WorldWideScience

Sample records for surface atom concentration

  1. Electron-induced desorption of europium atoms from oxidized tungsten surface: concentration dependence of low-energy peak

    CERN Document Server

    Davydov, S Y

    2002-01-01

    One discusses nature of electron induced desorption of Eu sup 0 europium atoms under E sub e irradiating electron low-energies (approx 30 eV) and peculiarities of yield dependence of Eu sup 0 atoms on their concentration at oxidized tungsten surface. Primary act of vacancy origination in europium adatom inner 5p-shell turned to be the determining stage. Evaluations have shown that just the first of two possible scenarios of ionization (electron intra-atomic to Eu adatom external quasi-level or realise of knocked out electron into vacuum) leads to Eu sup 0 desorption. One determined concentration threshold for yield of Eu sup 0 atoms

  2. Nature of the concentration thresholds of europium atom yield from the oxidized tungsten surface under electron stimulated desorption

    CERN Document Server

    Davydov, S Y

    2002-01-01

    The nature of the electron-stimulated desorption (ESD) of the europium atoms by the E sub e irradiating electrons energies, equal to 50 and 80 eV, as well as peculiarities of the Eu atoms yield dependence on their concentration on the oxidized tungsten surface are discussed. It is shown, that the ESD originates by the electron transition from the interval 5p- or 5s shell of the tungsten surface atom onto the oxygen external unfilled 2p-level

  3. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  4. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al2O3

    International Nuclear Information System (INIS)

    Gastrow, Guillaume von; Li, Shuo; Putkonen, Matti; Laitinen, Mikko; Sajavaara, Timo; Savin, Hele

    2015-01-01

    Highlights: • The ALD Al 2 O 3 passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al 2 O 3 interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al 2 O 3 Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10 11 eV −1 cm −2 , and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  5. Dislocation behavior of surface-oxygen-concentration controlled Si wafers

    International Nuclear Information System (INIS)

    Asazu, Hirotada; Takeuchi, Shotaro; Sannai, Hiroya; Sudo, Haruo; Araki, Koji; Nakamura, Yoshiaki; Izunome, Koji; Sakai, Akira

    2014-01-01

    We have investigated dislocation behavior in the surface area of surface-oxygen-concentration controlled Si wafers treated by a high temperature rapid thermal oxidation (HT-RTO). The HT-RTO process allows us to precisely control the interstitial oxygen concentration ([O i ]) in the surface area of the Si wafers. Sizes of rosette patterns, generated by nano-indentation and subsequent thermal annealing at 900 °C for 1 h, were measured for the Si wafers with various [O i ]. It was found that the rosette size decreases in proportion to the − 0.25 power of [O i ] in the surface area of the Si wafers, which were higher than [O i ] of 1 × 10 17 atoms/cm 3 . On the other hand, [O i ] of lower than 1 × 10 17 atoms/cm 3 did not affect the rosette size very much. These experimental results demonstrate the ability of the HT-RTO process to suppress the dislocation movements in the surface area of the Si wafer. - Highlights: • Surface-oxygen-concentration controlled Si wafers have been made. • The oxygen concentration was controlled by high temperature rapid thermal oxidation. • Dislocation behavior in the surface area of the Si wafers has been investigated. • Rosette size decreased with increasing of interstitial oxygen atoms. • The interstitial oxygen atoms have a pinning effect of dislocations at the surface

  6. Simulating evaporation of surface atoms of thorium-alloyed tungsten in strong electronic fields

    International Nuclear Information System (INIS)

    Bochkanov, P.V.; Mordyuk, V.S.; Ivanov, Yu.I.

    1984-01-01

    By the Monte Carlo method simulating evaporation of surface atoms of thorium - alloyed tungsten in strong electric fields is realized. The strongest evaporation of surface atoms of pure tungsten as compared with thorium-alloyed tungsten in the contentration range of thorium atoms in tungsten matrix (1.5-15%) is shown. The evaporation rate increases with thorium atoms concentration. Determined is in relative units the surface atoms evaporation rate depending on surface temperature and electric field stront

  7. Effect of ozone concentration on silicon surface passivation by atomic layer deposited Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gastrow, Guillaume von, E-mail: guillaume.von.gastrow@aalto.fi [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Li, Shuo [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland); Putkonen, Matti [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Aalto University School of Chemical Technology, Laboratory of Inorganic Chemistry, FI-00076 Aalto, Espoo (Finland); Laitinen, Mikko; Sajavaara, Timo [University of Jyvaskyla, Department of Physics, FIN-40014 University of Jyvaskyla (Finland); Savin, Hele [Aalto University, Department of Micro- and Nanosciences, Tietotie 3, 02150 Espoo (Finland)

    2015-12-01

    Highlights: • The ALD Al{sub 2}O{sub 3} passivation quality can be controlled by the ozone concentration. • Ozone concentration affects the Si/Al{sub 2}O{sub 3} interface charge and defect density. • A surface recombination velocity of 7 cm/s is reached combining ozone and water ALD. • Carbon and hydrogen concentrations correlate with the surface passivation quality. - Abstract: We study the impact of ozone-based Al{sub 2}O{sub 3} Atomic Layer Deposition (ALD) on the surface passivation quality of crystalline silicon. We show that the passivation quality strongly depends on the ozone concentration: the higher ozone concentration results in lower interface defect density and thereby improved passivation. In contrast to previous studies, our results reveal that too high interface hydrogen content can be detrimental to the passivation. The interface hydrogen concentration can be optimized by the ozone-based process; however, the use of pure ozone increases the harmful carbon concentration in the film. Here we demonstrate that low carbon and optimal hydrogen concentration can be achieved by a single process combining the water- and ozone-based reactions. This process results in an interface defect density of 2 × 10{sup 11} eV{sup −1} cm{sup −2}, and maximum surface recombination velocities of 7.1 cm/s and 10 cm/s, after annealing and after an additional firing at 800 °C, respectively. In addition, our results suggest that the effective oxide charge density can be optimized in a simple way by varying the ozone concentration and by injecting water to the ozone process.

  8. The deconvolution of sputter-etching surface concentration measurements to determine impurity depth profiles

    International Nuclear Information System (INIS)

    Carter, G.; Katardjiev, I.V.; Nobes, M.J.

    1989-01-01

    The quasi-linear partial differential continuity equations that describe the evolution of the depth profiles and surface concentrations of marker atoms in kinematically equivalent systems undergoing sputtering, ion collection and atomic mixing are solved using the method of characteristics. It is shown how atomic mixing probabilities can be deduced from measurements of ion collection depth profiles with increasing ion fluence, and how this information can be used to predict surface concentration evolution. Even with this information, however, it is shown that it is not possible to deconvolute directly the surface concentration measurements to provide initial depth profiles, except when only ion collection and sputtering from the surface layer alone occur. It is demonstrated further that optimal recovery of initial concentration depth profiles could be ensured if the concentration-measuring analytical probe preferentially sampled depths near and at the maximum depth of bombardment-induced perturbations. (author)

  9. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  10. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  11. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  12. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lanlan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Yue; Xu Fugang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Li Zhuang, E-mail: zli@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China)

    2011-05-15

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/{mu}L. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  13. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Sun Lanlan; Zhao Dongxu; Zhang Yue; Xu Fugang; Li Zhuang

    2011-01-01

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  14. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    The following were studied: New semiclassical method for scattering calculations, He atom scattering from defective Pt surfaces, He atom scattering from Xe overlayers, thermal dissociation of H 2 on Cu(110), spin flip scattering of atoms from surfaces, and Car-Parrinello simulations of surface processes

  15. The kinetics of formation and transformation of silver atoms on solid surfaces subjected to ionizing irradiation

    International Nuclear Information System (INIS)

    Popovich, G.M.

    1988-01-01

    The paper discusses the results obtained in ESR-assisted studies of the kinetics of formation and transformation of silver atoms generated by γ-irradiation of silver-containing carriers. Three types of dependences have been established: (1) extreme; (2) saturation curves and (3) step-like. All the kinetic curves display, after a definite period of time, stable concentrations of adsorbed silver atoms per unit of the surface at a given temperature. Depending on the temperature of the experiment, the composition and nature of the carrier, the number of adsorbed silver ions, the irradiation dose and conditions of the experiment, a stable concentration of silver atoms at a given temperature may be equal to, higher or lower than the number of silver atoms measured immediately after γ-irradiation at a temperature of liquid nitrogen. A kinetic scheme is proposed to explain the obtained curves. The model suggests that the silver atoms adsorbed on the surface, as well as those formed after γ-irradiation, are bonded to the surface by various energies, which are related to heterogeneity of the carrier surface. (author)

  16. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  17. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  18. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    Science.gov (United States)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  19. PREFACE: Atom-surface scattering Atom-surface scattering

    Science.gov (United States)

    Miret-Artés, Salvador

    2010-08-01

    It has been a privilege and a real pleasure to organize this special issue or festschrift in the general field of atom-surface scattering (and its interaction) in honor of J R Manson. This is a good opportunity and an ideal place to express our deep gratitude to one of the leaders in this field for his fundamental and outstanding scientific contributions. J R Manson, or Dick to his friends and colleagues, is one of the founding fathers, together with N Cabrera and V Celli, of the 'Theory of surface scattering and detection of surface phonons'. This is the title of the very well-known first theoretical paper by Dick published in Physical Review Letters in 1969. My first meeting with Dick was around twenty years ago in Saclay. J Lapujoulade organized a small group seminar about selective adsorption resonances in metal vicinal surfaces. We discussed this important issue in surface physics and many other things as if we had always known each other. This familiarity and warm welcome struck me from the very beginning. During the coming years, I found this to be a very attractive aspect of his personality. During my stays in Göttingen, we had the opportunity to talk widely about science and life at lunch or dinner time, walking or cycling. During these nice meetings, he showed, with humility, an impressive cultural background. It is quite clear that his personal opinions about history, religion, politics, music, etc, come from considering and analyzing them as 'open dynamical systems'. In particular, with good food and better wine in a restaurant or at home, a happy cheerful soirée is guaranteed with him, or even with only a good beer or espresso, and an interesting conversation arises naturally. He likes to listen before speaking. Probably not many people know his interest in tractors. He has an incredible collection of very old tractors at home. In one of my visits to Clemson, he showed me the collection, explaining to me in great detail, their technical properties

  20. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  1. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  2. Simultaneous measurement of the surface temperature and the release of atomic sodium from a burning black liquor droplet

    Energy Technology Data Exchange (ETDEWEB)

    Saw, Woei L.; Nathan, Graham J. [Centre for Energy Technology, The University of Adelaide, SA 5006 (Australia); School of Mechanical Engineering, The University of Adelaide (Australia); Ashman, Peter J.; Alwahabi, Zeyad T. [Centre for Energy Technology, The University of Adelaide, SA 5006 (Australia); School of Chemical Engineering, The University of Adelaide (Australia); Hupa, Mikko [Process Chemistry Centre, Aabo Akademi, Biskopsgatan 8 FI-20500 Aabo (Finland)

    2010-04-15

    Simultaneous measurement of the concentration of released atomic sodium, swelling, surface and internal temperature of a burning black liquor droplet under a fuel lean and rich condition has been demonstrated. Two-dimensional two-colour optical pyrometry was employed to determine the distribution of surface temperature and swelling of a burning black liquor droplet while planar laser-induced fluorescence (PLIF) was used to assess the temporal release of atomic sodium. The key findings of these studies are: (i) the concentration of atomic sodium released during the drying and devolatilisation stages was found to be correlated with the external surface area; and (ii) the insignificant presence of atomic sodium during the char consumption stage shows that sodium release is suppressed by the lower temperature and by the high CO{sub 2} content in and around the particle. (author)

  3. Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates

    International Nuclear Information System (INIS)

    Joachim, C; Martrou, D; Gauthier, S; Rezeq, M; Troadec, C; Jie Deng; Chandrasekhar, N

    2010-01-01

    The scientific and technical challenges involved in building the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) are discussed. The practical, laboratory scale approach explored today to assemble a multi-access atomic scale precision interconnection machine is presented. Depending on the surface electronic properties of the targeted substrates, two types of machines are considered: on moderate surface band gap materials, scanning tunneling microscopy can be combined with scanning electron microscopy to provide an efficient navigation system, while on wide surface band gap materials, atomic force microscopy can be used in conjunction with optical microscopy. The size of the planar part of the circuit should be minimized on moderate band gap surfaces to avoid current leakage, while this requirement does not apply to wide band gap surfaces. These constraints impose different methods of connection, which are thoroughly discussed, in particular regarding the recent progress in single atom and molecule manipulations on a surface.

  4. Photoionization microscopy of hydrogen atom near a metal surface

    International Nuclear Information System (INIS)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom—surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields. (atomic and molecular physics)

  5. Thermal stability studies on atomically clean and sulphur passivated InGaAs surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit; Hughes, Greg [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2013-03-15

    High resolution synchrotron radiation core level photoemission measurements have been used to study the high temperature stability of sulphur passivated InGaAs surfaces and comparisons made with atomically clean surfaces subjected to the same annealing temperatures. Sulphur passivation of clean InGaAs surfaces prepared by the thermal removal of an arsenic capping layer was carried out using an in situ molecular sulphur treatment in ultra high vacuum. The elemental composition of the surfaces of these materials was measured at a series of annealing temperatures up to 530 C. Following a 480 C anneal In:Ga ratio was found to have dropped by 33% on sulphur passivated surface indicating a significant loss of indium, while no drop in indium signal was recorded at this temperature on the atomically InGaAs surface. No significant change in the As surface concentration was measured at this temperature. These results reflect the reduced thermal stability of the sulphur passivated InGaAs compared to the atomically clean surface which has implications for device fabrication. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Dependence of ion - photon emission characteristics on the concentration of implanted atoms of the bombarding beam

    International Nuclear Information System (INIS)

    Belykh, S.F.; Evtukhov, R.N.; Redina, I.V.; Ferleger, V.Kh.

    1989-01-01

    Results of experiment, where Dy + beams, its spraying products emitting intensively optical radiation with continuous spectrum (CSR), are used for tantalum surface bombardment, are presented. The given experiment allowed one to separate the scattered particle CSR contribution and was conducted under controlled beam n atom concentration on the target surface. E 0 energy and j 0 dysprosium ion flux density made up respectively 3.5 keV and 3x10 5 Axcm -2 . The obtained result analysis has shown that a notable dependence of spectrum type on n value is detected. Dy scattered atoms to not emit CSR. The main contribution to CSR is made by sprayed particles, containing dysprosium atoms

  7. Formation of hollow atoms above a surface

    Science.gov (United States)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  8. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  9. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  10. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  11. Size Effects on Surface Elastic Waves in a Semi-Infinite Medium with Atomic Defect Generation

    Directory of Open Access Journals (Sweden)

    F. Mirzade

    2013-01-01

    Full Text Available The paper investigates small-scale effects on the Rayleigh-type surface wave propagation in an isotopic elastic half-space upon laser irradiation. Based on Eringen’s theory of nonlocal continuum mechanics, the basic equations of wave motion and laser-induced atomic defect dynamics are derived. Dispersion equation that governs the Rayleigh surface waves in the considered medium is derived and analyzed. Explicit expressions for phase velocity and attenuation (amplification coefficients which characterize surface waves are obtained. It is shown that if the generation rate is above the critical value, due to concentration-elastic instability, nanometer sized ordered concentration-strain structures on the surface or volume of solids arise. The spatial scale of these structures is proportional to the characteristic length of defect-atom interaction and increases with the increase of the temperature of the medium. The critical value of the pump parameter is directly proportional to recombination rate and inversely proportional to deformational potentials of defects.

  12. Constructing Functional Ionic Membrane Surface by Electrochemically Mediated Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Fen Ran

    2016-01-01

    Full Text Available The sodium polyacrylate (PAANa contained polyethersulfone membrane that was fabricated by preparation of PES-NH2 via nonsolvent phase separation method, the introduction of bromine groups as active sites by grafting α-Bromoisobutyryl bromide, and surface-initiated electrochemically atom transfer radical polymerization (SI-eATRP of sodium acrylate (AANa on the surface of PES membrane. The polymerization could be controlled by reaction condition, such as monomer concentration, electric potential, polymerization time, and modifier concentration. The membrane surface was uniform when the monomer concentration was 0.9 mol/L, the electric potential was −0.12 V, the polymerization time was 8 h, and the modifier concentration was 2 wt.%. The membrane showed excellent hydrophilicity and blood compatibility. The water contact angle decreased from 84° to 68° and activated partial thromboplastin increased from 51 s to 84 s after modification of the membranes.

  13. Fluorescence measurement of atomic oxygen concentration in a dielectric barrier discharge

    Science.gov (United States)

    Dvořák, P.; Mrkvičková, M.; Obrusník, A.; Kratzer, J.; Dědina, J.; Procházka, V.

    2017-06-01

    Concentration of atomic oxygen was measured in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar + O2(+ H2) at atmospheric pressure. Two-photon absorption laser induced fluorescence (TALIF) of atomic oxygen was used and this method was calibrated by TALIF of Xe in a mixture of argon and a trace of xenon. The calibration was performed at atmospheric pressure and it was shown that quenching by three-body collisions has negligible effect on the life time of excited Xe atoms. The concentration of atomic oxygen in the DBD was around 1021 m-3 and it was stable during the whole discharge period. The concentration did not depend much on the electric power delivered to the discharge provided that the power was sufficiently high so that the visible discharge filled the whole reactor volume. Both the addition of hydrogen or replacing of argon by helium led to a significant decrease of atomic oxygen concentration. The TALIF measurements of O concentration levels in the DBD plasma performed in this work are made use of e.g. in the field analytical chemistry. The results contribute to understanding the processes of analyte hydride preconcentration and subsequent atomization in the field of trace element analysis where DBD plasma atomizers are employed.

  14. Photodesorption of Na atoms from rough Na surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Gerlach, R.; Manson, J.R.

    1997-01-01

    We investigate the desorption of Na atoms from large Na clusters deposited on dielectric surfaces. High-resolution translational energy distributions of the desorbing atoms are determined by three independent methods, two-photon laser-induced fluorescence, as well as single-photon and resonance......-enhanced two-photon ionization techniques. Upon variation of surface temperature and for different substrates (mica vs lithium fluoride) clear non-Maxwellian time-of-flight distributions are observed with a cos θ angular dependence and most probable kinetic energies below that expected of atoms desorbing from...... atoms are scattered by surface vibrations. Recent experiments providing time constants for the decay of the optical excitations in the clusters support this model. The excellent agreement between experiment and theory indicates the importance of both absorption of the laser photons via direct excitation...

  15. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  16. Mechanism of yttrium atom formation in electrothermal atomization from metallic and metal-carbide surfaces of a heated graphite atomizer in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wahab, H.S.; Chakrabarti, C.L.

    1981-01-01

    Mechanism of Y atom formation from pyrocoated graphite, tantalum and tungsten metal surfaces of a graphite tube atomizer has been studied and a mechanism for the formation for Y atoms is proposed for the first time. (author)

  17. Effects of temperature and surface orientation on migration behaviours of helium atoms near tungsten surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoshuang; Wu, Zhangwen; Hou, Qing, E-mail: qhou@scu.edu.cn

    2015-10-15

    Molecular dynamics simulations were performed to study the dependence of migration behaviours of single helium atoms near tungsten surfaces on the surface orientation and temperature. For W{100} and W{110} surfaces, He atoms can quickly escape out near the surface without accumulation even at a temperature of 400 K. The behaviours of helium atoms can be well-described by the theory of continuous diffusion of particles in a semi-infinite medium. For a W{111} surface, the situation is complex. Different types of trap mutations occur within the neighbouring region of the W{111} surface. The trap mutations hinder the escape of He atoms, resulting in their accumulation. The probability of a He atom escaping into vacuum from a trap mutation depends on the type of the trap mutation, and the occurrence probabilities of the different types of trap mutations are dependent on the temperature. This finding suggests that the escape rate of He atoms on the W{111} surface does not show a monotonic dependence on temperature. For instance, the escape rate at T = 1500 K is lower than the rate at T = 1100 K. Our results are useful for understanding the structural evolution and He release on tungsten surfaces and for designing models in other simulation methods beyond molecular dynamics.

  18. Atom-surface interaction: Zero-point energy formalism

    International Nuclear Information System (INIS)

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  19. Removal of foreign atoms from a metal surface bombarded with fast atomic particles

    Energy Technology Data Exchange (ETDEWEB)

    Dolotov, S.K.; Evstigneev, S.A.; Luk' yanov, S.Yu.; Martynenko, Yu.V.; Chicherov, V.M.

    1976-07-01

    A metal surface coated with foreign atoms was irradiated with periodically repeating ion current pulses. The energy of the ions bombarding the target was 20 to 30 keV, and inert gas ions were used. A study of the time dependences of the current of the dislodged foreign atoms showed that the rate of their removal from the target surface is determined by the sputtering coefficient of the substrate metal.

  20. Removal of foreign atoms from a metal surface bombarded with fast atomic particles

    International Nuclear Information System (INIS)

    Dolotov, S.K.; Evstigneev, S.A.; Luk'yanov, S.Yu.; Martynenko, Yu.V.; Chicherov, V.M.

    A metal surface coated with foreign atoms was irradiated with periodically repeating ion current pulses. The energy of the ions bombarding the target was 20 to 30 keV, and inert gas ions were used. A study of the time dependences of the current of the dislodged foreign atoms showed that the rate of their removal from the target surface is determined by the sputtering coefficient of the substrate metal

  1. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  2. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  3. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  4. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    International Nuclear Information System (INIS)

    Grigoriev, P. D.; Dyugaev, A. M.; Lebedeva, E. V.

    2008-01-01

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium

  5. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    International Nuclear Information System (INIS)

    Gravielle, M.S.; Schueller, A.; Winter, H.; Miraglia, J.E.

    2011-01-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  6. Fast atom diffraction for grazing scattering of Ne atoms from a LiF(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: msilvia@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Schueller, A.; Winter, H. [Institut fuer Physik, Humboldt Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin-Adlershof (Germany); Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28 C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2011-06-01

    Angular distributions of fast Ne atoms after grazing collisions with a LiF(0 0 1) surface under axial surface channeling conditions are experimentally and theoretically studied. We use the surface eikonal approximation to describe the quantum interference of scattered projectiles, while the atom-surface interaction is represented by means of a pairwise additive potential, including the polarization of the projectile atom. Experimental data serve as a benchmark to investigate the performance of the proposed potential model, analyzing the role played by the projectile polarization.

  7. Atomic imaging of an InSe single-crystal surface with atomic force microscope

    OpenAIRE

    Uosaki, Kohei; Koinuma, Michio

    1993-01-01

    The atomic force microscope was employed to observed in air the surface atomic structure of InSe, one of III-VI compound semiconductors with layered structures. Atomic arrangements were observed in both n-type and p-type materials. The observed structures are in good agreement with those expected from bulk crystal structures. The atomic images became less clear by repeating the imaging process. Wide area imaging after the imaging of small area clearly showed that a mound was created at the sp...

  8. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; de Grooth, B.G.; Hansma, Paul K.; van Hulst, N.F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect

  9. Charge transfer rates for xenon Rydberg atoms at metal and semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, F.B. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu; Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Dunham, H.R. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States); Lancaster, J.C. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)

    2007-05-15

    Recent progress in the study of charge exchange between xenon Rydberg atoms and surfaces is reviewed. Experiments using Au(1 1 1) surfaces show that under appropriate conditions each incident atom can be detected as an ion. The ionization dynamics, however, are strongly influenced by the perturbations in the energies and structure of the atomic states that occur as the ion collection field is applied and as the atom approaches the surface. These lead to avoided crossings between different atomic levels causing the atom to successively assume the character of a number of different states and lose much of its initial identity. The effects of this mixing are discussed. Efficient surface ionization is also observed at Si(1 0 0) surfaces although the ion signal is influenced by stray fields present at the surface.

  10. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  11. Study on the GaAs(110) surface using emitted atom spectrometry

    International Nuclear Information System (INIS)

    Gayone, J.E.; Sanchez, E.A.; Grizzi, O.; Universidad Nacional de Cuyo, Mendoza

    1998-01-01

    The facilities implemented at Bariloche for the ion scattering spectrometry is described, and recent examples of the technique application to determine the atomic structure and the composition of metallic and semiconductor surfaces, pure and with different adsorbates. The surface analysis technique using emitted atom spectrometry is discussed. The sensitivity to the GaAs(110) surface atomic relaxation is presented, and the kinetic of hydrogen adsorption by the mentioned surface is studied

  12. Measurement of near neighbor separations of surface atoms

    International Nuclear Information System (INIS)

    Cohen, P.I.

    Two techniques are being developed to measure the nearest neighbor distances of atoms at the surfaces of solids. Both measures extended fine structure in the excitation probability of core level electrons which are excited by an incident electron beam. This is an important problem because the structures of most surface systems are as yet unknown, even though the location of surface atoms is the basis for any quantitative understanding of the chemistry and physics of surfaces and interfaces. These methods would allow any laboratory to make in situ determinations of surface structure in conjunction with most other laboratory probes of surfaces. Each of these two techniques has different advantages; further, the combination of the two will increase confidence in the results by reducing systematic error in the data analysis

  13. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  14. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  15. Surface structure investigations using noncontact atomic force microscopy

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.

    2006-01-01

    Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination

  16. He atom surface spectroscopy: Surface lattice dynamics of insulators, metals and metal overlayers

    International Nuclear Information System (INIS)

    1990-01-01

    During the first three years of this grant (1985--1988) the effort was devoted to the construction of a state-of-the-art He atom scattering (HAS) instrument which would be capable of determining the structure and dynamics of metallic, semiconductor or insulator crystal surfaces. The second three year grant period (1988--1991) has been dedicated to measurements. The construction of the instrument went better than proposed; it was within budget, finished in the proposed time and of better sensitivity and resolution than originally planned. The same success has been carried over to the measurement phase where the concentration has been on studies of insulator surfaces, as discussed in this paper. The experiments of the past three years have focused primarily on the alkali halides with a more recent shift to metal oxide crystal surfaces. Both elastic and inelastic scattering experiments were carried out on LiF, NaI, NaCl, RbCl, KBr, RbBr, RbI, CsF, CsI and with some preliminary work on NiO and MgO

  17. Quantitative estimation of hydrogen concentration on the Ni3Al specimens surface in the process of hydrogen release

    International Nuclear Information System (INIS)

    Katano, Gen; Sano, Shogo; Saito, Hideo; Mori, Minoru

    2000-01-01

    The method to calculate the hydrogen concentration in metal specimens is given by tritium counts with the liquid scintillation counter. As segments to measure, Ni 3 Al intermetallic compound crystals were used. Tritium was charged to crystals with the method of cathode charging. The charged tritium was transported by diffusion and released from specimen surface. The tritium releasing rate was calculated from the increasing rate of tritium activity. Then the concentration of hydrogen at the surface was calculated from tritium counts. The outcome showed that the hydrogen concentration decreases at specimens surface by elapsed time. Then, the behavior of tritium diffusion was affected by doped boron (up to 0.235 atom% B and 0.470 atom% B) in Ni 3 Al crystals. As the amount of boron increased, the tritium diffusion coefficient decreased. And the hydrogen concentration varied with the amount of boron. After passing enough time, the hydrogen concentration in crystals with boron was much larger than the one without boron. Since it is very likely that the hydrogen concentration is affected by the number of hydrogen sites in the crystal, it is obvious judging by these phenomena, that by doping boron, numbers of hydrogen trapping sites were created. As the hydrogen distribution becomes homogenous after passing enough time, it is possible to measure the hydrogen concentration in all the crystals from β-ray counts at specimens surface. (author)

  18. Significant change of local atomic configurations at surface of reduced activation Eurofer steels induced by hydrogenation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Greculeasa, S.G.; Palade, P.; Schinteie, G. [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania); Kuncser, A.; Stanciu, A. [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania); University of Bucharest, Faculty of Physics, 77125, Bucharest-Magurele (Romania); Lungu, G.A. [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania); Porosnicu, C.; Lungu, C.P. [National Institute for Laser, Plasma and Radiation Physics, 77125, Bucharest-Magurele (Romania); Kuncser, V., E-mail: kuncser@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, 77125, Bucharest-Magurele (Romania)

    2017-04-30

    Highlights: • Engineering of Eurofer slab properties by hydrogenation treatments. • Hydrogenation modifies significantly the local atomic configurations at the surface. • Hydrogenation increases the expulsion of the Cr atoms toward the very surface. • Approaching binomial atomic distribution by hydrogenation in the next surface 100 nm. - Abstract: Reduced-activation steels such as Eurofer alloys are candidates for supporting plasma facing components in tokamak-like nuclear fusion reactors. In order to investigate the impact of hydrogen/deuterium insertion in their crystalline lattice, annealing treatments in hydrogen atmosphere have been applied on Eurofer slabs. The resulting samples have been analyzed with respect to local structure and atomic configuration both before and after successive annealing treatments, by X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and conversion electron Mössbauer spectroscopy (CEMS). The corroborated data point out for a bcc type structure of the non-hydrogenated alloy, with an average alloy composition approaching Fe{sub 0.9}Cr{sub 0.1} along a depth of about 100 nm. EDS elemental maps do not indicate surface inhomogeneities in concentration whereas the Mössbauer spectra prove significant deviations from a homogeneous alloying. The hydrogenation increases the expulsion of the Cr atoms toward the surface layer and decreases their oxidation, with considerable influence on the surface properties of the steel. The hydrogenation treatment is therefore proposed as a potential alternative for a convenient engineering of the surface of different Fe-Cr based alloys.

  19. Theory of inelastic effects in resonant atom-surface scattering

    International Nuclear Information System (INIS)

    Evans, D.K.

    1983-01-01

    The progress of theoretical and experimental developments in atom-surface scattering is briefly reviewed. The formal theory of atom-surface resonant scattering is reviewed and expanded, with both S and T matrix approaches being explained. The two-potential formalism is shown to be useful for dealing with the problem in question. A detailed theory based on the S-matrix and the two-potential formalism is presented. This theory takes account of interactions between the incident atoms and the surface phonons, with resonant effects being displayed explicitly. The Debye-Waller attenuation is also studied. The case in which the atom-surface potential is divided into an attractive part V/sub a/ and a repulsive part V/sub r/ is considered at length. Several techniques are presented for handling the scattering due to V/sub r/, for the case in which V/sub r/ is taken to be the hard corrugated surface potential. The theory is used to calculate the scattered intensities for the system 4 He/LiF(001). A detailed comparison with experiment is made, with polar scans, azimuthal scans, and time-of-flight measurements being considered. The theory is seen to explain the location and signature of resonant features, and to provide reasonable overall agreement with the experimental results

  20. The influence of the surface atomic structure on surface diffusion

    International Nuclear Information System (INIS)

    Ghaleb, Dominique

    1984-03-01

    This work represents the first quantitative study of the influence of the surface atomic structure on surface diffusion (in the range: 0.2 Tf up 0.5 Tf; Tf: melting temperature of the substrate). The analysis of our results on a microscopic scale shows low formation and migration energies for adatoms; we can describe the diffusion on surfaces with a very simple model. On (110) surfaces at low temperature the diffusion is controlled by the exchange mechanism; at higher temperature direct jumps of adatoms along the channels contribute also to the diffusion process. (author) [fr

  1. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  2. SASP - Symposium on atomic, cluster and surface physics `94

    Energy Technology Data Exchange (ETDEWEB)

    Maerk, T D; Schrittwieser, R; Smith, D

    1994-12-31

    This international symposium (Founding Chairman: W. Lindinger, Innsbruck) is one in a continuing biennial series of conferences which seeks to promote the growth of scientific knowledge and its effective exchange among scientists in the field of atomic, molecular, cluster and surface physics and related areas. The symposium deals in particular with interactions between ions, electrons, photons, atoms, molecules, and clusters and their interactions with surfaces. (author).

  3. Classical theory of atom-surface scattering: The rainbow effect

    Science.gov (United States)

    Miret-Artés, Salvador; Pollak, Eli

    2012-07-01

    The scattering of heavy atoms and molecules from surfaces is oftentimes dominated by classical mechanics. A large body of experiments have gathered data on the angular distributions of the scattered species, their energy loss distribution, sticking probability, dependence on surface temperature and more. For many years these phenomena have been considered theoretically in the framework of the “washboard model” in which the interaction of the incident particle with the surface is described in terms of hard wall potentials. Although this class of models has helped in elucidating some of the features it left open many questions such as: true potentials are clearly not hard wall potentials, it does not provide a realistic framework for phonon scattering, and it cannot explain the incident angle and incident energy dependence of rainbow scattering, nor can it provide a consistent theory for sticking. In recent years we have been developing a classical perturbation theory approach which has provided new insight into the dynamics of atom-surface scattering. The theory includes both surface corrugation as well as interaction with surface phonons in terms of harmonic baths which are linearly coupled to the system coordinates. This model has been successful in elucidating many new features of rainbow scattering in terms of frictions and bath fluctuations or noise. It has also given new insight into the origins of asymmetry in atomic scattering from surfaces. New phenomena deduced from the theory include friction induced rainbows, energy loss rainbows, a theory of super-rainbows, and more. In this review we present the classical theory of atom-surface scattering as well as extensions and implications for semiclassical scattering and the further development of a quantum theory of surface scattering. Special emphasis is given to the inversion of scattering data into information on the particle-surface interactions.

  4. Growth mechanism and surface atomic structure of AgInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pena Martin, Pamela; Rockett, Angus A.; Lyding, Joseph [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering and the Beckman Institute, University of Illinois at Urbana-Champaign, 405 N. Matthews St., Urbana, Illinois 61801 (United States)

    2012-07-15

    The growth of (112)A-oriented AgInSe{sub 2} on GaAs (111)A and its surface reconstruction were studied by scanning tunneling microscopy, atomic force microscopy, and other techniques. Films were grown by a sputtering and evaporation method. Topographic STM images reveal that the film grew by atomic incorporation into surface steps resulting from screw dislocations on the surface. The screw dislocation density was {approx}10{sup 10} cm{sup 2}. Atomically resolved images also show that the surface atomic arrangement appears to be similar to that of the bulk, with a spacing of 0.35-0.41 nm. There is no observable reconstruction, which is unexpected for a polar semiconductor surface.

  5. Behavior of Rydberg atoms at surfaces: energy level shifts and ionization

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, F.B. E-mail: fbd@rice.edu; Dunham, H.R.; Oubre, C.; Nordlander, P

    2003-04-01

    The ionization of xenon atoms excited to the extreme red and blue states in high-lying Xe(n) Stark manifolds at a metal surface is investigated. The data show that, despite their very different initial spatial characteristics, the extreme members of a given Stark manifold ionize at similar atom/surface separations. This is explained, with the aid of complex scaling calculations, in terms of the strong perturbations in the energies and structure of the atomic states induced by the presence of the surface which lead to avoided crossings between neighboring levels as the surface is approached.

  6. Behavior of Rydberg atoms at surfaces: energy level shifts and ionization

    CERN Document Server

    Dunning, F B; Oubre, C D; Nordlander, P

    2003-01-01

    The ionization of xenon atoms excited to the extreme red and blue states in high-lying Xe(n) Stark manifolds at a metal surface is investigated. The data show that, despite their very different initial spatial characteristics, the extreme members of a given Stark manifold ionize at similar atom/surface separations. This is explained, with the aid of complex scaling calculations, in terms of the strong perturbations in the energies and structure of the atomic states induced by the presence of the surface which lead to avoided crossings between neighboring levels as the surface is approached.

  7. Interaction of K(nd) Rydberg atoms with an amorphous gold surface

    International Nuclear Information System (INIS)

    Gray, D.F.

    1988-01-01

    This thesis reports the first controlled study of the interactions of Rydberg atoms with a metal surface. In these experiments, a collimated beam of potassium Rydberg atoms is directed at a plane surface at near grazing incidence. Positive ions formed by surface ionization are attracted to the surface by their image charge, which is counterbalanced by an external electric field applied perpendicular to the surface. The ions are detected by a position-sensitive detector (PSD). At some critical value of the external field, the ion trajectories just miss the surface, suggesting that analysis of the dependence of the ion signals of external electric field can be used to determine the distance from the surface at which ionization occurs. This distance, and thus the corresponding critical electric field, is expected to be n-dependent. Experimentally, however, it was observed that the ion signal had a sudden n-independent onset when only a small positive perpendicular electric field was applied at the surface. This observation requires, surprisingly, that the ions produced by surface ionization can readily escape from the surface. The data do, however, show that Rydberg atoms are efficiently ionized in collisions with the surface. This process may provide a useful new detection technique for Rydberg atoms

  8. Quantum reflection of fast atoms from insulator surfaces: Eikonal description

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M S; Miraglia, J E, E-mail: msilvia@iafe.uba.a, E-mail: miraglia@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Dpto. de Fisica, FCEN, Universidad de Buenos Aires (Argentina)

    2009-11-01

    Interference effects recently observed in grazing scattering of swift atoms from insulator surfaces are studied within a distorted-wave method - the surface eikonal approximation. This approach makes use of the eikonal wave function, involving axial channeled trajectories. The theory is applied to helium atoms colliding with a LiF(001) surface along low-index crystallographic directions. The roles played by the projectile polarization and the surface rumpling are investigated, finding that both effects are important for the description of the experimental projectile distributions.

  9. Spatial dispersion in atom-surface quantum friction

    International Nuclear Information System (INIS)

    Reiche, D.; Dalvit, D. A. R.; Busch, K.; Intravaia, F.

    2017-01-01

    We investigate the influence of spatial dispersion on atom-surface quantum friction. We show that for atom-surface separations shorter than the carrier's mean free path within the material, the frictional force can be several orders of magnitude larger than that predicted by local optics. In addition, when taking into account spatial dispersion effects, we show that the commonly used local thermal equilibrium approximation underestimates by approximately 95% the drag force, obtained by employing the recently reported nonequilibrium fluctuation-dissipation relation for quantum friction. Unlike the treatment based on local optics, spatial dispersion in conjunction with corrections to local thermal equilibrium change not only the magnitude but also the distance scaling of quantum friction.

  10. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  11. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    Science.gov (United States)

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-01-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267

  12. On the Debye-Waller factor in atom-surface scattering

    International Nuclear Information System (INIS)

    Garcia, N.; Maradudin, A.A.; Celli, V.

