plasma etching were coated with plasma deposited nanometer-thin polymeric films to produce substrates with controlled topography and defined surface chemistry. The influence of surface properties on Staphylococcus aureus proliferation is demonstrated and explained in terms of nanograss substrate wetting behaviour. With the combination of the nanograss topography; hydrophilic plasma polymer coatings enhanced antimicrobial activity while hydrophobic coatings reduced it. This study advances the understanding of the effects of surface wettability on the bactericidal properties of reactive nano-engineered surfaces. (paper)

  10. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. On-Surface Synthesis by Click Chemistry Investigated by STM and XPS

    DEFF Research Database (Denmark)

    Vadapoo, Sundar Raja

    2014-01-01

    such as molecular electronics and surface functionalization. In this thesis, a well-defined click chemistry approach is followed, with the study of azide-alkyne cycloaddition on Cu(111) surface in UHV environment. A successful achievement of the click reaction product via on-surface synthesis has been shown, which...

  12. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  13. Seventh BES [Basic Energy Sciences] catalysis and surface chemistry research conference

    International Nuclear Information System (INIS)

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases

  14. Chemistry

    International Nuclear Information System (INIS)

    Gomez G, H.

    1989-01-01

    A brief description about the development and activities executed in chemistry, in the Instituto de Asuntos Nucleares, during the last years is presented. The plans and feasibility of nuclear techniques in Colombia are also described

  15. Evaluation of penicylinders used in disinfectant testing: bacterial attachment and surface texture.

    Science.gov (United States)

    Cole, E C; Rutala, W A; Carson, J L

    1987-01-01

    Two possible deficiencies in the AOAC use-dilution method for registration of chemical disinfectants by the Environmental Protection Agency are examined: (1) the physical disparities among brands of penicylinders and (2) the variability of bacterial numbers on penicylinders depending upon test strain and penicylinder surface texture. Textural differences of 2 brands of stainless steel penicylinders, one brand of porcelain, and one brand of glass were assessed by scanning electron microscopy. A considerable variation in smoothness of both inner and outer surfaces of stainless steel and porcelain penicylinders was observed. Glass penicylinders were very smooth. Numbers of bacteria attached to a penicylinder were assessed by vortexing the penicylinders 30 s at No. 4 after using the AOAC method of bacterial inoculation and drying 40 min at 37 degrees C. With this methodology, stainless steel carriers retained the 3 AOAC-recommended bacterial test strains differentially: ca 10(7) for Pseudomonas aeruginosa, 5 X 10(6) for Staphylococcus aureus, and 10(6) for Salmonella choleraesuis; glass retained 10(6)-10(7) organisms of all 3 test strains; porcelain retained about that amount of S. aureus but 10(5)-10(6) P. aeruginosa and 10(3)-10(4) S. choleraesuis. These data suggest that disinfectants are not similarly challenged with the AOAC-recommended test bacteria and that an alternative method should be considered to ensure comparable numbers of bacteria on penicylinders.

  16. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2004-01-01

    Full Text Available Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually biofilms are grown on substratum surfaces and removed by vortexing with glass beads or scraping. However, scraping is not as effective as vortexing with glass beads. Another approach is direct-agar overlaying which cannot be used with high density biofilm. In this experiment, we compared effectiveness of glass beads (298±28 μm in diameter and sands (width: 221±55 μm and length: 329±118 μm in removing biofilm of Pseudomonas aeruginosa by vortexing method. The results suggested that acid-washed sands, which are significantly less inexpensive than glass beads, were as effective as (P>0.05 analytical grade glass beads in Pseudomonas aeruginosa biofilm removal without inhibiting growth of the organism.

  17. Desorption of 1,3,5-Trichlorobenzene from Multi-Walled Carbon Nanotubes: Impact of Solution Chemistry and Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Sheikh Uddin

    2013-05-01

    Full Text Available The strong affinity of carbon nanotubes (CNTs to environmental contaminants has raised serious concern that CNTs may function as a carrier of environmental pollutants and lead to contamination in places where the environmental pollutants are not expected. However, this concern will not be realized until the contaminants are desorbed from CNTs. It is well recognized that the desorption of environmental pollutants from pre-laden CNTs varies with the environmental conditions, such as the solution pH and ionic strength. However, comprehensive investigation on the influence of solution chemistry on the desorption process has not been carried out, even though numerous investigations have been conducted to investigate the impact of solution chemistry on the adsorption of environmental pollutants on CNTs. The main objective of this study was to determine the influence of solution chemistry (e.g., pH, ionic strength and surface functionalization on the desorption of preloaded 1,3,5-trichlorobenzene (1,3,5-TCB from multi-walled carbon nanotubes (MWNTs. The results suggested that higher pH, ionic strength and natural organic matter in solution generally led to higher desorption of 1,3,5-TCB from MWNTs. However, the extent of change varied at different values of the tested parameters (e.g., pH 7. In addition, the impact of these parameters varied with MWNTs possessing different surface functional groups, suggesting that surface functionalization could considerably alter the environmental behaviors and impact of MWNTs.

  18. Functional surface chemistry of carbon-based nanostructures

    Science.gov (United States)

    Abdula, Daner

    The recently discovered abilities to synthesize single-walled carbon nanotubes and prepare single layer graphene have spurred interest in these sp2-bonded carbon nanostructures. In particular, studies of their potential use in electronic devices are many as silicon integrated circuits are encountering processing limitations, quantum effects, and thermal management issues due to rapid device scaling. Nanotube and graphene implementation in devices does come with significant hurdles itself. Among these issues are the ability to dope these materials and understanding what influences defects have on expected properties. Because these nanostructures are entirely all-surface, with every atom exposed to ambient, introduction of defects and doping by chemical means is expected to be an effective route for addressing these issues. Raman spectroscopy has been a proven characterization method for understanding vibrational and even electronic structure of graphene, nanotubes, and graphite, especially when combined with electrical measurements, due to a wealth of information contained in each spectrum. In Chapter 1, a discussion of the electronic structure of graphene is presented. This outlines the foundation for all sp2-bonded carbon electronic properties and is easily extended to carbon nanotubes. Motivation for why these materials are of interest is readily gained. Chapter 2 presents various synthesis/preparation methods for both nanotubes and graphene, discusses fabrication techniques for making devices, and describes characterization methods such as electrical measurements as well as static and time-resolved Raman spectroscopy. Chapter 3 outlines changes in the Raman spectra of individual metallic single-walled carbon nantoubes (SWNTs) upon sidewall covalent bond formation. It is observed that the initial degree of disorder has a strong influence on covalent sidewall functionalization which has implications on developing electronically selective covalent chemistries and

  19. Measurement of glucose utilization by Pseudomonas fluorescens that are free-living and that are attached to surfaces

    International Nuclear Information System (INIS)

    Fletcher, M.

    1986-01-01

    The assimilation and respiration of glucose by attached and free-living Pseudomonas fluorescens were compared. The attachment surfaces were polyvinylidene fluoride, polyethylene, and glass. Specific uptake of [ 1 C]glucose was determined after bacterial biomass was measured by (1) microscopic counts or (2) prelabelling of cells by providing [ 3 H]leucine as substrate, followed by dual-labelling scintillation counting. The glucose concentration was 1.4, 3.5, 5.5, 7.6, or 9.7 μM. Glucose assimilation by cells which became detached from the surfaces during incubation with glucose was also measured after the detached cells were collected by filtration. The composition of the substratum had no effect on the amount of glucose assimilated by attached cells. Glucose assimilation by attached cells exceeded that by free-living cells by a factor of between 2 and 5 or more, and respiration of glucose by surface-associated cells was greater than that by free-living bacteria. Glucose assimilation by detached cells was greater than that by attached bacteria. Measurements of biomass by microscopic counts gave more consistent results than those obtained with dual-labelling, but in general, results obtained by both methods were corroborative

  20. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity

    Science.gov (United States)

    Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling

    2017-10-01

    The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.

  1. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells.

  2. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    Science.gov (United States)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  3. Negative-ion beam surface modification of tissue-culture polystyrene dishes for changing hydrophilic and cell-attachment properties

    International Nuclear Information System (INIS)

    Tsuji, H.; Satoh, H.; Ikeda, S.; Ikemura, S.; Gotoh, Y.; Ishikawa, J.

    1999-01-01

    Negative-silver-ion implantation into tissue-culture polystyrene (TCPS) dishes was investigated and it was found to modify hydrophilic and cell attachment properties of the dishes. Negative-ion implantation has an advantage of being almost free of surface charging, and is a suitable method for implantation into insulators such as polymers. Negative silver ions are used due to the antibacterial property of silver. Ag-implanted TCPS dishes had a contact angle larger than the normal value of 66 deg. of unimplanted dishes. The contact angle of water had a strong dependence on the ion energy rather than the dose. As a cell-culture experiment, human umbilical vascular endothelial cell (HUVEC) was used in unimplanted and Ag-implanted TCPS dishes, the implantation removed the cell-attachment property of the surface. In implantation with a mask with a striped pattern, most attached cells of HUVEC were in the unimplanted region aligned along a stripe direction

  4. Analytical Chemistry of Surfaces: Part III. Ion Spectroscopy.

    Science.gov (United States)

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    The fundamentals of two surface techniques--secondary-ion mass spectrometry (SIMS) and ion-scattering spectrometry (ISS)--are discussed. Examples of how these techniques have been applied to surface problems are provided. (JN)

  5. Cancer cell proliferation controlled by surface chemistry in its microenvironment

    Science.gov (United States)

    Yu, Xiao-Long; Zhang, Bin; Wang, Xiu-Mei; Wang, Ying; Qiao, Lin; He, Jin; Wang, Juan; Chen, Shuang-Feng; Lee, In-Seop; Cui, Fu-Zhai

    2011-12-01

    Hepatoma cells (Hepg2s) as typical cancer cells cultured on hydroxyl (-OH) and methyl (-CH3) group surfaces were shown to exhibit different proliferation and morphological changes. Hepg2s cells on -OH surfaces grew much more rapidly than those on -CH3 surfaces. Hepg2s cells on -OH surfaces had the larger contact area and the more flattened morphology, while those on -CH3 surfaces exhibited the smaller contact area and the more rounded morphology. After 7 days of culture, the migration of Hepg2s cells into clusters on the -CH3 surfaces behaved significantly slower than that on the -OH surfaces. These chemically modified surfaces exhibited regulation of Hepg2s cells on proliferation, adhesion, and migration, providing a potential treatment of liver cancer.

  6. Convenient Preparation of Bactericidal Hydrogels by Covalent Attachment of Stabilized Antimicrobial Peptides Using Thiol-ene Click Chemistry

    NARCIS (Netherlands)

    Cleophas, Rik T. C.; Riool, Martijn; van Ufford, H. C. Quarles; Zaat, Sebastian A. J.; Kruijtzer, John A. W.; Liskamp, Rob M. J.

    2014-01-01

    This report describes the design and synthesis of a bactericidal poly(ethylene glycol)-based (PEG) hydrogel coating with covalently attached antimicrobial peptides (AMP) stabilized against proteolytic degradation. As such, mimics of the highly active AMP HHC10 (H-KRWWKWIRW-NH2) were designed for

  7. The surface chemistry of metal-oxygen interactions

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium...... structure, surface energy and surface stress of the unreconstructed and (1 x 2) reconstructed structures. For the oxygen-covered surface we have performed a geometry optimization at 0.5, 1, and 2 monolayer oxygen coverages, and we present results for the equilibrium configurations, workfunctions and oxygen...

  8. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    Science.gov (United States)

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  9. Attachment behaviour of Escherichia coli K12 and Salmonella Typhimurium P6on food contact surfaces for food transportation

    DEFF Research Database (Denmark)

    Abban, Stephen; Jakobsen, Mogens; Jespersen, Lene

    2012-01-01

    material sections of the same surfaces. We report these observations for the first time for aluminium and the FRP material and in part for stainless steel. The S. Typhimurium P6 strain also had significantly higher level of attachment than the E. coli K12 strain. Our findings show that food residue...

  10. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  11. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    2010-01-01

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically...

  12. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Science.gov (United States)

    2016-01-01

    This study evaluates tensile bond strength (TBS) of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36) feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF), Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI) scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa) and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface. PMID:27747233

  13. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  14. NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2013-03-01

    NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  15. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  16. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  17. The role of electron scattering in electron-induced surface chemistry

    NARCIS (Netherlands)

    van Dorp, Willem F.

    2012-01-01

    Electron-induced chemistry on surfaces plays a key role in focused electron beam induced processing (FEBIP), a single-step lithography technique that has increasingly gained interest in the past decade. It is crucial for the understanding and modelling of this process to know the role of the surface

  18. Flame Treatment of Low-Density Polyethylene: Surface Chemistry Across the Length Scale

    NARCIS (Netherlands)

    Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, Gyula J.

    2007-01-01

    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron

  19. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, Ronald W.; Metge, David W.; Barber, Larry B.; Aiken, George R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  20. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    International Nuclear Information System (INIS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; Marel, Cees van der; Koole, Leo H.

    2014-01-01

    Highlights: • Polyacrylate coatings with controlled surface functionalities. • Impact of surface chemistry and morphology on dengue antibody immobilization. • Enhancement of detection signal as a result of bio-activation of polymer surface. - Abstract: Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional “spacers”, hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups

  1. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Rothan, Hussin A.; Yusof, Rohana [Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Marel, Cees van der [Philips Materials Analysis, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Koole, Leo H. [Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Center for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Faculty of Health, Medicine and Life Sciences, Maastricht University (Netherlands)

    2014-10-30

    Highlights: • Polyacrylate coatings with controlled surface functionalities. • Impact of surface chemistry and morphology on dengue antibody immobilization. • Enhancement of detection signal as a result of bio-activation of polymer surface. - Abstract: Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional “spacers”, hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups

  2. Geochemistry and Organic Chemistry on the Surface of Titan

    Science.gov (United States)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  3. Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.

    Science.gov (United States)

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)

  4. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  5. Surface chemistry of a hydrogenated mesoporous p-type silicon

    Energy Technology Data Exchange (ETDEWEB)

    Media, El-Mahdi, E-mail: belhadidz@tahoo.fr; Outemzabet, Ratiba, E-mail: oratiba@hotmail.com

    2017-02-15

    Highlights: • Due to its large specific surface porous silicon is used as substrate for drug therapy and biosensors. • We highlight the evidency of the contribution of the hydrides (SiHx) in the formation of the porous silicon. • The responsible species in the porous silicon formation are identified and quantified at different conditions. • By some chemical treatments we show that silicon surface can be turn from hydrophobic to hydrophilic. - Abstract: The finality of this work is devoted to the grafting of organic molecules on hydrogen passivated mesoporous silicon surfaces. The study would aid in the development for the formation of organic monolayers on silicon surface to be exploited for different applications such as the realisation of biosensors and medical devices. The basic material is silicon which has been first investigated by FTIR at atomistic plane during the anodic forward and backward polarization (i.e. “go” and “return”). For this study, we applied a numerical program based on least squares method to infrared absorbance spectra obtained by an in situ attenuated total reflection on p-type silicon in diluted HF electrolyte. Our numerical treatment is based on the fitting of the different bands of IR absorbance into Gaussians corresponding to the different modes of vibration of molecular groups such as siloxanes and hydrides. An adjustment of these absorbance bands is done systematically. The areas under the fitted bands permit one to follow the intensity of the different modes of vibration that exist during the anodic forward and backward polarization in order to compare the reversibility of the phenomenon of the anodic dissolution of silicon. It permits also to follow the evolution between the hydrogen silicon termination at forward and backward scanning applied potential. Finally a comparison between the states of the initial and final surface was carried out. We confirm the presence of clearly four and three distinct vibration modes

  6. Surface chemistry interventions to control boiler tube fouling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J

    2000-06-01

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25{sup o}C. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both.

  7. Surface chemistry interventions to control boiler tube fouling

    International Nuclear Information System (INIS)

    Turner, C.W.; Guzonas, D.A.; Klimas, S.J.

    2000-06-01

    The adsorption of ammonia, morpholine, ethanolamine, and dimethylamine onto the surfaces of colloidal magnetite and hematite was measured at 25 o C. The effect of the adsorption on the surface potential was quantified by measuring the resulting shift in the isoelectric point of the corrosion products and by the direct measurement of the surface interaction force between the corrosion products and Inconel 600. These measurements have served to support the hypothesis that adsorption of amine affects the magnetite deposition rate by lowering the force of repulsion between magnetite and the surface of Inconel 600. The deposition rate of hematite increased as the oxygen concentration increased. A mechanism to account for enhanced deposition rates at high mixture qualities (> 0.35) has been identified and shown to predict behaviour that is consistent with both experimental and plant data. As a result of this investigation, several criteria are proposed to reduce the extent of corrosion product deposition on the tube bundle. Low hematite deposition is favoured by a low concentration of dissolved oxygen, and low magnetite deposition is favoured by choosing an amine for pH control that has little tendency to adsorb onto the surface of magnetite. To minimize adsorption the amine should have a high base strength and a large 'footprint' on the surface of magnetite. To prevent enhanced deposition at high mixture qualities, it is proposed that a modified amine be used that will reduce the surface tension or the elasticity of the steam-water interface or both

  8. Elemental concentrations of aquatic insect larvae and attached algae on tone surfaces in an uncontaminated stream

    International Nuclear Information System (INIS)

    Momoshima, N.; Sugihara, S.; Hibino, K.; Nakamura, Y.

    2009-01-01

    Elemental concentrations of aquatic insect larvae and attached algae in an uncontaminated river were analyzed by instrumental neutron activation analysis (INAA) via the k 0 -standardization method. The aquatic insect larvae found were all intolerant species. No significant difference was observed int he elemental concentrations of aquatic insect larvae and attached algae long the river. Similar elemental concentrations were observed in the aquatic insect larvae collected at a fixed sampling point for two years. An analysis by the ratio-matching technique indicated a higher generic relationship between aquatic insect larvae and attached algae than river water. (author)

  9. Plasma Processing with Fluorine Chemistry for Modification of Surfaces Wettability

    Directory of Open Access Journals (Sweden)

    Veronica Satulu

    2016-12-01

    Full Text Available Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.

  10. Surface chemistry controls crystallinity of ZnS nanoparticles.

    Science.gov (United States)

    Gilbert, Benjamin; Huang, Feng; Lin, Zhang; Goodell, Carmen; Zhang, Hengzhong; Banfield, Jillian F

    2006-04-01

    Combined small-angle and high energy wide-angle X-ray scattering measurements of nanoparticle size and structure permit interior strain and disorder to be observed directly in the real-space pair distribution function (PDF). PDF analysis showed that samples of ZnS nanoparticles with similar mean diameters (3.2-3.6 nm) but synthesized and treated with different low-temperature procedures possess a dramatic range of interior disorder. We used Fourier transform infrared spectroscopy to detect the surface species and the nature of surface chemical interactions. Our results suggest that there is a direct correlation between the strength of surface-ligand interactions and interior crystallinity.

  11. Surface second harmonic generation from coumarin 343 dye-attached TiO2 nanoparticles at liquid–liquid interface

    International Nuclear Information System (INIS)

    Pant, Debi D.; Joshi, Sunita; Girault, Hubert H.

    2011-01-01

    The nonlinear optical properties of coumarin 343 (C343) dye-attached TiO 2 nanoparticles in the size range 5–8 nm adsorbed at the interface of water/1,2-dichloroethane have been studied by using the surface second harmonic generation technique. No second harmonic (SH) response was observed from the bare TiO 2 nanoparticles adsorbed at the interface, however, a strong SH response was measured from the dye molecules attached at the surfaces of the nanoparticles. The increase in the SH intensity with the increase of TiO 2 nanoparticle concentration in the aqueous solution of C343 is mainly due to the pre-alignment of the dye molecules at the surfaces of nanoparticles and is partly due to the third-order polarization contribution of the nanoparticles to the observed total SH response.

  12. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A. Paul

    2008-12-02

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, and XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.

  13. Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Bak, Martin; Jølck, Rasmus Irming; Eliasen, Rasmus

    2016-01-01

    be used for functionalization of other nanoparticles or solid surfaces. The method exploits a synergistic effect of having both affinity and covalent anchoring tags on the surface of the liposome. This was achieved by synthesizing a peptide linker system that uses Cu-free strain-promoted click chemistry.......2%. The reaction kinetics and overall yield were quantified by HPLC. The results presented here open new possibilities for constructing complex nanostructures and functionalized surfaces....

  14. Surface chemistry and morphology in single particle optical imaging

    Science.gov (United States)

    Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim

    2017-05-01

    Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.

  15. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  16. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  17. Importance of the carbon surface chemistry: methods of characterization; Importance de la chimie de surface des materiaux carbones

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Ph. [Universite Paul Verlaine, Lab. de Chimie et Applications, UFR Sciences, 57 - Metz (France); Vix-Guterl, C. [Centre National de la Recherche Scientifique, Institut de Chimie des Surfaces et Interfaces (ICSI) UPR CNRS 9069, 68 - Mulhouse (France)

    2006-03-15

    The diversity of the carbonaceous materials in terms of chemical composition and porous texture explains their large field of applications. The performances of such materials are often influenced by their surface chemistry that is not easy to investigate. Thus a large range of complementary analytical methods is necessary. (authors)

  18. Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells.

    Science.gov (United States)

    Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram

    2016-09-01

    Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Understanding colloidal charge renormalization from surface chemistry: Experiment and theory

    Science.gov (United States)

    Gisler, T.; Schulz, S. F.; Borkovec, M.; Sticher, H.; Schurtenberger, P.; D'Aguanno, B.; Klein, R.

    1994-12-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stern capacitance) are determined from fits of a Stern layer model to the titration data. We find strong evidence that the dissociation of protons is the only specific adsorption process. Effective particle charges are determined by fits of integral equation calculations of the polydisperse static structure factor to the static light scattering data. A generalization of the Poisson-Boltzmann cell model including the dissociation of the acidic surface groups and the autodissociation of water is used to predict effective particle charges from the surface chemical parameters determined by the titration experiments. We find that the light scattering data are best described by a model where a small fraction of the ionizable surface sites are sulfate groups which are completely dissociated at moderate pH. These effective charges are comparable to the predictions by a basic cell model where charge regulation is absent.

  20. Understanding colloidal charge renormilization from surface chemistry : experiment and theory

    OpenAIRE

    Gisler, Thomas; Schulz, S. F.; Borkovec, Michal; Sticher, Hans; Schurtenberger, Peter; D'Aguanno, Bruno; Klein, Rudolf

    1994-01-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stem capacitance) are determined from tits of a Stem ...

  1. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough?

    OpenAIRE

    Feng, Guoping; Cheng, Yifan; Wang, Shu-Yi; Borca-Tasciuc, Diana A; Worobo, Randy W; Moraru, Carmen I

    2015-01-01

    Background/Objectives: Prevention of biofilm formation by bacteria is of critical importance to areas that directly affect human health and life including medicine, dentistry, food processing and water treatment. This work showcases an effective and affordable solution for reducing attachment and biofilm formation by several pathogenic bacteria commonly associated with foodborne illnesses and medical infections. Methods: Our approach exploits anodisation to create alumina surfaces with cylind...

  2. Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces.

    Science.gov (United States)

    Endlein, Thomas; Ji, Aihong; Samuel, Diana; Yao, Ning; Wang, Zhongyuan; Barnes, W Jon P; Federle, Walter; Kappl, Michael; Dai, Zhendong

    2013-03-06

    To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouched posture (where the limbs are close to the body) to a sprawled posture with extended limbs when clinging on to steeper inclines such as vertical or overhanging slopes. We investigated this change in posture in White's tree frogs (Litoria caerulea) by challenging the frogs to cling onto a tiltable platform. The platform consisted of an array of 24 three-dimensional force transducers, which allowed us to measure the ground reaction forces of the frogs during a tilt. Starting from a crouched resting position, the normal forces on the forelimbs changed sign and became increasingly negative with increasing slope angle of the platform. At about 106° ± 12°, tilt of the platform the frogs reacted by extending one or two of their limbs outwards. At a steeper angle (131° ± 11°), the frogs spread out all their limbs sideways, with the hindlimbs stretched out to their maximum reach. Although the extension was strongest in the lateral direction, limbs were significantly extended in the fore-aft direction as well. With the extension of the limbs, the lateral forces increased relative to the normal forces. The large contribution of the in-plane forces helped to keep the angle between the force vector and the platform small. The Kendall theory for the peeling of adhesive tape predicts that smaller peel angles lead to higher attachment forces. We compare our data with the predictions of the Kendall model and discuss possible implications of the sliding of the pads on the surface. The forces were indeed much larger for smaller angles and thus can be explained by peeling theory.

  3. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces.

    Science.gov (United States)

    Aizawa, Masato; Buriak, Jillian M

    2005-06-29

    Patterning of semiconductor surfaces is an area of intense interest, not only for technological applications, such as molecular electronics, sensing, cellular recognition, and others, but also for fundamental understanding of surface reactivity, general control over surface properties, and development of new surface reactivity. In this communication, we describe the use of self-assembling block copolymers to direct semiconductor surface chemistry in a spatially defined manner, on the nanoscale. The proof-of-principle class of reactions evaluated here is galvanic displacement, in which a metal ion, M+, is reduced to M0 by the semiconductor, including Si, Ge, InP, and GaAs. The block copolymer chosen has a polypyridine block which binds to the metal ions and brings them into close proximity with the surface, at which point they undergo reaction; the pattern of resulting surface chemistry, therefore, mirrors the nanoscale structure of the parent block copolymer. This chemistry has the added advantage of forming metal nanostructures that result in an alloy or intermetallic at the interface, leading to strongly bound metal nanoparticles that may have interesting electronic properties. This approach has been shown to be very general, functioning on a variety of semiconductor substrates for both silver and gold deposition, and is being extended to organic and inorganic reactions on a variety of conducting, semiconducting, and insulating substrates.

  4. Color and surface chemistry changes of extracted wood flour after heating at 120 °C

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark

    2013-01-01

    To investigate the effect of heat on color and surface chemistry of wood flour (WF), unextracted, extracted and delignified samples of commercial WF were heated at 120 °C for 24 h and analyzed by colorimetry, diffuse reflectance visible (DRV), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Fourier transform Raman (FT-Raman) spectroscopies....

  5. Challenges in Teaching "Colloid and Surface Chemistry"--A Danish Experience

    Science.gov (United States)

    Kontogeorgis, Georgios M.; Vigild, Martin E.

    2009-01-01

    Seven years ago we were asked, as one of our first teaching duties at the Technical University of Denmark (DTU), to teach a 5 ECTS point course on "Colloid and Surface Chemistry". The topic is itself at the same time exciting and demanding, largely due to its multidisciplinary nature. Several "local" requirements posed…

  6. Surface Geometry and Chemistry of Hydrothermally Synthesized Single Crystal Thorium Dioxide

    Science.gov (United States)

    2015-03-01

    Member Alex G. Li, PhD Member iv AFIT-ENP-MS-15-M-87 Abstract The surface chemistry and geometry of hydrothermally grown, single...Interactions with Materials and Atoms 268(9), pp. 1482-1485. 2010. . DOI: 10.1016/j.nimb.2010.01.027. [4] J. A. Felix , D. M. Fleetwood, R. D. Schrimpf, J. G

  7. On surface-initiated atom transfer radical polymerization using diazonium chemistry to introduce the initiator layer

    DEFF Research Database (Denmark)

    Iruthayaraj, Joseph; Chernyy, Sergey; Lillethorup, Mie

    2011-01-01

    This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying...

  8. Laboratory Activity Worksheet to Train High Order Thinking Skill of Student on Surface Chemistry Lecture

    Science.gov (United States)

    Yonata, B.; Nasrudin, H.

    2018-01-01

    A worksheet has to be a set with activity which is help students to arrange their own experiments. For this reason, this research is focused on how to train students’ higher order thinking skills in laboratory activity by developing laboratory activity worksheet on surface chemistry lecture. To ensure that the laboratory activity worksheet already contains aspects of the higher order thinking skill, it requires theoretical and empirical validation. From the data analysis results, it shows that the developed worksheet worth to use. The worksheet is worthy of theoretical and empirical feasibility. This conclusion is based on the findings: 1) Assessment from the validators about the theoretical feasibility aspects in the category is very feasible with an assessment range of 95.24% to 97.92%. 2) students’ higher thinking skill from N Gain values ranges from 0.50 (enough) to 1.00 (high) so it can be concluded that the laboratory activity worksheet on surface chemistry lecture is empirical in terms of worth. The empirical feasibility is supported by the responses of the students in very reasonable categories. It is expected that the laboratory activity worksheet on surface chemistry lecture can train students’ high order thinking skills for students who program surface chemistry lecture.

  9. Surface chemistry of tribochemical reactions explored in ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Lara-Romero, Javier; Maya-Yescas, Rafael; Rico-Cerda, Jose Luis; Rivera-Rojas, Jose Luis; Castillo, Fernando Chinas; Kaltchev, Matey; Tysoe, Wilfred T.

    2006-01-01

    The thermal decomposition of model extreme-pressure lubricant additives on clean iron was studied in ultrahigh vacuum conditions using molecular beam strategies. Methylene chloride and chloroform react to deposit a solid film consisting of FeCl 2 and carbon, and evolve only hydrogen into the gas phase. No gas-phase products and less carbon on the surface are detected in the case of carbon tetrachloride. Dimethyl and diethyl disulfide react on clean iron to deposit a saturated sulfur plus carbon layer at low temperatures (∼600 K) and an iron sulfide film onto a Fe + C underlayer at higher temperatures (∼950 K). Methane is the only gas-phase product when dimethyl disulfide reacts with iron. Ethylene and hydrogen are detected when diethyl disulfide is used

  10. Surface hydrophobicity and roughness influences the morphology and biochemistry of streptomycetes during attached growth and differentiation

    Czech Academy of Sciences Publication Activity Database

    Petráčková, Denisa; Buriánková, Karolína; Tesařová, E.; Bobková, Šárka; Bezoušková, Silvia; Benada, Oldřich; Kofroňová, Olga; Janeček, Jiří; Halada, Petr; Weiser, Jaroslav

    2013-01-01

    Roč. 342, č. 2 (2013), s. 147-156 ISSN 0378-1097 R&D Projects: GA AV ČR IAA500200913 Institutional support: RVO:61388971 Keywords : streptomycetes * attached growth * glass beads Subject RIV: EE - Microbiology, Virology Impact factor: 2.046, year: 2013

  11. Kinetics of enzyme action on surface-attached substrates: a practical guide to progress curve analysis in any kinetic situation.

    Science.gov (United States)

    Anne, Agnès; Demaille, Christophe

    2012-10-16

    In the present work, exact kinetic equations describing the action of an enzyme in solution on a substrate attached to a surface have been derived in the framework of the Michaelis-Menten mechanism but without resorting to the often-used steady-state approximation. The here-derived kinetic equations are cast in a workable format, allowing us to introduce a simple and universal procedure for the quantitative analysis of enzyme surface kinetics that is valid for any kinetic situation. The results presented here should allow experimentalists studying the kinetics of enzyme action on immobilized substrates to analyze their data in a perfectly rigorous way.

  12. Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111)/Si(111)

    OpenAIRE

    Abe Shunsuke; Handa Hiroyuki; Takahashi Ryota; Imaizumi Kei; Fukidome Hirokazu; Suemitsu Maki

    2010-01-01

    Abstract Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111) thin films on Si(111) has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD) and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111)/Si(111) is Si-terminated before the graphitization, and ...