    1982-01-01

    A theory for the Debye-Waller factor in atom-surface scattering is presented, to lowest order in the phonon contributions. Multiple-scattering effects as well as the cross-correlated surface atom displacements are included. The theory accounts for experimental data without the necessity of introducing the Armand effect, which is due to the finite size of the incident atom. The work presented here implies that the Kirchhoff approximation fails when the energy of the incident particle is in the energy range of the phonon spectrum. The results of the calculation are presented in the high-temperature limit, and it is observed that the Rayleigh surface phonons contribute three-quarters of the Debye-Waller factor, while the bulk phonons account for the rest. This result is interesting because the calculation of the former contribution is simpler than that of the latter. (author)

  13. Resonance studies of H atoms adsorbed on frozen H2 surfaces

    International Nuclear Information System (INIS)

    Crampton, S.B.

    1980-01-01

    Observations are reported of the ground state hyperfine resonance of hydrogen atoms stored in a 5 cm. diameter bottle coated with frozen molecular hydrogen. Dephasing of the hyperfine resonance while the atoms are adsorbed produces frequency shifts which vary by a factor of two over the temperature range 3.7 K to 4.6 K and radiative decay rates which vary by a factor of five over this range. The magnitudes and temperature dependences of the frequency shifts and decay rates are consistent with a non-uniform distribution of surface adsorption energies with mean about 38(8) K, in agreement with theoretical estimates for a smooth surface. Extrapolation of the 30 nanosec. mean adsorption times at 4.2 K predicts very long adsorption times for H on H 2 below 1 K. Studies of level population recovery rates provide evidence for surface electron spin exchange collisions between adsorbed atoms with collision duration long compared to the hyperfine period, suggesting that the atoms are partially mobile on the surface. The lowest rates observed for level population recovery set a lower limit of about 500 atom-surface collisions at 4.2 K without recombination

  14. Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces

    CERN Document Server

    Díez Muniño, Ricardo

    2013-01-01

    This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...

  15. Thermal effects in equilibrium surface segregation in a copper/10-atomic-percent-aluminum alloy using Auger electron spectroscopy

    Science.gov (United States)

    Ferrante, J.

    1972-01-01

    Equilibrium surface segregation of aluminum in a copper-10-atomic-percent-aluminum single crystal alloy oriented in the /111/ direction was demonstrated by using Auger electron spectroscopy. This crystal was in the solid solution range of composition. Equilibrium surface segregation was verified by observing that the aluminum surface concentration varied reversibly with temperature in the range 550 to 850 K. These results were curve fitted to an expression for equilibrium grain boundary segregation and gave a retrieval energy of 5780 J/mole (1380 cal/mole) and a maximum frozen-in surface coverage three times the bulk layer concentration. Analyses concerning the relative merits of sputtering calibration and the effects of evaporation are also included.

  16. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    Safron, S.A.; Skofronick, J.G.

    1994-01-01

    This progress report describes work carried out in the study of surface structure and dynamics of ionic insulators, the microscopic interactions controlling epitaxial growth and the formation of overlayers, and energy exchange in multiphonon surface scattering. The approach used is to employ high resolution helium atom scattering to study the geometry and structural features of the surfaces. Experiments have been carried out on the surface dynamics of RbCl and preliminary studies done on CoO and NiO. Epitaxial growth and overlayer dynamics experiments on the systems NaCl/NaCl(001), KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been performed. They have collaborated with two theoretical groups to explore models of overlayer dynamics with which to compare and to interpret their experimental results. They have carried out extensive experiments on the multiphonon scattering of helium atoms from NaCl and, particularly, LiF. Work has begun on self-assembling organic films on gold and silver surfaces (alkyl thiols/Au(111) and Ag(111))

  17. Surface Preparation of InAs (110 Using Atomic Hydrogen

    Directory of Open Access Journals (Sweden)

    T.D. Veal

    2002-06-01

    Full Text Available Atomic hydrogen cleaning has been used to produce structurally and electronically damage-free InAs(110 surfaces.  X-ray photoelectron spectroscopy (XPS was used to obtain chemical composition and chemical state information about the surface, before and after the removal of the atmospheric contamination. Low energy electron diffraction (LEED and high-resolution electron-energy-loss spectroscopy (HREELS were also used, respectively, to determine the surface reconstruction and degree of surface ordering, and to probe the adsorbed contaminant vibrational modes and the collective excitations of the clean surface. Clean, ordered and stoichiometric  InAs(110-(1×1 surfaces were obtained by exposure to thermally generated atomic hydrogen at a substrate temperature as low as 400ºC.  Semi-classical dielectric theory analysis of HREEL spectra of the phonon and plasmon excitations of the clean surface indicate that no electronic damage or dopant passivation were induced by the surface preparation method.

  18. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    Science.gov (United States)

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  19. Scattering of atoms by molecules adsorbed at solid surfaces

    International Nuclear Information System (INIS)

    Parra, Zaida.

    1988-01-01

    The formalism of collisional time-correlation functions, appropriate for scattering by many-body targets, is implemented to study energy transfer in the scattering of atoms and ions from molecules adsorbed on metal surfaces. Double differential cross-sections for the energy and angular distributions of atoms and ions scattered by a molecule adsorbed on a metal surface are derived in the limit of impulsive collisions and within a statistical model that accounts for single and double collisions. They are found to be given by the product of an effective cross-section that accounts for the probability of deflection into a solid angle times a probability per unit energy transfer. A cluster model is introduced for the vibrations of an adsorbed molecule which includes the molecular atoms, the surface atoms binding the molecule, and their nearest neighbors. The vibrational modes of CO adsorbed on a Ni(001) metal surface are obtained using two different cluster models to represent the on-top and bridge-bonding situations. A He/OC-Ni(001) potential is constructed from a strongly repulsive potential of He interacting with the oxygen atom in the CO molecule and a van der Waals attraction accounting for the He interaction with the free Ni(001) surface. A potential is presented for the Li + /OC-Ni(001) where a coulombic term is introduced to account for the image force. Trajectory studies are performed and analyzed in three dimensions to obtain effective classical cross-sections for the He/OC-Ni(001) and Li + /OC-Ni(001) systems. Results for the double differential cross-sections are presented as functions of scattering angles, energy transfer and collisional energy. Temperature dependence results are also analyzed. Extensions of the approach and inclusion of effects such as anharmonicity, collisions at lower energies, and applications of the approach to higher coverages are discussed

  20. Cell micro-patterning by atom beam exposure

    International Nuclear Information System (INIS)

    Adachi, Taiji; Kajita, Fumiaki; Sato, Katsuya; Matsumoto, Koshi; Tagawa, Masahiro

    2003-01-01

    This study aimed to develop a new cell micro-patterning method by controlling material surface affinity of the cell using atomic oxygen beam exposure. Surfaces of low-density polyethylene (LDPE) and tetrafluoroethylene-hexafluoropropylene (FEP) were exposed to the atomic oxygen beam. On the LDPE surface, the roughness measured by atomic force microscopy (AFM) did not change much, however, the oxygen concentration on the surface measured by X-ray photoelectron spectroscopy (XPS) significantly increased that resulted in increase in wettability. Contrary to this, on the FEP surface, the oxygen concentration showed no significant change, but roughness of the surface remarkably increased and the wettability decreased. As a result of the surface modification, affinity of the osteoblastic cells on the FEP surface increased, which was also confirmed by increase in the cell area. Finally, cell micro-patterning on the FEP surface was carried out based on difference in the affinity between modified and unmodified surfaces patterned by masking method. (author)

  1. A theoretical study of hydrogen atoms adsorption and diffusion on PuO_2 (110) surface

    International Nuclear Information System (INIS)

    Yu, H.L.; Tang, T.; Zheng, S.T.; Shi, Y.; Qiu, R.Z.; Luo, W.H.; Meng, D.Q.

    2016-01-01

    The mechanisms of adsorption and diffusion of hydrogen atoms on the PuO_2 (110) surface are investigated by density functional theory corrected for onsite Coulombic interactions (GGA + U). In order to find out the energetically more favorable adsorption site and optimum diffusion path, adsorption energy of atomic H on various sites and the diffusion energy barrier are derived and compared. Our results show that both chemisorption and physisorption exist for H atoms adsorption configurations on PuO_2 (110) surface. Two processes for H diffusion are investigated using the climbing nudged-elastic-band (cNEB) approach. We have identified two diffusion mechanisms, leading to migration of atomic H on the surface and diffusion from surface to subsurface. The energy barriers indicate that it is energetically more favorable for H atom to be on the surface. Hydrogen permeation through purity PuO_2 surface is mainly inhibited from hydrogen atom diffusion from surface to subsurface. - Highlights: • H atoms adsorption on PuO_2 (110) surface are investigated by GGA + U. • Both chemisorption and physisorption exist for H atoms adsorption configurations. • H atoms migration into PuO_2 (100) surface are inhibited with the barrier of 2.15 eV. • H atoms diffusion on PuO_2 (110) surface are difficult at room temperature.

  2. Scattering of Hyperthermal Nitrogen Atoms from the Ag(111) Surface

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M. A.; Kleyn, A. W.

    2009-01-01

    Measurements on scattering of hyperthermal N atoms from the Ag(111) Surface at temperatures of 500, 600, and 730 K are presented. The scattered atoms have a two-component angular distribution. One of the N components is very broad. In contrast, scattered Ar atoms exhibit only a sharp,

  3. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zong Min, E-mail: mzmncit@163.com [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China); Liu, Jun, E-mail: liuj@nuc.edu.cn [National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, 030051 (China); Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan, 030051 (China); School of Instrument and Electronics, North University of China, Taiyuan, 030051 (China)

    2017-02-01

    Highlights: • The coexisted phase of p(2 × 1)and c(6 × 2) on Cu(110)-O surface using AFM under UHV at low temperature. • Two different c(6 × 2) phase depending on the status of the tip apex. • Electronic state of tip seriously effect the resolution and stability of the sample surface. - Abstract: In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  4. Atomic profile imaging of ceramic oxide surfaces

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin; Sellar, J.R.

    1989-01-01

    Atomic surface profile imaging is an electron optical technique capable of revealing directly the surface crystallography of ceramic oxides. Use of an image-intensifier with a TV camera allows fluctuations in surface morphology and surface reactivity to be recorded and analyzed using digitized image data. This paper reviews aspects of the electron optical techniques, including interpretations based upon computer-simulation image-matching techniques. An extensive range of applications is then presented for ceramic oxides of commercial interest for advanced materials applications: including uranium oxide (UO 2 ); magnesium and nickel oxide (MgO,NiO); ceramic superconductor YBa 2 Cu 3 O 6.7 ); barium titanate (BaTiO 3 ); sapphire (α-A1 2 O 3 ); haematite (α-Fe-2O 3 ); monoclinic, tetragonal and cubic monocrystalline forms of zirconia (ZrO 2 ), lead zirconium titanate (PZT + 6 mol.% NiNbO 3 ) and ZBLAN fluoride glass. Atomic scale detail has been obtained of local structures such as steps associated with vicinal surfaces, facetting parallel to stable low energy crystallographic planes, monolayer formation on certain facets, relaxation and reconstructions, oriented overgrowth of lower oxides, chemical decomposition of complex oxides into component oxides, as well as amorphous coatings. This remarkable variety of observed surface stabilization mechanisms is discussed in terms of novel double-layer electrostatic depolarization mechanisms, as well as classical concepts of the physics and chemistry of surfaces (ionization and affinity energies and work function). 46 refs., 16 figs

  5. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices

  6. Synthesis of ZnS nanoparticles on a solid surface: Atomic force microscopy study

    International Nuclear Information System (INIS)

    Yuan Huizhen; Lian Wenping; Song Yonghai; Chen Shouhui; Chen Lili; Wang Li

    2010-01-01

    In this work, zinc sulfide (ZnS) nanoparticles had been synthesized on DNA network/mica and mica surface, respectively. The synthesis was carried out by first dropping a mixture of zinc acetate and DNA on a mica surface for the formation of the DNA networks or zinc acetate solution on a mica surface, and subsequently transferring the sample into a heated thiourea solution. The Zn 2+ adsorbed on DNA network/mica or mica surface would react with S 2- produced from thiourea and form ZnS nanoparticles on these surfaces. X-ray diffraction and atomic force microscopy (AFM) were used to characterize the ZnS nanoparticles in detail. AFM results showed that ZnS nanoparticles distributed uniformly on the mica surface and deposited preferentially on DNA networks. It was also found that the size and density of ZnS nanoparticles could be effectively controlled by adjusting reaction temperature and the concentration of Zn 2+ or DNA. The possible growth mechanisms have been discussed in detail.

  7. Surface and interfacial reaction study of half cycle atomic layer deposited HfO{sub 2} on chemically treated GaSb surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhernokletov, D. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Kim, J. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Yakimov, M.; Tokranov, V.; Oktyabrsky, S. [College of Nanoscale Science and Engineering, University at Albany - SUNY, Albany, New York 12203 (United States); Wallace, R. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2013-04-01

    An in situ half-cycle atomic layer deposition/X-ray photoelectron spectroscopy (XPS) study was conducted in order to investigate the evolution of the HfO{sub 2} dielectric interface with GaSb(100) surfaces after sulfur passivation and HCl etching, designed to remove the native oxides. With the first pulses of tetrakis(dimethylamido)hafnium(IV) and water, a decrease in the concentration of antimony oxide states present on the HCl-etched surface is observed, while antimony sulfur states diminished below the XPS detection limit on sulfur passivated surface. An increase in the amount of gallium oxide/sulfide is seen, suggesting oxygen or sulfur transfers from antimony to gallium during antimony oxides/sulfides decomposition.

  8. ONE-DIMENSIONAL ORDERING OF IN ATOMS IN A CU(100) SURFACE

    NARCIS (Netherlands)

    BREEMAN, M; BARKEMA, GT; BOERMA, DO

    1994-01-01

    A Monte Carlo study of the ordering of In atoms embedded in the top layer of a Cu(100) surface is presented. The interaction energies between the In and Cu atoms were derived from atom-embedding calculations, with Finnis-Sinclair potentials. It was found that the interaction between In atoms in the

  9. SURFACE SITES AND MOBILITIES OF IN ATOMS ON A STEPPED CU(100) SURFACE STUDIED AT LOW COVERAGE

    NARCIS (Netherlands)

    BREEMAN, M; DORENBOS, G; BOERMA, DO

    The various surface sites of In atoms deposited to a coverage of 0.013 monolayer (ML) onto a stepped Cu(100) surface were determined with low-energy ion scattering (LEIS) as a function of deposition temperature. From the fractions of In atoms occupying different sites, observed in the temperature

  10. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  11. Interface doping of conjugated organic films by means of diffusion of atomic components from the surfaces of semiconductors and of metal oxides.

    Science.gov (United States)

    Komolov, A S; Akhremtchik, S N; Lazneva, E F

    2011-08-15

    The paper reports the results on the interface formation of 5-10 nm thick conjugated layers of Cu-phthalocyanine (CuPc) with a number of solid surfaces: polycrystalline Au, (SiO(2))n-Si, ZnO(0 0 0 1), Si(1 0 0), Ge(1 1 1), CdS(0 0 0 1) and GaAs(1 0 0). The results were obtained using Auger electron spectroscopy (AES) and low-energy target current electron spectroscopy (TCS). The organic overlayers were thermally deposited in situ in UHV onto substrate surfaces. The island-like organic deposits were excluded from the analysis so that only uniform organic deposits were considered. In the cases of polycrystalline Au, Si(1 0 0) and Ge(1 1 1) substrates the AES peaks of the substrate material attenuated down to the zero noise level upon the increase of the CuPc film thickness of 8-10 nm. The peaks corresponding to oxygen atoms in the case of SiO(2) substrate, and to atoms from the ZnO, GaAs and CdS substrates were clearly registered in the AES spectra of the 8-10 nm thick CuPc deposits. The relative concentration of the substrate atomic components diffused into the film was different from their relative concentration at the pure substrate surface. The concentration of the substrate dopant atoms in the CuPc film was estimated as one atom per one CuPc molecule. Using the target current electron spectroscopy, it was shown that the substrate atoms admixed in the CuPc film account for the appearance of a new peak in the density of unoccupied electronic states. Formation of intermediate TCS spectra until the CuPc deposit reaches 2-3 nm was observed in the cases of GaAs(1 0 0), ZnO(0 0 0 1), Ge(1 1 1) surfaces. The intermediate spectra show a less pronounced peak structure different from the one typical for the CuPc films. It was suggested that the intermediate layer was formed by the CuPc molecules fully or partially decomposed due to the interaction with the relatively reactive semiconductor surfaces. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. The impact of atomization on the surface composition of spray-dried milk droplets.

    Science.gov (United States)

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Atomic structure of diamond {111} surfaces etched in oxygen water vapor

    International Nuclear Information System (INIS)

    Theije, F.K. de; Reedijk, M.F.; Arsic, J.; Enckevort, W.J.P. van; Vlieg, E.

    2001-01-01

    The atomic structure of the {111} diamond face after oxygen-water-vapor etching is determined using x-ray scattering. We find that a single dangling bond diamond {111} surface model, terminated by a full monolayer of -OH fits our data best. To explain the measurements it is necessary to add an ordered water layer on top of the -OH terminated surface. The vertical contraction of the surface cell and the distance between the oxygen atoms are generally in agreement with model calculations and results on similar systems. The OH termination is likely to be present during etching as well. This model experimentally confirms the atomic-scale mechanism we proposed previously for this etching system

  14. Entanglement generation between two atoms via surface modes

    International Nuclear Information System (INIS)

    Xu Jingping; Yang Yaping; Al-Amri, M.; Zhu Shiyao; Zubairy, M. Suhail

    2011-01-01

    We discuss the coupling of two identical atoms, separated by a metal or metamaterial slab, through surface modes. We show that the coupling through the surface modes can induce entanglement. We discuss how to control the coupling for the metal or metamaterial slab by adjusting the symmetrical and antisymmetrical property of the surface modes. We analyze the dispersion relation of the surface modes and study the parameter ranges that support the surface modes with the same properties. Our results have potential applications in quantum communication and quantum computation.

  15. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  16. Ionization of xenon Rydberg atoms at Si(1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, H.R. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstra. 15, D-12489, Berlin (Germany); Lancaster, J.C. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Dunning, F.B. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu

    2007-03-15

    The ionization of xenon Rydberg atoms excited to the lowest states in the n = 17 and n = 20 Stark manifolds at Si(1 0 0) surfaces is investigated. It is shown that, under appropriate conditions, a sizable fraction of the incident atoms can be detected as ions. Although the onset in the ion signal is perturbed by stray fields present at the surface, the data are consistent with ionization rates similar to those measured earlier at metal surfaces.

  17. Topographic characterization of the self-assembled nanostructures of chitosan on mica surface by atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Li; Wu, Jiafeng; Guo, Yan; Gong, Coucong; Song, Yonghai

    2015-01-01

    Graphical abstract: - Highlights: • Nanocomposites of chitosan film were prepared by simple self-assembly from solvent media. • Chitosan molecules assembled on mica surface of nanoparticles, fibril and membrane with varied chitosan concentration. • Chitosan molecules assembled with different nanostructure under varied pH. • The optimum drying temperature for forming chitosan membrane is about 65 °C. - Abstract: In this work, the self-assembled nanostructures of chitosan on mica surface formed from various solvents were investigated by using atomic force microscopy. The effects of various factors on the self-assembled nanostructures of chitosan on mica surface, including solvents, the concentration of chitosan, the pH of solution and the drying temperature, were explored in detail. Our experimental data resulted in the conclusion that chitosan molecules could self-assemble on mica surface to form various nanostructures such as nanoparticles, fibril and film. Nanoparticles were always formed on mica surface from CCl_4, C_6H_6, CH_2Cl_2 solution, fibril preferred to form on mica surface from CH_3CH_2OH and CH_3OH solution and the optimal solvent to form film was found to be CH_3CN. Low concentration, pH and temperature were helpful for the formation of nanoparticles, medium concentration, pH and temperature resulted in fibril and high concentration, pH and temperature were often beneficial to forming chitosan films. The study of self-assembled nanostructures of chitosan on mica surface would provide new insight into the development of chitosan-based load-bearing materials.

  18. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    Science.gov (United States)

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  19. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Science.gov (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  20. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  1. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  2. Grazing incidence collisions of ions and atoms with surfaces: from charge exchange to atomic diffraction; Collisions rasantes d'ions ou d'atomes sur les surfaces: de l'echange de charge a la diffraction atomique

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P

    2006-09-15

    This thesis reports two studies about the interaction with insulating surfaces of keV ions or atoms under grazing incidence. The first part presents a study of charge exchange processes occurring during the interaction of singly charged ions with the surface of NaCl. In particular, by measuring the scattered charge fraction and the energy loss in coincidence with electron emission, the neutralization mechanism is determined for S{sup +}, C{sup +}, Xe{sup +}, H{sup +}, O{sup +}, Kr{sup +}, N{sup +}, Ar{sup +}, F{sup +}, Ne{sup +} and He{sup +}. These results show the importance of the double electron capture as neutralization process for ions having too much potential energy for resonant capture and not enough for Auger neutralization. We have also studied the ionisation of the projectile and of the surface, and the different Auger-like neutralization processes resulting in electron emission, population of conduction band or excited state. For oxygen scattering, we have measured an higher electron yield in coincidence with scattered negative ion than with scattered atom suggesting the transient formation above the surface of the oxygen doubly negative ion. The second study deals with the fast atom diffraction, a new phenomenon observed for the first time during this work. Due to the large parallel velocity, the surface appears as a corrugated wall where rows interfere. Similarly to the Thermal Atom Scattering the diffraction pattern corresponds to the surface potential and is sensitive to vibrations. We have study the H-NaCl and He-LiF atom-surface potentials in the 20 meV - 1 eV range. This new method offers interesting perspectives for surface characterisation. (author)

  3. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  4. Atomic structure of the SnO2 (110) surface

    International Nuclear Information System (INIS)

    Godin, T.J.; LaFemina, J.P.

    1991-12-01

    Using a tight-binding, total-energy model, we examine atomic relaxations of the ideal stoichiometric and reduced tin oxide (11) surfaces. In both cases we find a nearly bond-length conserving rumple of the top layer, and a smaller counter-relaxation of the second layer. These calculations show no evidence of surface states in the band gap for either surface

  5. Single atom and-molecules chemisorption on solid surfaces

    International Nuclear Information System (INIS)

    Anda, E.V.; Ure, J.E.; Majlis, N.

    1981-01-01

    A simplified model for the microscopic interpretation of single atom and- molecules chemisorption on metallic surfaces is presented. An appropriated hamiltonian for this problem is resolved, through the Green's function formalism. (L.C.) [pt

  6. Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen

    International Nuclear Information System (INIS)

    Chen, H.; Chattopadhyay, K.; Chen, K.; Burger, A.; George, M.A.; Gregory, J.C.; Nag, P.K.; Weimer, J.J.; James, R.B.

    1999-01-01

    A method of surface passivation of Cd 1-x Zn x Te (CZT) x-ray and gamma ray detectors has been established by using microwave-assisted atomic oxygen bombardment. Detector performance is significantly enhanced due to the reduction of surface leakage current. CZT samples were exposed to an atomic oxygen environment at the University of Alabama in Huntsville close-quote s Thermal Atomic Oxygen Facility. This system generates neutral atomic oxygen species with kinetic energies of 0.1 - 0.2 eV. The surface chemical composition and its morphology modification due to atomic oxygen exposure were studied by x-ray photoelectron spectroscopy and atomic force microscopy and the results were correlated with current-voltage measurements and with room temperature spectral responses to 133 Ba and 241 Am radiation. A reduction of leakage current by about a factor of 2 is reported, together with significant improvement in the gamma-ray line resolution. copyright 1999 American Vacuum Society

  7. He-atom surface scattering apparatus for studies of crystalline surface dynamics. Progress report, May 1, 1985-April 30, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The primary goal of this grant is the construction of a state-of-the-art He atom-crystal surface scattering apparatus which will be capable of measuring both elastic and inelastic scattering of He atoms from crystal surfaces of metals, semiconductors and insulators. First, the apparatus will be constructed and characterized, after which a program of studies on the surface dynamics of a variety of crystal surfaces will be started. 6 refs., 2 figs

  8. Evaporative cooling of cold atoms in a surface trap

    International Nuclear Information System (INIS)

    Hammes, M.; Rychtarik, D.; Grimm, R.

    2001-01-01

    Full text: Trapping cold atom close to a surface is a promising route for attaining a two-dimensional quantum gas. We present our gravito-optical surface trap (LOST), which consists of a horizontal evanescent-wave atom mirror in combination with a blue-detuned hollow beam for transverse confinement. Optical pre-cooling based on inelastic reflections from the evanescent wave provides good starting conditions for subsequent evaporative cooling, which can be realized by ramping down the optical potentials of the trap. Already our preliminary experiments (performed at the MPI fuer Kernphysik in Heidelberg) show a 100-fold increase in phase-space density and temperature reduction to 300 nK. Substantial further improvements can be expected in our greatly improved set-up after the recent transfer of the experiment to Innsbruck. By eliminating heating processes, optimizing the evaporation ramp, polarizing the atoms and by using an additional far red-detuned laser beam we expect to soon reach the conditions of quantum degeneracy and/or two-dimensionality. (author)

  9. Damage at a tungsten surface induced by impacts of self-atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yong [Data Center for High Energy Density Physics, Institute of Applied Physics and, Computational Mathematics, P. O. Box 8009, Beijing 100088 (China); Krstic, Predrag, E-mail: predrag.krstic@stonybrook.edu [Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794-5250 (United States); Zhou, Fu Yang [College of Material Sciences and Optoelectronic Technology, University of the Chinese Academy of Sciences, P. O. Box 4588, Beijing 100049 (China); Meyer, Fred [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6372 (United States)

    2015-12-15

    We study evolution of the surface defects of a 300 K tungsten surface due to the cumulative impact of 0.25–10 keV self-atoms. The simulation is performed by molecular dynamics with bond-order Tersoff-form potentials. At all studied impact energies the computation shows strong defect-recombination effect of both created Frenkel pairs as well as recombination of the implanted atoms with the vacancies created by the sputtering. This leads to a saturation of the cumulative count of vacancies, evident at energies below 2 keV, as long as the implantation per impact atom exceeds sputtering and to a saturation of the interstitial count when production of the sputtered particles per impact atom becomes larger than 1 (in the energy range 2-4 keV). The number of cumulative defects is fitted as functions of impact fluence and energy, enabling their analytical extrapolation outside the studied range of parameters. - Highlights: • We calculated cumulative creation of defects in tungsten by self-atom impact. • At some energies, the defect count saturate with increasing damage dose. • The defects are accumulated in the first few layers of the tungsten surface. • The interstitials are formed predominantly as adatoms.

  10. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    Science.gov (United States)

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  11. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

    International Nuclear Information System (INIS)

    Bae, Sang Eun; Oh, Mi Kyung; Min, Nam Ki; Paek, Se Hwan; Hong, Suk In; Lee, Chi-Woo J.

    2004-01-01

    Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. .0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near .1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxide covered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogen terminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions

  12. Lateral and vertical manipulations of single atoms on the Ag(1 1 1) surface with the copper single-atom and trimer-apex tips

    International Nuclear Information System (INIS)

    Xie Yiqun; Yang Tianxing; Ye Xiang; Huang Lei

    2011-01-01

    We study the lateral and vertical manipulations of single Ag and Cu atoms on the Ag(1 1 1) surface with the Cu single-atom and trimer-apex tips using molecular statics simulations. The reliability of the lateral manipulation with the Cu single-atom tip is investigated, and compared with that for the Ag tips. We find that overall the manipulation reliability (MR) increases with the decreasing tip height, and in a wide tip-height range the MR is better than those for both the Ag single-atom and trimer-apex tips. This is due to the stronger attractive force of the Cu tip and its better stability against the interactions with the Ag surface. With the Cu trimer-apex tip, the single Ag and Cu adatoms can be picked up from the flat Ag(1 1 1) surface, and moreover a reversible vertical manipulation of single Ag atoms on the stepped Ag(1 1 1) surface is possible, suggesting a method to modify two-dimensional Ag nanostructures on the Ag(1 1 1) surface with the Cu trimer-apex tip.

  13. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  14. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  15. Atomic-absorption determination of tantalum and niobium in ore concentrates

    International Nuclear Information System (INIS)

    Elinson, S.V.; Korovin, Yu.I.; Kuchumov, V.A.

    1975-01-01

    A flame atom-absorption method was developed for determining tantalum and niobium at their level greater than 5% in Ta-Nb ore concentrates. Flame was produced by a nitrous oxide-acetylene mixture. The optimal composition of a buffer (3 mg/ml) of iron was determined by the method of factorial planning of the experiment and steep ascention by gradient. The optimizing parameter in factorial planning was obtained from the difference of optical densities of Ta and Nb, by taking the average value for two solutions which had dissimilar total composition and which imitated the real composition of the ore concentrates, i.e., the value of (ΔD/Dsub(av))sub(Ta) or (ΔD/Dsub(av))sub(Nb). The optimization of analytical conditions corresponded to the condition (ΔD/Dsub(av))→ 0, which indicated that the chosen optimizing parameter also facilitated the attainment of maximum D values. The variation coefficient in the determination of Ta and Nb was respectively 0.8 and 1.4%. There was a good agreement between the results obtained in Ta analysis by the atom-absorption and the extraction-gravimetric methods, and in Nb analysis by the atom-absorption, differential spectrophotometric and x-ray fluorescence methods

  16. Magnetic Interaction between Surface-Engineered Rare-Earth Atomic Spins

    Directory of Open Access Journals (Sweden)

    Chiung-Yuan Lin

    2012-06-01

    Full Text Available We report the ab-initio study of rare-earth adatoms (Gd on an insulating surface. This surface is of interest because of previous studies by scanning tunneling microscopy showing spin excitations of transition-metal adatoms. The present work is the first study of rare-earth spin-coupled adatoms, as well as the geometry effect of spin coupling and the underlying mechanism of ferromagnetic coupling. The exchange coupling between Gd atoms on the surface is calculated to be antiferromagnetic in a linear geometry and ferromagnetic in a diagonal geometry. We also find that the Gd dimers in these two geometries are similar to the nearest-neighbor and the next-nearest-neighbor Gd atoms in GdN bulk. We analyze how much direct exchange, superexchange, and Ruderman-Kittel-Kasuya-Yosida interactions contribute to the exchange coupling for both geometries by additional first-principles calculations of related model systems.

  17. Attractive interaction between an atom and a surface

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.

    1983-01-01

    Using a general self-energy formalism we examine the interaction between an atom and a surface. Considered in detail are deviations from the Van der Waals force due to recoil and finite velocity of the particle. Calculations for positronium near a metal surface show that for such systems recoil and velocity effects are significant even at very low energies. We also examine the mechanisms for energy exchange with the surface and calculations show that single quantum events do not always dominate the exchange rates. 8 references, 2 figures

  18. Phonon lineshapes in atom-surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, E-28006 Madrid (Spain)

    2010-08-04

    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.

  19. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    International Nuclear Information System (INIS)

    Bathomarco, R.V.; Solorzano, G.; Elias, C.N.; Prioli, R.

    2004-01-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle

  20. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces

    Science.gov (United States)

    Bathomarco, Ti R. V.; Solorzano, G.; Elias, C. N.; Prioli, R.

    2004-06-01

    The surface of commercial unalloyed titanium, used in dental implants, was analyzed by atomic force microscopy. The morphology, roughness, and surface area of the samples, submitted to mechanically-induced erosion, chemical etching and a combination of both, were compared. The results show that surface treatments strongly influence the dental implant physical and chemical properties. An analysis of the length dependence of the implant surface roughness shows that, for scan sizes larger than 50 μm, the average surface roughness is independent of the scanning length and that the surface treatments lead to average surface roughness in the range of 0.37 up to 0.48 μm. It is shown that the implant surface energy is sensitive to the titanium surface area. As the area increases there is a decrease in the surface contact angle.

  1. Shallow surface depth profiling with atomic resolution

    International Nuclear Information System (INIS)

    Xi, J.; Dastoor, P.C.; King, B.V.; O'Connor, D.J.

    1999-01-01

    It is possible to derive atomic layer-by-layer composition depth profiles from popular electron spectroscopic techniques, such as X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES). When ion sputtering assisted AES or XPS is used, the changes that occur during the establishment of the steady state in the sputtering process make these techniques increasingly inaccurate for depths less than 3nm. Therefore non-destructive techniques of angle-resolved XPS (ARXPS) or AES (ARAES) have to be used in this case. In this paper several data processing algorithms have been used to extract the atomic resolved depth profiles of a shallow surface (down to 1nm) from ARXPS and ARAES data

  2. Evolution of atomic-scale surface structures during ion bombardment: A fractal simulation

    International Nuclear Information System (INIS)

    Shaheen, M.A.; Ruzic, D.N.

    1993-01-01

    Surfaces of interest in microelectronics have been shown to exhibit fractal topographies on the atomic scale. A model utilizing self-similar fractals to simulate surface roughness has been added to the ion bombardment code TRIM. The model has successfully predicted experimental sputtering yields of low energy (less then 1000 eV) Ar on Si and D on C using experimentally determined fractal dimensions. Under ion bombardment the fractal surface structures evolve as the atoms in the collision cascade are displaced or sputtered. These atoms have been tracked and the evolution of the surface in steps of one monolayer of flux has been determined. The Ar--Si system has been studied for incidence energies of 100 and 500 eV, and incidence angles of 0 degree, 30 degree, and 60 degree. As expected, normally incident ion bombardment tends to reduce the roughness of the surface, whereas large angle ion bombardment increases the degree of surface roughness. Of particular interest though, the surfaces are still locally self-similar fractals after ion bombardment and a steady state fractal dimension is reached, except at large angles of incidence

  3. Design of Rotary Atomizer Using Characteristics of Thin Film Flow on Solid Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Park, Boo Seong; Kim, Bo Hung [Univ. of Ulsan, Ulsan (Korea, Republic of)

    2013-12-15

    A disc-type rotary atomizer affords advantages such as superior paint transfer efficiency, uniformity of paint pattern and particle size, and less consumption of compressed air compared to a spray-gun-type atomizer. Furthermore, it can be applied to all types of painting materials, and it is suitable for large-scale processes such as car painting. The painting quality, which is closely related to the atomizer performance, is determined by the uniformity and droplet size in accordance with the design of the bell disc surface. This study establishes the basics of how to design a surface by modeling the operating bell disc's RPM, diameter, surface angle, and film thickness considering dye characteristics such as the viscosity, density, and surface affinity.

  4. Deposition of size-selected atomic clusters on surfaces

    International Nuclear Information System (INIS)

    Carroll, S.J.

    1999-06-01

    This dissertation presents technical developments and experimental and computational investigations concerned with the deposition of atomic clusters onto surfaces. It consists of a collection of papers, in which the main body of results are contained, and four chapters presenting a subject review, computational and experimental techniques and a summary of the results presented in full within the papers. Technical work includes the optimization of an existing gas condensation cluster source based on evaporation, and the design, construction and optimization of a new gas condensation cluster source based on RF magnetron sputtering (detailed in Paper 1). The result of cluster deposition onto surfaces is found to depend on the cluster deposition energy; three impact energy regimes are explored in this work. (1) Low energy: n clusters create a defect in the surface, which pins the cluster in place, inhibiting cluster diffusion at room temperature (Paper V). (3) High energy: > 50 eV/atom. The clusters implant into the surface. For Ag 20 -Ag 200 clusters, the implantation depth is found to scale linearly with the impact energy and inversely with the cross-sectional area of the cluster, with an offset due to energy lost to the elastic compression of the surface (Paper VI). For smaller (Ag 3 ) clusters the orientation of the cluster with respect to the surface and the precise impact site play an important role; the impact energy has to be 'focused' in order for cluster implantation to occur (Paper VII). The application of deposited clusters for the creation of Si nanostructures by plasma etching is explored in Paper VIII. (author)

  5. The calculation of surface free energy based on embedded atom method for solid nickel

    International Nuclear Information System (INIS)

    Luo Wenhua; Hu Wangyu; Su Kalin; Liu Fusheng

    2013-01-01

    Highlights: ► A new solution for accurate prediction of surface free energy based on embedded atom method was proposed. ► The temperature dependent anisotropic surface energy of solid nickel was obtained. ► In isotropic environment, the approach does not change most predictions of bulk material properties. - Abstract: Accurate prediction of surface free energy of crystalline metals is a challenging task. The theory calculations based on embedded atom method potentials often underestimate surface free energy of metals. With an analytical charge density correction to the argument of the embedding energy of embedded atom method, an approach to improve the prediction for surface free energy is presented. This approach is applied to calculate the temperature dependent anisotropic surface energy of bulk nickel and surface energies of nickel nanoparticles, and the obtained results are in good agreement with available experimental data.

  6. Effects on energetic impact of atomic clusters with surfaces

    International Nuclear Information System (INIS)

    Popok, V.N.; Vuchkovich, S.; Abdela, A.; Campbell, E.E.B.

    2007-01-01

    A brief state-of-the-art review in the field of cluster ion interaction with surface is presented. Cluster beams are efficient tools for manipulating agglomerates of atoms providing control over the synthesis as well as modification of surfaces on the nm-scale. The application of cluster beams for technological purposes requires knowledge of the physics of cluster-surface impact. This has some significant differences compared to monomer ion - surface interactions. The main effects of cluster-surface collisions are discussed. Recent results obtained in experiments on silicon surface nanostructuring using keV-energy implantation of inert gas cluster ions are presented and compared with molecular dynamics simulations. (authors)

  7. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  8. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  9. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes

    Science.gov (United States)

    Anderson, Mark S.; Gaimari, Stephen D.

    2003-01-01

    The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.

  10. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    Science.gov (United States)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  11. Ballistic Evaporation and Solvation of Helium Atoms at the Surfaces of Protic and Hydrocarbon Liquids.

    Science.gov (United States)

    Johnson, Alexis M; Lancaster, Diane K; Faust, Jennifer A; Hahn, Christine; Reznickova, Anna; Nathanson, Gilbert M

    2014-11-06

    Atomic and molecular solutes evaporate and dissolve by traversing an atomically thin boundary separating liquid and gas. Most solutes spend only short times in this interfacial region, making them difficult to observe. Experiments that monitor the velocities of evaporating species, however, can capture their final interactions with surface solvent molecules. We find that polarizable gases such as N2 and Ar evaporate from protic and hydrocarbon liquids with Maxwell-Boltzmann speed distributions. Surprisingly, the weakly interacting helium atom emerges from these liquids at high kinetic energies, exceeding the expected energy of evaporation from salty water by 70%. This super-Maxwellian evaporation implies in reverse that He atoms preferentially dissolve when they strike the surface at high energies, as if ballistically penetrating into the solvent. The evaporation energies increase with solvent surface tension, suggesting that He atoms require extra kinetic energy to navigate increasingly tortuous paths between surface molecules.

  12. Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys

    Science.gov (United States)

    Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi

    2011-10-01

    The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.

  13. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.

    Science.gov (United States)

    Gnaser, Hubert; Radny, Tobias

    2015-12-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.

  14. Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru [Moscow State University (Russian Federation); Oreshkin, S. I. [Moscow State University, Sternberg Astronomical Institute (Russian Federation); Haesendonck, C. van [Laboratorium voor Stoffysica en Magnetisme (Belgium)

    2015-06-15

    We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface might produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.

  15. Interactions between nitrogen molecules and barium atoms on Ru (0001) surface

    International Nuclear Information System (INIS)

    Zhao Xinxin; Mi Yiming; Xu Hongxia; Wang Lili; Ren Li; Tao Xiangming; Tan Mingqiu

    2011-01-01

    We had performed first principles calculations on interactions between nitrogen molecules and barium atoms on Ru (0001) surface using density function theory methods. It was shown that effects of barium atoms weakened the bond strength of nitrogen molecules. The bond length of nitrogen molecule increases from 0.113 nm on Ru (001)-N 2 to 0.120 nm on Ru (001)-N 2 /Ba surface. While stretch vibrational frequency of nitrogen molecule decreased from 2222 cm -1 and charge transfer toward nitrogen molecule increased from 0.3 e to 1.1 e. Charge was mainly translated from 6 s orbitals of barium atoms to 4 d orbitals of substrate, which enhanced the hybridization between 4 d and 2 π orbitals and increased the dipole moment of 5 σ and d π orbitals of nitrogen molecule. The molecular dipole moment of nitrogen molecule was increased by -0.136 e Anstrom. It was suggested that barium had some characters to be an electronic promoter on the process of activating nitrogen molecules on Ru (0001) surface. (authors)

  16. Localization of cesium on montmorillonite surface investigated by frequency modulation atomic force microscopy

    Science.gov (United States)

    Araki, Yuki; Satoh, Hisao; Okumura, Masahiko; Onishi, Hiroshi

    2017-11-01

    Cation exchange of clay mineral is typically analyzed without microscopic study of the clay surfaces. In order to reveal the distribution of exchangeable cations at the clay surface, we performed in situ atomic-scale observations of the surface changes in Na-rich montmorillonite due to exchange with Cs cations using frequency modulation atomic force microscopy (FM-AFM). Lines of protrusion were observed on the surface in aqueous CsCl solution. The amount of Cs of the montmorillonite particles analyzed by energy dispersive X-ray spectrometry was consistent with the ratio of the number of linear protrusions to all protrusions in the FM-AFM images. The results showed that the protrusions represent adsorbed Cs cations. The images indicated that Cs cations at the surface were immobile, and their occupancy remained constant at 10% of the cation sites at the surface with different immersion times in the CsCl solution. This suggests that the mobility and the number of Cs cations at the surface are controlled by the permanent charge of montmorillonite; however, the Cs distribution at the surface is independent of the charge distribution of the inner silicate layer. Our atomic-scale observations demonstrate that surface cations are distributed in different ways in montmorillonite and mica.

  17. Structures of adsorbed CO on atomically smooth and on stepped sngle crystal surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Houston, J.E.

    1980-01-01

    The structures of molecular CO adsorbed on atomically smooth surfaces and on surfaces containing monatomic steps have been studied using the electron stimulated desorption ion angular distribution (ESDIAD) method. For CO adsorbed on the close packed Ru(001) and W(110) surfaces, the dominant bonding mode is via the carbon atom, with the CO molecular axis perpendicular to the plane of the surface. For CO on atomicaly rough Pd(210), and for CO adsorbed at step sites on four different surfaces vicinal to W(110), the axis of the molecule is tilted or inclined away from the normal to the surface. The ESDIAD method, in which ion desorption angles are related to surface bond angles, provides a direct determination of the structures of adsorbed molecules and molecular complexes on surfaces

  18. Adsorption of chitosan onto carbonaceous surfaces and its application: atomic force microscopy study

    International Nuclear Information System (INIS)

    Tan Shengnan; Liu Zhiguo; Zu Yuangang; Fu Yujie; Xing Zhimin; Zhao Lin; Sun Tongze; Zhou Zhen

    2011-01-01

    The adsorption of chitosan onto highly ordered pyrolytic graphite(HOPG) surfaces and its applications have been studied by atomic force microscopy (AFM). The results indicated that chitosan topography formed on the HOPG surface significantly depends on the pH conditions and its concentration for the incubation. Under strongly acidic conditions (pH -1 , chitosan formed into uniform network structures composed of fine chains. When the solution pH was changed from 3.5 to 6.5, chitosan tends to form a thicker film. Under neutral and basic conditions, chitosan changed into spherical nanoparticles, and their sizes were increased with increasing pH. Dendritic structures have been observed when the chitosan concentration was increased up to 5 mg ml -1 . In addition, the chitosan topography can also be influenced by ionic strength and the addition of different metal ions. When 0.1 M metal ions Na + , Mg 2+ , Ca 2+ and Cu 2+ were added into the chitosan solution at pH 3.0 for the incubation, network structures, branched chains, block structures and dense networks attached with many small particles were observed, respectively. The potential applications of these chitosan structures on HOPG have been explored. Preliminary results characterized by AFM and XPS indicated that the chitosan network formed on the HOPG surface can be used for AFM lithography, selective adsorption of gold nanoparticles and DNA molecules.

  19. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

  20. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    International Nuclear Information System (INIS)

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  1. Molecular dynamics study of the interactions of incident N or Ti atoms with the TiN(001) surface

    International Nuclear Information System (INIS)

    Xu, Zhenhai; Zeng, Quanren; Yuan, Lin; Qin, Yi; Chen, Mingjun; Shan, Debin

    2016-01-01

    Graphical abstract: - Highlights: • Interactions of incident N or Ti atoms with TiN(001) surface are studied by CMD. • The impact position of incident N on the surface determines the interaction modes. • Adsorption could occur due to the atomic exchange process. • Resputtering and reflection may simultaneously occur. • The initial sticking coefficient of N on TiN(001) is much smaller than that of Ti. - Abstract: The interaction processes between incident N or Ti atoms and the TiN(001) surface are simulated by classical molecular dynamics based on the second nearest-neighbor modified embedded-atom method potentials. The simulations are carried out for substrate temperatures between 300 and 700 K and kinetic energies of the incident atoms within the range of 0.5–10 eV. When N atoms impact against the surface, adsorption, resputtering and reflection of particles are observed; several unique atomic mechanisms are identified to account for these interactions, in which the adsorption could occur due to the atomic exchange process while the resputtering and reflection may simultaneously occur. The impact position of incident N atoms on the surface plays an important role in determining the interaction modes. Their occurrence probabilities are dependent on the kinetic energy of incident N atoms but independent on the substrate temperature. When Ti atoms are the incident particles, adsorption is the predominant interaction mode between particles and the surface. This results in the much smaller initial sticking coefficient of N atoms on the TiN(001) surface compared with that of Ti atoms. Stoichiometric TiN is promoted by N/Ti flux ratios larger than one.

  2. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    Science.gov (United States)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  3. A cellular automata simulation study of surface roughening resulting from multi-atom etch pit generation during sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Toh, Y S; Nobes, M J; Carter, G [Dept. of Electronic and Electrical Engineering, Univ. of Salford (United Kingdom)

    1992-04-01

    A two-dimensional square matrix of pseudo-atomic positions is erected and atom removal from the ''surface'' is effected randomly. Either single atoms or groups of atoms (to simulate multi-atom pit generation) are removed. The characteristics of the evolving roughened, terraced ''surface'' are evaluated as a function of the total number of atoms, or equivalent numbers of atomic layers, removed. These characteristics include the ''mean'' position of the sputtered surface, the standard deviation of terrace length about the mean and the form of the terrace length distributions. The results of the single-atom removal mode compare exactly with theoretical predictions in that, for large numbers of atoms removed the depth position of the mean of the terrace length distribution is identical to the mean sputtered depth and the standard deviation increases as the square root of this depth. For multi-atom removal modes (which cannot be predicted theoretically) the standard deviation also increases as the square root of the mean sputtered depth but with a larger proportionality constant. The implications of these observations for the evolution of surface morphology during high yield sputtering is discussed. (orig.).

  4. Atomic-scale friction on stepped surfaces of ionic crystals.

    Science.gov (United States)

    Steiner, Pascal; Gnecco, Enrico; Krok, Franciszek; Budzioch, Janusz; Walczak, Lukasz; Konior, Jerzy; Szymonski, Marek; Meyer, Ernst

    2011-05-06

    We report on high-resolution friction force microscopy on a stepped NaCl(001) surface in ultrahigh vacuum. The measurements were performed on single cleavage step edges. When blunt tips are used, friction is found to increase while scanning both up and down a step edge. With atomically sharp tips, friction still increases upwards, but it decreases and even changes sign downwards. Our observations extend previous results obtained without resolving atomic features and are associated with the competition between the Schwöbel barrier and the asymmetric potential well accompanying the step edges.

  5. Quantum interference in grazing scattering of swift He atoms from LiF(0 0 1) surfaces: Surface eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S. [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Dpto. de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires (Argentina)], E-mail: msilvia@iafe.uba.ar; Miraglia, J.E. [Instituto de Astronomia y Fisica del Espacio, CONICET, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Dpto. de Fisica, FCEN, Universidad de Buenos Aires, Buenos Aires (Argentina)

    2009-02-15

    This work deals with the interference effects recently observed in grazing collisions of few-keV atoms with insulator surfaces. The process is studied within a distorted-wave method, the surface eikonal approximation, based on the use of the eikonal wave function and involving axial channeled trajectories with different initial conditions. The theory is applied to helium atoms impinging on a LiF(0 0 1) surface along the <1 1 0> direction. The role played by the projectile polarization and the surface rumpling is investigated. We found that when both effects are included, the proposed eikonal approach provides angular projectile spectra in good agreement with the experimental findings.

  6. Quantum interference in grazing scattering of swift He atoms from LiF(0 0 1) surfaces: Surface eikonal approximation

    International Nuclear Information System (INIS)

    Gravielle, M.S.; Miraglia, J.E.

    2009-01-01

    This work deals with the interference effects recently observed in grazing collisions of few-keV atoms with insulator surfaces. The process is studied within a distorted-wave method, the surface eikonal approximation, based on the use of the eikonal wave function and involving axial channeled trajectories with different initial conditions. The theory is applied to helium atoms impinging on a LiF(0 0 1) surface along the direction. The role played by the projectile polarization and the surface rumpling is investigated. We found that when both effects are included, the proposed eikonal approach provides angular projectile spectra in good agreement with the experimental findings.

  7. Surface-initiated Atom Transfer Radical Polymerization - a Technique to Develop Biofunctional Coatings

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2009-01-01

    The initial formation of initiating sites for atom transfer radical polymerization (ATRP) on various polymer surfaces and numerous inorganic and metallic surfaces is elaborated. The subsequent ATRP grafting of a multitude of monomers from such surfaces to generate thin covalently linked polymer...

  8. Atomic-layer-resolved analysis of surface magnetism by diffraction spectroscopy

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2010-01-01

    X-ray absorption near edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) measurements by Auger-electron-yield detection are powerful analysis tools for the electronic and magnetic structures of surfaces, but all the information from atoms within the electron mean-free-path range is summed into the obtained spectrum. In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, diffraction spectroscopy, which is the combination of X-ray absorption spectroscopy and Auger electron diffraction (AED). From a series of measured thickness dependent AED patterns, we deduced a set of atomic-layer-specific AED patterns arithmetically. Based on these AED patterns, we succeeded in disentangling obtained XANES and XMCD spectra into those from different atomic layers.

  9. Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances.

    Science.gov (United States)

    Sanz, A S; Miret-Artés, S

    2005-01-01

    The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.

  10. Osmium Atoms and Os2 Molecules Move Faster on Selenium-Doped Compared to Sulfur-Doped Boronic Graphenic Surfaces.

    Science.gov (United States)

    Barry, Nicolas P E; Pitto-Barry, Anaïs; Tran, Johanna; Spencer, Simon E F; Johansen, Adam M; Sanchez, Ana M; Dove, Andrew P; O'Reilly, Rachel K; Deeth, Robert J; Beanland, Richard; Sadler, Peter J

    2015-07-28

    We deposited Os atoms on S- and Se-doped boronic graphenic surfaces by electron bombardment of micelles containing 16e complexes [Os(p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-diselenate/dithiolate)] encapsulated in a triblock copolymer. The surfaces were characterized by energy-dispersive X-ray (EDX) analysis and electron energy loss spectroscopy of energy filtered TEM (EFTEM). Os atoms moved ca. 26× faster on the B/Se surface compared to the B/S surface (233 ± 34 pm·s(-1) versus 8.9 ± 1.9 pm·s(-1)). Os atoms formed dimers with an average Os-Os distance of 0.284 ± 0.077 nm on the B/Se surface and 0.243 ± 0.059 nm on B/S, close to that in metallic Os. The Os2 molecules moved 0.83× and 0.65× more slowly than single Os atoms on B/S and B/Se surfaces, respectively, and again markedly faster (ca. 20×) on the B/Se surface (151 ± 45 pm·s(-1) versus 7.4 ± 2.8 pm·s(-1)). Os atom motion did not follow Brownian motion and appears to involve anchoring sites, probably S and Se atoms. The ability to control the atomic motion of metal atoms and molecules on surfaces has potential for exploitation in nanodevices of the future.

  11. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  12. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  13. Assembling three-dimensional nanostructures on metal surfaces with a reversible vertical single-atom manipulation: A theoretical modeling

    International Nuclear Information System (INIS)

    Yang Tianxing; Ye Xiang; Huang Lei; Xie Yiqun; Ke Sanhuang

    2012-01-01

    Highlights: ► We simulate the reversible vertical single-atom manipulations on several metal surfaces. ► We propose a method to predict whether a reversible vertical single-atom manipulation can be successful on several metal surfaces. ► A 3-dimensional Ni nanocluster is assembled on the Ni(1 1 1) surface using a Ni trimer-apex tip. - Abstract: We propose a theoretical model to show that pulling up an adatom from an atomic step requires a weaker force than from the flat surfaces of Al(0 0 1), Ni(1 1 1), Pt(1 1 0) and Au(1 1 0). Single adatom in the atomic step can be extracted vertically by a trimer-apex tip while can be released to the flat surface. This reversible vertical manipulation can then be used to fabricate a supported three-dimensional (3D) nanostructure on the Ni(1 1 1) surface. The present modeling can be used to predict whether the reversible vertical single-atom manipulation and thus the assembling of 3D nanostructures can be achieved on a metal surface.

  14. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    Science.gov (United States)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  15. Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: takahashi.3ct.jun@jp.nssmc.com [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Kawakami, K. [Advanced Technology Research Laboratories, Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu-city, Chiba 293-8511 (Japan); Raabe, D. [Max-Planck Institut für Eisenforschung GmbH, Department for Microstructure Physics and Alloy Design, Max-Planck-Str. 1, 40237 Düsseldorf (Germany)

    2017-04-15

    Highlights: • Quantitative analysis in Fe-Cu alloy was investigated in voltage and laser atom probe. • In voltage-mode, apparent Cu concentration exceeded actual concentration at 20–40 K. • In laser-mode, the concentration never exceeded the actual concentration even at 20 K. • Detection loss was prevented due to the rise in tip surface temperature in laser-mode. • Preferential evaporation of solute Cu was reduced in laser-mode. - Abstract: The difference in quantitative analysis performance between the voltage-mode and laser-mode of a local electrode atom probe (LEAP3000X HR) was investigated using a Fe-Cu binary model alloy. Solute copper atoms in ferritic iron preferentially field evaporate because of their significantly lower evaporation field than the matrix iron, and thus, the apparent concentration of solute copper tends to be lower than the actual concentration. However, in voltage-mode, the apparent concentration was higher than the actual concentration at 40 K or less due to a detection loss of matrix iron, and the concentration decreased with increasing specimen temperature due to the preferential evaporation of solute copper. On the other hand, in laser-mode, the apparent concentration never exceeded the actual concentration, even at lower temperatures (20 K), and this mode showed better quantitative performance over a wide range of specimen temperatures. These results indicate that the pulsed laser atom probe prevents both detection loss and preferential evaporation under a wide range of measurement conditions.

  16. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  17. Dynamics of a Rydberg hydrogen atom near a metal surface in the electron-extraction scheme

    Energy Technology Data Exchange (ETDEWEB)

    Iñarrea, Manuel [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Lanchares, Víctor [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Palacián, Jesús [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain); Pascual, Ana I. [Departamento de Matemáticas y Computación, Universidad de La Rioja, Logroño, La Rioja (Spain); Salas, J. Pablo, E-mail: josepablo.salas@unirioja.es [Área de Física Aplicada, Universidad de La Rioja, Logroño (Spain); Yanguas, Patricia [Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, Pamplona (Spain)

    2015-01-23

    We study the classical dynamics of a Rydberg hydrogen atom near a metal surface in the presence of a constant electric field in the electron-extraction situation [1], e.g., when the field attracts the electron to the vacuum. From a dynamical point of view, this field configuration provides a dynamics richer than in the usual ion-extraction scheme, because, depending on the values of field and the atom–surface distance, the atom can be ionized only towards the metal surface, only to the vacuum or to the both sides. The evolution of the phase space structure as a function of the atom–surface distance is explored in the bound regime of the atom. In the high energy regime, the ionization mechanism is also investigated. We find that the classical results of this work are in good agreement with the results obtained in the wave-packet propagation study carried out by So et al. [1]. - Highlights: • We study a classical hydrogen atom near a metal surface plus a electric field. • We explore the phase space structure as a function of the field strength. • We find most of the electronic orbits are oriented along the field direction. • We study the ionization of the atom for several atom–surface distances. • This classical study is in good agreement with the quantum results.

  18. Interaction of antihydrogen with ordinary atoms and solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Froelich, Piotr, E-mail: piotr.froelich@kvac.uu.se; Voronin, Alexei [P.N. Lebedev Physical Institute (Russian Federation)

    2012-12-15

    The characteristic features of cold atom-antiatom collisions and antiatom-surface interactions are discussed and illustrated by the results for hydrogen-antihydrogen scattering and for quantum reflection of ultracold antihydrogen from a metallic surface. We discuss in some detail the case of spin-exchange in ultracold H-bar - H collisions, exposing the interplay of Coulombic, strong and dispersive forces, and demonstrating the sensitivity of the spin-exchange cross sections to hypothetical violations of Charge-Parity-Time (CPT) symmetry.

  19. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5 nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6 nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  20. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  1. Atomic Resolution Imaging and Quantification of Chemical Functionality of Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo D. [Yale Univ., New Haven, CT (United States). Dept. of Mechanical Engineering and Materials Science; Altman, Eric I. [Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering

    2014-12-10

    The work carried out from 2006-2014 under DoE support was targeted at developing new approaches to the atomic-scale characterization of surfaces that include species-selective imaging and an ability to quantify chemical surface interactions with site-specific accuracy. The newly established methods were subsequently applied to gain insight into the local chemical interactions that govern the catalytic properties of model catalysts of interest to DoE. The foundation of our work was the development of three-dimensional atomic force microscopy (3DAFM), a new measurement mode that allows the mapping of the complete surface force and energy fields with picometer resolution in space (x, y, and z) and piconewton/millielectron volts in force/energy. From this experimental platform, we further expanded by adding the simultaneous recording of tunneling current (3D-AFM/STM) using chemically well-defined tips. Through comparison with simulations, we were able to achieve precise quantification and assignment of local chemical interactions to exact positions within the lattice. During the course of the project, the novel techniques were applied to surface-oxidized copper, titanium dioxide, and silicon oxide. On these materials, defect-induced changes to the chemical surface reactivity and electronic charge density were characterized with site-specific accuracy.

  2. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    International Nuclear Information System (INIS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-01-01

    Thin layers of Al 2 O 3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p + emitters, due to a high density of fixed negative charges. Recent results indicate that Al 2 O 3 can also provide a good passivation of certain phosphorus-diffused n + c-Si surfaces. In this work, we studied the recombination at Al 2 O 3 passivated n + surfaces theoretically with device simulations and experimentally for Al 2 O 3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al 2 O 3 interface. This pronounced maximum was also observed experimentally for n + surfaces passivated either with Al 2 O 3 single layers or stacks of Al 2 O 3 capped by SiN x , when activated with a low temperature anneal (425 °C). In contrast, for Al 2 O 3 /SiN x stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n + diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al 2 O 3 /SiN x stacks can provide not only excellent passivation on p + surfaces but also on n + surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments

  3. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe2

    International Nuclear Information System (INIS)

    Nelson, A.J.; Berry, G.; Rockett, A.

    1997-01-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe 2 , one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies

  4. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp

    2017-02-28

    Highlights: • The reaction pathway of the hydrogen addition to graphene surface was determined by the DFT method. • Binding energies of atomic hydrogen to graphene surface were determined. • Absorption spectrum of hydrogenated graphene was theoretically predicted. • Hyperfine coupling constant of hydrogenated graphene was theoretically predicted. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4–37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2–7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8–28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  5. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  6. Atomic and electronic structure of surfaces theoretical foundations

    CERN Document Server

    Lannoo, Michel

    1991-01-01

    Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.

  7. Characterisation of an Ar-H2-O2 ICP by OES: Measurement of the atomic concentrations of H and O

    International Nuclear Information System (INIS)

    Altenberend J; Majchrzak M; Delannoy Y; Chichignoud G

    2011-01-01

    In order to characterize an inductively coupled plasma torch used in refining of metallurgical silicon, we have developed a spectroscopic method based on absolute emissivity measurements and Abel inversion. This method permitted to measure the concentrations of atomic hydrogen and atomic oxygen, which are among the reactive species involved in the purification process. Assuming LTE, the temperature profiles are deduced from the emissivity of the Argon lines. The concentration of atomic oxygen is deduced from the intensity ratio O/Ar. The hydrogen concentration measurement has to take into account the Stark broadening and the Doppler broadening of the hydrogen lines. The comparison between experimental and simulated line profiles permits to determine this concentration. The method has been tested on 2 kW and 30 kW inductively coupled plasma torches at atmospheric pressure. The results show that the concentrations of atomic oxygen and atomic hydrogen can be measured with an accuracy of 25%. The main disadvantage of this method is that, using emission, it does not permit to measure the concentration in the 'cold' zone of the plasma, i.e. at the edges.

  8. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Science.gov (United States)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  9. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    International Nuclear Information System (INIS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-01-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SA REF ) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SA PSD ) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SA INV1 ) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SA INV2 ) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SA PSD was 0.7–1.8 times higher and SA INV1 and SA INV2 were 2.2–8 times higher than SA REF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SA REF . However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SA REF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SA PSD ) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  10. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  11. Adsorption and migration of single metal atoms on the calcite (10.4) surface

    International Nuclear Information System (INIS)

    Pinto, H; Haapasilta, V; Lokhandwala, M; Foster, Adam S; Öberg, S

    2017-01-01

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3 d (Ti, Cr, Fe, Ni, Cu), 4 d (Zr, Nb, Mo, Pd, Ag) and 5 d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface. (paper)

  12. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  13. Atomic structure and composition of the yttria-stabilized zirconia (111) surface.

    Science.gov (United States)

    Vonk, Vedran; Khorshidi, Navid; Stierle, Andreas; Dosch, Helmut

    2013-06-01

    Anomalous and nonanomalous surface X-ray diffraction is used to investigate the atomic structure and composition of the yttria-stabilized zirconia (YSZ)(111) surface. By simulation it is shown that the method is sensitive to Y surface segregation, but that the data must contain high enough Fourier components in order to distinguish between different models describing Y/Zr disorder. Data were collected at room temperature after two different annealing procedures. First by applying oxidative conditions at 10 - 5  mbar O 2 and 700 K to the as-received samples, where we find that about 30% of the surface is covered by oxide islands, which are depleted in Y as compared with the bulk. After annealing in ultrahigh vacuum at 1270 K the island morphology of the surface remains unchanged but the islands and the first near surface layer get significantly enriched in Y. Furthermore, the observation of Zr and oxygen vacancies implies the formation of a porous surface region. Our findings have important implications for the use of YSZ as solid oxide fuel cell electrode material where yttrium atoms and zirconium vacancies can act as reactive centers, as well as for the use of YSZ as substrate material for thin film and nanoparticle growth where defects control the nucleation process.

  14. Davisson-Germer Prize in Atomic or Surface Physics Talk: Soft X-Ray Studies of Surfaces, Interfaces and Thin Films: From Spectroscopy to Ultrafast Nanoscale Movies

    Science.gov (United States)

    Stöhr, Joachim

    2011-03-01

    My talk will review the development of soft x-ray spectroscopy and microscopy and its impact on our understanding of chemical bonding, magnetism and dynamics at surfaces and interfaces. I will first outline important soft x-ray spectroscopy and microscopy techniques that have been developed over the last 30 years and their key strengths such as elemental and chemical specificity, sensitivity to small atomic concentrations, separation of charge and spin properties, spatial resolution down to the nanometer scale, and temporal resolution down to the intrinsic femtosecond timescale of atomic and electronic motions. I will then present scientific breakthroughs based on soft x-ray studies in three selected areas: the nature of molecular bonding and reactivity on metal surfaces, the molecular origin of liquid crystal alignment on surfaces, and the microscopic origin of interface-mediated spin alignments in modern magnetic devices. My talk will also cover the use of soft x-rays for revealing the temporal evolution of electronic structure, addressing the key problem of ``function,'' down to the intrinsic femtosecond time scale of charge and spin configuration changes. As examples I will present the formation and breaking of chemical bonds in surface complexes and the motion of the magnetization in magnetic devices. Work supported by the Office of Basic Energy Science of the US Department of Energy.

  15. Concentration of atomic hydrogen in a dielectric barrier discharge measured by two-photon absorption fluorescence

    Science.gov (United States)

    Dvořák, P.; Talába, M.; Obrusník, A.; Kratzer, J.; Dědina, J.

    2017-08-01

    Two-photon absorption laser-induced fluorescence (TALIF) was utilized for measuring the concentration of atomic hydrogen in a volume dielectric barrier discharge (DBD) ignited in mixtures of Ar, H2 and O2 at atmospheric pressure. The method was calibrated by TALIF of krypton diluted in argon at atmospheric pressure, proving that three-body collisions had a negligible effect on quenching of excited krypton atoms. The diagnostic study was complemented with a 3D numerical model of the gas flow and a zero-dimensional model of the chemistry in order to better understand the reaction kinetics and identify the key pathways leading to the production and destruction of atomic hydrogen. It was determined that the density of atomic hydrogen in Ar-H2 mixtures was in the order of 1021 m-3 and decreased when oxygen was added into the gas mixture. Spatially resolved measurements and simulations revealed a sharply bordered region with low atomic hydrogen concentration when oxygen was added to the gas mixture. At substoichiometric oxygen/hydrogen ratios, this H-poor region is confined to an area close to the gas inlet and it is shown that the size of this region is not only influenced by the chemistry but also by the gas flow patterns. Experimentally, it was observed that a decrease in H2 concentration in the feeding Ar-H2 mixture led to an increase in H production in the DBD.

  16. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    Science.gov (United States)

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

  17. Dielectric functions, chemical and atomic compositions of the near surface layers of implanted GaAs by In+ ions

    Science.gov (United States)

    Kulik, M.; Kołodyńska, D.; Bayramov, A.; Drozdziel, A.; Olejniczak, A.; Żuk, J.

    2018-06-01

    The surfaces of (100) GaAs were irradiated with In+ ions. The implanted samples were isobaric annealed at 800 °C and then of dielectric function, the surface atomic concentrations of atoms and also the chemical composition of the near surface layers in these implanted semiconductor samples were obtained. The following investigation methods were used: spectroscopic ellipsometry (SE), Rutherford backscattering spectrometry analyses (RBSA) and X-ray photoelectron spectroscopy (XPS) in the study of the above mentioned quantities, respectively. The change of the shape spectra of the dielectric functions at about 3.0 eV phonon energy, diffusion of In+ ions as well as chemical composition changes were observed after ion implantation and the thermal treatment. Due to displacement of Ga ions from GaAs by the In+ ions the new chemical compound InAs was formed. The relative amounts Ga2O3 and As2O3 ratio increase in the native oxide layers with the fluences increase after the thermal treatment of the samples. Additionally, it was noticed that the quantities of InO2 increase with the increasing values of the irradiated ions before thermal treatment.

  18. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  19. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  20. Surface diffusion of carbon atom and carbon dimer on Si(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhu, J.; Pan, Z.Y.; Wang, Y.X.; Wei, Q.; Zang, L.K.; Zhou, L.; Liu, T.J.; Jiang, X.M.

    2007-01-01

    Carbon (C) atom and carbon dimer (C2) are known to be the main projectiles in the deposition of diamond-like carbon (DLC) films. The adsorption and diffusion of the C adatom and addimer (C2) on the fully relaxed Si(0 0 1)-(2 x 1) surface was studied by a combination of the molecular dynamics (MD) and Monte Carlo (MC) simulation. The adsorption sites of the C and C2 on the surface and the potential barriers between these sites were first determined using the semi-empirical many-body Brenner and Tersoff potential. We then estimated their hopping rates and traced their pathways. It is found that the diffusion of both C and C2 is strongly anisotropic in nature. In addition, the C adatom can diffuse a long distance on the surface while the adsorbed C2 is more likely to be confined in a local region. Thus we can expect that smoother films will be formed on the Si(0 0 1) surface with single C atoms as projectile at moderate temperature, while with C2 the films will grow in two-dimensional islands. In addition, relatively higher kinetic energy of the projectile, say, a few tens of eV, is needed to grow DLC films of higher quality. This is consistent with experimental findings

  1. The method of local increments for the calculation of adsorption energies of atoms and small molecules on solid surfaces. Part I. A single Cu atom on the polar surfaces of ZnO.

    Science.gov (United States)

    Schmitt, Ilka; Fink, Karin; Staemmler, Volker

    2009-12-21

    The method of local increments is used in connection with the supermolecule approach and an embedded cluster model to calculate the adsorption energy of single Cu atoms at different adsorption sites at the polar surfaces of ZnO. Hartree-Fock calculations for the full system, adsorbed atom and solid surface, and for the fragments are the first step in this approach. In the present study, restricted open-shell Hartree-Fock (ROHF) calculations are performed since the Cu atom possesses a singly-occupied 4s orbital. The occupied Hartree-Fock orbitals are then localized by means of the Foster-Boys localization procedure. The correlation energies are expanded into a series of many-body increments which are evaluated separately and independently. In this way, the very time-consuming treatment of large systems is replaced with a series of much faster calculations for small subunits. In the present application, these subunits consist of the orbitals localized at the different atoms. Three adsorption situations with rather different bonding characteristics have been studied: a Cu atom atop a threefold-coordinated O atom of an embedded Zn(4)O(4) cluster, a Cu atom in an O vacancy site at the O-terminated ZnO(000-1) surface, and a Cu atom in a Zn vacancy site at the Zn-terminated ZnO(0001) surface. The following properties are analyzed in detail: convergence of the many-body expansion, contributions of the different n-body increments to the adsorption energy, treatment of the singly-occupied orbital as "localized" or "delocalized". Big savings in computer time can be achieved by this approach, particularly if only the localized orbitals in the individual increment under consideration are described by a large correlation adapted basis set, while all other orbitals are treated by a medium-size Hartree-Fock-type basis set. In this way, the method of local increments is a powerful alternative to the widely used methods like DFT or RI-MP2.

  2. Influences of H on the Adsorption of a Single Ag Atom on Si(111-7 × 7 Surface

    Directory of Open Access Journals (Sweden)

    Lin Xiu-Zhu

    2009-01-01

    Full Text Available Abstract The adsorption of a single Ag atom on both clear Si(111-7 × 7 and 19 hydrogen terminated Si(111-7 × 7 (hereafter referred as 19H-Si(111-7 × 7 surfaces has been investigated using first-principles calculations. The results indicated that the pre-adsorbed H on Si surface altered the surface electronic properties of Si and influenced the adsorption properties of Ag atom on the H terminated Si surface (e.g., adsorption site and bonding properties. Difference charge density data indicated that covalent bond is formed between adsorbed Ag and H atoms on 19H-Si(111-7 × 7 surface, which increases the adsorption energy of Ag atom on Si surface.

  3. Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface

    International Nuclear Information System (INIS)

    Ivanov, V V; Cornelussen, R A; Heuvell, H B van Linden van den; Spreeuw, R J C

    2004-01-01

    We have observed a distance-dependent absorption linewidth of cold 87 Rb atoms close to a dielectric-vacuum interface. This is the first observation of modified radiative properties in vacuum near a dielectric surface. A cloud of cold atoms was created using a magneto-optical trap (MOT) and optical molasses cooling. Evanescent waves (EW) were used to observe the behaviour of the atoms near the surface. We observed an increase of the absorption linewidth by up to 25% with respect to the free-space value. Approximately half the broadening can be explained by cavity quantum electrodynamics (CQED) as an increase of the natural linewidth and inhomogeneous broadening. The remainder we attribute to local Stark shifts near the surface. By varying the characteristic EW length we have observed a distance dependence characteristic for CQED

  4. Phonon-mediated decay of an atom in a surface-induced potential

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K.; Dutta Gupta, S.

    2007-01-01

    We study phonon-mediated transitions between translational levels of an atom in a surface-induced potential. We present a general master equation governing the dynamics of the translational states of the atom. In the framework of the Debye model, we derive compact expressions for the rates for both upward and downward transitions. Numerical calculations for the transition rates are performed for a deep silica-induced potential allowing for a large number of bound levels as well as free states of a cesium atom. The total absorption rate is shown to be determined mainly by the bound-to-bound transitions for deep bound levels and by bound-to-free transitions for shallow bound levels. Moreover, the phonon emission and absorption processes can be orders of magnitude larger for deep bound levels as compared to the shallow bound ones. We also study various types of transitions from free states. We show that, for thermal atomic cesium with a temperature in the range from 100 μK to 400 μK in the vicinity of a silica surface with a temperature of 300 K, the adsorption (free-to-bound decay) rate is about two times larger than the heating (free-to-free upward decay) rate, while the cooling (free-to-free downward decay) rate is negligible

  5. Evaluation of the roughness of the surface of porcelain systems with the atomic force microscope

    International Nuclear Information System (INIS)

    Chavarria Rodriguez, Bernal

    2013-01-01

    The surface of a dental ceramic was evaluated and compared with an atomic force microscope after being treated with different systems of polishing. 14 identical ceramic Lava® Zirconia discs were used to test the different polishing systems. 3 polishing systems from different matrix houses were used to polish dental porcelain. The samples were evaluated quantitatively with an atomic force microscope in order to study the real effectiveness of each system, on the roughness average (Ra) and the maximum peak to valley roughness (Ry) of the ceramic surfaces. A considerable reduction of the surface roughness was obtained by applying different polishing systems on the surface of dental ceramics. Very reliable values of Ra and Ry were obtained by making measurements on the structure reproduced by the atomic force microscope. The advanced ceramics of zirconium oxide presented the best physical characteristics and low levels of surface roughness. A smoother surface was achieved with the application of polishing systems, thus demonstrating the reduction of the surface roughness of a dental ceramic [es

  6. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J. [Colorado School of Mines, Golden, CO (United States); Berry, G.; Rockett, A. [Univ. of Illinois, Urbana-Champaign, IL (United States)] [and others

    1997-04-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe{sub 2}, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies.

  7. Electrochemical investigation of the surface energy: Effect of the HF concentration on electroless silver deposition onto p-Si (1 1 1)

    International Nuclear Information System (INIS)

    Ye Weichun; Chang Yanlong; Ma Chuanli; Jia Bingyu; Cao Guiyan; Wang Chunming

    2007-01-01

    Electroless silver deposition onto p-silicon (1 1 1) from 0.005 mol l -1 AgNO 3 solutions with different HF concentration was investigated by using an electrochemical direct current polarization method and open circuit potential-time (Ocp-t) technique. The fact that three-dimensional (3D) growth of silver onto silicon is favored with increasing the HF concentration was ascribed to the drop of the surface energy and approved by electrochemical direct current polarization, Ocp-t technique and atomic force microscopy (AFM). The drop slope of open-circuit potential, K -ΔE(OCP)/t , was educed from the mixed-potential theory. K -ΔE(OCP)/t as well as the deposition rate determined by an inductively coupled plasma atomic emission spectrometry (ICP-AES), increased with the HF concentration, yet was not a linear function. Results were explained by the stress generation and relaxation mechanisms

  8. Depth profile investigation of the incorporated iron atoms during Kr{sup +} ion beam sputtering on Si (001)

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Arezki, B.; Biermanns, A. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Cornejo, M.; Hirsch, D. [Leibniz-Institut für Oberflächenmodifizierung e. V. (IOM), Permoserstraße 15, D-04318 Leipzig (Germany); Lützenkirchen-Hecht, D. [Abteilung Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Frost, F. [Leibniz-Institut für Oberflächenmodifizierung e. V. (IOM), Permoserstraße 15, D-04318 Leipzig (Germany); Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany)

    2013-01-01

    We investigate the incorporation of iron atoms during nano-patterning of Si surfaces induced by 2 keV Kr{sup +} ion beam erosion under an off-normal incidence angle of 15°. Considering the low penetration depth of the ions, we have used X-ray reflectivity (XRR) and X-ray absorption near edge spectroscopy (XANES) under grazing-incidence angles in order to determine the depth profile and phase composition of the incorporated iron atoms in the near surface region, complemented by secondary ion mass spectrometry and atomic force microscopy. XRR analysis shows the accumulation of metallic atoms within a near surface layer of a few nanometer thickness. We verify that surface pattern formation takes place only when the co-sputtered Fe concentration exceeds a certain limit. For high Fe concentration, the ripple formation is accompanied by the enhancement of Fe close to the surface, whereas no Fe enhancement is found for low Fe concentration at samples with smooth surfaces. Modeling of the measured XANES spectra reveals the appearance of different silicide phases with decreasing Fe content from the top towards the volume. - Highlights: ► We investigate the incorporation of iron atoms during nano-patterning of Si surfaces. ► Pattern formation occurs when the areal density of Fe exceeds a certain threshold. ► X-ray reflectivity shows a layering at near surface due to incorporated Fe atoms. ► It is shown that the patterning is accompanied with the appearance of Fe-rich silicide.