  13. Evaluation of the In Vitro Effect of Gold Nanorod Aspect Ratio, Surface Charge and Chemistry on Cellular Association and Cytotoxicity

    Science.gov (United States)

    2016-03-28

    Nanorods. Analytical Chemistry , 79(2), 572-579. doi: 10.1021/ac061730d 22 LIST OF ACRONYMS ATCC American Type Culture Collection AR Aspect...EVALUATION OF THE IN VITRO EFFECTOF GOLD NANOROD ASPECT RATIO, SURFACE CHARGE AND CHEMISTRY ON CELLULAR ASSOCIATION AND CYTOTOXICITY...July 2012 – Jan 2016 4. TITLE AND SUBTITLE EVALUATION OF THE IN VITRO EFFECT OF GOLD NANOROD ASPECT RATIO, SURFACE CHARGE AND CHEMISTRY ON

  14. Modular "click" chemistry for electrochemically and photoelectrochemically active molecular interfaces to tin oxide surfaces.

    Science.gov (United States)

    Benson, Michelle C; Ruther, Rose E; Gerken, James B; Rigsby, Matthew L; Bishop, Lee M; Tan, Yizheng; Stahl, Shannon S; Hamers, Robert J

    2011-08-01

    We demonstrate the use of "click" chemistry to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) nanoparticle thin films. By using photochemical grafting to link a short-chain alcohol to the surface followed by conversion to a surface azide group, we enable use of the Cu(I)-catalyzed azide-alkyne [3 + 2] cycloaddition (CuAAC) reaction, a form of "click" chemistry, on metal oxide surfaces. Results are shown with three model compounds to test the surface chemistry and subsequent ability to achieve electrochemical and photoelectrochemical charge transfer. Surface-tethered ferrocene groups exhibit good electron-transfer characteristics with thermal rates estimated at >1000 s(-1). Time-resolved surface photovoltage measurements using a ruthenium terpyridyl coordination compound demonstrate photoelectron charge transfer on time scales of nanoseconds or less, limited by the laser pulse width. The results demonstrate that the CuAAC "click" reaction can be used to form electrochemically and photoelectrochemically active molecular interfaces to SnO(2) and other metal oxide semiconductors.

  15. Influence of ultrasonic impact treatment and morphology of solid lubricant particles on its attachment to surfaces with different roughness

    Science.gov (United States)

    Fedorov, A. A.; Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.; Linovsky, A. V.; Bobkov, N. V.

    2017-08-01

    The article considers the research results of the «friction surface-solid lubricant» system with molybdenum disulfide suspension before the ultrasonic impact treatment. An average particle's size detected in the molybdenum disulfide powder is 10.9 µm. The comparative analysis of MoS2 particle's distribution as per size and valleys' sizes on turned and ground surfaces allow us to make a conclusion regarding the comparability of these values and principal possibility of micro valley's filling with MoS2 particles. MoS2 attachment to the near-surface layer of steel AISI 321, subjected to the turning (Ra= 2.15 µm) or grinding (Ra= 0.36 µm), is implemented by means of the microasperities deformation by an ultrasonic tool depending on the initials surface morphology.

  16. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    Science.gov (United States)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  17. Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials

    Science.gov (United States)

    Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.

    2004-01-01

    Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896

  18. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs.

    Science.gov (United States)

    Davison, N L; Su, J; Yuan, H; van den Beucken, J J J P; de Bruijn, J D; Barrère-de Groot, F

    2015-06-20

    It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs), and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of ≤ 1 μm trigger osteoinduction and osteoclast formation irrespective of macrostructure (e.g., concavities, interconnected macropores, interparticle space) or surface chemistry. To test this, planar discs made of biphasic calcium phosphate (BCP: 80% hydroxyapatite, 20% tricalcium phosphate) were prepared with different surface structural dimensions - either ~ 1 μm (BCP1150) or ~ 2-4 μm (BCP1300) - and no macropores or concavities. A third material was made by sputter coating BCP1150 with titanium (BCP1150Ti), thereby changing its surface chemistry but preserving its surface structure and chemical reactivity. After intramuscular implantation in 5 dogs for 12 weeks, BCP1150 formed ectopic bone in 4 out of 5 samples, BCP1150Ti formed ectopic bone in 3 out of 5 samples, and BCP1300 formed no ectopic bone in any of the 5 samples. In vivo, large multinucleated osteoclast-like cells densely colonised BCP1150, smaller osteoclast-like cells formed on BCP1150Ti, and osteoclast-like cells scarcely formed on BCP1300. In vitro, RAW264.7 cells cultured on the surface of BCP1150 and BCP1150Ti in the presence of osteoclast differentiation factor RANKL (receptor activator for NF-κB ligand) proliferated then differentiated into multinucleated osteoclast-like cells with positive tartrate resistant acid phosphatase (TRAP) activity. However, cell proliferation, fusion, and TRAP activity were all significantly inhibited on BCP1300. These results indicate that of the material parameters tested - namely, surface microstructure, macrostructure, and surface chemistry - microstructural dimensions are critical in promoting osteoclastogenesis and triggering ectopic bone formation.

  19. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium

    OpenAIRE

    Kendall, Michaela; Hodges, Nikolas J.; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-01-01

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of ...

  20. Effects of wood fiber surface chemistry on strength of wood-plastic composites

    Science.gov (United States)

    Migneault, Sébastien; Koubaa, Ahmed; Perré, Patrick; Riedl, Bernard

    2015-07-01

    Because wood-plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same conclusions were found with FTIR where WPC strength decreases as lignin peaks intensity increases. Esterification reaction of fibers with MAPE occurs on polar sites of carbohydrates, such as hydroxyls (Osbnd H). Thus, fibers with carbohydrates-rich surface, such as cellulose pulp, produced stronger WPC samples. Other factors such as mechanical interlocking and fiber morphology interfered with the effects of fiber surface chemistry.

  1. Mercury-Mediated Attachment of Metal-Sandwich-Based Altitudinal Molecular Rotors to Gold Surfaces

    Czech Academy of Sciences Publication Activity Database

    Mulcahy, M. E.; Bastl, Zdeněk; Stensrud, Kenneth F.; Magnera, T. F.; Michl, Josef

    2010-01-01

    Roč. 114, č. 33 (2010), s. 14050-14060 ISSN 1932-7447 R&D Projects: GA AV ČR KAN100400702; GA ČR GA203/07/1619 Grant - others:ERC Advanced Grant(XE) 227756 Program:FP7 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : XPS * STM * molecular rotors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.520, year: 2010

  2. Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Li, Yimin

    2009-11-21

    Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.

  3. The impact of surface chemistry on the performance of localized solar-driven evaporation system

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-01

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  4. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    Science.gov (United States)

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  5. Microbiota formed on attached stainless steel coupons correlates with the natural biofilm of the sink surface in domestic kitchens.

    Science.gov (United States)

    Moen, Birgitte; Røssvoll, Elin; Måge, Ingrid; Møretrø, Trond; Langsrud, Solveig

    2016-02-01

    Stainless steel coupons are frequently used in biofilm studies in the laboratory, as this material is commonly used in the food industry. The coupons are attached to different surfaces to create a "natural" biofilm to be studied further in laboratory trials. However, little has been done to investigate how well the microbiota on such coupons represents the surrounding environment. The microbiota on sink wall surfaces and on new stainless steel coupons attached to the sink wall for 3 months in 8 domestic kitchen sinks was investigated by next-generation sequencing (MiSeq) of the 16S rRNA gene derived from DNA and RNA (cDNA), and by plating and identification of colonies. The mean number of colony-forming units was about 10-fold higher for coupons than sink surfaces, and more variation in bacterial counts between kitchens was seen on sink surfaces than coupons. The microbiota in the majority of biofilms was dominated by Moraxellaceae (genus Moraxella/Enhydrobacter) and Micrococcaceae (genus Kocuria). The results demonstrated that the variation in the microbiota was mainly due to differences between kitchens (38.2%), followed by the different nucleic acid template (DNA vs RNA) (10.8%), and that only 5.1% of the variation was a result of differences between coupons and sink surfaces. The microbiota variation between sink surfaces and coupons was smaller for samples based on their RNA than on their DNA. Overall, our results suggest that new stainless steel coupons are suited to model the dominating part of the natural microbiota of the surrounding environment and, furthermore, are suitable for different downstream studies.

  6. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    Science.gov (United States)

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  7. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2010-01-01

    Surface-initiated atom transfer radical polymerization (ATRP) and click chemistry were used to obtain functional nanoporous polymers based oil nanoporous 1,2-polybutadiene (PB) with gyroid morphology. The ATRP monolith initiator was prepared by immobilizing bromoester initiators onto the pore walls...... ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while...

  8. Effects of wood fiber surface chemistry on strength of wood–plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Migneault, Sébastien, E-mail: sebastien.migneault@uqat.ca [University of Quebec in Abitibi-Temiscamingue (UQAT), 445 boulevard de l’Université, Rouyn-Noranda, Québec J9X 5E4 (Canada); Koubaa, Ahmed, E-mail: ahmed.koubaa@uqat.ca [UQAT (Canada); Perré, Patrick, E-mail: patrick.perre@ecp.fr [École centrale de Paris, Grande Voie des Vignes, F-92 295 Chatenay-Malabry Cedex (France); Riedl, Bernard, E-mail: Bernard.Riedl@sbf.ulaval.ca [Université Laval, 2425 rue de la Terrasse, Québec City, Québec G1V 0A6 (Canada)

    2015-07-15

    Highlights: • Infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed variations of surface chemical characteristics according to fiber origin. • Surface chemical characteristics of fibers could partly explain the differences in mechanical properties of the wood–plastic composites. • Fibers with carbohydrate rich surface led to stronger wood–plastic composites because the coupling between the matrix and fibers using coupling agent is achieved with polar sites mostly available on carbohydrates. • Conversely, lignin or extractives rich surface do not have oxidized functions for the esterification reaction with coupling agent and thus led to wood–plastic composites with lower mechanical properties. • Other factors such as mechanical interlocking and fiber morphology interfere with the effects of fiber surface chemistry. - Abstract: Because wood–plastic composites (WPC) strength relies on fiber-matrix interaction at fiber surface, it is likely that fiber surface chemistry plays an important role in WPC strength development. The objective of the present study is to investigate the relationships between fiber surface chemical characteristics and WPC mechanical properties. Different fibers were selected and characterized for surface chemical characteristics using X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR). WPC samples were manufactured at 40% fiber content and with six different fibers. High density polyethylene was used as matrix and maleated polyethylene (MAPE) was used as compatibility agent. WPC samples were tested for mechanical properties and fiber-matrix interface was observed with scanning electron microscope. It was found WPC strength decreases as the amount of unoxidized carbon (assigned to lignin and extractives) measured with XPS on fiber surface increases. In the opposite case, WPC strength increases with increasing level of oxidized carbon (assigned to carbohydrates) on fiber surface. The same

  9. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  10. Adsorption of Dyes in Studying the Surface Chemistry of Ultradispersed Diamond

    Science.gov (United States)

    Khokhlova, T. D.; Yunusova, G. R.; Lanin, S. N.

    2018-05-01

    The effect the surface chemistry of ultradispersed diamond (UDD) has on the adsorption of watersoluble dyes is considered. A comparison is made to adsorption on graphitized thermal carbon black (GTCB), which has a homogeneous and nonporous surface. The adsorption isotherms of dyes and the dependence of the adsorption on the pH of solutions are measured. It is found that UDD adsorbs acid (anionic) dyes—acid orange (AO) and acid anthraquinone blue (AAB)—but barely adsorbs a basic (cationic) dye, methylene blue (MB), because of the predominance of positively charged basic groups on the surface of UDD. The maximum adsorption of AO is much lower on UDD than on GTCB, while the maximum adsorption of AAB is similar for both surfaces. The adsorption of AO on UDD depends strongly on the pH of the solution, while the adsorption of AAB is independent of this parameter. It is suggested that the adsorption of AAB is determined not only by ionic and hydrophobic interactions but also by coordination interactions with impurity metal ions on a UDD surface. It is concluded that the adsorption of dyes characterizes the chemistry of a UDD surface with high sensitivity.

  11. Covalent attachment of cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) to poly(etheretherketone) surface by tailored silanization layers technique

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-11-30

    Highlights: • The carbonyl groups on PEEK surface were effectively reduced to hydroxyl groups using sodium borohydride. • Silanization layers technique was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on hydroxylation-pretreated PEEK sheet surface by covalent chemical attachment. • XPS, surface profiler and water contact angle measurements proved the presence of GRGD on PEEK surface. • Osteoblast-like cells (MC3T3-E1) attachment and proliferation were improved effectively on GRGD-modified PEEK surface. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, PEEK is naturally bioinert, leading to limited biomedical applications, especially when a direct bone-implant osteointegration is desired. In this study, a three-step reaction procedure was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on the surface of PEEK sheet by covalent chemical attachment to favor cell adhesion and proliferation. First, hydroxylation-pretreated PEEK surfaces were silanized with 7-Oct-1-enyltrichlorosilane (OETS) in dry cyclohexane, resulting in a silanization layer with terminal ethenyl. Second, the terminal ethylenic double bonds of the silanization layer on PEEK surface were converted to carboxyl groups through acidic potassium manganate oxidation. Finally, GRGD was covalently attached by carbodiimide mediated condensation between the carboxyl on PEEK surface and amine presents in GRGD. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, surface profiler and water contact angle measurements were applied to characterize the modified surfaces. The effect of cells attachment and proliferation on each specimen was investigated. Pre-osteoblast cells (MC3T3-E1) attachment, spreading and proliferation

  12. Covalent attachment of cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) to poly(etheretherketone) surface by tailored silanization layers technique

    International Nuclear Information System (INIS)

    Zheng, Yanyan; Xiong, Chengdong; Li, Xiaoyu; Zhang, Lifang

    2014-01-01

    Highlights: • The carbonyl groups on PEEK surface were effectively reduced to hydroxyl groups using sodium borohydride. • Silanization layers technique was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on hydroxylation-pretreated PEEK sheet surface by covalent chemical attachment. • XPS, surface profiler and water contact angle measurements proved the presence of GRGD on PEEK surface. • Osteoblast-like cells (MC3T3-E1) attachment and proliferation were improved effectively on GRGD-modified PEEK surface. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, PEEK is naturally bioinert, leading to limited biomedical applications, especially when a direct bone-implant osteointegration is desired. In this study, a three-step reaction procedure was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on the surface of PEEK sheet by covalent chemical attachment to favor cell adhesion and proliferation. First, hydroxylation-pretreated PEEK surfaces were silanized with 7-Oct-1-enyltrichlorosilane (OETS) in dry cyclohexane, resulting in a silanization layer with terminal ethenyl. Second, the terminal ethylenic double bonds of the silanization layer on PEEK surface were converted to carboxyl groups through acidic potassium manganate oxidation. Finally, GRGD was covalently attached by carbodiimide mediated condensation between the carboxyl on PEEK surface and amine presents in GRGD. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, surface profiler and water contact angle measurements were applied to characterize the modified surfaces. The effect of cells attachment and proliferation on each specimen was investigated. Pre-osteoblast cells (MC3T3-E1) attachment, spreading and proliferation

  13. The role of surface chemistry in the cytotoxicity profile of graphene.

    Science.gov (United States)

    Majeed, Waqar; Bourdo, Shawn; Petibone, Dayton M; Saini, Viney; Vang, Kieng Bao; Nima, Zeid A; Alghazali, Karrer M; Darrigues, Emilie; Ghosh, Anindya; Watanabe, Fumiya; Casciano, Daniel; Ali, Syed F; Biris, Alexandru S

    2017-04-01

    Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Immobilization of poly(acrylamide) brushes onto poly(caprolactone) surface by combining ATRP and “click” chemistry: Synthesis, characterization and evaluation of protein adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yuhao; Bian, Xinxiu; He, Liu; Cai, Mengtan; Xie, Xiaoxiong [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Luo, Xianglin, E-mail: luoxl@scu.edu.cn [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-28

    Highlights: • Poly(caprolacone) (PCL) film surface was chemically modified by a novel method through combining ATRP and “click” chemistry. • Poly(acrylamide) (PAAm) of tailored chain length were synthesized and “clicked” onto PCL surface. • The modified PCL surface showed reduced BSA and Fg adsorption, and the protein resist ability in terms of chain length through its impact on grafting reaction and modified surface was investigated. - Abstract: Developments of poly(caprolactone) in blood-contacting applications are often restricted due to its intrinsic hydrophobicity. One common way to improve its hemocompatibility is to attach hydrophilic polymers. Here we developed a non-destructive method to graft hydrophilic poly(acrylamide) (PAAm) onto poly(caprolactone) (PCL) surface. In this strategy, azido-ended PCL with low molecular weights was synthesized and blended with PCL to create a surface with “clickable” property. Alkyne-ended poly(acrylamide)s with controlled chain lengths were then synthesized by atom transfer radical polymerization (ATRP), and finally were immobilized onto PCL surface by “click” reaction. The occurrence of immobilization was verified qualitatively by water contact angle measurement and quantitatively by X-ray photoelectron spectroscopy (XPS). The PAAm grafted surface exhibited fouling resistant properties, as demonstrated by reduced bovine serum albumin (BSA) and fibrinogen (Fg) adhesion.

  15. Visible-light attachment of Si-C linked functionalized organic monolayers on silicon surfaces

    NARCIS (Netherlands)

    Smet, de L.C.P.M.; Pukin, A.V.; Sun, Q.Y.; Eves, B.J.; Lopinski, G.P.; Visser, G.M.; Zuilhof, H.; Sudhölter, E.J.R.

    2005-01-01

    Organic monolayers on hydrogen-terminated silicon surfaces were prepared under extremely mild conditions using visible light and analyzed by a variety of surface-sensitive techniques: (angle-resolved) X-ray photoelectron spectroscopy (ARXPS), scanning tunneling microscopy (STM), high-resolution

  16. Bioadhesion of mussels and geckos: Molecular mechanics, surface chemistry, and nanoadhesives

    Science.gov (United States)

    Lee, Haeshin

    The adhesive strategies of living creatures are diverse, ranging from temporary to permanent adhesions with various functions such as locomotion, self-defense, communication, colony formation, and so on. The classic example of temporary adhesion is the gecko, which is known for its ability to walk along vertical and even inverted surfaces; this remarkable adhesion arises from the interfacial weak interactions of van der Waals and capillary forces. In contrast, a celerbrated example of permanent adhesion is found in marine mussels which secrete protein adhesives that function in aqueous environments without mechanical failure against turbulent conditions on the seashore. In addition, mussel adhesives stick to virtually all inorganic and organic surfaces. However, most commonly used man-made adhesives lack such unique adhesion properties compared to their natural counterparts. For example, many commercial adhesives quickly lose their adhesive strength when exposed to solvents, particularly water. The first part of this thesis focused on adhesion mechanics of mussels at a single-molecule level, in which the adhesive molecule showed surprisingly strong yet reversible adhesion on inorganic surfaces but exhibited irreversible covalent bond formation on organic surfaces. Strong and reversible adhesion on mucin surfaces was found, indicating potential application for drug delivery via mucus layers. Next, inspired by the mussel's versatile adhesion on a wide variety of material surfaces, a material-independent surface modification chemistry called 'polydopamine coating' is described. This concept was subsequently adapted to develop a surface-independent polymeric primer for layer-by-layer assembly of multifunctional coatings. Finally, a new bio-hybrid adhesive 'geckel' was developed by the functional combination of adhesion strategies of geckos and mussels. The new bio-inspired adhesive and material-independent surface chemistry can revolutionize the research areas such as

  17. Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser

    Science.gov (United States)

    Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan

    2018-03-01

    Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.

  18. The Influence of Surface Chemistry on the Optoelectronic Properties of Semiconductor Quantum Dots

    Science.gov (United States)

    Harris, Rachel Dory

    This dissertation describes the relationship between the surface chemistry of colloidal semiconductor nanocrystals (quantum dots, QDs) and their optoelectronic properties, such as photoluminescence and degree of quantum confinement. We primarily focus our efforts on one particular subset of ligands known to couple strongly to the inorganic core of the QD to decrease its quantum confinement, phenyldithiocarbamates (PTCs). We focus first on the development of quantitative Nuclear Magnetic Resonance (NMR) techniques to characterize the identity and quantity of ligands (such as PTCs and oleic acid) bound to nanocrystal surfaces. When we correlate the surface chemistry information obtained from NMR with the optical spectra of our QDs, we find that for strongly-delocalizing ligands like PTC, the spatial distribution of ligands on the QD surface affects the overall degree of delocalization. In the later chapters of this thesis, we describe two avenues for exploiting the relationship between surface coverage of exciton-delocalizing ligands and quantum confinement to design strongly coupled, hierarchical nanomaterials for efficient charge transport in films or in solution. We explore the treatment of thin lead sulfide QD films with a PTC derivative to improve their overall conductivity relative to benzoic acid, a similar molecule that does not affect confinement. Finally, we describe a potential strategy to improve the yield and rate of hole transfer to a tethered phthalocyanine molecule using dithiocarbamate and thiolate linkers.

  19. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism

    Science.gov (United States)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-08-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm-2 s-1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  20. Surface chemistry and acid-base activity of Shewanella putrefaciens: Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, Jacqueline Wilhelmien

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  1. Surface chemistry and acid-base activity of Shewanella putrefaciens : Cell wall charging and metal binding to bacterial cell walls

    NARCIS (Netherlands)

    Claessens, J.W.

    2006-01-01

    To gain insight into the surface chemistry of live microorganisms, pH stat experiments are combined with analyses of the time-dependent changes in solution chemistry using suspensions of live cells of Shewanella putrefaciens. The results of this study illustrate the complex response of the live

  2. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    International Nuclear Information System (INIS)

    Allain, J.P.; Rokusek, D.L.; Harilal, S.S.; Nieto-Perez, M.; Skinner, C.H.; Kugel, H.W.; Heim, B.; Kaita, R.; Majeski, R.

    2009-01-01

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  3. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  4. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    Science.gov (United States)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  5. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.

    Science.gov (United States)

    Chinga-Carrasco, Gary; Syverud, Kristin

    2014-09-01

    Nanocellulose from wood is a promising material with potential in various technological areas. Within biomedical applications, nanocellulose has been proposed as a suitable nano-material for wound dressings. This is based on the capability of the material to self-assemble into 3D micro-porous structures, which among others have an excellent capacity of maintaining a moist environment. In addition, the surface chemistry of nanocellulose is suitable for various applications. First, OH-groups are abundant in nanocellulose materials, making the material strongly hydrophilic. Second, the surface chemistry can be modified, introducing aldehyde and carboxyl groups, which have major potential for surface functionalization. In this study, we demonstrate the production of nanocellulose with tailor-made surface chemistry, by pre-treating the raw cellulose fibres with carboxymethylation and periodate oxidation. The pre-treatments yielded a highly nanofibrillated material, with significant amounts of aldehyde and carboxyl groups. Importantly, the poly-anionic surface of the oxidized nanocellulose opens up for novel applications, i.e. micro-porous materials with pH-responsive characteristics. This is due to the swelling capacity of the 3D micro-porous structures, which have ionisable functional groups. In this study, we demonstrated that nanocellulose gels have a significantly higher swelling degree in neutral and alkaline conditions, compared to an acid environment (pH 3). Such a capability can potentially be applied in chronic wounds for controlled and intelligent release of antibacterial components into biofilms. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

    Science.gov (United States)

    Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco

    2018-03-20

    The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be

  7. Covalent attachment of a peptide to the surface of gallium nitride

    Science.gov (United States)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Lindsey, Jason A.; Bernhard, Jonathan C.; Hagen, Evan M.; Chan, Burke K.; Petersohn, Adam A.; Medow, Matthew R.; Wendel, Lindsay E.; Chen, Dafang; Canter, Jamie M.; Ivanisevic, Albena

    2011-08-01

    The properties of GaN have made it not only an ideal material for high power and high frequency electronic devices, but also a semiconductor suitable for application in biosensing devices. The utilization of GaN in electronic biosensors has increased the importance of characterizing robust and easily implemented organic functionalization methods for GaN surfaces. This work demonstrates and characterizes a route to functionalize the GaN (0001) surface with two organic molecules, hexylamine and a peptide, through olefin cross-metathesis with Grubbs first generation catalyst. The GaN (0001) surface was chlorinated, functionalized with a terminal alkene group using a Grignard reaction, and then terminated with a carboxyl group using an olefin cross-metathesis reaction. With a condensation reaction, the final step in the reaction scheme bound hexylamine or a peptide to the carboxyl terminated GaN surface. Qualitative and quantitative X-ray photoelectron spectroscopy (XPS) data verified the success of each step in the reaction scheme. Surface element composition, adlayer coverages, and adlayer thicknesses were calculated based on the XPS data. At least a monolayer of surface molecules covered the GaN surface.

  8. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaithilingam, Jayasheelan, E-mail: Jayasheelan.Vaithilingam@nottingham.ac.uk [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Prina, Elisabetta [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Goodridge, Ruth D.; Hague, Richard J.M. [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Edmondson, Steve [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Rose, Felicity R.A.J. [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Christie, Steven D.R. [Department of Chemistry, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM–AF surface was observed to be porous with an average surface roughness (Ra) of 17.6 ± 3.7 μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour. - Highlights: • Surface chemistry of selective laser melted (SLM) Ti6Al4V parts was compared with conventionally forged Ti6Al4V parts. • The surface elemental compositions of the SLM as-fabricated surfaces were significantly different to the forged surface. • Surface oxide-layer of the SLM as-fabricated was thicker than the polished SLM surfaces and the forged Ti6Al4V surfaces.

  9. Evaluation of Fibrin Clot Attachment on Titanium Laser-Conditioned Surface Using Scanning Electron Microscopy.

    Science.gov (United States)

    Sinjari, Bruna; Traini, Tonino; Caputi, Sergio; Mortellaro, Carmen; Scarano, Antonio

    2018-03-22

    The study aimed to evaluate the effects of different titanium surface treatments on blood clot extension (bce). A total of 54 titanium disks with machined surface (M), laser-conditioned surface (L), and grit-blasted surface (S) were used in the present study. The surface characteristics such as contact angles and the microroughness were determined on each group (n = 4). To evaluate the bce, 0.1 mL of human blood was dropped onto the surface of each specimen and left for 7 minutes at room temperature. After fixation, dehydration, and gold sputtering treatments, the specimens were observed under scanning electron microscope. The bce values were expressed as percentage of specimen surface covered by blood clot. The surface roughness (Ra ± standard deviation [SD]) was 0.75 ± 0.02 μm for M, 0.25 ± 0.02 μm for L, and 1.30 ± 0.03 μm for S. The contact angles measured in static conditions (WCA ± SD) were 71 ± 5.4° for M, 107 ± 6.6° for L, and 91 ± 7.2° for S. Regarding the bce (bce ± SD) of M samples (65.5 ± 4.3%) was statistically lower compared with both L (83.4 ± 5.1%) and S samples (72.4 ± 4.7%) (P < 0.05). Meanwhile, the L group showed the higher bce value. The present results suggest that the laser-conditioned surface may increase the wettability and bce.

  10. Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111/Si(111

    Directory of Open Access Journals (Sweden)

    Abe Shunsuke

    2010-01-01

    Full Text Available Abstract Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111 thin films on Si(111 has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111/Si(111 is Si-terminated before the graphitization, and it becomes C-terminated via the formation of C-rich (6√3 × 6√3R30° reconstruction as the graphitization proceeds, in a similar manner as the epitaxy of graphene on Si-terminated 6H-SiC(0001 proceeds.

  11. Surface characterization and assessment of cell attachment capabilities of thin films fabricated by ion-beam irradiation of poly(L-lactic acid) substrates

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Suzuki, Yoshiaki; Tsuchiya, Koji; Yajima, Hirofumi

    2013-01-01

    Highlights: ► Thin films can be obtained by ion-beam irradiation of poly(L-lactic acid). ► Both surfaces of the thin film were carbonized by the irradiation. ► No significant changes were noticed in the topographies of the two surfaces. ► Fibroblasts attached firmly to the bottom as well as the top surface of the film. - Abstract: The ion-beam irradiation of substrates of poly(L-lactic acid) (PLLA), a biodegradable polymer, gave rise to exfoliatable thin films when the substrate was immersed in an aqueous solution. The thin films exhibited excellent cell affinity, and hence, can be useful in bioengineering applications. In this study, we characterized both surfaces of the thin films and evaluated their cell attachment capabilities. Each surface was analyzed by X-ray photoelectron spectroscopy (XPS) and dynamic force microscopy (DFM). These analyses showed that carbonization took place at both surfaces. In addition, no significant changes were noticed in the topographies of the two surfaces. Finally, the cell attachment capabilities of the surfaces were determined by culturing mouse fibroblasts on them. The cells attached firmly to the bottom as well as the top surface of the film and were well spread out. These results could be attributed to the carbonization of the surfaces of the thin-film. Such thin films, fabricated by the irradiation of a biodegradable polymer, are expected to find wide application in areas such as tissue regeneration and cell transplantation.

  12. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  13. Substantial difference in target surface chemistry between reactive dc and high power impulse magnetron sputtering

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2018-02-01

    The nitride layer formed in the target race track during the deposition of stoichiometric TiN thin films is a factor 2.5 thicker for high power impulse magnetron sputtering (HIPIMS), compared to conventional dc processing (DCMS). The phenomenon is explained using x-ray photoelectron spectroscopy analysis of the as-operated Ti target surface chemistry supported by sputter depth profiles, dynamic Monte Carlo simulations employing the TRIDYN code, and plasma chemical investigations by ion mass spectrometry. The target chemistry and the thickness of the nitride layer are found to be determined by the implantation of nitrogen ions, predominantly N+ and N2+ for HIPIMS and DCMS, respectively. Knowledge of this method-inherent difference enables robust processing of high quality functional coatings.

  14. Control and Characterization of Titanium Dioxide Morphology: Applications in Surface Organometallic Chemistry

    KAUST Repository

    Jeantelot, Gabriel

    2014-05-01

    Surface Organometallic Chemistry leads to the combination of the high activity and specificity of homogeneous catalysts with the recoverability and practicality of heterogeneous catalysts. Most metal complexes used in this chemistry are grafted on metal oxide supports such as amorphous silica (SiO2) and γ-alumina (Al2O3). In this thesis, we sought to enable the use of titania (TiO2) as a new support for single-site well-defined grafting of metal complexes. This was achieved by synthesizing a special type of anatase-TiO2, bearing a high density of identical hydroxyl groups, through hydrothermal synthesis then post-treatment under high vacuum followed by oxygen flow, and characterized by several analytical techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and nuclear magnetic resonance. Finally, as a proof of concept, the grafting of vanadium oxychloride (VOCl3) was successfully attempted.