  9. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization

    International Nuclear Information System (INIS)

    Alvarez, Mar; Friend, James; Yeo, Leslie Y

    2008-01-01

    We describe the fabrication of a surface acoustic wave (SAW) atomizer and show its ability to generate monodisperse aerosols and particles for drug delivery applications. In particular, we demonstrate the generation of insulin liquid aerosols for pulmonary delivery and solid protein nanoparticles for transdermal and gastrointestinal delivery routes using 20 MHz SAW devices. Insulin droplets around 3 μm were obtained, matching the optimum range for maximizing absorption in the alveolar region. A new approach is provided to explain these atomized droplet diameters by returning to fundamental physical analysis and considering viscous-capillary and inertial-capillary force balance rather than employing modifications to the Kelvin equation under the assumption of parametric forcing that has been extended to these frequencies in past investigations. In addition, we consider possible mechanisms by which the droplet ejections take place with the aid of high-speed flow visualization. Finally, we show that nanoscale protein particles (50-100 nm in diameter) were obtained through an evaporative process of the initial aerosol, the final size of which could be controlled merely by modifying the initial protein concentration. These results illustrate the feasibility of using SAW as a novel method for rapidly producing particles and droplets with a controlled and narrow size distribution.

  10. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de Abajo, F J [Dept. de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, Univ. del Pais Vasco, San Sebastian (Spain); Pitarke, J M [Materia Kondentsatuaren Fisika Saila, Zientzi Fakultatea, Euskal Herriko Univ., Bilbo (Spain)

    1994-05-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  11. Resonant coherent ionization in grazing ion/atom-surface collisions at high velocities

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Pitarke, J.M.

    1994-01-01

    The resonant coherent interaction of a fast ion/atom with an oriented crystal surface under grazing incidence conditions is shown to contribute significantly to ionize the probe for high enough velocities and motion along a random direction. The dependence of this process on both the distance to the surface and the velocity of the projectile is studied in detail. We focus on the case of hydrogen moving with a velocity above 2 a.u. Comparison with other mechanisms of charge transfer, such as capture from inner shells of the target atoms, permits us to draw some conclusions about the charge state of the outgoing projectiles. (orig.)

  12. Dynamical interaction of He atoms with metal surfaces: Charge transfer processes

    International Nuclear Information System (INIS)

    Flores, F.; Garcia Vidal, F.J.; Monreal, R.

    1993-01-01

    A self-consistent Kohn-Sham LCAO method is presented to calculate the charge transfer processes between a He * -atom and metal surfaces. Intra-atomic correlation effects are taken into account by considering independently each single He-orbital and by combining the different charge transfer processes into a set of dynamical rate equations for the different ion charge fractions. Our discussion reproduces qualitatively the experimental evidence and gives strong support to the method presented here. (author). 24 refs, 4 figs

  13. Interaction of scandium and titanium atoms with a carbon surface containing five- and seven-membered rings

    International Nuclear Information System (INIS)

    Krasnov, P. O.; Eliseeva, N. S.; Kuzubov, A. A.

    2012-01-01

    The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.

  14. Angular distribution of sputtered atoms from Al-Sn alloy and surface topography

    International Nuclear Information System (INIS)

    Wang Zhenxia; Pan Jisheng; Zhang Jiping; Tao Zhenlan

    1992-01-01

    If an alloy is sputtered the angular distribution of the sputtered atoms can be different for each component. At high ion energies in the range of linear cascade theory, different energy distributions for components of different mass in the solid are predicted. Upon leaving the surface, i.e. overcoming the surface binding energy, these differences should show up in different angular distributions. Differences in the angular distribution are of much practical interest, for example, in thin-film deposition by sputtering and surface analysis by secondary-ion mass spectroscopy and Auger electron spectroscopy. Recently our experimental work has shown that for Fe-W alloy the surface microtopography becomes dominant and determines the shape of the angular distribution of the component. However, with the few experimental results available so far it is too early to draw any general conclusions for the angular distribution of the sputtered constituents. Thus, the aim of this work was to study further the influence of the surface topography on the shape of the angular distribution of sputtered atoms from an Al-Sn alloy. (Author)

  15. Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study

    International Nuclear Information System (INIS)

    Zhang Xiao-Jun; Chen Chang-Le

    2016-01-01

    Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions, and XM-bar are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X-bar and M-bar by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. (paper)

  16. Atomization of magnesium, strontium, barium and lead nitrates on surface of graphite atomizers

    International Nuclear Information System (INIS)

    Nagdaev, V.K.; Pupyshev, A.A.

    1982-01-01

    Modelling of the processes on graphite surface using differential-thermal analysis and graphite core with identification of decomposition products of magnesium, strontium, barium and lead nitrates by X-ray analysis has shown that carbon promotes the formation of strontium, barium and lead carbonates. The obtained temperatures of strontium and barium carbonate decomposition to oxides agree satisfactorily with calculation ones. Magnesium nitrate does not react with carbon. Formation of strontium and barium carbonates results in considerable slowing down of the process of gaseous oxide dissociation. Lead carbonate is unstable and rapidly decomposes to oxide with subsequent reduction to free metal. Formation of magnesium, strontium and barium free atoms is connected with appearance of gaseous oxides in analytical zone. Oxide and free metal lead are present on graphite surface simultaneously

  17. Direct observation of deformation of nafion surfaces induced by methanol treatment by using atomic force microscopy

    International Nuclear Information System (INIS)

    Umemura, Kazuo; Kuroda, Reiko; Gao Yanfeng; Nagai, Masayuki; Maeda, Yuta

    2008-01-01

    We successfully characterized the effect of methanol treatment on the nanoscopic structures of a nafion film, which is widely used in direct methanol fuel cells (DMFCs). Atomic force microscopy (AFM) was used to repetitively image a particular region of a nafion sample before and after methanol solutions were dropped onto the nafion film and dried in air. When the surface was treated with 20% methanol for 5 min, many nanopores appeared on the surface. The number of nanopores increased when the sample was treated twice or thrice. By repetitive AFM imaging of a particular region of the same sample, we found that the shapes of the nanopores were deformed by the repeated methanol treatment, although the size of the nanopores had not significantly changed. The creation of the nanopores was affected by the concentration of methanol. Our results directly visualized the effects of methanol treatment on the surface structures of a nafion film at nanoscale levels for the first time

  18. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Science.gov (United States)

    Tachikawa, Hiroto

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  19. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    Science.gov (United States)

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  20. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  1. Determination of molybdenum in flotation concentrates by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Ise, Kazuo

    1978-01-01

    Molybdenum was determined by atomic absorption spectrophotometry in 0.05 N ammoniacal solution after the decomposition of the concentrate with aqua regia. Negros ore from Philippines was used as a flotation feed, which contained chalcopyrites and calcium-magnesium minerals. Among the metals tested copper, iron and the alkaline earths interfered. Less than 50 ppm of copper yielded lower results for molybdenum. Higher results came out with more than 50 ppm of copper. In the presence of iron and citric acid (0.4 g/100 ml) which is a suppressor for hydroxide formation, a lower estimation resulted for molybdenum. Calcium interfered, lower results by 2 and >10% being obtained with respective 2.5 and 20 ppm of calcium. More than 20 ppm of magnesium behaved similarly. Sodium sulfate (0.5 g/100 ml) served as the suppressor for copper, iron and citric acid; 100 ppm each of copper and iron did not interfere in this way. Interferences due to calcium and magnesium (less than 60 ppm) was able to be masked by the addition of sodium silicate (200 ppm as silica). The analysis of flotation products and synthetic samples consisting of molybdenite, chalcopyrite, calcium chloride and magnesium sulfate revealed that the atomic absorption method can be applied to the analysis of the concentrates for molybdenum with an error of about 2%. (auth.)

  2. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    Science.gov (United States)

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transient atomic behavior and surface kinetics of GaN

    International Nuclear Information System (INIS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-01-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  4. Transient atomic behavior and surface kinetics of GaN

    Science.gov (United States)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  5. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  6. Atomic scale study of the chemistry of oxygen, hydrogen and water at SiC surfaces

    International Nuclear Information System (INIS)

    Amy, Fabrice

    2007-01-01

    Understanding the achievable degree of homogeneity and the effect of surface structure on semiconductor surface chemistry is both academically challenging and of great practical interest to enable fabrication of future generations of devices. In that respect, silicon terminated SiC surfaces such as the cubic 3C-SiC(1 0 0) 3 x 2 and the hexagonal 6H-SiC(0 0 0 1) 3 x 3 are of special interest since they give a unique opportunity to investigate the role of surface morphology on oxygen or hydrogen incorporation into the surface. In contrast to silicon, the subsurface structure plays a major role in the reactivity, leading to unexpected consequences such as the initial oxidation starting several atomic planes below the top surface or the surface metallization by atomic hydrogen. (review article)

  7. Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe

    International Nuclear Information System (INIS)

    Girard, C.

    1991-01-01

    The interaction force between a metallic tip and a nonplanar dielectric surface is derived from a nonlocal formalism. A general formulation is given for the case of a spherical tip of nanometer size and for surfaces of arbitrary shapes (stepped surfaces and single crystals adsorbed on a planar surface). The dispersion part of the attractive force is obtained from a nonlocal theory expressed in terms of generalized electric susceptibilities of the two constituents. Implications for atomic force microscopy in attractive modes are discussed. In this context, the present model indicates two different forms of corrugation: those due to the protuberance present on the tip leading to atomic corrugations; nanometer-sized corrugations detected in the attractive region by the spherical part of the tip

  8. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N; Grether, M; Spieler, A; Niemann, D [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  9. Adsorption of SO{sub 2} on Li atoms deposited on MgO (1 0 0) surface: DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Eid, Kh.M., E-mail: Kheid98@hotmail.com [Physics Department, Faculty of Education, Ain Shams University, Cairo 11757 (Egypt); Ammar, H.Y. [Department of Physics, Faculty of Science, Najran University, Najran 1988 (Saudi Arabia)

    2011-05-01

    The adsorption of sulfur dioxide molecule (SO{sub 2}) on Li atom deposited on the surfaces of metal oxide MgO (1 0 0) on both anionic and defect (F{sub s}-center) sites located on various geometrical defects (terrace, edge and corner) has been studied using density functional theory (DFT) in combination with embedded cluster model. The adsorption energy (E{sub ads}) of SO{sub 2} molecule (S-atom down as well as O-atom down) in different positions on both of O{sup -2} and F{sub s} sites is considered. The spin density (SD) distribution due to the presence of Li atom is discussed. The geometrical optimizations have been done for the additive materials and MgO substrate surfaces (terrace, edge and corner). The oxygen vacancy formation energies have been evaluated for MgO substrate surfaces. The ionization potential (IP) for defect free and defect containing of the MgO surfaces has been calculated. The adsorption properties of SO{sub 2} are analyzed in terms of the E{sub ads}, the electron donation (basicity), the elongation of S-O bond length and the atomic charges on adsorbed materials. The presence of the Li atom increases the catalytic effect of the anionic O{sup -2} site of MgO substrate surfaces (converted from physisorption to chemisorption). On the other hand, the presence of the Li atom decreases the catalytic effect of the F{sub s}-site of MgO substrate surfaces. Generally, the SO{sub 2} molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing F{sub s}-center.

  10. Magnetic Dichroism of Potassium Atoms on the Surface of Helium Nanodroplets

    International Nuclear Information System (INIS)

    Nagl, Johann; Auboeck, Gerald; Callegari, Carlo; Ernst, Wolfgang E.

    2007-01-01

    The population ratio of Zeeman sublevels of atoms on the surface of superfluid helium droplets (T=0.37 K) has been measured. Laser induced fluorescence spectra of K atoms are measured in the presence of a moderately strong magnetic field (2.9 kG). The relative difference between the two states of circular polarization of the exciting laser is used to determine the electron spin polarization of the ensemble. Equal fluorescence levels indicate that the two spin sublevels of the ground-state K atom are equipopulated, within 1%. Thermalization to 0.37 K would give a population ratio of 0.35. We deduce that the rate of spin relaxation induced by the droplet must be 2 triplet dimer we find instead full thermalization of the spin

  11. Scattering of hyperthermal argon atoms from clean and D-covered Ru surfaces

    NARCIS (Netherlands)

    Ueta, H.; Gleeson, M.A.; Kleyn, A.W.

    2011-01-01

    Hyperthermal Ar atoms were scattered from a Ru(0001) surface held at temperatures of 180, 400 and 600 K, and from a Ru(0001)-(1×1)D surface held at 114 and 180 K. The resultant angular intensity and energy distributions are complex. The in-plane angular distributions have narrow (FWHM ≤ 10°)

  12. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films; Streifende Streuung schneller Atome an Oberflaechen von Metalloxid-Kristallen und ultraduennen Filmen

    Energy Technology Data Exchange (ETDEWEB)

    Blauth, David

    2010-03-11

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO{sub 2}/Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  13. Hyperthermal (10-500 eV) collisions of noble gases with Ni(100) surface. Comparison between light and heavy atom collisions

    International Nuclear Information System (INIS)

    Kim, C.

    1995-01-01

    Collisional events between 10-500 eV atomic beams (He, Ne, Ar, Kr, and Xe) and a Ni(100) surface are investigated by the classical trajectory method. The calculation employs a molecular dynamics approach combined with a Langevin method for treating energy dissipation to infinite solid. We find that low energy collisions of heavy atoms (Xe and Kr) are characterized by extensive many-body interactions with top layer surface atoms. On the other hand, light atom (Ne and He) collisions can be approximated as a sequence of binary collisions even at these energies. Such a difference in the collisional nature gives rise to the following consequences. Low energy heavy atoms transfer energy mostly to the surface atoms during 45 angle collision. They scatter from the surface with a narrow angular distribution centered in a supraspecular direction. The ratio of the scattered to incident particle energy rapidly decreases with increasing beam energy of heavy atoms. The sputtering yield for Ni atoms by heavy atom bombardment increases quite linearly with beam energy, which is attributed to a linear proportionality between the beam energy and the energy transfered to a surface. Near the threshold energy sputtering can occur more efficiently by light atom bombardment. The energy transfer ratio to solid continuously increases with beam energy for light atoms. For heavy projectiles, on the other hand, this ratio reaches a maximum at the energy of ca, 100 eV, above which it stays nearly constant but slightly decreases. ((orig.))

  14. Noncontact AFM Imaging of Atomic Defects on the Rutile TiO2 (110) Surface

    DEFF Research Database (Denmark)

    Lauritsen, Jeppe Vang

    2015-01-01

    The atomic force microscope (AFM) operated in the noncontact mode (nc-AFM) offers a unique tool for real space, atomic-scale characterisation of point defects and molecules on surfaces, irrespective of the substrate being electrically conducting or non-conducting. The nc-AFM has therefore in rece...

  15. Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Yeon, Kyu-Hwang, E-mail: hfwang@ybu.edu.c, E-mail: szhang@ybu.edu.c [Department of Physics and BK21 Program for Device Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2010-12-14

    Based on the interference effect of polarized photons, we propose a practical scheme for entanglement concentration of unknown atomic entangled states. In the scheme, two {lambda}{lambda}-type atoms belonging to different entangled pairs are individually trapped in two spatially separated cavities. By the subsequent detection of the polarized photons leaking out of the separate optical cavities, Alice and Bob as two distant parties can probabilistically extract one maximally entangled four-atom Greenberger-Horne-Zeilinger (GHZ) state from two identical partially entangled Einstein-Podolsky-Rosen (EPR) pairs. We also discuss the influence of cavity decay on the success probability of the scheme. The scheme is feasible and within the reach of current experimental technology.

  16. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    Science.gov (United States)

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    International Nuclear Information System (INIS)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L.

    2017-01-01

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  18. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    Energy Technology Data Exchange (ETDEWEB)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L., E-mail: klavsyuk@physics.msu.ru [Moscow State University (Russian Federation)

    2017-01-15

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomic spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.

  19. Surface-Initiated Atom Transfer Radical Polymerization and Electrografting Technique as a Means For Attaining Tailor-Made Polymer Coatings

    DEFF Research Database (Denmark)

    Chernyy, Sergey

    2012-01-01

    strategies for initiator grafting, physicochemical properties of polymer brushes and basic principles of quartz crystal microbalance technique (QCM) are discussed. In Chapter 2 various ATRP conditions are probed. The effects of solvent polarity, monomer concentration, initiator surface density, ligand nature......Atom transfer radical polymerization initiated from a surface of various substrates (SI-ATRP) has become a progressively popular technique for obtaining thin polymer films with predetermined properties. The present work addresses the main features of SI-ATRP with respect to the controllability...... and temperature on the kinetics of methyl methacrylate polymerization are elucidated. The strategy was based on the observation of dry polymer thickness versus time evolution by means of ellipsometry, profilometry and IR spectroscopy. An alternative approach, constituting Chapter 3, was based on optimization...

  20. Theory of phonon inelastic atom--surface scattering. I. Quantum mechanical treatment of collision dynamics

    International Nuclear Information System (INIS)

    Choi, B.H.; Poe, R.T.

    1985-01-01

    We present a systematic formulation of the atom--surface scattering dynamics which includes the vibrational states of the atoms in the solid (phonons). The properties of the total scattering wave function of the system, a representation of the interaction potential matrix, and the characteristics of the independent physical solutions are all derived from the translational invariance of the full Hamiltonian. The scattering equations in the integral forms as well as the related Green functions were also obtained. The configurational representations of the Green functions, in particular, are quite different from those of the conventional scattering theory where the collision partners are spatially localized. Various versions of the integral expression of scattering, transition, and reactance matrices were also obtained. They are useful for introducing approximation schemes. From the present formulation, some specific theoretical schemes which are more realistic compared to those that have been employed so far and at the same time capable of yielding effective ab initio computation are derived in the following paper. The time reversal invariance and the microscopic reversibility of the atom--surface scattering were discussed. The relations between the in and outgoing scattering wave functions which are satisfied in the atom--surface system and important in the transition matrix methods were presented. The phonon annihilation and creation, and the adsorption and desorption of the atom are related through the time reversal invariance, and thus the microscopic reversibility can be tested by the experiment

  1. Study of the Adsorption of Atoms and Molecules on Silicon Surfaces: Crystallographics and Electronic Structure

    International Nuclear Information System (INIS)

    Bengio, Silvina

    2003-01-01

    This thesis work has been concerned with adsorption properties of silicon surfaces.The atomic and electronic structure of molecules and atoms adsorbed on Si has been investigated by means of photoemission experiments combined with synchrotron radiation.The quantitative atomic structure determination was held applying the photoelectron diffraction technique.This technique is sensible to the local structure of a reference atomic specie and has elemental and chemical-state specificity.This approach has been applied to three quite different systems with different degrees of complexity, Sb/Si(111) √3x √3R30 0 , H 2 O/Si(100)2x1 and NH 3 /Si(111)7x7.Our results show that Sb which forms a ( √3√3)R30 0 phase produces a bulklike-terminated Si(111)1x1 substrate free of stacking faults.Regarding the atomic structure of its interface, this study strongly favours the T4-site milkstool model over the H3 one.An important aspect regarding the H 2 O/Si(100)(2x1) system was establishing the limits of precision with which one can determine not only the location of the adsorbed hydroxyl (OH) species, but also the extent to which this adsorption modifes the asymmetric dimers of the clean surface to which it is bonded.On the Si(111)(7x7) surface the problem is particularly complex because there are several different potentially active sites for NH3 adsorption and fragmentation.The application of the PhD method, however, has shown that the majority of the N atoms are on so-called 'rest atom' sites when deposited at RT.This is consistent with the N in the NH2 chemical state.This investigation represents the first quantitative structural study of any molecular adsorbate on the complex Si(111)(7x7) surface.This atomic structures determination shows the PhD is a powerful tool for the atomic structure determination.The molecular systems interacting with the active sites of the substrate fragments producing a short-range order surface.This long-range disorder is produced by the

  2. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  3. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  4. SASP. Contributions to the 13. Symposium on atomic and surface physics and related topics

    Energy Technology Data Exchange (ETDEWEB)

    Scheier, P; Maerk, T [eds.

    2002-07-01

    The XIII symposium on Atomic and Surface Physics and related Topics (SASP) is devoted to cover the research of interactions between ions, electrons, photons, atoms, molecules and clusters and their interaction with surfaces. This year there was a special session dedicated to proton transfer reaction mass spectrometry covering its applications in different fields and a mini symposium on the radiation action on bio-molecules such as uracil. The contributions included in the proceeding correspond to invited lectures and poster sessions, consisting of short and extended abstracts as well as short articles. (nevyjel)

  5. SASP. Contributions to the 13. Symposium on atomic and surface physics and related topics

    International Nuclear Information System (INIS)

    Scheier, P.; Maerk, T.

    2002-01-01

    The XIII symposium on Atomic and Surface Physics and related Topics (SASP) is devoted to cover the research of interactions between ions, electrons, photons, atoms, molecules and clusters and their interaction with surfaces. This year there was a special session dedicated to proton transfer reaction mass spectrometry covering its applications in different fields and a mini symposium on the radiation action on bio-molecules such as uracil. The contributions included in the proceeding correspond to invited lectures and poster sessions, consisting of short and extended abstracts as well as short articles. (nevyjel)

  6. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  7. Atomic structures of Cd Te and Cd Se (110) surfaces

    International Nuclear Information System (INIS)

    Watari, K.; Ferraz, A.C.

    1996-01-01

    Results are reported based on the self-consistent density-functional theory, within the local-density approximation using ab-initio pseudopotentials of clean Cd Te and Cd Se (110) surfaces. We analyzed the trends for the equilibrium atomic structures, and the variations of the bond angles at the II-VI (110). The calculations are sensitive to the ionicity of the materials and the results are in agreement with the arguments which predict that the relaxed zinc-blend (110) surfaces should depend on ionicity. (author). 17 refs., 1 figs., 3 tabs

  8. Improved density functional calculations for atoms, molecules and surfaces

    International Nuclear Information System (INIS)

    Fricke, B.; Anton, J.; Fritzsche, S.; Sarpe-Tudoran, C.

    2005-01-01

    The non-collinear and collinear descriptions within relativistic density functional theory is described. We present results of both non-collinear and collinear calculations for atoms, diatomic molecules, and some surface simulations. We find that the accuracy of our density functional calculations for the smaller systems is comparable to good quantum chemical calculations, and thus this method provides a sound basis for larger systems where no such comparison is possible. (author)

  9. Formation of InN atomic-size wires by simple N adsorption on the In/Si(111)–(4 × 1) surface

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2016-01-01

    Highlights: • N atoms on the surface form bonds with two In atoms and one Si atom. • Surface formation energy calculations show two stable structures with formation of InN atomic-size wires. • Projected density of states shows a tendency to form In−N and Si−N bonds on the surface. • Charge density corroborates the covalent character of the In−N bonds. - Abstract: We have carried out first principles total energy calculations to study the formation of InN atomic-size wires on the In/Si(111)–(4 × 1) surface. In its most favorable adsorption site, a single N atom forms InN arrangements. The deposit of 0.25 monolayers (MLs) of N atoms, result in the breaking of one of the original In chains and the formation of an InN atomic size wire. Increasing the coverage up to 0.5 ML of N atoms results in the formation of two of those wires. Calculated surface formation energies show that for N-poor conditions the most stable configuration is the original In/Si(111)–(4 × 1) surface with no N atoms. Increasing the N content, and in a reduced range of chemical potential, the formation of an InN wire is energetically favorable. Instead, from intermediate to N-rich conditions, two InN atomic wires are more stable. Projected density of states calculations have shown a trend to form covalent bonds between the In−p and N−p orbitals in these stable models.

  10. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Erikat, I. A., E-mail: ihsanas@yahoo.com [Department of Physics, Jerash University, Jerash-26150 (Jordan); Hamad, B. A. [Department of Physics, The University of Jordan, Amman-11942 (Jordan)

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  11. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    Science.gov (United States)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  12. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    International Nuclear Information System (INIS)

    Erikat, I. A.; Hamad, B. A.

    2013-01-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule

  13. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  14. Atomic-Scale Observations of (010) LiFePO4 Surfaces Before and After Chemical Delithiation.

    Science.gov (United States)

    Kobayashi, Shunsuke; Fisher, Craig A J; Kato, Takeharu; Ukyo, Yoshio; Hirayama, Tsukasa; Ikuhara, Yuichi

    2016-09-14

    The ability to view directly the surface structures of battery materials with atomic resolution promises to dramatically improve our understanding of lithium (de)intercalation and related processes. Here we report the use of state-of-the-art scanning transmission electron microscopy techniques to probe the (010) surface of commercially important material LiFePO4 and compare the results with theoretical models. The surface structure is noticeably different depending on whether Li ions are present in the topmost surface layer or not. Li ions are also found to migrate back to surface regions from within the crystal relatively quickly after partial delithiation, demonstrating the facile nature of Li transport in the [010] direction. The results are consistent with phase transformation models involving metastable phase formation and relaxation, providing atomic-level insights into these fundamental processes.

  15. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  16. History of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    Buck, A.L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations

  17. History of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    Buck, A.L.

    1982-08-01

    This pamphlet traces the history of the Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946, to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations

  18. Concentration and saturation effects of tethered polymer chains on adsorbing surfaces

    Science.gov (United States)

    Descas, Radu; Sommer, Jens-Uwe; Blumen, Alexander

    2006-12-01

    We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.

  19. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    International Nuclear Information System (INIS)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q.

    2007-01-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10 -5 -1x10 -2 dpa at KUR, and 8x10 -3 -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High concentration of alloying

  20. Concentration dependence of solute atoms on vacancy cluster formation in neutron irradiated Ni alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Itoh, D.; Yoshiie, T.; Xu, Q. [Kyoto Univ., Research Reactor Institute, Osaka (Japan)

    2007-07-01

    Full text of publication follows: One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. The movement of interstitial clusters was often observed in neutron irradiated metals by transmission electron microscopy (TEM). Alloying elements are expected to affect the motion of interstitial clusters. Yoshiie et al. have studied the effect of alloying elements in Ni. For example, in neutron irradiated pure Ni, well-developed dislocation networks and voids were observed at 573 K at a dose of 0.026 dpa by TEM. After the addition of 2at.%Si (-5.81% volume size factor to Ni) and Sn (74.08% volume size factor), no voids were detected by TEM observation and positron lifetime measurement. Alloying elements of Si and Sn were expected to prevent the 1-D motion of the interstitial clusters. In this study, the concentration dependence of alloying elements on the 1-D motion of the interstitial clusters was investigated by positron annihilation lifetime measurements, and the microstructural evolution was discussed. Specimens irradiated were 99.99 pure Ni (Johnson Matthey) and Ni based binary alloys, which contain Si, Cu, Ge and Sn as solute atoms. The concentration of solute atoms was 0.05at.%o, 0.3at.% and 2at.%. Neutron irradiation was performed with the Kyoto University Reactor (KUR) and Japan materials testing reactor (JMTR) at Japan Atomic Energy Agency. Neutron dose was 6x10{sup -5}-1x10{sup -2} dpa at KUR, and 8x10{sup -3} -0.3 dpa at JMTR. Irradiation temperature was 573 K at KUR and 563 K at JMTR. After the neutron irradiation, positron annihilation lifetime measurements were performed at room temperature. Microvoids were detected in pure Ni, Ni-0.05%Si, Ni-0.05%Sn, Ni-Cu and Ni-Ge alloys. In Ni-Si and Ni-Sn alloys, the size of microvoids decreased as the concentration of solute atoms increased. This is because the frequency of 1-D motion of the interstitial clusters depends on the alloy concentration. High

  1. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  2. Density Functional Theory and Atomic Force Microscopy Study of Oleate Functioned on Siderite Surface

    Directory of Open Access Journals (Sweden)

    Lixia Li

    2018-01-01

    Full Text Available Efficiently discovering the interaction of the collector oleate and siderite is of great significance for understanding the inherent function of siderite weakening hematite reverse flotation. For this purpose, investigation of the adsorption behavior of oleate on siderite surface was performed by density functional theory (DFT calculations associating with atomic force microscopy (AFM imaging. The siderite crystal geometry was computationally optimized via convergence tests. Calculated results of the interaction energy and the Mulliken population verified that the collector oleate adsorbed on siderite surface and the covalent bond was established as a result of electrons transferring from O1 atoms (in oleate molecule to Fe1 atoms (in siderite lattice. Therefore, valence-electrons’ configurations of Fe1 and O1 changed into 3d6.514s0.37 and 2s1.832p4.73 from 3d6.214s0.31 and 2s1.83p4.88 correspondingly. Siderite surfaces with or without oleate functioned were examined with the aid of AFM imaging in PeakForce Tapping mode, and the functioned siderite surface was found to be covered by vesicular membrane matters with the average roughness of 16.4 nm assuring the oleate adsorption. These results contributed to comprehending the interaction of oleate and siderite.

  3. Adsorption of atomic oxygen on PdAg/Pd(111) surface alloys and coadsorption of CO

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Arnold P. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Reaction Kinetics Research Group, University of Szeged, Chemical Research Center of the Hungarian Academy of Sciences, H-6720 Szeged (Hungary); Bansmann, Joachim; Diemant, Thomas; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2011-07-01

    The interaction of dissociated oxygen with structurally well-defined PdAg/Pd(111) surface alloys and the coadsorption of CO was studied by high resolution electron energy loss spectroscopy (HREELS) and temperature-programmed desorption (TPD). After oxygen saturation of the non-modified Pd(111) surface at RT, we observed the formation of a prominent peak in the HREEL spectra at 60 meV corresponding to the perpendicular vibration of oxygen atoms adsorbed in threefold hollow sites. Deposition of small Ag amounts does not change the signal intensity of this peak; it decreases only above 20% Ag. Beyond this Ag content, the peak intensity steeply declines and disappears at around 55-60% Ag. CO coadsorption on the oxygen pre-covered surfaces at 120 K leads to the formation of additional features in HREELS. For a surface alloy with 29% Ag, three loss features due to CO adsorption in on-top, bridge, and threefold-hollow sites can be discriminated already after the lowest CO exposure. Annealing of the co-adsorbed layer to 200 K triggers a decrease of the oxygen concentration due to CO{sub 2} formation. These findings are corroborated by TPD spectra of the CO desorption and CO{sub 2} production.

  4. Path-integral theory of the scattering of 4He atoms at the surface of liquid 4He

    International Nuclear Information System (INIS)

    Swanson, D.R.; Edwards, D.O.

    1988-01-01

    The path-integral theory of the scattering of a 4 He atom near the free surface of liquid 4 He, which was originally formulated by Echenique and Pendry, has been recalculated with use of a physically realistic static potential and atom-ripplon interaction outside the liquid. The static potential and atom-ripplon interaction are based on the variational calculation of Edwards and Fatouros. An important assumption in the path-integral theory is the ''impulse approximation'': that the motion of the scattered atom is very fast compared with the motion of the surface due to ripplons. This is found to be true only for ripplons with wave vectors smaller than q/sub m/∼0.2 A/sup -1/. If ripplons above q/sub m/ made an important contribution to the scattering of the atom there would be a substantial dependence of the elastic reflection coefficient on the angle of incidence of the atom. Since this is not observed experimentally, it is argued that ripplons above q/sub m/ give a negligible effect and should be excluded from the calculation. With this modification the theory gives a good fit to the experimental reflection coefficient as a function of the momentum and angle of incidence of the atom. The new version of the theory indicates that there is a substantial probability that an atom may reach the surface of the liquid without exciting any ripplons. The theory is not valid when the atom enters the liquid but analysis of the experiments shows that, once inside the liquid, the atom has a negligible chance of being scattered out again

  5. Application of extraction-chromatographic concentration to atomic absorption determination of lead and cadmium in drinking and sea water

    International Nuclear Information System (INIS)

    Bol'shova, T.A.; Agapkina, G.I.; Ershova, N.I.; Narankho, K.E.

    1988-01-01

    To increase the detection limits for lead and cadmium atomic-absorption determination in natural waters methods of extraction-chromatographic concentration of these metals using tri-n-octylamine (TOA) on polytetrafluoroethylene (PTFE) is developed. Chromatograpy was carried out from 1.5-2.0 M HBr solutions. For cadmium and lead elution acetic acid was used. It is shown that extraction-chromatographic concentration permits to decrease limits of metal atomic-absorption detection by 10 3 with the 500 ml volume sample analysis

  6. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  7. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  8. Transfer matrix treatment of atomic chemisorption on transition metal surface

    International Nuclear Information System (INIS)

    Mariz, A.M.; Koiller, B.

    1980-05-01

    The atomic adsorption of hydrogen on paramagnetic nickel 100 surface is studied, using the Green's function formalism and the transfer matrix technique, which allows the treatment of the geometry of the system in a simple manner. Electronic correlation at the adatom orbital in a self consistent Hartree-Fock approach is incorporated. The adsorption energy, local density of states and charge transfer between the solid and the adatom are calculated for different crystal structures (sc and fcc) and adatom positions at the surface. The results are discussed in comparison with other theories and with available experimental data, with satisfactory agreement. (Author) [pt

  9. Exploring a potential energy surface by machine learning for characterizing atomic transport

    Science.gov (United States)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  10. Variations of surface ozone concentration across the Klang Valley, Malaysia

    Science.gov (United States)

    Latif, Mohd Talib; Huey, Lim Shun; Juneng, Liew

    2012-12-01

    Hourly air quality data covering the period 2004-2008 was obtained from the Air Quality Division, the Department of Environment (DOE) through long-term monitoring by Alam Sekitar Sdn. Bhd. (ASMA) were analysed to investigate the variations of surface ozone (O3) in the Klang Valley, Malaysia. A total of nine monitoring stations were selected for analysis in this study and the results show that there are distinct seasonal patterns in the surface O3 across the Klang Valley. A high surface O3 concentration is usually observed between January and April, while a low surface O3 concentration is found between June and August. Analysis of daily variations in surface O3 and the precursors - NO, NO2, CO, NMHC and UVb, indicate that the surface O3 photochemistry in this study area exhibits a positive response to the intensity and wavelength in UVb while being influenced by the concentration of NOx, particularly through tritration processes. Although results from our study suggested that NMHCs may influence the maximum O3 concentration, further investigation is required. Wind direction during different monsoons was found to influence the concentration of O3 around the Klang Valley. HYSPLIT back trajectories (-72 h) were used to indicate the air-mass transport patterns on days with high concentrations of surface O3 in the study area. Results show that 47% of the high O3 days was associated with the localized circulation. The remaining 32% and 22% were associated with mid-range and long-range transport across the South China Sea from the northeast.

  11. Atomic force microscopy characterization of the surface wettability of natural fibres

    International Nuclear Information System (INIS)

    Pietak, Alexis; Korte, Sandra; Tan, Emelyn; Downard, Alison; Staiger, Mark P.

    2007-01-01

    Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics

  12. Quantum theory of atom-surface scattering: exact solutions and evaluation of approximations

    International Nuclear Information System (INIS)

    Chiroli, C.; Levi, A.C.

    1976-01-01

    In a recent article a hard corrugated surface was proposed as a simple model for atom-surface scattering. The problem was not solved exactly, however, but several alternative approximations were considered. Since these three similar, but inequivalent, approximations were proposed, the problem arose to evaluate these approximations in order to choose between them. In the present letter some exact calculations are presented which make this choice rationally possible. (Auth.)

  13. Adsorption of atomic oxygen (N2O) on a clean Ge(001) surface

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.; Keim, Enrico G.; van Silfhout, Arend

    1990-01-01

    We present the results of a study concerning the interaction of atomic oxygen (as released by decomposition of N2O ) with the clean Ge(001)2×1 surface at 300 K. Ellipsometry in the photon energy range of 1.5–4 eV, surface conductance measurements and Auger electron spectroscopy(AES) have been used

  14. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  15. Application of the atomic absorption technical to available the concentration of silver ions incorporated in glass matrix by ionic exchange process

    International Nuclear Information System (INIS)

    Mendes, E.; Silva, K.F.; Teixeira, A.; Silva, L.; Paula, M.M.S.; Angioletto, E.; Riella, H.G.; Fiori, M. A.

    2009-01-01

    Ion specimens can be incorporated in glasses or natural clays by ionic exchange process with different concentrations dependent of matrix's type and of the ionic exchange parameters. In particular, the incorporation of silver ions presents high interest by its biocidal properties. A compound contending ion silver specimens presents bactericidal and fungicidal properties with effect proportional to ion concentration. This work presents results about application of the atomic absorption technical to determine the silver ion concentration incorporated in a glass matrix by ionic exchange process. The ionic exchange experiments were realized with different AgNO 3 concentration and constant temperature. After ionic exchange process, the glass samples were submitted to characterization by Energy Dispersive X-Ray Spectroscopy and Atomic Absorption Techniques. The comparative results between different techniques showed that atomic absorption technical is adequate to determine ion silver concentration incorporated in the glass matrix after ionic exchange process. (author)

  16. Adsorption of H atoms on cubic Er2O3 (0 0 1) surface: A DFT study

    International Nuclear Information System (INIS)

    Mao, Wei; Chikada, Takumi; Shimura, Kenichiro; Suzuki, Akihiro; Yamaguchi, Kenji; Terai, Takayuki

    2013-01-01

    First-principles plane wave calculations based on spin-polarized density functional theory (DFT) and generalized gradient approximation (GGA) have been used to study the adsorption of H atoms on cubic Er 2 O 3 (0 0 1) surface. We identify stable adsorption positions and find that H preferentially adsorbs on top of fourfold-hollow sites and transfers electrons to the surface, resulting in the formations of covalent bonds to the nearest neighboring four oxygen atoms. In the most energetically favorable adsorption sites, It was found that H bonds with O atoms at the cubic Er 2 O 3 (0 0 1) surface with an adsorption energy of −295.68 kJ mol −1 at coverage 1/8 ML, and the adsorption energy is inclined to decrease with the increase of H coverage (>1/4 ML). In addition, our calculations indicate that the dissociative H atom configurations have adsorption energies that are at least 152.64 kJ mol −1 greater than the H 2 molecule configurations on the surface. These results discussed in the context of erbium oxide slabs are employed to rationalize some processes regarding to the hydrogen isotope permeation behavior of tritium permeation barrier

  17. Reversal of atomic contrast in scanning probe microscopy on (111) metal surfaces

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Martin; González, C.; Jelínek, Pavel

    2012-01-01

    Roč. 24, 08 (2012), 084003/1-084003/7 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GPP204/11/P578; GA ČR GAP204/10/0952; GA ČR GA202/09/0545; GA MŠk(CZ) ME10076 Grant - others:AVČR(CZ) M100100904 Institutional research plan: CEZ:AV0Z10100521 Keywords : atomic force microscopy * metallic surfaces * atomic contrast * scanning tunneling microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012 http://iopscience.iop.org/0953-8984/24/8/084003

  18. Growth mechanisms for Si epitaxy on O atomic layers: Impact of O-content and surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Billen, Arne [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Moussa, Alain; Caymax, Matty; Bender, Hugo [Imec, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heyns, Marc [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); Delabie, Annelies [Imec, Kapeldreef 75, 3001 Leuven (Belgium); KU Leuven (University of Leuven), Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-10-30

    Highlights: • O{sub 3} or O{sub 2} exposures on H-Si(100) result in O ALs with different surface structures. • Si-EPI on O AL using O{sub 3} process is by direct epitaxial growth mechanism. • Si-EPI on O AL using O{sub 2} process is by epitaxial lateral overgrowth mechanism. • Distortions by O AL, SiH{sub 4} flux rate and Si thickness has an impact on Si-EPI quality. - Abstract: The epitaxial growth of Si layers on Si substrates in the presence of O atoms is generally considered a challenge, as O atoms degrade the epitaxial quality by generating defects. Here, we investigate the growth mechanisms for Si epitaxy on O atomic layers (ALs) with different O-contents and structures. O ALs are deposited by ozone (O{sub 3}) or oxygen (O{sub 2}) exposure on H-terminated Si at 50 °C and 300 °C respectively. Epitaxial Si is deposited by chemical vapor deposition using silane (SiH{sub 4}) at 500 °C. After O{sub 3} exposure, the O atoms are uniformly distributed in Si-Si dimer/back bonds. This O layer still allows epitaxial seeding of Si. The epitaxial quality is enhanced by lowering the surface distortions due to O atoms and by decreasing the arrival rate of SiH{sub 4} reactants, allowing more time for surface diffusion. After O{sub 2} exposure, the O atoms are present in the form of SiO{sub x} clusters. Regions of hydrogen-terminated Si remain present between the SiO{sub x} clusters. The epitaxial seeding of Si in these structures is realized on H-Si regions, and an epitaxial layer grows by a lateral overgrowth mechanism. A breakdown in the epitaxial ordering occurs at a critical Si thickness, presumably by accumulation of surface roughness.

  19. Simulating atomic-scale phenomena on surfaces of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, Andreas; Andersen, Brian [Niels Bohr Institute (Denmark); Choubey, Peayush; Hirschfeld, Peter [Univ. of Florida (United States); Berlijn, Tom [CNMS and CSMD, Oak Ridge National Laboratory (United States)

    2016-07-01

    Interest in atomic scale effects in superconductors has increased because of two general developments: First, the discovery of new materials as the cuprate superconductors, heavy fermion and Fe-based superconductors where the coherence length of the cooper pairs is as small to be comparable to the lattice constant, rendering small scale effects important. Second, the experimental ability to image sub-atomic features using scanning-tunneling microscopy which allows to unravel numerous physical properties of the homogeneous system such as the quasi particle excitation spectra or various types of competing order as well as properties of local disorder. On the theoretical side, the available methods are based on lattice models restricting the spatial resolution of such calculations. In the present project we combine lattice calculations using the Bogoliubov-de Gennes equations describing the superconductor with wave function information containing sub-atomic resolution obtained from ab initio approaches. This allows us to calculate phenomena on surfaces of superconductors as directly measured in scanning tunneling experiments and therefore opens the possibility to identify underlying properties of these materials and explain observed features of disorder. It will be shown how this method applies to the cuprate material Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} and a Fe based superconductor.

  20. Analysis and Calibration of in situ scanning tunnelling microscopy Images with atomic Resolution Influenced by Surface Drift Phenomena

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Møller, Per

    1994-01-01

    The influence of surface drift velocities on in situ scanning tunnelling microscopy (STM) experiments with atomic resolution is analysed experimentally and mathematically. Constant drift velocities much smaller than the speed of scanning can in many in situ STM experiments with atomic resolution ...... as well as the vectors of the non-distorted surface lattice can be determined. The calibration of distances can thus be carried out also when the image is influenced by drift. Results with gold surfaces and graphite surfaces are analysed and discussed....

  1. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  2. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    G. Helas; M. O. Andreae

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  3. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  4. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Ruberto, C.; Lundqvist, Bengt

    2010-01-01

    ) surfaces. The spatial extent and the dangling bond nature of these SRs are supported by real-space analyses of the calculated Kohn-Sham wavefunctions. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOSs...

  5. Resonance absorption measurements of atom concentrations in reacting gas mixtures. II. Calibration of microwave sources over a wide temperature range

    International Nuclear Information System (INIS)

    Chiang, C.; Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1979-01-01

    A series of experiments was carried out to calibrate three different microwave discharge lamps for analysis for D or H atoms, using Lyman-α absorption. Known concentrations of D atoms were produced in a shock tube by the reaction of 0.05--4 ppm D 2 with N 2 O in argon at 1800--3000 K. H atoms were produced by dissociation of 2,2,3,3-tetramethylbutane (10 ppm in argon) at 980--1140 K. These absorption data were compared with the absorption calculated from Lyman-α line shapes reported in an earlier paper, good agreement being found. These experiments provide a sound basis for obtaining the temperature and concentration dependence of the absorption coefficient over a wide temperature range, for H and D concentrations between 10 -12 and 10 -10 mole/cc

  6. Quasiclassical Studies of Eley-Rideal and Hot Atom Reactions on Surface: H(D)→D(H)+Cu(111)

    International Nuclear Information System (INIS)

    Vurdu, C.D.

    2004-01-01

    Randomly distributed hydrogen adsorbates on the surface of Cu(1 1 1) are used to form 0.50, 0.25 and 0.15 monolayers of coverages to simulate D(H)→H(D) + Cu(111) system at 30 K and 94 K surface temperatures. The interaction of this system is mimicked by a LEPS function which is parameterized by using the energy points which were calculated by a density-functional theory method and the generalized gradient approximation for the exchange-correlation energy for various configurations of one a,nd two hydrogen atoms on the Cu(111) surface. Our results on H 2 , D 2 , and HD formations via Eley-Redial and hot-atom mechanisms will be presented at these temperatures. Probabilities for the rotational, vibrational, total and translational energy distributions of the products are calculated. In addition traping onto the surface, inelastic reflection of the incident projectile and penetration of the adsorbate or projectile atom into the slab is analyzed. Hot-atom pathways for product formations are shown to make significant contributions

  7. Trapping and stabilization of hydrogen atoms in intracrystalline voids. Defected calcium fluorides and Y zeolite surfaces

    International Nuclear Information System (INIS)

    Iton, L.E.; Turkevich, J.

    1978-01-01

    Using EPR spectroscopy, it has been established that H. atoms are absorbed from the gas phase when CaF 2 powder is exposed to H 2 gas in which a microwave discharge is sustained, being trapped in sites that provide unusual thermal stability. The disposition of the trapped atoms is determined by the occluded water content of the CaF 2 . For ultrapure CaF 2 , atoms are trapped in interstitial sites having A 0 = 1463 MHz; for increasing water content, two types of trapped H. atoms are discriminated, with preferential trapping in void sites (external to the regular fluorite lattice) that are associated with the H 2 O impurity. Characterization of these ''extra-lattice'' H. (and D.) atoms is presented, and their EPR parameters and behavior are discussed in detail. Failure to effect H.-D. atom exchange with D 2 gas suggests that atoms are not stabilized on the CaF 2 surface. H. atoms are trapped exclusively in ''extra-lattice'' sites when the water-containing CaF 2 is γ irradiated at 77 or 298 K indicating that the scission product atoms do not escape from the precursor void region into the regular lattice. It is concluded that the thermal stability of the ''extra-lattice'' atoms, like that of the interstitial atoms, is determined ultimately by the high activation energy for diffusion of the H. atom through the CaF 2 lattice. For comparison, results obtained from H. atoms trapped in γ-irradiated rare earth ion-exchanged Y zeolites are presented and discussed also; these ''surface'' trapped atoms do not exhibit great thermalstability. Distinctions in the H. atom formation mechanisms between the fluorides and the zeolites were deduced from the accompanying paramagnetic species formed. The intracavity electric fields in the Y zeolites have been estimated from the H. atoms hfsc contractions, and are found to be very high, about 1 V/A

  8. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  9. Diffractive scattering of H atoms from the (001) surface of LiF at 78 K

    International Nuclear Information System (INIS)

    Caracciolo, G.; Iannotta, S.; Scoles, G.; Valbusa, U.

    1980-01-01

    We have built an apparatus for the measurement of high resolution diffractive scattering of hydrogen atoms from crystal surfaces. The apparatus comprises a hydrogen atom beam source, a hexapolar magnetic field velocity selector, a variable temperature UHV crystal manipulator, and a rotatable bolometer detector. The diffraction pattern of a beam of hydrogen atoms scattered by a (001) LiF surface at 78 K has been obtained for different angles of incidence and different orientations of the crystal. The Debye--Waller factor has been measured leading to a surface Debye temperature theta/sub S/=550 +- 38 K. The corrugated-hard-wall-with-a-well model of Garibaldi et al. [Surf. Sci. 48, 649 (1975)] has been used for the interpretation of the intensities of the diffracted peaks. By means of a best fit procedure we obtain a main ''corrugation'' parameter xi 0 =0.095 A. By comparison of the data with the theory of Cabrera et al. [Surf. Sci. 19, 70 (1967] at the first order, the strength parameters of a periodic Morse potential have been determined

  10. A History of the Atomic Energy Commission

    Science.gov (United States)

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  11. Experimental studies of ions and atoms interaction with insulating surface; Etude experimentale de l'interaction rasante d'atomes et d'ions sur des surfaces isolantes

    Energy Technology Data Exchange (ETDEWEB)

    Villette, J

    2000-10-15

    Grazing collisions (<3 deg.) of keV ions and atoms: H{sup +}, Ne{sup +}, Ne{sup 0}, Na{sup +} on LiF (001) single crystal, an ionic insulator, are investigated by a time of flight technique. The incident beam is chopped and the scattered particles are collected on a position sensitive detector providing differential cross section while the time of flight gives the energy loss. Deflection plates allow the charge state analysis. Secondary electrons are detected in coincidence allowing direct measurements of electron emission yield, angular and energetic distribution through time of flight measurements. The target electronic structure characterized by a large band gap, governs the collisional processes: charge exchange, electronic excitations and electron emission. In particular, these studies show that the population of local target excitations surface excitons is the major contribution to the kinetic energy transfer (stopping power). Auger neutralization of Ne{sup +} and He{sup +} ions reveals the population of quasi-molecular excitons, an exciton bound on two holes. Referenced in the literature as trion. A direct energy balance determines the binding energy associated with these excited states of the surface. Besides these electronic energy loss processes, two nuclear energy loss mechanisms are characterized. These processes imply momentum transfer to individual target atoms during close binary collisions or, if the projectile is charged, to collective mode of optical phonons induced by the projectile coulomb field. The effect of the temperature on the scattering profile, the contribution of topological surface defects to the energy loss profile and to skipping motion on the surface are analyzed in view of classical trajectory simulations. (author)

  12. Atomic Structure of a Spinel-like Transition Al2O3 (100) Surface

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Meinander, Kristoffer; Helveg, Stig

    2014-01-01

    We study a crystalline epitaxial alumina thin film with the characteristics of a spinel-type transition Al2O3(100) surface by using atom-resolved noncontact atomic force microscopy and density functional theory. It is shown that the films are terminated by an Al-O layer rich in Al vacancies......, exhibiting a strong preference for surface hydroxyl group formation in two configurations. The transition alumina films are crystalline and perfectly stable in ambient atmospheres, a quality which is expected to open the door to new fundamental studies of the surfaces of transition aluminas....

  13. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  14. Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment

    International Nuclear Information System (INIS)

    Zhen Weijun; Lu Canhui

    2012-01-01

    To improve the water resistance of thermoplastic poly(vinyl alcohol)/saponite nanocomposites (TPVA), a simple two-step method was developed for the covalent immobilization of atom transfer radical polymerization (ATRP) initiators on the TPVA surfaces enhanced by air dielectric barrier discharges (DBD) plasma treatment, and hydrophobic poly(methyl methacrylate) (PMMA) brushes were then grafted onto the surface of TPVA via surface-initiated atom transfer radical polymerization (SI-ATRP). The chemical composition, morphology and hydrophobicity of the modified TPVA surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The water resistance of the surface-functionalized PMMA was evaluated by the contact angle and water adsorption method. It was shown that air DBD plasma treatment activated the TPVA surface and accelerated the immobilization of ATRP initiator on the TPVA surface. Compared with TPVA control, TPVA modified by SI-ATRP can be grafted well-defined and covalently tethered network PMMA brushes onto the surface and the hydrophobicity of TPVA were significantly enhanced.

  15. Influence of H on the composition and atomic concentrations of 'N-rich' plasma deposited SiOxNyHz films

    International Nuclear Information System (INIS)

    Prado, A. del; San Andres, E.; Martil, I.; Gonzalez-Diaz, G.; Bohne, W.; Roehrich, J.; Selle, B.

    2004-01-01

    The influence of H on the composition and atomic concentrations of Si, O, and N of plasma deposited SiO x N y H z films was investigated. The bonding scheme of H was analyzed by Fourier-transform infrared spectroscopy. The composition and absolute concentrations of all the species present in the SiO x N y H z , including H, was measured by heavy-ion elastic recoil detection analysis (HI-ERDA). Samples were deposited from SiH 4 , O 2 , and N 2 gas mixtures, with different gas flow ratios in order to obtain compositions ranging from SiN y H z to SiO 2 . Those samples deposited at higher SiH 4 partial pressures show both Si-H and N-H bonds, while those deposited at lower SiH 4 partial pressures show N-H bonds only. The Si-H and N-H bond concentrations were found to be proportional to the N concentration. The concentration of H was evaluated from the Si-H and N-H stretching absorption bands and compared to the HI-ERDA results, finding good agreement between both measurements. The deviation from H-free stoichiometric SiO x N y composition due to the presence of N-H bonds results in an effective coordination number of N to produce Si-N bonds lower than 3. By fitting the experimental composition data to a theoretical model taking into account the influence of N-H bonds, the actual concentration of N-H bonds was obtained, making evident the presence of nonbonded H. The presence of Si-H and Si-Si bonds was found to partially compensate the effect of N-H bonds, from the point of view of the relative N and Si contents. Finally, the presence of N-H bonds results in a lower Si atom concentration with respect to the stoichiometric film, due to a replacement of Si atoms by H atoms. This decrease of the Si concentration is lower in those films containing Si-H and Si-Si bonds. A model was developed to calculate the Si, O, and N atom concentrations taking into account the influence of N-H, Si-H, and Si-Si bonds, and was found to be in perfect agreement with the experimental data

  16. Atomistic modeling determination of placeholder binding energy of Ti, C, and N atoms on a-Fe (100) surfaces

    International Nuclear Information System (INIS)

    Wei, X J; Liu, Y P; Han, S P

    2015-01-01

    A Fe(100) surface containing Ti, C, and N was constructed and optimized to study the placeholder binding energy of the Ti, C, and N surface atoms; this was achieved by searching the transition state with the LST (linear synchronous transit) method of the CASTEP (Cambridge Serial Total Energy Package) module. Also, the authors analyzed electron structures to determine how Ti, C, and N atoms strengthen the Fe(100) surface. The results show that when Ti, C, or N atoms take placeholder alone, or simultaneously at the Fe(100) surface, the structure stability is at its best. When including Ti, C, and N as solid solutions on the Fe(100) surface, orbital electrons of Fe3d, Ti3d, C2p, and N2p hybridize near the Fermi level; the number of electronic bonding peaks increase and bonding capacity enhances. Also, a large amount of covalent bonds formed. Covalent bonds and metallic bond coexisted. (paper)

  17. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    Science.gov (United States)

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the direction, which is theoretically predicted to produce a high Curie temperature.

  18. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  19. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  20. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  1. Atomic and electronic structure of the CdTe(111)B–(2√3 × 4) orthogonal surface

    Energy Technology Data Exchange (ETDEWEB)

    Bekenev, V. L., E-mail: bekenev@ipms.kiev.ua; Zubkova, S. M. [National Academy of Sciences of Ukraine, Frantsevych Institute for Problems of Materials Science (Ukraine)

    2017-01-15

    The atomic and electronic structure of four variants of Te-terminated CdTe(111)B–(2√3 × 4) orthogonal polar surface (ideal, relaxed, reconstructed, and reconstructed with subsequent relaxation) are calculated ab initio for the first time. The surface is modeled by a film composed of 12 atomic layers with a vacuum gap of ~16 Å in the layered superlattice approximation. To close Cd dangling bonds on the opposite side of the film, 24 fictitious hydrogen atoms with a charge of 1.5 electrons each are added. Ab initio calculations are performed using the Quantum Espresso program based on density functional theory. It is demonstrated that relaxation leads to splitting of the four upper layers. The band energy structures and total and layer-by-layer densities of electronic states for the four surface variants are calculated and analyzed.

  2. Adsorption of selenium atoms at the Si(1 1 1)-7 x 7 surface: A combination of scanning tunnelling microscopy and density functional theory studies

    International Nuclear Information System (INIS)

    Wu, S.Q.; Zhou Yinghui; Wu Qihui; Pakes, C.I.; Zhu Zizhong

    2011-01-01

    Graphical abstract: A selenium atom, which adsorbs at site close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms on the Si(1 1 1)-7 x 7 surface, will break the Si-Si bond and consequently disorder the Si reconstruction surface. Research highlights: → STM and DFT are used to study the adsorption properties of Se atoms on a Si surface. → The adsorption site of Se atom on the Si surface has been identified. → The electronic effect of Se atom on the adsorbed Si surface has been ivestigaed. → The Se atom weakens the bond between two Si atom bonding with the Se atom. - Abstract: The adsorption of selenium (Se) atoms at the Si(1 1 1)-7 x 7 surface has been investigated using both scanning tunnelling microscopy (STM) and density functional theory calculations. A single Se atom prefers to adsorb at sites close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms. The adsorption sites are referred to as A*-type sites in this article. The density of the conduction band (empty states) of the Si adatom increases as a result of the adsorption of a Se atom, which causes the Si adatom to become brighter in the empty state STM images. At the same time, the adsorption of the Se atom weakens the bonding between the Si adatom and its backbonding Si atom due to the charge transfer from them to the Se atom, and consequently destructs the ordered Si(1 1 1)-7 x 7 surface with increasing Se coverage.

  3. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  4. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  5. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  6. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  7. Atomic Scale coexistence of Periodic and quasiperiodic order in a2-fold A1-Ni-Co decagonal quasicrystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Young; Ogletree, D. Frank; Salmeron, Miquel; Ribeiro,R.A.; Canfield, P.C.; Jenks, C.J.; Thiel, P.A.

    2005-11-14

    Decagonal quasicrystals are made of pairs of atomic planes with pentagonal symmetry periodically stacked along a 10-fold axis. We have investigated the atomic structure of the 2-fold surface of a decagonal Al-Ni-Co quasicrystal using scanning tunneling microscopy (STM). The surface consists of terraces separated by steps of heights 1.9, 4.7, 7.8, and 12.6{angstrom} containing rows of atoms parallel to the 10-fold direction with an internal periodicity of 4{angstrom}. The rows are arranged aperiodically, with separations that follow a Fibonacci sequence and inflation symmetry. The results indicate that the surfaces are preferentially Al-terminated and in general agreement with bulk models.

  8. Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M., E-mail: m.walker@warwick.ac.uk; Tedder, M.S.; Palmer, J.D.; Mudd, J.J.; McConville, C.F.

    2016-08-30

    Highlights: • Preparation of a clean, well-ordered Ge(100) surface with atomic hydrogen. • Surface oxide layers removed by AHC at room temperature, but not hydrocarbons. • Increasing surface temperature during AHC dramatically improves efficiency. • AHC with the surface heated to 250 °C led to a near complete removal of contaminants. • (2 × 1) LEED pattern from IBA and AHC indicates asymmetric dimer reconstruction. - Abstract: Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low-temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with X-ray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 °C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 °C. We also demonstrate that the combination of a sample temperature of 250 °C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet

  9. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Ataman, O. Yavuz

    2008-01-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C 0 , where the change in characteristic mass, m 0 , can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E max , maximum enhancement factor; E t , enhancement for 1.0 minute sampling and E v , enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  10. The trapping of potassium atoms by a polycrystalline tungsten surface as a function of energy and angle of incidence. ch. 1

    International Nuclear Information System (INIS)

    Hurkmans, A.; Overbosch, E.G.; Olander, D.R.; Los, J.

    1976-01-01

    The trapping probability of potassium atoms on a polycrystalline tungsten surface has been measured as a function of the angle of incidence and as a function of the energy of the incoming atoms. Below an energy of 1 eV the trapping was complete; above 20 eV only reflection occurred. The trapping probability increased with increasing angle of incidence. The measurements are compared with a simple model of the fraction of atoms initially trapped. The model, a one-dimensional cube model including a Boltzmann distribution of the velocities of oscillating surface atoms, partially explains the data. The trapping probability as a function of incoming energy is well described for normal incidence, justifying the inclusion of thermal motion of the surface atoms in the model. The angular dependence can be explained in a qualitative way, although there is a substantial discrepancy for large angles of incidence, showing the presence of surface structure. (Auth.)

  11. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  12. Spatial and energy distributions of satellite-speed helium atoms reflected from satellite-type surfaces

    International Nuclear Information System (INIS)

    Liu, S.M.; Rodgers, W.E.; Knuth, E.L.

    1977-01-01

    Interactions of satellite-speed helium atoms (accelerated in an expansion from an arc-heated supersonic-molecular-beam source) with practical satellite surfaces have been investigated experimentally. The density and energy distributions of the scattered atoms were measured using a detection system developed for this study. This detection system includes (a) a target positioning mechanism, (b) a detector rotating mechanism, and (c) a mass spectrometer and/or a retarding-field energy analyzer. (Auth.)

  13. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  14. Atomic force microscopy of surface topography of nitrogen plasma treated steel

    CERN Document Server

    Mahboubi, F

    2002-01-01

    Nitriding of steels, using plasma environments has been practiced for many years. A lot of efforts have been put on developing new methods, such as plasma immersion ion implantation (Pl sup 3) and radio frequency (RF) plasma nitriding, for mass transfer of nitrogen into the surface of the work piece. This article presents the results obtained from an in depth investigation of the surface morphology of the treated samples, carried out using an atomic force microscope. Samples from a microalloyed steel, were treated by both methods for 5 hours at different temperatures ranging from 350 to 550 sup d eg sup C in 75% N sub 2 -25% H sub 2 atmosphere. It has been found that the surface of the samples treated by PI sup 3 technique, although having more favorable properties, were rougher than the surfaces treated by RF plasma nitriding.

  15. Stability of concentration-related self-interstitial atoms in fusion material tungsten

    Science.gov (United States)

    Hong, Zhang; Shu-Long, Wen; Min, Pan; Zheng, Huang; Yong, Zhao; Xiang, Liu; Ji-Ming, Chen

    2016-05-01

    Based on the density functional theory, we calculated the structures of the two main possible self-interstitial atoms (SIAs) as well as the migration energy of tungsten (W) atoms. It was found that the difference of the and formation energies is 0.05-0.3 eV. Further analysis indicated that the stability of SIAs is closely related to the concentration of the defect. When the concentration of the point defect is high, SIAs are more likely to exist, SIAs are the opposite. In addition, the vacancy migration probability and self-recovery zones for these SIAs were researched by making a detailed comparison. The calculation provided a new viewpoint about the stability of point defects for self-interstitial configurations and would benefit the understanding of the control mechanism of defect behavior for this novel fusion material. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. A0920502051411-5 and 2682014ZT30), the Program of International Science and Technology Cooperation, China (Grant No. 2013DFA51050), the National Magnetic Confinement Fusion Science Program, China (Grant Nos. 2011GB112001 and 2013GB110001), the National High Technology Research and Development Program of China (Grant No. 2014AA032701), the National Natural Science Foundation of China (Grant No. 11405138), the Southwestern Institute of Physics Funds, China, the Western Superconducting Technologies Company Limited, China, the Qingmiao Plan of Southwest Jiaotong University, China (Grant No. A0920502051517-6), and the China Postdoctoral Science Foundation (Grant No. 2014M560813).

  16. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface

    International Nuclear Information System (INIS)

    Lee, Chul Jae; Kim, Hee Jin; Karim, Mohammad Rezaul; Lee, Mu Sang

    2006-01-01

    We investigated the Surface-enhanced Raman Spectroscopy (SERS) spectrum of ethephone (2- chloroethylphosphonic acid). We observed significant signals in the ordinary Raman spectrum for solid-state ethephone as well as when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids that were prepared by the γ - irradiation method. The influence of pH and the influence of anion (Cl - , Br - , I - ) on the adsorption orientation were investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions. The chlorine atom or the chlorine and two oxygen atoms were adsorbed on the colloidal silver surface. Among halide ions, Br - and I - were more strongly adsorbed on the colloidal silver surfaces. As a result, the adsorption of ethephone was less effective due to their steric hinderance

  17. Weekly variability of surface CO concentrations in Moscow

    Science.gov (United States)

    Sitnov, S. A.; Adiks, T. G.

    2014-03-01

    Based on observations of carbon monoxide (CO) concentrations at three Mosekomonitoring stations, we have analyzed the weekly cycle of CO in the surface air of Moscow in 2004-2007. At all stations the minimum long-term mean daily CO values are observed on Sunday. The weekly cycle of CO more clearly manifests itself at the center of Moscow and becomes less clear closer to the outskirts. We have analyzed the reproducibility of the weekly cycle of CO from one year to another, the seasonal dependence, its specific features at different times of day, and the changes in the diurnal cycle of CO during the week. The factors responsible for specific features of the evolution of surface CO concentrations at different observation stations have been analyzed. The empirical probability density functions of CO concentrations on weekdays and at week- end are presented. The regularity of the occurrence of the weekend effect in CO has been investigated and the possible reasons for breaks in weekly cycles have been analyzed. The Kruskal-Wallis test was used to study the statistical significance of intraweek differences in surface CO contents.

  18. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, T.; /IIT, Chicago /Argonne; Zasadzinski, J.; /IIT, Chicago; Moore, J.; Pellin, M.; Elam, J.; /Argonne; Cooley, L.; /Fermilab; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  19. Interatomic potentials from rainbow scattering of keV noble gas atoms under axial surface channeling

    International Nuclear Information System (INIS)

    Schueller, A.; Wethekam, S.; Mertens, A.; Maass, K.; Winter, H.; Gaertner, K.

    2005-01-01

    For grazing scattering of keV Ne and Ar atoms from a Ag(1 1 1) and a Cu(1 1 1) surface under axial surface channeling conditions we observe well defined peaks in the angular distributions for scattered projectiles. These peaks can be attributed to 'rainbow-scattering' and are closely related to the geometry of potential energy surfaces which can be approximated by the superposition of continuum potentials along strings of atoms in the surface plane. The dependence of rainbow angles on the scattering geometry provides stringent tests on the scattering potentials. From classical trajectory calculations based on universal (ZBL), adjusted Moliere (O'Connor and Biersack), and individual interatomic potentials we obtain corresponding rainbow angles for comparison with the experimental data. We find good overall agreement with the experiments for a description of trajectories based on adjusted Moliere and individual potentials, whereas the agreement is poorer for potentials with ZBL screening

  20. Novel pathways for elimination of chlorine atoms from growing Si(100) surfaces in CVD reactors

    Science.gov (United States)

    Kunioshi, Nílson; Hagino, Sho; Fuwa, Akio; Yamaguchi, Katsunori

    2018-05-01

    Reactions leading to elimination of chlorine atoms from growing Si(100) surfaces were simulated using clusters of silicon atoms of different sizes and shapes, and at the UB3LYP/6-31 g(d,p) level of theory. The reactions of type SiCl2(s) + 2 H2(g), where (s) indicates an adsorbed species at the surface and (g) a gas-phase species, were found to proceed in two steps: SiCl2(s) + H2(g) → SiHCl(s) + HCl(g) and SiHCl(s) + H2(g) → SiH2(s) + HCl(g), each having activation energies around 55 kcal/mol, a value which is comparable to experimental values published in the literature. In addition, the results suggested that H-passivation of Si(100) surfaces support reactions leading to canonical epitaxial growth, providing a plausible explanation for the convenience of passivating the surfaces prior to silicon deposition. The reactions analyzed here can therefore be seen as important steps in the mechanism of epitaxial growth of Si(100) surfaces.

  1. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    electrolyte revealed a hexagonal, rotated adlayer structure, which was not reported before for this system. In comparison to other halide-metal(111) systems, the potential dependence of this structure suggests a strong adsorbate-adsorbate interaction. Operating under diffusion-limited conditions, i.e., at constant deposition rate, homoepitaxial growth of the Cu(001) single crystal electrode in chloride-containing solution has been investigated in situ for 1 and 5 mM Cu ion concentrations as a function of deposition overpotential. Detailed insight into the complex relationship between the atomic-scale structure of the solid-liquid interface, the growth behavior, and the resulting surface morphology was gained, revealing a pronounced mutual interaction of the Cu growth process and the Cl adlayer order. Depending on the latter, transitions from step-flow to layer-by-layer to 3D growth are observed, attributed to a reduction in the Cu surface mobility with increasing order. The kinetics of the c(2 x 2) adlayer ordering, in turn, are strongly affected during Cu deposition as compared to results obtained in Cu-free solution. Moreover, an oscillatory average strain in the surface layer is observed during layer-by-layer growth, indicating an expansion of the topmost layer occurring periodically for fractional coverages. Addition of polyethylene glycol (PEG), a commonly used inhibitor in the industrial damascene process, considerably changes the growth conditions. The chloride ordering kinetics are influenced such that the c(2 x 2) covered phase is stabilized in a widened potential regime. The onset of the transition to 3D growth is observed at more negative potentials, limiting the occurrence of layering oscillations to a narrower potential regime. Compared to the PEG-free electrolyte, the deposition rate is notably slowed down by a factor of approximately 3. The present study reports new direct experimental observations of the growth mechanisms at electrochemical interfaces on the

  2. In situ surface X-ray diffraction studies of the copper-electrolyte interface. Atomic structure and homoepitaxial grwoth

    Energy Technology Data Exchange (ETDEWEB)

    Golks, Frederik

    2011-05-19

    hexagonal, rotated adlayer structure, which was not reported before for this system. In comparison to other halide-metal(111) systems, the potential dependence of this structure suggests a strong adsorbate-adsorbate interaction. Operating under diffusion-limited conditions, i.e., at constant deposition rate, homoepitaxial growth of the Cu(001) single crystal electrode in chloride-containing solution has been investigated in situ for 1 and 5 mM Cu ion concentrations as a function of deposition overpotential. Detailed insight into the complex relationship between the atomic-scale structure of the solid-liquid interface, the growth behavior, and the resulting surface morphology was gained, revealing a pronounced mutual interaction of the Cu growth process and the Cl adlayer order. Depending on the latter, transitions from step-flow to layer-by-layer to 3D growth are observed, attributed to a reduction in the Cu surface mobility with increasing order. The kinetics of the c(2 x 2) adlayer ordering, in turn, are strongly affected during Cu deposition as compared to results obtained in Cu-free solution. Moreover, an oscillatory average strain in the surface layer is observed during layer-by-layer growth, indicating an expansion of the topmost layer occurring periodically for fractional coverages. Addition of polyethylene glycol (PEG), a commonly used inhibitor in the industrial damascene process, considerably changes the growth conditions. The chloride ordering kinetics are influenced such that the c(2 x 2) covered phase is stabilized in a widened potential regime. The onset of the transition to 3D growth is observed at more negative potentials, limiting the occurrence of layering oscillations to a narrower potential regime. Compared to the PEG-free electrolyte, the deposition rate is notably slowed down by a factor of approximately 3. The present study reports new direct experimental observations of the growth mechanisms at electrochemical interfaces on the atomic-scale.

  3. Investigation of graphite composite anodes surfaces by atomic force microscopy and related techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, Karen Akemi; Nishioka, Keiko; Sato, Tomohiro; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1997-11-01

    The surface of a synthetic graphite (KS-44) and polyvinylidene difluoride binder (PVDF) anode for lithium-ion secondary batteries is imaged using atomic force microscopy (AFM) and several related scanning probe microscope (SPM) instruments including: dynamic force microscopy (DFM), friction force microscopy (FFM), laterally-modulated friction force microscopy (LM-FFM), visco-elasticity atomic force microscopy (VE-AFM), and AFM/simultaneous current measurement mode (SCM). DFM is found to be an exceptional mode for topographic imaging while FFM results in the clearest contrast distinction between PVDF binder and KS-44 graphite regions. (orig.)

  4. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  5. Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells

    International Nuclear Information System (INIS)

    Felfer, P.; Ceguerra, A.V.; Ringer, S.P.; Cairney, J.M.

    2015-01-01

    The analysis of the formation of clusters in solid solutions is one of the most common uses of atom probe tomography. Here, we present a method where we use the Voronoi tessellation of the solute atoms and its geometric dual, the Delaunay triangulation to test for spatial/chemical randomness of the solid solution as well as extracting the clusters themselves. We show how the parameters necessary for cluster extraction can be determined automatically, i.e. without user interaction, making it an ideal tool for the screening of datasets and the pre-filtering of structures for other spatial analysis techniques. Since the Voronoi volumes are closely related to atomic concentrations, the parameters resulting from this analysis can also be used for other concentration based methods such as iso-surfaces. - Highlights: • Cluster analysis of atom probe data can be significantly simplified by using the Voronoi cell volumes of the atomic distribution. • Concentration fields are defined on a single atomic basis using Voronoi cells. • All parameters for the analysis are determined by optimizing the separation probability of bulk atoms vs clustered atoms

  6. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface fo...

  7. Quasi-elastic helium-atom scattering from surfaces: experiment and interpretation

    International Nuclear Information System (INIS)

    Jardine, A.P.; Ellis, J.; Allison, W.

    2002-01-01

    Diffusion of an adsorbate is affected both by the adiabatic potential energy surface in which the adsorbate moves and by the rate of thermal coupling between the adsorbate and substrate. In principle both factors are amenable to investigation through quasi-elastic broadening in the energy spread of a probing beam of helium atoms. This review provides a topical summary of both the quasi-elastic helium-atom scattering technique and the available data in relation to the determination of diffusion parameters. In particular, we discuss the activation barriers deduced from experiment and their relation to the adiabatic potential and the central role played by the friction parameter, using the CO/Cu(001) system as a case study. The main issues to emerge are the need for detailed molecular dynamics simulations in the interpretation of data and the desirability of significantly greater energy resolution in the experiments themselves. (author)

  8. Scanning tunneling microscopy of the atomically smooth (001) surface of vanadium pentoxide V_2O_5 crystals

    International Nuclear Information System (INIS)

    Muslimov, A. E.; Butashin, A. V.; Kanevsky, V. M.

    2017-01-01

    The (001) cleavage surface of vanadium pentoxide (V_2O_5) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V_2O_5 crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surface (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.

  9. Track sensitivity and the surface roughness measurements of CR-39 with atomic force microscope

    CERN Document Server

    Yasuda, N; Amemiya, K; Takahashi, H; Kyan, A; Ogura, K

    1999-01-01

    Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.

  10. Application of the backscattering of an atomic beam of thermal energy to the study of the vibrational properties of metal surfaces

    International Nuclear Information System (INIS)

    Lapujoulade, J.; Lejay, Y.

    1975-01-01

    Vibrational properties of metal surfaces (surface phonons, surface Debye temperatures) are less known than bulk ones since common investigation methods (neutron, X-rays) are not sensitive to surface properties. A study of the backscattering of an atomic beam may give surface specific informations. The backscattering of noble gas (He, Ne, Ar) from a clean copper single crystal ((100) face) was experimentally studied. The experimental set-up allows to measure the space repartition well as the velocity distribution of the scattered atoms. If the collisions is purely elastic an analysis of the thermal dependence of the specular peak by means of the Debye Waller formula will give the mean square displacements of surface atoms. It is shown however that this simple case is not fulfilled with helium in ordinary beam or solid temperatures. If the collision is inelastic, but dominated by single phonon transfers (as it seems to be the case for helium) information should to get about the phonon dispersion relation of surface atoms. When many-phonon collision occur (Ne and Ar) the analysis is more difficult. A comparison of the experimental result with an approximate calculation of G. Armand is given [fr

  11. Surface phonon modes of the NaI(001) crystal surface by inelastic He atom scattering

    International Nuclear Information System (INIS)

    Brug, W.P.; Chern, G.; Duan, J.; Safron, S.A.; Skofronick, J.G.; Benedek, G.