  15. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    Science.gov (United States)

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  16. Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2012-08-01

    Full Text Available We study the combined effects of land surface conditions, atmospheric boundary layer dynamics and chemistry on the diurnal evolution of biogenic secondary organic aerosol in the atmospheric boundary layer, using a model that contains the essentials of all these components. First, we evaluate the model for a case study in Hyytiälä, Finland, and find that it is able to satisfactorily reproduce the observed dynamics and gas-phase chemistry. We show that the exchange of organic aerosol between the free troposphere and the boundary layer (entrainment must be taken into account in order to explain the observed diurnal cycle in organic aerosol (OA concentration. An examination of the budgets of organic aerosol and terpene concentrations show that the former is dominated by entrainment, while the latter is mainly driven by emission and chemical transformation. We systematically investigate the role of the land surface, which governs both the surface energy balance partitioning and terpene emissions, and the large-scale atmospheric process of vertical subsidence. Entrainment is especially important for the dilution of organic aerosol concentrations under conditions of dry soils and low terpene emissions. Subsidence suppresses boundary layer growth while enhancing entrainment. Therefore, it influences the relationship between organic aerosol and terpene concentrations. Our findings indicate that the diurnal evolution of secondary organic aerosols (SOA in the boundary layer is the result of coupled effects of the land surface, dynamics of the atmospheric boundary layer, chemistry, and free troposphere conditions. This has potentially some consequences for the design of both field campaigns and large-scale modeling studies.

  17. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    Science.gov (United States)

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  18. Do organic surface films on sea salt aerosols influence atmospheric chemistry? ─ a model study

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2007-11-01

    Full Text Available Organic material from the ocean's surface can be incorporated into sea salt aerosol particles often producing a surface film on the aerosol. Such an organic coating can reduce the mass transfer between the gas phase and the aerosol phase influencing sea salt chemistry in the marine atmosphere. To investigate these effects and their importance for the marine boundary layer (MBL we used the one-dimensional numerical model MISTRA. We considered the uncertainties regarding the magnitude of uptake reduction, the concentrations of organic compounds in sea salt aerosols and the oxidation rate of the organics to analyse the possible influence of organic surfactants on gas and liquid phase chemistry with a special focus on halogen chemistry. By assuming destruction rates for the organic coating based on laboratory measurements we get a rapid destruction of the organic monolayer within the first meters of the MBL. Larger organic initial concentrations lead to a longer lifetime of the coating but lead also to an unrealistically strong decrease of O3 concentrations as the organic film is destroyed by reaction with O3. The lifetime of the film is increased by assuming smaller reactive uptake coefficients for O3 or by assuming that a part of the organic surfactants react with OH. With regard to tropospheric chemistry we found that gas phase concentrations for chlorine and bromine species decreased due to the decreased mass transfer between gas phase and aerosol phase. Aqueous phase chlorine concentrations also decreased but aqueous phase bromine concentrations increased. Differences for gas phase concentrations are in general smaller than for liquid phase concentrations. The effect on gas phase NO2 or NO is very small (reduction less than 5% whereas liquid phase NO2 concentrations increased in some cases by nearly 100%. We list suggestions for further laboratory studies which are needed for improved model studies.

  19. Influence of solution chemistry on the deposition and detachment kinetics of RNA on silica surfaces.

    Science.gov (United States)

    Shen, Yun; Kim, Hyunjung; Tong, Meiping; Li, Qingyun

    2011-02-01

    The deposition kinetics of RNA extracted from both virus and bacteria on silica surfaces were examined in both monovalent (NaCl) and divalent (CaCl(2)) solutions under a wide range of environmentally relevant ionic strength and pH conditions by utilizing a quartz crystal microbalance with dissipation (QCM-D). To better understand the RNA deposition mechanisms, QCM-D data were complemented by diffusion coefficients and zeta potentials of RNA as a function of examined solution chemistry conditions. Favorable deposition of RNA on poly-l-lysine-coated (positively charged) silica surfaces was governed by the convective-diffusive transport of RNA to the surfaces. The deposition kinetics of RNA on bare silica surfaces were controlled by classic Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions. The presence of divalent cations (Ca(2+)) in solutions greatly enhanced the deposition kinetics of RNA on silica surfaces. Solution pH also affected the deposition behavior of RNA on silica surfaces. Release experiments showed that detachment of RNA from silica surfaces was significant in NaCl solutions, whereas, the deposited RNA on silica surfaces in CaCl(2) solutions was more likely to be irreversible. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.

    Science.gov (United States)

    Vaithilingam, Jayasheelan; Prina, Elisabetta; Goodridge, Ruth D; Hague, Richard J M; Edmondson, Steve; Rose, Felicity R A J; Christie, Steven D R

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM-AF surface was observed to be porous with an average surface roughness (Ra) of 17.6±3.7μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface.

    Science.gov (United States)

    Raie, Diana S; Mhatre, Eisha; Thiele, Matthias; Labena, A; El-Ghannam, Gamal; Farahat, Laila A; Youssef, Tareq; Fritzsche, Wolfgang; Kovács, Ákos T

    2017-01-01

    The aim of this study was directed to reveal the repulsive effect of coated glass slides by quercetin and its bio-inspired titanium oxide and tungsten oxide nanoparticles on physical surface attachment of Bacillus subtilis as an ab-initio step of biofilm formation. Nanoparticles were successfully synthesized using sol-gel and acid precipitation methods for titanium oxide and tungsten oxide, respectively (in the absence or presence of quercetin). The anti-adhesive impact of the coated-slides was tested through the physical attachment of B. subtilis after 24h using Confocal Laser Scanning Microscopy (CLSM). Here, quercetin was presented as a bio-route for the synthesis of tungsten mixed oxides nano-plates at room temperature. In addition, quercetin had an impact on zeta potential and adsorption capacity of both bio-inspired amorphous titanium oxide and tungsten oxide nano-plates. Interestingly, our experiments indicated a contrary effect of quercetin as an anti-adhesive agent than previously reported. However, its bio-inspired metal oxide proved their repulsive efficiency. In addition, quercetin-mediated nano-tungsten and quercetin-mediated amorphous titanium showed anti-adhesive activity against B. subtilis biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling bacterial attachment to surfaces as an early stage of biofilm development.

    Science.gov (United States)

    El Moustaid, Fadoua; Eladdadi, Amina; Uys, Lafras

    2013-06-01

    Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation. In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set. The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation. Our work gives rise to results that agree with the biological description of the early stages of biofilm formation.

  3. Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.

    Science.gov (United States)

    Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin

    2014-02-04

    Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which

  4. The surface chemistry determines the spatio-temporal interaction dynamics of quantum dots in atherosclerotic lesions.

    Science.gov (United States)

    Uhl, Bernd; Hirn, Stephanie; Mildner, Karina; Coletti, Raffaele; Massberg, Steffen; Reichel, Christoph A; Rehberg, Markus; Zeuschner, Dagmar; Krombach, Fritz

    2018-03-01

    To optimize the design of nanoparticles for diagnosis or therapy of vascular diseases, it is mandatory to characterize the determinants of nano-bio interactions in vascular lesions. Using ex vivo and in vivo microscopy, we analyzed the interactive behavior of quantum dots with different surface functionalizations in atherosclerotic lesions of ApoE-deficient mice. We demonstrate that quantum dots with different surface functionalizations exhibit specific interactive behaviors with distinct molecular and cellular components of the injured vessel wall. Moreover, we show a role for fibrinogen in the regulation of the spatio-temporal interaction dynamics in atherosclerotic lesions. Our findings emphasize the relevance of surface chemistry-driven nano-bio interactions on the differential in vivo behavior of nanoparticles in diseased tissue.

  5. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    Directory of Open Access Journals (Sweden)

    Tushar Kumeria

    2014-07-01

    Full Text Available Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR and reflective interference spectroscopy (RIfS techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices.

  6. Surface Chemistry and Spectroscopic Study of a Cholera Toxin B Langmuir Monolayer.

    Science.gov (United States)

    Sharma, Shiv K; Seven, Elif S; Micic, Miodrag; Li, Shanghao; Leblanc, Roger M

    2018-02-20

    In this article, we explored the surface chemistry properties of a cholera toxin B (CTB) monolayer at the air-subphase interface and investigated the change in interfacial properties through in situ spectroscopy. The study showed that the impact of the blue shift was negligible, suggesting that the CTB molecules were minimally affected by the subphase molecules. The stability of the CTB monolayer was studied by maintaining the constant surface pressure for a long time and also by using the compression-decompression cycle experiments. The high stability of the Langmuir monolayer of CTB clearly showed that the driving force of CTB going to the amphiphilic membrane was its amphiphilic nature. In addition, no major change was detected in the various in situ spectroscopy results (such as UV-vis, fluorescence, and IR ER) of the CTB Langmuir monolayer with the increase in surface pressure. This indicates that no aggregation occurs in the Langmuir monolayer of CTB.

  7. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  8. Surface chemistry of K-montmorillonite: ionic strength, temperature dependence and dissolution kinetics.

    Science.gov (United States)

    Rozalén, Marisa; Brady, Patrick V; Huertas, F Javier

    2009-05-15

    The surface chemistry of K-montmorillonite was investigated by potentiometric titrations conducted at 25, 50 and 70 degrees C and at ionic strengths of 0.001, 0.01 and 0.1 M KNO(3). Proton adsorption decreases with electrolyte concentration at all pHs. The pH of zero net proton charge (PZNPC) decreases from 8.1 to 7.6 when the ionic strength increases from 0.001 to 0.1 M. Temperature has a very small effect on surface charge. A constant capacitance model that accounts for protonation/deprotonation of aluminol and silanol edge sites and basal plane H(+)/K(+) exchange is used to fit the experimental data. H(+) and OH(-) adsorption to specific surface sites appear to account for the pH-dependence of the K-montmorillonite dissolution.

  9. Covalently attached organic monolayers on SiC and SixN4 surfaces: Formation using UV light at room temperature

    NARCIS (Netherlands)

    Rosso, M.; Giesbers, M.; Arafat, A.; Schroën, C.G.P.H.; Zuilhof, H.

    2009-01-01

    We describe the formation of alkyl monolayers on silicon carbide (SiC) and silicon-rich silicon nitride (SixN4) surfaces, using UV irradiation in the presence of alkenes. Both the surface preparation and the monolayer attachment were carried out under ambient conditions. The stable coatings obtained

  10. Covalent attachment of cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) to poly(etheretherketone) surface by tailored silanization layers technique

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Li, Xiaoyu; Zhang, Lifang

    2014-11-01

    Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, PEEK is naturally bioinert, leading to limited biomedical applications, especially when a direct bone-implant osteointegration is desired. In this study, a three-step reaction procedure was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on the surface of PEEK sheet by covalent chemical attachment to favor cell adhesion and proliferation. First, hydroxylation-pretreated PEEK surfaces were silanized with 7-Oct-1-enyltrichlorosilane (OETS) in dry cyclohexane, resulting in a silanization layer with terminal ethenyl. Second, the terminal ethylenic double bonds of the silanization layer on PEEK surface were converted to carboxyl groups through acidic potassium manganate oxidation. Finally, GRGD was covalently attached by carbodiimide mediated condensation between the carboxyl on PEEK surface and amine presents in GRGD. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, surface profiler and water contact angle measurements were applied to characterize the modified surfaces. The effect of cells attachment and proliferation on each specimen was investigated. Pre-osteoblast cells (MC3T3-E1) attachment, spreading and proliferation were improved effectively on GRGD-modified PEEK surface. PEEK modified with GRGD on its surface has potential use in orthopedic or dental implants.

  11. Coordination chemistry of weathering: Kinetics of the surface-controlled dissolution of oxide minerals

    Science.gov (United States)

    Stumm, Werner; Wollast, Roland

    1990-02-01

    Chemical weathering processes, essentially caused by the interaction of water and the atmosphere with the Earth's crust, transform primary minerals into solutes and clays and, eventually, into sedimentary rocks; these processes participate in controlling the global hydrogeochemical cycles of many elements. Many mineral dissolution processes are controlled by a chemical mechanism at the solid-water interface. The reaction-controlling steps can be interpreted in terms of a surface coordination model. The tendency of a mineral to dissolve is influenced by the interaction of solutes—H+, OH-, ligands, and metal ions—with its surface. The surface reactivity is shown to depend on the surface species and their structural identity; specifically, the dependence of dissolution rates on pH and on dissolved ligand concentrations can be explained in terms of surface protonation (and deprotonation) and of ligand surface complexes. A general rate law for the dissolution of minerals is derived by considering, in addition to the surface coordination chemistry, established models of lattice statistics and activated complex theory.

  12. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces.

    Science.gov (United States)

    Tang, Chuyang Y; Shiang Fu, Q; Gao, Dawen; Criddle, Craig S; Leckie, James O

    2010-04-01

    Perfluorooctane sulfonate (PFOS) is an emergent contaminant of substantial environmental concerns, yet very limited information has been available on PFOS adsorption onto mineral surfaces. PFOS adsorption onto goethite and silica was investigated by batch adsorption experiments under various solution compositions. Adsorption onto silica was only marginally affected by pH, ionic strength, and calcium concentration, likely due to the dominance of non-electrostatic interactions. In contrast, PFOS uptake by goethite increased significantly at high [H+] and [Ca2+], which was likely due to enhanced electrostatic attraction between the negatively charged PFOS molecules and positively charged goethite surface. The effect of pH was less significant at high ionic strength, likely due to electrical double layer compression. PFOS uptake was reduced at higher ionic strength for a strongly positively charged goethite surface (pH 3), while it increased for a weakly charged surface (pH 7 and 9), which could be attributed to the competition between PFOS-surface electrostatic attraction and PFOS-PFOS electrostatic repulsion. A conceptual model that captures PFOS-surface and PFOS-PFOS electrostatic interactions as well as non-electrostatic interaction was also formulated to understand the effect of solution chemistry on PFOS adsorption onto goethite and silica surfaces. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy.

    Science.gov (United States)

    Jin, Lanying; Wang, Yuemin

    2017-05-24

    The adsorption and reactions of CH 3 OH on nonpolar mixed-terminated ZnO(101[combining macron]0), polar O-ZnO(0001[combining macron]) and Zn-ZnO(0001) surfaces have been studied systematically using high-resolution electron energy loss spectroscopy (HREELS) in conjunction with temperature programmed desorption (TPD). For all three ZnO surfaces, exposure to methanol at room temperature leads to (partially) dissociative adsorption resulting in the formation of hydroxyl and methoxy species. Upon heating to higher temperatures, the dissociated and intact methanol species on ZnO(101[combining macron]0) predominantly undergo molecular desorption releasing CH 3 OH at 370 and 440 K. The Zn-O dimer vacancies are responsible for the decomposition of a small fraction of methanol yielding H 2 , CH 2 O and CO at 540 and 565 K. The interaction of methanol with polar O-ZnO and Zn-ZnO surfaces is dominated by thermal decomposition of CH 3 OH to produce CH 2 O, H 2 , CO, CO 2 and H 2 O at elevated temperatures. The high chemical reactivity of both polar surfaces is related to the high abundance of different types of surface defects formed via massive restructuring. Importantly, the reconstructed Zn-ZnO surface exhibits high selectivity for hydrogen production at 520 K, which was not observed for the polar O-ZnO surface. The HREELS data revealed that this low-temperature hydrogen evolution on Zn-ZnO results from methoxy oxidation to a formate species occurring at O-terminated step-edge sites.

  14. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M., E-mail: saber.hussain@us.af.mil [Air Force Research Laboratory, Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate (United States)

    2015-12-15

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract.

  15. The influence of the surface chemistry of silver nanoparticles on cell death

    International Nuclear Information System (INIS)

    Sur, Ilknur; Altunbek, Mine; Kahraman, Mehmet; Culha, Mustafa

    2012-01-01

    The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity. (paper)

  16. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Science.gov (United States)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M.

    2015-12-01

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.

  17. Improvement of Microwave Absorbance of Polymer Composites of W-Type Hexaferrite Powders by Attachment of Frequency Selective Surface

    Directory of Open Access Journals (Sweden)

    Cho H.-S.

    2017-06-01

    Full Text Available This work investigates the effect of a frequency selective surface (FSS composed of a regular array of square loop elements on the absorption properties of grounded ferrite composites. Polymer matrix composites of CoZnW hexaferrite powders having small magnetic loss were used as the substrate material. Computational tools were used to model the interaction between electromagnetic waves and materials and determine the reflection coefficient. Reflection loss and bandwidth were greatly improved by attaching an FSS with controlled electrical resistance (R onto the grounded ferrite composites. For the FSS with R = 800 Ω, the minimum reflection loss decreased to −25 dB at 10 GHz and the bandwidth was broadened to 7.5-12.5 GHz with respect to −10 dB reflection loss.

  18. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  19. Characterization of serum proteins attached to distinct sol-gel hybrid surfaces.

    Science.gov (United States)

    Araújo-Gomes, Nuno; Romero-Gavilán, Francisco; Sánchez-Pérez, Ana M; Gurruchaga, Marilo; Azkargorta, Mikel; Elortza, Felix; Martinez-Ibañez, María; Iloro, Ibon; Suay, Julio; Goñi, Isabel

    2017-07-04

    The success of a dental implant depends on its osseointegration, an important feature of the implant biocompatibility. In this study, two distinct sol-gel hybrid coating formulations [50% methyltrimethoxysilane: 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% methyltrimethoxysilane with 30% tetraethyl orthosilicate (70M30T)] were applied onto titanium implants. To evaluate their osseointegration, in vitro and in vivo assays were performed. Cell proliferation and differentiation in vitro did not show any differences between the coatings. However, four and eight weeks after in vivo implantation, the fibrous capsule area surrounding 50M50G-implant was 10 and 4 times, respectively, bigger than the area of connective tissue surrounding the 70M30T treated implant. Thus, the in vitro results gave no prediction or explanation for the 50M50G-implant failure in vivo. We hypothesized that the first protein layer adhered to the surface may have direct implication in implant osseointegration, and perhaps correlate with the in vivo outcome. Human serum was used for adsorption analysis on the biomaterials, the first layer of serum proteins adhered to the implant surface was analyzed by proteomic analysis, using mass spectrometry (LC-MS/MS). From the 171 proteins identified; 30 proteins were significantly enriched on the 50M50G implant surface. This group comprised numerous proteins of the immune complement system, including several subcomponents of the C1 complement, complement factor H, C4b-binding protein alpha chain, complement C5 and C-reactive protein. This result suggests that these proteins enriched in 50M50G surface might trigger the cascade leading to the formation of the fibrous capsule observed. The implications of these results could open up future possibilities to predict the biocompatibility problems in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  20. Cell fitting to adhesive surfaces: A prerequisite to firm attachment and subsequent events

    Directory of Open Access Journals (Sweden)

    Pierres A.

    2002-06-01

    Full Text Available Cell adhesion usually involves extensive shape reorganization. This process is important because i it is required for efficient cross-linking of interacting surfaces by adhesion receptors the length of which does not exceed several tens of nanometers and ii it influences subsequent cell differentiation and activation. This review focuses on the initial phase of cell deformation, preceding the extensive reorganization process known as spreading. This first phase includes local flattening at the micrometer scale and membrane alignment at the nanometer level, resulting in fitting of the cell to an adhesive surface. Three main points are considered. First, experimental methods available to study cell apposition to a surface are described, with an emphasis on interference reflection microscopy. Second, selected experimental evidence is presented to show that there is a quantitative relationship between "adhesiveness" and "contact extension", and some theoretical models aimed at relating these parameters are briefly sketched. Third, experimental data on the kinetics of initial contact extension are described and possible mechanisms for driving this extension are discussed, including nonspecific forces, receptor-mediated interactions, active cell movements or passive membrane fluctuations. It is concluded that both passive physical phenomena and random active cell movements are possible candidates for the initial triggering of contact extension.

  1. Surface attachment induced production of antimicrobial compounds by marine epiphytic bacteria using modified roller bottle cultivation.

    Science.gov (United States)

    Yan, Liming; Boyd, Kenneth G; Grant Burgess, J

    2002-09-01

    A modified roller bottle culture method elicited the production of antimicrobial compounds from 2 epibiotic marine bacterial strains, EI-34-6 and II-111-5, isolated from the surface of the marine alga Palmaria palmata. These isolates, tentatively identified as Bacillus species, were grown as a biofilm on the surface of nutrient glycerol ferric agar (NGFA) and marine Columbia glycerol agar (MCGA) on the inside of a rolling bottle. The biofilm was shown to be stable, and the cells were difficult to remove from the agar surface. The culture supernatant exhibited a different antibiotic spectrum when the strains were grown using the agar roller bottle method compared with shake flask cultures or nonagar roller bottle cultures. These results suggest that biofilm formation is an important factor in the production of antimicrobial compounds by these 2 strains, and roller bottle cultivation also allowed production of these compounds to be increased. The methodology used here has the potential to allow increased production of useful secondary metabolites such as antibiotics from marine epibiotic bacteria.

  2. Fibroblast response to initial attachment and proliferation on titanium and zirconium surfaces.

    Directory of Open Access Journals (Sweden)

    Araceli Meza-Rodríguez

    2016-08-01

    Full Text Available Introduction: In recent decades, dental implants have become one of the best options for comprehensive dental restoration; their placement is a multidisciplinary task that requires a solid understanding of biological, periodontal, surgical and prosthetic principles. Objective: The aim of this study was to quantify in vitro the adhesion and proliferation of human gingival fibroblasts (HGF response on titanium (Ti and zirconia (Zr surfaces. Methodology: Samples of Ti and Zr were observed under atomic force microscopy (AFM. HGFs were inoculated in each sample to determine adhesion and cell proliferation. The reagent MTT was mixed with medium DMEM and inoculated in each plate; formazan was dissolved with dimethyl sulfoxide and analyzed at 540nm in a microplate spectrophotometer. The test was performed with three independent experiments. Data were analyzed with Kolmogorov-Smirnov tests (Lilliefors, Kruskal-Wallis tests and Mann-Whitney test comparisons. Results: Topography of the Zr plates showed greater roughness (Ra=0.39μm than Ti (Ra=0.049μm. Quantification of HGF adhesion was significantly higher (p<0.05 in Ti, while proliferation showed no statistically significant differences between the groups. Conclusion: It is noteworthy that, even though Ti initially showed increased cell adhesion on the surface, after 24h Zr samples showed similar proliferation; this demonstrates that both surfaces have a comparable biological response.

  3. Carbon key-properties for microcystin adsorption in drinking water treatment: structure or surface chemistry?

    OpenAIRE

    Júlio, Maria de Fátima de Jesus Leal

    2011-01-01

    Dissertação para Obtenção de Grau de Mestre em Engenharia Química e Bioquímica The carbon key-properties (structure and surface chemistry) for microcystin-LR (MC-LR) adsorption onto activated carbon were investigated. Waters with an inorganic background matrix approaching that of the soft natural water (2.5 mM ionic strength) were used. Also, model waters with controlled ionic make-up and NOM surrogate with similar size of MC-LR (tannic acid - TA) with MC-LR extracts were tested with activ...

  4. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process

    DEFF Research Database (Denmark)

    Tshabalala, M.A.; Kingshott, P.; VanLandingham, M.R.

    2003-01-01

    penetrated the outer surface layers of the wood and condensed with hydroxyls that may not be readily accessible to the high molecular weight HDTMOS. Once attached to such sites, it is reasonable to assume that some of these surface derivatives of MTMOS condensed with other molecules of MTMOS and HDTMOS...

  5. QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces.

    Science.gov (United States)

    Modin, Charlotte; Stranne, Anne-Louise; Foss, Morten; Duch, Mogens; Justesen, Jeannette; Chevallier, Jacques; Andersen, Lars K; Hemmersam, Anne G; Pedersen, Finn S; Besenbacher, Flemming

    2006-03-01

    The quartz crystal microbalance with dissipation (QCM-D) technique was employed to characterize initial cell adhesion in terms of attachment and spreading of pre-osteoblastic MC3T3-E1 cells on Ta and Cr surfaces. Evaluation of initial cell adhesion established a correlation between input cell number and the shifts in frequency (f) and dissipation (D). The f-shift was found to be much larger in serum-free medium as compared to a medium including serum; hence, initial cell adhesion was subsequently evaluated in serum-free medium. During the first hour of adhesion, we found a positive correlation between the QCM-D f-shift and the average area of the spread cells, as measured by cryo-scanning electron microscopy (cryo-SEM). Finally, the QCM-D technique was used to study cell adhesion on different metal oxide surfaces. Initial cell adhesion on Ta was found to induce a larger f-shift as compared to Cr, indicating larger spreading of cells on Ta. Cryo-SEM data confirmed that spreading of cells on Cr was on average only two-thirds the spreading on Ta. Our results demonstrate that the QCM-D technique is a versatile technique to quickly distinguish initial cell-surface interactions on different biomaterials.

  6. The influence of surface nanoroughness, texture and chemistry of TiZr implant abutment on oral biofilm accumulation.

    Science.gov (United States)

    Xing, Rui; Lyngstadaas, Ståle P; Ellingsen, Jan Eirik; Taxt-Lamolle, Sébastien; Haugen, Håvard J

    2015-06-01

    The aim of the study was to examine surface nanoroughness, texture and chemistry of dental implant abutment and to investigate how these parameters influence oral biofilm formation in healthy subjects. Eight different nanorough TiZr surfaces were produced by polishing, machining, cathodic polarization and acid etching. Surface topography was examined using field emission scanning electron microscope and a blue light laser profilometer. Surface chemistry was analyzed by secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Surface hydrophilicity was tested by measuring contact angle on the surfaces. A human in vivo study using a splint model was employed to evaluate oral biofilm accumulation on these surfaces. Different surface textures (flat, grooved and irregular) were created with nanoroughness from 29 to 214 nm. Some test surfaces were incorporated with hydrogen by cathodic polarization and/or acid etching with HCl/H(2)SO(4). Nanoroughness (S(a)) positively correlated with microbial adhesion. Biofilm accumulation was less pronounced on flat and grooved than on irregular surfaces. No significant association between hydrogen content or hydrophilicity of the surface and biofilm accumulation was observed. Nanoroughness (< 214 nm) and surface texture influence oral biofilm accumulation independent of surface chemistry and hydrophilicity. Surface hydrogen, which has previously been shown to promote fibroblast growth, does not affect biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Methods for dynamic investigations of surface-attached in vitro bacterial and fungal biofilms

    DEFF Research Database (Denmark)

    Sternberg, Claus; Bjarnsholt, Thomas; Shirtliff, Mark

    2014-01-01

    Three dynamic models for the investigation of in vitro biofilm formation are described in this chapter. In the 6-well plate assay presented here, the placing of the plate on a rotating platform provides shear, thereby making the system dynamic with respect to the static microtiter assay.The second...... reported model, especially suitable for harvesting high amounts of cells for transcriptomic or proteomic investigations, is based on numerous glass beads placed in a flask incubated with shaking on a rotating platform, thus increasing the surface area for biofilm formation. Finally, the flow-cell system...

  8. Controls on surface water chemistry in the upper Merced River basin, Yosemite National Park, California

    Science.gov (United States)

    Clow, D.W.; Mast, M.A.; Campbell, D.H.

    1996-01-01

    Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 ??equiv. 1-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 ??equiv. 1-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock, Chloride concentrations in surface water samples varied widely, ranging from Merced River at the Happy Isles gauge from 1968 to 1990 was 26 ??equiv. 1-1, which was five times higher than in atmospheric deposition (4-5 ??equiv. 1-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 ??equiv. 1-1. Concentrations of sulphate in quarterly samples collected at the watershed outlet also showed relatively little variation

  9. Early osseointegration driven by the surface chemistry and wettability of dental implants.

    Science.gov (United States)

    Sartoretto, Suelen Cristina; Alves, Adriana Terezinha Neves Novellino; Resende, Rodrigo Figueiredo Britto; Calasans-Maia, José; Granjeiro, José Mauro; Calasans-Maia, Mônica Diuana

    2015-01-01

    The objective of this study was to investigate the impact of two different commercially available dental implants on osseointegration. The surfaces were sandblasting and acid etching (Group 1) and sandblasting and acid etching, then maintained in an isotonic solution of 0.9% sodium chloride (Group 2). X-ray photoelectron spectroscopy (XPS) was employed for surface chemistry analysis. Surface morphology and topography was investigated by scanning electron microscopy (SEM) and confocal microscopy (CM), respectively. Contact angle analysis (CAA) was employed for wetting evaluation. Bone-implant-contact (BIC) and bone area fraction occupied (BAFO) analysis were performed on thin sections (30 μm) 14 and 28 days after the installation of 10 implants from each group (n=20) in rabbits' tibias. Statistical analysis was performed by ANOVA at the 95% level of significance considering implantation time and implant surface as independent variables. Group 2 showed 3-fold less carbon on the surface and a markedly enhanced hydrophilicity compared to Group 1 but a similar surface roughness (p>0.05). BIC and BAFO levels in Group 2 at 14 days were similar to those in Group 1 at 28 days. After 28 days of installation, BIC and BAFO measurements of Group 2 were approximately 1.5-fold greater than in Group 1 (pimplants of Group 2 accelerate osseointegration and increase the area of the bone-to-implant interface when compared to those of Group 1.

  10. Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, K.S., E-mail: parikh.71@osu.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Rao, S.S., E-mail: rao@chbmeng.ohio-state.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Ansari, H.M., E-mail: ansari@matsceng.ohio-state.edu [Department of Materials Science and Engineering, 2041 College Road, The Ohio State University, Columbus, OH-43210 (United States); Zimmerman, L.B., E-mail: burr.zimmerman@gmail.com [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Lee, L.J., E-mail: leelj@chbmeng.ohio-state.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Akbar, S.A., E-mail: Akbar@matsceng.ohio-state.edu [Department of Materials Science and Engineering, 2041 College Road, The Ohio State University, Columbus, OH-43210 (United States); Winter, J.O., E-mail: winter.63@osu.edu [William G. Lowrie Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, The Ohio State University, Columbus, OH-43210 (United States); Department of Biomedical Engineering, 1080 Carmack Road, The Ohio State University, Columbus, OH-43210 (United States)

    2012-12-01

    Surfaces with ordered, nanopatterned roughness have demonstrated considerable promise in directing cell morphology, migration, proliferation, and gene expression. However, further investigation of these phenomena has been limited by the lack of simple, inexpensive methods of nanofabrication. Here, we report a facile, low-cost nanofabrication approach based on self-assembly of a thin-film of gadolinium-doped ceria on yttria-stabilized zirconia substrates (GDC/YSZ). This approach yields three distinct, randomly-oriented nanofeatures of variable dimensions, similar to those produced via polymer demixing, which can be reproducibly fabricated over tens to hundreds of microns. As a proof-of-concept, we examined the response of SK-N-SH neuroblastoma cells to features produced by this system, and observed significant changes in cell spreading, circularity, and cytoskeletal protein distribution. Additionally, we show that these features can be imprinted into commonly used rigid hydrogel biomaterials, demonstrating the potential broad applicability of this approach. Thus, GDC/YSZ substrates offer an efficient, economical alternative to lithographic methods for investigating cell response to randomly-oriented nanotopographical features. - Highlights: Black-Right-Pointing-Pointer Self-assembled ceramic thin films yield nanopatterned surfaces that span mm{sup 2} areas. Black-Right-Pointing-Pointer Cells respond to these nanopatterns by varying adhesion and spreading behaviors. Black-Right-Pointing-Pointer Adhesion and spreading were correlated to increased feature area. Black-Right-Pointing-Pointer These patterns can be transferred into soft polymer substrates.

  11. Lightweight Bulldozer Attachment for Construction and Excavation on the Lunar Surface

    Science.gov (United States)

    Mueller, Robert; Wilkinson, R. Allen; Gallo, Christopher A.; Nick, Andrew J.; Schuler, Jason M.; King, Robert H.