    1990-01-01

    The present theoretical treatment of the surface dynamics of ionic insulators employs the shell model with parameters obtained from bulk materials. The approach has been generally very successful in comparisons with experiment. However, most of the experimental surface dynamics work has been on the low-mass alkali halides with very little effort on higher energy modes or on the heavier alkali halides, where effects from relaxation might be important. The work of this paper explores these latter two conditions. Inelastic scattering of He atoms from the left-angle 110 right-angle NaI(001) surface has been used to obtain the acoustic S 1 Rayleigh mode, the S 6 longitudinal mode, and the S 8 crossing mode, however, no gap S 4 optical mode was seen. The results compare favorably with reported theoretical models employing both slab calculations and the Green's function method thus indicating that bulk parameters and the shell model go a long way in explaining most of the observations

  12. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface

    International Nuclear Information System (INIS)

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Kim, Yousoo; Yamamoto, Naoki

    2015-01-01

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS. (paper)

  13. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C{sub 0}, where the change in characteristic mass, m{sub 0}, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E{sub max}, maximum enhancement factor; E{sub t}, enhancement for 1.0 minute sampling and E{sub v}, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  14. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  15. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  16. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  17. Adsorption/desorption kinetics of Na atoms on reconstructed Si (111)-7 x 7 surface

    International Nuclear Information System (INIS)

    Chauhan, Amit Kumar Singh; Govind; Shivaprasad, S.M.

    2010-01-01

    Self-assembled nanostructures on a periodic template are fundamentally and technologically important as they put forward the possibility to fabricate and pattern micro/nano-electronics for sensors, ultra high-density memories and nanocatalysts. Alkali-metal (AM) nanostructure grown on a semiconductor surface has received considerable attention because of their simple hydrogen like electronic structure. However, little efforts have been made to understand the fundamental aspects of the growth mechanism of self-assembled nanostructures of AM on semiconductor surfaces. In this paper, we report organized investigation of kinetically controlled room-temperature (RT) adsorption/desorption of sodium (Na) metal atoms on clean reconstructed Si (111)-7 x 7 surface, by X-ray photoelectron spectroscopy (XPS). The RT uptake curve shows a layer-by-layer growth (Frank-vander Merve growth) mode of Na on Si (111)-7 x 7 surfaces and a shift is observed in the binding energy position of Na (1s) spectra. The thermal stability of the Na/Si (111) system was inspected by annealing the system to higher substrate temperatures. Within a temperature range from RT to 350 o C, the temperature induced mobility to the excess Na atoms sitting on top of the bilayer, allowing to arrange themselves. Na atoms desorbed over a wide temperature range of 370 o C, before depleting the Si (111) surface at temperature 720 o C. The acquired valence-band (VB) spectra during Na growth revealed the development of new electronic-states near the Fermi level and desorption leads the termination of these. For Na adsorption up to 2 monolayers, decrease in work function (-1.35 eV) was observed, whereas work function of the system monotonically increases with Na desorption from the Si surface as observed by other studies also. This kinetic and thermodynamic study of Na adsorbed Si (111)-7 x 7 system can be utilized in fabrication of sensors used in night vision devices.

  18. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  19. Investigating biomolecular recognition at the cell surface using atomic force microscopy.

    Science.gov (United States)

    Wang, Congzhou; Yadavalli, Vamsi K

    2014-05-01

    Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Wei, Jun

    2016-09-30

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  1. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    International Nuclear Information System (INIS)

    Wang, Jingjing; Wei, Jun

    2016-01-01

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  2. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  3. Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans.

    Science.gov (United States)

    Yuan, S J; Xu, F J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-06-01

    To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants. Copyright 2009 Wiley Periodicals, Inc.

  4. Behaviour of oxygen atoms near the surface of nanostructured Nb2O5

    International Nuclear Information System (INIS)

    Cvelbar, U; Mozetic, M

    2007-01-01

    Recombination of neutral oxygen atoms on oxidized niobium foil was studied. Three sets of samples have been prepared: a set of niobium foils with a film of polycrystalline niobium oxide with a thickness of 40 nm, another one with a film thickness of about 2 μm and a set of foils covered with dense bundles of single-crystal Nb 2 O 3 nanowires. All the samples were prepared by oxidation of a pure niobium foil. The samples with a thin oxide film were prepared by exposure of as-received foils to a flux of O-atoms, the samples with a thick polycrystalline niobium oxide were prepared by baking the foils in air at a temperature of 800 deg. C, while the samples covered with nanowires were prepared by oxidation in a highly reactive oxygen plasma. The samples were exposed to neutral oxygen atoms from a remote oxygen plasma source. Depending on discharge parameters, the O-atom density in the postglow chamber, as measured with a catalytic probe, was between 5 x 10 20 and 8 x 10 21 m -3 . The O-atom density in the chamber without the samples was found rather independent of the probe position. The presence of the samples caused a decrease in the O-atom density. Depending on the distance from the samples, the O-atom density was decreased up to 5 times. The O-atom density also depended on the surface morphology of the samples. The strongest decrease in the O-atom density was observed with the samples covered with dense bundles of nanowires. The results clearly showed that niobium oxide nanowires exhibit excellent catalytic behaviour for neutral radicals and can be used as catalysts of exhaust radicals found in many applications

  5. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  6. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); Koehler, Sven P.K., E-mail: sven.koehler@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-11-30

    Highlights: • Potential energy surfaces for H diffusion on Fe(110) calculated. • Full vibrational analysis of surface modes performed. • Vibrational analysis establishes lb site as a transition state to the 3f site. • Pronounced buckling observed in the Fe surface layer. - Abstract: We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber–Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe–H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm{sup −1}, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  7. Terahertz response of fractal meta-atoms based on concentric rectangular square resonators

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhiqiang; Zhao, Zhenyu, E-mail: zyzhao@shnu.edu.cn; Shi, Wangzhou [Department of Physics, Shanghai Normal University, Shanghai 200234 (China); Peng, Wei [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-11-21

    We investigate the terahertz electromagnetic responses of fractal meta-atoms (MAs) induced by different mode coupling mechanisms. Two types of MAs based on concentric rectangular square (CRS) resonators are presented: independent CRS (I-CRS) and junctional-CRS (J-CRS). In I-CRS, each resonator works as an independent dipole so as to result in the multiple resonance modes when the fractal level is above 1. In J-CRS, however, the generated layer is rotated by π/2 radius to the adjacent CRS in one MA. The multiple resonance modes are coupled into a single mode resonance. The fractal level increasing induces resonance modes redshift in I-CRS while blueshift in J-CRS. When the fractal level is below 4, the mode Q factor of J-CRS is in between the two modes of I-CRS; when the fractal level is 4 or above, the mode Q factor of J-CRS exceeds the two modes of I-CRS. Furthermore, the modulation depth (MD) decreases in I-CRS while it increases in J-CRS with the increase in fractal levels. The surface currents analysis reveals that the capacitive coupling of modes in I-CRS results in the modes redshift, while the conductive coupling of modes in J-CRS induces the mode blueshift. A high Q mode with large MD can be achieved via conductive coupling between the resonators of different scales in a fractal MA.

  8. Quantum theory of scattering of atoms and diatomic molecules by solid surfaces

    International Nuclear Information System (INIS)

    Liu, W.S.

    1973-01-01

    The unitary treatment, based on standard t-matrix theory, of the quantum theory of scattering of atoms by solid surfaces, is extended to the scattering of particles having internal degrees of freedom by perfect harmonic crystalline surfaces. The diagonal matrix element of the interaction potential which enters into the quantum scattering theory is obtained to represent the potential for the specular beam. From the two-potential formula, the scattering intensities for the diffracted beams and the inelastic beams with or without internal transitions of the particles are obtained by solving the equation for the t-matrix elements. (author)

  9. Experimental studies of ions and atoms interaction with insulating surface; Etude experimentale de l'interaction rasante d'atomes et d'ions sur des surfaces isolantes

    Energy Technology Data Exchange (ETDEWEB)

    Villette, J

    2000-10-15

    Grazing collisions (<3 deg.) of keV ions and atoms: H{sup +}, Ne{sup +}, Ne{sup 0}, Na{sup +} on LiF (001) single crystal, an ionic insulator, are investigated by a time of flight technique. The incident beam is chopped and the scattered particles are collected on a position sensitive detector providing differential cross section while the time of flight gives the energy loss. Deflection plates allow the charge state analysis. Secondary electrons are detected in coincidence allowing direct measurements of electron emission yield, angular and energetic distribution through time of flight measurements. The target electronic structure characterized by a large band gap, governs the collisional processes: charge exchange, electronic excitations and electron emission. In particular, these studies show that the population of local target excitations surface excitons is the major contribution to the kinetic energy transfer (stopping power). Auger neutralization of Ne{sup +} and He{sup +} ions reveals the population of quasi-molecular excitons, an exciton bound on two holes. Referenced in the literature as trion. A direct energy balance determines the binding energy associated with these excited states of the surface. Besides these electronic energy loss processes, two nuclear energy loss mechanisms are characterized. These processes imply momentum transfer to individual target atoms during close binary collisions or, if the projectile is charged, to collective mode of optical phonons induced by the projectile coulomb field. The effect of the temperature on the scattering profile, the contribution of topological surface defects to the energy loss profile and to skipping motion on the surface are analyzed in view of classical trajectory simulations. (author)

  10. Uncertainties of retrospective radon concentration measurements by multilayer surface trap detector

    International Nuclear Information System (INIS)

    Bastrikov, V.; Kruzhalov, A.; Zhukovsky, M.

    2006-01-01

    The detector for retrospective radon exposure measurements is developed. The detector consists of the multilayer package of solid-state nuclear track detectors LR-115 type. Nitrocellulose films works both as α-particle detector and as absorber decreasing the energy of α-particles. The uncertainties of implanted 210 Pb measurements by two- and three-layer detectors are assessed in dependence on surface 210 Po activity and gross background activity of the glass. The generalized compartment behavior model of radon decay products in the room atmosphere was developed and verified. It is shown that the most influencing parameters on the value of conversion coefficient from 210 Po surface activity to average radon concentration are aerosol particles concentration, deposition velocity of unattached 218 Po and air exchange rate. It is demonstrated that with the use of additional information on surface to volume room ratio, air exchange rate and aerosol particles concentration the systematic bias of conversion coefficient between surface activity of 210 Po and average radon concentration can be decreased up to 30 %. (N.C.)

  11. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    International Nuclear Information System (INIS)

    Haendel, S.; Marchant, A. L.; Wiles, T. P.; Hopkins, S. A.; Cornish, S. L.

    2012-01-01

    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of 85 Rb and 87 Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum. To maintain excellent optical access to the region surrounding the surface, magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally, we demonstrate the loading of a hybrid optical-magnetic trap with 87 Rb and the creation of Bose-Einstein condensates via forced evaporative cooling close to the dielectric surface.

  12. Investigation of nitrogen atom production in Ar/N2 and He/N2 surface wave plasmas

    International Nuclear Information System (INIS)

    Tabbal, M.; Kazopoulo, M.; Christidis, T.; Isber, S.

    2000-01-01

    Full text: There is presently great interest in nitrogen plasmas for surface coating processes. Such as the deposition of nitride thin films and surface treatment of materials. Indeed, nitrogen plasmas have been used to nitride the surface of ferrous and non-ferrous materials in order to improve their surface properties such as resistance to corrosion and hardness. Moreover, the design and development of nitrogen atom sources could be essential for the synthesis of gallium nitride (GaN), a wide band-gap semiconductor whose properties have revolutionized the microelectronics and optoelectronics industries. Correlations have been established between the density of active species in the process, namely atomic nitrogen (N) produced by the discharge and GaN film properties. Thus, it is of fundamental importance to investigate the N-atom production mechanisms in such discharges. N-atom production has been studied in pure N 2 surface-wave plasmas (SWP), as a function of operating parameters, namely gas pressure and electrical power. These studies indicate that the increase in the gas temperature (T g ) limits the N-atom production. One possible way of enhancing the N 2 dissociation rate ([N]/[N 2 ]) in the plasma could be the use of gas mixtures such as Ar/N 2 or He/N 2 . the aim of this paper is to characterize an Ar/N 2 and He/N 2 surface-wave discharge (SWD) by optical emission spectroscopy (OES), in order to determine the optimal plasma conditions in terms of [N]/[N 2 ]. The plasma is generated by a radio frequency (40.68 MHz) wave launcher. The effect of mixing N 2 with Ar and He on the production of N-atoms in the plasma was investigated at varying experimental conditions, such as operating pressure (4.5 and 7.5 Torr), electrical power (40 to 120 W), at a total gas flow of 250 sccm. It was found that [N]/[N 2 ] increases with the partial pressure of Ar in the mixture by a factor of about 8 at 120W. Such an enhancement is reduced at lower incident powers. On the

  13. Effect of soil surface management on radiocesium concentrations in apple orchard and fruit

    International Nuclear Information System (INIS)

    Kusaba, Shinnosuke; Matsuoka, Kaori; Abe, Kazuhiro

    2016-01-01

    We investigated the effect of soil surface management on radiocesium accumulation in an apple orchard in Fukushima Prefecture over 4 years after Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident in mid-March 2011. Different types of soil surface management such as clean cultivation, intertillage management, intertillage with bark compost application, sod culture, and zeolite application were employed. The radiocesium concentrations in soil were higher in the surface layer (0–5 cm) than in the other layers. The radiocesium concentration in the surface layer soil with sod culture in 2014 increased non-significantly compared with that observed in 2011. The radiocesium concentration in the mid-layer soil (5–15 cm) managed with intertillage was higher than that in soil managed using other types of management. The radiocesium amount in the organic matter on the soil surface was the highest in sod culture, and was significantly lower in the management with intertillage. The radiocesium concentration in fruit decreased exponentially during the 4 years in each types of soil surface management. The decrease in radiocesium concentration showed similar trends with each type of soil surface management, even if the concentration in each soil layer varied according to the management applied. Furthermore, intertillage with bark compost application did not affect the radiocesium concentration in fruit. These results suggest that the soil surface management type that affected the radiocesium distribution in the soil or the compost application with conventional practice did not affect its concentration in fruit of apple trees for at least 4 years since the nuclear power plant accident, at a radiocesium deposition level similar to that recorded in Fukushima City. (author)

  14. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  15. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  16. Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface.

    Science.gov (United States)

    Zheng, Hao; Bian, Guang; Chang, Guoqing; Lu, Hong; Xu, Su-Yang; Wang, Guangqiang; Chang, Tay-Rong; Zhang, Songtian; Belopolski, Ilya; Alidoust, Nasser; Sanchez, Daniel S; Song, Fengqi; Jeng, Horng-Tay; Yao, Nan; Bansil, Arun; Jia, Shuang; Lin, Hsin; Hasan, M Zahid

    2016-12-23

    We combine quasiparticle interference simulation (theory) and atomic resolution scanning tunneling spectromicroscopy (experiment) to visualize the interference patterns on a type-II Weyl semimetal Mo_{x}W_{1-x}Te_{2} for the first time. Our simulation based on first-principles band topology theoretically reveals the surface electron scattering behavior. We identify the topological Fermi arc states and reveal the scattering properties of the surface states in Mo_{0.66}W_{0.34}Te_{2}. In addition, our result reveals an experimental signature of the topology via the interconnectivity of bulk and surface states, which is essential for understanding the unusual nature of this material.

  17. Effects of Organic Corrosion Inhibitor and Chloride Ion Concentration on Steel Depassivation and Repassivation in Solution

    Institute of Scientific and Technical Information of China (English)

    WANG Zixiao; YU Lei; LIU Zhiyong; SONG Ning

    2015-01-01

    Effect of an organic corrosion inhibitor (OCI) named PCI-2014 added in chloride solution on the critical chlo-ride concentration of mild steel depassivation and the critical OCI concentrations for repairing the steel in different chlo-ride solution were investigated. The results show that the critical chloride concentration increases exponentially with raises of PCI-2014 concentration in the solution. Within a certain chloride ion concentration range, the critical PCI-2014 concentration for repairing the corroded steel is also increases exponentially with enhancement of chloride content in the solution. Atomic force microscopy images display the molecular particles of inhibitor are adsorbed on the steel surface and formed a protective layer. Analysis of X-ray photoelectron spectroscopy shows the chloride ions at the surface of steel are displaced by atoms or molecules of the inhibitor in chloride condition.

  18. Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Cacciato, G.; Grimaldi, M. G. [Dipartimento di Fisica ed Astronomia-Universitá di Catania, via S. Sofia 64, 95123 Catania, Italy and MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)

    2014-02-28

    A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.

  19. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Energy Technology Data Exchange (ETDEWEB)

    López-Moreno, S., E-mail: sinlopez@uacam.mx [Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Héroe de Nacozari 480, Campeche, Campeche 24029 (Mexico); Romero, A. H. [Physics Department, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

    2015-04-21

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O{sub 2} molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  20. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    Science.gov (United States)

    López-Moreno, S.; Romero, A. H.

    2015-04-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered.

  1. Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni

    International Nuclear Information System (INIS)

    López-Moreno, S.; Romero, A. H.

    2015-01-01

    Density functional theory is used to investigate the reaction of oxygen with clean copper and nickel [111]-surfaces. We study several alternative adsorption sites for atomic and molecular oxygen on both surfaces. The minimal energy geometries and adsorption energies are in good agreement with previous theoretical studies and experimental data. From all considered adsorption sites, we found a new O 2 molecular precursor with two possible dissociation paths on the Cu(111) surface. Cross barrier energies for the molecular oxygen dissociation have been calculated by using the climbing image nudge elastic band method, and direct comparison with experimental results is performed. Finally, the structural changes and adsorption energies of oxygen adsorbed on surface when there is a vacancy nearby the adsorption site are also considered

  2. Influence of the Localization of Ge Atoms within the Si(001(4 × 2 Surface Layer on Semicore One-Electron States

    Directory of Open Access Journals (Sweden)

    Olha I. Tkachuk

    2016-03-01

    Full Text Available Adsorption complexes of germanium on the reconstructed Si(001(4 × 2 surface have been simulated by the Si96Ge2Н84 cluster. For Ge atoms located on the surface layer, DFT calculations (B3LYP/6-31G** of their 3d semicore-level energies have shown a clear-cut correlation between the 3d5/2 chemical shifts and mutual arrangement of Ge atoms. Such a shift is positive when only one Ge atom penetrates into the crystalline substrate, while being negative for both penetrating Ge atoms. We interpret these results in terms of the charge distribution in clusters under consideration.

  3. Morphology and microstructure of Ag islands of aggregated atoms on oil surfaces

    Institute of Scientific and Technical Information of China (English)

    Zhang Chu-Hang; Lü Neng; Zhang Xiao-Fei; Saida Ajeeb; Xia A-Gen; Ye Gao-Xiang

    2011-01-01

    The morphology evolution of silver islands on silicone oil surfaces is measured and the microstructure of the islands is studied. The deposited Ag atoms diffuse and aggregate on the oil surface and then Ag islands with the width of the order of 102-nm form. After the samples are removed from the vacuum chamber, the immediate measurement shows that the apparent Ag coverage of the total area decays with the magnitude up to (23.0±3.8)% in few minutes. In the following two hours, the samples are kept in the ambient atmosphere and several unexpected results are detected: 1)as the topological structure of the islands evolves, the total area of each island decreases gradually and the maximum decrement measured is around 20%; 2) if an island breaks and becomes two small pieces, the total area decreases obviously; 3) however, if two small islands meet and stick together, a sudden increment of the total area is observed.These phenomena, mirroring the evolution process of the island microstructure, are resulted from both the diffusion of the atoms and the combination of the defects inside the islands.

  4. Changes in surface morphology and microcrack initiation in polymers under simultaneous exposure to stress and fast atom bombardment

    International Nuclear Information System (INIS)

    Michael, R.S.; Frank, S.; Stulik, D.; Dickinson, J.T.

    1987-01-01

    The authors present studies of the changes in surface morphology due to simultaneous exposure of polymers to stress and fast atom bombardment. The polymers examined were Teflon, Kapton, Nylon, and Kevlar-49. The incident particles were 6 keV xenon atoms. The authors show that in the presence of mechanical stress these polymers show topographical changes at particle doses considerably lower than similar changes produced on unstressed material. Applied stress also promotes the formation of surface microcracks which could greatly reduce mechanical strength of the material

  5. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  6. The trapping of K and Na atoms by a clean W(110) surface. Dynamic trajectory calculations. ch.3

    International Nuclear Information System (INIS)

    Hurkmans, A.; Overbosch, E.G.; Los, J.

    1976-01-01

    The fraction of K and Na atoms which are initially trapped by a clean W(110) surface has been measured as a function of incident energy (0.5 < approximately Esub(i) < approximately 15 eV) at several angles of incidence. At the same time the desorption energies Qsub(i) of the trapped potassium and sodium atoms were measured: Qsub(i) = 2.05 +- 0.02 eV and Qsub(i) = 2.60 +- 0.04 eV respectively. The measured trapping probabilities can be described well by Trillings 'partially screened spherical cap' model, except fos the small angles of incidence. Dynamic trajectory calculations were performed for a particle scattered from a diatomic molecule to explain the screening and the descrepancy at normal incidence. The calculations give good quantitative agreement with the measured trapping probability at small angles both for potassium and sodium atoms and show that simultaneous interaction with two adjacent surface atoms affects the trapping particularly at small angles of incidence. (Auth.)

  7. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  8. Kirchhoff approximation and closed-form expressions for atom-surface scattering

    International Nuclear Information System (INIS)

    Marvin, A.M.

    1980-01-01

    In this paper an approximate solution for atom-surface scattering is presented beyond the physical optics approximation. The potential is well represented by a hard corrugated surface but includes an attractive tail in front. The calculation is carried out analytically by two different methods, and the limit of validity of our formulas is well established in the text. In contrast with other workers, I find those expressions to be exact in both limits of small (Rayleigh region) and large momenta (classical region), with the correct behavior at the threshold. The result is attained through a particular use of the extinction theorem in writing the scattered amplitudes, hitherto not employed, and not for particular boundary values of the field. An explicit evaluation of the field on the surface shows in fact the present formulas to be simply related to the well known Kirchhoff approximation (KA) or more generally to an ''extended'' KA fit to the potential model above. A possible application of the theory to treat strong resonance-overlapping effects is suggested in the last part of the work

  9. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2010-05-04

    To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.

  10. Surface effects on sputtered atoms and their angular and energy dependence

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1985-04-01

    A comprehensive three-dimensional Monte Carlo computer code, Ion Transport in Materials and Compounds (ITMC), has been developed to study in detail the surfaces related phenomena that affect the amount of sputtered atoms and back-scattered ions and their angular and energy dependence. A number of important factors that can significantly affect the sputtering behavior of a surface can be studied in detail, such as having different surface properties and composition than the bulk and synergistic effects due to surface segregation of alloys. These factors can be important in determining and lifetime of fusion reactor first walls and limiters. The ITMC Code is based on Monte Carlo methods to track down the path and the damage produced by charged particles as they slow down in solid metal surfaces or compounds. The major advantages of the ITMC code are its flexibility and ability to use and compare all existing models for energy losses, all known interatomic potentials, and to use different materials and compounds with different surface and bulk composition to allow for dynamic surface composition to allow for dynamic surface composition changes. There is good agreement between the code and available experimental results without using adjusting parameters for the energy losses mechanisms. The ITMC Code is highly optimized, very fast to run and easy to use

  11. Second order classical perturbation theory for atom surface scattering: Analysis of asymmetry in the angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yun, E-mail: zhou.yun.x@gmail.com; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il [Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel); Miret-Artés, Salvador, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain)

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to “soft” corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  12. Second order classical perturbation theory for atom surface scattering: analysis of asymmetry in the angular distribution.

    Science.gov (United States)

    Zhou, Yun; Pollak, Eli; Miret-Artés, Salvador

    2014-01-14

    A second order classical perturbation theory is developed and applied to elastic atom corrugated surface scattering. The resulting theory accounts for experimentally observed asymmetry in the final angular distributions. These include qualitative features, such as reduction of the asymmetry in the intensity of the rainbow peaks with increased incidence energy as well as the asymmetry in the location of the rainbow peaks with respect to the specular scattering angle. The theory is especially applicable to "soft" corrugated potentials. Expressions for the angular distribution are derived for the exponential repulsive and Morse potential models. The theory is implemented numerically to a simplified model of the scattering of an Ar atom from a LiF(100) surface.

  13. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    International Nuclear Information System (INIS)

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-01-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. (paper)

  14. First-principles study on the interaction of nitrogen atom with α–uranium: From surface adsorption to bulk diffusion

    International Nuclear Information System (INIS)

    Su, Qiulei; Deng, Huiqiu; Xiao, Shifang; Li, Xiaofan; Hu, Wangyu; Ao, Bingyun; Chen, Piheng

    2014-01-01

    Experimental studies of nitriding on uranium surfaces show that the modified layers provide considerable protection against air corrosion. The bimodal distribution of nitrogen is affected by both its implantation and diffusion, and the diffusion of nitrogen during implantation is also governed by vacancy trapping. In the present paper, nitrogen adsorption, absorption, diffusion, and vacancy trapping on the surface of and in the bulk of α–uranium are studied with a first-principles density functional theory approach and the climbing image nudged elastic band method. The calculated results indicate that, regardless of the nitrogen coverage, a nitrogen atom prefers to reside at the hollow1 site and octahedral (Oct) site on and below the surface, respectively. The lowest energy barriers for on-surface and penetration diffusion occur at a coverage of 1/2 monolayer. A nitrogen atom prefers to occupy the Oct site in bulk α–uranium. High energy barriers are observed during the diffusion between neighboring Oct sites. A vacancy can capture its nearby interstitial nitrogen atom with a low energy barrier, providing a significant attractive nitrogen-vacancy interaction at the trapping center site. This study provides a reference for understanding the nitriding process on uranium surfaces

  15. Reflection-type hologram for atoms

    International Nuclear Information System (INIS)

    Shimizu, Fujio; Fujita, Jun-ichi

    2002-01-01

    A cold metastable neon atomic beam was manipulated with a reflective amplitude hologram that was encoded on a silicon surface. A black-and-white pattern of atoms was reconstructed on a microchannel plate detector. The hologram used the enhanced quantum reflection developed by authors and was made of a two-dimensional array of rectangular low and high reflective cells. The surface of the high reflective cell was composed of regularly spaced roof-shaped ridges, while the low reflective cell was simply a flat surface. The hologram was the first demonstration of reflective atom-optical elements that used universal interaction between a neutral atom and solid surface

  16. Helium concentration in tungsten nano-tendril surface morphology using Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Woller, K.B.; Whyte, D.G.; Wright, G.M.; Doerner, R.P.; De Temmerman, G.

    2013-01-01

    Helium (He) concentrations in tungsten nano-tendrils (W fuzz) have been measured for the first time using Elastic Recoil Detection (ERD). Fuzzy and non-fuzzy W surfaces were analyzed in order to illuminate the role of He in the transition in surface morphologies. Samples grown in the PISCES-A and PILOT-PSI experiments allowed a survey of surface temperature ranging from T s = 470–2595 K and of He fluence on the order of Φ He ∼ 10 24 –10 27 ions/m 2 . He concentrations measured in the bulk of W fuzz layers are roughly uniform with bulk He concentration 1–4 at.% while samples with just He in the near surface peaked at 1–2 at.%. This confirms that the nano-tendrils are filled with high pressure He bubbles since the solubility of He in W is ∼10 −5 at.%. This indicates that the ∼1000 K temperature fuzz-growth threshold is determined by the response of the W, not the near-surface He concentration

  17. Direct observation for atomically flat and ordered vertical {111} side-surfaces on three-dimensionally figured Si(110) substrate using scanning tunneling microscopy

    Science.gov (United States)

    Yang, Haoyu; Hattori, Azusa N.; Ohata, Akinori; Takemoto, Shohei; Hattori, Ken; Daimon, Hiroshi; Tanaka, Hidekazu

    2017-11-01

    A three-dimensional Si{111} vertical side-surface structure on a Si(110) wafer was fabricated by reactive ion etching (RIE) followed by wet-etching and flash-annealing treatments. The side-surface was studied with scanning tunneling microscopy (STM) in atomic scale for the first time, in addition to atomic force microscopy (AFM), scanning electron microscopy (SEM), and low-energy electron diffraction (LEED). AFM and SEM showed flat and smooth vertical side-surfaces without scallops, and STM proved the realization of an atomically-flat 7 × 7-reconstructed structure, under optimized RIE and wet-etching conditions. STM also showed that a step-bunching occurred on the produced {111} side-surface corresponding to a reversely taped side-surface with a tilt angle of a few degrees, but did not show disordered structures. Characteristic LEED patterns from both side- and top-reconstructed surfaces were also demonstrated.

  18. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  19. Hydrophilization of Poly(ether ether ketone) Films by Surface-initiated Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.

    2008-01-01

    and confirmed by ATR FTIR, water contact ang;le, and Thermal Gravimetric Analysis (TGA). The surface topography was evaluated by "Atomic Force Microscopy (AFM). X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the degree of functionalization. The performed modification allowed for successful...

  20. Clarification of the interaction between Au atoms and the anatase TiO2 (112) surface using density functional theory

    Science.gov (United States)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-04-01

    A model (112) surface slab of anatase TiO2 (112) was optimized, and the adsorption of Au atoms onto the (112) surface was investigated by first-principles calculations based on DFT (density functional theory) with the generalized gradient approximation (GGA). Furthermore, the results were compared with those of Au/anatase TiO2 (101) system. The (112) surface has a ridge and a groove (zig-zag structure). The Au atoms were strongly adsorbed in the grooves but became unstable as they climbed toward the ridges, and the promotion of electrons in the 5d orbitals to the 6s and 6p orbitals in the absorbed Au atom occurred. At the Au/anatase TiO2 interface, the Au-Ti4+ coordinate bond in the (112) system is stronger than that in the (101) system because the promotion of electrons is greater in the former interaction than the latter. The results suggest that Au/anatase TiO2 catalysts with a higher dispersion of Au nanoparticles could be prepared when the (112) surface is preferentially exposed.

  1. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  2. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    Energy Technology Data Exchange (ETDEWEB)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-04-15

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  3. Effects of N2 mixed gas atomization on electrochemical properties of Mm(Ni,Co,Mn,Al)5.0 alloy powder

    International Nuclear Information System (INIS)

    Yanagimoto, K.; Sunada, S.; Majima, K.; Sawada, T.

    2004-01-01

    N 2 gas, N 2 -Ar mixed gas and Ar gas atomization followed by acid surface treatment was applied to improve electrochemical properties of AB 5 type hydrogen storage alloy powder. The shape of Ar atomized powder was spherical and it changed to be irregular with increasing N 2 content of mixed gas. Irrespective of gas kinds, electrodes of atomized powder showed the same discharge capacity as cast-pulverized powder under auxiliary electrical conductivity by nickel powder addition. Without nickel powder, however, N 2 atomized powder showed the best electrochemical properties as well as gas activation behavior. By the combination process of N 2 gas atomization and acid surface treatment, it was considered that irregular shape of N 2 atomized powder promoted electrical conductivity of electrodes and catalytic nickel concentrated surface layer was formed to increase the hydrogen storage rapidity

  4. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  5. Magnetic atom optics: mirrors, guides, traps, and chips for atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, E.A.; Hughes, I.G. [Sussex Centre for Optical and Atomic Physics, University of Sussex, Brighton (United Kingdom)

    1999-09-21

    For the last decade it has been possible to cool atoms to microkelvin temperatures ({approx}1 cm s{sup -1}) using a variety of optical techniques. Light beams provide the very strong frictional forces required to slow atoms from room temperature ({approx}500 m s{sup -1}). However, once the atoms are cold, the relatively weak conservative forces of static electric and magnetic fields play an important role. In our group we have been studying the interaction of cold rubidium atoms with periodically magnetized data storage media. Here we review the underlying principles of the forces acting on atoms above a suitably magnetized substrate or near current-carrying wires. We also summarize the status of experiments. These structures can be used as smooth or corrugated reflectors for controlling the trajectories of cold atoms. Alternatively, they may be used to confine atoms to a plane, a line, or a dot and in some cases to reach the quantum limit of confinement. Atoms levitated above a magnetized surface can be guided electrostatically by wires deposited on the surface. The flow and interaction of atoms in such a structure may form the basis of a new technology, 'integrated atom optics' which might ultimately be capable of realizing a quantum computer. (author)

  6. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  7. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Science.gov (United States)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique; Koehler, Sven P. K.

    2016-11-01

    We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber-Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe-H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm-1, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  8. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  9. Hydrophobicity and charge shape cellular metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  10. Scanning tunneling microscopy of the atomically smooth (001) surface of vanadium pentoxide V{sub 2}O{sub 5} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Muslimov, A. E., E-mail: amuslimov@mail.ru; Butashin, A. V.; Kanevsky, V. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    The (001) cleavage surface of vanadium pentoxide (V{sub 2}O{sub 5}) crystal has been studied by scanning tunneling spectroscopy (STM). It is shown that the surface is not reconstructed; the STM image allows geometric lattice parameters to be determined with high accuracy. The nanostructure formed on the (001) cleavage surface of crystal consists of atomically smooth steps with a height multiple of unit-cell parameter c = 4.37 Å. The V{sub 2}O{sub 5} crystal cleavages can be used as references in calibration of a scanning tunneling microscope under atmospheric conditions both along the (Ñ…, y) surface and normally to the sample surface (along the z axis). It is found that the terrace surface is not perfectly atomically smooth; its roughness is estimated to be ~0.5 Å. This circumstance may introduce an additional error into the microscope calibration along the z coordinate.

  11. Threshold and Lennard-Jones resonances and elastic lifetimes in the scattering of atoms from crystalline surfaces

    International Nuclear Information System (INIS)

    Garcia, N.

    1978-01-01

    The GR method for solving the scattering equations of atoms from a hard corrugated surface is applied on accelerated particles above a hard corrugated surface and a hard corrugated surface with an attractive well. The solutions are given for the Rayleigh hypothesis that under the range of corrugation presented in this paper leads to the exact ones. Threshold resonances are studied observing that the appearance and disappearance of beams must be for a general theory with vertical tangent. The structure of the Lennard-Jones resonances given for the model mentioned above. For the first time it is stressed that Lennard-Jones resonances are not observed in metal surfaces in general, and, accordingly, they are unobserved in compact metallic surfaces. This is correlated with the fact that diffraction has not been observed. Both facts are due to the very weak corrugation of the gas-metal interaction potential. According to our results, the Lennard-Jones resonances in metals present greater difficulties to be observed experimentally. It is also noted that the absence of diffraction in compact metal surfaces is because they are almost plane and not because of the Debye-Waller effect. Finally, the lifetimes of the atoms at the crystal surfaces are calculated. These are larger, the smaller the incident energy and the larger the corrugation. But the lifetimes are particularly large at resonance conditions (10 -11 s). (Auth.)

  12. Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

    International Nuclear Information System (INIS)

    Watson, G S; Watson, J A

    2008-01-01

    In this paper we correlate the Atomic Force Microscope probe movement with surface location while scanning in the imaging and Force versus distance modes. Static and dynamic stick-slip processes are described on a scale of nanometres to microns on a range of samples. We demonstrate the limits and range of the tip apex being fixed laterally in the force versus distance mode and static friction slope dependence on probe parameters. Micron scale static and dynamic friction can be used to purposefully manipulate soft surfaces to produce well defined frictional gradients

  13. Surface kinetic roughening caused by dental erosion: An atomic force microscopy study

    Science.gov (United States)

    Quartarone, Eliana; Mustarelli, Piercarlo; Poggio, Claudio; Lombardini, Marco

    2008-05-01

    Surface kinetic roughening takes place both in case of growth and erosion processes. Teeth surfaces are eroded by contact with acid drinks, such as those used to supplement mineral salts during sporting activities. Calcium-phosphate based (CPP-ACP) pastes are known to reduce the erosion process, and to favour the enamel remineralization. In this study we used atomic force microscopy (AFM) to investigate the surface roughening during dental erosion, and the mechanisms at the basis of the protection role exerted by a commercial CPP-ACP paste. We found a statistically significant difference (p<0.01) in the roughness of surfaces exposed and not exposed to the acid solutions. The treatment with the CPP-ACP paste determined a statistically significant reduction of the roughness values. By interpreting the AFM results in terms of fractal scaling concepts and continuum stochastic equations, we showed that the protection mechanism of the paste depends on the chemical properties of the acid solution.

  14. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe

    Directory of Open Access Journals (Sweden)

    Juan V. Escobar

    2017-04-01

    Full Text Available We present a procedure to perform and interpret pull-off force measurements during the jump-off-contact process between a liquid drop and rough surfaces using a conventional atomic force microscope. In this method, a micrometric liquid mercury drop is attached to an AFM tipless cantilever to measure the force required to pull this drop off a rough surface. We test the method with two surfaces: a square array of nanometer-sized peaks commonly used for the determination of AFM tip sharpness and a multi-scaled rough diamond surface containing sub-micrometer protrusions. Measurements are carried out in a nitrogen atmosphere to avoid water capillary interactions. We obtain information about the average force of adhesion between a single peak or protrusion and the liquid drop. This procedure could provide useful microscopic information to improve our understanding of wetting phenomena on rough surfaces.

  15. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    Science.gov (United States)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation

  16. Lead, zinc and pH concentrations of Enyigba soils in Abakaliki Local ...

    African Journals Online (AJOL)

    The concentrations of lead (Pb) and zinc (Zn) were quantitatively determined in surface and sub-surface soils in Enyigba, Ebonyi State, Nigerian's major lead mining area using atomic absorption spectrophotometer. pH status of the soils was similarly determined. The survey was conducted to establish a base line pollution ...

  17. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    Science.gov (United States)

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  18. Formation of nanostructures on HOPG surface in presence of surfactant atom during low energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, M., E-mail: ranjanm@ipr.res.in; Joshi, P.; Mukherjee, S.

    2016-07-15

    Low energy ions beam often develop periodic patterns on surfaces under normal or off-normal incidence. Formation of such periodic patterns depends on the substrate material, the ion beam parameters, and the processing conditions. Processing conditions introduce unwanted contaminant atoms, which also play strong role in pattern formation by changing the effective sputtering yield of the material. In this work we have analysed the effect of Cu, Fe and Al impurities introduced during low energy Ar{sup +} ion irradiation on HOPG substrate. It is observed that by changing the species of foreign atoms the surface topography changes drastically. The observed surface topography is co-related with the modified sputtering yield of HOPG. Presence of Cu and Fe amplify the effective sputtering yield of HOPG, so that the required threshold for the pattern formation is achieved with the given fluence, whereas Al does not lead to any significant change in the effective yield and hence no pattern formation occurs.

  19. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  20. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Ryo, E-mail: ishikawa@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, University of Tokyo, Tokyo 113-8656 (Japan); Lupini, Andrew R. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinuma, Yoyo [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Pennycook, Stephen J. [Department of Materials Science and Engineering, The University of Tennessee, 328 Ferris Hall, Knoxville, TN 37996 (United States)

    2015-04-15

    To fully understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us to measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation. - Highlights: • We theoretically demonstrate 3D near-atomic depth resolution imaging by large-angle illumination STEM. • This method can be useful to identify the depth of single dopants, single vacancies within materials. • This method can be useful to determine reconstructed surface atomic structures.

  1. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation

    Energy Technology Data Exchange (ETDEWEB)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C–C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C–C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C–C bonding over C–Cu bonding, which results in C–C dimer pair formation near the surface. The dramatically different C–C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  2. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation.

    Science.gov (United States)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  3. Evolution of carboxymethyl cellulose layer morphology on hydrophobic mineral surfaces: variation of polymer concentration and ionic strength.

    Science.gov (United States)

    Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A

    2010-06-15

    The adsorption of carboxymethyl cellulose (CMC) on the basal planes of talc and molybdenite has been studied using in situ atomic force microscope (AFM) imaging. These experiments were partnered with quantitative adsorption isotherm determinations on particulate samples. The isotherms revealed a clear increase of the CMC adsorbed amount upon increasing the solution ionic strength for adsorption on both minerals. In addition, the shapes of the isotherms changed in response to the change in the electrolyte concentration, with CMC on talc displaying stepped (10(-3) M KCl), Langmuir (10(-2) M KCl), then Freundlich isotherm shapes (10(-1) M KCl), and CMC on molybdenite displaying stepped (10(-3) M KCl), Freundlich (10(-2) M KCl), then Langmuir isotherm shapes (10(-1) M KCl). AFM imaging of the polymer layer on the mineral surfaces with varying solution conditions mirrored and confirmed the conclusions from the isotherms: as the polymer solution concentration increased, coverage on the basal plane increased; as the ionic strength increased, coverage on the basal plane increased and the morphology of the layer changed from isolated well-distributed polymer domains to extensive adsorption and formation of dense, uneven polymer domains/features. In addition, comparison of the talc and molybdenite datasets points toward the presence of different binding mechanisms for CMC adsorption on the talc and molybdenite basal plane surfaces. 2010 Elsevier Inc. All rights reserved.

  4. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, M. J. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Autreto, P. A. S.; Galvao, D. S., E-mail: galvao@ifi.unicamp.br; Ugarte, D. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, R. Sergio B. de Holanda 777, 13083-859 Campinas-SP (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia-LNNANO, 13083-970 Campinas-SP (Brazil); Sato, F.; Dantas, S. O. [Departamento de Física, ICE, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora-MG (Brazil)

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.

  5. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    International Nuclear Information System (INIS)

    Lagos, M. J.; Autreto, P. A. S.; Galvao, D. S.; Ugarte, D.; Bettini, J.; Sato, F.; Dantas, S. O.

    2015-01-01

    We report here an atomistic study of the mechanical deformation of Au x Cu (1−x) atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed

  6. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    Science.gov (United States)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  7. Background of SAM atom-fraction profiles

    International Nuclear Information System (INIS)

    Ernst, Frank

    2017-01-01

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition

  8. Background of SAM atom-fraction profiles

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank

    2017-03-15

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.

  9. Charge-state distribution of MeV He ions scattered from the surface atoms

    International Nuclear Information System (INIS)

    Kimura, Kenji; Ohtsuka, Hisashi; Mannami, Michihiko

    1993-01-01

    The charge-state distribution of 500-keV He ions scattered from a SnTe (001) surface has been investigated using a new technique of high-resolution high-energy ion scattering spectroscopy. The observed charge-state distribution of ions scattered from the topmost atomic layer coincides with that of ions scattered from the subsurface region and does not depend on the incident charge state but depends on the exit angle. The observed exit-angle dependence is explained by a model which includes the charge-exchange process with the valence electrons in the tail of the electron distribution at the surface. (author)

  10. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2010-05-01

    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  12. Atomic physics with the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kleber, M.; Bracher, C.; Riza, M.

    1999-01-01

    Backscattering of atomic beams above a given surface yields information similar to the one obtained from scanning the same surface with a scanning tunneling microscope (STM): In both cases the experimentally accessible quantity is the local density of states (LDOS) n(r,E) of the surface. For the case of backscattering, the LDOS at the turning point of the atom is an important ingredient of the potential between atom and surface. In experiments performed with an STM, the LDOS at the apex of an atomically sharp tip can be determined directly. Probing surfaces locally by an STM allows for the study of basic phenomena in atomic physics, with tunneling of electrons in three dimensions being a central issue

  13. Direct determination of atom and radical concentrations in thermal reactions of hydrocarbons and other gases. Progress report, January 1, 1977--December 31, 1977

    International Nuclear Information System (INIS)

    Skinner, G.B.; Lifshitz, A.; Wood, D.R.; Chiang, C.C.

    1978-01-01

    This is a second annual progress report on this project. The period covered by the first report (June through December, 1976) was devoted to building and testing a shock tube and an optical system to be used to measure H and D atom concentrations. During 1977 this apparatus was completed and used. The performance of our microwave discharge lamps was characterized by numerous high-resolution spectroscopic profiles, so that the shapes of the Lyman-alpha lines produced under various operating conditions are now quite well-known. Measurements of H or D atom concentrations in shock-heated mixtures of D 2 -N 2 O-Ar, D 2 -O 2 -Ar and H 2 -O 2 -Ar have been made. During the balance of the contract year (January 1 through May 31, 1978) measurements of H or D atom concentrations in shock-heated mixtures of CD 4 -Ar, C 8 H 18 (2,2,3,3, tetramethyl butane)-Ar, C 8 H 18 -CH 4 -Ar, C 3 H 8 -Ar and C 3 H 8 -CH 4 -Ar will be made, and kinetic data on reactions of H and D atoms deduced from the experimental results

  14. Charge exchange of He atoms and ions during grazing collisions with a Ag(1 1 1)-surface

    CERN Document Server

    Wethekam, S; Winter, H

    2003-01-01

    He atoms and He sup + ions are scattered with keV energies under a grazing angle of incidence from an atomically flat and clean Ag(1 1 1) surface. We have measured charge fractions of specularly reflected beams and studied the threshold behaviour for ionization of projectiles in terms of kinematically induced Auger ionization. From comparison of data for neutral and ionized projectiles we could show that precise studies on the kinematic onset of ionization can be performed with neutral projectiles. Small but defined fractions of ions survive the scattering event with the surface which affects the evaluation of data close to the threshold owing to a background of the signals for ions.

  15. On Surface-Initiated Atom Transfer Radical Polymerization Using Diazonium Chemistry To Introduce the Initiator Layer

    DEFF Research Database (Denmark)

    Iruthayaraj, Joseph; Chernyy, Sergey; Lillethorup, Mie

    2011-01-01

    This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying di...

  16. Hydrogenation of ethene catalyzed by Ir atom deposited on γ-Al2O3(001) surface: From ab initio calculations

    International Nuclear Information System (INIS)

    Chen, Yongchang; Sun, Zhaolin; Song, Lijuan; Li, Qiang; Xu, Ming

    2012-01-01

    Ethene hydrogenation reaction, catalyzed by an iridium atom adsorbed on γ-Al 2 O 3 (001) surface, is studied via ab initio calculations based on density functional theory (DFT). The catalyzed reaction process and activation energy are compared with the counterparts of a reaction occurs in vacuum condition. It is found that the activation energy barrier is substantially lowered by the adsorbed Ir atom on the γ-Al 2 O 3 (001). The catalyzed reaction is modeled in two steps: (1) Hydrogen molecular dissolution and then bonded with C 2 H 4 molecular. (2) Desorption of the C 2 H 6 molecular from the surface. -- Highlights: ► The ethene hydrogenation reaction is simulated with nudged elastic band methods. ► The catalytic effect of the Ir atom on γ-Al 2 O 3 (001) surface is modeled. ► Details of the catalytic reaction are exhibited.

  17. Concentration of involatile salts at evaporating water surfaces

    International Nuclear Information System (INIS)

    Gardner, G.C.

    1988-02-01

    Safety cases for the PWR often need to know how much of the soluble salts in the water will evaporate with the steam during flashing and when the steam is discharged to the atmosphere. Some ideal evaporating systems to give guidance. Simple formulae are derived for the surface concentration relative to the bulk concentration. An analysis is also presented which derives a formula for the mass transfer process in the steam due to both diffusion and convection, which arises from the evaporation process. The convection process will usually dominate. (author)

  18. Effects of halogens on interactions between a reduced TiO{sub 2} (110) surface and noble metal atoms: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kohei, E-mail: k-tada@aist.go.jp [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Koga, Hiroaki [Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto, 615-8245 (Japan); Hayashi, Akihide; Kondo, Yudai; Kawakami, Takashi; Yamanaka, Shusuke [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043 (Japan); Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo Ohara, Nishikyo, Kyoto, 615-8245 (Japan)

    2017-07-31

    Highlights: • We investigated the halogen effect on the interactions of noble metals with TiO{sub 2}. • Halogen atoms inhibit electron transfer from TiO{sub 2} to noble metals. • Iodine stabilizes the adsorption of noble metals especially for Ag and Cu. • Electron transfer from the TiO{sub 2} is effective in anchoring Au and Pt atoms. • Covalent interaction with the support is effective in anchoring Ag and Cu atoms. - Abstract: Using DFT calculation, we investigate the effects of halogens on the interactions between rutile TiO{sub 2} (110) and noble metal atoms (Au, Ag, Cu, Pt, and Pd). Fluorine, chlorine, and bromine atoms occupy the oxygen defect sites of TiO{sub 2}, decreasing the stability of noble metal atoms on the surface. This decrease occurs because the halogens inhibit electron transfer from TiO{sub 2} to the noble metal atoms; the electron transfer from reduced TiO{sub 2} to the noble metal atom stabilizes the noble metal atom adsorption. In contrast, iodine strengthens the interactions between TiO{sub 2} and some noble metal atoms, namely Ag and Cu. This stabilization occurs because of the covalent interaction between iodine-doped TiO{sub 2} and the noble metal atom. Therefore, the stabilization is explained well by chemical hardness. This result suggests that iodine-doping of a TiO{sub 2} surface would be an effective method for the preparation of highly stabilized noble metal clusters.

  19. Reconstruction of the Tip-Surface Interaction Potential by Analysis of the Brownian Motion of an Atomic Force Microscope Tip

    NARCIS (Netherlands)

    Willemsen, O.H.; Kuipers, L.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    2000-01-01

    The thermal movement of an atomic force microscope (AFM) tip is used to reconstruct the tip-surface interaction potential. If a tip is brought into the vicinity of a surface, its movement is governed by the sum of the harmonic cantilever potential and the tip-surface interaction potential. By

  20. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    Lead concentrations and risk exposure assessment in surface soils at residential lands previously used for auto-mechanic and auto-welding activities in Port Harcourt, Nigeria. ... Journal of Applied Sciences and Environmental Management.

  1. Method for controlling a coolant liquid surface of cooling system instruments in an atomic power plant

    International Nuclear Information System (INIS)

    Monta, Kazuo.

    1974-01-01

    Object: To prevent coolant inventory within a cooling system loop in an atomic power plant from being varied depending on loads thereby relieving restriction of varied speed of coolant flow rate to lowering of a liquid surface due to short in coolant. Structure: Instruments such as a superheater, an evaporator, and the like, which constitute a cooling system loop in an atomic power plant, have a plurality of free liquid surface of coolant. Portions whose liquid surface is controlled and portions whose liquid surface is varied are adjusted in cross-sectional area so that the sum total of variation in coolant inventory in an instrument such as a superheater provided with an annulus portion in the center thereof and an inner cylindrical portion and a down-comer in the side thereof comes equal to that of variation in coolant inventory in an instrument such as an evaporator similar to the superheater. which is provided with an overflow pipe in its inner cylindrical portion or down-comer, thereby minimizing variation in coolant inventory of the entire coolant due to loads thus minimizing variation in varied speed of the coolant. (Kamimura, M.)

  2. Enhanced atom mobility on the surface of a metastable film.

    Science.gov (United States)

    Picone, A; Riva, M; Fratesi, G; Brambilla, A; Bussetti, G; Finazzi, M; Duò, L; Ciccacci, F

    2014-07-25

    A remarkable enhancement of atomic diffusion is highlighted by scanning tunneling microscopy performed on ultrathin metastable body-centered tetragonal Co films grown on Fe(001). The films follow a nearly perfect layer-by-layer growth mode with a saturation island density strongly dependent on the layer on which the nucleation occurs, indicating a lowering of the diffusion barrier. Density functional theory calculations reveal that this phenomenon is driven by the increasing capability of the film to accommodate large deformations as the thickness approaches the limit at which a structural transition occurs. These results disclose the possibility of tuning surface diffusion dynamics and controlling cluster nucleation and self-organization.

  3. Surface modification of highly oriented pyrolytic graphite by reaction with atomic nitrogen at high temperatures

    International Nuclear Information System (INIS)

    Zhang Luning; Pejakovic, Dusan A.; Geng Baisong; Marschall, Jochen

    2011-01-01

    Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 deg. C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 deg. C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 deg. C show the D mode near 1360 cm -1 , which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.

  4. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    Science.gov (United States)

    Luan, P.; Knoll, A. J.; Wang, H.; Kondeti, V. S. S. K.; Bruggeman, P. J.; Oehrlein, G. S.

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O2 and 1% air plasma and OH for Ar/1% H2O plasma, play an essential role for polymer etching. For O2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10-4 to 10-3 is consistent with low pressure plasma research. We also find that adding O2 and H2O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O2/H2O plasma.

  5. In vitro study of the effect of three hydrogen peroxide concentrations on the corrosion behavior and surface topography of alumina-reinforced dental ceramic.

    Science.gov (United States)

    Abu-Eittah, Manal R; Mandour, Mona H

    2011-10-01

    This in vitro investigation studied the effect of three hydrogen peroxide (HP) concentrations (30%, 35%, 38% v/v) at two time intervals (1 and 2 hours) on the corrosion behavior and surface topography of a dental ceramic. A total of 62 Vitadur Alpha discs were constructed following manufacturer instructions. Specimens were divided into four main groups (n = 8). Group 1 (control): specimens were immersed in 4% acetic acid for 18 hours at 80°C. Groups 2, 3, and 4: specimens were immersed in 30%, 35%, and 38% HP concentrations, respectively. Each of the three groups was divided into two subgroups (a and b) according to the immersion time (1 and 2 hours, respectively). Specimens of subgroup a were further immersed in 4% acetic acid for 18 hours at 80°C and were designated as subgroup c. The corrosion behavior of the ceramic specimens were tested by solution analysis using the atomic absorption method, weight loss percent, and corrosion rate. Surface topography was investigated by surface roughness (Ra) measurements and scanning electron microscopy (SEM). Results were statistically analyzed. There was a significant increase for ions leached with the increase in time of immersion for all ions at 35% and 38% HP, while at 30% HP, ions of K(+) , Al(3+) , and Si(4+) did not increase significantly with time. The results also showed that at a fixed time of immersion, all ions released were dependent on the increase of HP concentration except for Al(3+) ions (p SEM. The amount of released ions is directly proportional to HP concentration and time of immersion. Specimens exposed to both HP and acetic acid showed increased weight loss and a higher corrosion rate than those exposed to acetic acid only. Surface roughness values were time and HP concentration dependent. © 2011 by The American College of Prosthodontists.

  6. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    International Nuclear Information System (INIS)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-01-01

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p z atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices

  7. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...

  8. Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-08-15

    Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.

  9. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  10. Direct determination of atom and radical concentrations in thermal reactions of hydrocarbons and other gases. Progress report, December 1, 1981-December 31, 1982

    International Nuclear Information System (INIS)

    Skinner, G.B.; Rao, V.S.; Wood, D.R.

    1983-01-01

    This is the seventh annual progress report on this project. During the period covered by the first six reports (June 1976 through December 1980) a shock tube and optical systems to measure H, D and O atom concentrations were built and fully characterized. The performance of our microwave discharge lamps were defined by numerous high-resolution spectroscopic profiles, while empirical calibrations were also made for all three of the above species. H, D and O atom concentrations were measured in gas mixtures containing H 2 , D 2 , O 2 , CD 4 , C 2 H 6 , C 2 D 6 , C 3 H 8 and C 3 D 8 in various proportions, and rate constants of several elementary reactions were deduced from the data. During the period covered by this report (December 1, 1981 to December 31, 1982) we have made kinetic modelling calculations to correlate H, D and O atom concentrations measured in shock-heated mixtures of C 2 H 6 -O 2 -Ar, C 2 D 6 -O 2 -Ar, C 3 H 8 -O 2 -Ar and C 3 D 8 -O 2 -Ar. These computations are difficult because there are several reactions for which rate constants are not known, so that it is necessary to do many calculations to completely optimize the results. Consequently, work is still going on with these calculations. We have completed an extensive series of measurements of H and D atom concentrations in pyrolysis experiments of benzene, toluene and neopentane and deuterium analogs, that have led to rate constants for the initial dissociation of these compounds, and for the reaction of H atoms with benzene and toluene

  11. Issues involved in the atomic layer deposition of metals

    Science.gov (United States)

    Grubbs, Robert Kimes

    Auger Electron Spectroscopy (AES) was used to study the nucleation and growth of tungsten on aluminum oxide surfaces. Tungsten metal was deposited using Atomic Layer Deposition (ALD) techniques. ALD uses sequential surface reactions to deposit material with atomic layer control. W ALD is performed using sequential exposures of WF6 and Si2H6. The step-wise nature of W ALD allows nucleation studies to be performed by analyzing the W surface concentration after each ALD reaction. Nucleation and growth regions can be identified by quantifying the AES signal intensities from both the W surface and the Al2O3 substrate. W nucleation occurred in 3 ALD reaction cycles. The AES results yielded a nucleation rate of 1.0 A/ALD cycle and a growth rate of ≈3 A/ALD cycle. AES studies also explored the nucleation and growth of Al2O3 on W. Al2O3 nucleated in 1 ALD cycle giving a nucleation rate of 3.5 A/ALD cycle and a subsequent growth rate of 1.0 A/ALD cycle. Mass spectrometry was then used to study the ALD reaction chemistry of tungsten deposition. Because of the step-wise nature of the W ALD chemistry, each W ALD reaction could be studied independently. The gaseous mass products were identified from both the WF6 and Si2H6 reactions. H2, HF and SiF4 mass products were observed for the WF6 reaction. The Si2H6 reaction displayed a room temperature reaction and a 200°C reaction. Products from the room temperature Si2H6 reaction were H2 and SiF3H. The reaction at 200°C yielded only H2 as a reaction product. H2 desorption from the surface contributes to the 200°C Si2H6 reaction. AES was used to confirm that the gas phase reaction products are correlated with a change in the surface species. Atomic hydrogen reduction of metal halides and oganometallic compounds provides another method for depositing metals with atomic layer control. The quantity of atomic hydrogen necessary to perform this chemistry is critical to the metal ALD process. A thermocouple probe was constructed to

  12. Atomically flat surface of (0 0 1) textured FePt thin films by residual stress control

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.H. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chou, C.L.; Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China)

    2015-11-01

    Highlights: • We demonstrate crystallographic structure, (0 0 1) texture, surface roughness, and residual stress in the single-layered FePt thin films annealed at various heating rates (10–110 K/s). • Texture coefficient of (0 0 1)-plane of the samples increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress. • Dewetting phenomenon due to stress relaxation leads to the broadening of [0 0 1] easy axis and degradation of perpendicular magnetic anisotropy. • A strong dependence of surface roughness on in-plane residual stress was revealed. • When the samples are RTA at 40 K/s, the enhanced perpendicular magnetic anisotropy and atomically surface roughness are achieved. - Abstract: Single-layered Fe{sub 52}Pt{sub 48} films with thickness of 10 nm were sputter-deposited on glass substrates. Rapid thermal annealing with different heating rates (10–110 K/s) was applied to transform as-deposited fcc phase into L1{sub 0} phase and meanwhile to align [0 0 1]-axis of L1{sub 0} crystal along plane normal direction. Based on X-ray diffractometry using synchrotron radiation source, the texture coefficient of (0 0 1)-plane increases with increasing heating rate from 10 to 40 K/s, which is correlated with perpendicular magnetic anisotropy and in-plane tensile stress analyzed by asymmetric sin{sup 2} ψ method. Furthermore, it was revealed by atomic force microscopy that the dewetting process occurred as heating rate was raised up to 80 K/s and higher. The change in the microstructure due to stress relaxation leads to the degradation of (0 0 1) orientation and magnetic properties. Surface roughness is closely related to the in-plane tensile stress. Enhanced perpendicular magnetic anisotropy and atomically flat surface were achieved for the samples annealed at 40 K/s, which may be suitable for further practical applications. This work also suggests a feasible way for surface

  13. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact...... angle measurements and XPS. Moreover, ATR FTIR has been used to confirm the formation of initiating groups. Grafting of PEGMA from PEEK was performed in aqueous solution. The presence of the PPEGMA grafts on PEEK was revealed by the thermograms from TGA whereas investigations with AFM rejected changes...

  14. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence

    International Nuclear Information System (INIS)

    Falicov, L.M.; Somorjai, G.A.

    1985-01-01

    Correlation between catalytic activity and low-energy local electronic fluctuation in transition metals is proposed. A theory and calculations are presented which indicate that maximum electronic fluctuants take place at high-coordination metal sites. Either (i) atomically rough surfaces that expose to the reactant molecules atoms with large numbers of nonmagnetic or weakly magnetic neighbors in the first or second layer at the surface or (ii) stepped and kinked surfaces are the most active in carrying out structure-sensitive catalytic reactions. The synthesis of ammonia from N 2 and H 2 over iron and rhenium surfaces, 1 H 2 / 2 H 2 exchange over stepped platinum crystal surfaces at low pressures, and the hydrogenolysis (C - C bond breaking) of isobutane at kinked platinum crystal surfaces are presented as experimental evidence in support of the theory

  15. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    Science.gov (United States)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  16. Numerical simulation of the double pits stress concentration in a curved casing inner surface

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2016-12-01

    Full Text Available Sour or sweet oil fields development is common in recent years. Casing and tubing are usually subjected to pitting corrosion because of exposure to the strong corrosion species, such as CO2, H2S, and saline water. When the corrosion pits formed in the casing inner surface, localized stress concentration will occur and the casing strength will be degraded. Thus, it is essential to evaluate the degree of stress concentration factor accurately. This article performed a numerical simulation on double pits stress concentration factor in a curved inner surface using the finite element software ABAQUS. The results show that the stress concentration factor of double pits mainly depends on the ratio of two pits distance to the pit radius (L/R. It should not be only assessed by the absolute distance between the two pits. When the two pits are close and tangent, the maximum stress concentration factor will appear on the inner tangential edges. Stress concentration increased by double pits in a curved casing inner surface is more serious than that in a flat surface. A correction factor of 1.9 was recommended in the curved inner surface double pits stress concentration factor predict model.

  17. Atomic structure of a stable high-index Ge surface: G2(103)-(4x1)

    DEFF Research Database (Denmark)

    Seehofer, L.; Bunk, O.; Falkenberg, G.

    1997-01-01

    Based on scanning tunneling microscopy and surface X-ray diffraction, we propose a complex structural model for the Ge(103)-(4 x 1) reconstruction. Each unit cell contains two (103) double steps, which gives rise to the formation of stripes of Ge atoms oriented in the [] direction....... The stripes and the spaces between them are covered with threefold-coordinated Ge adatoms. Charge is transferred from the bulk-like edge atoms of the double steps to the adatoms. The formation of the reconstruction can be explained in terms of stress relief, charge transfer, and minimization of the dangling...

  18. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  19. Ab initio and Atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys

    Science.gov (United States)

    Piochaud, J. B.; Becquart, C. S.; Domain, C.

    2014-06-01

    Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multiscale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe70Cr20Ni10). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT calculations. The point defect properties in the Fe70Cr20Ni10, and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed.

  20. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NARCIS (Netherlands)

    Langereis, E.; Keijmel, J.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25–150 °C, –CH3 and –OH were unveiled as dominant surface groups after the Al(CH3)3precursor and O2 plasma half-cycles, respectively. At

  1. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  2. Analytical description of concentration dependence of surface tension in multicomponent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dadashev, R; Kutuev, R [Complex Science Research Institute of the Science Academy of the Chechen Republic, 21 Staropromisl. shosse, Grozny 364096 (Russian Federation); Elimkhanov, D [Science Academy of the Chechen Republic (Russian Federation)], E-mail: edzhabrail@mail.ru

    2008-02-15

    From the basic fundamental thermodynamic expressions the equation of isotherms of the surface tension of a ternary system is received. Various assumptions concerning the concentration dependence of molar areas are usually made when the equation is derived. The dependence of the molar areas is calculated as an additive function of the structure of a volumetric phase or the structure of a surface layer. To define the concentration dependence of the molar areas we used a stricter thermodynamic expression offered by Butler. In the received equation the dependence of molar areas on the structure of the solution is taken into account. Therefore, the equation can be applied for the calculation of surface tension over a wide concentration range of the components. Unlike the known expressions, the equation includes the surface tension properties of lateral binary systems, which makes the accuracy of the calculated values considerably higher. Thus, among the advantages of the offered equation we can point out the mathematical simplicity of the received equation and the fact that the equation includes physical parameters the experimental definition of which does not present any special difficulties.

  3. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2017-01-01

    scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 10(7) times larger than steady-state currents in conventional STM are used to image...... terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.......Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz...

  4. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  5. Atomic force microscopy measurements of topography and friction on dotriacontane films adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Trogisch, S.; Simpson, M.J.; Taub, H.

    2005-01-01

    We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional...

  6. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by {sup 1}H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  7. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1 H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  8. The surface of 1-euro coins studied by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Gou, F.; Gleeson, M.A.; Villette, J.; Kleyn, S.E.F.; Kleyn, A.W.

    2004-01-01

    The two alloy surfaces (pill and ring) that are present on 1-euro coins have been studied by X-ray photoelectron spectroscopy (XPS). Comparison is made between coins from general circulation and coin surfaces that have been subjected to a variety of cleaning and oxidation treatments. The concentrations and possible oxidation states of the metals (nickel, copper and zinc) at the surface were derived from analysis of the 2p 3/2 core levels. The surface atomic ratios measured for the pill and the ring parts of the euro coins were compared to the official bulk ratios. This study shows a clear nickel enrichment of both pill and ring surfaces. Nickel at surface seems to be present mainly in hydroxide form although the chloride form cannot be excluded. A small concentration of zinc was present on the surface of the pill, even though it is not present in the bulk alloy. Evidence of both nickel and zinc surface enrichment is observed for the ring. No surface enrichment is observed for the atomically clean or oxidized alloy surfaces over a 60-h time scale

  9. Efficiency of a concentric matrix track detector surface scanning

    International Nuclear Information System (INIS)

    Bek-Uzarov, Dj.; Nikezic, D.; Kostic, D.; Krstic, D.; Cuknic, O.

    1995-01-01

    Heavy particle ionizing radiation track counting on the surface of a solid state round surface detector is made using the microscope and scanning step by step by a round field of vision. The whole solid state detector surface could not be fully or completely covered by round fields of visions. Therefore detector surface could be divided on the two parts, the larger surface, being under fields of vision, really scanned and no scanned missed or omitted surface. The ratio between omitted and scanned surfaces is so called track scanning efficiency. The knowledge of really counted, or scanned surface is a important value for evaluating the real surface track density an exposed solid state track detector. In the paper a matrix of a concentric field of vision made around the first microscope field of vision placed in center of the round disc of the scanned track detector is proposed. In a such scanning matrix the real scanned surface could be easy calculated and by the microscope scanning made as well. By this way scanned surface is very precisely obtained as well. Precise knowledge of scanned and omitted surface allows to obtain more precise scanning efficiency factor as well as real surface track density, the main parameter in solid state track detection measurements. (author)

  10. Effect of solution concentration on MEH-PPV thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  11. Light emission from sputtered or backscattered atoms on tungsten surfaces under ion irradiation

    International Nuclear Information System (INIS)

    Sakai, Yasuhiro; Nogami, Keisuke; Kato, Daiji; Sakaue, Hiroyuki A.; Kenmotsu, Takahiko; Furuya, Kenji; Motohashi, Kenji

    2013-01-01

    We measured the intensity of light emission from sputtered atoms on tungsten surfaces under the irradiations of Kr"+ ion and Ar"+ ion, as a function of the perpendicular distance from the surface. Using the analysis of decay curve, we estimated the mean vertical velocity component in direction normal to the surface. We found that the estimated mean velocity had much differences according to the excited state. For example, although the estimated mean vertical velocity component normal to the surface from the 400.9 nm line((5d"5(6S)6p "7p_4→(5d"5(6S)6s "7S_3 transition) was 5.6±1.7 km/sec, that from the 386.8 nm line((5d"4(6S)6p "7D_4→(5d"5(6S)6s "7S_4 transition) was 2.8±1.0 km/sec. However, for different projectiles and energies, we found no remarkable changes in the velocity. (author)

  12. Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor

    International Nuclear Information System (INIS)

    Luan, P; Knoll, A J; Wang, H; Oehrlein, G S; Kondeti, V S S K; Bruggeman, P J

    2017-01-01

    The surface interaction of a well-characterized time modulated radio frequency (RF) plasma jet with polystyrene, poly(methyl methacrylate) and poly(vinyl alcohol) as model polymers is investigated. The RF plasma jet shows fast polymer etching but mild chemical modification with a characteristic carbonate ester and NO formation on the etched surface. By varying the plasma treatment conditions including feed gas composition, environment gaseous composition, and treatment distance, we find that short lived species, especially atomic O for Ar/1% O 2 and 1% air plasma and OH for Ar/1% H 2 O plasma, play an essential role for polymer etching. For O 2 containing plasma, we find that atomic O initiates polymer etching and the etching depth mirrors the measured decay of O atoms in the gas phase as the nozzle-surface distance increases. The etching reaction probability of an O atom ranging from 10 −4 to 10 −3 is consistent with low pressure plasma research. We also find that adding O 2 and H 2 O simultaneously into Ar feed gas quenches polymer etching compared to adding them separately which suggests the reduction of O and OH density in Ar/O 2 /H 2 O plasma. (letter)

  13. On the theory of diffraction of Maxwellian atomic beams by solid surfaces

    International Nuclear Information System (INIS)

    Goodman, F.O.

    1976-01-01

    In the context of diffraction of Maxwellian (thermal) atomic beams by solid surfaces, the usual assumption that the angular position of the maximum in a diffracted beam corresponds to the diffraction angle of atoms with the most probable de Broglie wavelength is examined, and compared with other possible criteria and with the correct result. It is concluded that, although this criterion may be the best simple one available, it is certainly bad in some situations; the reasons why, and the conditions under which, it is expected to be good are discussed. Also, it is shown that considerable care must be taken when shapes of diffracted beams and when angular positions of their maxima are calculated, because certain physical effects (which are always present) may change these shapes and positions in unexpected ways. The theory is compared with two sets of relatively modern experimental data, one set for which the fit is good, and another set for which a fit is impossible

  14. Mechanisms for the reflection of light atoms from crystal surfaces at kilovolt energies

    International Nuclear Information System (INIS)

    Hou, M.; Robinson, M.T.

    1978-01-01

    The computer program MARLOWE was used to investigate the backscattering of protons from the (110) surface of a nickel crystal. Grazing incidence was considered so that anisotropic effects originated mainly from the surface region. The contribution of aligned scattering was studied by comparing the results with similar calculations for an amorphous target. Energy distributions of backscattered particles were investigated for incident energies ranging from 0.1 to 5 keV. The structure of these distributions was explained by making calculations for several target thickness. Specular reflection was found to depend on the structure of the first few atomic planes only. The (110) rows in the surface plane were responsible for focusing into surface semichannels. Focusing in these semichannels was found to be the strongest under total reflection conditions (below about 1.3 keV) while the scattering intensity from surface rows increased with increasing incident energy. The orientation of the plane of incidence was found to have large influence on the relative contributions of the reflection mechanisms involved. (orig.) [de

  15. Synthesis of thermoresponsive poly(N-isopropylacrylamide) brush on silicon wafer surface via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Eylem; Demirci, Serkan [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey); Caykara, Tuncer, E-mail: caykara@gazi.edu.t [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey)

    2010-08-31

    Thermoresponsive poly(N-isopropylacrylamide) [poly(NIPAM)] brush on silicon wafer surface was prepared by combining the self-assembled monolayer of initiator and atom transfer radical polymerization (ATRP). The resulting polymer brush was characterized by in situ reflectance Fourier transform infrared spectroscopy, atomic force microscopy and ellipsometry techniques. Gel permeation chromatography determination of the number-average molecular weight and polydispersity index of the brush detached from the silicon wafer surface suggested that the surface-initiated ATRP method can provide relatively homogeneous polymer brush. Contact angle measurements exhibited a two-stage increase upon heating over the board temperature range 25-45 {sup o}C, which is in contrast to the fact that free poly(NIPAM) homopolymer in aqueous solution exhibits a phase transition at ca. 34 {sup o}C within a narrow temperature range. The first de-wetting transition takes place at 27 {sup o}C, which can be tentatively attributed to the n-cluster induced collapse of the inner region of poly(NIPAM) brush close to the silicon surface; the second de-wetting transition occurs at 38 {sup o}C, which can be attributed to the outer region of poly(NIPAM) brush, possessing much lower chain density compared to that of the inner part.

  16. Investigation of the effect of the incorporated Fe atoms in the ion-beam induced nanopatterns on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, Behnam; Biermanns, Andreas; Pietsch, Ullrich [Siegen Univ. (Germany). Festkoerperphysik; Cornejo, Marina; Frost, Frank [Leibniz-Institute fuer Oberflaechenmodifizierung e.V. (IOM), Leipzig (Germany)

    2012-07-01

    Ion beam erosion of semiconductor surfaces can modify the surface and depends on main sputtering parameters; different surface topographies such as ripple or dot like pattern are fabricated on the surface. Recent experiments have shown that the incorporation of foreign metallic atoms during the sputtering process plays a crucial role in pattern formation on surfaces. In the result of investigation we report on the depth profile of Fe atoms incorporated in sputtering process on Si(100) with low energy Kr ion beam. X-ray reflectivity (XRR) measurements determine the concentration profile of Fe atoms. X-ray absorption near edge spectroscopy (XANES) at the Fe K-edge (7112 eV) shows the formation of Fe rich silicide near surface region. X-ray photoelectron spectroscopy (XPS) shows a shift in the binding energy of Si2p levels at the surface compared top bulk confirming the formation of different phases of Fe-silicide on tope and below the surface. The depth profiles obtained by XRR are compared to results obtained by complementary secondary-ion mass spectrometry (SIMS).

  17. Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption.

    Science.gov (United States)

    Zhang, Feng; Sautter, Ken; Larsen, Adam M; Findley, Daniel A; Davis, Robert C; Samha, Hussein; Linford, Matthew R

    2010-09-21

    Covalently bonded monolayers of two monofunctional aminosilanes (3-aminopropyldimethylethoxysilane, APDMES, and 3-aminopropyldiisopropylethoxysilane, APDIPES) and one trifunctional aminosilane (3-aminopropyltriethoxysilane, APTES) have been deposited on dehydrated silicon substrates by chemical vapor deposition (CVD) at 150 °C and low pressure (a few Torr) using reproducible equipment. Standard surface analytical techniques such as x-ray photoelectron spectroscopy (XPS), contact angle goniometry, spectroscopic ellipsometry, atomic force microscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) have been employed to characterize the resulting films. These methods indicate that essentially constant surface coverages are obtained over a wide range of gas phase concentrations of the aminosilanes. XPS data further indicate that the N1s/Si2p ratio is higher after CVD with the trifunctional silane (APTES) compared to the monofunctional ones, with a higher N1s/Si2p ratio for APDMES compared to that for APDIPES. AFM images show an average surface roughness of 0.12- 0.15 nm among all three aminosilane films. Stability tests indicate that APDIPES films retain most of their integrity at pH 10 for several hours and are more stable than APTES or APDMES layers. The films also showed good stability against storage in the laboratory. ToF-SIMS of these samples showed expected peaks, such as CN(-), as well as CNO(-), which may arise from an interaction between monolayer amine groups and silanols. Optical absorption measurements on adsorbed cyanine dye at the surface of the aminosilane films show the formation of dimer aggregates on the surface. This is further supported by ellipsometry measurements. The concentration of dye on each surface appears to be consistent with the density of the amines.

  18. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  19. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  20. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  1. Ionic double layer of atomically flat gold formed on mica templates

    International Nuclear Information System (INIS)

    Chilcott, Terry C.; Wong, Elicia L.S.; Coster, Hans G.L.; Coster, Adelle C.F.; James, Michael

    2009-01-01

    Electrical impedance spectroscopy characterisations of gold surfaces formed on mica templates in contact with potassium chloride electrolytes were performed at the electric potential of zero charge over a frequency range of 6 x 10 -3 to 100 x 10 3 Hz. They revealed constant-phase-angle (CPA) behaviour with a frequency exponent value of 0.96 for surfaces that were also characterised as atomically flat using atomic force microscopy (AFM). As the frequency exponent value was only marginally less than unity, the CPA behaviour yielded a realistic estimate for the capacitance of the ionic double layer. The retention of the CPA behaviour was attributed to specific adsorption of chloride ions which was detected as an adsorption conductance element in parallel with the CPA impedance element. Significant variations in the ionic double layer capacitance as well as the adsorption conductance were observed for electrolyte concentrations ranging from 33 μM to 100 mM, but neither of these variations correlated with concentration. This is consistent with the electrical properties of the interface deriving principally from the inner or Stern region of the double layer.

  2. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  3. Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system.

    Science.gov (United States)

    Daon, Shauli; Pollak, Eli

    2015-05-07

    The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.

  4. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO_{3}.

    Science.gov (United States)

    Altmeyer, Michaela; Jeschke, Harald O; Hijano-Cubelos, Oliver; Martins, Cyril; Lechermann, Frank; Koepernik, Klaus; Santander-Syro, Andrés F; Rozenberg, Marcelo J; Valentí, Roser; Gabay, Marc

    2016-04-15

    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100  meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.