    2009-01-01

    A lightweight bulldozer blade prototype has been designed and built to be used as an excavation implement in conjunction with the NASA Chariot lunar mobility platform prototype. The combined system was then used in a variety of field tests in order to characterize structural loads, excavation performance and learn about the operational behavior of lunar excavation in geotechnical lunar simulants. The purpose of this effort was to evaluate the feasibility of lunar excavation for site preparation at a planned NASA lunar outpost. Once the feasibility has been determined then the technology will become available as a candidate element in the NASA Lunar Surface Systems Architecture. In addition to NASA experimental testing of the LANCE blade, NASA engineers completed analytical work on the expected draft forces using classical soil mechanics methods. The Colorado School of Mines (CSM) team utilized finite element analysis (FEA) to study the interaction between the cutting edge of the LANCE blade and the surface of soil. FEA was also used to examine various load cases and their effect on the lightweight structure of the LANCE blade. Overall it has been determined that a lunar bulldozer blade is a viable technology for lunar outpost site preparation, but further work is required to characterize the behavior in 1/6th G and actual lunar regolith in a vacuum lunar environment.

  12. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    Science.gov (United States)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts

  13. Surface Attachment of Natural Antimicrobial Coatings onto Conventional Polypropylene Nonwoven Fabric and Its Antimicrobial Performance Assessment.

    Science.gov (United States)

    Ding, Lijun; Wang, Hao; Liu, Dan; Zheng, Zhengnan

    2018-02-01

    The growing number of microbial cross-contamination events necessitates the development of novel antimicrobial strategies in the food industry. In this study, a polypropylene nonwoven fabric (PPNWF) was grafted with a natural antimicrobial component, aloe emodin (AE), and its antimicrobial performance was evaluated. The grafted samples (PPNWF-g-AE) were examined using Fourier transform infrared spectroscopy and scanning electron microscopy. AE was effectively grafted onto the surface of the PPNWF through the adsorption covalent effect. Compared with nongrafted PPNWF, the antimicrobial activity of PPNWF-g-AE against Staphylococcus aureus, Escherichia coli, and Candida albicans was significantly enhanced. Scanning electron micrographs confirmed that the inhibitory mechanism of PPNWF-g-AE was the microbicidal function of the grafted AE. These findings indicate that PPNWF-g-AE has potential as an effective antimicrobial material in food applications.

  14. Radiofrequency electric field hyperthermia with gold nanostructures: role of particle shape and surface chemistry.

    Science.gov (United States)

    Amini, Seyed Mohammad; Kharrazi, Sharmin; Rezayat, Seyed Mahdi; Gilani, Kambiz

    2017-09-10

    Hyperthermia treatment of cancerous cells has been recently developed drastically with the help of nanostructures. Heating of gold nanoparticles in non-invasive radiofrequency electric field (RF-EF) is a promising and unique technique for cancer hyperthermia. However, because of differences between particles (i.e. their surface chemistry and dispersion medium) and between RF-EF sources, the research community has not reached a consensus yet. Here, we report the results of investigations on heating of gold nanoparticles and gold nanorods under RF-EF and feasibility of in-vitro cancer hyperthermia. The heating experiments were performed to investigate the role of particle shape and surface chemistry (CTAB, citrate and PEG molecules). In-vitro hyperthermia was performed on human pancreatic cancer cell (MIA Paca-2) with PEG-coated GNPs and GNRs at concentrations that were found non-toxic based on the results of cytotoxicity assay. Application of RF-EF on cells treated with PEG-GNPs and PEG-GNRs proved highly effective in killing cells.

  15. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    Science.gov (United States)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-05-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

  16. Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses

    Science.gov (United States)

    Jenko, Monika; Gorenšek, Matevž; Godec, Matjaž; Hodnik, Maxinne; Batič, Barbara Šetina; Donik, Črtomir; Grant, John T.; Dolinar, Drago

    2018-01-01

    The surface chemistry and microstructures of titanium alloys (both new and used) and CoCrMo alloys used for hip and knee endoprostheses were determined using SEM (morphology), EBSD (phase analysis), AES and XPS (surface chemistry). Two new and two used endoprostheses were studied. The SEM SE and BE images showed their microstructures, while the EBSD provided the phases of the materials. During the production of the hip and knee endoprostheses, these materials are subject to severe thermomechanical treatments and physicochemical processes that are decisive for CoCrMo alloys. The AES and XPS results showed that thin oxide films on (a) Ti6Al4V are primarily a mixture of TiO2 with a small amount of Al2O3, while the V is depleted, (b) Ti6Al7Nb is primarily a mixture of TiO2 with a small amount of Al2O3 and Nb2O5, and (c) the CoCrMo alloy is primarily a mixture of Cr2O3 with small amounts of Co and Mo oxides. The thin oxide film on the CoCrMo alloy should prevent intergranular corrosion and improve the biocompatibility. The thin oxide films on the Ti alloys prevent further corrosion, improve the biocompatibility, and affect the osseointegration.

  17. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev, E-mail: dcc@unr.edu

    2017-05-15

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO{sub 4}{sup 2−} based film formed; however minor quantities of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel. The surface films on both alloys were identified as NiFe{sub 2}O{sub 4} when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  18. An experimental study of the attachment of bacteria to submerged surfaces in marine environment

    International Nuclear Information System (INIS)

    Fera, Ph.

    1985-09-01

    The seasonal variations of the bacterial settling of three materials (stainless steel, aluminium, polycarbonate filters) have been studied inside an open system of circulating seawater (0.7 m.s -1 ). The fixed bacteria counting have been carried out by scanning electron microscopy and epi-fluorescence microscopy. From the results of the first part of this work, it appears that the growth kinetics of the microbial bio-film, and the densities of the bacteria fixed after 15 days of immersion are higher during summer. Qualitatively, the composition of the number of fixed bacteria evolve with immersion time and with the season. The continuous injection of 0.1 ppm of chlorine in the seawater feeding the experimental system, seems not to be sufficient to prevent, for a long time, the settling of a great number of bacteria. The second part of this work deals with the experimental study of the settling of an aluminium surface by a pseudomonas, isolated of the seawater and submitted or not to conditions of preliminary fast. (O.M.)

  19. Surface chemistry of polyacrylonitrile- and rayon-based activated carbon fibers after post-heat treatment

    International Nuclear Information System (INIS)

    Chiang Yuchun; Lee, C.-Y.; Lee, H.-C.

    2007-01-01

    Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs) subject to heat treatment were investigated by means of elemental analyzer, and X-ray photoelectron spectroscopy (XPS). The total ash content of all ACFs was also analyzed. The adsorption of benzene, carbon tetrachloride and water vapor on ACFs was determined to shed light on the role of surface chemistry on gas adsorption. Results show that different precursors resulted in various elemental compositions and imposed diverse influence upon surface functionalities after heat treatment. The surface of heat-treated ACFs became more graphitic and hydrophobic. Three distinct peaks due to C, N, and O atoms were identified by XPS, and the high-resolution revealed the existence of several surface functionalities. The presence of nitride-like species, aromatic N-imines, or chemisorbed nitrogen oxides was found to be of great advantage to adsorption of water vapor or benzene, but the pyridine-N was not. Unstable complexes on the surface would hinder the fibers from adsorption of carbon tetrachloride. The rise in total ash content or hydrogen composition was of benefit to the access of water vapor. Modifications of ACFs by heat treatment have effectively improved adsorption performance

  20. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    Directory of Open Access Journals (Sweden)

    Norhan Nady

    2016-04-01

    Full Text Available A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone (PES membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid—is presented.

  1. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  2. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  3. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment.

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-12-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  4. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.

    Science.gov (United States)

    Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-02-05

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Investigations of Nitrogen Oxide Plasmas: Fundamental Chemistry and Surface Reactivity and Monitoring Student Perceptions in a General Chemistry Recitation

    Science.gov (United States)

    Blechle, Joshua M.

    2016-01-01

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of…

  6. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical

  7. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process

    Science.gov (United States)

    Mandla A. Tshabalala; Peter Kingshott; Mark R. VanLandingham; David Plackett

    2003-01-01

    Sol-gel surface deposition of a hydrophobic polysiloxane coating on wood was accomplished by using a mixture of a low molecular weight multifunctional alkoxysilane, methyltrimethoxysilane (MTMOS), and a high molecular weight multifunctional alkoxysilane, hexadecyltrimethoxysilane (HDTMOS). Investigation of the surface chemistry and morphology of the wood specimens by...

  8. The synergy of ultrasonic treatment and organic modifiers for tuning the surface chemistry and conductivity of multiwalled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Mičušík, M.; Fedorko, P.; Pionteck, J.; Kovářová, Jana; Chehimi, M. M.

    2014-01-01

    Roč. 46, 10-11 (2014), s. 940-944 ISSN 0142-2421. [European Conference on Applications of Surface and Interface Analysis /15./ - ECASIA 2013. Cagliari, 13.10.2013-18.10.2013] Institutional support: RVO:61389013 Keywords : carbon nanotubes * surface modification * surfactant Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.245, year: 2014

  9. Simple preparation of thiol-ene particles in glycerol and surface functionalization by thiol-ene chemistry (TEC) and surface chain transfer free radical polymerization (SCT-FRP)

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Chiaula, Valeria; Pinelo, Manuel

    2018-01-01

    functionalization of excess thiol groups via photochemical thiol-ene chemistry (TEC) resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization (SCT-FRP) was used for the first time to introduce a thicker polymer layer on the particle surface. The application potential...

  10. Control of pyrite surface chemistry in physical coal cleaning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, G.H.; Yoon, R.H.; Richardson, P.E.

    1993-05-19

    In Part I, Surface Chemistry of Coal Pyrite the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn.

  11. Photografting of perfluoroalkanes onto polyethylene surfaces via azide/nitrene chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Siegmann, Konstantin, E-mail: konstantin.siegmann@zhaw.ch [Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences - ZHAW, Technikumstrasse 9, CH-8401 Winterthur (Switzerland); Inauen, Jan, E-mail: jan.inauen@zhaw.ch [Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences - ZHAW, Technikumstrasse 9, CH-8401 Winterthur (Switzerland); Villamaina, Diego, E-mail: diego.villamaina@gmail.com [Visiting scientist at IMPE, Permanent address: Rapidplatz 3, CH-8953 Dietikon (Switzerland); Winkler, Martin, E-mail: martin.winkler@zhaw.ch [Institute of Materials and Process Engineering (IMPE), School of Engineering (SoE), Zurich University of Applied Sciences - ZHAW, Technikumstrasse 9, CH-8401 Winterthur (Switzerland)

    2017-02-28

    The purpose of this study is to render polyethylene surfaces strongly and permanently hydrophobic. Polyethylene is a common plastic and, because of its inertness, difficult to graft. We chose polyethylene as example because of its ubiquity and model character. As graft chains linear perfluoroalkyl residues (−C{sub 4}F{sub 9}, −C{sub 6}F{sub 13}, −C{sub 8}F{sub 17} and −C{sub 10}F{sub 21}) were chosen, and photografting was selected as grafting method. Photolytically generated nitrenes can insert into carbon–hydrogen bonds and are therefore suited for binding to polyethylene. Hydrophobic photo reactive surface modifiers based on azide/nitrene chemistry are designed, synthesized in high yield and characterized. Four new molecules are described. Water contact angles exceeding 110° were achieved on grafted polyethylene. One problem is to demonstrate that the photografted surface modifiers are bound covalently to the polyethylene. Abrasion tests show that all new molecules, when photografted to polyethylene, have a higher abrasion resistance than a polyethylene surface coated with a long-chain perfluoroalkane. Relative abrasion resitances of 1.4, 2.0, 2.1 and 2.5 compared to the fluoroalkane coating were obtained for the four compounds. An abrasion model using ice is developed. Although all four compounds have the same λ{sub max} of 266 nm in acetonitrile solution, their molar extincition coefficients increase from 1.6·10{sup 4} to 2.2·10{sup 4} with increasing length of the fluorotelomer chain. Exitonic coupling of the chromophores of the surface modifiers is observed for specific molecules in the neat state. A linear correlation of water contact angle with fluorine surface content, as measured by photoelectron spectroscopy, in grafted polyethylene surfaces is established.

  12. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Science.gov (United States)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-05-01

    Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  13. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Scott, A.; Gray-Munro, J.E.

    2009-01-01

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH) 2 layer, whereas in the bulk of the film, the molecules are randomly oriented.

  14. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A. [Dept. of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6 (Canada); Gray-Munro, J.E., E-mail: jgray@laurentian.c [Dept. of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, P3E 2C6 (Canada)

    2009-10-30

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH){sub 2} layer, whereas in the bulk of the film, the molecules are randomly oriented.

  15. Surface chemistry of InP ridge structures etched in Cl{sub 2}-based plasma analyzed with angular XPS

    Energy Technology Data Exchange (ETDEWEB)

    Bouchoule, Sophie, E-mail: sophie.bouchoule@lpn.cnrs.fr; Cambril, Edmond; Guilet, Stephane [Laboratoire de Photonique et Nanostructure (LPN)—UPR20, CNRS, Route de Nozay, 91460 Marcoussis (France); Chanson, Romain; Pageau, Arnaud; Rhallabi, Ahmed; Cardinaud, Christophe, E-mail: christophe.cardinaud@cnrs-imn.fr [Institut des matériaux Jean Rouxel (IMN), UMR6502, Université de Nantes, CNRS, 44322 Nantes (France)

    2015-09-15

    Two x-ray photoelectron spectroscopy configurations are proposed to analyze the surface chemistry of micron-scale InP ridge structures etched in chlorine-based inductively coupled plasma (ICP). Either a classical or a grazing configuration allows to retrieve information about the surface chemistry of the bottom surface and sidewalls of the etched features. The procedure is used to study the stoichiometry of the etched surface as a function of ridge aspect ratio for Cl{sub 2}/Ar and Cl{sub 2}/H{sub 2} plasma chemistries. The results show that the bottom surface and the etched sidewalls are P-rich, and indicate that the P-enrichment mechanism is rather chemically driven. Results also evidence that adding H{sub 2} to Cl{sub 2} does not necessarily leads to a more balanced surface stoichiometry. This is in contrast with recent experimental results obtained with the HBr ICP chemistry for which fairly stoichiometric surfaces have been obtained.

  16. Constraints on the Early Terrestrial Surface UV Environment Relevant to Prebiotic Chemistry.

    Science.gov (United States)

    Ranjan, Sukrit; Sasselov, Dimitar D

    2017-03-01

    The UV environment is a key boundary condition to abiogenesis. However, considerable uncertainty exists as to planetary conditions and hence surface UV at abiogenesis. Here, we present two-stream multilayer clear-sky calculations of the UV surface radiance on Earth at 3.9 Ga to constrain the UV surface fluence as a function of albedo, solar zenith angle (SZA), and atmospheric composition. Variation in albedo and latitude (through SZA) can affect maximum photoreaction rates by a factor of >10.4; for the same atmosphere, photoreactions can proceed an order of magnitude faster at the equator of a snowball Earth than at the poles of a warmer world. Hence, surface conditions are important considerations when computing prebiotic UV fluences. For climatically reasonable levels of CO 2 , fluence shortward of 189 nm is screened out, meaning that prebiotic chemistry is robustly shielded from variations in UV fluence due to solar flares or variability. Strong shielding from CO 2 also means that the UV surface fluence is insensitive to plausible levels of CH 4 , O 2 , and O 3 . At scattering wavelengths, UV fluence drops off comparatively slowly with increasing CO 2 levels. However, if SO 2 and/or H 2 S can build up to the ≥1-100 ppm level as hypothesized by some workers, then they can dramatically suppress surface fluence and hence prebiotic photoprocesses. H 2 O is a robust UV shield for λ levels of other atmospheric gases, fluence ≲198 nm is only available for cold, dry atmospheres, meaning sources with emission ≲198 (e.g., ArF excimer lasers) can only be used in simulations of cold environments with low abundance of volcanogenic gases. On the other hand, fluence at 254 nm is unshielded by H 2 O and is available across a broad range of [Formula: see text], meaning that mercury lamps are suitable for initial studies regardless of the uncertainty in primordial H 2 O and CO 2 levels. Key Words: Radiative transfer-Origin of life-Planetary environments

  17. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Neurock

    2006-09-11

    One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental

  18. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce.

    Directory of Open Access Journals (Sweden)

    Joelle K Salazar

    Full Text Available Salmonella enterica is a frequent contaminant of minimally-processed fresh produce linked to major foodborne disease outbreaks. The molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored. In our recent study, we showed that the expression of a putative stress regulatory gene, ycfR, was significantly induced in S. enterica upon exposure to chlorine treatment, a common industrial practice for washing and decontaminating fresh produce during minimal processing. Two additional genes, sirA involved in S. enterica biofilm formation and yigG of unknown function, were also found to be differentially regulated under chlorine stress. To further characterize the roles of ycfR, sirA, and yigG in S. enterica attachment and survival on fresh produce, we constructed in-frame deletions of all three genes in two different S. enterica serovars, Typhimurium and Saintpaul, which have been implicated in previous disease outbreaks linked to fresh produce. Bacterial attachment to glass and polystyrene microtiter plates, cell aggregation and hydrophobicity, chlorine resistance, and surface attachment to intact spinach leaf and grape tomato were compared among wild-type strains, single-gene deletion mutants, and their respective complementation mutants. The results showed that deletions of ycfR, sirA, and yigG reduced bacterial attachment to glass and polystyrene as well as fresh produce surface with or without chlorine treatment in both Typhimurium and Saintpaul. Deletion of ycfR in Typhimurium significantly reduced bacterial chlorine resistance and the attachment to the plant surfaces after chlorinated water washes. Deletions of ycfR in Typhimurium and yigG in Saintpaul resulted in significant increase in cell aggregation. Our findings suggest that ycfR, sirA, and yigG collectively contribute to S. enterica surface attachment and survival during post-harvest minimal processing of fresh produce.

  19. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    International Nuclear Information System (INIS)

    Willey, T; Willey, T

    2004-01-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  20. Surface composition, chemistry, and structure of polystyrene modified by electron-beam-generated plasma.

    Science.gov (United States)

    Lock, Evgeniya H; Petrovykh, Dmitri Y; Mack, Paul; Carney, Tim; White, Richard G; Walton, Scott G; Fernsler, Richard F

    2010-06-01

    Polystyrene (PS) surfaces were treated by electron-beam-generated plasmas in argon/oxygen, argon/nitrogen, and argon/sulfur hexafluoride environments. The resulting modifications of the polymer surface energy, morphology, and chemical composition were analyzed by a suite of complementary analytical techniques: contact angle goniometry, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and reflection electron energy loss spectroscopy (REELS). The plasma treatments produced only minimal increases in the surface roughness while introducing the expected chemical modifications: oxygen-based after Ar/O(2) plasma, oxygen- and nitrogen-based after Ar/N(2) plasma, and fluorine-based after Ar/SF(6) plasma. Fluorinated PS surfaces became hydrophobic and did not significantly change their properties over time. In contrast, polymer treated in Ar/O(2) and Ar/N(2) plasmas initially became hydrophilic but underwent hydrophobic recovery after 28 days of aging. The aromatic carbon chemistry in the top 1 nm of these aged surfaces clearly indicated that the hydrophobic recovery was produced by reorientation/diffusion of undamaged aromatic polymer fragments from the bulk rather than by contamination. Nondestructive depth profiles of aged plasma-treated PS films were reconstructed from parallel angle-resolved XPS (ARXPS) measurements using a maximum-entropy algorithm. The salient features of reconstructed profiles were confirmed by sputter profiles obtained with 200 eV Ar ions. Both types of depth profiles showed that the electron-beam-generated plasma modifications are confined to the topmost 3-4 nm of the polymer surface, while valence band measurements and unsaturated carbon signatures in ARXPS and REELS data indicated that much of the PS structure was preserved below 9 nm.

  1. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    International Nuclear Information System (INIS)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M.

    2012-01-01

    Highlights: ► Phosphoric acid activation results in formation of carbons with acidic surface groups. ► Maximum amount of surface groups is introduced at impregnation ratio 1.25. ► Phosphoric acid activated carbons show high capacity to copper. ► Phosphoric acid activated carbons are predominantly microporous. ► Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S BET = 2081 m 2 /g, V tot = 1.1 cm 3 /g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0–2.6), weakly acidic carboxylic (pK = 4.7–5.0), enol/lactone (pK = 6.7–7.4; 8.8–9.4) and phenol (pK = 10.1–10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  2. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    Energy Technology Data Exchange (ETDEWEB)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M. [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine); Sapsay, V.I.; Klymchuk, D.O. [M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., 01601 Kyiv (Ukraine); Puziy, A.M., E-mail: alexander.puziy@ispe.kiev.ua [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Phosphoric acid activation results in formation of carbons with acidic surface groups. Black-Right-Pointing-Pointer Maximum amount of surface groups is introduced at impregnation ratio 1.25. Black-Right-Pointing-Pointer Phosphoric acid activated carbons show high capacity to copper. Black-Right-Pointing-Pointer Phosphoric acid activated carbons are predominantly microporous. Black-Right-Pointing-Pointer Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 Degree-Sign C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S{sub BET} = 2081 m{sup 2}/g, V{sub tot} = 1.1 cm{sup 3}/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  3. Surface chemistry and cytotoxicity of reactively sputtered tantalum oxide films on NiTi plates

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, K. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Kolaj-Robin, O.; Belochapkine, S.; Laffir, F. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Gandhi, A.A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland); Tofail, S.A.M., E-mail: tofail.syed@ul.ie [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Department of Physics & Energy, University of Limerick, Limerick (Ireland)

    2015-08-31

    NiTi, an equiatomic alloy containing nickel and titanium, exhibits unique properties such as shape memory effect and superelasticity. NiTi also forms a spontaneous protective titanium dioxide (TiO{sub 2}) layer that allows its use in biomedical applications. Despite the widely perceived biocompatibility there remain some concerns about the sustainability of the alloy's biocompatibility due to the defects in the TiO{sub 2} protective layer and the presence of high amount of sub-surface Ni, which can give allergic reactions. Many surface treatments have been investigated to try to improve both the corrosion resistance and biocompatibility of this layer. For such purposes, we have sputter deposited tantalum (Ta) oxide thin films onto the surface of the NiTi alloy. Despite being one of the promising metals for biomedical applications, Ta, and its various oxides and their interactions with cells have received relatively less attention. The oxidation chemistry, crystal structure, morphology and biocompatibility of these films have been investigated. In general, reactive sputtering especially in the presence of a low oxygen mixture yields a thicker film with better control of the film quality. The sputtering power influenced the surface oxidation states of Ta. Both microscopic and quantitative cytotoxicity measurements show that Ta films on NiTi are biocompatible with little to no variation in cytotoxic response when the surface oxidation state of Ta changes. - Highlights: • Reactive sputtering in low oxygen mixture yields thicker better quality films. • Sputtering power influenced surface oxidation states of Ta. • Cytotoxicity measurements show Ta films on NiTi are biocompatible. • Little to no variation in cytotoxic response when oxidation state changes.

  4. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    Directory of Open Access Journals (Sweden)

    Nicola H. Perry

    2016-10-01

    Full Text Available Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic, and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER, Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance.

  5. Role of lactic acid bacteria as a biosanitizer to prevent attachment of Listeria monocytogenes F6900 on deli slicer contact surfaces.

    Science.gov (United States)

    Ndahetuye, Jean Baptiste; Koo, Ok Kyung; O'Bryan, Corliss A; Ricke, Steven C; Crandall, Philip G

    2012-08-01

    The study was conducted to evaluate the attachment of three lactic acid bacteria (LAB) strains and their combination in a cocktail, to stainless steel coupons from a deli slicer, and their ability to inhibit the attachment of Listeria monocytogenes. In a previous study, three LAB strains, Pediococcus acidilactici, Lactobacillus amylovorus, and Lactobacillus animalis, were isolated from ready-to-eat meat and exhibited antilisterial effect. In the study reported here, hydrophobicity tests were determined according to the method of microbial adhesion to solvent. The attachment of the cells was evaluated on stainless steel coupons from deli slicers. Extracellular carbohydrates were determined with a colorimetric method. Based on these tests, L. animalis exhibited the greatest hydrophobicity (26.3%), and its adherence increased sharply from 24 to 72 h, whereas L. amylovorus yielded the lowest hydrophobicity (3.86%) and was weakly adherent. Although P. acidilactici had moderate hydrophobicity (10.1%), it adhered strongly. The attached LAB strains produced significantly (P < 0.05) higher total carbohydrates than their planktonic counterparts did, which is an important characteristic for attachment. Three conditions were simulated to evaluate the ability of the LAB cocktail (10(8) CFU/ml) to competitively exclude L. monocytogenes (10(3) CFU/ml) on the surface of the coupons. The coupons were pretreated with the LAB cocktail for 24 h prior to the addition of L. monocytogenes, simultaneously treated with the LAB cocktail and L. monocytogenes, or pretreated with L. monocytogenes 24 h prior to the addition of the LAB cocktail. The LAB cocktail was able to reduce the attachment L. monocytogenes significantly (P < 0.05). The LAB cocktail indicated potential attachment on stainless steel and bacteriostatic activity toward L. monocytogenes attached on stainless steel, which indicates a possible role for LAB as a biosanitizer in the food industry.

  6. Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan

    Science.gov (United States)

    Nakagawa, K.; Amano, H.

    2017-12-01

    Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.

  7. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  8. Controls on Surface Water Chemistry in the Upper Merced River Basin, Yosemite National Park, California

    Science.gov (United States)

    Clow, David W.; Alisa Mast, M.; Campbell, Donald H.

    1996-05-01

    Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 equiv. l-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 equiv. l-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock. Chloride concentrations in surface water samples varied widely, ranging from <1 to 96 equiv. l-1. The annual volume-weighted mean chloride concentration in the Merced River at the Happy Isles gauge from 1968 to 1990 was 26 equiv. l-1, which was five times higher than in atmospheric deposition (4-5 equiv. l-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 equiv. l-1. Concentrations of sulphate in quarterly samples

  9. Plains hydrology and reclamation project: Spoil ground-water chemistry and its impacts on surface water

    Energy Technology Data Exchange (ETDEWEB)

    Trudell, M.R.

    1988-01-01

    Description of the chemical makeup of spoil groundwater at Diplomat and Vesta mines in the Battle River mining area, 200 km southeast of Edmonton within the Lower Horseshoe Canyon coal zone; and at Highvale and Whitewood Mines in the Lake Wabamun mining area, 100 km west of Edmonton within the Ardley coal zone. This report compares the chemical characteristics of the spoil groundwater for each mine to those of the principal premining aquifer that is disrupted by surface mining. The characterization of spoil groundwater chemistry is based on the sampling and analyses of groundwater from piezometers installed in reclaimed areas. Forty-three samples were collected from 23 piezometers at Vesta Mine, and 54 samples were collected from 32 piezometers at Diplomat Mine. At Highvale Mine, 29 samples were collected from 13 piezometers installed in the reclaimed area at Pit 01. Eleven samples were also collected from piezometers installed in spoil at Whitewood Mine to augment a study of that site.

  10. Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Register

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Acikgöz, Canet; Daugaard, Anders Egede

    2012-01-01

    A versatile procedure is presented for fast and efficient micropatterning of multiple types of covalently bound surface chemistry in perfect register on and between conductive polymer microcircuits. The micropatterning principle is applied to several types of native and functionalized PEDOT (poly(3......,4-ethylenedioxythiophene)) thin films. The method is based on contacting PEDOT-type thin films with a micropatterned agarose stamp containing an oxidant (aqueous hypochlorite) and applying a nonionic detergent. Where contacted, PEDOT not only loses its conductance but is entirely removed, thereby locally revealing...... of the method is illustrated by micropatterning cell-binding RGD-functionalized PEDOT on low cell-binding PMOXA (poly(2-methyl-2-oxazoline)) to produce cell-capturing microelectrodes on a cell nonadhesive background in a few simple steps. The method should be applicable to a wide range of native and chemically...

  11. SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry

    KAUST Repository

    Baumgardner, William J.

    2010-07-21

    The colloidal synthesis of SnSe nanoparticles is accomplished through the injection of bis[bis(trimethylsilyl)amino]tin(II) into hot trioctylphosphine: selenium in the presence of oleylamine. Through the manipulation of reaction temperature particles are grown with the average diameter reliably tuned to 4-10 nm. Quantum confinement is examined by establishing a relationship between particle size and band gap while the in depth growth dynamics are illuminated through UV-vis-NIR spectroscopy. Surface chemistry effects are explored, including the demonstration of useful ligand exchanges and the development of routes toward anisotropic particle growth. Finally, transient current-voltage properties of SnSe nanocrystal films in the dark and light are examined. © 2010 American Chemical Society.

  12. Chemistry of the sea-surface microlayer. 3. Studies on the nutrient chemistry of the northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.; Nagarajan, R.

    Nutrients showed enrichment in the surface microlayer compared to those in sub-surface water and there was a decreasing trend in the enrichment factor from nearshore to offshore in Northern Arabian Sea. The nutrient concentrations were correlated...

  13. Contributions of gas-phase plasma chemistry to surface modifications and gas-surface interactions: investigations of fluorocarbon rf plasmas

    Science.gov (United States)

    Cuddy, Michael F., II

    The fundamental aspects of inductively coupled fluorocarbon (FC) plasma chemistry were examined, with special emphasis on the contributions of gas-phase species to surface modifications. Characterization of the gas-phase constituents of single-source CF4-, C2F6-, C3F 8-, and C3F6-based plasmas was performed using spectroscopic and mass spectrometric techniques. The effects of varying plasma parameters, including applied rf power (P) and system pressure (p) were examined. Optical emission spectroscopy (OES) and laser-induced fluorescence (LIF) spectroscopy were employed to monitor the behavior of excited and ground CFx (x = 1,2) radicals, respectively. Mass spectrometric techniques, including ion energy analyses, elucidated behaviors of nascent ions in the FC plasmas. These gas-phase data were correlated with the net effect of substrate processing for Si and ZrO2 surfaces. Surface-specific analyses were performed for post-processed substrates via x-ray photoelectron spectroscopy (XPS) and contact angle goniometry. Generally, precursors with lower F/C ratios tended to deposit robust FC films of high surface energy. Precursors of higher F/C ratio, such as CF4, were associated with etching or removal of material from surfaces. Nonetheless, a net balance between deposition of FC moieties and etching of material exists for each plasma system. The imaging of radicals interacting with surfaces (IRIS) technique provided insight into the phenomena occurring at the interface of the plasma gas-phase and substrate of interest. IRIS results demonstrate that CFx radicals scatter copiously, with surface scatter coefficients, S, generally greater than unity under most experimental conditions. Such considerable S values imply surface-mediated production of the CFx radicals at FC-passivated sites. It is inferred that the primary route to surface production of CFx arises from energetic ion bombardment and ablation of surface FC films. Other factors which may influence the observed CFx

  14. Sonocatalytic injury of cancer cells attached on the surface of a nickel-titanium dioxide alloy plate.

    Science.gov (United States)

    Ninomiya, Kazuaki; Maruyama, Hirotaka; Ogino, Chiaki; Takahashi, Kenji; Shimizu, Nobuaki

    2016-01-01

    The present study demonstrates ultrasound-induced cell injury using a nickel-titanium dioxide (Ni-TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni-TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm(2) for 30s led to an increased generation of hydroxyl (OH) radicals compared to nickel-titanium (Ni-Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni-TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm(2) for 30s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni-Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni-TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni-TiO2 alloy plates, indicating induction of apoptosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Science.gov (United States)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  16. THE EFFECTS OF SURFACE CHEMISTRY ON THE PROPERTIES OF PROTEINS CONFINED IN NANO-POROUS MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, L. M.; O' Neill, H.

    2007-01-01

    The entrapment of proteins using the sol-gel route provides a means to retain its native properties and artifi cially reproduce the molecular crowding and confi nement experienced by proteins in the cell allowing investigation of the physico-chemical and structural properties of biomolecules at the biotic/abiotic interface. The biomolecules are spatially separated and ‘caged’ in the gel structure but solutes can freely permeate the matrix. Thus, properties such as the folding of ensembles of individual molecules can be examined in the absence of aggregation effects that can occur in solution studies. Green fl uorescent protein from Aequorea coerulescens was used as a model protein to examine the unfolding/re-folding properties of protein in silica gels. The recombinant protein was isolated and purifi ed from Escherichia coli extracts by cell lysis, three-phase partitioning, dialysis, and anion exchange chromatography. The purity of the protein was greater than 90% as judged by SDS PAGE gel analysis. Sol-gels were synthesized using tetramethylorthosilicate (TMOS) in combination with, methyltrimethoxyorthosilane (MTMOS), ethyltrimethoxyorthosilane (ETMOS), 3-aminopropyltriethoxysilane (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS). The acid induced denaturation and renaturation of GFP was analyzed by UV-visible, fl uorescence, and circular dichroism (CD) spectroscopies. No renaturation was observed in gels that were made with TMOS only, and in the presence of APTES, MTMOS, and ETMOS. However, in gels that were made with GPTMS, the CD and UV-visible spectra indicated that the protein had refolded. The fl uorescence emission spectrum indicated that approximately 20% of fl uorescence had returned. This study highlights the importance of the surface chemistry of the silica gels for the refolding properties of the entrapped GFP. Future studies will investigate the effect of surface chemistry on the thermal and solvent stability of the entrapped protein.

  17. Graphdiyne as Electrode Material: Tuning Electronic State and Surface Chemistry for Improved Electrode Reactivity.

    Science.gov (United States)

    Guo, Shuyue; Yan, Hailong; Wu, Fei; Zhao, Lijun; Yu, Ping; Liu, Huibiao; Li, Yuliang; Mao, Lanqun

    2017-12-05

    Graphdiyne (GDY) is recently synthesized two-dimensional carbon allotrope with hexagonal rings cross-linked by diacetylene through introducing butadiyne linkages (-C≡C-C≡C-) to form 18-C hexagons and is emerging to be fundamentally interesting and particularly useful in various research fields. In this study, we for the first time find that GDY can be used as an electrode material with reactivity tunable by electronic states and surface chemistry of GDY. To demonstrate this, GDY is oxidized into graphdiyne oxide (GDYO) that is then chemically and electrochemically reduced into chemically reduced GDYO (cr-GDYO) and electrochemically reduced GDYO (er-GDYO), respectively. Electrode reactivity of GDY and its derivatives (i.e., GDYO, cr-GDYO, and er-GDYO) is studied with hexaammineruthenium chloride ([Ru(NH 3 ) 6 ]Cl 3 ) and potassium ferricyanide (K 3 Fe(CN) 6 ) as redox probes. We find that electron transfer kinetics of the redox probes employed here at GDYs depends on the density of electronic state (DOS) and the synergetic effects of the surface chemistry as well as the hydrophilicity of the materials, and that the electron transfer kinetics at cr-GDYO and er-GDYO are faster than those at GDY and GDYO, and quite comparable with those at carbon nanotubes and graphene and its derivatives (i.e., GO, cr-GO, and er-GO). These properties, combined with the unique electronic and chemical structures of GDY, essentially enable GDY as a new kind of electrode material for fundamental studies on carbon electrochemistry and various electroanalytical applications.

  18. Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Sun, Honghao; Berg, Rolf Henrik

    2011-01-01

    A highly efficient method for functionalizing nanoparticles and directly quantifying conjugation efficiency and ligand surface density has been developed. Attachment of 3-azido-modifed RGD-peptides to PEGylated liposomes was achieved by using Cu-free click conditions. Upon coupling a fluorophore ...

  19. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    Energy Technology Data Exchange (ETDEWEB)

    Oleson, Timothy A. [University of Wisconsin, Madison; Sahai, Nita [University of Akron; Wesolowski, David J [ORNL; Dura, Joseph A [ORNL; Majkrzak, Charles F [ORNL; Giuffre, Anthony J. [University of Wisconsin, Madison

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  20. Chemistry and Photochemistry at the Surface of Urban Road Dust and Photoactive Minerals

    Science.gov (United States)

    Styler, S. A.; Abou-Ghanem, M.; Wickware, B.

    2017-12-01

    Each year, over a billion tons of dust are released into the atmosphere from arid regions. After its emission, dust can undergo efficient long-range transport to urban centres, where it can interact with local pollution sources. Another source of dust in urban regions is road dust resuspension, which is the largest anthropogenic source of primary particulate matter in both Canada and the United States. Since dust contains light-absorbing components, including iron- and titanium-containing minerals, dust-catalyzed photochemical processes have the potential to influence both the lifetime of pollutants present at the dust surface and the composition of the surrounding atmosphere. To date, most studies of dust photochemistry have focused on TiO2-mediated processes, and no studies have explored trace gas uptake at the surface of road dust. Here, we present first results from aerosol and coated-wall flow tube investigations of ozone uptake at the surface of a suite of titanium-containing minerals and road dust collected in Edmonton, Alberta. Together, this work represents a significant advance in our understanding of chemistry and photochemistry at realistic environmental interfaces.

  1. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells

    International Nuclear Information System (INIS)

    Ahamed, Maqusood; Karns, Michael; Goodson, Michael; Rowe, John; Hussain, Saber M.; Schlager, John J.; Hong Yiling

    2008-01-01

    Silver nanoparticles (Ag NPs) have recently received much attention for their possible applications in biotechnology and life sciences. Ag NPs are of interest to defense and engineering programs for new material applications as well as for commercial purposes as an antimicrobial. However, little is known about the genotoxicity of Ag NPs following exposure to mammalian cells. This study was undertaken to examine the DNA damage response to polysaccharide surface functionalized (coated) and non-functionalized (uncoated) Ag NPs in two types of mammalian cells; mouse embryonic stem (mES) cells and mouse embryonic fibroblasts (MEF). Both types of Ag NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and phosphorylated-H2AX expression. Furthermore both of them induced cell death as measured by the annexin V protein expression and MTT assay. Our observations also suggested that the different surface chemistry of Ag NPs induce different DNA damage response: coated Ag NPs exhibited more severe damage than uncoated Ag NPs. The results suggest that polysaccharide coated particles are more individually distributed while agglomeration of the uncoated particles limits the surface area availability and access to membrane bound organelles

  2. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    Science.gov (United States)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  3. Preparation and application of a novel electrochemical sensing material based on surface chemistry of polyhydroquinone

    International Nuclear Information System (INIS)

    Dang, Xueping; Wang, Yingkai; Hu, Chengguo; Huang, Jianlin; Chen, Huaixia; Wang, Shengfu; Hu, Shengshui

    2014-01-01

    A new analogue of polydopamine (PDA), i.e., polyhydroquinone (PH 2 Q), was polymerized and its surface chemistry was studied by different ways of characterization. PH 2 Q was produced by the self-polymerization of H 2 Q mediated by dissolved oxygen, and the self-polymerization process was strongly dependent on the type and the pH value of the buffer solutions. PH 2 Q can not only achieve surface hydrophilization of different substrates like polyethylene terephthalate (PET) film, graphite strip, C 12 SH/Au and wax slice, but also possess several unique properties like reversible adsorption, good solubility and low cost. These properties made PH 2 Q an ideal polymeric modifier for the noncovalent functionalization of some nanomaterials. By simply grinding with PH 2 Q, pristine multi-walled carbon nanotubes (MWNTs) can be readily dispersed in water with high solubility and good stability. The resulting MWNT–PH 2 Q composite exhibited excellent electrochemical performance, which was employed for the simultaneous determination of dopamine (DA) and uric acid (UA). - Highlights: • Polyhydroquinone (PH 2 Q) was produced by the self-polymerization of hydroquinone (H 2 Q) mediated by dissolved oxygen. • PH 2 Q can achieve surface hydrophilization of a variety of substrates. • PH 2 Q is an ideal polymeric modifier for the functionalization of multi-walled carbon nanotubes (MWNTs). • The MWNT–PH 2 Q composite can be employed for the simultaneous determination of dopamine (DA) and uric acid (UA)

  4. Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure

    OpenAIRE

    Lv, Yongqin; Lin, Zhixing; Svec, Frantisek

    2012-01-01

    A novel approach to porous polymer monoliths hypercrosslinked to obtain large surface areas and modified with zwitterionic functionalities through the attachment of gold nanoparticles in a layered architecture has been developed. The capillary columns were used for the separation of small molecules in hydrophilic interaction liquid chromatography mode. First, a monolith with a very large surface area of 430 m2/g was prepared by hypercrosslinking from a generic poly(4-methylstyrene-co-vinylben...

  5. Quantum Chemistry in Nanoscale Environments: Insights on Surface-Enhanced Raman Scattering and Organic Photovoltaics

    Science.gov (United States)

    Olivares-Amaya, Roberto

    The understanding of molecular effects in nanoscale environments is becoming increasingly relevant for various emerging fields. These include spectroscopy for molecular identification as well as in finding molecules for energy harvesting. Theoretical quantum chemistry has been increasingly useful to address these phenomena to yield an understanding of these effects. In the first part of this dissertation, we study the chemical effect of surface-enhanced Raman scattering (SERS). We use quantum chemistry simulations to study the metal-molecule interactions present in these systems. We find that the excitations that provide a chemical enhancement contain a mixed contribution from the metal and the molecule. Moreover, using atomistic studies we propose an additional source of enhancement, where a transition metal dopant surface could provide an additional enhancement. We also develop methods to study the electrostatic effects of molecules in metallic environments. We study the importance of image-charge effects, as well as field-bias to molecules interacting with perfect conductors. The atomistic modeling and the electrostatic approximation enable us to study the effects of the metal interacting with the molecule in a complementary fashion, which provides a better understanding of the complex effects present in SERS. In the second part of this dissertation, we present the Harvard Clean Energy Project, a high-throughput approach for a large-scale computational screening and design of organic photovoltaic materials. We create molecular libraries to search for candidates structures and use quantum chemistry, machine learning and cheminformatics methods to characterize these systems and find structure-property relations. The scale of this study requires an equally large computational resource. We rely on distributed volunteer computing to obtain these properties. In the third part of this dissertation we present our work related to the acceleration of electronic structure

  6. Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

    Science.gov (United States)

    2015-12-21

    grant for Education , Research and Engineering: The number of undergraduates funded by your agreement who graduated during this period and intend to...homology to that found in Aeromonas hydrophila. Of Mot AB seems to be predominant only under low sodium (i.e. ɝ mM) conditions, and even at that

  7. Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment

    Science.gov (United States)

    Gupta, S.; McDonald, B.; Carrizosa, S. B.

    2017-07-01

    The size of the diamond particle is tailored to nanoscale (nanodiamond, ND), and the ND surface is engineered targeting specific (electrochemical and biological) applications. In this work, we investigated the complex surface redox chemistry of immobilized ND layer on conductive boron-doped diamond electrode with a broad experimental parameter space such as particle size (nano versus micron), scan rate, pH (cationic/acidic versus anionic/basic), electrolyte KCl concentration (four orders of magnitude), and redox agents (neutral and ionic). We reported on the significant enhancement of ionic currents while recording reversible oxidation of neutral ferrocene methanol (FcMeOH) by almost one order of magnitude than traditional potassium ferricyanide (K3Fe(CN)6) redox agent. The current enhancement is inversely related to ND particle diameter in the following order: 1 μm << 1000 nm < 100 nm < 10 nm ≤ 5 nm < 2 nm. We attribute the current enhancement to concurrent electrocatalytic processes, i.e. the electron transfer between redox probes and electroactive surface functional (e.g. hydroxyl, carboxyl, epoxy) moieties and the electron transfer mediated by adsorbed FcMeOH+ (or Fe(CN) 6 3+ ) ions onto ND surface. The first process is pH dependent since it depends upon ND surface functionalities for which the electron transfer is coupled to proton transfer. The adsorption mediated process is observed most apparently at slower scan rates owing to self-exchange between adsorbed FcMeOH+ ions and FcMeOH redox agent molecules in diffusion-limited bulk electrolyte solution. Alternatively, it is hypothesized that the surface functionality and defect sites ( sp 2-bonded C shell and unsaturated bonds) give rise to surface electronic states with energies within the band gap (midgap states) in undoped ND. These surface states serve as electron donors (and acceptors) depending upon their bonding (and antibonding) character and, therefore, they can support electrocatalytic redox

  8. Controlling the Photophysical Properties of Semiconductor Quantum Dot Arrays by Strategically Altering Their Surface Chemistry

    Science.gov (United States)

    Marshall, Ashley R.

    Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of

  9. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry.

    Science.gov (United States)

    Jones, A P

    2016-12-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of 'polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm 'carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.

  10. Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives.

    Science.gov (United States)

    Hou, Peiyu; Yin, Jiangmei; Ding, Meng; Huang, Jinzhao; Xu, Xijin

    2017-12-01

    The urgent prerequisites of high energy-density and superior electrochemical properties have been the main inspiration for the advancement of cathode materials in lithium-ion batteries (LIBs) in the last two decades. Nickel-rich layered transition-metal oxides with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next-generation LIBs. Nonetheless, the poor long-term cycle-life and inferior thermal stability have limited their broadly practical applications. In the research of LIBs, it is observed that surface/interfacial structure and chemistry play significant roles in the performance of cathode cycling. This is due to the fact that they are basically responsible for the reversibility of Li + intercalation/deintercalation chemistries while dictating the kinetics of the general cell reactions. In this Review, the surface/interfacial structure and chemistry of nickel-rich layered cathodes involving structural defects, redox mechanisms, structural evolutions, side-reactions among others are initially demonstrated. Recent advancements in stabilizing the surface/interfacial structure and chemistry of nickel-rich cathodes by surface modification, core-shell/concentration-gradient structure, foreign-ion substitution, hybrid surface, and electrolyte additive are presented. Then lastly, the remaining challenges such as the fundamental studies and commercialized applications, as well as the future research directions are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  12. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Ferralis, Nicola; Carraro, Carlo

    2014-01-01

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm −1 corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching

  13. Scanning near-field optical microscopy on rough surfaces: applications in chemistry, biology, and medicine

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Shear-force apertureless scanning near-field optical microscopy (SNOM with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The experimental use of the new photophysical effect is described. The applications of the new technique are manifold. Important mechanistic questions in solid-state chemistry (oxidation, diazotization, photodimerization, surface hydration, hydrolysis are answered with respect to simultaneous AFM (atomic force microscopy and detailed crystal packing. Prehistoric petrified bacteria and concomitant pyrite inclusions are also investigated with local RAMAN SNOM. Polymer beads and unstained biological objects (rabbit heart, shrimp eye allow for nanoscopic analysis of cell organelles. Similarly, human teeth and a cancerous tissue are analyzed. Bladder cancer tissue is clearly differentiated from healthy tissue without staining and this opens a new highly promising diagnostic tool for precancer diagnosis. Industrial applications are demonstrated at the corrosion behavior of dental alloys (withdrawal of a widely used alloy, harmless substitutes, improvement of paper glazing, behavior of blood bags upon storage, quality assessment of metal particle preparations for surface enhanced RAMAN spectroscopy, and determination of diffusion coefficient and light fastness in textile fiber dyeing. The latter applications include fluorescence SNOM. Local fluorescence SNOM is also used in the study of partly aggregating dye nanoparticles within resin/varnish preparations. Unexpected new insights are obtained in all of the various fields that cannot be obtained by other techniques.

  14. Significance of the rdar and bdar morphotypes in the hydrophobicity and attachment to abiotic surfaces of Salmonella Sofia and other poultry-associated Salmonella serovars.

    Science.gov (United States)

    Chia, T W R; McMeekin, T A; Fegan, N; Dykes, G A

    2011-11-01

    To investigate the relative role of the red dry and rough (rdar) and brown dry and rough (bdar) morphotypes on hydrophobicity and ability to attach to abiotic surfaces of poultry-associated Salmonella strains with a focus on S. Sofia. Cellulose synthase gene null mutants were constructed in five Salmonella strains converting them from rdar to bdar morphotypes. One S. Sofia null mutant displayed reduced hydrophobicity and attachment to Teflon® relative to its parent strain. The S. Virchow and S. Infantis null mutants attached less well to glass relative to their parent strains. The rdar or bdar morphotype may influence S. Sofia persistence but did not explain why bdar strains predominate in this serotype. This work provides some insight into why some Salmonella strains survive in poultry environments and may ultimately contribute to their control. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  15. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 1998

    National Research Council Canada - National Science Library

    Truini, Margot; Baum, B. M; Littin, G. R; Shingoitewa-Honanie, Gayl

    2000-01-01

    ...) flowmeter tests, and (5) ground-water and surface-water chemistry. In 1998 ,ground-water withdrawals for industrial and municipal use totaled about 7,060 acre-feet, which is less than a 1 percent decrease from 1997...

  16. Surface-Enhanced Resonance Raman Scattering and Visible Extinction Spectroscopy of Copper Chlorophyllin: An Upper Level Chemistry Experiment

    Science.gov (United States)

    Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.

    2010-01-01

    Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…

  17. Preparation and application of a novel electrochemical sensing material based on surface chemistry of polyhydroquinone

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Xueping [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080 (China); Wang, Yingkai [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Hu, Chengguo, E-mail: cghu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080 (China); Huang, Jianlin; Chen, Huaixia; Wang, Shengfu [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Hu, Shengshui, E-mail: sshu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080 (China)

    2014-07-01

    A new analogue of polydopamine (PDA), i.e., polyhydroquinone (PH{sub 2}Q), was polymerized and its surface chemistry was studied by different ways of characterization. PH{sub 2}Q was produced by the self-polymerization of H{sub 2}Q mediated by dissolved oxygen, and the self-polymerization process was strongly dependent on the type and the pH value of the buffer solutions. PH{sub 2}Q can not only achieve surface hydrophilization of different substrates like polyethylene terephthalate (PET) film, graphite strip, C{sub 12}SH/Au and wax slice, but also possess several unique properties like reversible adsorption, good solubility and low cost. These properties made PH{sub 2}Q an ideal polymeric modifier for the noncovalent functionalization of some nanomaterials. By simply grinding with PH{sub 2}Q, pristine multi-walled carbon nanotubes (MWNTs) can be readily dispersed in water with high solubility and good stability. The resulting MWNT–PH{sub 2}Q composite exhibited excellent electrochemical performance, which was employed for the simultaneous determination of dopamine (DA) and uric acid (UA). - Highlights: • Polyhydroquinone (PH{sub 2}Q) was produced by the self-polymerization of hydroquinone (H{sub 2}Q) mediated by dissolved oxygen. • PH{sub 2}Q can achieve surface hydrophilization of a variety of substrates. • PH{sub 2}Q is an ideal polymeric modifier for the functionalization of multi-walled carbon nanotubes (MWNTs). • The MWNT–PH{sub 2}Q composite can be employed for the simultaneous determination of dopamine (DA) and uric acid (UA)

  18. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  19. Surface Chemistry Manipulation of Gold Nanorods Displays High Cellular Uptake In Vitro While Preserving Optical Properties for Bio-Imaging and Photo-Thermal Applications

    Science.gov (United States)

    2016-03-28

    its analytical applications. TrAC Trends in Analytical Chemistry , 37(0), 32-47. doi: http://dx.doi.org/10.1016/j.trac.2012.03.015 Livak, K. J...SURFACE CHEMISTRY MANIPULATION OF GOLD NANORODS DISPLAYS HIGH CELLULAR UPTAKE IN VITRO WHILE PRESERVING OPTICAL...2. REPORT TYPE Final 3. DATES COVERED (From - To) 7/2012 –1/2016 4. TITLE AND SUBTITLE SURFACE CHEMISTRY MANIPULATION OF GOLD NANORODS DISPLAYS

  20. Closo-dodecaborate (2-) anion as a potential prosthetic group for attachment of astatine to proteins. Aspects of the labelling chemistry with Chloramine-T

    Czech Academy of Sciences Publication Activity Database

    Orlova, A.; Lebeda, Ondřej; Tolmachev, V.; Sjoberg, S.; Carsllon, J.; Lundqvist, H.

    2000-01-01

    Roč. 43, č. 43 (2000), s. 251-260 ISSN 0362-4803 Institutional research plan: CEZ:AV0Z1048901 Keywords : closo-dodecaborate (2-) anion * AT-211 * astatination Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.756, year: 2000

  1. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  2. Atom-resolved surface chemistry using scanning tunneling microscopy (STM) and spectroscopy (STS)

    International Nuclear Information System (INIS)

    Avouris, P.

    1989-01-01

    The author shows that by using STM and STS one can study chemistry with atomic resolution. The author uses two examples: the reaction of Si(111)-(7x7) with (a) NH 3 and (b) decaborane (DB). In case (a) the authors can directly observe the spatial distribution of the reaction. He determined which surface atoms have reacted and how the products of the reaction are distributed. He found that the different dangling-bond sites have significantly different reactivities and explain these differences in terms of the local electronic structure. In case (b) the 7x7 reconstruction is eliminated and at high temperatures, (√3 x √3) R30 degree reconstructions are observed. Depending on the amount of DB and the annealing temperature the √3 structures contain variable numbers of B and Si adatoms on T 4 -sites. Calculations show that the structure involving B adatoms, although kinetically favored, is not the lowest energy configuration. The lowest energy state involves B in a substitutional site under a Si adatom

  3. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    Science.gov (United States)

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  4. Structure vs chemistry: friction and wear of Pt-based metallic surfaces.

    Science.gov (United States)

    Caron, A; Louzguine-Luzguin, D V; Bennewitz, R

    2013-11-13

    In comparison of a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with a Pt(111) single crystal we find that wearless friction is determined by chemistry through bond formation alloying, while wear is determined by structure through plasticity mechanisms. In the wearless regime, friction is affected by the chemical composition of the counter body and involves the formation of a liquid-like neck and interfacial alloying. The wear behavior of Pt-based metallic surfaces is determined by their structural properties and corresponding mechanisms for plastic deformation. In the case of Pt(111) wear occurs by dislocation-mediated homogeneous plastic deformation. In contrast the wear of Pt57.5Cu14.7Ni5.3P22.5 metallic glass occurs through localized plastic deformation in shear bands that merge together in a single shear zone above a critical load and corresponds to the shear softening of metallic glasses. These results open a new route in the control of friction and wear of metals and are relevant for the development of self-lubricated and wear-resistant mechanical devices.

  5. Investigating thiol-modification on hyaluronan via carbodiimide chemistry using response surface methodology.

    Science.gov (United States)

    Santhanam, Sruthi; Liang, Jue; Baid, Rinku; Ravi, Nathan

    2015-07-01

    Hyaluronan (HA) is a naturally occurring glycosaminoglycan widely researched for its use as a biomaterial in tissue engineering, drug delivery, angiogenesis, and ophthalmic surgeries. The mechanical properties of this biomaterial can be altered to a required extent by chemically modifying the pendant reactive groups. However, derivatizing these polymers to a predetermined extent has been the Achilles heel for this process. In this study, we have investigated the factors controlling the derivatization of the carboxyl moieties of HA with amine containing thiol, cystamine dihydrochloride (Cys), via carbodiimide crosslinking chemistry. We used fractional factorial design to screen and identify the significant factor(s) affecting the reaction, and response surface methodology (RSM) to develop a model equation for predicting the degree of thiolation of HA. Also, we analyzed the reaction mechanism for potential side reactions. We observed that N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) (mole ratio with repeat unit of HA) is the significant factor controlling the degree of amidation. The quadratic equations developed from RSM predict the formulation for a desired degree of amidation of HA and percentage of potential side product. Hence, derivatizing HA to a predetermined extent with minimal side product can be achieved using the statistical design of experiments. © 2014 Wiley Periodicals, Inc.

  6. Human Fetal Osteoblast Response on Poly(Methyl Methacrylate)/Polystyrene Demixed Thin Film Blends: Surface Chemistry Vs Topography Effects.

    Science.gov (United States)

    D'Sa, Raechelle A; Raj, Jog; Dickinson, Peter J; McCabe, Fiona; Meenan, Brian J

    2016-06-22

    Recent advances in materials sciences have allowed for the development and fabrication of biomaterials that are capable of providing requisite cues to instigate cells to respond in a predictable fashion. We have developed a series of poly(methyl methacrylate)/polystyrene (PMMA/PS) polymer demixed thin films with nanotopographies ranging from nanoislands to nanopits to study the response of human fetal osteoblast cells (hFOBs). When PMMA was in excess in the blend composition, a nanoisland topography dominated, whereas a nanopit topography dominated when PS was in excess. PMMA was found to segregate to the top of the nanoisland morphology with PS preferring the substrate interface. To further ascertain the effects of surface chemistry vs topography, we plasma treated the polymer demixed films using an atmospheric pressure dielectric barrier discharge reactor to alter the surface chemistry. Our results have shown that hFOBs did not have an increased short-term cellular response on pristine polymer demixed surfaces. However, increasing the hydrophilicty/wettability of the surfaces by oxygen functionalization causes an increase in the cellular response. These results indicate that topography alone is not sufficient to induce a positive cellular response, but the underlying surface chemistry is also important in regulating cell function.

  7. Modification of Semiconductor Surfaces through Si-N Linkages by Wet-Chemistry Approaches and Modular Functionalization of Zinc Oxide Surfaces for Chemical Protection of Material Morphology

    Science.gov (United States)

    Gao, Fei

    Semiconductor substrates are widely used in many applications. Multiple practical uses involving these materials require the ability to tune their physical and chemical properties to adjust those to a specific application. In recent years, surface and interface reactions have affected dramatically device fabrication and material design. Novel surface functionalization techniques with diverse chemical approaches make the desired physical, thermal, electrical, and mechanical properties attainable. Meanwhile, the modified surface can serve as one of the most important key steps for further assembly process in order to make novel devices and materials. In the following chapters, novel chemical approaches to the functionalization of silicon and zinc oxide substrates will be reviewed and discussed. The specific functionalities including amines, azides, and alkynes on surfaces of different materials will be applied to address subsequent attachment of large molecules and assembly processes. This research is aimed to develop new strategies for manipulating the surface properties of semiconductor materials in a controlled way. The findings of these investigations will be relevant for future applications in molecular and nanoelectronics, sensing, and solar energy conversion. The ultimate goals of the projects are: 1) Preparation of an oxygen-and carbon-free silicon surface based exclusively on Si-N linkages for further modification protocols.. This project involves designing the surface reaction of hydrazine on chlorine-terminated silicon surface, introduction of additional functional group through dehydrohalogenation condensation reaction and direct covalent attachment of C60. 2) Demonstrating alternative method to anchor carbon nanotubes to solid substrates directly through the carbon cage.. This project targets surface modification of silicon and gold substrates with amine-terminated organic monolayers and the covalent attachment of nonfunctionalized and carboxylic acid

  8. Sensitivity Analysis of Grain Surface Chemistry to Binding Energies of Ice Species

    Science.gov (United States)

    Penteado, E. M.; Walsh, C.; Cuppen, H. M.

    2017-07-01

    Advanced telescopes, such as ALMA and the James Webb Space Telescope, are likely to show that the chemical universe may be even more complex than currently observed, requiring astrochemical modelers to improve their models to account for the impact of new data. However, essential input information for gas-grain models, such as binding energies of molecules to the surface, have been derived experimentally only for a handful of species, leaving hundreds of species with highly uncertain estimates. We present in this paper a systematic study of the effect of uncertainties in the binding energies on an astrochemical two-phase model of a dark molecular cloud, using the rate equations approach. A list of recommended binding energy values based on a literature search of published data is presented. Thousands of simulations of dark cloud models were run, and in each simulation a value for the binding energy of hundreds of species was randomly chosen from a normal distribution. Our results show that the binding energy of H2 is critical for the surface chemistry. For high binding energies, H2 freezes out on the grain forming an H2 ice. This is not physically realistic, and we suggest a change in the rate equations. The abundance ranges found are in reasonable agreement with astronomical ice observations. Pearson correlation coefficients revealed that the binding energy of HCO, HNO, CH2, and C correlate most strongly with the abundance of dominant ice species. Finally, the formation route of complex organic molecules was found to be sensitive to the branching ratios of H2CO hydrogenation.

  9. The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment.

    Science.gov (United States)

    Wang, Yi; Haitjema, Charles H; Fuqua, Clay

    2014-08-15

    Agrobacterium tumefaciens can adhere to plant tissues and abiotic surfaces and forms biofilms. Cell surface appendages called pili play an important role in adhesion and biofilm formation in diverse bacterial systems. The A. tumefaciens C58 genome sequence revealed the presence of the ctpABCDEFGHI genes (cluster of type IV pili; Atu0216 to Atu0224), homologous to tad-type pilus systems from several bacteria, including Aggregatibacter actinomycetemcomitans and Caulobacter crescentus. These systems fall into the type IVb pilus group, which can function in bacterial adhesion. Transmission electron microscopy of A. tumefaciens revealed the presence of filaments, significantly thinner than flagella and often bundled, associated with cell surfaces and shed into the external milieu. In-frame deletion mutations of all of the ctp genes, with the exception of ctpF, resulted in nonpiliated derivatives. Mutations in ctpA (a pilin homologue), ctpB, and ctpG decreased early attachment and biofilm formation. The adherence of the ctpA mutant could be restored by ectopic expression of the paralogous pilA gene. The ΔctpA ΔpilA double pilin mutant displayed a diminished biovolume and lower biofilm height than the wild type under flowing conditions. Surprisingly, however, the ctpCD, ctpE, ctpF, ctpH, and ctpI mutants formed normal biofilms and showed enhanced reversible attachment. In-frame deletion of the ctpA pilin gene in the ctpCD, ctpE, ctpF, ctpH, and ctpI mutants caused the same attachment-deficient phenotype as the ctpA single mutant. Collectively, these findings indicate that the ctp locus is involved in pilus assembly and that nonpiliated mutants, which retain the CtpA pilin, are proficient in attachment and adherence. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    Science.gov (United States)

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Product Attachment

    NARCIS (Netherlands)

    Mugge, R.

    2007-01-01

    The topic of this doctoral research is the concept of product attachment for ordinary consumer durables. Product attachment is defined as the strength of the emotional bond a consumer experiences with a specific product. Specifically, the research investigated how this bond develops over time and

  12. Improved adhesion and differentiation of endothelial cells on surface-attached fibrin structures containing extracellular matrix proteins

    Czech Academy of Sciences Publication Activity Database

    Filová, Elena; Brynda, Eduard; Riedel, Tomáš; Chlupáč, Jaroslav; Vandrovcová, Marta; Švindrych, Zdeněk; Lisá, Věra; Houska, Milan; Pirk, J.; Bačáková, Lucie

    2014-01-01

    Roč. 102, č. 3 (2014), s. 698-712 ISSN 1549-3296 R&D Projects: GA MZd(CZ) NT11270 Institutional support: RVO:67985823 ; RVO:61389013 Keywords : two-dimensional assembly * fibrin * endothelial cells Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 3.369, year: 2014

  13. Magnetical and optical properties of nanodiamonds can be tuned by particles surface chemistry: theoretical and experimental study

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Šebera, Jakub; Ashcheulov, Petr; Golan, Martin; Ledvina, Miroslav; Mičová, Júlia; Mravec, F.; Kovalenko, A.; Zverev, D.; Yavkin, B.; Orlinskii, S.; Záliš, Stanislav; Fišerová, Anna; Richter, Jan; Šefc, L.; Turánek, J.

    2014-01-01

    Roč. 118, č. 43 (2014), s. 25245-25252 ISSN 1932-7447 R&D Projects: GA TA ČR TA01011165; GA ČR(CZ) GA14-10279S Institutional support: RVO:68378271 ; RVO:61388971 ; RVO:61388963 ; RVO:61388955 Keywords : nanodiamond particles * NV luminescent centers * surface functionalization * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  14. Chemistry of Frozen NaCl and MgSO4 Brines - Implications for Surface Expression of Europa's Ocean Composition

    Science.gov (United States)

    Johnson, P. V.; Hodyss, R. P.; Choukroun, M.; Vu, T. H.

    2015-12-01

    The composition of Europa's subsurface ocean is a critical determinant of its habitability, but current analysis of the ocean composition is limited to its expression on the Europan surface. While there is observational evidence indicating that ocean materials make their way to the surface, our understanding of the chemical processes that can alter this material under Europan surface conditions is limited. We present experimental data on the chemistry of mixed solutions of NaCl and MgSO4 as they are frozen to 100 K, replicating the conditions that may occur when subsurface ocean fluids are emplaced onto Europa's surface. Confocal micro-Raman spectroscopy is used to study the formation of salts during the freezing process, and the interaction of ions in the frozen brines. Our data indicate that mixed aqueous solutions of NaCl and MgSO4 form Na2SO4 and MgCl2 preferentially when frozen, rather than making NaCl and MgSO4 precipitates. The detection of epsomite (MgSO4Ÿ•7H2O) on Europa's surface may therefore imply an ocean composition relatively low in sodium, unless radiolytic chemistry converts MgCl2 to MgSO4 as suggested by Hand and Brown 2013 (ApJ 145 110). These results have important implications for the interpretation of remote sensing data of Europa's surface.

  15. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste

    Science.gov (United States)

    Zhang, Yan-Juan; Xing, Zhen-Jiao; Duan, Zheng-Kang; Li, Meng; Wang, Yin

    2014-10-01

    The effects of steam activation on the pore structure evolution and surface chemistry of activated carbon (AC) obtained from bamboo waste were investigated. Nitrogen adsorption-desorption isotherms revealed that higher steam activation temperatures and/or times promoted the creation of new micropores and widened the existing micropores, consequently decreasing the surface area and total pore volume. Optimum conditions included an activation temperature of 850 °C, activation time of 120 min, and steam flush generated from deionized water of 0.2 cm3 min-1. Under these conditions, AC with a BET surface area of 1210 m2 g-1 and total pore volume of 0.542 cm-3 g-1was obtained. Changes in surface chemistry were determined through Boehm titration, pH measurement, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Results revealed the presence of a large number of basic groups on the surface of the pyrolyzed char and AC. Steam activation did not affect the species of oxygen-containing groups but changed the contents of these species when compared with pyrolyzed char. Scanning electron microscopy was used to observe the surface morphology of the products. AC obtained under optimum conditions showed a monolayer adsorption capacity of 330 mg g-1 for methylene blue (MB), which demonstrates its excellent potential for MB adsorption applications.

  16. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    Science.gov (United States)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the

  17. Increasing the Detection Limit of the Parkinson Disorder through a Specific Surface Chemistry Applied onto Inner Surface of the Titration Well

    Directory of Open Access Journals (Sweden)

    Fabienne Poncin-Epaillard

    2012-04-01

    Full Text Available The main objective of this paper was to illustrate the enhancement of the sensitivity of ELISA titration for neurodegenerative proteins by reducing nonspecific adsorptions that could lead to false positives. This goal was obtained thanks to the association of plasma and wet chemistries applied to the inner surface of the titration well. The polypropylene surface was plasma-activated and then, dip-coated with different amphiphilic molecules. These molecules have more or less long hydrocarbon chains and may be charged. The modified surfaces were characterized in terms of hydrophilic—phobic character, surface chemical groups and topography. Finally, the coated wells were tested during the ELISA titration of the specific antibody capture of the α-synuclein protein. The highest sensitivity is obtained with polar (Θ = 35°, negatively charged and smooth inner surface.

  18. Tuning optoelectronic properties of small semiconductor nanocrystals through surface ligand chemistry

    Science.gov (United States)

    Lawrence, Katie N.

    Semiconductor nanocrystals (SNCs) are a class of material with one dimension reported. Furthermore, the outstanding increase in PL-QY was found to be a product of both passivation and delocalization effects. Next we used poly(ethylene) glycol (PEG)-thiolate ligands to passivate the SNC and provide unique solubility properties in both aqueous and organic solvents as well as utilized their highly conductive nature to explore inter-SNC electronic coupling. The electronic coupling was studied: 1) as a function of SNC size where the smallest SNC exhibited the largest coupling energy (170 meV) and 2) as a function of annealing temperature, where an exceptionally large (˜400 meV) coupling energy was observed. This strong electronic coupling in self-organized films could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device applications. Strong inter-SNC electronic coupling together with high solubility, such as that provided by PEG-thiolate-coated CdSe SNCs, can increase the stability of SNCs during solution-phase electrochemical characterization. Therefore, we utilized these properties to characterize solution-state electrochemical properties and photocatalytic activity of ternary copper indium diselenide (CuInSe2) SNCs as a function of their size and surface ligand chemistry. Electrochemical characterization of our PEG-thiolate-coated SNCs showed that the thermodynamic driving force (-?G) for oxygen reduction, which increased with decreasing bandgap, was a major contributor to the overall photocatalytic reaction. Additionally, phenol degradation efficiency was monitored in which the smallest diameter SNC and shortest chain length of PEG provided the highest efficiency. The information provided herein could be used to produce superior SNC photocatalysts for a variety of applications including oxidation of organic contaminants, conversion of water to hydrogen gas, and decomposition of crude oil or pesticides

  19. Inland dissolved salt chemistry: statistical evaluation of bivariate and ternary diagram models for surface and subsurface waters

    Directory of Open Access Journals (Sweden)

    Stephen T. THRELKELD

    2000-08-01

    Full Text Available We compared the use of ternary and bivariate diagrams to distinguish the effects of atmospheric precipitation, rock weathering, and evaporation on inland surface and subsurface water chemistry. The three processes could not be statistically differentiated using bivariate models even if large water bodies were evaluated separate from small water bodies. Atmospheric precipitation effects were identified using ternary diagrams in water with total dissolved salts (TDS 1000 mg l-1. A principal components analysis showed that the variability in the relative proportions of the major ions was related to atmospheric precipitation, weathering, and evaporation. About half of the variation in the distribution of inorganic ions was related to rock weathering. By considering most of the important inorganic ions, ternary diagrams are able to distinguish the contributions of atmospheric precipitation, rock weathering, and evaporation to inland water chemistry.

  20. Deuteration and evolution in the massive star formation process. The role of surface chemistry

    Science.gov (United States)

    Fontani, F.; Busquet, G.; Palau, Aina; Caselli, P.; Sánchez-Monge, Á.; Tan, J. C.; Audard, M.

    2015-03-01

    Context. An ever growing number of observational and theoretical evidence suggests that the deuterated fraction (column density ratio between a species containing D and its hydrogenated counterpart, Dfrac) is an evolutionary indicator both in the low- and the high-mass star formation process. However, the role of surface chemistry in these studies has not been quantified from an observational point of view. Aims: Because many abundant species, such as NH3, H2CO, and CH3OH, are actively produced on ice mantles of dust grains during the early cold phases, their Dfrac is expected to evolve differently from species formed only (or predominantly) in the gas, such as N2H+, HNC, HCN, and their deuterated isotopologues. The differences are expected to be relevant especially after the protostellar birth, in which the temperature rises, causing the evaporation of ice mantles. Methods: To compare how the deuterated fractions of species formed only in the gas and partially or uniquely on grain surfaces evolve with time, we observed rotational transitions of CH3OH, 13CH3OH, CH2DOH, and CH3OD at 3 mm and 1.3 mm, of NH2D at 3 mm with the IRAM-30 m telescope, and the inversion transitions (1, 1) and (2, 2) of NH3 with the GBT, towards most of the cores already observed in N2H+, N2D+, HNC, and DNC. Results: NH2D is detected in all but two cores, regardless of the evolutionary stage. Dfrac(NH3) is on average above 0.1 and does not change significantly from the earliest to the most evolved phases, although the highest average value is found in the protostellar phase (~0.3). Few lines of CH2DOH and CH3OD are clearly detected, and then only towards protostellar cores or externally heated starless cores. In quiescent starless cores, we have only one doubtful detection of CH2DOH. Conclusions: This work clearly confirms an expected different evolutionary trend of the species formed exclusively in the gas (N2D+ and N2H+) and those formed partially (NH2D and NH3) or totally (CH2DOH and CH3

  1. Influence of a charged graphene surface on the orientation and conformation of covalently attached oligonucleotides: a molecular dynamics study

    Czech Academy of Sciences Publication Activity Database

    Kabeláč, Martin; Kroutil, O.; Předota, M.; Lankaš, Filip; Šíp, M.

    2012-01-01

    Roč. 14, č. 12 (2012), s. 4217-4229 ISSN 1463-9076 R&D Projects: GA ČR GC204/09/J010; GA MŠk LC512; GA AV ČR IAA400550808 Grant - others:GA ČR(CZ) GA203/08/0094; GA MŠk(CZ) LM2010005 Program:GA Institutional research plan: CEZ:AV0Z40550506 Keywords : DNA * graphene * charge density * molecular dynamics * Amber Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.829, year: 2012

  2. Color and Surface Chemistry Changes of Pine Wood Flour after Extraction and Delignification

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark; Yongming Fan

    2014-01-01

    A detailed study was undertaken to examine the color and chemistry changes of pine wood flour when its extractives are removed and when it is delignified. The solvent systems employed were toluene/ethanol (TE), acetone/water (AW), and hot-water (HW), while sodium chlorite/acetic acid were used for delignification (i.e., lignin removal (LR)). Samples were analyzed by...

  3. Nanoparticle-cell interactions: surface chemistry effects on the cellular uptake of biocompatible block copolymer assemblies

    Czech Academy of Sciences Publication Activity Database

    de Castro, C. E.; Ribeiro, C. A. S.; Alavarse, A. C.; Albuquerque, L. J. C.; da Silva, M. C. C.; Jäger, Eliezer; Surman, František; Schmidt, V.; Giacomelli, C.; Giacomelli, F. C.

    2018-01-01

    Roč. 34, č. 5 (2018), s. 2180-2188 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA17-09998S Institutional support: RVO:61389013 Keywords : biocompatibility * block copolymers * controlled drug delivery Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.833, year: 2016

  4. Surface organization of aqueous MgCl2 and application to atmospheric marine aerosol chemistry

    Czech Academy of Sciences Publication Activity Database

    Casillas-Ituarte, N. N.; Callahan, K. M.; Tang, CH. Y.; Chen, X.; Roeselová, Martina; Tobias, D. J.; Allen, H. C.

    2010-01-01

    Roč. 107, č. 15 (2010), s. 6616-6621 ISSN 0027-8424 R&D Projects: GA MŠk LC512; GA MŠk ME09064 Institutional research plan: CEZ:AV0Z40550506 Keywords : magnesium chloride * fatty acid * air/aqueous interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.771, year: 2010

  5. Facile Synthesis of Nitrogen Doped Graphene Oxide from Graphite Flakes and Powders: A Comparison of Their Surface Chemistry.

    Science.gov (United States)

    Yokwana, Kholiswa; Ray, Sekhar C; Khenfouch, Mohammad; Kuvarega, Alex T; Mamba, Bhekie B; Mhlanga, Sabelo D; Nxumalo, Edward N

    2018-08-01

    Nitrogen-doped graphene oxide (NGO) nanosheets were prepared via a facile one-pot modified Hummer's approach at low temperatures using graphite powder and flakes as starting materials in the presence of a nitrogen precursor. It was found that the morphology, structure, composition and surface chemistry of the NGO nanosheets depended on the nature of the graphite precursor used. GO nanosheets doped with nitrogen atoms exhibited a unique structure with few thin layers and wrinkled sheets, high porosity and structural defects. NGO sheets made from graphite powder (NGOp) exhibited excellent thermal stability and remarkably high surface area (up to 240.53 m2 ·g-1) compared to NGO sheets made from graphite flakes (NGOf) which degraded at low temperatures and had an average surface area of 24.70 m2 ·g-1. NGOf sheets had a size range of 850 to 2200 nm while NGOp sheets demonstrated obviously small sizes (460-1600 nm) even when exposed to different pH conditions. The NGO nanosheets exhibited negatively charged surfaces in a wide pH range (1 to 12) and were found to be stable above pH 6. In addition, graphite flakes were found to be more suitable for the production of NGO as they produced high N-doping levels (0.65 to 1.29 at.%) compared to graphite powders (0.30 to 0.35 at.%). This study further demonstrates that by adjusting the amount of N source in the host GO, one can tailor its thermal stability, surface morphology, surface chemistry and surface area.

  6. Simple Preparation of Thiol-Ene Particles in Glycerol and Surface Functionalization by Thiol-Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCT-FRP).

    Science.gov (United States)

    Hoffmann, Christian; Chiaula, Valeria; Yu, Liyun; Pinelo, Manuel; Woodley, John M; Daugaard, Anders E

    2018-01-01

    Thiol-ene (TE)-based polymer particles are traditionally prepared via emulsion polymerization in water (using surfactants, stabilizers, and cosolvents). Here, a green and simple alternative is presented with excellent control over particle size, while avoiding the addition of stabilizers. Glycerol is applied as a dispersing medium for the preparation of off-stoichiometric TE microparticles, where sizes in the range of 40-400 µm are obtained solely by changing the mixing speed of the emulsions prior to crosslinking. Control over surface chemistry is achieved by surface functionalization of excess thiol groups via photochemical thiol-ene chemistry resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization is used for the first time to introduce a thicker polymer layer on the particle surface. The application potential of the system is demonstrated by using functional particles as adsorbent for metal ions and as a support for immobilized enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  8. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces

    DEFF Research Database (Denmark)

    Lösche, M.; Piepenstock, M.; Diederich, A.

    1993-01-01

    The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both...... in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of apprx 40 ANG . A systematic...... dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state...

  9. Hypercrosslinked large surface area porous polymer monoliths for hydrophilic interaction liquid chromatography of small molecules featuring zwitterionic functionalities attached to gold nanoparticles held in layered structure.

    Science.gov (United States)

    Lv, Yongqin; Lin, Zhixing; Svec, Frantisek

    2012-10-16

    A novel approach to porous polymer monoliths hypercrosslinked to obtain large surface areas and modified with zwitterionic functionalities through the attachment of gold nanoparticles in a layered architecture has been developed. The capillary columns were used for the separation of small molecules in hydrophilic interaction liquid chromatography mode. First, a monolith with a very large surface area of 430 m(2)/g was prepared by hypercrosslinking from a generic poly(4-methylstyrene-co-vinylbenzyl chloride-co-divinylbenzene) monolith via a Friedel-Crafts reaction catalyzed with iron chloride. Free radical bromination then provided this hypercrosslinked monolith with 5.7 at % Br that further reacted with cystamine under microwave irradiation, resulting in a product containing 3.8 at % sulfur. Clipping the disulfide bonds with tris(2-carboxylethyl) phosphine liberated the desired thiol groups that bind the first layer of gold nanoparticles. These immobilized nanoparticles were an intermediate ligand enabling the attachment of polyethyleneimine as a spacer followed by immobilization of the second layer of gold nanoparticles which were eventually functionalized with zwitterionic cysteine. This layered architecture, prepared using 10 nm nanoparticles, contains 17.2 wt % Au, more than twice than that found in the first layer alone. Chromatographic performance of these hydrophilic monolithic columns was demonstrated with the separation of mixtures of nucleosides and peptides in hydrophilic interaction chromatography (HILIC) mode. A column efficiency of 51,000 plates/m was achieved for retained analyte cytosine.

  10. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qing; Tian, Jianwen; Liu, Meiying; Zeng, Guangjian; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2015-08-15

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites.

  11. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  12. The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine.

    Science.gov (United States)

    Grover, Phulwinder K; Thurgood, Lauren A; Wang, Tingting; Ryall, Rosemary L

    2010-03-01

    To compare the binding to Madin-Darby canine kidney (MDCK)-II cells of: (i) inorganic calcium oxalate monohydrate (iCOM) crystals and COM crystals precipitated from urine containing different concentrations of protein; and (ii) urinary COM crystals containing intracrystalline and intracrystalline + surface-bound protein. Urinary COM crystals were generated in sieved (sCOM), centrifuged and filtered (cfCOM), and ultrafiltered (ufCOM) portions of a pooled human urine and their adhesion to MDCK-II cells was compared using six different ultrafiltered urine samples as the binding medium. Crystal matrix extract (CME) was prepared by demineralizing calcium oxalate crystals precipitated from human urine and used to prepare COM crystals with intracrystalline, and intracrystalline + surface-bound CME at protein concentrations of 0, 0.05, 0.1, 0.5 and 5.0 mg/L. The amount of protein associated with the crystals was qualitatively assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting, using prothrombin fragment 1 (PTF1) as a marker. Protein concentration was determined in sieved, centrifuged and filtered, and ultrafiltered fractions of 10 additional urine samples. The median crystal attachment in the six urine types decreased in the order iCOM > ufCOM > cfCOM = sCOM, in inverse proportion to the concentration of protein in the solution or urine from which they were precipitated. sCOM and cfCOM crystals bound approximately 23% less than iCOM crystals. The attachment of COM crystals generated in the presence of increasing concentrations of CME proteins was unaffected up to a concentration of 5 mg/L, but binding of crystals containing the same concentrations of intracrystalline + surface-bound proteins decreased proportionally at protein concentrations from 0 to 5.0 mg/L. Inorganic COM crystals bind significantly more strongly to MDCK-II cells than urinary crystals precipitated from sieved, centrifuged and filtered, and ultrafiltered urine

  13. Surface chemistry of carbon removal from indium tin oxide by base and plasma treatment, with implications on hydroxyl termination

    International Nuclear Information System (INIS)

    Chaney, John A.; Koh, Sharon E.; Dulcey, Charles S.; Pehrsson, Pehr E.

    2003-01-01

    The surface chemistry of carbon removal from indium tin oxide (ITO) has been investigated with Auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS), and high-resolution energy loss spectroscopy (HR-ELS). A vibrating Kelvin probe (KP) was used to monitor the work function (PHI) of ITO after cleaning, either by base-cleaning with alcoholic-KOH or by O 2 plasma-cleaning. Base-cleaning lowered PHI ITO as seen in the KP analysis, whereas plasma-cleaning slightly increased PHI ITO by an oxidative process. The degree of PHI ITO depression by base-cleaning was seen to depend on the initial surface, but the PHI depression itself was nonreductive to the ITO, as seen in the In-MNN AES lineshape. The nonreductive depression of PHI ITO by base-cleaning was further supported by a constant charge carrier density, as estimated from the HR-ELS. Base-cleaning was slightly more effective than the oxygen plasma in removing carbon from the ITO surface. However, base-cleaning preferentially removed graphitic carbon while leaving significant hydrocarbon contaminants, as determined by vibrational analysis with HREELS. All other ITO surfaces retained a significant carbon and hydrocarbon contamination as evidenced by AES and HREELS. There was little evidence of the formation of surface hydroxyl species, as expected for such an inherently contaminated surface as ITO

  14. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry

    Science.gov (United States)

    Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.

    2016-01-01

    Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562

  15. X-ray free electron laser as a real-time probe of chemistry on surfaces

    International Nuclear Information System (INIS)

    Katayama, Tetsuo; Ogasawara, Hirohito

    2015-01-01

    X-ray free electron laser has opened up new possibilities for the study of surface chemical reactions on ultrafast time scale. This article reviews the recent work on the desorption of a molecule from a surface, which is one of the most fundamental surface chemical process. (author)

  16. Microbial Adhesion to Processing Lines for Fish Fillets and Cooked Shrimp: Influence of Stainless Steel Surface Finish and Presence of Gram-Negative Bacteria on the Attachment of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Hjörleifur Einarsson

    2005-01-01

    Full Text Available Microflora adhering to surfaces of processing lines in a shrimp factory and a fish processing plant was identified in situ and adhesion of mixed culture of Listeria monocytogenes and Gram-negative bacteria on stainless steel surfaces (untreated, polished and glass beaded was studied ex situ. The predominant genus attached to the surfaces was Pseudomonas spp. (66 % in the shrimp factory and Enterobacteriaceae (27 % in the fish factory. Shrimp juice was used as an enrichment broth during the study of adhered bacteria. Three different Gram-negative strains and a mixture of Pseudomonas spp. were selected to study their attachment together with L. monocytogenes to stainless steel surfaces. Highest numbers of the attached bacteria were obtained after the contamination with a mixed culture of L. monocytogenes and Serratia liquefaciens. A lower number of bacteria adhered to stainless steel surfaces when mixed cultures of L. monocytogenes and Pseudomonas fluorescens or Aeromonas spp. were tested. No significant differences (p<0.05 were observed in the bacteria attached to differently treated steel surfaces with different roughness (Ra=0.1–0.8 m. Bacterial adhesion increased with longer contact time. Colonisation of L. monocytogenes on stainless steel surfaces was significantly enhanced only in the presence of mixed Pseudomonas spp. These results indicate that smooth surfaces do not necessarily provide hygiene benefits over rougher surfaces.

  17. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas

    2016-12-05

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  18. Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Ju

    2014-09-01

    Full Text Available Four kinds of nanosilica particles with different surface modification were employed to fabricate low-density polyethylene (LDPE composites using melt mixing and hot molding methods. The surface chemistry of modified nanosilica was analyzed by X-ray photoelectron spectroscopy. All silica nanoparticles were found to suppress the space charge injection and accumulation, increase the volume resistivity, decrease the permittivity and dielectric loss factor at low frequencies, and decrease the dielectric breakdown strength of the LDPE polymers. The modified nanoparticles, in general, showed better dielectric properties than the unmodified ones. It was found that the carrier mobility, calculated from J–V curves using the Mott-Gurney equation, was much lower for the nanocomposites than for the neat LDPE.

  19. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst.

    Science.gov (United States)

    Merle, Nicolas; Le Quéméner, Frédéric; Bouhoute, Yassine; Szeto, Kai C; De Mallmann, Aimery; Barman, Samir; Samantaray, Manoja K; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Basset, Jean-Marie

    2017-02-15

    The well-defined silica-supported molybdenum oxo alkyl species (≡SiO-)MoO(CH 2 t Bu) 3 was selectively prepared by grafting of MoO(CH 2 t Bu) 3 Cl onto partially dehydroxylated silica (silica 700 ) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO 3 /SiO 2 olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  20. Benchtop chemistry for the rapid prototyping of label-free biosensors: Transmission localized surface plasmon resonance platforms

    Science.gov (United States)

    Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Castellana, Edward T.; Chen, Jixin; Cremer, Paul S.

    2012-01-01

    Herein, a simple label-free biosensor fabrication method is demonstrated based on transmission localized surface plasmon resonance (T-LSPR). The platform, which consists of a silver nanoparticle array, can be prepared in just a few minutes using benchtop chemistry. The array was made by a templating technique in conjunction with the photoreduction of Ag ions from solution. This metal surface was functionalized with biotin-linked thiol ligands for binding streptavidin molecules from solution. For an array of 19 nm diameter silver nanoparticles, a redshift in the T-LSPR spectrum of 24 nm was observed upon protein-ligand binding at saturation. The binding constant was found to be 2 × 1012 M–1. Platforms were also fabricated with silver nanoparticles of 34, 55, and 72 nm diameters. The maximum LSPR wavelength shift was nanoparticle size dependent and the maximum sensitivity was obtained with the smaller nanoparticles. PMID:20408728

  1. Roles of a novel Crp/Fnr family transcription factor Lmo0753 in soil survival, biofilm production and surface attachment to fresh produce of Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Joelle K Salazar

    Full Text Available Listeria monocytogenes is a foodborne bacterial pathogen and the causative agent of an infectious disease, listeriosis. L. monocytogenes is ubiquitous in nature and has the ability to persist in food processing environments for extended periods of time by forming biofilms and resisting industrial sanitization. Human listeriosis outbreaks are commonly linked to contaminated dairy products, ready-to-eat meats, and in recent years, fresh produce such as lettuce and cantaloupes. We identified a putative Crp/Fnr family transcription factor Lmo0753 that is highly specific to human-associated genetic lineages of L. monocytogenes. Lmo0753 possesses two conserved functional domains similar to the major virulence regulator PrfA in L. monocytogenes. To determine if Lmo0753 is involved in environmental persistence-related mechanisms, we compared lmo0753 deletion mutants with respective wild type and complementation mutants of two fully sequenced L. monocytogenes genetic lineage II strains 10403S and EGDe for the relative ability of growth under different nutrient availability and temperatures, soil survival, biofilm productivity and attachment to select fresh produce surfaces including romaine lettuce leaves and cantaloupe rinds. Our results collectively suggested that Lmo0753 plays an important role in L. monocytogenes biofilm production and attachment to fresh produce, which may contribute to the environmental persistence and recent emergence of this pathogen in human listeriosis outbreaks linked to fresh produce.

  2. A Biofilm Pocket Model to Evaluate Different Non-Surgical Periodontal Treatment Modalities in Terms of Biofilm Removal and Reformation, Surface Alterations and Attachment of Periodontal Ligament Fibroblasts.

    Science.gov (United States)

    Hägi, Tobias T; Klemensberger, Sabrina; Bereiter, Riccarda; Nietzsche, Sandor; Cosgarea, Raluca; Flury, Simon; Lussi, Adrian; Sculean, Anton; Eick, Sigrun

    2015-01-01

    There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and

  3. The Effects of the ND:YAG Laser on In vitro Fibroblast Attachment to Endotoxin Treated Root Surfaces

    Science.gov (United States)

    1991-05-01

    Preparation and Incubation .................................. 17 Scanning Electron Microscopic Observation 17 Data Collection and Analysis...fluorescence was seen regardless of the incubation time or endotoxin concentration. Brushing for one minute with a soft toothbrush removed most of the...However, the surface was brittle and fusion of enamel was not accomplished. Craters were produced at the point of laser impact . Peck and Peck (1967

  4. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  5. Friction and surface chemistry of some ferrous-base metallic glasses

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  6. Surface chemistry on bimetallic alloy surfaces: adsorption of anions and oxidation of CO on Pt3Sn(111).

    Science.gov (United States)

    Stamenković, Vojislav R; Arenz, Matthias; Lucas, Christopher A; Gallagher, Mark E; Ross, Philip N; Marković, Nenad M

    2003-03-05

    The microscopic structure of the Pt(3)Sn(111) surface in an electrochemical environment has been studied by a combination of ex situ low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and low-energy ion scattering (LEIS) and in situ surface X-ray scattering (SXS) and Fourier transform infrared (FTIR) spectroscopy. In ultrahigh vacuum (UHV) the clean-annealed surface produces a p(2 x 2) LEED pattern consistent with the surface composition, determined by LEIS, of 25 at. % Sn. SXS results show that the p(2 x 2) structure can be "transferred" from UHV into 0.5 M H(2)SO(4) and that the surface structure remains stable from 0.05 to 0.8 V. At 0.05 V the expansion of Pt surface atoms, ca. +2% from the bulk lattice spacing, is induced by adsorption of underpotential-deposited (UPD) hydrogen. At 0.5 V, where Pt atoms are covered by (bi)sulfate anions, the topmost layer is contracted relative to 0.05 V, although Sn atoms expand significantly, ca. 8.5%. The p(2 x 2) structure is stable even in solutions containing CO. In contrast to the Pt(111)-CO system, no ordered structures of CO are formed on the Pt(3)Sn(111) surface and the topmost layer expands relatively little (ca. 1.5%) from the bulk lattice spacing upon the adsorption of CO. The binding site geometry of CO on Pt(3)Sn(111) is determined by FTIR. In contrast to the near invariant band shape of a-top CO on Pt(111), changes in band morphology (splitting of the band) and vibrational properties (increase in the frequency mode) are clearly visible on the Pt(3)Sn(111) surface. To explain the line shape of the CO bands, we suggest that in addition to alloying effects other factors, such as intermolecular repulsion between coadsorbed CO and OH species, are controlling segregation of CO into cluster domains where the local CO coverage is different from the coverage expected for the CO-CO interaction on an unmodified Pt(111) surface.

  7. PEO-generated Surfaces Support Attachment and Growth of Cells In Vitro with No Additional Benefit for Micro-roughness in Sa (0.2-4 μm).

    Science.gov (United States)

    Jung, Ole; Smeets, Ralf; Kopp, Alexander; Porchetta, Dario; Hiester, Philipp; Heiland, Max; Friedrich, Reinhard E; Precht, Clarissa; Hanken, Henning; Gröbe, Alexander; Hartjen, Philip

    2016-01-01

    Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation, is a promising electrochemical surface treatment technique for metals which has been used for the generation of various material surfaces and has been the focus of recent biomaterial research. It has been hypothesized that rough PEO surfaces should generally have properties that support cellular attachment and proliferation. However, this has not yet been demonstrated in systematically conducted studies. The present study investigated fibroblast cell proliferation and attachment to ground, electric discharge machining (EDM) and PEO-treated titanium surfaces differing in roughness and porosity. Three surface variants with 'smoother', 'medium-coarse' and 'rough' surface topographies were generated by PEO and EDM on specimens of titanium alloy (with 6 wt% aluminum and 4 wt% vanadium) for comparison with more smoothly ground specimens. The in vitro effects on cellular attachment and proliferation were determined in 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), 5-bromo-2'-deoxyuridine (BrdU) and live/dead staining assays with L929 fibroblasts cultivated directly on the metal specimens. Cytocompatibility was determined in accordance with DIN 10993-5/-12 regulations by extract assays. Besides cytocompatibility, all PEO specimens exhibited similar biocompatibility and attachment properties, with vital, spindle-shaped adherent cells growing on the surface, regardless of their surface topology. There were no significant differences in cellular proliferation between the different surfaces and negative controls (cells growing in cell-culture plates). With no differences in cellular proliferation and attachment between PEO surfaces with different roughness, we find no evidence to support the notion that rougher PEO surfaces are more favorable for cellular growth of fibroblasts in vitro. Copyright © 2016 International Institute of Anticancer Research (Dr. John G

  8. Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers.

    Science.gov (United States)

    Bösiger, Peter; Richard, Isabelle M T; Le Gat, Luce; Michen, Benjamin; Schubert, Mark; Rossi, René M; Fortunato, Giuseppino

    2018-04-15

    Chitosan is a promising biocompatible polymer for regenerative engineering applications, but its processing remains challenging due to limited solubility and rigid crystalline structure. This work represents the development of electrospun chitosan/poly(ethylene oxide) blend nanofibrous membranes by means of a numerical analysis in order to identify and tailor the main influencing parameters with respect to accessible surface nitrogen functionalities which are of importance for the biological activity as well as for further functionalization. Depending on the solution composition, both gradient fibers and homogenous blended fiber structures could be obtained with surface nitrogen concentrations varying between 0 and 6.4%. Response surface methodology (RSM) revealed chitosan/poly(ethylene oxide) ratio and chitosan molecular weight as the main influencing factors with respect to accessible nitrogen surface atoms and respective concentrations. The model showed good adequacy hence providing a tool to tailor the surface properties of chitosan/poly(ethylene oxide) blends by addressing the amount of accessible chitosan. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces.

    Science.gov (United States)

    He, Xin; Kim, Seong H

    2018-02-20

    Mechanochemical reactions between adsorbate molecules sheared at tribological interfaces can induce association of adsorbed molecules, forming oligomeric and polymeric products often called tribopolymers). This study revealed the role or effect of surface chemistry of the solid substrate in mechanochemical polymerization reactions. As a model reactant, α-pinene was chosen because it was known to readily form tribopolymers at the sliding interface of stainless steel under vapor-phase lubrication conditions. Eight different substrate materials were tested-palladium, nickel, copper, stainless steel, gold, silicon oxide, aluminum oxide, and diamond-like carbon (DLC). All metal substrates and DLC were initially covered with surface oxide species formed naturally in air or during the oxidative sample cleaning. It was found that the tribopolymerization yield of α-pinene is much higher on the substrates that can chemisorb α-pinene, compared to the ones on which only physisorption occurs. From the load dependence of the tribopolymerization yield, it was found that the surfaces capable of chemisorption give a smaller critical activation volume for the mechanochemical reaction, compared to the ones capable of physisorption only. On the basis of these observations and infrared spectroscopy analyses of the adsorbed molecules and the produced polymers, it was concluded that the mechanochemical reaction mechanisms might be different between chemically reactive and inert surfaces and that the chemical reactivity of the substrate surface greatly influences the tribochemical polymerization reactions of adsorbed molecules.

  10. CO2 dissociation activated through electron attachment on reduced rutile TiO2(110)-1x1 surface

    OpenAIRE

    Tan, Shijing; Zhao, Yan; Zhao, Jin; Wang, Zhuo; Ma, Chuanxu; Zhao, Aidi; Wang, Bing; Luo, Yi; Yang, Jinlong; Hou, Jianguo

    2011-01-01

    Converting CO$_2$ to useful compounds through the solar photocatalytic reduction has been one of the most promising strategies for artificial carbon recycling. The highly relevant photocatalytic substrate for CO$_2$ conversion has been the popular TiO$_2$ surfaces. However, the lack of accurate fundamental parameters that determine the CO$_2$ reduction on TiO$_2$ has limited our ability to control these complicated photocatalysis processes. We have systematically studied the reduction of CO2 ...

  11. An investigation into heat recovery from the surface of a cyclone dust collector attached to a downdraft biomass gasifier

    International Nuclear Information System (INIS)

    Nwokolo, Nwabunwanne; Mamphweli, Sampson; Makaka, Golden

    2016-01-01

    Highlights: • At a temperature of 450 °C–500 °C, hot syngas is regarded as a good heat carrier. • A significant quantity of energy (665893.07 kcal) is lost via the surface of the cyclone. • The surface temperature 150 °C–220 °C was within the low waste heat recovery temperature. - Abstract: The gas leaving the reactor of a downdraft biomass gasifier contains large quantities of heat energy; this is due to the fact that the gas passes through a hot bed of charcoal before leaving the reactor. This heat is normally wasted in the gas scrubber/cooler that cools it from between 400 °C–500 °C to ambient temperature (around 25 °C). The waste heat stream under consideration is the raw syngas that emanates from a gasification process in a downdraft gasifier situated at Melani Village, Eastern Cape. This loss of heat is undesirable as it impacts on the thermal efficiency of the system. This study investigates the feasibility of heat recovery from the surface of the cyclone dust collector prior to entering the gas scrubber. It was shown that there was a downward decrease in temperature along the length of the cyclone. It is found that the total quantity of heat contained in the gas was 665893.07 kcal, which could indicate the viability of recovering heat from the cyclone.

  12. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs.

    NARCIS (Netherlands)

    Davison, N.L.; Su, J.; Yuan, H.; Beucken, J.J.J.P van den; Bruijn, J.D. de; rrere-de Groot, F. Ba

    2015-01-01

    It has been reported that surface microstructural dimensions can influence the osteoinductivity of calcium phosphates (CaPs), and osteoclasts may play a role in this process. We hypothesised that surface structural dimensions of

  13. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus).

    Science.gov (United States)

    Di Fino, A; Petrone, L; Aldred, N; Ederth, T; Liedberg, B; Clare, A S

    2014-02-01

    In laboratory-based biofouling assays, the influence of physico-chemical surface characteristics on barnacle settlement has been tested most frequently using the model organism Balanus amphitrite (= Amphibalanus amphitrite). Very few studies have addressed the settlement preferences of other barnacle species, such as Balanus improvisus (= Amphibalanus improvisus). This study aimed to unravel the effects of surface physico-chemical cues, in particular surface-free energy (SFE) and surface charge, on the settlement of cyprids of B. improvisus. The use of well-defined surfaces under controlled conditions further facilitates comparison of the results with recent similar data for B. amphitrite. Zero-day-old cyprids of B. improvisus were exposed to a series of model surfaces, namely self-assembled monolayers (SAMs) of alkanethiols with varying end-groups, homogenously applied to gold-coated polystyrene (PS) Petri dishes. As with B. amphitrite, settlement of cyprids of B. improvisus was influenced by both SFE and charge, with higher settlement on low-energy (hydrophobic) surfaces and negatively charged SAMs. Positively charged SAMs resulted in low settlement, with intermediate settlement on neutral SAMs of similar SFE. In conclusion, it is demonstrated that despite previous suggestions to the contrary, these two species of barnacle show similar preferences in response to SFE; they also respond similarly to charge. These findings have positive implications for the development of novel antifouling (AF) coatings and support the importance of consistency in substratum choice for assays designed to compare surface preferences of fouling organisms.

  14. Gas-surface interactions and heterogeneous chemistry on interstellar grains analogues

    NARCIS (Netherlands)

    Fillion, J. H.; Dulieu, F.; Romanzin, C.; Cazaux, S.

    Detailed laboratory studies and progress in surface science technique, have allowed in recent years the first experimental confirmation of surface reaction schemes, as introduced by Tielens, Hagen and Charnley [1,2]. In this paper, we review few heterogeneous processes which give routes to form

  15. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  16. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  17. Multiparametric Assessment of Gold Nanoparticle Cytotoxicity in Cancerous and Healthy Cells: The Role of Size, Shape, and Surface Chemistry.

    Science.gov (United States)

    Bhamidipati, Manjari; Fabris, Laura

    2017-02-15

    In recent years, we and others have become interested in evaluating the use of surface-enhanced Raman scattering (SERS) tags for early cancer detection and in designing new approaches to demonstrate the applicability of this spectroscopic technique in the clinic. SERS-based imaging in particular offers ultra sensitivity up to the single molecule, multiplexing capability, and increased photostability and has been shown to outperform fluorescence. However, to employ SERS tags for early cancer detection, it is important to understand their interaction with cells and determine their cytotoxicity. We have been particularly interested for quite some time in determining if and how gold nanostars, which have been demonstrated as outstanding SERS enhancing substrates, can be safely employed in living systems and translated to the clinic. In this study, we carried out a multiparametric in vitro study to look at the cytotoxicity and cellular uptake of gold nanoparticles on human glioblastoma and human dermal fibroblast cell lines. Cytotoxicity was evaluated by incubating cells with three different morphologies of AuNPs, namely nanospheres, nanorods, and nanostars, each having three different surface chemistries (cetyltrimethylammonium bromide (CTAB), poly(ethylene glycol) (PEG), and human serum albumin (HSA)). Our results showed that the surface chemistry of the nanoparticles had predominant effects on cytotoxicity, and the morphology and size of the nanoparticles only slightly affected cell viability. CTAB-coated particles were found to be the most toxic to cells, and PEGylated nanostars were determined to be the least toxic. Caspase-3 assay and LDH assay revealed that cell death occurs via apoptosis for cancerous cells and via necrosis for healthy ones. Cellular uptake studies carried out via TEM showed that the particles retain their shape even at long incubation times, which may be beneficial for in vivo SERS-based disease detection. Overall, this study provides valuable

  18. In-plume gas scavenging: Insights into gas adsorption, ash-surface chemistry and the role of water

    Science.gov (United States)

    Casas, Ana S.; Wadsworth, Fabian; Ayris, Paul M.; Cimarelli, Corrado; Dingwell, Donald B.

    2017-04-01

    In-plume gas scavenging-processes are well known to occur in large volcanic eruptions, where, over the range of plume conditions (temperature and gas composition) and physicochemical ash-surface properties, volcanic gases (mainly SO2, HCl, and HF) can be sequestrated by the occurrence (alone or combined) of three processes: (1) salt deposition, (2) adsorption, or (3) acidic liquid condensation on the ash-surface. Several studies have sought to constrain the diffusion-driven mechanisms through which scavenging occurs, the optimal temperatures for efficient scavenging, and the likely reaction products formed. Here we bolster these datasets with new high-resolution experimental work. Our current project additionally seeks to identify the role of water vapour in gas scavenging processes using a time- and temperature- series of experiments with well-characterized ash samples, for which, particle size distribution, surface area, and bulk chemistry were constrained. These samples will be exposed to various hydrous and anhydrous gas atmospheres with proportions of some plume-relevant gas mixtures (SO2, SO2-H2O) at high temperatures (200 to 800 °C) for various time series (1 to 60 min.) in the Advanced Ash-Gas Reactor (AGAR) available at the LMU chemistry laboratory. Post-experimental samples are analyzed by standard leachate techniques. We show that a diffusion-controlled sequestration mechanism will be strongly temperature dependent proportional to the diffusivity of the mobile species. In complex mixtures of gases, which could result in the diffusion of more than a single species, it remains to be tested whether simple diffusion models can yield average sequestration volumes. This will be tested explicitly using simple diffusion time scaling laws. Future work should target the additional combined effects of HCl, SO2 and H2O in more realistic complex volcanic atmospheres.

  19. Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vatansever, Fatma, E-mail: vatansever.fatma@mgh.harvard.edu; Hamblin, Michael R., E-mail: hamblin@helix.mgh.harvard.edu [Massachusetts General Hospital, Wellman Center for Photomedicine (United States)

    2016-10-15

    Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original tri-octylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm.

  20. Determining the thickness of aliphatic alcohol monolayers covalently attached to silicon oxide surfaces using angle-resolved X-ray photoelectron spectroscopy

    Science.gov (United States)

    Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.

    2018-04-01

    The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.

  1. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  2. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.; Gundel, LaraA.

    2005-05-01

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water mass uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.

  3. Microbial background flora in small-scale cheese production facilities does not inhibit growth and surface attachment of Listeria monocytogenes.

    Science.gov (United States)

    Schirmer, B C T; Heir, E; Møretrø, T; Skaar, I; Langsrud, S

    2013-10-01

    The background microbiota of 5 Norwegian small-scale cheese production sites was examined and the effect of the isolated strains on the growth and survival of Listeria monocytogenes was investigated. Samples were taken from the air, food contact surfaces (storage surfaces, cheese molds, and brine) and noncontact surfaces (floor, drains, and doors) and all isolates were identified by sequencing and morphology (mold). A total of 1,314 isolates were identified and found to belong to 55 bacterial genera, 1 species of yeast, and 6 species of mold. Lactococcus spp. (all of which were Lactococcus lactis), Staphylococcus spp., Microbacterium spp., and Psychrobacter sp. were isolated from all 5 sites and Rhodococcus spp. and Chryseobacterium spp. from 4 sites. Thirty-two genera were only found in 1 out of 5 facilities each. Great variations were observed in the microbial background flora both between the 5 producers, and also within the various production sites. The greatest diversity of bacteria was found in drains and on rubber seals of doors. The flora on cheese storage shelves and in salt brines was less varied. A total of 62 bacterial isolates and 1 yeast isolate were tested for antilisterial activity in an overlay assay and a spot-on-lawn assay, but none showed significant inhibitory effects. Listeria monocytogenes was also co-cultured on ceramic tiles with bacteria dominating in the cheese production plants: Lactococcus lactis, Pseudomonas putida, Staphylococcus equorum, Rhodococcus spp., or Psychrobacter spp. None of the tested isolates altered the survival of L. monocytogenes on ceramic tiles. The conclusion of the study was that no common background flora exists in cheese production environments. None of the tested isolates inhibited the growth of L. monocytogenes. Hence, this study does not support the hypothesis that the natural background flora in cheese production environments inhibits the growth or survival of L. monocytogenes. Copyright © 2013 American

  4. Distinguishing metal bioconcentration from particulate matter in moss tissue: Testing methods of removing particles attached to the moss surface

    Energy Technology Data Exchange (ETDEWEB)

    Spagnuolo, V.; Giordano, S. [Department of Biology, University of Naples Federico II, Via Cintia 4, I-80126 Napoli (Italy); Pérez-Llamazares, A.; Ares, A.; Carballeira, A.; Fernández, J.A. [Area de Ecología, Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Aboal, J.R., E-mail: jesusramon.aboal@usc.es [Area de Ecología, Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2013-10-01

    Accurate differentiation of the proportion of bioconcentrated metals (i.e. incorporated into cells) and the proportion that is not bioconcentrated (i.e. adsorbed at the surface) would lead to a better understanding of the uptake processes and would represent an advance in the use of mosses as biomonitors. Traditionally the methods used to remove contaminants that are not bioconcentrated were to wash the plant material with water or to apply the sequential elution technique, but nowadays both options are considered inaccurate for these purposes. The remaining possibilities are to clean the moss samples with a nitrogen jet or by power ultrasound. Samples of terrestrial moss Pseudoscleropodium purum (Hewd.) Fleisch. were collected from five sampling stations. Different nitrogen jet cleaning procedures and ultrasound cleaning procedures were applied to the mosses. To determine whether any of the treatments altered the membrane integrity of the moss samples, the concentrations of K were determined. The shoots were observed under a scanning electron microscope, and the size and number of particles were determined. Nitrogen jet cleaning was determined to be unacceptable because it damaged the phyllids and/or altered the membrane permeability and did not eliminate the particles from the moss surface. Moreover, ultrasound cleaning treatment should also discarded because of the loss of extracellular metals that are transferred to the water in which the moss is cleaned. - Highlights: • The cleaning of surface particles on mosses is an unresolved issue • The use of a nitrogen jet as cleaning procedure was ruled out • The use of ultrasound treatments as cleaning procedure was also discarded • Currently it is not possible to quantify the bioconcentrated metal fraction in mosses.

  5. Distinguishing metal bioconcentration from particulate matter in moss tissue: Testing methods of removing particles attached to the moss surface

    International Nuclear Information System (INIS)

    Spagnuolo, V.; Giordano, S.; Pérez-Llamazares, A.; Ares, A.; Carballeira, A.; Fernández, J.A.; Aboal, J.R.

    2013-01-01

    Accurate differentiation of the proportion of bioconcentrated metals (i.e. incorporated into cells) and the proportion that is not bioconcentrated (i.e. adsorbed at the surface) would lead to a better understanding of the uptake processes and would represent an advance in the use of mosses as biomonitors. Traditionally the methods used to remove contaminants that are not bioconcentrated were to wash the plant material with water or to apply the sequential elution technique, but nowadays both options are considered inaccurate for these purposes. The remaining possibilities are to clean the moss samples with a nitrogen jet or by power ultrasound. Samples of terrestrial moss Pseudoscleropodium purum (Hewd.) Fleisch. were collected from five sampling stations. Different nitrogen jet cleaning procedures and ultrasound cleaning procedures were applied to the mosses. To determine whether any of the treatments altered the membrane integrity of the moss samples, the concentrations of K were determined. The shoots were observed under a scanning electron microscope, and the size and number of particles were determined. Nitrogen jet cleaning was determined to be unacceptable because it damaged the phyllids and/or altered the membrane permeability and did not eliminate the particles from the moss surface. Moreover, ultrasound cleaning treatment should also discarded because of the loss of extracellular metals that are transferred to the water in which the moss is cleaned. - Highlights: • The cleaning of surface particles on mosses is an unresolved issue • The use of a nitrogen jet as cleaning procedure was ruled out • The use of ultrasound treatments as cleaning procedure was also discarded • Currently it is not possible to quantify the bioconcentrated metal fraction in mosses

  6. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels-Alder reaction employing microcontact chemistry.

    Science.gov (United States)

    Roling, Oliver; Mardyukov, Artur; Lamping, Sebastian; Vonhören, Benjamin; Rinnen, Stefan; Arlinghaus, Heinrich F; Studer, Armido; Ravoo, Bart Jan

    2014-10-21

    Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules. Recently, inverse electron demand Diels-Alder (iEDDA) reactions employing 1,2,4,5-tetrazines as electron deficient dienes emerged as powerful tools in this field. We adapted iEDDA in microcontact chemistry (μCC) in order to create enhanced surface functions. μCC is a straightforward soft-lithography technique which enables fast and large area patterning with high pattern resolutions. In this work, tetrazine functionalized surfaces were reacted with carbohydrates conjugated with norbornene or cyclooctyne acting as strained electron rich dienophiles employing μCC. It was possible to create monofunctional as well as bifunctional substrates which were specifically addressable by proteins. Furthermore we structured glass supported alkene terminated self-assembled monolayers with a tetrazine conjugated atom transfer radical polymerization (ATRP) initiator enabling surface grafted polymerizations of poly(methylacrylate) brushes. The success of the surface initiated iEDDA via μCC as well as the functionalization with natural and synthetic polymers was verified via fluorescence and optical microscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).

  7. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Corrosion resistance, chemistry, and mechanical aspects of Nitinol surfaces formed in hydrogen peroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Shabalovskay, Svetlana A.; Anderegg, James W.; Undisz, Andreas; Rettenmayr, Markus; Rondelli, Gianni C.

    2012-06-12

    Ti oxides formed naturally on Nitinol surfaces are only a few nanometers thick. To increase their thickness, heat treatments are explored. The resulting surfaces exhibit poor resistance to pitting corrosion. As an alternative approach to accelerate surface oxidation and grow thicker oxides, the exposure of Nitinol to strong oxidizing H2O2 aqueous solutions (3 and 30%) for various periods of time was used. Using X-Ray Photoelectron Spectroscopy (XPS) and Auger spectroscopy, it was found that the surface layers with variable Ti (6–15 at %) and Ni (5–13 at %) contents and the thickness up to 100 nm without Ni-enriched interfaces could be formed. The response of the surface oxides to stress in superelastic regime of deformations depended on oxide thickness. In the corrosion studies performed in both strained and strain-free states using potentiodynamic and potentiostatic polarizations, the surfaces treated in H2O2 showed no pitting in corrosive solution that was assigned to higher chemical homogeneity of the surfaces free of secondary phases and inclusions that assist better biocompatibility of Nitinol medical devices. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1490–1499, 2012

  9. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids

    International Nuclear Information System (INIS)

    Patachia, Silvia; Croitoru, Catalin; Friedrich, Christian

    2012-01-01

    In this paper, the influence of four types of imidazolium-based ionic liquids (ILs) on the chemical alteration of the surface of wood veneers exposed to 254 nm UV irradiation have been studied by using image analysis, Fourier transform infrared spectroscopy and surface energy calculation. The wood treated with ionic liquids showed better stability to UV light, as demonstrated by the low lignin, carbonyl index and cellulose crystallinity index variation, as well as very small color modification of the surface with the increase of the UV exposure period, by comparing to non-treated wood. The results show that the tested ionic liquids could be effective as UV stabilizers.

  10. Distinguishing metal bioconcentration from particulate matter in moss tissue: testing methods of removing particles attached to the moss surface.

    Science.gov (United States)

    Spagnuolo, V; Giordano, S; Pérez-Llamazares, A; Ares, A; Carballeira, A; Fernández, J A; Aboal, J R

    2013-10-01

    Accurate differentiation of the proportion of bioconcentrated metals (i.e. incorporated into cells) and the proportion that is not bioconcentrated (i.e. adsorbed at the surface) would lead to a better understanding of the uptake processes and would represent an advance in the use of mosses as biomonitors. Traditionally the methods used to remove contaminants that are not bioconcentrated were to wash the plant material with water or to apply the sequential elution technique, but nowadays both options are considered inaccurate for these purposes. The remaining possibilities are to clean the moss samples with a nitrogen jet or by power ultrasound. Samples of terrestrial moss Pseudoscleropodium purum (Hewd.) Fleisch. were collected from five sampling stations. Different nitrogen jet cleaning procedures and ultrasound cleaning procedures were applied to the mosses. To determine whether any of the treatments altered the membrane integrity of the moss samples, the concentrations of K were determined. The shoots were observed under a scanning electron microscope, and the size and number of particles were determined. Nitrogen jet cleaning was determined to be unacceptable because it damaged the phyllids and/or altered the membrane permeability and did not eliminate the particles from the moss surface. Moreover, ultrasound cleaning treatment should also discarded because of the loss of extracellular metals that are transferred to the water in which the moss is cleaned. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility

    Directory of Open Access Journals (Sweden)

    Martina Schleicher

    2012-01-01

    Full Text Available In vivo self-endothelialization by endothelial cell adhesion on cardiovascular implants is highly desirable. DNA-oligonucleotides are an intriguing coating material with nonimmunogenic characteristics and the feasibility of easy and rapid chemical fabrication. The objective of this study was the creation of cell adhesive DNA-oligonucleotide coatings on vascular implant surfaces. DNA-oligonucleotides immobilized by adsorption on parylene (poly(monoaminomethyl-para-xylene coated polystyrene and ePTFE were resistant to high shear stress (9.5 N/m2 and human blood serum for up to 96 h. Adhesion of murine endothelial progenitor cells, HUVECs and endothelial cells from human adult saphenous veins as well as viability over a period of 14 days of HUVECs on oligonucleotide coated samples under dynamic culture conditions was significantly enhanced (P<0.05. Oligonucleotide-coated surfaces revealed low thrombogenicity and excellent hemocompatibility after incubation with human blood. These properties suggest the suitability of immobilization of DNA-oligonucleotides for biofunctionalization of blood vessel substitutes for improved in vivo endothelialization.

  12. Surface chemistry of metals and their oxides in high temperature water

    International Nuclear Information System (INIS)

    Tomlinson, M.

    1975-01-01

    Examination of oxide and metal surfaces in water at high temperature by a broad spectrum of techniques is bringing understanding of corrosion product movement and alleviation of activity transport in CANDU-type reactor primary coolant circuits. (Author)

  13. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  14. Scanning near-field optical microscopy on rough surfaces: Applications in chemistry, biology, and medicine

    OpenAIRE

    Kaupp, Gerd

    2006-01-01

    Shear-force apertureless scanning near-field optical microscopy (SNOM) with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials) contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The ex...

  15. Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics.

    Science.gov (United States)

    Mansbach, Rachael A; Ferguson, Andrew L

    2015-03-14

    The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.

  16. Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers

    International Nuclear Information System (INIS)

    Haensch, Claudia; Hoeppener, Stephanie; Schubert, Ulrich S

    2008-01-01

    The functionalization of surfaces and the ability to tailor their properties with desired physico-chemical functions is an important field of research with a broad spectrum of applications. These applications range from the modification of wetting properties, over the alteration of optical properties, to the fabrication of molecular electronic devices. In each of these fields, it is of specific importance to be able to control the quality of the layers with high precision. The present study demonstrates an approach that utilizes the 1,3-dipolar cycloaddition of terminal acetylenes to prepare triazole-terminated monolayers on different substrates. The characterization of the precursor monolayers, the optimization of the chemical surface reactions as well as the clicking of a fluorescent dye molecule on such azide-terminated monolayers was carried out. A coumarin 343 derivative was utilized to discuss the aspects of the functionalization approach. Based on this approach, a number of potential surface reactions, facilitated via the acetylene-substituted functional molecules, for a broad range of applications is at hand, thus leading to numerous possibilities where surface modifications are concerned. These modifications can be applied on non-structured surfaces of silicon or glass or can be used on structured surfaces. Various possibilities are discussed

  17. Development and Application of a Flow Reactor Cell for Studies of Surface Chemistry

    Science.gov (United States)

    Algrim, L. B.; Pagonis, D.; Price, D.; Day, D. A.; De Gouw, J. A.; Jimenez, J. L.; Ziemann, P. J.

    2017-12-01

    We have designed, constructed, characterized, and employed a flow reactor cell that can be used to investigate the interaction of gaseous species such as volatile organic compounds (VOCs), oxidants, acids, and water vapor with authentic and model surfaces that are present in indoor and outdoor environments. The 3.9 L rectangular cell is made of FEP-coated aluminum and has one open face that can be sealed to the surface of interest. An internal plunger is raised (lowered) to expose (cover) the surface while various probe chemicals are added to the flow. To date we have exposed painted surfaces to O3, OH radicals (made from reaction of O3 with tetramethylethene and from photolysis of methyl nitrate/NO mixtures), and NO3 radicals (made from thermal decomposition N2O5) and analyzed the emitted oxidation products with a proton transfer reaction mass spectrometer (PTR-MS) and chemical ionization mass spectrometer (CIMS) equipped with an iodide reagent ion source. Further studies have included the reaction of oxidants with surfaces coated with organic films such as squalene and polyethylene glycol, as well as uptake of ketones and acids from the gas-phase to painted surfaces. The cell was also recently deployed at the University of Colorado-Boulder Art Museum during spring of 2017 to investigate the oxidation products released from the museum walls and floors. Results from all of these studies will be presented.

  18. Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review

    Science.gov (United States)

    Khan, M. A.; Nadeem, M. A.; Idriss, H.

    2016-03-01

    The current efficiency of various photocatalytic processes is limited by the recombination of photogenerated electron-hole pairs in the photocatalyst as well as the back-reaction of intermediate species. This review concentrates on the use of ferroelectric polarization to mitigate electron-hole recombination and back-reactions and therefore improve photochemical reactivity. Ferroelectric materials are considered as wide band gap polarizable semiconductors. Depending on the surface polarization, different regions of the surface experience different extents of band bending and promote different carriers to move to spatially different locations. This can lead to some interesting interactions at the surface such as spatially selective adsorption and surface redox reactions. This introductory review covers the fundamental properties of ferroelectric materials, effect of an internal electric field/polarization on charge carrier separation, effect of the polarization on the surface photochemistry and reviews the work done on the use of these ferroelectric materials for photocatalytic applications such as dye degradation and water splitting. The manipulation of photogenerated charge carriers through an internal electric field/surface polarization is a promising strategy for the design of improved photocatalysts.

  19. Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, F. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: antonella.rossi@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100, Cagliari (Italy); Lainé, E.; Woodward, P. [Enabling Research, Infineum UK Ltd., Milton Hill, Steventon, Oxfordshire OX13 6BD (United Kingdom); Spencer, N.D., E-mail: nicholas.spencer@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland)

    2017-02-28

    Highlights: • The additives bulk interactions in “neat” blends at high temperatures is evaluated. • The competition among the different additives to react with air-oxidized steel surfaces under pure thermal condition is investigated. • Different thermal films are grown, their in depth-composition and thickness is determined by ARXPS. • A reaction mechanism is proposed for elucidating the composition of the thermals films. - Abstract: Understanding the interactions among the various additives in a lubricant is important because they can have a major influence on the performance of blends under tribological conditions. The present investigation is focused on the interactions occurring between ZnDTP and dispersant molecules in an oil formulation, and on their reactivity under purely thermal conditions in the presence of air-oxidized iron surfaces. Nuclear magnetic resonance spectroscopy (NMR) was performed on undiluted blends at different temperatures, while angle-resolved X-ray photoelectron spectroscopy (ARXPS) was exploited to investigate the surface reactivity on oxidized iron surfaces. The results indicate that the dispersant, generally added to blends for preventing the deposition of sludge, varnish and soot on the surface, might also inhibit the reaction of all other additives with the steel surface.

  20. Acidic deposition: State of science and technology. Report 14. Methods for projecting future changes in surface water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Thornton, K.W.; Marmorek, D.; Ryan, P.F.; Heltcher, K.; Robinson, D.

    1990-09-01

    The objectives of the report are to: critically evaluate methods for projecting future effects of acidic deposition on surface water acid-base chemistry; review and evaluate techniques and procedures for analyzing projection uncertainty; review procedures for estimating regional lake and stream population attributes; review the U.S. Environmental Protection Agency (EPA) Direct/Delayed Response Project (DDRP) methodology for projecting the effects of acidic deposition on future changes in surface water acid-base chemistry; and present the models, uncertainty estimators, population estimators, and proposed approach selected to project the effects of acidic deposition on future changes in surface water acid-base chemistry in the NAPAP 1990 Integrated Assessment and discuss the selection rationale

  1. Olefin Cross-Metathesis in Polymer and Polysaccharide Chemistry: A Review.

    Science.gov (United States)

    Dong, Yifan; Matson, John B; Edgar, Kevin J

    2017-06-12

    Olefin cross-metathesis, a ruthenium-catalyzed carbon-carbon double bond transformation that features high selectivity, reactivity, and tolerance of various functional groups, has been extensively applied in organic synthesis and polymer chemistry. Herein, we review strategies for performing selective cross-metathesis and its applications in polymer and polysaccharide chemistry, including constructing complex polymer architectures, attaching pendant groups to polymer backbones and surfaces, and modifying polysaccharide derivatives.

  2. Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance

    Science.gov (United States)

    Achour, Amine; Porto, Raul Lucio; Soussou, Mohamed-Akram; Islam, Mohammad; Boujtita, Mohammed; Aissa, Kaltouma Ait; Le Brizoual, Laurent; Djouadi, Abdou; Brousse, Thierry

    2015-12-01

    Electrochemical capacitors (EC) in the form of packed films can be integrated in various electronic devices as power source. A fabrication process of EC electrodes, which is compatible with micro-fabrication, should be addressed for practical applications. Here, we show that titanium nitride films with controlled porosity can be deposited on flat silicon substrates by reactive DC-sputtering for use as high performance micro-supercapacitor electrodes. A superior volumetric capacitance as high as 146.4 F cm-3, with an outstanding cycling stability over 20,000 cycles, was measured in mild neutral electrolyte of potassium sulfate. The specific capacitance of the films as well as their capacitance retentions were found to depend on thickness, porosity and surface chemistry of electrodes. The one step process used to fabricate these TiN electrodes and the wide use of this material in the field of semiconductor technology make it promising for miniaturized energy storage systems.

  3. Orientation-dependent chemistry and band-bending of Ti on polar ZnO surfaces.

    Science.gov (United States)

    Borghetti, Patrizia; Mouchaal, Younes; Dai, Zongbei; Cabailh, Gregory; Chenot, Stéphane; Lazzari, Rémi; Jupille, Jacques

    2017-04-19

    Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 Å) on polar ZnO(0001)-Zn and ZnO(0001[combining macron])-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(0001[combining macron])-O while no change occurred on ZnO(0001)-Zn. Combining this with the photoemission analysis of the Ti 2p core level and Zn L 3 (L 2 )M 45 M 45 Auger transition, it is established that the Ti/ZnO reaction is of the form Ti + 2ZnO → TiO 2 + 2Zn on ZnO(0001)-Zn and Ti + yZnO → TiZn x O y + (y - x)Zn on ZnO(0001[combining macron])-O. Consistently, upon annealing thicker Ti adlayers, the metallic zinc is removed to leave ZnO(0001)-Zn surfaces covered with a TiO 2 -like phase and ZnO(0001[combining macron])-O surfaces covered with a defined (Ti, Zn, O) compound. Finally, a difference in the activation temperature between the O-terminated (500 K) and Zn-terminated (700 K) surfaces is observed, which is tentatively explained by different electric fields in the space charge layer at ZnO surfaces.

  4. XPS study of the surface chemistry of UO2 (111) single crystal film

    Science.gov (United States)

    Maslakov, Konstantin I.; Teterin, Yury A.; Popel, Aleksej J.; Teterin, Anton Yu.; Ivanov, Kirill E.; Kalmykov, Stepan N.; Petrov, Vladimir G.; Springell, Ross; Scott, Thomas B.; Farnan, Ian

    2018-03-01

    A (111) air-exposed surface of UO2 thin film (150 nm) on (111) YSZ (yttria-stabilized zirconia) before and after the Ar+ etching and subsequent in situ annealing in the spectrometer analytic chamber was studied by XPS technique. The U 5f, U 4f and O 1s electron peak intensities were employed for determining the oxygen coefficient kO = 2 + x of a UO2+x oxide on the surface. It was found that initial surface (several nm) had kO = 2.20. A 20 s Ar+ etching led to formation of oxide UO2.12, whose composition does not depend significantly on the etching time (up to 180 s). Ar+ etching and subsequent annealing at temperatures 100-380 °C in vacuum was established to result in formation of stable well-organized structure UO2.12 reflected in the U 4f XPS spectra as high intensity (∼28% of the basic peak) shake-up satellites 6.9 eV away from the basic peaks, and virtually did not change the oxygen coefficient of the sample surface. This agrees with the suggestion that a stable (self-assembling) phase with the oxygen coefficient kO ≈ 2.12 forms on the UO2 surface.

  5. A Pterin-Dependent Signaling Pathway Regulates a Dual-Function Diguanylate Cyclase-Phosphodiesterase Controlling Surface Attachment in Agrobacterium tumefaciens.

    Science.gov (United States)

    Feirer, Nathan; Xu, Jing; Allen, Kylie D; Koestler, Benjamin J; Bruger, Eric L; Waters, Christopher M; White, Robert H; Fuqua, Clay

    2015-06-30

    The motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogen Agrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin. The levels of c-di-GMP in A. tumefaciens are controlled in part by the dual-function diguanylate cyclase-phosphodiesterase (DGC-PDE) protein DcpA. In this study, we report that DcpA possesses both c-di-GMP synthesizing and degrading activities in heterologous and native genetic backgrounds, a binary capability that is unusual among GGDEF-EAL domain-containing proteins. DcpA activity is modulated by a pteridine reductase called PruA, with DcpA acting as a PDE in the presence of PruA and a DGC in its absence. PruA enzymatic activity is required for the control of DcpA and through this control, attachment and biofilm formation. Intracellular pterin analysis demonstrates that PruA is responsible for the production of a novel pterin species. In addition, the control of DcpA activity also requires PruR, a protein encoded directly upstream of DcpA with a predicted molybdopterin-binding domain. PruR is hypothesized to be a potential signaling intermediate between PruA and DcpA through an as-yet-unidentified mechanism. This study provides the first prokaryotic example of a pterin-mediated signaling pathway and a new model for the regulation of dual-function DGC-PDE proteins. Pathogenic bacteria often attach to surfaces and form multicellular communities called biofilms. Biofilms are inherently resilient and can be difficult to treat, resisting common antimicrobials. Understanding how bacterial cells transition to the biofilm lifestyle is essential in developing new therapeutic strategies. We have

  6. Polymer surface modification using UV treatment for attachment of natamycin and the potential applications for conventional food cling wrap (LDPE)

    Science.gov (United States)

    Shin, Joongmin; Liu, Xiaojing; Chikthimmah, Naveen; Lee, Youn Suk

    2016-11-01

    The purpose of this study was to develop an active non-migratory antifungal Low Density Polyethylene (LDPE) polymer for use in food packaged applications. The functional acrylic acid monomer was grafted on the LDPE film surface by photo-initiated graft polymerization using Ultra Violet light irradiation (from 0 to 5 min). Natamycin, an antifungal agent, was applied to the treated film to bind with the pendent functional groups and were evaluated its performance against mold and yeast. The grafted amounts were determined by gravimetric measurement and dye absorbance. Attenuated Total Reflectance/Fourier Transfer Infrared Spectroscopy, scanning electron microscopy, mechanical strength test was used to characterize film properties. The antifungal efficacy of the film was evaluated with Saccharomyces cerevisiae and Penicillium chrysogenum on growth media and fresh cut cantaloupe. The amounts of the grafted group were increased with the longer ultraviolet exposure time. The amount of the grafted natamycin on the treated film was up to 49.87 μg/cm2, and the film inhibited mycelium formation of P. chrysogenum spores by over 60%. Due to the thickness of the film (less than 12.25 μm), long time UV exposure decrease the film's mechanical strength. The application of such non-migratory active packaging film represents a promising approach to maintaining food quality with reduced additive.

  7. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  8. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  9. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    Science.gov (United States)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  10. Correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Feliu, S.; Pardo, A.; Merino, M.C.; Coy, A.E.; Viejo, F.; Arrabal, R.

    2009-01-01

    X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 deg. C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH) 2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH) 2 . A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.

  11. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes

    KAUST Repository

    Chan, Candace K.

    2009-04-01

    Silicon nanowires (SiNWs) have the potential to perform as anodes for lithium-ion batteries with a much higher energy density than graphite. However, there has been little work in understanding the surface chemistry of the solid electrolyte interphase (SEI) formed on silicon due to the reduction of the electrolyte. Given that a good, passivating SEI layer plays such a crucial role in graphite anodes, we have characterized the surface composition and morphology of the SEI formed on the SiNWs using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). We have found that the SEI is composed of reduction products similar to that found on graphite electrodes, with Li2CO3 as an important component. Combined with electrochemical impedance spectroscopy, the results were used to determine the optimal cycling parameters for good cycling. The role of the native SiO2 as well as the effect of the surface area of the SiNWs on reactivity with the electrolyte were also addressed. © 2009 Elsevier B.V. All rights reserved.

  12. Colloid and surface chemistry a laboratory guide for exploration of the nano world

    CERN Document Server

    Bucak, Seyda

    2013-01-01

    Scientific Research The research processEthics in Science Design of Experiments Fundamentals of Scientific Computing, Nihat Baysal Recording Data: Keeping a Good Notebook Presenting Data: Writing a Laboratory ReportReferencesCharacterization Techniques Surface Tension Measurements, Seyda BucakViscosity/Rheological Measurements, Patrick UnderhillElectrokinetic Techniques, Marek KosmulskiDiffraction (XRD), Deniz RendeScattering, Ulf OlssonMicroscopy, Cem Levent Altan and Nico A.J.M. SommerdijkColloids and Surfaces Experiment 1: SedimentationExperiment 2: Determination of Critical Micelle Concent

  13. Sulfamide chemistry applied to the functionalization of self-assembled monolayers on gold surfaces

    Directory of Open Access Journals (Sweden)

    Loïc Pantaine

    2017-04-01

    Full Text Available Aniline-terminated self-assembled monolayers (SAMs on gold surfaces have successfully reacted with ArSO2NHOSO2Ar (Ar = 4-MeC6H4 or 4-FC6H4 resulting in monolayers with sulfamide moieties and different end groups. Moreover, the sulfamide groups on the SAMs can be hydrolyzed showing the partial regeneration of the aniline surface. SAMs were characterized by water contact angle (WCA measurements, Fourier-transform infrared reflection absorption spectroscopy (IRRAS and X-ray photoelectron spectroscopy (XPS.

  14. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun, E-mail: hxjzxh@zju.edu.cn

    2016-11-30

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  15. Polymer surface modification using UV treatment for attachment of natamycin and the potential applications for conventional food cling wrap (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joongmin, E-mail: shinj@uwstout.edu [Engineering and Technology, University of Wisconsin-Stout, Menomonie, WI, 54751 (United States); Liu, Xiaojing [Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan (China); Chikthimmah, Naveen [Food Science and Technology, University of Wisconsin-Stout, Menomonie, WI, 54751 (United States); Lee, Youn Suk [Department of Packaging, Yonsei University, Gangwon 220-710 (Korea, Republic of)

    2016-11-15

    Highlights: • The study suggests an optimized method for UV-induced antimicrobial agents grafting on LDPE. • The study evaluated the effective of various solvents for acrylic acid and natamycin grafting on LDPE. • The study investigated chemical and mechanical property changes by various times of UV light treatments. • Natamycin grafted film demonstrated antifungal function against mold and yeast. - Abstract: The purpose of this study was to develop an active non-migratory antifungal Low Density Polyethylene (LDPE) polymer for use in food packaged applications. The functional acrylic acid monomer was grafted on the LDPE film surface by photo-initiated graft polymerization using Ultra Violet light irradiation (from 0 to 5 min). Natamycin, an antifungal agent, was applied to the treated film to bind with the pendent functional groups and were evaluated its performance against mold and yeast. The grafted amounts were determined by gravimetric measurement and dye absorbance. Attenuated Total Reflectance/Fourier Transfer Infrared Spectroscopy, scanning electron microscopy, mechanical strength test was used to characterize film properties. The antifungal efficacy of the film was evaluated with Saccharomyces cerevisiae and Penicillium chrysogenum on growth media and fresh cut cantaloupe. The amounts of the grafted group were increased with the longer ultraviolet exposure time. The amount of the grafted natamycin on the treated film was up to 49.87 μg/cm{sup 2}, and the film inhibited mycelium formation of P. chrysogenum spores by over 60%. Due to the thickness of the film (less than 12.25 μm), long time UV exposure decrease the film’s mechanical strength. The application of such non-migratory active packaging film represents a promising approach to maintaining food quality with reduced additive.

  16. On the Surface Chemistry of Iron Oxides in Reactive Gas Atmospheres

    NARCIS (Netherlands)

    de Smit, Emiel; van Schooneveld, Matti M.; Cinquini, Fabrizio; Bluhm, Hendrik; Sautet, Phillippe; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2011-01-01

    Heterogeneous catalysis is based on the generation and subsequent combination of chemical species retained on the surface of a catalytic solid. Elementary reaction steps, that is, the dissociation of reactants and association to products, take place at the solid–gas or solid–liquid interface.

  17. Phosphate availability in the soil-root system : integration of oxide surface chemistry, transport and uptake

    NARCIS (Netherlands)

    Geelhoed, J.S.

    1998-01-01

    A study is presented on the adsorption of phosphate on goethite, the interaction of phosphate with other adsorbing ions at the goethite surface, and the resulting availability of phosphate to plants. The plant-availability of sorbed phosphate was determined from phosphorus uptake of plants

  18. Study of Hexane Adsorption on Activated Carbons with Differences in Their Surface Chemistry.

    Science.gov (United States)

    Hernández-Monje, Diana; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2018-02-22

    The study of aliphatic compounds adsorption on activated carbon can be carried out from the energetic change involved in the interaction; the energy values can be determined from isotherms or by the immersion enthalpy. Vapor phase adsorption isotherms of hexane at 263 K on five activated carbons with different content of oxygenated groups and the immersion enthalpy of the activated carbons in hexane and water were determined in order to characterize the interactions in the solid-liquid system, and for calculating the hydrophobic factor of the activated carbons. The micropore volume and characteristic energy from adsorption isotherms of hexane, the BET (Brunauer-Emmett-Teller) surface area from the adsorption isotherms of N₂, and the area accessible to the hexane from the immersion enthalpy were calculated. The activated carbon with the lowest content of oxygenated groups (0.30 µmolg - ¹) and the highest surface area (996 m²g - ¹) had the highest hexane adsorption value: 0.27 mmol g - ¹; the values for E o were between 5650 and 6920 Jmol - ¹ and for ΔH im were between -66.1 and -16.4 Jg - ¹. These determinations allow us to correlate energetic parameters with the surface area and the chemical modifications that were made to the solids, where the surface hydrophobic character of the activated carbon favors the interaction.

  19. Chemistry of the sea surface microlayer. 1. Fabrication and testing of the sampler

    Digital Repository Service at National Institute of Oceanography (India)

    Singbal, S.Y.S.; Narvekar, P.V.

    A screen sampler fabricated to study the sea surface microlayer (SML) has been described. The screen sampler was tested in the Mandovi estuary and adjacent waters. Physico-chemical parameters of the subsurface waters from a depth of 25 cm was also...

  20. Effects of surface orientation, fluid chemistry and mechanical polishing on the variability of dolomite dissolution rates

    Science.gov (United States)

    Saldi, Giuseppe D.; Voltolini, Marco; Knauss, Kevin G.

    2017-06-01

    Recent studies of carbonate surface reactivity have underscored the fundamental variability of dissolution rates and the heterogeneous distribution of the reaction over the mineral surface due to the inhomogeneous distribution of surface energy. Dolomite dissolution rates relative to different cleavage planes (r-planes) and surfaces cut approximately perpendicular to the c-axis (c-planes) were studied at 50 °C as a function of pH (3.4 ≤ pH ≤ 9.0) and solution composition by vertical scanning interferometry (VSI) and atomic force microscopy (AFM), with the aim of providing an estimate of the intrinsic rate variation of dolomite single crystals and describing the surface reaction distribution and the rate controlling mechanisms. Surface normal retreat rates measured under acidic conditions increased linearly with time and were not visibly affected by the parallel increase of surface roughness. Mean total dissolution rates of r-planes decreased by over 200 times from pH 3.4 to pH 9.0 and CO32--rich solutions, whereas corresponding rate variations spanned over 3 orders of magnitude when also c-plane rate distributions were included in the analysis. At acid to near neutral pH, c-planes dissolved ∼ three times faster than the adjoining r-planes but slower at basic pH and high total carbon concentration, displaying a distinctive morphologic evolution in these two regimes. The comparison of polished and unpolished crystals showed that polished cleavage planes dissolved about three times faster than the unpolished counterpart at near neutral to basic conditions, whereas no significant difference in reactivity was observed at pH < 5. Although experimental data and observations indicate a tendency of dolomite faces to reach a low-energy topography over the course of the reaction, the evolution of the entire crystal morphology depends also on the reactivity of edge and corner regions, whose contribution to measured rates is not generally taken into account by laboratory

  1. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.

    Science.gov (United States)

    Patwardhan, Siddharth V; Emami, Fateme S; Berry, Rajiv J; Jones, Sharon E; Naik, Rajesh R; Deschaume, Olivier; Heinz, Hendrik; Perry, Carole C

    2012-04-11

    Control over selective recognition of biomolecules on inorganic nanoparticles is a major challenge for the synthesis of new catalysts, functional carriers for therapeutics, and assembly of renewable biobased materials. We found low sequence similarity among sequences of peptides strongly attracted to amorphous silica nanoparticles of various size (15-450 nm) using combinatorial phage display methods. Characterization of the surface by acid base titrations and zeta potential measurements revealed that the acidity of the silica particles increased with larger particle size, corresponding to between 5% and 20% ionization of silanol groups at pH 7. The wide range of surface ionization results in the attraction of increasingly basic peptides to increasingly acidic nanoparticles, along with major changes in the aqueous interfacial layer as seen in molecular dynamics simulation. We identified the mechanism of peptide adsorption using binding assays, zeta potential measurements, IR spectra, and molecular simulations of the purified peptides (without phage) in contact with uniformly sized silica particles. Positively charged peptides are strongly attracted to anionic silica surfaces by ion pairing of protonated N-termini, Lys side chains, and Arg side chains with negatively charged siloxide groups. Further, attraction of the peptides to the surface involves hydrogen bonds between polar groups in the peptide with silanol and siloxide groups on the silica surface, as well as ion-dipole, dipole-dipole, and van-der-Waals interactions. Electrostatic attraction between peptides and particle surfaces is supported by neutralization of zeta potentials, an inverse correlation between the required peptide concentration for measurable adsorption and the peptide pI, and proximity of cationic groups to the surface in the computation. The importance of hydrogen bonds and polar interactions is supported by adsorption of noncationic peptides containing Ser, His, and Asp residues, including

  2. The interaction of climate and glacial landforms on subsurface and surface hydrology and chemistry across a heterogeneous boreal plain landscape

    Science.gov (United States)

    Hokanson, Kelly; Carrera-Hernández, Jaime; Devito, Kevin; Mendoza, Carl

    2016-04-01

    The Boreal Plains (BP) region of Canada is experiencing high levels of anthropogenic activity and may be susceptible to climate change to various degrees. The BP is characterized by heterogeneous glacial landforms, with large contrasts in storage and transmissivity, which when coupled with wet-dry climate cycles, results in complex groundwater-surface water interactions. Predicting the impacts of land use change, climate change, and the future performance of constructed and reclaimed landscapes is currently not possible due to our limited knowledge regarding the natural variability of water table fluctuations, geochemistry, and salinity across the various glacial landforms in the BP. We compare isotopes, EC, chemistry (DOC, Ca, Mg, SO4) and water table position between a drought (2003) and a wet (2013) year to examine the interactions between climate, landform, and geology on the variation in landscape connectivity and overall salinity distribution. Data were collected from surface waters to a depth of 40 m, along a 50 km transect encompassing pond-wetland-forestland sequences across the major glacial depositional types typical of the BP (coarse textured glaciofluvial outwash, fine textured stagnant ice moraine, and lacustrine clay plain). Within each landform, sites range from isolated local flow systems to large intermediate scale flow systems. High spatial variability of water table fluctuations and salinity illustrate the strong regional controls that climate and geology exerts over scales of groundwater flow between landforms and surface water bodies across the BP, reinforcing the need to link surface water and groundwater processes when developing conceptual models. Additionally, when coupled with a strong, physical hydrogeologic conceptual model, synoptic chemical and isotopic surveys can be used to confirm scales and directions of flow; however, without an understanding of the climatic and geologic influence of the region, such data cannot be used as a

  3. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry

    KAUST Repository

    Yu, Weili

    2015-01-01

    Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

  4. Aqueous and Surface Chemistries of Photocatalytic Fe-Doped CeO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Duangdao Channei

    2017-01-01

    Full Text Available The present work describes the effects of water on Fe-doped nanoparticulate CeO2, produced by flame spray pyrolysis, which is a critical environmental issue because CeO2 is not stable in typical atmospheric conditions. It is hygroscopic and absorbs ~29 wt % water in the bulk when exposed to water vapor but, more importantly, it forms a hydrated and passivating surface layer when immersed in liquid water. In the latter case, CeO2 initially undergoes direct and/or reductive dissolution, followed by the establishment of a passivating layer calculated to consist of ~69 mol % solid CeO2·2H2O and ~30 mol % gelled Ce(OH4. Under static flow conditions, a saturated boundary layer also forms but, under turbulent flow conditions, this is removed. While the passivating hydrated surface layer, which is coherent probably owing to the continuous Ce(OH4 gel, would be expected to eliminate the photoactivity, this does not occur. This apparent anomaly is explained by the calculation of (a the thermodynamic stability diagrams for Ce and Fe; (b the speciation diagrams for the Ce4+-H2O, Ce3+-H2O, Fe3+-H2O, and Fe2+-H2O systems; and (c the Pourbaix diagrams for the Ce-H2O and Fe-H2O systems. Furthermore, consideration of the probable effects of the localized chemical and redox equilibria owing to the establishment of a very low pH (<0 at the liquid-solid interface also is important to the interpretation of the phenomena. These factors highlight the critical importance of the establishment of the passivating surface layer and its role in photocatalysis. A model for the mechanism of photocatalysis by the CeO2 component of the hydrated phase CeO2·2H2O is proposed, explaining the observation of the retention of photocatalysis following the apparent alteration of the surface of CeO2 upon hydration. The model involves the generation of charge carriers at the outer surface of the hydrated surface layer, followed by the formation of radicals, which decompose organic

  5. Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis

    International Nuclear Information System (INIS)

    Strzemiecka, Beata; Voelkel, Adam; Donate-Robles, Jessica; Martín-Martínez, José Miguel

    2014-01-01

    Highlights: • Carbon blacks with lower specific surface area had basic character (electron donor) due to C=O and C-O groups. • Carbon blacks with higher specific surface area had acidic character (acceptor electron) due to OH groups. • Total surface energy and its dispersive component of carbon blacks increased by increasing their specific surface area. (table) - Abstract: Four carbon blacks with different specific surface areas and surface chemistries (C32, C71, C159 and C178) were analyzed by transmission electron microscopy (TEM) and nitrogen adsorption isotherms at 77 K. Their surface chemistries were analyzed by X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis coupled with mass spectrometry (TGA-MS) and inverse gas chromatography (IGC). The carbon blacks contained 2.7–5.8 wt% volatiles corresponding to -OH, C-O, C=O and COO groups. The surface chemistry parameters obtained with the different experimental techniques were inter-related by using chemometric statistical analysis tools. The application of this methodology showed that the carbon blacks with lower specific surface area (C32 and C71) had basic character (electron donor) mainly due to C=O and C-O groups, whereas the carbon black with the highest specific surface area (C178) showed acidic character (acceptor electron) due to its high content of OH groups. Moreover, the total surface energy and the dispersive component of the surface energy of the carbon blacks increased with the increase of their specific surface area. In general the specific interactions of the carbon blacks also increased with the increase of their specific surface area although C71 is exceptional due to higher oxygen content corresponding to C-O groups

  6. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  7. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  8. Surface chemistry-mediated penetration and gold nanorod thermotherapy in multicellular tumor spheroids

    Science.gov (United States)

    Jin, Shubin; Ma, Xiaowei; Ma, Huili; Zheng, Kaiyuan; Liu, Juan; Hou, Shuai; Meng, Jie; Wang, Paul C.; Wu, Xiaochun; Liang, Xing-Jie

    2012-12-01

    We investigated the penetration and thermotherapy efficiency of different surface coated gold nanorods (Au NRs) in multicellular tumor spheroids. The current data show that negatively charged Au NRs, other than positively charged Au NRs, can penetrate deep into the tumor spheroids and achieve a significant thermal therapeutic benefit.We investigated the penetration and thermotherapy efficiency of different surface coated gold nanorods (Au NRs) in multicellular tumor spheroids. The current data show that negatively charged Au NRs, other than positively charged Au NRs, can penetrate deep into the tumor spheroids and achieve a significant thermal therapeutic benefit. Electronic supplementary information (ESI) available: Materials and methods section. See DOI: 10.1039/c2nr31877f

  9. Synthesis of a hexasaccharide partial sequence of hyaluronan for click chemistry and more

    Directory of Open Access Journals (Sweden)

    Marina Bantzi

    2015-04-01

    Full Text Available In the present work, the synthesis of a hexasaccharide partial sequence of hyaluronan equipped with a terminal azido moiety is reported. This hexasaccharide can be used for the attachment on surfaces by means of click chemistry and after suitable deprotection for biophysical studies.

  10. Synthesis of a hexasaccharide partial sequence of hyaluronan for click chemistry and more.

    Science.gov (United States)

    Bantzi, Marina; Rigol, Stephan; Giannis, Athanassios

    2015-01-01

    In the present work, the synthesis of a hexasaccharide partial sequence of hyaluronan equipped with a terminal azido moiety is reported. This hexasaccharide can be used for the attachment on surfaces by means of click chemistry and after suitable deprotection for biophysical studies.

  11. Surface chemistry of water-dispersed detonation nanodiamonds modified by atmospheric DC plasma afterglow

    Czech Academy of Sciences Publication Activity Database

    Štenclová, Pavla; Celedova, V.; Artemenko, Anna; Jirásek, Vít; Jíra, Jaroslav; Rezek, B.; Kromka, Alexander

    2017-01-01

    Roč. 7, č. 62 (2017), s. 38973-38980 ISSN 2046-2069 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : diamond nanoparticles * explosive detonation * barrier discharge * absorption * oxidation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.108, year: 2016

  12. Tailoring the surface chemistry of zeolite templated carbon by electrochemical methods

    OpenAIRE

    Berenguer Betrián, Raúl; Morallón Núñez, Emilia; Cazorla Amorós, Diego; Nishihara, Hirotomo; Itoi, Hiroyuki; Ishii, Takafumi; Kyotani, Takashi

    2013-01-01

    One option to optimize carbon materials for supercapacitor applications is the generation of surface functional groups that contribute to the pseudocapacitance without losing the designed physical properties. This requires suitable functionalization techniques able to selectively introduce a given amount of electroactive oxygen groups. In this work, the influence of the chemical and electrochemical oxidation methods, on the chemical and physical properties of a zeolite templated carbon (ZTC),...

  13. Role of surface chemistry in modified ACF (activated carbon fiber)-catalyzed peroxymonosulfate oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiying, E-mail: ysy@ouc.edu.cn [Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100 (China); College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100 (China); Li, Lei [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Xiao, Tuo [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); China City Environment Protection Engineering Limited Company, Wuhan 430071 (China); Zheng, Di; Zhang, Yitao [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2016-10-15

    Highlights: • ACF can efficiently activate peroxymonosulfate to degrade organic pollutants. • Basic functional groups may mainly increase the adsorption capacity of ACF. • C1, N1, N2 have promoting effect on the ACF catalyzed PMS oxidation. • Modification by heat after nitric acid is also a way of ACF regeneration. - Abstract: A commercial activated carbon fiber (ACF-0) was modified by three different methods: nitration treatment (ACF-N), heat treatment (ACF-H) and heat treatment after nitration (ACF-NH), and the effects of textural and chemical properties on the ability of the metal-free ACF-catalyzed peroxymonosulfate (PMS) oxidation of Reactive Black 5 (RB5), an azo dye being difficultly adsorbed onto ACF, in aqueous solution were investigated in this work. Surface density of functional groups, surface area changes, surface morphology and the chemical state inside ACF samples were characterized by Boehm titration, N{sub 2} adsorption, scanning electron microscopy in couple with energy dispersive spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), respectively. XPS spectra deconvolution was applied to figure out the importance of surface nitrogen-containing function groups. We found that π-π, pyridine and amine have promoting effect on the catalytic oxidation while the −NO{sub 2} has inhibitory effect on the ACF/PMS systems for RB5 destroy. Sustainability and renewability of the typical ACF-NH for catalytic oxidation of RB5 were also discussed in detail. Information about our conclusions are useful to control and improve the performance of ACF-catalyzed PMS oxidation for organic pollutants in wastewater treatment.

  14. Surface Chemistry Interactions of Cationorm with Films by Human Meibum and Tear Film Compounds

    Directory of Open Access Journals (Sweden)

    Georgi As. Georgiev

    2017-07-01

    Full Text Available Cationorm® (CN cationic nanoemulsion was demonstrated to enhance tear film (TF stability in vivo possibly via effects on tear film lipid layer (TFLL. Therefore the interactions of CN with human meibum (MGS and TFLL in vitro and in vivo deserve special study. MGS and CN were spread at the air/water interface of a Langmuir surface balance to ensure a range of MGS/CN oil phase ratios: 20/1, 10/1, 5/1, 3/1, 2/1 and 1/1. The films capability to reorganize during dynamic area changes was evaluated via the surface pressure-area compression isotherms and step/relaxation dilatational rheology studies. Films structure was monitored with Brewster angle microscopy. CN/TFLL interactions at the ocular surface were monitored with non-contact specular microscopy. The in vitro studies of MGS/CN layers showed that (i CN inclusion (at fixed MGS content increased film elasticity and thickness and that (ii CN can compensate for moderate meibum deficiency in MGS/CN films. In vivo CN mixed with TFLL in a manner similar to CN/MGS interactions in vitro, and resulted in enhanced thickness of TFLL. In vitro and in vivo data complement each other and facilitated the study of the composition-structure-function relationship that determines the impact of cationic nanoemulsions on TF.

  15. SURFACE CHEMISTRY AND PARTICLE SHAPE: PROCESSES FOR THE EVOLUTION OF AEROSOLS IN TITAN's ATMOSPHERE

    International Nuclear Information System (INIS)

    Lavvas, P.; Imanaka, H.; Sander, M.; Kraft, M.

    2011-01-01

    We use a stochastic approach in order to investigate the production and evolution of aerosols in Titan's atmosphere. The simulation initiates from the benzene molecules observed in the thermosphere and follows their evolution to larger aromatic structures through reaction with gas-phase radical species. Aromatics are allowed to collide and provide the first primary particles, which further grow to aggregates through coagulation. We also consider for the first time the contribution of heterogenous processes at the surface of the particles, which are described by the deposition of the formed aromatic structures on the surface of the particles, and also through the chemical reaction with radical species. Our results demonstrate that the evolution of aerosols in terms of size, shape, and density is a result of competing processes between surface growth, coagulation, and sedimentation. Furthermore, our simulations clearly demonstrate the presence of a spherical growth region in the upper atmosphere followed by a transition to an aggregate growth region below. The transition altitude ranges between 500 and 600 km based on the parameters of the simulation.

  16. Influence of coffee on reflectance and chemistry of resin composite protected by surface sealant.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cesar, Ilene Cristine Rosia; Santos, Carla Gabriela Couto; De Cardoso, Ana Luiza Merigo Oliveira; Liporoni, Priscila Christiane Suzy; Munin, Egberto; Martin, Airton Abrahão

    2007-10-01

    To assess the influence of the light-curing unit type and whether or not it was worth using surface sealant protection on resin composite restorative materials stained by coffee. Another objective was to propose the monitoring of coffee staining by FT-Raman spectroscopy using carbon-hydrogen (C-H) bonds as reference to the composite matrix degradation. Sixty cylindrical specimens of resin composite were prepared and divided into six groups: HC (control)--cured with a halogen light; LC (control) cured with a LED; HF--cured with a halogen light + Fortify Plus; LF--cured with a LED + Fortify Plus; HP--cured with a halogen light + PermaSeal; LP--cured with a LED + PermaSeal. After storage for 24 hours at 37% and 100% of relative humidity, the top surface was protected, and the other surfaces isolated. Polishing with paper discs was performed after 24 hours of curing and prior to FT-Raman spectroscopy and reflectance measurements. All specimens were submitted to coffee staining for 14 days and evaluated by both systems. Results were statistically analyzed by ANOVA and Tukey tests. FT-Raman spectrum only showed significant changes in groups LC and LP (P< 0.05). Reflectance demonstrated that staining was present in all specimens protected by sealants. Sealant staining was larger in the HF (P < 0.001) group.

  17. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins

    Energy Technology Data Exchange (ETDEWEB)

    Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K. [Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Doan, Baochi D., E-mail: patrick.schelling@ucf.edu [Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2017-08-01

    The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability of mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.

  19. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  20. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    Directory of Open Access Journals (Sweden)

    G. Prabhakar

    2017-12-01

    Full Text Available This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3−(p concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality study at one of the most polluted cities in the United States – Fresno, CA – in the San Joaquin Valley (SJV and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3−(p concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3−(p aloft in the residual layer (RL can play in determining daytime surface-level NO3−(p concentrations. Further, they indicate that nocturnal production of NO3−(p in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3−(p, despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3−(p concentrations. Entrainment of clean free-tropospheric (FT air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3−(p and limits buildup during pollution episodes. The influence of dry deposition of HNO