  5. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  6. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-12-01

    Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  7. The Role of Diffusion Media in Nitriding Process on Surface Layers Characteristics of AISI 4140 with and without Hard Chrome Coatings

    Directory of Open Access Journals (Sweden)

    K.A. Widi

    2016-09-01

    Full Text Available The surface layer characteristics of the AISI 4140 tool steel treated by nitriding gas before and after hard chrome plating utilizing pure nitrogen diffusion media (fluidized bed reactor and the without gas (muffle reactor has been studied experimentally. The result shows that nitriding substrate with hard chrome layers has nitrogen atoms concentration almost twice greater than that without hard chrome layers. After being given a hard chrome plating, nitriding on AISI 4140 steel generally has a nitrogen concentration of up to 4 times more than the substrate without hard chrome coating. Almost the entire specimen showed the highest concentration of N atoms in the area below the surface (hardening depth of 200 to 450 µm. N atoms diffusion depth profile has a correlation with hardening depth profile, especially on the specimens layered with hard chromium. The substrate without hard chrome plating tends to have higher surface hardness than the sub-surface. The results show that the effectiveness and efficiency of the gas nitriding diffusion process can be produced without the use of gas in the muffle reactor but the specimens must be hard chromium coated first. This phenomenon can be explained by the role of the passive layer formation that works as a barrier to keeps the spreading of N atoms concentrated in sub-surface areas.

  8. Ab initio and atomic kinetic Monte Carlo modelling of segregation in concentrated FeCrNi alloys

    International Nuclear Information System (INIS)

    Piochaud, J.B.; Becquart, C.S.; Domain, C.

    2013-01-01

    Internal structure of pressurised water reactors are made of austenitic materials. Under irradiation, the microstructure of these concentrated alloys evolves and solute segregation on grain boundaries or irradiation defects such as dislocation loops are observed to take place. In order to model and predict the microstructure evolution, a multi-scale modelling approach needs to be developed, which starts at the atomic scale. Atomic Kinetic Monte Carlo (AKMC) modelling is the method we chose to provide an insight on defect mediated diffusion under irradiation. In that approach, we model the concentrated commercial steel as a FeCrNi alloy (γ-Fe 70 Cr 20 Ni 10 ). As no reliable empirical potential exists at the moment to reproduce faithfully the phase diagram and the interactions of the elements and point defects, we have adjusted a pair interaction model on large amount of DFT (Density Functional Theory) calculations. The point defect properties in the Fe 70 Cr 20 Ni 10 , and more precisely, how their formation energy depends on the local environment will be presented and some AKMC results on thermal non equilibrium segregation (TNES) and radiation induce segregation will be presented. The effect of Si on the segregation will also be discussed. Preliminary results show that it is the solute- grain boundaries interactions which drive TNES

  9. Simulations of atomic-scale sliding friction

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Jacobsen, Karsten Wedel; Stoltze, Per

    1996-01-01

    Simulation studies of atomic-scale sliding friction have been performed for a number of tip-surface and surface-surface contacts consisting of copper atoms. Both geometrically very simple tip-surface structures and more realistic interface necks formed by simulated annealing have been studied....... Kinetic friction is observed to be caused by atomic-scale Stick and slip which occurs by nucleation and subsequent motion of dislocations preferably between close-packed {111} planes. Stick and slip seems ro occur in different situations. For single crystalline contacts without grain boundaries...... pinning of atoms near the boundary of the interface and is therefore more easily observed for smaller contacts. Depending on crystal orientation and load, frictional wear can also be seen in the simulations. In particular, for the annealed interface-necks which model contacts created by scanning tunneling...

  10. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  11. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...

  12. Lateral manipulation of small clusters on the Cu and Ag(1 1 1) surfaces with the single-atom and trimer-apex tips: Reliability study

    International Nuclear Information System (INIS)

    Xie Yiqun; Liu Fen; Huang Lei

    2010-01-01

    We study the reliability of the lateral manipulation of small Cu clusters (dimer and trimer) on the flat Cu(1 1 1) surface with both the single-atom and trimer-apex tips and that for the Ag/Ag(1 1 1) system, and compare the results between the two systems as well as with the single-atom manipulation on these surfaces. Manipulations are simulated using molecular statics method with semi-empirical potentials. The dependence of the manipulation reliability on the tip height and tip orientation are investigated. Overall, the manipulation reliability increases with decreasing tip height although it depends obviously on the tip orientation. For the Cu/Cu(1 1 1) system, the manipulation of the dimmer and trimer can be successful with both tips. The manipulation reliability can be improved by the trimer-apex tip, and the tip-height range for the successful manipulation is also broader, as compared to the single-atom apex tip. Differently from the single-atom manipulation, the tip orientation has a noticeable influence on the manipulation reliability even for the single-atom tip due to the stronger tip-cluster and surface-adatom interactions in cluster manipulation. For the Ag/Ag(1 1 1) system, successful manipulations only be achieved with the trimer-apex tip, and the manipulation reliability is worse than that of the Cu/Cu(1 1 1) system, indicating the difference in mechanic properties between the two surfaces at the atomic level.

  13. He atom surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations have focused primarily on surface structure and dynamics of ionic insulators, epitaxial growth onto alkali halide crystals and multiphoton studies. The surface dynamics of RbCl has been re-examined. We have developed a simple force constant model which provides insight into the dynamics of KBr overlayers on NaCl(001), a system with a large lattice mismatch. The KBr/NaCl(001) results are compared to Na/Cu(001) and NaCl/Ge(001). We have completed epitaxial growth experiments for KBr onto RbCl(001). Slab dynamics calculations using a shell model for this system with very small lattice mismatch are being carried out in collaboration with Professor Manson of Clemson University and with Professor Schroeder in Regensburg, Germany. Extensive experiments on multiphoton scattering of helium atoms onto NaCl and, particularly, LiF have been carried out and the theory has been developed to a rather advanced stage by Professor Manson. This work will permit the extraction of more information from time-of-flight spectra. It is shown that the theoretical model provides a very good description of the multiphoton scattering from organic films. Work has started on self-assembling organic films on gold (alkyl thiols/Au(111)). We have begun to prepare and characterize the gold crystal; one of the group members has spent two weeks at the Oak Ridge National Laboratory learning the proper Au(111) preparation techniques. One of our students has carried out neutron scattering experiments on NiO, measuring both bulk phonon and magnon dispersion curves

  14. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  15. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  16. Experimental studies of ions and atoms interaction with insulating surface

    International Nuclear Information System (INIS)

    Villette, J.

    2000-10-01

    Grazing collisions ( + , Ne + , Ne 0 , Na + on LiF (001) single crystal, an ionic insulator, are investigated by a time of flight technique. The incident beam is chopped and the scattered particles are collected on a position sensitive detector providing differential cross section while the time of flight gives the energy loss. Deflection plates allow the charge state analysis. Secondary electrons are detected in coincidence allowing direct measurements of electron emission yield, angular and energetic distribution through time of flight measurements. The target electronic structure characterized by a large band gap, governs the collisional processes: charge exchange, electronic excitations and electron emission. In particular, these studies show that the population of local target excitations surface excitons is the major contribution to the kinetic energy transfer (stopping power). Auger neutralization of Ne + and He + ions reveals the population of quasi-molecular excitons, an exciton bound on two holes. Referenced in the literature as trion. A direct energy balance determines the binding energy associated with these excited states of the surface. Besides these electronic energy loss processes, two nuclear energy loss mechanisms are characterized. These processes imply momentum transfer to individual target atoms during close binary collisions or, if the projectile is charged, to collective mode of optical phonons induced by the projectile coulomb field. The effect of the temperature on the scattering profile, the contribution of topological surface defects to the energy loss profile and to skipping motion on the surface are analyzed in view of classical trajectory simulations. (author)

  17. Ternary hybrid polymeric nanocomposites through grafting of polystyrene on graphene oxide-TiO_2 by surface initiated atom transfer radical polymerization (SI-ATRP)

    International Nuclear Information System (INIS)

    Kumar, Arvind; Bansal, Ankushi; Behera, Babita; Jain, Suman L.; Ray, Siddharth S.

    2016-01-01

    A ternary hybrid of graphene oxide-titania-polystyrene (GO-TiO_2-PS) nanocomposite is developed where polystyrene composition is regulated by controlling growth of polymer chains and nanoarchitectonics is discussed. Graphene Oxide-TiO_2 (GO-TiO_2) nanocomposite is prepared by in-situ hydrothermal method and the surface is anchored with α-bromoisobutyryl bromide to activate GO-TiO_2 as initiator for polymerization. In-situ grafting of polystyrene through surface initiated atom transfer radical polymerization (SI- ATRP) on this Br-functionalized nano-composite initiator yields GO-TiO_2-PS ternary hybrid. Varying the monomer amount and keeping the concentration of initiator constant, polystyrene chain growth is regulated with narrow poly-dispersivity to achieve desired composition. This composite is well characterized by various analytical techniques like FTIR, XRD, DSC, SEM, TEM, and TGA. - Highlights: • Nanocomposite of ternary hybrid of GO-TiO_2 with polystyrene. • PS is surface grafted on GO-TiO_2. • Polymer chain lengths are well regulated by SI-ATRP living polymerization. • Thermal stability of this hybrid is relatively high.

  18. Revisiting magnetism of capped Au and ZnO nanoparticles: Surface band structure and atomic orbital with giant magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)

    2011-10-15

    In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  20. Synthesis, surface properties and oil solubilisation capacity of cationic gemini surfactants

    NARCIS (Netherlands)

    Dam, Th.; Engberts, J.B.F.N.; Karthäuser, J.; Karaborni, S.; Os, N.M. van

    1996-01-01

    The critical micelle concentration (CMC) and the surface tension at the CMC have been determined for the gemini surfactants alkanediyl-u,w-bis(dimethyla1kylammoniubmr omide) by means of dynamic surface tension measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic

  1. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  2. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy

    Science.gov (United States)

    Cuenot, Stéphane; Frétigny, Christian; Demoustier-Champagne, Sophie; Nysten, Bernard

    2004-04-01

    The effect of reduced size on the elastic properties measured on silver and lead nanowires and on polypyrrole nanotubes with an outer diameter ranging between 30 and 250 nm is presented and discussed. Resonant-contact atomic force microscopy (AFM) is used to measure their apparent elastic modulus. The measured modulus of the nanomaterials with smaller diameters is significantly higher than that of the larger ones. The latter is comparable to the macroscopic modulus of the materials. The increase of the apparent elastic modulus for the smaller diameters is attributed to surface tension effects. The surface tension of the probed material may be experimentally determined from these AFM measurements.

  3. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  4. Imaging surface nanobubbles at graphite–water interfaces with different atomic force microscopy modes

    International Nuclear Information System (INIS)

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-01-01

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles. (paper)

  5. Quantified Differentiation of Surface Topography for Nano-materials As-Obtained from Atomic Force Microscopy Images

    Science.gov (United States)

    Gupta, Mousumi; Chatterjee, Somenath

    2018-04-01

    Surface texture is an important issue to realize the nature (crest and trough) of surfaces. Atomic force microscopy (AFM) image is a key analysis for surface topography. However, in nano-scale, the nature (i.e., deflection or crack) as well as quantification (i.e., height or depth) of deposited layers is essential information for material scientist. In this paper, a gradient-based K-means algorithm is used to differentiate the layered surfaces depending on their color contrast of as-obtained from AFM images. A transformation using wavelet decomposition is initiated to extract the information about deflection or crack on the material surfaces from the same images. Z-axis depth analysis from wavelet coefficients provides information about the crack present in the material. Using the above method corresponding surface information for the material is obtained. In addition, the Gaussian filter is applied to remove the unwanted lines, which occurred during AFM scanning. Few known samples are taken as input, and validity of the above approaches is shown.

  6. Isopleths of surface air concentration and surface air kerma rate due to a radioactive cloud released from a stack (3)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Kikuchi, Masamitsu; Sekita, Tsutomu; Yamaguchi, Takenori

    2004-06-01

    This report is a revised edition of 'Isopleths of Surface Air Concentration and Surface Air Absorbed Dose Rate due to a Radioactive Cloud Released from a Stack(II) '(JAERI-M 90-206) and based on the revised Nuclear Safety Guidelines reflected the ICRP1990 Recommendation. Characteristics of this report are the use of Air Karma Rate (Gy/h) instead of Air Absorbed Dose Rate (Gy/h), and the record of isopleths of surface air concentration and surface air karma rate on CD-ROM. These recorded data on CD-ROM can be printed out on paper and/or pasted on digital map by personal computer. (author)

  7. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces

    International Nuclear Information System (INIS)

    Klapetek, Petr; Ohlidal, Ivan; Bilek, Jindrich

    2004-01-01

    In this paper, the influence of atomic force microscope tip on the multifractal analysis of rough surfaces is discussed. This analysis is based on two methods, i.e. on the correlation function method and the wavelet transform modulus maxima method. The principles of both methods are briefly described. Both methods are applied to simulated rough surfaces (simulation is performed by the spectral synthesis method). It is shown that the finite dimensions of the microscope tip misrepresent the values of the quantities expressing the multifractal analysis of rough surfaces within both the methods. Thus, it was concretely shown that the influence of the finite dimensions of the microscope tip changed mono-fractal properties of simulated rough surface to multifractal ones. Further, it is shown that a surface reconstruction method developed for removing the negative influence of the microscope tip does not improve the results obtained in a substantial way. The theoretical procedures concerning both the methods, i.e. the correlation function method and the wavelet transform modulus maxima method, are illustrated for the multifractal analysis of randomly rough gallium arsenide surfaces prepared by means of the thermal oxidation of smooth gallium arsenide surfaces and subsequent dissolution of the oxide films

  8. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  9. Distribution of Cr atoms in the surface zone of Fe-rich Fe–Cr alloys quenched into various media: Mössbauer spectroscopic study

    International Nuclear Information System (INIS)

    Dubiel, Stanisław M.; Cieślak, Jakub; Żukrowski, Jan

    2015-01-01

    Graphical abstract: Chromium depletion, Δx = x_k − x, in Fe_1_0_0_−_xCr_x (x = 2.2, 3.9, 6.4, 8.5, 10.25, 10.75, 14.9, 15.15) alloys quenched into LN (left panel) and those quenched onto brass (right panel) as found from CEMS (pre surface zone) and TRANS (bulk) Mössbauer spectra (x_k – Cr content in the pre surface or bulk as estimated from the average hyperfine field found for the quenched samples). - Highlights: • Effect of quenching media on Cr atom distribution in Fe–Cr alloys was determined. • Significant differences between bulk and pre surface zone were revealed. • Quenching into water and LH resulted in surface oxidation of samples. • Samples quenched onto a block of brass were not oxidized. - Abstract: Effect of a quenching medium (water, liquid nitrogen and block of brass) on a distribution of Cr atoms in the surface zone of Fe_1_0_0_−_xCr_x (x ≤ 19) alloys was studied with the Mössbauer spectroscopy. The distribution of Cr atoms was expressed in terms of the Cowley–Warren short-range order (SRO) parameters: 〈α_1〉 for the first neighbor-shell, 〈α_2〉 for the second neighbor-shell and 〈α_1_2〉 for both neighbor-shells. It was revealed that none of the quenching media resulted in a random distribution of atoms, yet the degree of randomness was the highest for the samples quenched onto the block of brass. The quenching into water and liquid nitrogen caused a partial oxidation of samples’ surface accompanied by a chromium depletion of the bulk. Quantitative analysis of various phases in the studied samples both in their bulk as well as in pre surface zones was carried out.

  10. Thin-source concentration dependent diffusion

    International Nuclear Information System (INIS)

    Eng, G.

    1978-01-01

    The diffusion of (Ca ++ ) in NaCl has been measured for various diffusion times and for the temperature range (575 0 to 775 0 C), using a thin-source of 45 Ca tracer, rectangular geometry, and serial sectioning. The pre-diffusion surface concentration was approximately 3 x 10 16 (Ca)-atoms/cm 2 , which, for an average penetration depth of 100 to 300 μm, produces a maximum (post-diffusion) impurity concentration comparable to or greater than the intrinsic cation vacancy concentration. The high-temperature function closely matches the D 0 (T) function obtained from low impurity concentration experiments. The lower-temperature function, combined with the sudden failure of the D(C) = D 0 (1 + [C] + 0.5[C] 2 ) function at these lower temperatures, indicates the onset of a second diffusion process, one which would operate only at extremely high impurity concentrations. This low-temperature behavior is shown to be consistent with a breakdown of the conditions assumed for vacancy equilibrium

  11. Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization

    International Nuclear Information System (INIS)

    Moita, A.S.; Moreira, A.L.N.

    2007-01-01

    This paper addresses an experimental study aimed at characterizing the mechanisms of disintegration which occur when individual water and fuel droplets impact onto heated surfaces. The experiments consider the use of a simplified flow configuration and make use of high-speed visualization together with image processing techniques to characterize the morphology of the impact and to quantify the outcome of secondary atomization in terms of droplet size and number. The results evidence that surface topography, wettability and liquid properties combine in a complex way to alter the wetting behaviour of droplets at impact at different surface temperatures. The relative importance of the dynamic vapor pressure associated with the rate of vaporization and surface roughness increases with surface temperature and becomes dominant at the film boiling regime. The analysis is aimed at giving a phenomenological description of droplet disintegration within the various heat transfer regimes

  12. Atom-resolved surface chemistry using scanning tunneling microscopy (STM) and spectroscopy (STS)

    International Nuclear Information System (INIS)

    Avouris, P.

    1989-01-01

    The author shows that by using STM and STS one can study chemistry with atomic resolution. The author uses two examples: the reaction of Si(111)-(7x7) with (a) NH 3 and (b) decaborane (DB). In case (a) the authors can directly observe the spatial distribution of the reaction. He determined which surface atoms have reacted and how the products of the reaction are distributed. He found that the different dangling-bond sites have significantly different reactivities and explain these differences in terms of the local electronic structure. In case (b) the 7x7 reconstruction is eliminated and at high temperatures, (√3 x √3) R30 degree reconstructions are observed. Depending on the amount of DB and the annealing temperature the √3 structures contain variable numbers of B and Si adatoms on T 4 -sites. Calculations show that the structure involving B adatoms, although kinetically favored, is not the lowest energy configuration. The lowest energy state involves B in a substitutional site under a Si adatom

  13. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Lützenkirchen-Hecht, D. [Fachbereich C - Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Hübner, R.; Grenzer, J.; Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  14. Measurements of natural 41Ca concentrations

    International Nuclear Information System (INIS)

    Steinhof, A.

    1989-05-01

    Atomic mass spectroscopic examinations on 41 Ca were carried out in the UNILAC accelerator. A sensitivity of about 10 -15 was achieved. This would allow the measurement of present natural 41 Ca concentrations as soon as the problem of the transmission determination is solved. In this respect suggestions were worked out and their feasibility discussed. The detection of 41 Ca-ions is especially free of background when high UNILAC-energies are applied. An estimation showed a background level corresponding with a 41 Ca concentration of less then 10 -17 referred to 40 Ca. Besides an independent concept for the electromagnetic concentration of 41 Ca with variable concentration factors was developed. After being concentrated up to 50 respectively 25 times the initial concentration in the GSI mass separator, the 41 Ca concentration of three recent deer bones found in the Odenwald was measured by atomic mass spectroscopy in the 14UD-Pelletron Tandem in Rehovot (Israel). The measured 41 Ca concentrations ranged between 10 -14 to 10 -13 with consideration of the concentration factor. A theoretical study of the 41 Ca production in the earth's surface based on cosmic radiation illustrates the influence of trace elements on the neutron flux and thus on the 41 Ca production. This influence might be a possible explanation for the observed amplitude of variation of the 41 Ca concentration in recent bones which are of decisive importance for the feasibility of 41 Ca-related dating. In this work a method is suggested that does not depend on the amplitude of variation mentioned above and which would allow the determination of the erosion rate of rocks by its 41 Ca concentrations. (orig./HP) [de

  15. Atomic-scale simulation of dust grain collisions: Surface chemistry and dissipation beyond existing theory

    Science.gov (United States)

    Quadery, Abrar H.; Doan, Baochi D.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K.

    2017-10-01

    The early stages of planet formation involve steps where submicron-sized dust particles collide to form aggregates. However, the mechanism through which millimeter-sized particles aggregate to kilometer-sized planetesimals is still not understood. Dust grain collision experiments carried out in the environment of the Earth lead to the prediction of a 'bouncing barrier' at millimeter-sizes. Theoretical models, e.g., Johnson-Kendall-Roberts and Derjaguin-Muller-Toporov theories, lack two key features, namely the chemistry of dust grain surfaces, and a mechanism for atomic-scale dissipation of energy. Moreover, interaction strengths in these models are parameterized based on experiments done in the Earth's environment. To address these issues, we performed atomic-scale simulations of collisions between nonhydroxylated and hydroxylated amorphous silica nanoparticles. We used the ReaxFF approach which enables modeling chemical reactions using an empirical potential. We found that nonhydroxylated nanograins tend to adhere with much higher probability than suggested by existing theories. By contrast, hydroxylated nanograins exhibit a strong tendency to bounce. Also, the interaction between dust grains has the characteristics of a strong chemical force instead of weak van der Waals forces. This suggests that the formation of strong chemical bonds and dissipation via internal atomic vibration may result in aggregation beyond what is expected based on our current understanding. Our results also indicate that experiments should more carefully consider surface conditions to mimic the space environment. We also report results of simulations with molten silica nanoparticles. It is found that molten particles are more likely to adhere due to viscous dissipation, which supports theories that suggest aggregation to kilometer scales might require grains to be in a molten state.

  16. Distinction of heterogeneity on Au nanostructured surface based on phase contrast imaging of atomic force microscopy

    International Nuclear Information System (INIS)

    Jung, Mi; Choi, Jeong-Woo

    2010-01-01

    The discrimination of the heterogeneity of different materials on nanostructured surfaces has attracted a great deal of interest in biotechnology as well as nanotechnology. Phase imaging through tapping mode of atomic force microscopy (TMAFM) can be used to distinguish the heterogeneity on a nanostructured surface. Nanostructures were fabricated using anodic aluminum oxide (AAO). An 11-mercaptoundecanoic acid (11-MUA) layer adsorbed onto the Au nanodots through self-assembly to improve the bio-compatibility. The Au nanostructures that were modified with 11-MUA and the concave surfaces were investigated using the TMAFM phase images to compare the heterogeneous and homogeneous nanostructured surfaces. Although the topography and phase images were taken simultaneously, the images were different. Therefore, the contrast in the TMAFM phase images revealed the different compositional materials on the heterogeneous nanostructure surface.

  17. Concentration of 7Be in surface air at Suva, Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Koshy, K.

    1998-01-01

    A high-volume air sampler and a high-resolution gamma-ray spectrometer have been in use since August 1997 at the University of the South Pacific to measure the activity of 7 Be in surface air at Suva, the capital city of Fiji. Preliminary measurements during August - November 1997 indicate that the average concentration of 7 Be in surface air is approximately 4.0 mBq m -3 . Further measurements are in progress

  18. Cold atoms near surfaces: designing potentials by sculpturing wires

    International Nuclear Information System (INIS)

    Della Pietra, Leonardo; Aigner, Simon; Hagen, Christoph vom; Lezec, Henri J; Schmiedmayer, Joerg

    2005-01-01

    The magnetic trapping potentials for atoms on atom chips are determined by the current flow pattern in the chip wires. By modifying the wire shape using focused ion beam nano-machining we can design specialized current flow patterns and therefore micro-design the magnetic trapping potentials. We give designs for a barrier, a quantum dot, and a double well or double barrier and show preliminary experiments with ultra cold atoms in these designed potentials

  19. Surface-enhanced raman spectroscopy of quinomethionate adsorbed on silver colloids

    International Nuclear Information System (INIS)

    Kim, Mak Soon; Kang, Jae Soo; Park, Si Bum; Lee, Mu Sang

    2003-01-01

    We have studied the surface-enhanced Raman spectroscopy (SERS) spectrum of quinomethionate (6-methyl-1,3-dithiolo(4,5-b)quinoxalin-2-one), which is an insecticide or fungicide used on vegetables and wheat. We observed no signals in the ordinary Raman spectra of solid-state quinomethionate, but when it was adsorbed on a colloidal silver surface, strong vibrational signals were obtained at a very low concentration. The SERS spectra were obtained by silver colloids prepared by the Creighton et al. method. The influence of pH and the aggregation inductors (Cl - , Br - , I - , F - ) on the adsorption mechanism was investigated. Two different adsorption mechanisms were deduced, depending on the experimental conditions: The one N atom or two N atoms are chemisorbed on an Ag surface. An important contribution of the chemical mechanism was inferred when the one N atom was perpendicularly adsorbed on a surface. It is possible that quinomethionate can be detected to about 10 -5 M

  20. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  1. Infrared studies of ortho-para conversion at Cl-atom and H-atom impurity centers in cryogenic solid hydrogen

    International Nuclear Information System (INIS)

    Raston, P.L.; Kettwich, S.C.; Anderson, D.T.

    2010-01-01

    We report infrared spectroscopic studies of H 2 ortho-para (o/p) conversion in solid hydrogen doped with Cl-atoms at 2 K while the Cl + H 2 (υ = 1) → HCl + H infrared-induced chemical reaction is occurring. The Cl-atom doped hydrogen crystals are synthesized using 355 nm in situ photodissociation of Cl 2 precursor molecules. For hydrogen solids with high ortho-H 2 fractional concentrations (X o = 0.55), the o/p conversion kinetics is dominated by Cl-atom catalyzed conversion with a catalyzed conversion rate constant K cc = 1.16(11) min -1 and the process is rate-limited by ortho-H 2 quantum diffusion. For hydrogen crystals with low ortho-H2 concentrations (X o = 0.03), single-exponential decay of the ortho-H 2 concentration with time is observed which is attributed to H-atom catalyzed o/p conversion by the H-atoms produced during the infrared-induced Cl + H 2 reaction. The measured H-atom catalyzed o/p conversion kinetics indicates the H-atoms are mobile under these conditions in agreement with previous ESR measurements.

  2. Analysis of atomic force microscopy data for surface characterization using fuzzy logic

    International Nuclear Information System (INIS)

    Al-Mousa, Amjed; Niemann, Darrell L.; Niemann, Devin J.; Gunther, Norman G.; Rahman, Mahmud

    2011-01-01

    In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional search technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: → A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. → The technique is applicable to different surfaces regardless of their densities. → Fuzzy logic technique does not require manual adjustment of the algorithm parameters. → The technique can quantitatively capture differences between surfaces. → This technique yields more realistic structure boundaries compared to other methods.

  3. Epitaxial ferromagnetic Fe3Si on GaAs(111)A with atomically smooth surface and interface

    International Nuclear Information System (INIS)

    Liu, Y. C.; Hung, H. Y.; Kwo, J.; Chen, Y. W.; Lin, Y. H.; Cheng, C. K.; Hong, M.; Tseng, S. C.; Hsu, C. H.; Chang, M. T.; Lo, S. C.

    2015-01-01

    Single crystal ferromagnetic Fe 3 Si(111) films were grown epitaxially on GaAs(111)A by molecular beam epitaxy. These hetero-structures possess extremely low surface roughness of 1.3 Å and interfacial roughness of 1.9 Å, measured by in-situ scanning tunneling microscope and X-ray reflectivity analyses, respectively, showing superior film quality, comparing to those attained on GaAs(001) in previous publications. The atomically smooth interface was revealed by the atomic-resolution Z (atomic number)-contrast scanning transmission electron microscopy (STEM) images using the correction of spherical aberration (Cs)-corrected electron probe. Excellent crystallinity and perfect lattice match were both confirmed by high resolution x-ray diffraction. Measurements of magnetic property for the Fe 3 Si/GaAs(111) yielded a saturation moment of 990 emu/cm 3 with a small coercive field ≤1 Oe at room temperature

  4. Assessment of metal and trace element concentrations in the Cananeia estuary, Brazil, by neutron activation and atomic absorption techniques

    International Nuclear Information System (INIS)

    Amorim, E.P.; Favaro, D.I.T.; Berbel, G.B.B.; Braga, E.S.

    2008-01-01

    Twenty six bottom sediment samples were collected from the Cananeia estuary in summer and winter of 2005. Multielemental analysis was carried out by instrumental neutron activation analysis. Total mercury was determined by cold vapor atomic absorption. As, Cr, Hg and Zn concentrations were compared to the Canadian oriented values (TEL and PEL). Sample points 4 and 9 presented higher concentration for most elements and As and Cr exceeded the TEL values. Organic matter (>10%) associated with siltic and clay sediments was observed. Climatic conditions, hydrodynamic and biogeochemical processes promote differences in seasonal concentrations of elements at some points, which contribute to special distributions. (author)

  5. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    International Nuclear Information System (INIS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-01-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure

  6. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  7. Surface modification of platelet concentrate bags to reduce biofilm formation and transfusion sepsis.

    Science.gov (United States)

    Wilson-Nieuwenhuis, Joels S T; Dempsey-Hibbert, Nina; Liauw, Christopher M; Whitehead, Kathryn A

    2017-12-01

    Bacterial contamination of blood products poses a major risk in transfusion medicine, including transfusions involving platelet products. Although testing systems are in place for routine screening of platelet units, the formation of bacterial biofilms in such units may decrease the likelihood that bacteria will be detected. This work determined the surface properties of p-PVC platelet concentrate bags and investigated how these characteristics influenced biofilm formation. Serratia marcescens and Staphylococcus epidermidis, two species commonly implicated in platelet contamination, were used to study biofilm growth. The platelet concentrate bags were physically flattened to determine if reducing the surface roughness altered biofilm formation. The results demonstrated that the flattening process of the platelet bags affected the chemistry of the surface and reduced the surface hydrophobicity. Flattening of the surfaces resulted in a reduction in biofilm formation for both species after 5 days, with S. marcescens demonstrating a greater reduction. However, there was no significant difference between the smooth and flat surfaces following 7 days' incubation for S. marcescens and no significant differences between any of the surfaces following 7 days' incubation for S. epidermidis. The results suggest that flattening the p-PVC surfaces may limit potential biofilm formation for the current duration of platelet storage time of 5 days. It is hoped that this work will enhance the understanding of how surface properties influence the development of microbial biofilms in platelet concentrate bags in order to devise a solution to discourage biofilm formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. In situ observation of fluoride-ion-induced hydroxyapatite-collagen detachment on bone fracture surfaces by atomic force microscopy

    International Nuclear Information System (INIS)

    Kindt, J H; Thurner, P J; Lauer, M E; Bosma, B L; Schitter, G; Fantner, G E; Izumi, M; Weaver, J C; Morse, D E; Hansma, P K

    2007-01-01

    The topography of freshly fractured bovine and human bone surfaces was determined by the use of atomic force microscopy (AFM). Fracture surfaces from both kinds of samples exhibited complex landscapes formed by hydroxyapatite mineral platelets with lateral dimensions ranging from ∼90 nm x 60 nm to ∼20 nm x 20 nm. Novel AFM techniques were used to study these fracture surfaces during various chemical treatments. Significant topographical changes were observed following exposure to aqueous solutions of ethylenediaminetetraacetic acid (EDTA) or highly concentrated sodium fluoride (NaF). Both treatments resulted in the apparent loss of the hydroxyapatite mineral platelets on a timescale of a few seconds. Collagen fibrils situated beneath the overlying mineral platelets were clearly exposed and could be resolved with high spatial resolution in the acquired AFM images. Time-dependent mass loss experiments revealed that the applied agents (NaF or EDTA) had very different resulting effects. Despite the fact that the two treatments exhibited nearly identical results following examination by AFM, bulk bone samples treated with EDTA exhibited a ∼70% mass loss after 72 h, whereas for the NaF-treated samples, the mass loss was only of the order of ∼10%. These results support those obtained from previous mechanical testing experiments, suggesting that enhanced formation of superficial fluoroapatite dramatically weakens the protein-hydroxyapatite interfaces. Additionally, we discovered that treatment with aqueous solutions of NaF resulted in the effective extraction of noncollagenous proteins from bone powder

  9. Surface modelling on heavy atom crystalline compounds: HfO2 and UO2 fluorite structures

    International Nuclear Information System (INIS)

    Evarestov, Robert; Bandura, Andrei; Blokhin, Eugeny

    2009-01-01

    The study of the bulk and surface properties of cubic (fluorite structure) HfO 2 and UO 2 was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO 2 differ from those found for other metal oxides with the closed-shell configuration of d-electrons

  10. Structural and electronic properties of isovalent boron atoms in GaAs

    Science.gov (United States)

    Krammel, C. M.; Nattermann, L.; Sterzer, E.; Volz, K.; Koenraad, P. M.

    2018-04-01

    Boron containing GaAs, which is grown by metal organic vapour phase epitaxy, is studied at the atomic level by cross-sectional scanning tunneling microscopy (X-STM) and spectroscopy (STS). In topographic X-STM images, three classes of B related features are identified, which are attributed to individual B atoms on substitutional Ga sites down to the second layer below the natural {110} cleavage planes. The X-STM contrast of B atoms below the surface reflects primarily the structural modification of the GaAs matrix by the small B atoms. However, B atoms in the cleavage plane have in contrast to conventional isovalent impurities, such as Al and In, a strong influence on the local electronic structure similar to donors or acceptors. STS measurements show that B in the GaAs {110} surfaces gives rise to a localized state short below the conduction band (CB) edge while in bulk GaAs, the B impurity state is resonant with the CB. The analysis of BxGa1-xAs/GaAs quantum wells reveals a good crystal quality and shows that the incorporation of B atoms in GaAs can be controlled along the [001] growth direction at the atomic level. Surprisingly, the formation of the first and fourth nearest neighbor B pairs, which are oriented along the directions, is strongly suppressed at a B concentration of 1% while the third nearest neighbor B pairs are found more than twice as often than expected for a completely spatially random pattern.

  11. Modelling atomic scale manipulation with the non-contact atomic force microscope

    International Nuclear Information System (INIS)

    Trevethan, T; Watkins, M; Kantorovich, L N; Shluger, A L; Polesel-Maris, J; Gauthier, S

    2006-01-01

    We present the results of calculations performed to model the process of lateral manipulation of an oxygen vacancy in the MgO(001) surface using the non-contact atomic force microscope (NC-AFM). The potential energy surfaces for the manipulation as a function of tip position are determined from atomistic modelling of the MgO(001) surface interacting with a Mg terminated MgO tip. These energies are then used to model the dynamical evolution of the system as the tip oscillates and at a finite temperature using a kinetic Monte Carlo method. The manipulation process is strongly dependent on the lateral position of the tip and the system temperature. It is also found that the expectation value of the point at which the vacancy jumps depends on the trajectory of the oscillating cantilever as the surface is approached. The effect of the manipulation on the operation of the NC-AFM is modelled with a virtual dynamic AFM, which explicitly simulates the entire experimental instrumentation and control loops. We show how measurable experimental signals can result from a single controlled atomic scale event and suggest the most favourable conditions for achieving successful atomic scale manipulation experimentally

  12. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  13. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  14. H-tailored surface conductivity in narrow band gap In(AsN)

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O. [School of Physics and Astronomy, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Capizzi, M.; Polimeni, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma (Italy); Sandall, I. C.; Tan, C. H. [Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Giubertoni, D. [Center for Materials and Microsystems—Fondazione Bruno Kessler, via Sommarive 18, 38123 Povo, Trento (Italy); Krier, A.; Zhuang, Q. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2015-01-12

    We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.

  15. Concentration of 7Be in surface air at Suva, Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Koshy, K.

    1998-01-01

    A high-volume air sampler and a high-resolution gamma-ray spectrometer have been in use since August 1997 at the University of the South Pacific to measure the activity of 7 Be in surface air at Suva, the capital city of Fiji. Preliminary measurements during August-November 1997 indicate that the average concentration of 7 Be in surface air is approximately 4.0 mBq m -3 . Further measurements are in progress. (author). 4 refs., 1 fig

  16. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  17. Apparatus and process for the surface treatment of carbon fibers

    Science.gov (United States)

    Paulauskas, Felix Leonard; Ozcan, Soydan; Naskar, Amit K.

    2016-05-17

    A method for surface treating a carbon-containing material in which carbon-containing material is reacted with decomposing ozone in a reactor (e.g., a hollow tube reactor), wherein a concentration of ozone is maintained throughout the reactor by appropriate selection of at least processing temperature, gas stream flow rate, reactor dimensions, ozone concentration entering the reactor, and position of one or more ozone inlets (ports) in the reactor, wherein the method produces a surface-oxidized carbon or carbon-containing material, preferably having a surface atomic oxygen content of at least 15%. The resulting surface-oxidized carbon material and solid composites made therefrom are also described.

  18. Automatic measuring device for atomic oxygen concentrations (1962); Dispositif de mesure automatique de concentrations d'oxygene atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Weill, J; Deiss, M; Mercier, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    Within the framework of the activities of the Autonomous Reactor Electronics Section we have developed a device, which renders automatic one type of measurement carried out in the Physical Chemistry Department at the Saclay Research Centre. We define here: - the physico-chemical principle of the apparatus which is adapted to the measurement of atomic oxygen concentrations; - the physical principle of the automatic measurement; - the properties, performance, constitution, use and maintenance of the automatic measurement device. It is concluded that the principle of the automatic device, whose tests have confirmed the estimation of the theoretical performance, could usefully be adapted to other types of measurement. (authors) [French] Dans le cadre des activites de la Section Autonome d'Electronique des Reacteurs, il a ete realise et mis au point un dispositif permettant de rendre automatique un type de mesures effectuees au Departement de Physico-Chimie du C.E.N. SACLAY. On definit ici: - le principe physico-chimique de l'appareillage, adapte a la mesure de concentrations de l'oxygene atomique; - le principe physique de la mesure automatique; - les qualites, performances, constitution, utilisation, et maintenance du dispositif de mesure automatique. Il est porte en conclusion, que le principe du dispositif automatique realise, dont les essais ont sensiblement confirme l'evaluation des performances theoriques, pourrait etre utilement adapte a d'autres types de mesures courantes. (auteurs)

  19. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  20. Two-pulse atomic coherent control spectroscopy of Eley-Rideal reactions: An application of an atom laser

    International Nuclear Information System (INIS)

    Joergensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC (two-pulse atomic coherent control) employs the coherent properties of matter waves from a two-pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas-phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schroedinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters