WorldWideScience

Sample records for surface atmospheric pressure

  1. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  2. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  3. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    2012-01-01

    Efficiency of atmospheric pressure plasma treatment can be highly enhanced by simultaneous high power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above ∼140 dB can reduce the thickness of a boundary gas layer between the plasma...... arc at atmospheric pressure to study adhesion improvement. The effect of ultrasonic irradiation with the frequency diapason between 20 and 40 kHz at the SPL of ∼150 dB was investigated. After the plasma treatment without ultrasonic irradiation, the wettability was significantly improved....... The ultrasonic irradiation during the plasma treatment consistently enhanced the treatment efficiency. The principal effect of ultrasonic irradiation can be attributed to enhancing surface oxidation during plasma treatment. In addition, ultrasonic irradiation can suppress arcing, and the uniformity...

  4. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... are separated using a polyethylene film. The gliding arc was extended by a high speed air flow into ambient air, directed the polyester surface at an angle of approximately 30o. The ultrasonic waves were introduced vertically to the surface. After the plasma treatment using each plasma source without ultrasonic...

  5. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He....../O2 and Ar plasma treatments, mainly attributed to an increase in the density of the C-O single bond at the carbon fibre surfaces. The O/C ratio increased to 0.182 after 1-s He plasma treatment, and remained approximately constant after longer treatment. After exposure in an ambient air at room...

  6. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  7. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    Pencheva, M; Benova, E; Zhelyazkov, I

    2007-01-01

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  8. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M. [Plasma Technology Research Centre, Physics Department, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Thong, K. L. [Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  9. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    Science.gov (United States)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  10. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  11. Surface modification with a remote atmospheric pressure plasma: dc glow discharge and surface streamer regime

    International Nuclear Information System (INIS)

    Temmerman, Eef; Akishev, Yuri; Trushkin, Nikolay; Leys, Christophe; Verschuren, Jo

    2005-01-01

    A remote atmospheric pressure discharge working with ambient air is used for the near room temperature treatment of polymer foils and textiles of varying thickness. The envisaged plasma effect is an increase in the surface energy of the treated material, leading, e.g., to a better wettability or adhesion. Changes in wettability are examined by measuring the contact angle or the liquid absorptive capacity. Two regimes of the remote atmospheric pressure discharge are investigated: the glow regime and the streamer regime. These regimes differ mainly in power density and in the details of the electrode design. The results show that this kind of discharge makes up a convenient non-thermal plasma source to be integrated into a treatment installation working at atmospheric pressure

  12. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  13. Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Hoffer, Petr; Sugiyama, Y.; Hosseini, S.H.R.; Akiyama, H.; Lukeš, Petr; Akiyama, M.

    2016-01-01

    Roč. 49, č. 41 (2016), č. článku 415202. ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : water surface * spectroscopy * high-speed photography * pulsed plasma discharge * Atmospheric-pressure plasmas * electric discharges * liquids * water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/0022-3727/49/41/415202

  14. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  15. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.

    Science.gov (United States)

    Shim, Jae Won; Bae, In-Ho; Park, Dae Sung; Lee, So-Youn; Jang, Eun-Jae; Lim, Kyung-Seob; Park, Jun-Kyu; Kim, Ju Han; Jeong, Myung Ho

    2018-03-01

    The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.

  16. Surface-nitriding treatment of steels using microwave-induced nitrogen plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Sato, Shigeo; Arai, Yuuki; Yamashita, Noboru; Kojyo, Atsushi; Kodama, Kenji; Ohtsu, Naofumi; Okamoto, Yukio; Wagatsuma, Kazuaki

    2012-01-01

    A rapid surface-nitriding system using microwave-induced nitrogen plasma at atmospheric pressure was developed for modifying iron and steel surfaces. Since the conventional plasma nitriding technique requires a low-pressure atmosphere in the treatment chamber, the population of excited nitrogen molecules in the plasma is limited. Accordingly, several hours are required for nitriding treatment. By contrast, the developed nitriding system can use atmospheric-pressure plasma through application of the Okamoto cavity for excitation of nitrogen plasma. The high population of excited nitrogen molecules induced by the atmospheric-pressure plasma allowed the formation of a nitriding layer that was several micrometers thick within 1 min and produced an expanded austenite iron phase with a high nitrogen concentration close to the solubility limit on the iron substrate. In addition, the nitriding treatment on high-chromium steel was performed by introducing a reducing gas such as NH 3 and H 2 into the treatment chamber. While the nitriding reaction did not proceed in a simple N 2 atmosphere due to surface oxidation, the surface reduction induced by the NH 3 or H 2 gas promoted the nitriding reaction at the surface. These nitriding phenomena characteristics of the atmospheric-pressure plasma are discussed in this paper based on the effects of the specimen temperature and plasma atmosphere on the thickness, the chemical states, and the nitride compounds of the nitrided layer as investigated by X-ray diffraction, glow-discharge optical emission spectroscopy, and X-ray photoelectron spectroscopy.

  17. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    Science.gov (United States)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  18. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the

  19. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  20. Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts

    Science.gov (United States)

    Ingersoll, Andrew P.

    1989-01-01

    The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.

  1. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  2. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  3. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    International Nuclear Information System (INIS)

    Štěpánová, Vlasta; Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana; Černák, Mirko

    2015-01-01

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  4. Surface chemical changes of atmospheric pressure plasma treated rabbit fibres important for felting process

    Energy Technology Data Exchange (ETDEWEB)

    Štěpánová, Vlasta, E-mail: vstepanova@mail.muni.cz [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Slavíček, Pavel; Stupavská, Monika; Jurmanová, Jana [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Černák, Mirko [Department of Physical Electronics, Faculty of Science Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2015-11-15

    Graphical abstract: - Highlights: • Rabbit fibres plasma treatment is an effective method for fibres modification. • Atmospheric pressure plasma treatment is able to affect fibres properties. • Surface changes on fibres after plasma treatment were analysed via SEM, ATR-FTIR, XPS. • Significant increase of fibres wettability after plasma treatment was observed. • Plasma treatment at atmospheric pressure can replace the chemical treatment of fibres. - Abstract: We introduce the atmospheric pressure plasma treatment as a suitable procedure for in-line industrial application of rabbit fibres pre-treatment. Changes of rabbit fibre properties due to the plasma treatment were studied in order to develop new technology of plasma-based treatment before felting. Diffuse Coplanar Surface Barrier Discharge (DCSBD) in ambient air at atmospheric pressure was used for plasma treatment. Scanning electron microscopy was used for determination of the fibres morphology before and after plasma treatment. X-ray photoelectron spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy were used for evaluation of reactive groups. The concentration of carbon decreased and conversely the concentration of nitrogen and oxygen increased after plasma treatment. Aging effect of plasma treated fibres was also investigated. Using Washburn method the significant increase of fibres wettability was observed after plasma treatment. New approach of pre-treatment of fibres before felting using plasma was developed. Plasma treatment of fibres at atmospheric pressure can replace the chemical method which consists of application of strong acids on fibres.

  5. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-03-29

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  6. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    Science.gov (United States)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may

  7. Surface modification of nanofibrillated cellulose films by atmospheric pressure dielectric barrier discharge

    DEFF Research Database (Denmark)

    Siró, Istvan; Kusano, Yukihiro; Norrman, Kion

    2013-01-01

    of atmospheric pressure plasma treatment, the water contact angle of NFC films increased and the values were comparable with those of PLA films. On the other hand, surface chemical characterization revealed inhomogeneity of the plasma treatment and limited improvement in adhesion between NFC and PLA films......A dielectric barrier discharge in a gas mixture of tetrafluoromethane (CF4) and O2 was used for tailoring the surface properties of nanofibrillated cellulose (NFC) films. The surface chemical composition of plasma-modified NFC was characterized by means of X-ray photoelectron spectroscopy and time....... Further research in this direction is required in order to enhance the uniformity of the plasma treatment results....

  8. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-06

    Atmospheric-pressure plasma jets (APPJs) are a method of plasma treatment that plays an important role in material processing and modifying surface properties of materials, especially polymers. Gas plasmas react with polymer surfaces in numerous ways such as oxidation, radical formation, degradation, and promotion of cross-linking. Because of this, gas and plasma conditions can be explored for chosen processes to maximize desired properties. The purpose of this study is to investigate plasma parameters in order to modify surface properties for improved adhesion between aluminum and epoxy substrates using two types of adhesives. The background, results to date, and future work will be discussed.

  9. Atmospheric pressure surface sampling/ionization techniques for direct coupling of planar separations with mass spectrometry.

    Science.gov (United States)

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-06-18

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  10. Influence of atmospheric pressure plasma treatment on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Zhang Ruiyun; Pan Xianlin; Jiang Muwen; Peng Shujing; Qiu Yiping

    2012-01-01

    Highlights: ► PBO fibers were treated with atmospheric pressure plasmas. ► When 1% of oxygen was added to the plasma, IFSS increased 130%. ► Increased moisture regain could enhance plasma treatment effect on improving IFSS with long treatment time. - Abstract: In order to improve the interfacial adhesion property between PBO fiber and epoxy, the surface modification effects of PBO fiber treated by atmospheric pressure plasma jet (APPJ) in different time, atmosphere and moisture regain (MR) were investigated. The fiber surface morphology, functional groups, surface wettability for control and plasma treated samples were analyzed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements, respectively. Meanwhile, the fiber interfacial shear strength (IFSS), representing adhesion property in epoxy, was tested using micro-bond pull-out test, and single fiber tensile strength was also tested to evaluate the mechanical performance loss of fibers caused by plasma treatment. The results indicated that the fiber surface was etched during the plasma treatments, the fiber surface wettability and the IFSS between fiber and epoxy had much improvement due to the increasing of surface energy after plasma treatment, the contact angle decreased with the treatment time increasing, and the IFSS was improved by about 130%. The processing atmosphere could influence IFSS significantly, and moisture regains (MR) of fibers also played a positive role on improving IFSS but not so markedly. XPS analysis showed that the oxygen content on fiber surface increased after treatment, and C=O, O-C=O groups were introduced on fiber surface. On the other hand, the observed loss of fiber tensile strength caused by plasma treatment was not so remarkable to affect the overall performance of composite materials.

  11. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    Science.gov (United States)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  12. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kan, C.W.; Kwong, C.H.; Ng, S.P.

    2015-01-01

    Highlights: • Atmospheric pressure plasma treatment improved surface performance of polyester synthetic leather with tetramethylsilane. • XPS and FTIR confirmed the deposition of organosilanes on the sample's surface. • Contact angle increases to 138° after plasma treatment. - Abstract: Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment

  13. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Luo, Y

    2003-01-01

    The atmospheric pressure glow discharge (APGD) is more promising in industrial applications compared with glow discharges in a gas other than air or in low-pressure air, which needs an expensive vacuum system. In this paper, the APGD and dielectric barrier discharge (DBD) are generated in atmospheric air using a power-frequency voltage source, and the transition from DBD to APGD is achieved by varying the electrode arrangement. The differences between their discharge characteristics are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena. The effects of APGD and DBD on polytetrafluoroethylene (PTFE) surface modification are studied. The surface properties are characterized by contact angle measurement, x-ray photoelectron spectroscopy and scanning electron microscopy. It is found that the APGD and DBD treatments modify the PTFE surface in both morphology and composition. APGD is more effective in PTFE surface modification than DBD as it can modify the surface more uniformly, implant more oxygen atoms into the surface and make the contact angle decline to a lower level. The experimental results are discussed

  14. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  15. Application of a novel atmospheric pressure plasma fluidized bed in the powder surface modification

    International Nuclear Information System (INIS)

    Chen Guangliang; Chen Shihua; Zhou Mingyan; Feng Wenran; Gu Weichao; Yang Size

    2006-01-01

    A novel atmospheric pressure plasma fluidized bed (APPFB) with one liquid electrode was designed, and its preliminary discharge characteristics were studied. The glow discharge in the APPFB was generated by applying a low power with helium (He) gas, and the plasma gas temperature was no higher than 320 K when the applied power was lower than 11 W. The plasma optical emission spectrum (OES) of the gas mixture consisting of He and hexamethyldisiloxane (HMDSO) was recorded by a UV-visible monochromator. The calcium carbonate powders were modified by APPFB using HMDSO in the He plasma. The powder surface energy was decreased greatly by coating an organosilicon polymer onto the powder surface. This surface modification process changed the wettability of the powder from super-hydrophilicity to super-hydrophobicity, and the contact angle of water on the modified powders surface was greater than 160 0

  16. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Jia Caixia; Chen Ping; Liu Wei; Li Bin; Wang Qian

    2011-01-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm 3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, C=O and O=C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  17. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure

    International Nuclear Information System (INIS)

    Jimenez, M; Yubero, C; Calzada, M D

    2008-01-01

    Surface wave plasma at atmospheric pressure has been used to produce the decomposition of the alcohol molecules introduced into it, in order to obtain hydrogen. Four alcohols, methanol, ethanol, propanol and butanol, have been used for this purpose. Optical emission spectroscopy was the tool used to analyse the radiation emitted by the plasma. Hydrogen atoms and other species such as C 2 and CH in alcohols have been detected but no CO molecular bands. Also, a mass spectrometer has been used in order to detect molecular hydrogen production in methanol decomposition

  18. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  19. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  20. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  1. Stability of Atmospheric-Pressure Plasma Induced Changes on Polycarbonate Surfaces

    Science.gov (United States)

    Sharma, Rajesh; Holcomb, Edward; Trigwell, Steve

    2006-01-01

    Polycarbonate films are subjected to plasma treatment in a number of applications such as improving adhesion between polycarbonate and silicon alloy in protective and optical coatings. The changes in surface chemistry due to plasma treatment have tendency to revert back. Thus stability of the plasma induced changes on polymer surfaces over desired time period is very important. The objective of this study was to examine the effect of ageing on atmospheric pressure helium-plasma treated polycarbonate (PC) sample as a function of treatment time. The ageing effects were studied over a period of 10 days. The samples were plasma treated for 0.5, 2, 5 and 10 minutes. Contact angle measurements were made to study surface energy changes. Modification of surface chemical structure was examined using, X-ray Photoelectron Spectroscopy (XPS). Contact angle measurements on untreated and plasma treated surfaces were made immediately, 24, 48, 72 and 96 hrs after treatment. Contact angle decreased from 93 deg for untreated sample to 30 deg for sample plasma treated for 10 minutes. After 10 days the contact angles for the 10 minute plasma treated sample increased to 67 deg, but it never reverted back to that of untreated surface. Similarly the O/C ratio increased from 0.136 for untreated sample to 0.321 for 10 minute plasma treated sample indication increase in surface energy.

  2. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  3. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  4. Hydrophilic film polymerized on the inner surface of PMMA tube by an atmospheric pressure plasma jet

    Science.gov (United States)

    Yin, Mengmeng; Huang, Jun; Yu, Jinsong; Chen, Guangliang; Qu, Shanqing

    2017-07-01

    Polymethyl methacrylate (PMMA) tube is widely used in biomedical and mechanical engineering fields. However, it is hampered for some special applications as the inner surface of PMMA tube exhibts a hydrophobic characteristic. The aim of this work is to explore the hydrophilic modification of the inner surface of the PMMA tubes using an atmospheric pressure plasma jet (APPJ) system that incorporates the acylic acid monomer (AA). Polar groups were grafted onto the inner surface of PMMA tube via the reactive radicals (•OH, •H, •O) generated in the Ar/O2/AA plasma, which were observed by the optical emission spectroscopy (OES). The deposition of the PAA thin layer on the PMMA surface was verified through the ATR-FTIR spectra, which clearly showed the strengthened stretching vibration of the carbonyl group (C=O) at 1700 cm-1. The XPS data show that the carbon ratios of C-OH/R and COOH/R groups increased from 9.50% and 0.07% to 13.49% and 17.07% respectively when a discharge power of 50 W was used in the APPJ system. As a result, the static water contat angle (WCA) of the modified inner surface of PMMA tube decreased from 100° to 48°. Furthermore, the biocompatibility of the APP modified PMMA tubes was illustrated by the study of the adhesion of the cultured MC3T3-E1 osteocyte cells, which exhibted a significantly enhanced adhesion density.

  5. Development of an Organosilicon-Based Superhydrophobic/Icephobic Surface Using an Atmospheric Pressure Plasma Jet =

    Science.gov (United States)

    Asadollahi, Siavash

    During the past few decades, plasma-based surface treatment methods have gained a lot of interest in various applications such as thin film deposition, surface etching, surface activation and/or cleaning, etc. Generally, in plasma-based surface treatment methods, high-energy plasma-generated species are utilized to modify the surface structure or the chemical composition of a substrate. Unique physical and chemical characteristics of the plasma along with the high controllability of the process makes plasma treatment approaches very attractive in several industries. Plasma-based treatment methods are currently being used or investigated for a number of practical applications, such as adhesion promotion in auto industry, wound management and cancer treatment in biomedical industry, and coating development in aerospace industry. In this study, a two-step procedure is proposed for the development of superhydrophobic/icephobic coatings based on atmospheric-pressure plasma treatment of aluminum substrates using air and nitrogen plasma. The effects of plasma parameters on various surface properties are studied in order to identify the optimum conditions for maximum coating efficiency against icing and wetting. In the first step, the interactions between air or nitrogen plasma and the aluminum surface are studied. It is shown that by reducing jet-to-substrate distance, air plasma treatment, unlike nitrogen plasma treatment, is capable of creating micro-porous micro-roughened structures on the surface, some of which bear a significant resemblance to the features observed in laser ablation of metals with short and ultra-short laser pulses. The formation of such structures in plasma treatment is attributed to a transportation of energy from the jet to the surface over a very short period of time, in the range of picoseconds to microseconds. This energy transfer is shown to occur through a streamer discharge from the rotating arc source in the jet body to a close proximity of

  6. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    Science.gov (United States)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  7. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    Science.gov (United States)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  8. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    International Nuclear Information System (INIS)

    Li Zhanguo; Li Ying; Cao Peng; Zhao Hongjie

    2013-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet

  9. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  10. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  11. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    Science.gov (United States)

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  12. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  13. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  14. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  15. Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015

  16. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  17. Oxygen Plasma Treatment of Rubber Surface by the Atmospheric Pressure Cold Plasma Torch

    DEFF Research Database (Denmark)

    Lee, Bong-ju; Kusano, Yukihiro; Kato, Nobuko

    1997-01-01

    adhesive. The adhesion property was improved by treatment of the rubber compound with plasma containing oxygen radicals. Physical and chemical changes of the rubber surface as a result of the plasma treatment were analyzed by field emission scanning electron microscopy (FE-SEM) and fourier transform......A new application of the atmospheric cold plasma torch has been investigated. Namely, the surface treatment of an air-exposed vulcanized rubber compound. The effect of plasma treatment was evaluated by the bondability of the treated rubber compound with another rubber compound using a polyurethane...

  18. Atmospheric-pressure plasma technology

    Science.gov (United States)

    Kogelschatz, U.

    2004-12-01

    Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona discharges used in electrostatic precipitators and in dielectric-barrier discharges used for generation of ozone, for pollution control and for surface treatment. More recent applications include UV excimer lamps, mercury-free fluorescent lamps and flat plasma displays.

  19. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  20. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Wenji; Sun, Jing; Liu, Xin; Xu, Sihao; Xia, Guangqing; Yang, Dezheng

    2016-01-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously. (paper)

  1. Exploration of surface hydrophilic properties on AISI 304 stainless steel and silicon wafer against aging after atmospheric pressure plasma treatment

    Science.gov (United States)

    Chuang, Shang-I.; Duh, Jenq-Gong

    2014-11-01

    The aim of this work is to seek the enhanced surface hydrophilic properties on AISI 304 stainless steel and silicon wafer after atmospheric pressure plasma treatment using a specifically designed atmospheric pressure plasma jet. The aging tendency of surface hydrophilic property under air is highlighted. It is concluded that both of the silicon wafer and stainless steel treated with plasma generated from supply gas of argon 15 slm mixed with oxygen 40 sccm shows a better tendency on remaining high water contact angle as compared to that with pure argon and nitrogen addition. Additional peaks of O I (777, 844 nm), O II (408 nm) are detected by optical emission spectroscope indicating the presence of the oxygen radicals and ionic species, which interact with surfaces and thus contribute to low water contact angle (WCA) surfaces. Moreover, the result acquired from X-ray photoelectron spectroscopy (XPS) indicates that the increase in the oxygen-related bonding exhibits a better contribution on remaining high surface energy over a period of time.

  2. Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity

    Science.gov (United States)

    Schröter, Sandra; Gibson, Andrew R.; Kushner, Mark J.; Gans, Timo; O’Connell, Deborah

    2018-01-01

    The quantification and control of reactive species (RS) in atmospheric pressure plasmas (APPs) is of great interest for their technological applications, in particular in biomedicine. Of key importance in simulating the densities of these species are fundamental data on their production and destruction. In particular, data concerning particle-surface reaction probabilities in APPs are scarce, with most of these probabilities measured in low-pressure systems. In this work, the role of surface reaction probabilities, γ, of reactive neutral species (H, O and OH) on neutral particle densities in a He–H2O radio-frequency micro APP jet (COST-μ APPJ) are investigated using a global model. It is found that the choice of γ, particularly for low-mass species having large diffusivities, such as H, can change computed species densities significantly. The importance of γ even at elevated pressures offers potential for tailoring the RS composition of atmospheric pressure microplasmas by choosing different wall materials or plasma geometries.

  3. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn, E-mail: chongsin@faculty.nctu.edu.tw

    2017-02-01

    Graphical abstract: Atmospheric-pressure plasma enhances cell growth on two different pore sizes of honeycomb pattern on polylactide surface. - Highlights: • Different pore sizes of honeycomb pattern on PLA film are created. • The two-step plasma treatment provided the oxygen- and nitrogen-containing functional groups that had a major impact on cell cultivation. • The plasma treatment had a significant effect for cell proliferation. • The surface structures are the main influence on cell cultivation, while plasma treatment can indeed improve the growth environment. - Abstract: In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3–4 μm and 7–8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  4. Investigation of Atmospheric Pressure Plasma Discharge and Its Application to Surface Modification of Blood-Filtering Material

    Science.gov (United States)

    Tang, Xiaoliang; Feng, Xianping; Qiu, Gao; Yan, Yonghui; Shi, Yuncheng

    2004-10-01

    Melt-blown polybutylene terephthalate (PBT) nonwoven materials treated by using plasma is regarded as one of the excellent materials to filter white blood cells (WBC) from blood. In this paper, dielectric barrier discharge (DBD) plasma source at an improved quasi-stable atmospheric pressure is achieved when discharge voltage, discharge current, and gap between the electrodes are carefully controlled. This plasma source has been used to modify the surface of PBT melt-blown nonwoven materials. Experimental results indicate that both the wettability and permeation of treated PBT melt-blown nonwoven materials are greatly improved.

  5. Investigation of atmospheric pressure plasma discharge and its application to surface modification of blood-filtering material

    International Nuclear Information System (INIS)

    Tang Xiaoliang; Qiu Gao; Yan Yonghui; Shi Yuncheng

    2004-01-01

    Melt-blown polybutylene terephthalate (PBT) nonwoven materials treated by using plasma is regarded as one of the excellent materials to filter white blood cells (WBC) from blood. In this paper, dielectric barrier discharge (DBD) plasma source at an improved quasi-stable atmospheric pressure is achieved when discharge voltage, discharge current, and gap between the electrodes are carefully controlled. This plasma source has been used to modify the surface of PBT melt-blown nonwoven materials. Experimental results indicate that both the wettability and permeation of treated PBT melt-blown nonwoven materials are greatly improved. (authors)

  6. Highly porous micro-roughened structures developed on aluminum surface using the jet of rotating arc discharges at atmospheric pressure

    Science.gov (United States)

    Asadollahi, Siavash; Farzaneh, Masoud; Stafford, Luc

    2018-02-01

    Aluminum 6061 samples were exposed to the jet of an atmospheric pressure rotating arc discharge operated in either nitrogen or air. After multiple passes of treatment with an air-based plasma jet at very short source-to-substrate distances, scanning electron microscopy combined with x-ray photoelectron spectroscopy revealed a highly porous micro-roughened alumina-based structure on the surface of aluminum. Based on optical emission spectroscopy and high-speed optical imaging of the jet interacting with aluminum samples, it was found that the process is mainly driven by the energy transfer from the plasma source to the surface through transient plasma-transferred arcs. The occurrence of multiple arc discharges over very short time scales can induce rapid phase transformations of aluminum with characteristics similar to the ones usually observed during laser ablation of materials with femto- to nanosecond laser pulses or during the formation of cathode spots on the surface of metals.

  7. Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure

    International Nuclear Information System (INIS)

    Wang Wei-long; Li Jun; Song Hui-min; Jin Di; Jia Min; Wu Yun

    2017-01-01

    Thermal and induced flow velocity characteristics of radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins. After several seconds (typically 100 s), the temperature reaches equilibrium among the actuator’s surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of kHz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s. (paper)

  8. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Science.gov (United States)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  9. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamarneh, Ibrahim, E-mail: hamarnehibrahim@yahoo.com [Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117 (Jordan); Pedrow, Patrick [School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164 (United States); Eskhan, Asma; Abu-Lail, Nehal [Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Surface hydrophilic property of surgical-grade 316L stainless steel was enhanced by Ar-O{sub 2} corona streamer plasma treatment. Black-Right-Pointing-Pointer Hydrophilicity, surface morphology, roughness, and chemical composition before and after plasma treatment were evaluated. Black-Right-Pointing-Pointer Contact angle measurements and surface-sensitive analyses techniques, including XPS and AFM, were carried out. Black-Right-Pointing-Pointer Optimum plasma treatment conditions of the SS 316L surface were determined. - Abstract: Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O{sub 2} gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kV{sub RMS}) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O{sub 2} plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  10. Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Masaaki [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan)], E-mail: mokubo@me.osakafu-u.ac.jp; Tahara, Mitsuru [Environment and Chemistry Department, Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka 594-1157 (Japan); Saeki, Noboru [Laboratory of Technology Development, Pearl Kogyo Co., Ltd., 3-8-13 Minamikagaya, Suminoe-ku, Osaka 559-0015 (Japan); Yamamoto, Toshiaki [Department of Electrical and Electronic Engineering, Musashi Institute of Technology, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan)

    2008-08-01

    Flexible thin solid films made of fluorocarbon polymers such as PFA (perfluoroalkoxy fluoroplastics), PTFE (polytetrafluoroethylene), and PCTFE (polychlorotrifluoroethylene) have excellent properties in terms of flexibility, gas and moisture barriers, etc. We develop a surface modification technique for improving the adhesion of the films using an atmospheric-pressure NTP (nonthermal plasma) method followed by graft-polymerization of the hydrophilic monomer. The results of the T-type peeling test show that the peeling strength of the film is thirty times larger than that of the untreated film. It is confirmed from XPS (X-ray photoelectron spectroscopy), FTIR (Fourier transform infrared spectrophotometer) and the SEM (Scanning electron microscope) analyses that a few F atoms exist on the surface and the hydrophilic layer with a thickness is of the order of 1 {mu}m is formed due to the grafting process.

  11. Surface kinetics for catalytic combustion of hydrogen-air mixtures on platinum at atmospheric pressure in stagnation flows

    Science.gov (United States)

    Ikeda, H.; Sato, J.; Williams, F. A.

    1995-03-01

    Experimental studies of the combustion of premixed hydrogen-air mixtures impinging on the surface of a heated platinum plate at normal atmospheric pressure were performed and employed to draw inferences concerning surface reaction mechanisms and rate parameters applicable under practical conditions of catalytic combustion. Plate and gas temperatures were measured by thermocouples, and concentration profiles of major stable species in the gas were measured by gas-chromatographic analyses of samples withdrawn by quartz probes. In addition, ignition and extinction phenomena were recorded and interpreted with the aid of a heat balance at the surface and a previous flow-field analysis of the stagnation-point boundary layer. From the experimental and theoretical results, conclusions were drawn concerning the surface chemical-kinetic mechanisms and values of the elementary rate parameters that are consistent with the observations. In particular, the activation energy for the surface oxidation step H + OH → H 2O is found to be appreciably less at these high surface coverages than in the low-coverage limit.

  12. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunming, E-mail: zcm1229@126.com [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Sunvim Grp Co Ltd, Gaomi 261500 (China); Zhao, Meihua; Wang, Libing; Qu, Lijun [College of Textiles and Clothing, Qingdao University, Qingdao 266071 (China); Men, Yajing [Sunvim Grp Co Ltd, Gaomi 261500 (China)

    2017-04-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  13. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    International Nuclear Information System (INIS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-01-01

    Highlights: • Air/He plasma gave hydrophilicity on polyester surface and decreased contact angle to 18°. • The roughness of polyester increased and pit-like structures appeared on the surface after plasma treatment. • XPS confirmed the generation of new functional groups on polyester fabric. • The improved pigment color yield and anti-bleeding performance were contributed by the alteration of pigment adhesion. • The air/He plasma was more effective than air plasma at the same treatment time. - Abstract: Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(C=O, C−OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  14. Effect of electrode configuration on the uniformity of atmospheric pressure surface dielectric barrier air micro-discharge

    Science.gov (United States)

    Xia, Yang; Bi, Zhenhua; Qi, Zhihua; Ji, Longfei; Zhao, Yao; Chang, Xuewei; Wang, Wenchun; Liu, Dongping

    2018-02-01

    The electrode configuration of atmospheric pressure air discharge is one of the key elements that have significant effects on the discharge properties. In this study, double-sided printed circuit boards with square-shaped lattice structure are used to generate surface dielectric barrier air micro-discharge (SDBAMD) at atmospheric pressure. The effects of the lattice width on the discharge properties are reported. The uniformity of the SDBAMD is evaluated by adopting the digital image processing method. Our measurements show that the power and ignition voltage of the SDBAMD significantly depended on the configuration of the grounded electrode. The digital image processing results show that the uniformity of the SDBAMD is severely affected by the lattice width, and the most uniform discharge is achieved at the lattice width of 2.0 mm. The numerical model based on COMSOL demonstrated that increasing the lattice width can lead to an increase in the electric field in the vicinity of the grounded electrode and a decrease in the lattice center. Furthermore, our analysis suggests that the different electrode configurations can change the interaction between the space charges during the discharge, which ultimately affects the uniformity of the SDBAMD.

  15. A new approach to surface activation of porous nanomaterials using non-thermal helium atmospheric pressure plasma jet treatment.

    Science.gov (United States)

    Duriyasart, Farkfun; Ohtani, Masataka; Oh, Jun-Seok; Hatta, Akimitsu; Kobiro, Kazuya

    2017-06-20

    Non-thermal helium atmospheric pressure plasma jet treatment is applied to the surface activation of porous TiO 2 nanoparticle assemblies. Treatment conditions such as the working distance of the plasma discharge, helium gas flow rate, and treatment time are optimized for effective removal of contaminants from the assembly surface. Laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is applied to detect trace amounts of contaminants on assembly surfaces. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations confirm that the nanoparticle assemblies retain their original perfect spherical structures as well as their ultra-fine convex-concave nano-surfaces even after the plasma jet treatment. N 2 adsorption/desorption and X-ray diffraction (XRD) measurements show no significant changes in their BET specific surface areas and crystal structures, respectively. The plasma jet-treated TiO 2 nanoparticle assemblies show a 3.8 fold improvement in their reaction rate constants for methylene blue degradation and a 2 fold enhancement of their photocurrents under UV irradiation when compared with untreated TiO 2 .

  16. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    International Nuclear Information System (INIS)

    Jung, Satbyoul; Kim, Hyungdae

    2016-01-01

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  17. Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae, E-mail: hdkims@khu.ac.kr

    2016-08-15

    Highlights: • Effects of surface inclination on pool boiling were experimentally examined. • Heat transfer and major bubble parameters were simultaneously measured. • A modified wall boiling model considering bubble merging was developed. • The presented model reasonably predicted pool boiling heat transfer on inclined surfaces. - Abstract: The basic wall boiling model widely used in computation fluid dynamics codes gives no regard to influences of surface orientation upon boiling mechanism. This study aims at examining the effects of surface orientation on wall heat flux and bubble parameters in pool nucleate boiling and incorporating those into the wall boiling model. Boiling experiments on a flat plate heater submerged in a pool of saturated water were conducted under atmospheric pressure. Relevant bubble parameters as well as boiling heat transfer characteristics were simultaneously measured using a unique optical setup integrating shadowgraph, total reflection and infrared thermometry techniques. It was observed that as an upward-facing heater surface with a constant wall superheat of 7.5 °C inclines from horizontal towards vertical, the heat flux significantly increased; nucleation site density increased intensively at the upper part of the heater surface where thermal boundary layer might become thickened; isolated boiling bubbles tend to slide up due to buoyancy and coalesce with each other, thus forming one single large bubble. Such observations on the wall heat flux and bubble parameters according to surface orientation could not be predicted by the present basic wall boiling model only centered with isolated bubbles. A modified wall boiling model incorporating the effects of merging of isolated bubbles on an inclined surface was proposed. The model reasonably predicted the experimental data on various orientation angles.

  18. Sterilization and Decontamination of Surfaces Contaminated With Biological and Chemical Warfare Agents Using Atmospheric Pressure Plasma Discharges

    National Research Council Canada - National Science Library

    Garate, Eusebio

    1999-01-01

    ... based on the application of an atmospheric pressure plasma. We used both a DC corona and dielectric barrier discharge for the sterilization tests which were conducted on a variety of substrates including metals and chemically resistant fabrics...

  19. Surface Modification of Polypropylene Microporous Membrane by Atmospheric-Pressure Plasma Immobilization of N,N-dimethylamino Ethyl Methacrylate

    International Nuclear Information System (INIS)

    Zhong Shaofeng

    2010-01-01

    Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,N-dimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.

  20. Method for atmospheric pressure reactive atom plasma processing for surface modification

    Science.gov (United States)

    Carr, Jeffrey W [Livermore, CA

    2009-09-22

    Reactive atom plasma processing can be used to shape, polish, planarize and clean the surfaces of difficult materials with minimal subsurface damage. The apparatus and methods use a plasma torch, such as a conventional ICP torch. The workpiece and plasma torch are moved with respect to each other, whether by translating and/or rotating the workpiece, the plasma, or both. The plasma discharge from the torch can be used to shape, planarize, polish, and/or clean the surface of the workpiece, as well as to thin the workpiece. The processing may cause minimal or no damage to the workpiece underneath the surface, and may involve removing material from the surface of the workpiece.

  1. Computational model of the interaction of a helium atmospheric-pressure jet with a dielectric surface

    Science.gov (United States)

    Hasan, M. I.; Bradley, J. W.

    2015-11-01

    Using a time-dependent two-dimensional axisymmetric fluid model the interaction of a plasma jet with a dielectric surface has been studied. The model is solved for two consecutive periods of a positive unipolar pulsed waveform. The study concentrates on determining the fluxes of the main oxygen ion species, \\text{O}2+ , \\text{O}2- and the total accumulated charge on the surface. Approaching the dielectric surface, the streamer head is seen to divert its direction of propagation, spreading out radially approximately 0.2 mm above the dielectric surface. For \\text{O}2+ generated near the streamer head, this leads to a maximum in their flux to the surface which moves radially outwards with the streamer propagation, driven by the applied electric field in pulse on-time. In the off-time, the flux of \\text{O}2+ drops by at least two orders of magnitude. As a result, the total number of \\text{O}2+ ions arriving at the surface over one entire pulse period (fluence) has an annular shape limited by the effective contact area of the streamer on the surface. In contrast \\text{O}2- ions generated in the pulse on-time do not reach the surface due to the direction of the applied electric field. In the off-time, \\text{O}2- ions generated at the edges of the deformed streamer are pushed by the accumulated surface charge outwards. As a result, the \\text{O}2- fluence has an annular structure with its maximum being outside the area of the dielectric surface covered by the plasma channel. Solving for the second pulse period shows small changes in the predicted fluences, with largest difference seen with \\text{O}2- . We see that increasing the flow rate (by a factor of three) shifts the position of the maximum fluence of \\text{O}2+ outwards, and decreasing the \\text{O}2- fluence in the second pulse period.

  2. Atmospheric pressure PECVD nanoparticles: mechanism of nanoparticle self-organisation into micron sized fractal clusters on a solid surface.

    Science.gov (United States)

    Mishin, M V; Zamotin, K Y; Protopopova, V S; Alexandrov, S E

    2015-03-21

    This paper covers the results from a study of the formation mechanism of fractal clusters from nanoparticles synthesised in atmospheric pressure radio frequency discharge. Two-dimensional structures with random configuration and self-similarity properties are formed by nanoparticles on a solid substrate surface. The typical linear dimensions of such structures are in the micron range. On the basis of the previously demonstrated experimental results, a physico-mathematical model of the nanoparticle self-organisation was developed. The physical model includes the electrical charge effect of the deposit surface, the spatial distribution of the surface electrical potential and the topography rearrangement phenomenon under the arising electrostatic forces. The threshold character of the agglomeration process initiation was found. The dependence of the formed structure topography on the character of the electrical potential change was demonstrated. The requisite conditions for the classical fractal formation were revealed. The results from the computational simulation, which was conducted with the use of fractal analysis, indicate a high level of coincidence with the experimental results.

  3. Modification of glassy carbon surfaces by atmospheric pressure cold plasma torch

    DEFF Research Database (Denmark)

    Mortensen, Henrik Junge; Kusano, Yukihiro; Leipold, Frank

    2006-01-01

    The effect of plasma treatment on glassy carbon (GC) surfaces was studied with adhesion improvement in mind. A newly constructed remote plasma source was used to treat GC plates. Pure He and a dilute NH3/He mixture were used as feed gases. Optical emission spectroscopy was performed for plasma...

  4. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma.

    Science.gov (United States)

    Qian, Kun; Pan, Hong; Li, Yinglong; Wang, Guomin; Zhang, Jue; Pan, Jie

    2016-01-01

    The changes of denture base acrylic resin surface properties under cold plasma and the relationships with time were investigated. Cold plasma treated the specimens for 30 s, 60 s, 90 s, and 120 s, respectively. Water contact angles were measured immediately after the treatment, 48 h, 15 days and 30 days later. Surface roughness was measured with 3-D laser scanning microscope. Candida albicans adherence was evaluated by CFU counting. Chemical composition was monitored by X-ray photoelectron spectroscopy analysis. Water contact angle reduced after treated for 30 s. No changes were observed with time prolonged, except the durability. There were no differences in roughness among all groups. However, treatment groups showed significantly lower C. albicans adherence. XPS demonstrated a decrease in C/O, and this reduction was affected by treatment time. Cold plasma was an effective means of increasing hydrophilicity of acrylic resin and reducing C. albicans adherence without affecting physical properties.

  5. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Gordeev, I.; Choukourov, A.; Šimek, Milan; Prukner, Václav; Biederman, H.

    2012-01-01

    Roč. 9, č. 8 (2012), s. 782-791 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : fibrinogen * non-fouling properties * PEO * plasma polymerization * surface dielectric barrier discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012

  6. Atmospheric Pressure Indicator.

    Science.gov (United States)

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  7. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  8. Numerical Investigation of Scattering from a Surface Dielectric Barrier Discharge Actuator under Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Yuna Kim

    2018-01-01

    Full Text Available Surface dielectric barrier discharge (SDBD, which is widely used to control turbulence in aerodynamics, has a significant effect on the radar cross-section (RCS. A four-way linearly synthesized SDBD air plasma actuator is designed to bolster the plasma effects on electromagnetic waves. The diffraction angle is calculated to predict the RCS because of the periodic structure of staggered electrodes. The simplified plasma modeling is utilized to calculate the inhomogeneous surface plasma distribution. Monostatic RCS shows the diffraction in the plane perpendicular to the electrode array and the notable distortion by plasma. In comparison, the overall pattern is maintained in the parallel plane with minor plasma effects. The trends also appear in the bistatic RCS, which has a significant difference in the observation plane perpendicular to the electrodes. The peaks by Bragg’s diffraction are shown, and the RCS is reduced by 10 dB in a certain range by the plasma effect. The diffraction caused by the actuator and the inhomogeneous air plasma should be considered in designing an SDBD actuator for a wide range of application.

  9. Atmospheric pressure argon surface discharges propagated in long tubes: physical characterization and application to bio-decontamination

    International Nuclear Information System (INIS)

    Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J; Odic, Emmanuel; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O; DuBow, Michael S

    2015-01-01

    Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H 2 O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ∼5.5 and ∼5 log 10 reductions were observed for E. coli DH-1 bacteria (from 10 6 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H 2 O 2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C; the contribution of heating, along with that of H 2 O 2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions. (paper)

  10. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    Science.gov (United States)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  11. Optimization of micropipette fabrication by laser micromachining for application in an ultrafine atmospheric pressure plasma jet using response surface methodology

    International Nuclear Information System (INIS)

    Wang, Tao; Liu, Jingquan; Yang, Bin; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2016-01-01

    The optimization of the laser micromachining process for special tapered micropipettes was investigated using response surface methodology. Three process parameters for the CO 2 laser-based micropipette puller (P-2000, Sutter Instrument) were chosen as variables, namely heat, velocity and pull. The targeted length L TVS of the tapered variant section with a tip diameter of 10 μ m was taken as a response. The optimum process parameters with L TVS of 7.3 mm were determined by analyzing the response surface three-dimension surface plots. The central composite design was selected to optimize the process variables, and the experimental data were fitted into a reduced cubic polynomial model. The high R 2 value (99.66%) and low coefficient of variation (0.73%) indicated the statistical significance of the model and good precision for the experiment. The optimization result showed that the best parameters were with the heat, velocity and pull values of 850, 53 and 170, respectively. The result was verified by a CO 2 laser-based micropipette puller three times with length L TVS at 7.26 mm, 7.35 mm and 7.36 mm with the same optimized parameters. Then, the application to the ultrafine atmospheric pressure He/O 2 plasma jets was carried out and micro-hole etching of the parylene-C film was realized with length L TVS at 6.29 mm, 7.35 mm and 8.02 mm. The results showed that the micro-plasma jet with an L TVS of 7.35 mm had the minimum applied voltage of 12.7 kV and the minimum micro-etching diameter of 45 μ m with the deepest etching depth of 2.8 μ m. (paper)

  12. Atmospheric Pressure During Landing

    Science.gov (United States)

    1997-01-01

    This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

  13. N-2(A(3)Sigma(+)(u)) time evolution in N-2 atmospheric pressure surface dielectric barrier discharge driven by ac voltage under modulated regime

    Czech Academy of Sciences Publication Activity Database

    Ambrico, P. F.; Šimek, Milan; Dilecce, G.; De Benedictis, S.

    2009-01-01

    Roč. 94, č. 23 (2009), s. 231503-231503 ISSN 0003-6951 R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : Atmospheric pressure surface-DBD * Nitrogen metastable * LIF * Optical emission spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.554, year: 2009

  14. Ion activation energy delivered to wounds by atmospheric pressure dielectric-barrier discharges: sputtering of lipid-like surfaces

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J; Ning Ning; Graves, David B

    2012-01-01

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to production of UV photon fluxes, electric fields and beneficial radicals which intersect with biological reaction chains, and to energetic ions bombarding the surface. In this paper we report on results from a computational investigation of the ion energy and angular distributions (IEADs) in a dielectric-barrier discharge sustained in air incident directly on cell membranes for small dry and wet wounds in human skin. We found that ion energies in excess of 20-30 eV can be delivered onto cell membranes of dry wounds, and up to 60 eV onto the liquid interface of the wet wound. The details of the IEADs depend on the orientation of the cell membrane and on the relative location of the plasma streamer to the wound. Using results from a molecular dynamics simulation of ion sputter probabilities of typical lipid-like material, we show that prolonged exposure of the cell membrane to such IEADs can produce significant carbon removal. (paper)

  15. Ion activation energy delivered to wounds by atmospheric pressure dielectric-barrier discharges: sputtering of lipid-like surfaces

    Science.gov (United States)

    Babaeva, Natalia Yu; Ning, Ning; Graves, David B.; Kushner, Mark J.

    2012-03-01

    The application of atmospheric pressure plasmas to human tissue has been shown to have therapeutic effects for wound healing and in treatment of skin diseases. These effects are attributed to production of UV photon fluxes, electric fields and beneficial radicals which intersect with biological reaction chains, and to energetic ions bombarding the surface. In this paper we report on results from a computational investigation of the ion energy and angular distributions (IEADs) in a dielectric-barrier discharge sustained in air incident directly on cell membranes for small dry and wet wounds in human skin. We found that ion energies in excess of 20-30 eV can be delivered onto cell membranes of dry wounds, and up to 60 eV onto the liquid interface of the wet wound. The details of the IEADs depend on the orientation of the cell membrane and on the relative location of the plasma streamer to the wound. Using results from a molecular dynamics simulation of ion sputter probabilities of typical lipid-like material, we show that prolonged exposure of the cell membrane to such IEADs can produce significant carbon removal.

  16. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    Science.gov (United States)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  17. Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review

    DEFF Research Database (Denmark)

    Kusano, Yukihiro

    2014-01-01

    Atmospheric pressure plasma processing has attracted significant interests over decades due to its usefulness and a variety of applications. Adhesion improvement of polymer surfaces is among the most important applications of atmospheric pressure plasma treatment. Reflecting recent significant...... development of the atmospheric pressure plasma processing, this work presents its fundamental aspects, applications, and characterization techniques relevant to adhesion....

  18. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    Science.gov (United States)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  19. Collaborative Research: Atmospheric Pressure Plasma-Biomaterial Surface Interactions - Bridging Understanding of APP Sources to Rational Modification of Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. of California, Berkeley, CA (United States)

    2017-11-24

    The overriding objective of this work is to bridge the gap between understanding of atmospheric pressure plasma (APP) sources and predictive chemical modifications of biomolecules. A key aspect of this problem is to understand what oxidizing species are created in water adjacent to APP jets that would ultimately affect aqueous biomolecules. We report the production of highly oxidative species in solutions exposed to a self-pulsed corona discharge in air. We examine how the properties of the target solution (pH, conductivity) and the discharge power affect the discharge stability and the production of H2O2. Indigo carmine, a common organic dye, is used as an indicator of oxidative strength and in particular, hydroxyl radical (OH•) production. The observed rate of indigo oxidation in contact with the discharge far exceeds that predicted from reactions based on concentrations of species measured in the bulk solution. The generation of H2O2 and the oxidation of indigo carmine indicate a high concentration of highly oxidizing species such as OH• at the plasma-liquid interface. These results indicate that reactions at the air plasma-liquid interface play a dominant role in species oxidation during direct non-equilibrium atmospheric pressure plasma (NE-APP) treatment.

  20. Atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  1. Planar time-resolved PIV for velocity and pressure retrieval in atmospheric boundary layer over surface waves.

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Bopp, Maximilian; Caulliez, Guillemette

    2017-04-01

    Air-sea coupling in general is important for weather, climate, fluxes. Wind wave source is crucially important for surface waves' modeling. But the wind-wave growth rate is strongly uncertain. Using direct measurements of pressure by wave-following Elliott probe [1] showed, weak and indefinite dependence of wind-wave growth rate on the wave steepness, while Grare et.al. [2] discuss the limitations of direct measurements of pressure associated with the inability to measure the pressure close to the surface by contact methods. Recently non-invasive methods for determining the pressure on the basis of technology of time-resolved PIV are actively developed [3]. Retrieving air flow velocities by 2D PIV techniques was started from Reul et al [4]. The first attempt for retrieving wind pressure field of waves in the laboratory tank from the time-resolved PIV measurements was done in [5]. The experiments were performed at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m). For 18 regimes with wind speed up to 14 m/s including presence of puddle waves, a combination of time resolved PIV technique and optical measurements of water surface form was applied to detailed investigation of the characteristics of the wind flow over the water surface. Ammonium chloride smoke was used for flow visualization illuminated by two 6 Wt blue diode lasers combined into a vertical laser plane. Particle movement was captured with high-speed camera using Scheimpflug technique (up to 20 kHz frame rate with 4-frame bursts, spatial resolution about 190 μm, field of view 314x12 mm). Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave form. The resulting time resolved instantaneous velocity fields on regular grid allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. The average wind velocity patterns were

  2. Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum

    Science.gov (United States)

    Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun

    2017-08-01

    For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF4) mixtures are used as working gases with the concentration of CF4 ranging 0%-5%, and when CF4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.

  3. Surface modification of epoxy resin using He/CF{sub 4} atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun, E-mail: gjzhang@xjtu.edu.cn

    2017-08-31

    Highlights: • Epoxy resin (EP) samples are treated by atmospheric pressures plasma jet (APPJ). • Flashover withstanding characteristics of epoxy resin samples are improved a lot after APPJ treatment. • Appropriate treatment conditions are important to modify EP samples by APPJ. • Both physical and chemical effects lead to the enhancement of flashover strength. - Abstract: For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF{sub 4}) mixtures are used as working gases with the concentration of CF{sub 4} ranging 0%-5%, and when CF{sub 4} is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.

  4. Surface modification of epoxy resin using He/CF4 atmospheric pressure plasma jet for flashover withstanding characteristics improvement in vacuum

    International Nuclear Information System (INIS)

    Chen, Sile; Wang, Shuai; Wang, Yibo; Guo, Baohong; Li, Guoqiang; Chang, Zhengshi; Zhang, Guan-Jun

    2017-01-01

    Highlights: • Epoxy resin (EP) samples are treated by atmospheric pressures plasma jet (APPJ). • Flashover withstanding characteristics of epoxy resin samples are improved a lot after APPJ treatment. • Appropriate treatment conditions are important to modify EP samples by APPJ. • Both physical and chemical effects lead to the enhancement of flashover strength. - Abstract: For enhancing the surface electric withstanding strength of insulating materials, epoxy resin (EP) samples are treated by atmospheric pressure plasma jet (APPJ) with different time interval from 0 to 300s. Helium (He) and tetrafluoromethane (CF 4 ) mixtures are used as working gases with the concentration of CF 4 ranging 0%-5%, and when CF 4 is ∼3%, the APPJ exhibits an optimal steady state. The flashover withstanding characteristics of modified EP in vacuum are greatly improved under appropriate APPJ treatment conditions. The surface properties of EP samples are evaluated by surface roughness, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. It is considered that both physical and chemical effects lead to the enhancement of flashover strength. The physical effect is reflected in the increase of surface roughness, while the chemical effect is reflected in the graft of fluorine groups.

  5. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  6. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Molnar Imola; Papp Judit; Simon Alpar; Anghel Sorin Dan

    2013-01-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  7. Martian Atmospheric Pressure Static Charge Elimination Tool

    Science.gov (United States)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  8. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    Science.gov (United States)

    Jofre-Reche, José Antonio; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh; Martín-Martínez, José Miguel

    2016-08-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery.

  9. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  10. Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing

    Science.gov (United States)

    Zhang, Chunming; Wang, Libing; Yu, Miao; Qu, Lijun; Men, Yajing; Zhang, Xiangwu

    2018-03-01

    Pigment inkjet printing has highlighted the advantages of cost-effective, short production cycle and environment-friendly. However, patterns directly printed with pigment inks usually have low color yields and blurry images which are caused by bleeding phenomenon. This work presents an atmospheric-pressure plasma method for improving the pigment-based ink-jet printing performance of silk fabrics. The effects of surface changes induced are discussed, with data derived from morphological study by atomic force microscopy (AFM), chemical analysis using X-ray photoelectron spectroscopy (XPS) and contact angle measurement. Ink-jet printing experiments were conducted to study the influence of measured changes on anti-bleeding property and color strength of treated and original samples. The ageing experiment indicates that the modified silk fabrics should be printed within 24 h after plasma processing for maximum color yields. This study explores an effective approach for the atmospheric-pressure plasma, which can provide its significant use in improving the surface properties and ink-jet printing performance of fabrics.

  11. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Ram Kumar, M.C.; Arun Kumar, A. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T By Pass, Chinniyam Palayam (Post), Coimbatore 641062 (India); Padmanabhan, P.V.A. [PSN College of Engineering and Technology, Tirunelveli 627 152 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Bah, M.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, M.; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-05-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  12. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    International Nuclear Information System (INIS)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M.C.; Arun Kumar, A.; Padmanabhan, P.V.A.; Deshmukh, R.R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A.S.

    2016-01-01

    Graphical abstract: - Highlights: • Developed low cost cold atmospheric plasma reactor for plasma polymerization technique. • Surface of the PP film was modified by grafting of AAc and PEG by CAPP polymerization. • Biomolecules of chitosan, insulin and heparin were immobilized on surface of PEG-AAc grafted PP films. • The surface modified PP films were characterized by various techniques. • The plasma polymerized and immobilized film reveals substantial blood compatibility. - Abstract: Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as O−C=O, C=O, C−N and S−S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was

  13. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Fatemeh [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Physics Department, Shahid Beheshti University G.C., Evin, Tehran (Iran, Islamic Republic of); Laser-Plasma Research Institute, Shahid Beheshti University G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Sharifian, M. [Faculty of Physics, Science Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2016-01-01

    Highlights: • Cell viability and antibacterial activity was investigated on PMMA modified by DBD. • Treated-samples got hydrophilic by introducing oxygen-containing functional groups. • Mouse embryonic fibroblast (MEF) adhesion was significantly enhanced. • Samples exhibited acceptable antibacterial activity against E. Coli. • Optimum antibacterial performance and cell attachment were obtained. - Abstract: This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid–base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was

  14. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Choi, Yu-Ri; Kwon, Jae-Sung; Song, Doo-Hoon; Choi, Eun Ha; Lee, Yong-Keun; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2013-01-01

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  15. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Ri [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kwon, Jae-Sung [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Song, Doo-Hoon [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Choi, Eun Ha [Plasma Bioscience Research Center Kwangwoon University, Seoul 139-701, 447-1 Wokgye-Dong, Nowon-Gu, Seoul (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn, E-mail: kmkim@yuhs.ac [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2013-11-29

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering.

  16. Surface modification of electrospun PVA/chitosan nanofibers by dielectric barrier discharge plasma at atmospheric pressure and studies of their mechanical properties and biocompatibility.

    Science.gov (United States)

    Das, Punamshree; Ojah, Namita; Kandimalla, Raghuram; Mohan, Kiranjyoti; Gogoi, Dolly; Dolui, Swapan Kumar; Choudhury, Arup Jyoti

    2018-03-22

    In this paper, surface of electrospun PVA/Cs nanofibers is modified using dielectric barrier discharge (DBD) plasma and the relationship between the observed mechanical properties and biocompatibility of the nanofibers and plasma-induced surface properties is discussed. Plasma treatment of electrospun PVA/Cs nanofibers is carried out with both inert (argon, Ar) and reactive (oxygen, O 2 ) gases at atmospheric pressure. Incorporation of oxygen-containing polar functional groups on the surface of Ar-plasma treated (PVA/Cs/Ar) and O 2 -plasma treated (PVA/Cs/O 2 ) nanofibers and increase in surface roughness contribute to the improvement of surface wettability and the decrease of contact angle with water of the nanofibers. Both PVA/Cs/Ar and PVA/Cs/O 2 nanofibers show high tensile strength (11.6-15.6%) and Young's modulus (33.8-37.3%) as compared to the untreated one. Experimental results show that in terms of haemolytic activity the PVA/Cs/Ar and PVA/Cs/O 2 nanofibers do not cause structural changes of blood cells and meet the biocompatibility requirements for blood-contacting polymeric materials. MTT cell viability results further reveals improvement in biocompatibility of PVA/Cs nanofibers after Ar and O 2 plasma treatment. The results suggest that DBD plasma treated electrospun PVA/Cs nanofibers have the potential to be used as wound dressing and scaffolds for tissue engineering. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Surface Modification of Polyethylene Films using Atmospheric

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    ABSTRACT. An atmospheric-pressure plasma jet (APPJ) is used to increase the wettability of polyethylene polymer films. Reduction in contact angle from 94.32 to 58.33 degrees was measured for treatment times of 1 - 5 seconds. Contact angle reductions of PE as a function of treatment time with APPJ and PE surface at ...

  18. Surface modification of polyethylene films using atmospheric ...

    African Journals Online (AJOL)

    An atmospheric-pressure plasma jet (APPJ) is used to increase the wettability of polyethylene polymer films. Reduction in contact angle from 94.32 to 58.33 degrees was measured for treatment times of 1 - 5 seconds. Contact angle reductions of PE as a function of treatment time with APPJ and PE surface at various oxygen ...

  19. The Dawn of Atmospheric-pressure Plasma

    Science.gov (United States)

    Ono, Shigeru

    As never before, atmospheric-pressure plasma technology is poised to transform the world of plasma processing. Many corporate and academic researchers are betting that the future holds tremendous opportunity for atmospheric-pressure plasma, which offers low cost and sometimes surprisingly high performance. A recent example of research is presented.

  20. An Atmospheric Pressure Ping-Pong "Ballometer"

    Science.gov (United States)

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  1. Surface Modification of Titanium by Atmospheric Pressure Plasma Treatment for Adhesive Bonding and Its Application to Aviation and Space

    NARCIS (Netherlands)

    Akram, M.; Bhowmik, S.; Jansen, K.; Ernst, L.J.

    2010-01-01

    Titanium is one of the most effective materials for structural application of space craft and aviation. Titanium alloys are widely used in solid rocket booster cases, guidance control pressure vessel and other different applications demanding light weight and reliability. Aerospace industry is also

  2. Tailoring the surface properties of polypropylene films through cold atmospheric pressure plasma (CAPP) assisted polymerization and immobilization of biomolecules for enhancement of anti-coagulation activity

    Science.gov (United States)

    Navaneetha Pandiyaraj, K.; Ram Kumar, M. C.; Arun Kumar, A.; Padmanabhan, P. V. A.; Deshmukh, R. R.; Bah, M.; Ismat Shah, S.; Su, Pi-Guey; Halleluyah, M.; Halim, A. S.

    2016-05-01

    Enhancement of anti-thrombogenic properties of polypropylene (PP) to avert the adsorption of plasma proteins (fibrinogen and albumin), adhesion and activation of the platelets are very important for vast biomedical applications. The cold atmospheric pressure plasma (CAPP) assisted polymerization has potential to create the specific functional groups such as Osbnd Cdbnd O, Cdbnd O, Csbnd N and Ssbnd S. on the surface of polymeric films using selective precursor in vapour phase to enhance anti-thrombogenic properties. Such functionalized polymeric surfaces would be suitable for various biomedical applications especially to improve the blood compatibility. The eventual aspiration of the present investigation is to develop the biofunctional coating onto the surface of PP films using acrylic acid (AAc) and polyethylene glycol (PEG) as a precursor in a vapour phase by incorporating specific functional groups for immobilization of biomolecules such as heparin (HEP), chitosan (CHI) and insulin (INS) on the surface of plasma modified PP films. The surface properties such as hydrophilicity, chemical composition, surface topography of the surface modified PP films were analyzed by contact angle (CA), Fourier transform infrared spectroscopy (FTIR), X-ray photo electron spectroscopy (XPS) and atomic force microscopy (AFM). Furthermore the anti-thrombogenic properties of the surface modified PP films were studied by in vitro tests which include platelet adhesion and protein adsorption analysis. It was found that the anti-thrombogenic properties of the PP films are effectively controlled by the CAPP grafting of AAc and PEG followed by immobilization of biomolecules of heparin, chitosan and insulin. The grafting and immobilization was confirmed by FTIR and XPS through the recognition of specific functional groups such as COOH, Csbnd O, Ssbnd S and Csbnd N. on the surface of PP film. Furthermore, the surface morphology and hydrophilic nature of the PP films also tailored

  3. Atmospheric pressure H20 plasma treatment of polyester cord threads

    International Nuclear Information System (INIS)

    Simor, M.; Krump, H.; Hudec, I.; Rahel, J.; Brablec, A.; Cernak, M.

    2004-01-01

    Polyester cord threads, which are used as a reinforcing materials of rubber blend, have been treated in atmospheric-pressure H 2 0 plasma in order to enhance their adhesion to rubber. The atmospheric-pressure H 2 0 plasma was generated in an underwater diaphragm discharge. The plasma treatment resulted in approximately 100% improvement in the adhesion. Scanning electron microscopy investigation indicates that not only introduced surface polar groups but also increased surface area of the fibres due to a fibre surface roughening are responsible for the improved adhesive strength (Authors)

  4. The dynamics of ozone generation and mode transition in air surface micro-discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Shimizu, Tetsuji; Zimmermann, Julia L; Morfill, Gregor E; Sakiyama, Yukinori; Graves, David B

    2012-01-01

    We present the transient, dynamic behavior of ozone production in surface micro-discharge (SMD) plasma in ambient air. Ultraviolet absorption spectroscopy at 254 nm was used to measure the time development of ozone density in a confined volume. We observed that ozone density increases monotonically over 1000 ppm for at least a few minutes when the input power is lower than ∼0.1 W/cm 2 . Interestingly, when input power is higher than ∼0.1 W/cm 2 , ozone density starts to decrease in a few tens of seconds at a constant power density, showing a peak ozone density. A model calculation suggests that the ozone depletion at higher power density is caused by quenching reactions with nitrogen oxides that are in turn created by vibrationally excited nitrogen molecules reacting with O atoms. The observed mode transition is significantly different from classical ozone reactors in that the transition takes place over time at a constant power. In addition, we observed a positive correlation between time-averaged ozone density and the inactivation rate of Escherichia coli on adjacent agar plates, suggesting that ozone plays a key role in inactivating bacteria under the conditions considered here. (paper)

  5. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    The study is investigates modelling of land surfaceatmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  6. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  7. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    related to inaccurate land surface modelling, e.g. enhanced warm bias in warm dry summer months. Coupling the regional climate model to a hydrological model shows the potential of improving the surface flux simulations in dry periods and the 2 m air temperature in general. In the dry periods......The study is investigates modelling of land surfaceatmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...

  8. Atmospheric Pressure Glow Discharge with Liquid Electrode

    Science.gov (United States)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work

  9. The Photochemistry of Unprotected DNA and DNA inside Bacillus subtilis Spores Exposed to Simulated Martian Surface Conditions of Atmospheric Composition, Temperature, Pressure, and Solar Radiation.

    Science.gov (United States)

    Nicholson, Wayne L; Schuerger, Andrew C; Douki, Thierry

    2018-03-28

    DNA is considered a potential biomarker for life-detection experiments destined for Mars. Experiments were conducted to examine the photochemistry of bacterial DNA, either unprotected or within Bacillus subtilis spores, in response to exposure to simulated martian surface conditions consisting of the following: temperature (-10°C), pressure (0.7 kPa), atmospheric composition [CO 2 (95.54%), N 2 (2.7%), Ar (1.6%), O 2 (0.13%), and H 2 O (0.03%)], and UV-visible-near IR solar radiation spectrum (200-1100 nm) calibrated to 4 W/m 2 of UVC (200-280 nm). While the majority (99.9%) of viable spores deposited in multiple layers on spacecraft-qualified aluminum coupons were inactivated within 5 min, a detectable fraction survived for up to the equivalent of ∼115 martian sols. Spore photoproduct (SP) was the major lesion detected in spore DNA, with minor amounts of cyclobutane pyrimidine dimers (CPD), in the order TT CPD > TC CPD > CT CPD. In addition, the (6-4)TC, but not the (6-4)TT, photoproduct was detected in spore DNA. When unprotected DNA was exposed to simulated martian conditions, all photoproducts were detected. Surprisingly, the (6-4)TC photoproduct was the major photoproduct, followed by SP ∼ TT CPD > TC CPD > (6-4)TT > CT CPD > CC CPD. Differences in the photochemistry of unprotected DNA and spore DNA in response to simulated martian surface conditions versus laboratory conditions are reviewed and discussed. The results have implications for the planning of future life-detection experiments that use DNA as the target, and for the long-term persistence on Mars of forward contaminants or their DNA. Key Words: Bacillus subtilis-DNA-Mars-Photochemistry-Spore-Ultraviolet. Astrobiology 18, xxx-xxx.

  10. On-line solid phase extraction-liquid chromatography-tandem mass spectrometry for insect repellent residue analysis in surface waters using atmospheric pressure photoionization.

    Science.gov (United States)

    Molins-Delgado, Daniel; García-Sillero, Daniel; Díaz-Cruz, M Silvia; Barceló, Damià

    2018-04-06

    Insect repellents (IRs) are a group of organic chemicals whose function is to prevent the ability of insects of landing in a surface. These compounds have been found in the environment and may pose a risk to non-target organisms. In this study, an on-line solid phase extraction - high performance liquid chromatography-tandem mass spectrometry multiresidue method was developed using an atmospheric photoionization source (SPE-HPLC-(APPI)-MS/MS). The use of the APPI as an alternative ionization technique to electrospray (ESI) and atmospheric pressure chemical ionization (APCI) allowed expanding the range of analytical techniques suitable for the analysis of IRs, so far relied in gas chromatography. High sensitivity and precision was reached with method limits of quantification between 0.2 and 4.6 ng l -1 and interday and intraday precision equal or below 15%. The validated method was applied to the study of surface water samples from three European river basins with different flow regime (Adige River in Italy, Sava River in the Balkans, and Evrotas River in Greece). The results showed that two IRs (DEET and Bayrepel) were ubiquitous in the Sava and Evrotas basins, reaching concentrations as high as 105 μg l -1 of Bayrepel in the Sava River, and 5 μg l -1 of DEET in the Evrotas River. Densely populated areas and effluent waste waters are pointed out as the responsible for this pollution. In the alpine river Adige, only three samples showed low levels of IRs (6.01-37.8 ng l -1 ). The concentrations measured were used to perform an environmental risk assessment based on the hazard quotients (HQs) estimation approach by using the chronic and acute eco-toxicity data available. The results revealed that despite the high frequency and eventually high concentrations of these IRs determined in the three basins, only few sites were at risk, with 1 < HQs < 3.3. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. Special issue: diagnostics of atmospheric pressure microplasmas

    Science.gov (United States)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  12. Atmospheric Pressure Plasma Process And Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  13. Pluto's surface composition and atmosphere

    Science.gov (United States)

    Young, L. A.; Gladstone, R.; Summers, M. E.; Strobel, D. F.; Kammer, J.; Hinson, D. P.; Grundy, W. M.; Cruikshank, D. P.; Protopapa, S.; Schmitt, B.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    New Horizons studied Pluto's N2-dominated neutral atmosphere through radio (at 4.2 cm with the REX radio experiment), solar and stellar occultations and airglow (at 52-187 nm with the Alice ultraviolet spectrograph), and imaging (with the LORRI and MVIC visible-wavelength cameras). It studied the plasma environment and solar wind interaction with in situ instruments (PEPPSI and SWAP). Contemporaneous observations of Pluto's atmosphere from Earth included a ground-based stellar occultation and ALMA observations of gaseous CO and HCN. Joint analysis of these datasets reveal a variable boundary layer; a stable lower atmosphere; radiative heating and cooling; haze production and hydrocarbon chemistry; diffusive equilibrium; and slower-than-expected escape. New Horizons studied Pluto's surface composition with the LEISA near-infrared spectral imager from 1.25 to 2.5 micron. Additional compositional information at higher spatial resolution came from the MVIC 4-channel color imager, which included a channel centered at 0.89 micron specifically designed to detect solid CH4. These instruments allow mapping of the volatiles N2, CO, and CH4, the surface expression of the H2O bedrock, and the dark, reddish material presumed to be tholins. These observations reveal a large equatorial basin (informally named Sptunik Planitia), filled with N2 ice with minor amounts of CO and CH4, surrounded by hills of CH4 and H2O ice. Broadly speaking, composition outside of Sptunik Planitia follows latitudinal banding, with dark, mainly volatile free terrains near the equator, with N2, CO, and CH4 at mid-northern latitudes, and mainly CH4 at high northern latitudes. Deviations from these broad trends are seen, and point to complex surface-atmosphere interactions at diurnal, seasonal, perennial, and million-year timescales.

  14. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    Science.gov (United States)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  15. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  16. Diagnostics on an atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Niemi, K; Reuter, St; Schaper, L; Knake, N; Gathen, V Schulz-von der; Gans, T

    2007-01-01

    The atmospheric pressure plasma jet (APPJ) is a homogeneous non-equilibrium discharge at ambient pressure. It operates with a noble base gas and a percentage-volume admixture of a molecular gas. Applications of the discharge are mainly based on reactive species in the effluent. The effluent region of a discharge operated in helium with an oxygen admixture has been investigated. The optical emission from atomic oxygen decreases with distance from the discharge but can still be observed several centimetres in the effluent. Ground state atomic oxygen, measured using absolutely calibrated two-photon laser induced fluorescence spectroscopy, shows a similar behaviour. Detailed understanding of energy transport mechanisms requires investigations of the discharge volume and the effluent region. An atmospheric pressure plasma jet has been designed providing excellent diagnostics access and a simple geometry ideally suited for modelling and simulation. Laser spectroscopy and optical emission spectroscopy can be applied in the discharge volume and the effluent region

  17. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  18. Deposition of Poly(Ethylene Oxide)-Like Plasma Polymers on Inner Surfaces of Cavities by Means of Atmospheric-Pressure SDBD-Based Jet

    Czech Academy of Sciences Publication Activity Database

    Gordeev, Ivan; Šimek, Milan; Prukner, Václav; Artemenko, Anna; Kousal, J.; Nikitin, D.; Choukourov, A.; Biederman, H.

    2016-01-01

    Roč. 13, č. 8 (2016), s. 823-833 ISSN 1612-8850 R&D Projects: GA MŠk(CZ) LD13010 Grant - others:European Cooperation in Science and Technology(XE) COST MP1101 Program:Materials, Physical and Nanosciences COST Action MP1101 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Atmospheric Pressure Plasma jet * plasma polymerization * non-fouling properties * PEO-like coatings Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 2.846, year: 2016

  19. Large area atmospheric-pressure plasma jet

    Science.gov (United States)

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  20. The main properties of microwave argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Benova, E; Pencheva, M

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  1. Atmospheric pressure does not influence acute diverticular disease

    OpenAIRE

    Velayos Jiménez, Benito; Pons Renedo, Fernando; Feranández Salazar, Luis; Muñoz, María Fe; Olmo, Lourdes del; Almaraz Gómez, Ana; Beltrán de Heredia, Juan; Hernández González, José Manuel

    2013-01-01

    Producción Científica The article offers information on a study which examines the influence of atmospheric pressure on the development of acute diverticular disease. The value of atmospheric pressure and its daily trends in 2012 was collected to prove whether atmospheric pressure influence this disease by raising intra-diverticular pressure in days with higher atmospheric pressure. The study involved patients with acute diverticulitis who underwent computed tomography.

  2. Research on atmospheric pressure plasma processing sewage

    Science.gov (United States)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  3. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  4. Simulation of acoustic-gravity waves from atmospheric pressure variations and their influence on the high atmosphere.

    Science.gov (United States)

    Kurdyaeva, Yuliya; Kshevetskii, Sergey; Gavrilov, Nikolay

    2017-04-01

    The processes of heating/cooling gas during phase transitions of water are one of the most important energy sources of acoustic-gravity waves in the atmosphere. Meteorological wave sources are very diverse and have complex, evolving spatial structure. The available experimental data are usually not enough for a detailed description of these wave sources. Therefore, modeling of acoustic-gravity waves from meteorological sources is challenging. The waves propagated from meteorological sources affect the atmospheric pressure. The atmospheric pressure variations with frequencies of acoustic-gravity wave spectrum are well recorded with microbarographs. It is interesting to use these experimental data, atmospheric pressure variations, for simulation of acoustic-gravity waves in the atmosphere. The hydrodynamic problem of propagation of acoustic-gravity waves from atmospheric pressure variations given on the Earth's surface is set and studied. It is shown that the solution of this boundary problem is completely determined by the pressure field. The numerical method for solving the problem is suggested. The program is tested by comparison of numerical simulations with known analytical solutions. The simulation of acoustic-gravity waves propagated from atmospheric pressure variation experimentally observed with microbarographs is performed. The effects of waves generated by atmospheric pressure variations in the atmosphere are investigated.

  5. The first experiments on dielectric barrier discharge under atmospheric pressure

    International Nuclear Information System (INIS)

    Nob, Harada; Yusuke Watabe; Tsuyoshi Watanabe; Ikuo Oshio

    2002-01-01

    In order to obtain uniform and stable discharge plasma in atmospheric pressure, dielectric barrier discharge experiments were carried out. Main purpose is to examine the applicability of dielectric barrier discharge to production processes of semi-conductors. LSIs and flat display panels. In the experiments, at first, quite stable and uniform discharge was obtained at atmospheric pressure. Effects of applied voltage and frequency on plasma uniformity were studied. Improvement of discharge uniformity by introducing gas flow of helium or nitrogen between the discharge gap was observed. Finally, surface cleaning effect of the present plasma was confirmed by observing contact angle of liquid droplet. At least for cleaning process, possibility of application as process plasma was suggested

  6. Response of cyanobacteria to low atmosphere pressure

    Science.gov (United States)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  7. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration

    Directory of Open Access Journals (Sweden)

    Natalie R. Danna

    2015-01-01

    Full Text Available This study assessed the osseointegrative effects of atmospheric pressure plasma (APP surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti and calcium phosphate (CaP. Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total was placed in one radius of each of the seven male beagles for three weeks, and one implant from each group was placed in the contralateral radius for six weeks. After sacrifice, bone-to-implant contact (BIC and bone area fraction occupancy (BAFO were assessed. X-ray photoelectron spectroscopy showed decreased surface levels of carbon and increased Ti and oxygen, and calcium and oxygen, posttreatment for Ti and CaP surfaces, respectively. There was a significant (P<0.001 increase in BIC for APP-treated textured Ti surfaces at six weeks but not at three weeks or for CaP surfaces. There were no significant (P=0.57 differences for BAFO between treated and untreated surfaces for either material at either time point. This suggests that air-based APP surface treatment may improve osseointegration of textured Ti surfaces but not CaP surfaces. Studies optimizing APP parameters and applications are warranted.

  8. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration.

    Science.gov (United States)

    Danna, Natalie R; Beutel, Bryan G; Tovar, Nick; Witek, Lukasz; Marin, Charles; Bonfante, Estevam A; Granato, Rodrigo; Suzuki, Marcelo; Coelho, Paulo G

    2015-01-01

    This study assessed the osseointegrative effects of atmospheric pressure plasma (APP) surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti) and calcium phosphate (CaP). Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total) was placed in one radius of each of the seven male beagles for three weeks, and one implant from each group was placed in the contralateral radius for six weeks. After sacrifice, bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were assessed. X-ray photoelectron spectroscopy showed decreased surface levels of carbon and increased Ti and oxygen, and calcium and oxygen, posttreatment for Ti and CaP surfaces, respectively. There was a significant (P < 0.001) increase in BIC for APP-treated textured Ti surfaces at six weeks but not at three weeks or for CaP surfaces. There were no significant (P = 0.57) differences for BAFO between treated and untreated surfaces for either material at either time point. This suggests that air-based APP surface treatment may improve osseointegration of textured Ti surfaces but not CaP surfaces. Studies optimizing APP parameters and applications are warranted.

  9. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  10. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence.

    Science.gov (United States)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ∼100 μm scale and ∼20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (∼ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ∼3%.

  11. Martian thermal tides from the surface to the atmosphere

    Science.gov (United States)

    Holstein-Rathlou, C.; Withers, P.

    2017-12-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides. Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography. In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time. 2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from "appropriately quiet" Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the

  12. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    Science.gov (United States)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  13. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  14. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    Science.gov (United States)

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O 2 ), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10 1 -10 6 CFU/cm 2 ). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10 4 CFU/cm 2 inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO 2 mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mass analysis of an atmospheric pressure plasma needle discharge

    International Nuclear Information System (INIS)

    Malovic, G; Puac, N; Lazovic, S; Petrovic, Z

    2010-01-01

    Mass spectrometric measurements of a plasma needle (an example of atmospheric pressure non-equilibrium plasma source) were made for neutrals and ions. The measurements were performed for the same geometry as the standard plasma needles albeit for a somewhat increased gas flow. We discuss some of the problems of performing mass analysis at atmospheric pressures. The yields of N, O and NO radicals from the plasma needle were determined for different powers of the RF source and different flow rates of working gas. Positive ions generated by the plasma needle itself were measured for the first time. Significant conversion of feed gases (nitrogen and oxygen) into radicals and ions of N and O, and NO was observed as well as depletion of atomic radicals N and O which in chemical reactions form more complex molecules. Biomedical and nanotechnology applications of atmospheric pressure plasmas require a detailed understanding of the source, and mass analysis is perhaps the best technique to focus on chemical kinetics and in many ways interaction with surfaces.

  16. Contact angle analysis of low-temperature cyclonic atmospheric pressure plasma modified polyethylene terephthalate

    International Nuclear Information System (INIS)

    Huang, Chun; Chang, Ya-Chi; Wu, Shin-Yi

    2010-01-01

    Polyethylene terephthalate (PET) films are modified by cyclonic atmospheric pressure plasma. The experimentally measured gas phase temperature was around 30 o C to 90 o C, indicating that this cyclonic atmospheric pressure plasma can treat polymers without unfavorable thermal effects. The surface properties of cyclonic atmospheric pressure plasma-treated PET films were examined by the static contact angle measurements. The influences of plasma conditions such as treatment time, plasma power, nozzle distance, and gas flow rate on the PET surface properties were studied. It was found that such cyclonic atmospheric pressure plasma is very effective in PET surface modification, the reduced water contact angle was observed from 74 o to less than 37 o with only 10 s plasma treatment. The chemical composition of the PET films was analyzed by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) was used to study the changes in PET surface feature of the polymer surfaces due to plasma treatment. The photoemission plasma species in the continuous cyclone atmospheric pressure plasma was identified by optical emission spectroscopy (OES). From OES analysis, the plasma modification efficiency can be attributed to the interaction of oxygen-based plasma species in the plasma with PET surface. In this study, it shows a novel way for large scale polymeric surface modification by continuous cyclone atmospheric pressure plasma processing.

  17. Atmospheric pressure variations and abdominal aortic aneurysm rupture.

    LENUS (Irish Health Repository)

    Killeen, S D

    2012-02-03

    BACKGROUND: Ruptured abdominal aortic aneurysm (RAAA) presents with increased frequency in the winter and spring months. Seasonal changes in atmospheric pressure mirrors this pattern. AIM: To establish if there was a seasonal variation in the occurrence of RAAA and to determine if there was any association with atmospheric pressure changes. METHODS: A retrospective cohort-based study was performed. Daily atmospheric pressure readings for the region were obtained. RESULTS: There was a statistically significant monthly variation in RAAA presentation with 107 cases (52.5%) occurring from November to March. The monthly number of RAAA and the mean atmospheric pressure in the previous month were inversely related (r = -0.752, r (2) = 0.566, P = 0.03), and there was significantly greater daily atmospheric pressure variability on days when patients with RAAA were admitted. CONCLUSION: These findings suggest a relationship between atmospheric pressure and RAAA.

  18. Modified-Atmospheric Pressure-Matrix Assisted Laser Desorption/Ionization Identification of Friction Modifier Additives Oleamide and Ethoxylated Tallow Amines on Varied Metal Target Materials and Tribologically Stressed Steel Surfaces.

    Science.gov (United States)

    Widder, Lukas; Ristic, Andjelka; Brenner, Florian; Brenner, Josef; Hutter, Herbert

    2015-11-17

    For many tasks in failure and damage analysis of surfaces deteriorated in heavy tribological contact, the detailed characterization of used lubricants and their additives is essential. The objective of the presented work is to establish accessibility of tribostressed surfaces for direct characterization via modified atmospheric pressure-matrix assisted laser desorption/ionization-mass spectrometry (m-AP-MALDI-MS). Special target holders were constructed to allow target samples of differing shape and form to fit into the desorption/ionization chamber. The best results of desorption and ionization on different target materials and varying roughnesses were achieved on smooth surfaces with low matrix/substrate interaction. M-AP-MALDI characterization of tribologically stressed steel surfaces after pin-on-disc sliding wear tests (SRV-tribotests) yielded positive identification of used friction modifier additives. Further structure elucidation by electrospray ionization mass spectrometry (ESI-MS) and measurements of worn surfaces by time-of-flight-secondary ion mass spectrometry (TOF-SIMS) accompanied findings about additive behavior and deterioration during tribological contact. Using m-AP-MALDI for direct offline examinations of worn surfaces may set up a quick method for determination of additives used for lubrication and general characterization of a tribological system.

  19. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  20. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    Glassy carbon plates were treated with an atmospheric pressure dielectric barrier discharge (DBD). He gas, gas mixtures of He and reactive gases such as O2, CO2 and NH3, Ar gas and Ar/NH3 gas mixture were used as treatment gases. The oxygen and nitrogen contents on the surface as well as defect...... density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon....

  1. Physico-chemical characteristics of high performance polymer modified by low and atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Bhatnagar, Nitu; Sangeeta, Jha; Bhowmik, Shantanu; Gupta, Govind; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric p ressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Atomic Force Microscopy (AFM). The experimental results show that the PEEK surface treated by atmospheric pressure plasma lead to an increase in the polar component of the surface energy, resulting in improving the adhesion characteristics of the PEEK/Epoxy adhesive system. Also, the roughness of the treated surfaces is largely increased as confirmed by AFM observation. These results can be explained by the fact that the atmospheric pressure plasma treatment of PEEK surface yields several oxygen functionalities on hydrophobic surface, which play an important role in increasing the surface polarity, wettability, and the adhesion characteristics of the PEEK/Epoxy adhesive system. (authors)

  2. Simple microwave plasma source at atmospheric pressure

    International Nuclear Information System (INIS)

    Kim, Jeong H.; Hong, Yong C.; Kim, Hyoung S.; Uhm, Han S.

    2003-01-01

    We have developed a thermal plasma source operating without electrodes. One electrodeless torch is the microwave plasma-torch, which can produce plasmas in large quantities. We can generate plasma at an atmospheric pressure by marking use of the same magnetrons used as commercial microwave ovens. Most of the magnetrons are operated at the frequency of 2.45 GHz; the magnetron power microwave is about 1kW. Electromagnetic waves from the magnetrons propagate through a shorted waveguide. Plasma was generated under a resonant condition, by an auxiliary ignition system. The plasma is stabilized by vortex stabilization. Also, a high-power and high-efficiency microwave plasma-torch has been operated in air by combining two microwave plasma sources with 1kW, 2.45 GHz. They are arranged in series to generate a high-power plasma flame. The second torch adds all its power to the plasma flame of the first torch. Basically, electromagnetic waves in the waveguide were studied by a High Frequency Structure Simulator (HFSS) code and preliminary experiments were conducted

  3. Examination of fluctuations in atmospheric pressure related to migraine.

    Science.gov (United States)

    Okuma, Hirohisa; Okuma, Yumiko; Kitagawa, Yasuhisa

    2015-01-01

    Japan has four seasons and many chances of low atmospheric pressure or approaches of typhoon, therefore it has been empirically known that the fluctuation of weather induces migraine in people. Generally, its mechanism has been interpreted as follows: physical loading, attributed by atmospheric pressure to human bodies, compresses or dilates human blood vessels, which leads to abnormality in blood flow and induces migraine. We report our examination of the stage in which migraine tends to be induced focusing on the variation of atmospheric pressure. Subjects were 34 patients with migraine, who were treated in our hospital. The patients included 31 females and three males, whose mean age was 32 ± 6.7. 22 patients had migraine with aura and 12 patients had migraine without aura. All of patients with migraine maintained a headache diary to record atmospheric pressures when they developed a migraine. The standard atmospheric pressure was defined as 1013 hPa, and with this value as the criterion, we investigated slight fluctuations in the atmospheric pressure when they developed a migraine. It was found that the atmospheric pressure when the patients developed a migraine was within 1003-1007 hPa in the approach of low atmospheric pressure and that the patients developed a migraine when the atmospheric pressure decreased by 6-10 hPa, slightly less than the standard atmospheric pressure. Small decreases of 6-10 hPa relative to the standard atmospheric pressure of 1013 hPa induced migraine attacks most frequently in patients with migraine.

  4. Application of atmospheric pressure plasma in polymer and composite adhesion

    Science.gov (United States)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  5. Influence of atmospheric pressure on infrarenal abdominal aortic aneurysm rupture.

    Science.gov (United States)

    Robert, Nicolas; Frank, Michael; Avenin, Laure; Hemery, Francois; Becquemin, Jean Pierre

    2014-04-01

    Meteorologic conditions have a significant impact on the occurrence of cardiovascular events. Previous studies have shown that abdominal aortic aneurysm rupture (AAAR) may be associated with atmospheric pressure, with conflicting results. Therefore, we aimed to further investigate the nature of the correlation between atmospheric pressure variations and AAAR. Hospital admissions related to AAAR between 2005-2009 were assessed in 19 districts of metropolitan France and correlated with geographically and date-matched mean atmospheric pressures. In parallel and from 2005-2009, all fatal AAARs as reported by death certificates were assessed nationwide and correlated to local atmospheric pressures at the time of aortic rupture. Four hundred ninety-four hospital admissions related to AAAR and 6,358 deaths nationwide by AAAR were identified between 2005-2009. Both in-hospital ruptures and aneurysm-related mortality had seasonal variations, with peak/trough incidences in January and June, respectively. Atmospheric pressure peaks occurred during winter. Univariate analysis revealed a significant association (P atmospheric pressure values and AAAR. After multivariate analysis, mean maximum 1-month prerupture atmospheric pressure had a persistent correlation with both in-hospital relative risk (1.05 [95% confidence interval: 1.03-1.06]; P atmospheric pressure. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Generation of uniform atmospheric pressure argon glow plasma by ...

    Indian Academy of Sciences (India)

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge ... Keywords. Atmospheric pressure glow discharge; argon glow discharge; electron density; hydrophobicity. PACS No. ... alcohol for 10 min and then dried in air. The effect of the treatment time on the ...

  7. The nanogap Pirani—a pressure sensor with superior linearity in an atmospheric pressure range

    International Nuclear Information System (INIS)

    Khosraviani, Kourosh; Leung, Albert M

    2009-01-01

    We have designed and fabricated a surface micromachined Pirani pressure sensor with an extremely narrow gap between its heater and heatsink (substrate) with superior output linearity in the atmospheric pressure range. The gap size of the device has been reduced to 50 nm by using a layer of PECVD amorphous silicon as a sacrificial layer and a xenon difluoride (XeF 2 ) gas phase etching technique. Such a narrow gap pushes the transition from molecular to continuum heat conduction to pressures beyond 200 kPa. The higher transition pressure increases the measurement range and sensitivity of the gauge in atmospheric pressures. The gas phase etching of the sacrificial layer eliminates stiction problems related to a wet etching process. The active area of the sensor is only a 6 × 50 µm 2 microbridge anchored to the substrate at both ends. An innovative fabrication technique was developed which resulted in a virtually flat microbridge with improved mechanical robustness. This process enabled us to have a very well-controlled gap between the microbridge and the substrate. The device was tested in a constant heater temperature mode with pressure ranges from 0.1 to 720 kPa. The heater power was only 3 mW at 101 kPa (atmospheric pressure), which increased to about 8 mW at 720 kPa. The output sensitivity and nonlinearity of the device were 0.55% per kPa at 101 kPa and ±13% of the output full scale, respectively

  8. Inverting Coseismic TEC Disturbances for Neutral Atmosphere Pressure Wave

    Science.gov (United States)

    Lee, R. F.; Mikesell, D.; Rolland, L.

    2017-12-01

    Research from the past 20 years has shown that we can detect coseismic disturbances in the total electron content (TEC) using global navigation space systems (GNSS). In the near field, TEC disturbances are created by the direct wave from rupture on the surface. This pressure wave travels through the neutral atmosphere to the ionosphere within about 10 minutes. This provides the opportunity to almost immediately characterize the source of the acoustic disturbance on the surface using methods from seismology. In populated areas, this could provide valuable information to first responders. To retrieve the surface motion amplitude information we must account for changes in the waveform caused by the geomagnetic field, motion of the satellites and the geometry of the satellites and receivers. One method is to use a transfer function to invert for the neutral atmosphere pressure wave. Gómez et al (2015) first employed an analytical model to invert for acoustic waves produced by Rayleigh waves propagating along the Earth's surface. Here, we examine the same model in the near field using the TEC disturbances from the direct wave produced by rupture at the surface. We compare results from the forward model against a numerical model that has been shown to be in good agreement with observations from the 2011 Van (Turkey) earthquake. We show the forward model predictions using both methods for the Van earthquake. We then analyze results for hypothetical events at different latitudes and discuss the reliability of the analytical model in each scenario. Gómez, D., R. Jr. Smalley, C. A. Langston, T. J. Wilson, M. Bevis, I. W. D. Dalziel, E. C. Kendrick, S. A. Konfal, M. J. Willis, D. A. Piñón, et al. (2015), Virtual array beamforming of GPS TEC observations of coseismic ionospheric disturbances near the Geomagnetic South Pole triggered by teleseismic megathrusts, J. Geophys. Res. Space Physics, 120, 9087-9101, doi:10.1002/2015JA021725.

  9. Exploration to generate atmospheric pressure glow discharge plasma in air

    Science.gov (United States)

    Wenzheng, LIU; Chuanlong, MA; Shuai, ZHAO; Xiaozhong, CHEN; Tahan, WANG; Luxiang, ZHAO; Zhiyi, LI; Jiangqi, NIU; Liying, ZHU; Maolin, CHAI

    2018-03-01

    Atmospheric pressure glow discharge (APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in air-gap is suppressed effectively and a large space of APGD plasma in air is generated. Further, through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.

  10. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chi-wai Kan

    2018-01-01

    Full Text Available 100% grey cotton knitted fabric contains impurities and yellowness and needs to be prepared for processing to make it suitable for coloration and finishing. Therefore, conventionally 100% grey cotton knitted fabric undergoes a process of scouring and bleaching, which involves the use of large amounts of water and chemicals, in order to remove impurities and yellowness. Due to increased environmental awareness, pursuing a reduction of water and chemicals is a current trend in textile processing. In this study, we explore the possibility of using atmospheric pressure plasma as a dry process to treat 100% grey cotton knitted fabric (single jersey and interlock before processing. Experimental results reveal that atmospheric pressure plasma treatment can effectively remove impurities from 100% grey cotton knitted fabrics and significantly improve its water absorption property. On the other hand, if 100% grey cotton knitted fabrics are pretreated with plasma and then undergo a normal scouring process, the treatment time is reduced. In addition, the surface morphological and chemical changes in plasma-treated fabrics were studied and compared with the conventionally treated fabrics using scanning electron microscope (SEM, Fourier-transform infrared spectroscopy-attenuated total reflection (FTIR-ATR and X-ray photoelectron spectroscopy (XPS. The decrease in carbon content, as shown in XPS, reveal the removal of surface impurities. The oxygen-to-carbon (O/C ratios of the plasma treated knitted fabrics reveal enhanced hydrophilicity.

  11. Atmospheric pressure microwave plasma system with ring waveguide

    International Nuclear Information System (INIS)

    Liu Liang; Zhang Guixin; Zhu Zhijie; Luo Chengmu

    2007-01-01

    Some scientists used waveguide as the cavity to produce a plasma jet, while large volume microwave plasma was relatively hard to get in atmospheric pressure. However, a few research institutes have already developed devices to generate large volume of atmospheric pressure microwave plasma, such as CYRANNUS and SLAN series, which can be widely applied. In this paper, present a microwave plasma system with ring waveguide to excite large volume of atmospheric pressure microwave plasma, plot curves on theoretical disruption electric field of some working gases, emulate the cavity through software, measure the power density to validate and show the appearance of microwave plasma. At present, large volume of argon and helium plasma have already been generated steadily by atmospheric pressure microwave plasma system. This research can build a theoretical basis of microwave plasma excitation under atmospheric pressure and will be useful in study of the device. (authors)

  12. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    Science.gov (United States)

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  13. Effects of furnace atmosphere pressure on fabrication process of hollow glass microspheres in drop-tower furnace

    International Nuclear Information System (INIS)

    Qi Xiaobo; Li Bo; Chen Sufen; Zhang Zhanwen; Shi Tao

    2010-01-01

    To fabricate high quality hollow glass microspheres (HGMs)by sol-gel technology for inertial confinement fusion (ICF), the effects of furnace atmosphere pressure on the transformation process from gel particles to HGMs and the resulting quality of HGMs were investigated by numerical simulation and experiments. The results show that decreasing of furnace atmosphere pressure can increase diameter of HGMs and decrease wall thickness of HGMs. Decreasing furnace atmosphere pressure can extend the refining time of liquid HGMs, however, the heat transfer coefficient between liquid and furnace atmosphere pressure decreases significantly with the decreasing of furnace atmosphere pressure. As a result, the refining degree and the quality of HGMs descend quickly with furnace atmosphere pressure. When the furnace atmosphere pressure is lower than 0.5 x 10 5 Pa, the sphericity, concentricity and surface finish can not satisfy the restrict requirements of ICF targets. (authors)

  14. Physico Chemical Characteristics of High Performance Polymer Modified by Low and Atmospheric Pressure Plasma1

    NARCIS (Netherlands)

    Bhatnagar, N.; Jha, S.; Bhowmik, S.; Gupta, G.; Moon, J.B.; Kim, C.G.

    2012-01-01

    In this work, the effect of low pressure plasma and atmospheric-pressure plasma treatment on surface properties and adhesion characteristics of high performance polymer, Polyether Ether Ketone (PEEK) are investigated in terms of Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron

  15. High-frequency pressure variations in the vicinity of a surface CO2 flux chamber

    Science.gov (United States)

    Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice

    2003-01-01

    We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...

  16. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to develop an atmospheric plasma jet that is capable of depositing a wide variety of materials on flexible substrates such as paper, plastic, cotton and...

  17. N2(A3+u) behaviour in a N2-NO surface dielectric barrier discharge in the modulated ac regime at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Ambrico, P. F.; Dilecce, G.; Prukner, Václav; Schmidt, Jiří; De Benedictis, S.

    2010-01-01

    Roč. 43, č. 12 (2010), s. 124003-124003 ISSN 0022-3727 R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : surface barier discharge * laser induced fluorescence * metastables * nitric oxide Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.105, year: 2010 http://iopscience.iop.org/0022-3727/43/12/124003/pdf/0022-3727_43_12_124003.pdf

  18. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    Science.gov (United States)

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  19. Perspectives on atmospheric-pressure plasmas for nanofabrication

    International Nuclear Information System (INIS)

    Mariotti, Davide; Sankaran, R Mohan

    2011-01-01

    Low-pressure, low-temperature plasmas are widely used for materials applications in industries ranging from electronics to medicine. To avoid the high costs associated with vacuum equipment, there has always been a strong motivation to operate plasmas at higher pressures, up to atmospheric. However, high-pressure operation of plasmas often leads to instabilities and gas heating, conditions that are unsuitable for materials applications. The recent development of microscale plasmas (i.e. microplasmas) has helped realize the sustainment of stable, non-thermal plasmas at atmospheric pressure and enable low-cost materials applications. There has also been an unexpected benefit of atmospheric-pressure operation: the potential to fabricate nanoscale materials which is not possible by more conventional, low-pressure plasmas. For example, in a high-pressure environment, nanoparticles can be nucleated in the gas phase from vapour (or solid metal) precursors. Alternatively, non-thermal, atmospheric-pressure plasmas can be coupled with liquids such as water or ethanol to nucleate and modify solution-phase nanoparticles. In this perspective paper, we review some of these recent efforts and provide an outlook for the rapidly emerging field of atmospheric-pressure plasmas for nanofabrication.

  20. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  1. Optical and electrical characteristics of a single surface DBD micro-discharge produced in atmospheric-pressure nitrogen and synthetic air

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Prukner, Václav; Schmidt, Jiří

    2011-01-01

    Roč. 20, č. 2 (2011), 025009-025009 ISSN 0963-0252. [European Sectional Conference on Atomic and Molecular Physics of Ionized Gases (ESCAMPIGXX)/20th./. Novi Sad, SERBIA, 13.07.2010-17.07.2010] R&D Projects: GA ČR GA202/08/1106 Institutional research plan: CEZ:AV0Z20430508 Keywords : surface barier discharge * streamer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.521, year: 2011 http://iopscience.iop.org/0963-0252/20/2/025009/pdf/0963-0252_20_2_025009.pdf

  2. Promoted cell and material interaction on atmospheric pressure plasma treated titanium

    International Nuclear Information System (INIS)

    Han, Inho; Vagaska, Barbora; Seo, Hyok Jin; Kang, Jae Kyeong; Kwon, Byeong-Ju; Lee, Mi Hee; Park, Jong-Chul

    2012-01-01

    Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

  3. Peri-implant bone formation of non-thermal atmospheric pressure plasma-treated zirconia implants with different surface roughness in rabbit tibiae.

    Science.gov (United States)

    Shon, Won-Jun; Chung, Shin Hye; Kim, Hong-Kyun; Han, Geum-Jun; Cho, Byeong-Hoon; Park, Young-Seok

    2014-05-01

    The aim of this study was to evaluate and compare the osseointegration of powder-injection molded (PIM) zirconia implants in rabbit tibiae with or without He plasma treatment. Twenty-five rabbits received 4 types of external hex implants with identical geometry in the tibiae: PIM zirconia implants, roughened PIM zirconia implants, plasma-treated PIM zirconia implants, and plasma-treated roughened PIM zirconia implants. The contact angles of the four types of implants were evaluated. Removal torque tests and histomorphometric analyses were performed. The plasma treatment markedly enhanced the hydrophilicity, but did not seem to change the surface topography of the PIM zirconia implants. There were statistically significant differences in the bone-to-implant contact (BIC) ratios, bone volume (BV/TV), and removal torque values (RTQ) among the tested implant types (P zirconia implants made the surface more hydrophilic and enhanced the osseointegration of the implants without changing the micro-topography. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  4. Evaluation of Packed Distillation Columns I - Atmospheric Pressure

    National Research Council Canada - National Science Library

    Reynolds, Thaine

    1951-01-01

    .... Four column-packing combinations of the glass columns and four column-packing combinations of the steel columns were investigated at atmospheric pressure using a test mixture of methylcyclohexane...

  5. Interaction of EM Waves with Atmospheric Pressure Plasmas

    National Research Council Canada - National Science Library

    Laroussi, Mounir

    2000-01-01

    .... The focus of the main activities is the generation of large volume, non-thermal, atmospheric pressure plasmas, their diagnostics, and their interactions with EM waves and with the cells of microorganism...

  6. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  7. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  8. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  9. Introduction of Atmospheric Pressure Plasma to Aqueous Detergent Processes.

    Science.gov (United States)

    Gotoh, Keiko; Kanasaki, Yu; Uchinomaru, Haruka

    2015-01-01

    The effects of exposure of polymer surfaces to atmospheric pressure plasma (APP) on detergency were investigated from the viewpoint of pretreatment to cleaning in aqueous systems using three PET substrates: film, mesh, and fabric. The PET substrates were soiled with stearic acid as a model oily contaminant, and were treated with the APP jet immediately before cleaning. Stir washing in aqueous solutions with and without alkali or anionic surfactant was performed, and then the detergency was evaluated from the microscopic image analysis or surface reflectance measurement. For all PET samples and detergent solutions, APP exposure was found to promote the removal of stearic acid. Contact angle measurements showed that APP exposure enhanced the hydrophilicity of PET and stearic acid. The increase in the surface oxygen concentration on PET and stearic acid due to the APP exposure was also observed by XPS analysis. The simultaneous oxidation of the PET substrate and stearic acid soil by the APP pretreatment resulted in detergency improvement via surface hydrophilization. Furthermore, microscopic observations suggested that the collapse of crystallized stearic acid deposited on the PET substrate by APP heating facilitated its removal. In situ detergency evaluation by a quartz crystal microbalance technique confirmed that the removal of stearic acid from the PET substrate was promoted by the APP exposure. The experimental findings of this study demonstrate the effectiveness of the APP exposure before cleaning in aqueous solutions.

  10. Effect of Atmospheric Pressure Plasma Modification on Polyimide and Adhesive Joining with Titanium

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.; Ajeesh, G.; Ahmed, S.; Chakraborty, D.

    2015-01-01

    This investigation highlights the effect of surface modification on polyimide by atmospheric pressure plasma treatment with different exposure time. Surface modification of polymer by plasma treatment essentially creates physical and chemical changes such as cross-linking and formation of free

  11. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9

    Science.gov (United States)

    Conrath, B.; Curran, R.; Hanel, R.; Kunde, V.; Maguire, W.; Pearl, J.; Pirraglia, J.; Welker, J.; Burke, T.

    1973-01-01

    The infrared spectroscopy experiment on Mariner 9 obtained data over much of Mars. Interpretation of the thermal emission of Mars in terms of atmospheric temperatures, wind fields and dynamics, surface temperatures, surface pressure and topography, mineral composition, and minor atmospheric constituents including isotopic ratios, as well as a search for unexpected phenomena are reported.

  12. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Vélez, J. J., E-mail: velasco@fhi-berlin.mpg.de, E-mail: mh@fhi-berlin.mpg.de; Schlögl, R. [Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470 (Germany); Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195 (Germany); Pfeifer, V.; Algara-Siller, G.; Stotz, E.; Teschner, D.; Kube, P.; Knop-Gericke, A. [Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195 (Germany); Hävecker, M., E-mail: velasco@fhi-berlin.mpg.de, E-mail: mh@fhi-berlin.mpg.de; Skorupska, K. [Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470 (Germany); Wang, R.; Braeuninger-Weimer, P.; Hofmann, S. [Engineering Department, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Centeno, A.; Zurutuza, A. [Graphenea, San Sebastian 20018 (Spain)

    2016-05-15

    One of the main goals in catalysis is the characterization of solid/gas interfaces in a reaction environment. The electronic structure and chemical composition of surfaces become heavily influenced by the surrounding environment. However, the lack of surface sensitive techniques that are able to monitor these modifications under high pressure conditions hinders the understanding of such processes. This limitation is known throughout the community as the “pressure gap.” We have developed a novel experimental setup that provides chemical information on a molecular level under atmospheric pressure and in presence of reactive gases and at elevated temperatures. This approach is based on separating the vacuum environment from the high-pressure environment by a silicon nitride grid—that contains an array of micrometer-sized holes—coated with a bilayer of graphene. Using this configuration, we have investigated the local electronic structure of catalysts by means of photoelectron spectroscopy and in presence of gases at 1 atm. The reaction products were monitored online by mass spectrometry and gas chromatography. The successful operation of this setup was demonstrated with three different examples: the oxidation/reduction reaction of iridium (noble metal) and copper (transition metal) nanoparticles and with the hydrogenation of propyne on Pd black catalyst (powder).

  13. Pressure relieving support surfaces (PRESSURE) trial: cost effectiveness analysis.

    Science.gov (United States)

    Iglesias, Cynthia; Nixon, Jane; Cranny, Gillian; Nelson, E Andrea; Hawkins, Kim; Phillips, Angela; Torgerson, David; Mason, Su; Cullum, Nicky

    2006-06-17

    To assess the cost effectiveness of alternating pressure mattresses compared with alternating pressure overlays for the prevention of pressure ulcers in patients admitted to hospital. Cost effectiveness analysis carried out alongside the pressure relieving support surfaces (PRESSURE) trial; a multicentre UK based pragmatic randomised controlled trial. 11 hospitals in six UK NHS trusts. Intention to treat population comprising 1971 participants. Kaplan Meier estimates of restricted mean time to development of pressure ulcers and total costs for treatment in hospital. Alternating pressure mattresses were associated with lower overall costs (283.6 pounds sterling per patient on average, 95% confidence interval--377.59 pounds sterling to 976.79 pounds sterling) mainly due to reduced length of stay in hospital, and greater benefits (a delay in time to ulceration of 10.64 days on average,--24.40 to 3.09). The differences in health benefits and total costs for hospital stay between alternating pressure mattresses and alternating pressure overlays were not statistically significant; however, a cost effectiveness acceptability curve indicated that on average alternating pressure mattresses compared with alternating pressure overlays were associated with an 80% probability of being cost saving. Alternating pressure mattresses for the prevention of pressure ulcers are more likely to be cost effective and are more acceptable to patients than alternating pressure overlays.

  14. Biomedical applications and diagnostics of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Petrović, Z Lj; Puac, N; Lazović, S; Maletić, D; Spasić, K; Malović, G

    2012-01-01

    Numerous applications of non-equilibrium (cold, low temperature) plasmas require those plasmas to operate at atmospheric pressure. Achieving non-equilibrium at atmospheric pressure is difficult since the ionization growth is very fast at such a high pressure. High degree of ionization on the other hand enables transfer of energy between electrons and ions and further heating of the background neutral gas through collisions between ions and neutrals. Thus, all schemes to produce non-equilibrium plasmas revolve around some form of control of ionization growth. Diagnostics of atmospheric pressure plasmas is difficult and some of the techniques cannot be employed at all. The difficulties stem mostly from the small size. Optical emission spectroscopy and laser absorption spectroscopy require very high resolution in order to resolve the anatomy of the discharges. Mass analysis is not normally applicable for atmospheric pressure plasmas, but recently systems with triple differential pumping have been developed that allow analysis of plasma chemistry at atmospheric pressures which is essential for numerous applications. Application of such systems is, however, not free from problems. Applications in biomedicine require minimum heating of the ambient air. The gas temperature should not exceed 40 degrees C to avoid thermal damage to the living tissues. Thus, plasmas should operate at very low powers and power control is essential. We developed unique derivative probes that allow control of power well below 1 W and studied four different sources, including dielectric barrier discharges, plasma needle, atmospheric pressure jet and micro atmospheric pressure jet. The jet operates in plasma bullet regime if proper conditions are met. Finally, we cover results on treatment of bacteria and human cells as well as treatment of plants by plasmas. Localized delivery of active species by plasmas may lead to a number of medical procedures that may also involve removal of bacteria, fungi

  15. Support surfaces for pressure ulcer prevention.

    Science.gov (United States)

    McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally E M; Dumville, Jo C; Middleton, Victoria; Cullum, Nicky

    2015-09-03

    Pressure ulcers (i.e. bedsores, pressure sores, pressure injuries, decubitus ulcers) are areas of localised damage to the skin and underlying tissue. They are common in the elderly and immobile, and costly in financial and human terms. Pressure-relieving support surfaces (i.e. beds, mattresses, seat cushions etc) are used to help prevent ulcer development. This systematic review seeks to establish:(1) the extent to which pressure-relieving support surfaces reduce the incidence of pressure ulcers compared with standard support surfaces, and,(2) their comparative effectiveness in ulcer prevention. In April 2015, for this fourth update we searched The Cochrane Wounds Group Specialised Register (searched 15 April 2015) which includes the results of regular searches of MEDLINE, EMBASE and CINAHL and The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 3). Randomised controlled trials (RCTs) and quasi-randomised trials, published or unpublished, that assessed the effects of any support surface for prevention of pressure ulcers, in any patient group or setting which measured pressure ulcer incidence. Trials reporting only proxy outcomes (e.g. interface pressure) were excluded. Two review authors independently selected trials. Data were extracted by one review author and checked by another. Where appropriate, estimates from similar trials were pooled for meta-analysis. For this fourth update six new trials were included, bringing the total of included trials to 59.Foam alternatives to standard hospital foam mattresses reduce the incidence of pressure ulcers in people at risk (RR 0.40 95% CI 0.21 to 0.74). The relative merits of alternating- and constant low-pressure devices are unclear. One high-quality trial suggested that alternating-pressure mattresses may be more cost effective than alternating-pressure overlays in a UK context.Pressure-relieving overlays on the operating table reduce postoperative pressure ulcer incidence

  16. Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements

    Science.gov (United States)

    Neumeyer, Juergen; Hagedoorn, Jan; Leitloff, Jens; Schmidt, Torsten

    2004-10-01

    The redistribution of air masses induces gravity variations (atmospheric pressure effect) up to about 20 μgal. These variations are disturbing signals in gravity records and they must be removed very carefully for detecting weak gravity signals. In the past, different methods have been developed for modelling of the atmospheric pressure effect. These methods use local or two-dimensional (2D) surface atmospheric pressure data and a standard height-dependent air density distribution. The atmospheric pressure effect is consisting of the elastic deformation and attraction term. The deformation term can be well modelled with 2D surface atmospheric pressure data, for instance with the Green's function method. For modelling of the attraction term, three-dimensional (3D) data are required. Results with 2D data are insufficient. From European Centre for Medium-Range Weather Forecasts (ECMWF) 3D atmospheric pressure data are now available. The ECMWF data used here are characterised by a spacing of Δ ϕ and Δ λ = 0.5°, 60 pressure levels up to a height of 60 km and an interval of 6 h. These data are used for modelling of the atmospheric attraction term. Two attraction models have been developed based on the point mass attraction of air segments and the gravity potential of the air masses. The modelling shows a surface pressure-independent part of gravity variations induced by mass redistribution of the atmosphere in the order of some μgal. This part can only be determined by using 3D atmospheric pressure data. It has been calculated for the Vienna Superconducting Gravimeter site. From this follows that the gravity reduction can be improved by applying the 3D atmospheric attraction model for analysing long-periodic tidal waves including the polar tide. The same improvement is expected for reduction of long-term absolute gravity measurements or comparison of gravity measurements at different seasonal times. By using 3D atmospheric pressure data, the gravity correction can

  17. A Spectacular Experiment Exhibiting Atmospheric Pressure

    Science.gov (United States)

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  18. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md. Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4–5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper. PMID:26819896

  19. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    Science.gov (United States)

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  20. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    Science.gov (United States)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  1. Atmospheric-pressure-plasma-enhanced fabrication of nonfouling nanocoatings for 316 stainless steel biomaterial interfaces

    Science.gov (United States)

    Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun

    2018-03-01

    Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.

  2. Unusual neurological syndrome induced by atmospheric pressure change.

    Science.gov (United States)

    Ptak, Judy A; Yazinski, Nancy A; Block, Clay A; Buckey, Jay C

    2013-05-01

    We describe a case of a 46-yr-old female who developed hypertension, tachycardia, dysarthria, and leg weakness provoked by pressure changes associated with flying. Typically during the landing phase of flight, she would feel dizzy and note that she had difficulty with speech and leg weakness. After the flight the leg weakness persisted for several days. The symptoms were mitigated when she took a combined alpha-beta blocker (labetalol) prior to the flight. To determine if these symptoms were related to atmospheric pressure change, she was referred for testing in a hyperbaric chamber. She was exposed to elevated atmospheric pressure (maximum 1.2 ATA) while her heart rate and blood pressure were monitored. Within 1 min she developed tachycardia and hypertension. She also quickly developed slurred speech, left arm and leg weakness, and sensory changes in her left leg. She was returned to sea level pressure and her symptoms gradually improved. A full neurological workup has revealed no explanation for these findings. She has no air collections, cysts, or other anatomic findings that could be sensitive to atmospheric pressure change. The pattern is most consistent with a vascular event stimulated by altitude exposure. This case suggests that atmospheric pressure change can produce neurological symptoms, although the mechanism is unknown.

  3. Flame-induced atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Cheng, Sy-Chyi; Chen, Yen-Ting; Jhang, Siou-Sian; Shiea, Jentaie

    2016-04-15

    Charged species such as formylium (CHO(+) ), hydronium (H3 O(+) ), and water clusters [H3 O(+) (H2 O)n ] are commonly found in flames. These highly reactive species can react with analytes via ion-molecule reactions (IMRs) to form analyte ions. A new mass spectrometric technique, named flame-induced atmospheric pressure chemical ionization mass spectrometry (FAPCI-MS), was developed to characterize organic compounds via these mechanisms. A commercial corona-discharge atmospheric pressure chemical ionization (APCI) source was modified by replacing the corona needle with a flame to make a FAPCI source. Liquid samples were vaporized in a heated tube and delivered to the IMRs region by nitrogen to react with the charged species generated by a flame. Analytes on surfaces were directly desorbed and ionized by a flame using the technique called desorption-FAPCI-MS (DFAPCI-MS). Intact molecular ions of various chemical and biological compounds were successfully characterized by FAPCI-MS. The FAPCI mass spectra are nearly identical to those obtained by traditional APCI-MS. The limit of detection (LOD) of reserpine by FAPCI-MS was 50 μg L(-1) with a linear calibration curve (R(2) = 0.9947) from 100 μg L(-1) to 10 mg L(-1) . The LOD for ketamine by DFAPCI-MS was estimated to be less than 0.1 ng. In FAPCI, analytes are not incinerated but vaporized and introduced into the ion source to react with the reactive charged species generated by a flame. The features of the FAPCI source include: configuration is very simple, operation is easy, high voltage or inert gas is unnecessary, and the source is maintenance free. Various combustible gases, solvents and solids are useful flame fuels for FAPCI. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    Science.gov (United States)

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Decomposition of Chemical Chain Molecules with Atmospheric Pressure Plasma

    Science.gov (United States)

    Tansli, Murat; Tasal, Erol

    2016-10-01

    Chemical chain molecules' decomposition is an interesting subject area for the atmospheric pressure plasma applications. The effects of the atmospheric pressure argon plasma on 4-((2-methoxyphenyl)Diazenyl)Benzene-1,3,-Diol molecule at room temperature are investigated. This molecule is one of the industrial dye molecules used widely. When considering the ecological life, this molecule will be very harmful and danger. We suggest a different, easy and useful decomposing method for such molecules. Atmospheric pressure plasma jet was principally treated for this decomposing of the molecule. Fourier transform infrared spectrometry (FT-IR) was used to characterization of the molecule after the plasma application to molecule in liquid phase with ethanol and methanol solvents. The atmospheric-pressure plasma jet of argon (Ar) as non-equilibrium has been formed by ac-power generator with frequency - 24 kHz and voltage - 12 kV. Characterizations for solutions prepared with ethanol and methanol solvents of molecule have been examined after applying (duration: 3 minutes) the atmospheric pressure plasma jet. The molecule was broken at 6C-7N =8N-9C stretching peak after the plasma treatment. The new plasma photo-products for ethanol and methanol solutions were produced as 6C-7N-8N =9C (strong, varying) and 12C =17O (strong, wide) stretching peaks.

  6. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  7. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    International Nuclear Information System (INIS)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 μl took around 250 s to get absorbed in the treated sample compared to 0 . Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  8. Free-floating atmospheric pressure ball plasmas

    Science.gov (United States)

    Wurden, G. A.; Ticos, C.; Wang, Z.; Wurden, C. J. V.

    2007-11-01

    A long-lived (0.3 second, 10-20 cm diameter) ball plasma floating in the air above a water surface has been formed and studied in the laboratory. A 0.4 - 1 mF capacitor is charged to 4-5 kV, and subsequently discharged (30-60 Amps, 20-50 msec duration) into central copper cathode held fixed just below the surface of a bucket of water (with a weak solution of various salts in distilled water, such as CuSO4 or CuCl2, LiCl or NaCl). An underwater ring anode completes the circuit. A bubble of hot vapor from the water surface rises up in the first few milliseconds, and changes from a mushroom cloud with stalk, to a detached quasi-spherical object, finally evolving into a vortex ring. The plasma consists of ionized water vapor, with positive salts and OH- radicals, as well as molecular species, and it completely excludes nitrogen or oxygen from the rising plasma structure. A fine boundary layer is visible in orange, in contrast to a green ball interior when using Cu/CuSO4, and filamentary structures are visible at late times. Finally, a whisp of smoke ring is observed as a residue. A variety of visible and infrared imaging (both video and still cameras) are used, along with 200-800 nm time & space resolved spectroscopy, to identify features of this laboratory analog to ball lightning. Possible applications include a windowless ball- plasma powered pulsed copper vapor laser operating at 510 nm.

  9. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  10. MicroScale - Atmospheric Pressure Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, Mohan [Case Western Reserve University

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  11. Safety benefits of using a sub-atmospheric pressure hydride gas source for MOCVD

    Science.gov (United States)

    Raynor, Mark W.; Houlding, Virginia H.; Frye, Russell; Olander, Karl

    2004-12-01

    The reduced risks associated with storing toxic and flammable hydride gases on a high surface area substrate within a cylinder at sub-atmospheric pressures have been assessed. Tests have been performed on 2.2 and 49 L sub-atmospheric pressure cylinders filled to various pressures with arsine and phosphine to quantify the gas release rates that occur under conditions of simulated valve failure. Gas releases from sub-atmospheric pressure cylinders are diffusion rather than pressure-controlled and are found to be discrete rather than continuous. Average release concentrations measured at a ventilation air flow rate of 1.42 m 3/min are well below the permissible exposure limit for both hydride gases over the test period. The results are compared to calculated release rates from high-pressure arsine and phosphine cylinders fitted with a restrictive flow orifice under otherwise similar conditions. The findings show that gas release rates from high-pressure cylinders are approximately four orders of magnitude higher than those from sub-atmospheric pressure cylinders. In addition to lowering the safety risks, benefits of adsorbed phase gas storage include the possibility of having increased volumes of hydride gas on site, improved process repeatability and reduced installation and operating costs.

  12. Is atmospheric pressure change an Independent risk factor for hemoptysis?

    Science.gov (United States)

    Araz, Omer; Ucar, Elif Yilmazel; Akgun, Metin; Aydin, Yener; Meral, Mehmet; Saglam, Leyla; Kaynar, Hasan; Gorguner, Ali Metin

    2014-05-01

    Hemoptysis is one of the most important and challenging symptoms in pulmonary medicine. Because of the increased number of patients with hemoptysis in certain periods of the year, we aimed to investigate whether atmospheric changes have an effect on the development of hemoptysis with or without a secondary cause. The data of patients presenting with hemoptysis between January 2006 and December 2011 were analyzed. Data on the daily atmospheric pressure (hectopascal, hPa), relative humidity (%), and temperature ((o) C) during that time were obtained. A total of 232 patients with hemoptysis, 145 male (62.5%) and 87 female (37.5%) with an average age of 48.1(±17.6), were admitted to our hospital between 2006 and 2011. The highest admission rates were in the spring season, the highest in May (n=37, 15.9%), and the lowest admission rates were in December (n=10, 4.3%). A statistically significant negative correlation was found between the number of hemoptysis cases and mean atmospheric pressure but no relative humidity or outdoor temperature. Hemoptysis is very much influenced by weather factors; in particular, low atmospheric pressures significantly affect the development of hemoptysis. Fluctuations in atmospheric pressure may also play a role in hemoptysis.

  13. Surface-atmosphere decoupling limits accumulation at Summit, Greenland.

    Science.gov (United States)

    Berkelhammer, Max; Noone, David C; Steen-Larsen, Hans Christian; Bailey, Adriana; Cox, Christopher J; O'Neill, Michael S; Schneider, David; Steffen, Konrad; White, James W C

    2016-04-01

    Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.

  14. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  15. Cold atmospheric pressure plasma treatment of ready-to-eat meat

    DEFF Research Database (Denmark)

    Röd, Sara Katrine Solhøj; Hansen, Flemming; Leipold, Frank

    Sliced ready-to-eat (RTE) meat products are susceptible to growth of the foodborne pathogenic bacterium, Listeria monocytogenes. Cold atmospheric pressure plasma (CAPP) may be applicable for surface decontamination in sealed bags thus avoiding recontamination. Plasmas (Fig. 1), created in neutral...

  16. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  17. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    Science.gov (United States)

    Azcárate, T; Mendoza, B

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  18. On the permanent hip-stabilizing effect of atmospheric pressure.

    Science.gov (United States)

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    International Nuclear Information System (INIS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-01-01

    Highlights: ► Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. ► The set up allows photoionization up to 20 eV. ► Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. ► Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4–20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  20. Generation of uniform atmospheric pressure argon glow plasma by ...

    Indian Academy of Sciences (India)

    Vol. 80, No. 3. — journal of. March 2013 physics pp. 507–517. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge .... note that the change in current waveform is also due to the change in capacitance of the ... By taking the ratio of R1 and R2 we then obtain the expression: R1. R2.

  1. Generation of uniform atmospheric pressure argon glow plasma by ...

    Indian Academy of Sciences (India)

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed ...

  2. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    Science.gov (United States)

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  3. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure.

    Science.gov (United States)

    Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki; Ito, Yasuhiko

    2003-01-15

    Ammonia was successfully synthesized by using a new electrochemical reaction with high current efficiency at atmospheric pressure and at lower temperatures than the Haber-Bosch process. In this method, nitride ion (N3-), which is produced by the reduction from nitrogen gas at the cathode, is anodically oxidized and reacts with hydrogen to produce ammonia at the anode.

  4. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    Science.gov (United States)

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  5. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    Science.gov (United States)

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  6. Titan Coupled Surface/Atmosphere Retrievals

    Science.gov (United States)

    West, R. A.; Pitman, K. M.

    2009-05-01

    Titan's thick haze obscures its surface at visible wavelengths and hinders surface photometric studies in the near-infrared. The large vertical extent of the haze produces two effects which require radiative transfer analysis beyond the capability of plane-parallel multi-scatter models. Haze aerosols extend to altitudes above 500 km and require a spherical-shell RT algorithm close to the limb or terminator. Even near nadir viewing, horizontal scattering at spatial scales less than a few hundred km requires a code capable of simulating the adjacency effect. The adjacency effect will reduce contrast more for small spatial scales than for large spatial scales, and the amount of contrast reduction depends on many factors (haze optical thickness, vertical distribution, single scattering albedo, scattering geometry, spatial scale). Titan's haze is strongly forward scattering even near 1-µm wavelength and many RT codes do a poor job. Fortunately the problem is more tractable at longer wavelengths. We show how data from the Cassini VIMS and ISS instruments can be used to understand surface contrast and atmospheric haze properties.

  7. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  8. Atmospheric-pressure guided streamers for liposomal membrane disruption

    International Nuclear Information System (INIS)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clément, F.; Antimisiaris, S. G.

    2012-01-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  9. Atmosphere-surface interactions over polar oceans and heterogeneous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vihma, T.

    1995-12-31

    Processes of interaction between the atmospheric boundary layer and the planetary surface have been studied with special emphasis on polar ocean surfaces: the open ocean, leads, polynyas and sea ice. The local exchange of momentum, heat and moisture has been studied experimentally both in the Weddell Sea and in the Greenland Sea. Exchange processes over heterogeneous surfaces are addressed by modelling studies. Over a homogeneous surface, the local turbulent fluxes can be reasonably well estimated using an iterative flux-profile scheme based on the Monin-Obukhov similarity theory. In the Greenland Sea, the near-surface air temperature and the generally small turbulent fluxes over the open ocean were affected by the sea surface temperature fronts. Over the sea ice cover in the Weddell Sea, the turbulent sensible heat flux was generally downwards, and together with an upward oceanic heat flux through the ice it compensated the heat loss from the surface via long-wave radiation. The wind dominated on time scales of days, while the current became important on longer time scales. The drift dynamics showed apparent spatial differences between the eastern and western regions, as well as between the Antarctic Circumpolar Current and the rest of the Weddell Sea. Inertial motion was present in regions of low ice concentration. The surface heterogeneity, arising e.g. from roughness or temperature distribution, poses a problem for the parameterization of surface exchange processes in large-scale models. In the case of neutral flow over a heterogeneous terrain, an effective roughness length can be used to parameterize the roughness effects

  10. Model of a stationary microwave argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-01-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v en , and gas temperature T g . The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T g are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number

  11. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  12. Atmospheric moisture's influence on fire behavior: surface moisture and plume dynamics.

    Science.gov (United States)

    Brian E. Potter; Joseph J. Charney; Lesley A. Fusina

    2006-01-01

    Nine measures of atmospheric surface moisture are tested for statistical relationships with fire size and number of fires using data from the Great Lakes region of the United States. The measures include relative humidity, water vapor mixing ratio, mixing ratio deficit, vapor pressure, vapor pressure deficit, dew point temperature, dew point depression, wet bulb...

  13. Atmospheric Pressure Plasma Jet as an Accelerator of Tooth Bleaching.

    Science.gov (United States)

    Santak, Vedran; Zaplotnik, Rok; Milosevic, Slobodan; Klaric, Eva; Tarle, Zrinka

    2014-12-01

    To study the effect of atmospheric pressure plasma (APP) jet as a potential accelerator of the degradation of hydrogen peroxide in bleaching gels which could lead to better and faster bleaching. 25 pastilles of hydroxylapatite were colored in green tea for 8 hours and were randomly divided into five groups (n = 5). The bleaching process was performed with 30% and 40% hydrogen peroxide (HP) gel alone and in conjunction with helium APP jet. During the bleaching treatment, optical emission spectroscopy and non-contact surface temperature measurement using pyrometer were performed. Color of the pastilles was determined by a red-green-blue (RGB) colorimeter. PH values of bleaching gels were measured before and after the plasma treatment on additional 10 pastilles using a pH meter with contact pH electrode. The color measurements of pastilles before and after the treatment showed that treatment with APP jet improved the bleaching effect by 32% and 15% in the case of 30% and 40% HP gel. Better results were obtained approximately six times faster than with a procedure suggested by the bleaching gel manufacturer. Optical emission spectroscopy proved that plasma has a chemically active role on the gel. After the APP treatment, pH values of bleaching gels dropped to about 50-75% of their initial value while the surface temperature increased by 8-10˚C above baseline. The use of plasma jet provides more effective bleaching results in a shorter period of time without a significant temperature increase which may cause damage of the surrounding tissue.

  14. Drop impact on a solid surface at reduced air pressure

    Science.gov (United States)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  15. ATMOSPHERE PRESSURE EFFECT ON THE FIBER OPTIC GYROSCOPE OUTPUT SYGNAL

    Directory of Open Access Journals (Sweden)

    Ilya A. Sharkov

    2017-05-01

    Full Text Available The paper describes research results of the atmospheric pressure effect on the output signal of a fiber optic gyroscope (FOG. In the course of experiments, FOG was placed into a hermetic chamber. The atmosphere pressure was varying in the range from 0.8 to 1.5 atm. All the data, including the FOG output signal, temperature, and data from the pressure sensor installed inside the FOG, were synchronously registered with the computer software. The separation of scale factor change from zero offset in the experiment was carried out by setting the sensitive FOG axis at 0°, 90° and 270° relative to the East (the FOG was set perpendicular to the horizon. After the data processing it was concluded that the FOG signal error associated with the pressure affects mainly on the additive component. The pressure effect on the multiplicative component appeared to be negligible at rotational velocities used in the experiment (0 - 130 /h. At the same time, the FOG signal has a high linear correlation coefficient with the derivative of pressure over time (in some cases, more than 0.9. The experiment was repeated several times and the high degree of the drift repeatability was shown. That makes it possible to implement the compensation algorithm. Application of the simplest algorithmic compensation based on the polynomial of the first degree (ax + b enabled to reduce the root-mean-square (RMS and drift of the signal by 2-9 times.

  16. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Sen Ren

    2013-12-01

    Full Text Available A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  17. Atmospheric pressure and suicide attempts in Helsinki, Finland

    Science.gov (United States)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods ( P pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  18. Drying kinetics of RDX under atmospheric pressure and vacuum conditions

    International Nuclear Information System (INIS)

    Zhang, Yaoxuan; Chen, Houhe; Chen, Teng

    2014-01-01

    Highlights: • In this study, RDX is dried in the ranges of 60–90 °C under atmospheric pressure and vacuum conditions. • Ten models are used to describe the drying of RDX. • The Midilli–Kucuk model is determined as the most suitable model. • Effective moisture diffusivity and activation energy for drying process are determined. - Abstract: The drying characteristics of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are investigated in the ranges of 60–90 °C of drying temperature under atmospheric pressure and vacuum conditions in a laboratory scale dryer. The effect of drying temperature and absolute pressure on the drying characteristics is determined. In order to estimate and select the suitable form of RDX drying curves, the curves are fitted to ten different semi-theoretical and/or empirical thin-layer drying models and coefficients are evaluated by non-linear regression analysis. The models are compared based on their coefficient of determination, such as mean bias error, root mean square error, reduced chi-square and modeling efficiency between experimental and predicted moisture ratios. It is deduced that Midilli–Kucuk model has shown a better fit to the experimental drying data as compared to other models. A diffusion model is used to describe the moisture transfer and the effective diffusivity for RDX drying is also determined at each temperature. Beside, the activation energy is also expressed using Arrhenius-type relationship under atmospheric pressure and vacuum conditions

  19. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Adhesion improvement of fibres by continuous plasma treatment at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Sørensen, Bent F.

    2013-01-01

    Carbon fibres and ultra-high-molecular-weight polyethylene (UHMWPE) fibres were continuously treated by a dielectric barrier discharge plasma at atmospheric pressure for adhesion improvement with epoxy resins. The plasma treatment improved wettability, increased the oxygen containing polar...... functional groups at the surface, and subsequently improved adhesion to the epoxy and fracture resistance of epoxy composites. Hansen solubility parameters (HSP), quantitatively describing physical interactions among molecules, were measured for the UHMWPE fibre surfaces. The result identifies two distinct...... types of surfaces in both the plasma treated and the untreated fibres. One type is typical of polyethylene polymers while the other is characteristic of the oxygenated surface at much higher values of HSP....

  1. Spectroscopic characterisation of an atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Gomez, S.; Steen, P.G.; Morrow, T.; Graham, W.G.

    2001-01-01

    Recently there has been considerable interest in atmospheric discharges operating in a glow discharge mode i.e. with a spatial and sheath structure similar to that of low pressure glow discharges. Here spectroscopy has been used to characterise an atmospheric pressure glow discharge (APGD), operating with either dry air, argon or helium gas flowing through the inter-electrode space and with the inter-electrode gap either free or with woven polypropylene or polyester samples present. Emission spectroscopy is used to determine the rotational and vibrational temperature of the nitrogen gas, while electron temperatures are determined from the relative intensities of Ar emission lines. Ozone production is monitored by a simple absorption technique to evaluate its potential in process control

  2. Nanomaterials synthesis at atmospheric pressure using nanosecond discharges

    International Nuclear Information System (INIS)

    Pai, David Z

    2011-01-01

    The application of nanosecond discharges towards nanomaterials synthesis at atmospheric pressure is explored in this perspective article. First, various plasma sources are evaluated in terms of the energy used to include one atom into the nanomaterial, which is shown to depend strongly on the electron temperature. Because of their high average electron temperature, nanosecond discharges could be used to achieve nanofabrication at a lower energy cost, and therefore with better efficiency, than with other plasma sources at atmospheric pressure. Transient spark discharges and nanosecond repetitively pulsed (NRP) discharges are suggested as particularly useful examples of nanosecond discharges generated at high repetition frequency. Nanosecond discharges also generate fast heating and cooling rates that could be exploited to produce metastable nanomaterials.

  3. Decomposition of tetrafluoromethane by water plasma generated under atmospheric pressure

    International Nuclear Information System (INIS)

    Narengerile,; Saito, Hironori; Watanabe, Takayuki

    2009-01-01

    Tetrafluoromethane (CF 4 ) decomposition by water plasma generated under atmospheric pressure was investigated by means of thermodynamic analyses and experiments. Thermodynamic equilibrium calculations were performed between 300 and 6000 K at atmospheric pressure. Experimental results indicated that CF 4 was completely decomposed by water plasma, and recovery of fluorine can be achieved more than 99%. Influence of factors such as arc current and additive flow rate of O 2 on CF 4 decomposition was determined. Furthermore, the decomposition mechanism of CF 4 was investigated from chemical kinetics consideration. CF x(x:1-4) was thermally decomposed above 4000 K, oxidized in the temperature range of 4000-2400 K, and removed by H radical at temperatures below 2400 K.

  4. Decomposition of tetrafluoromethane by water plasma generated under atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Narengerile,; Saito, Hironori [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8502 (Japan); Watanabe, Takayuki, E-mail: watanabe@chemenv.titech.ac.j [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8502 (Japan)

    2009-12-01

    Tetrafluoromethane (CF{sub 4}) decomposition by water plasma generated under atmospheric pressure was investigated by means of thermodynamic analyses and experiments. Thermodynamic equilibrium calculations were performed between 300 and 6000 K at atmospheric pressure. Experimental results indicated that CF{sub 4} was completely decomposed by water plasma, and recovery of fluorine can be achieved more than 99%. Influence of factors such as arc current and additive flow rate of O{sub 2} on CF{sub 4} decomposition was determined. Furthermore, the decomposition mechanism of CF{sub 4} was investigated from chemical kinetics consideration. CF{sub x(x:1-4)} was thermally decomposed above 4000 K, oxidized in the temperature range of 4000-2400 K, and removed by H radical at temperatures below 2400 K.

  5. Ferrous alloys cast under high pressure gas atmosphere

    Directory of Open Access Journals (Sweden)

    Pirowski Z.

    2007-01-01

    Full Text Available The main objective of this paper is describing the essence of the process of introducing nitrogen to the melt of ferrous alloys by application of overpressure above the metal bath. The problem was discussed in terms of both theory (the thermodynamic aspects of the process and practice (the technical and technological aspects, safety of the furnace stand operation, and technique of conducting the melt. The novel technique of melting under high pressure of the gas atmosphere (up to 5 MPa has not been used so far in the domestic industry, mainly because of the lack of proper equipment satisfyng the requirements of safe operation. Owing to cooperation undertaken with a partner from Bulgaria, a more detailed investigation of this technology has become possible and melting of selected ferrous alloys was conducted under the gas atmosphere at a pressure of about 3,5 MPa.

  6. An upper limit on Early Mars atmospheric pressure from small ancient craters

    Science.gov (United States)

    Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

    2012-12-01

    Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are

  7. Structural bifurcation of microwave helium jet discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kitoh, Masakazu; Soga, Tadasuke

    2008-01-01

    Structural bifurcation of microwave-sustained jet discharge at atmospheric gas pressure was found to produce a stable helium plasma jet, which may open the possibility of a new type of high-flux test plasma beam for plasma-wall interactions in fusion devices. The fundamental discharge properties are presented including hysteresis characteristics, imaging of discharge emissive structure, and stable ignition parameter area. (author)

  8. Atmospheric pressure nitrogen laser made by single block ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuchuan; Wang Huaiming; Rao Deyi; Yan Zhicheng; Ge Qian; Li Yue; Zhang Yilu; Xie Yan

    1986-02-01

    This paper reports the experimental research for atmospheric pressure nitrogen laser of short tube design, with a single block ceramics as dielectric. With the laser discharge electrode 5.8 cm in length, we got pulse energy of 13 ..mu..J at 100 Hz, with a maximum average power of 1.3 mW, a pulse width of 0.8 ns, and a beam divergence of 1.3 x 3 mrad.

  9. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    Science.gov (United States)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  10. Measurement of atmospheric surface layer turbulence using unmanned aerial vehicles

    Science.gov (United States)

    Bailey, Sean; Canter, Caleb

    2017-11-01

    We describe measurements of the turbulence within the atmospheric surface layer using highly instrumented and autonomous unmanned aerial vehicles (UAVs). Results from the CLOUDMAP measurement campaign in Stillwater Oklahoma are presented including turbulence statistics measured during the transition from stably stratified to convective conditions. The measurements were made using pre-fabricated fixed-wing remote-control aircraft adapted to fly autonomously and carry multi-hole pressure probes, pressure, temperature and humidity sensors. Two aircraft were flown simultaneously, with one flying a flight path intended to profile the boundary layer up to 100 m and the other flying at a constant fixed altitude of 50 m. The evolution of various turbulent statistics was determined from these flights, including Reynolds stresses, correlations, spectra and structure functions. These results were compared to those measured by a sonic anemometer located on a 7.5 m tower. This work was supported by the National Science Foundation through Grant #CBET-1351411 and by National Science Foundation award #1539070, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUDMAP).

  11. Effect of atmospheric pressure on discharge characteristics of gamma-ray irradiated polybutylene terephthalate

    International Nuclear Information System (INIS)

    Boxue, Du

    2002-01-01

    The spreading use of organic insulating materials in environments such as space and nuclear power stations is increases the concern about the reliability of electrical insulation in these environments due to radiation and atmospheric pressure effects on the surface breakdown of polymers. This paper describes the effects of atmospheric pressure and gamma-ray irradiation on the discharge characteristics. The experiment was carried out by dc impulse voltage under decreased pressure. Polybutylene terephthalate which was irradiated in air up to 100 kGy and 1 MGy with dose rate of 10 kGy/h using a 60 Co gamma-source has been used as the test sample. The total dose of gamma-ray irradiation effects on the discharge quantity have been studied. The changes of discharge quantity is discussed with decreasing the atmospheric pressure in the range from 100 kPa to 1 kPa and the frequency of applied impulse voltage in the range from 100 Hz to 250 Hz. The discharge quantity increased with increasing the total dose of gamma-ray irradiation, and decreased with decreasing the atmospheric pressure. The discharge quantity increased with increasing the frequency of applied impulse voltage. (author)

  12. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    Science.gov (United States)

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  13. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  14. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    International Nuclear Information System (INIS)

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe; Grigoras, Constantin

    2011-01-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  15. Atmosphere-surface interactions on Venus and implications for atmospheric evolution

    International Nuclear Information System (INIS)

    Khodakovsky, I.L.

    1982-01-01

    The physico-chemical processes controlling the Venusian tropospheric chemical composition surface rock mineral assemblages and volatile element distribution in the atmosphere and planetary crust is considered. (author)

  16. Pressure relieving support surfaces: a randomised evaluation.

    Science.gov (United States)

    Nixon, J; Nelson, E A; Cranny, G; Iglesias, C P; Hawkins, K; Cullum, N A; Phillips, A; Spilsbury, K; Torgerson, D J; Mason, S

    2006-07-01

    To determine differences between alternating pressure overlays and alternating pressure replacement mattresses with respect to the development of new pressure ulcers, healing of existing pressure ulcers, patient acceptability and cost-effectiveness of the different pressure-relieving surfaces. Also to investigate the specific additional impact of pressure ulcers on patients' well-being. A multicentre, randomised, controlled, open, fixed sample, parallel-group trial with equal randomisation was undertaken. The trial used remote, concealed allocation and intention-to-treat (ITT) analysis. The main trial design was supplemented with a qualitative study involving a purposive sample of 20-30 patients who developed pressure ulcers, to assess the impact of the pressure ulcers on their well-being. In addition, a focus group interview was carried out with clinical research nurses, who participated in the PRESSURE (Pressure RElieving Support SUrfaces: a Randomised Evaluation) Trial, to explore the experiences of their role and observations of pressure area care. The study took place in 11 hospital-based research centres within six NHS trusts in England. Acute and elective patients aged 55 years or older and admitted to vascular, orthopaedic, medical or care of the elderly wards in the previous 24 hours were investigated. Patients were randomised to either an alternating pressure overlay or an alternating pressure mattress replacement, with mattress specifications clearly defined to enable the inclusion of centres using products from different manufacturers, and to exclude hybrid mattress systems (which either combine foam or constant low pressure with alternating pressure in one mattress, or can be used as either an overlay or a replacement mattress). Development of a new pressure ulcer (grade pressures ulcers, patient acceptability and cost-effectiveness. In total, 6155 patients were assessed for eligibility to the trial and 1972 were randomised: 990 to the alternating

  17. Atmospheric pressure plasma treatment of glass fibre composite for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, H.; Stenum, Bjarne

    2007-01-01

    Glass-fibre-reinforced polyester composite plates were treated with an atmospheric pressure dielectric barrier discharge. Synthetic air was used as the treatment gas. The water contact angle dropped markedly from 84 to 22° after a 2-s treatment, and decreased to 0° when the composite plates were...... treated for more than 30 s. X-Ray photoelectron spectroscopic analysis showed that the contents of aluminium and oxygen on the surface increased with the plasma treatment. The adhesion strength of the 2-s treated surface was comparable to or higher than that achieved by conventional mechanical surface...

  18. Fluoropolymer coated alanine films treated by atmospheric pressure plasmas − In comparison with gamma irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Bardenshtein, Alexander; Morgen, Per

    2018-01-01

    Fluoropolymer coated alanine films are treated by a dielectric barrier discharge and a gliding arc at atmospheric pressure as well as with gamma irradiation. The film surfaces and the underlying bulk materials are characterized before and after each treatment. The fluorine content decreases...... and the oxygen content increases at the fluoropolymer surfaces, while deposition of specific plasma energies in the alanine films is detected by electron paramagnetic resonance spectroscopy, indicating that not only the fluoropolymer surfaces but also the bulk alanine materials are modified. Differences...

  19. RF atmospheric plasma jet surface treatment of paper

    Science.gov (United States)

    Pawlat, Joanna; Terebun, Piotr; Kwiatkowski, Michał; Diatczyk, Jaroslaw

    2016-09-01

    A radio frequency RF atmospheric pressure plasma jet was used to enhance the wettability of cellulose-based paper of 90 g m-2 and 160 g m-2 grammage as a perspective platform for antibiotic sensitivity tests. Helium and argon were the carrier gases for oxygen and nitrogen; pure water and rapeseed oil were used for goniometric tests. The influence of the flow rate and gas type, the power of the discharge, and distance from the nozzle was examined. The surface structure was observed using an optical microscope. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra were investigated in order to determine whether cellulose degradation processes occurred. The RF plasma jet allowed us to decrease the surface contact angle without drastic changes in other features of the tested material. Experiments confirmed the significant influence of the distance between the treated sample and reactor nozzle, especially for treatment times longer than 15 s due to the greater concentration of reactive species at the surface of the sample, which decreases with distance—and their accumulation effect with time. The increase of discharge power plays an important role in decreasing the surface contact angle for times longer than 10 s. Higher power had a positive effect on the amount of generated active particles and facilitated the ignition of discharge. However, a too high value can cause a rise in temperature of the material and heat-caused damage.

  20. Atmospheric Pressure Effect of Retained Gas in High Level Waste

    International Nuclear Information System (INIS)

    Weber, A.H.

    1999-01-01

    Isolated high level waste tanks in H-Area have unexplained changes in waste-level which have been attributed to environmental effects including pressure, temperature, and relative humidity. Previous studies at SRS have considered waste-level changes from causes not including the presence of gas in the salt cake. This study was undertaken to determine the effect of atmospheric pressure on gas in the salt cake and resultant changes in the supernate level of Tank 41H, and to model that effect if possible. A simple theory has been developed to account for changes in the supernate level in a high level waste tank containing damp salt cake as the response of trapped gases to changes in the ambient pressure. The gas is modeled as an ideal gas retained as bubbles within the interstitial spaces in the salt cake and distributed uniformly throughout the tank. The model does not account for consistent long term increases or decreases in the tank level. Any such trend in the tank level is attributed to changes in the liquid content in the tank (from condensation, evaporation, etc.) and is removed from the data prior to the void estimation. Short term fluctuations in the tank level are explained as the response of the entrained gas volume to changes in the ambient pressure. The model uses the response of the tank level to pressure changes to estimate an average void fraction for the time period of interest. This estimate of the void is then used to predict the expected level response. The theory was applied to three separate time periods of the level data for tank 41H as follows: (1) May 3, 1993 through August 3, 1993, (2) January 23, 1994 through April 21, 1994, and (3) June 4, 1994 through August 24, 1994. A strong correlation was found between fluctuations in the tank level and variations in the ambient pressure. This correlation is a clear marker of the presence of entrained gases in the tank. From model calculations, an average void fraction of 11 percent was estimated to

  1. Counter-propagating streamers in an atmospheric-pressure helium plasma jet

    Science.gov (United States)

    Hasan, M. I.; Cvelbar, U.; Bradley, J. W.; Walsh, J. L.

    2017-05-01

    This study explores an atmospheric pressure plasma jet impinging on a downstream dielectric surface using a 2D numerical plasma fluid model. It is demonstrated that a counter-propagating discharge ignites at the exposed dielectric surface when the discharge is ignited using negative polarity voltage pulses with fall times in the microsecond range. Two distinct streamer discharges are created, a cathode-directed streamer propagating upstream toward the cathode, and an anode-directed streamer propagating parallel to the dielectric surface facing the gas flow. The surface discharge propagating parallel to the dielectric surface deposits negative surface charge. It is also shown that driving an APPJ with a negative applied potential significantly increases the \\text{O}\\text{2}- time-averaged flux to the dielectric surface while decreasing the \\text{O}\\text{2}+ time-averaged flux.

  2. Surface morphological properties of CdxZn(1-x)S thin films deposited by low-cost atmospheric pressure metal organic chemical vapour deposition technique (AP-MOCVD)

    Science.gov (United States)

    Kamaruddin, Nurhafiza; Yusoff, Yulisa; Hossain, Towhid; Amin, Nowshad; Akhtaruzzaman, Md.

    2017-11-01

    The CdxZn(1-x)S films have been deposited by low cost atmospheric pressure metal organic chemical vapour deposition (AP-MOCVD) technique and the resulting morphological properties were successfully evaluated for solar cell applications. All morphological properties presented here were investigated by Field-Emission Scanning Microscopy (FESEM) and Energy Dispersive X-Ray (EDX) spectroscopy. It has been observed that the film thickness and grain size have been greatly influenced by the molar ratio of cadmium and zinc, deposition temperature and time. The average grain size of Cd0.5Zn0.5S films (98.16 nm thick) was obtained with deposition temperature and time of 440°C and 2.5 minutes, respectively.

  3. Atomic Oxygen Cleaning Shown to Remove Organic Contaminants at Atmospheric Pressure

    Science.gov (United States)

    Rutledge, Sharon K.

    1998-01-01

    The NASA Lewis Research Center has developed and filed for a patent on a method to produce atomic oxygen at atmospheric pressure by using a direct current arc in a gas flow mixture of oxygen and helium. A prototype device has been tested for its ability to remove various soot residues from surfaces exposed to fire, and various varnishes such as acrylic and egg white.

  4. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    Science.gov (United States)

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  5. Vapour-liquid equilibrium studies at atmospheric to moderate pressures

    Science.gov (United States)

    Russell, Paul Andrew

    A study of vapour-liquid equilibria is presented together with current developments. The theory of vapour-liquid equilibria is discussed. Both experimental and prediction methods for obtaining vapour-liquid equilibria data are critically reviewed. The development of a new family of equilibrium stills to measure experimental VLE data from sub-atmosphere to 35 bar pressure is described. Existing experimental techniques are reviewed, to highlight the needs for these new apparati and their major attributes. Details are provided of how apparatus may be further improved and how computer control may be implemented. To provide a rigorous test of the apparatus the stills have been commissioned using acetic acid-water mixture at one atmosphere pressure. A Barker-type consistency test computer program, which allows for association in both phases has been applied to the data generated and clearly shows that the stills produce data of a very high quality. Two high quality data sets, for the mixture acetone- chloroform, have been generated at one atmosphere and 64.3oC. These data are used to investigate the ability of the new novel technique, based on molecular parameters, to predict VLE data for highly polar mixtures. Eight vapour-liquid equilibrium data sets have been produced for the mixture cyclohexane-ethanol mixture at one atmosphere, 2, 4, 6, 8 and 11 bar, 90.9oC and 132.8oC. These data sets have been tested for thermodynamic consistency using a Barker-type fitting package and shown to be of high quality. The data have been used to investigate the dependence of UNIQUAC parameters with temperature. The data have in addition been used to compare directly the performance of the predictive methods, Original UNIFAC, a modified version of UNIFAC and the new novel technique, based on molecular parameters developed from generalised London's potential (GLP) theory.

  6. Detection of atmospheric pressure loading using very long baseline interferometry measurements

    Science.gov (United States)

    Vandam, T. M.; Herring, T. A.

    1994-01-01

    Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.

  7. Driven Motion and Instability of an Atmospheric Pressure Arc

    International Nuclear Information System (INIS)

    Max Karasik

    1999-01-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes

  8. Microwave generation of stable atmospheric-pressure fireballs in air

    Science.gov (United States)

    Stephan, Karl D.

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  9. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  10. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O 2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  11. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  12. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    Science.gov (United States)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  13. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension.

    Science.gov (United States)

    Kamiński, Marek; Cieślik-Guerra, Urszula I; Kotas, Rafał; Mazur, Piotr; Marańda, Witold; Piotrowicz, Maciej; Sakowicz, Bartosz; Napieralski, Andrzej; Trzos, Ewa; Uznańska-Loch, Barbara; Rechciński, Tomasz; Kurpesa, Małgorzata

    2016-01-01

    Atmospheric pressure is the most objective weather factor because regardless of if outdoors or indoors it affects all objects in the same way. The majority of previous studies have used the average daily values of atmospheric pressure in a bioclimatic analysis and have found no correlation with blood pressure changes. The main objective of our research was to assess the relationship between atmospheric pressure recorded with a frequency of 1 measurement per minute and the results of 24-h blood pressure monitoring in patients with treated hypertension in different seasons in the moderate climate of the City of Łódź (Poland). The study group consisted of 1662 patients, divided into 2 equal groups (due to a lower and higher average value of atmospheric pressure). Comparisons between blood pressure values in the 2 groups were performed using the Mann-Whitney U test. We observed a significant difference in blood pressure recorded during the lower and higher range of atmospheric pressure: on the days of the spring months systolic (p = 0.043) and diastolic (p = 0.005) blood pressure, and at nights of the winter months systolic blood pressure (p = 0.013). A significant inverse relationship between atmospheric pressure and blood pressure during the spring days and, only for systolic blood pressure, during winter nights was observed. Int J Occup Med Environ Health 2016;29(5):783-792. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. Atmospheric-pressure plasma decontamination/sterilization chamber

    Science.gov (United States)

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  15. Development of atmospheric pressure plasma needle jet for sterilization applications

    Science.gov (United States)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Wibowo, Kusnanto Mukti; Bakar, Ahmad Shuhaimi Abu; Arshad, Mohd Khairuddin Md; Hashim, Uda; Nayan, Nafarizal

    2017-09-01

    Inactivation of bacteria or sterilization has been a major issue in the medical field, especially regarding of human safety, whereby, in a huge scenario fatality can be caused by hazardous bacteria. Often, E-coli as gram-negative bacteria are selected as a key indicator of proper sterilization process as E-coli is tough and dormant bacteria. The technology in sterilization has moved on from chemical, wet and irradiation sterilization to a high promising device such as atmospheric pressure plasma needle jet (APPNJ). It has been reported that atmospheric pressure plasma has provided bundle of advantages over earlier sterilization process. The APPNJ is developed in our lab using high frequency and high voltage neon transformer power supply connected to copper needle and copper sheet electrodes. The gas discharge is Ar gas flowing at 40 L/min through a quartz glass tube. The E-coli bacteria are self-cultured from waste water and then treated with APPNJ. The treatment processes are run into two difference gaps between the plasma orifice and sample with various treatment times. Only 40s is required by direct treatment to achieve 100% killing of E-coli. On the other hand, indirect treatment has inactivated 50% of the E-coli in 40s. In this study, direct and indirect effect of APPNJ to the E-coli can be observed which can be utilized into sterilization of bio-compatible material applications.

  16. Sensitivity of the hand to surface pressure.

    Science.gov (United States)

    Fransson-Hall, C; Kilbom, A

    1993-06-01

    A new method of measuring pain-pressure threshold (PPT) of the hand has been developed. Externally applied surface pressure (EASP) was exerted at a certain rate of increase and the level where the feeling of pressure turned into pain was recorded. Also, the effects of sustained EASP were elucidated. Sixteen healthy right-handed subjects (eight female, eight male) participated. The distribution of the hand's sensitivity to EASP is presented. The most sensitive areas were the thenar area, the skinfold between thumb and index finger and the area around os pisiforme. When the hand was repeatedly exposed to EASP, the PPT decreased with increasing number of pressure incidents. For sustained EASP, the time of exposure was found to be important also for the quality of the sensation. Our results show that sustained EASP does not hurt at once, but becomes painful after a short time. On average, the female PPT corresponded to two-thirds of the male PPT. Females experienced pain faster than males when exposed to sustained EASP, and chose lower levels when estimating acceptable sustained EASP.

  17. Characterization of atmospheric pressure plasma treated wool/cashmere textiles: Treatment in nitrogen

    Science.gov (United States)

    Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia

    2018-01-01

    We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.

  18. Ultrasound enhanced 50 Hz plasma treatment of glass-fiber-reinforced polyester at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2013-01-01

    approximately from 20 up to 80 mJm2 with ultrasonic irradiation. The plasma treatment with ultrasonic irradiation also introduced oxygen- and nitrogen-containing functional groups at the GFRP surface. These changes would improve the adhesion properties of the GFRP plates....... of around 30 kHz with the sound pressure level of approximately 155 dB were introduced vertically to the GFRP surface through a cylindrical waveguide. The polar component of the surface energy was almost unchanged after the plasma treatment without ultrasonic irradiation, but drastically increased......Glass-fiber-reinforced polyester (GFRP) plates are treated using a 50Hz dielectric barrier discharge at a peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency...

  19. Application of atmospheric pressure nonthermal plasma for the in vitro eradication of bacterial biofilms.

    Science.gov (United States)

    Alkawareek, Mahmoud Y; Algwari, Qais T; Gorman, Sean P; Graham, William G; O'Connell, Deborah; Gilmore, Brendan F

    2012-07-01

    The use of atmospheric pressure nonthermal plasma represents an interesting and novel approach for the decontamination of surfaces colonized with microbial biofilms that exhibit enhanced tolerance to antimicrobial challenge. In this study, the influence of an atmospheric pressure nonthermal plasma jet, operated in a helium and oxygen gas mixture under ambient pressure, was evaluated against biofilms of Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Within < 4 min of plasma exposure, complete eradication of the two gram-positive bacterial biofilms was achieved. Although gram-negative biofilms required longer treatment time, their complete eradication was still possible with 10 min of exposure. Whilst this study provides useful proof of concept data on the use of atmospheric pressure plasmas for the eradication of bacterial biofilms in vitro, it also demonstrates the critical need for improved understanding of the mechanisms and kinetics related to such a potentially significant approach. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Measurement and analysis for optical radiation of glow discharge plasma at atmospheric pressure

    Science.gov (United States)

    Ren, Qinglei; Lin, Qi

    2006-02-01

    The optical radiation measurement and analysis to the glow discharge plasma at atmospheric pressure have been done in the paper. The low temperature plasma due to atmospheric pressure glow discharge (APGD) in air has been produced on the planar surface of designed electrode plate. The optical radiation spectra of the plasma produced in two kinds of electrode plats with different power values loaded have been measured and sampled with the minitype grating spectrograph system. The acquired spectra data are processed averagely and analyzed. The results of analysis indicate that the optical characteristic of the APGD plasma is related to the loaded power and layout of the electrode plate. This shows that it is feasible to describe the characteristic parameters of APGD plasma qualitatively and control the strength of the APGD plasma quantitatively by the obtained relationship, which provides a convenient approach for utilizing APGD plasma effectively and also establishes some foundation to investigate APGD plasma further.

  1. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.

    2010-01-01

    The decontamination of a rotating cutting tool used for slicing in the meat industry by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua......, is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...... of the whole cutting tool. A log 5 reduction of L. innocua is obtained after 340 s of plasma operation. The temperature of the knife after treatment was found to be below 30 °C. The design of the setup allows a decontamination during slicing operation....

  2. The major influence of the atmosphere on intracranial pressure: an observational study.

    Science.gov (United States)

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p impacted positively by atmospheric pressure.

  3. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  4. Characterization of non- equilibrium atmospheric pressure plasma jets

    International Nuclear Information System (INIS)

    Qurat-ul-Ain

    2012-01-01

    Low temperature atmospheric pressure plasmas have been recognized as a new paradigm in plasma physics with their potential, economic and technological impacts in many scientific disciplines. This is due to their lower costs, high productibility, continuous processing, and potentially novel applications, which cannot be attained by using expensive vacuum systems. They can be generated by a variety of techniques; one of them is the atmospheric pressure plasma jet (APPJ), which features a radio-frequency (RF) discharge between bare metallic electrodes. Usually APPJ is operated in the alpha mode at gap spacings in the range of 1 mm or even more. In this research work two APPJs (APPJ2, APPJ3) with different size are studied; the electrode area of the device APPJ3 is half than the area of APPJ2, and both are sandwiched structures. The RF capacitive coupled discharges were fundamentally characterized in helium there of by voltage-current measurements, macroscopic visualization and manipulation of the discharges and extensive spectroscopic measurements. APPJ3 is operated for gap spacing 1 mm down to 0.1 mm at a fixed gas flow rate. Uniform glow discharges can be generated for gap spacing 1 mm down to 0.1 mm. Plasma parameters were extracted using equivalent circuit models. It has been shown that at larger gaps discharge is present which exhibit a fully develop bulk plasma region with sheaths. At gap spacings 0.4 mm the discharge don't have a fully develop bulk plasma and sheaths starts occupying more space of the gap. At gap spacings 0.5 mm two regimes can be observed, a normal regime with partial coverage and an abnormal regime with full coverage of the electrodes, whereas for gaps 0.4 mm there is no partial coverage observed even at very low powers. In all cases impedance measurements have been performed and compared with equivalent circuit models. These equivalent circuit models capture the picture correctly at lager gaps. For smaller gaps using sheath only model and

  5. The effect on the hydropholicity of PTFE film under pressure atmosphere pulse dielectric barrier discharge

    International Nuclear Information System (INIS)

    Li Xi; Li Jie; Xie Yutong; Zhang Linwen

    2014-01-01

    Polymer film has the advantages of super electrical performances, resistance to acids and alkalies, etc. Its products have been widely used in industrial sectors, such as PSA (Pressure-sensitive Tape), however most of polymer films lack in good hydropholicity. Usually using some surface modification methods improve the hydropholicity of polymer, and one of the most important means is pressure atmosphere DBD (Dielectric Barrier Discharge) plasma. In order to study In order to study the changed effects of the low temperature plasma on polymer film hydrophilicity, We will conduct an atmospheric pressure parallel plate dielectric barrier discharge by using the microsecond frequency high voltage pulse power supply, then have some PTFE surface modification experiments. By using pearson current monitor and high-voltage probe, we get the information of the voltage and current, and then calculate the gap voltage, discharge current and power density by the Liu and Neiger Equivalent Model, which is beneficial to the analysis of discharge properties. Via the water contact angle measuring instrument, we will compare the change of, research the effect of gap distance and processing time on the changes of PTFE surface water contact angle, Besides, take the ageing problem into account for the reference of practical application. (authors)

  6. Tribological Performance of Silahydrocarbons Used as Steel-Steel Lubricants under Vacuum and Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Hai-Zhong Wang

    2014-01-01

    Full Text Available The silahydrocarbons of tetraalkylsilanes with different substituted alkyl groups (named as SiCH were synthesized and evaluated as lubricants for steel-steel contacts by a home-made vacuum four-ball tribometer (VFBT-4000 under atmospheric pressure and under vacuum pressure (5×10-4 Pa. The SiCH oils possess better thermal stability, low temperature fluidity, and lower saturated vapor pressure than those of multialkylatedcyclopentanes (MACs. The tribological performances of the SiCH oils are also superior to those of MACs and PFPE-Z25 in terms of friction-reduction ability and antiwear capacity under sliding friction at vacuum. The SEM/EDS and XPS results reveal that the boundary lubricating film consisting of (-O-Si-R-n compounds is formed by tribochemical reactions and serious adhesion wear under atmospheric pressure and the film consisting of (-Si-R-Si-n compounds is formed on the worn surface under vacuum pressure.

  7. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    Kafrouni, Hanna.

    1979-01-01

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values [fr

  8. Depth profiling of hydrogen under an atmospheric pressure

    International Nuclear Information System (INIS)

    Yonemura, H.; Kitaoka, Y.; Sekiba, D.; Matsuzaki, H.; Ogura, S.; Matsumoto, M.; Iwamura, Y.; Ito, T.; Narusawa, T.; Fukutani, K.

    2011-01-01

    Nuclear reaction analysis of hydrogen with a use of the 1 H( 15 N,αγ) 12 C reaction was performed under a atmospheric condition. A 100 nm-thick silicon nitride membrane coated with gold of 10 nm was used for the extraction of the 15 N beam into the sample chamber filled with gas molecules. Hydrogen contained in a Y film with a thickness of 80 nm was detected in N 2 of 10 5 Pa. This nuclear reaction analysis (NRA) setup was also applied to H 2 gas, and the yield curve revealed a plateau feature. The plateau level was, furthermore, found to be constant independent of the H 2 pressure. We show that this plateau intensity can be used to obtain the detection efficiency of a NRA setup.

  9. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    International Nuclear Information System (INIS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas’yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-01-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  10. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  11. Audio frequency modulated RF discharge at atmospheric pressure

    Science.gov (United States)

    Braithwaite, Nicholas; Sutton, Yvonne; Sharp, David; Moore, Jon

    2008-10-01

    An atmospheric pressure RF arc discharge, generated using a low voltage chopper and a Tesla coil resonant at about 300 kHz, forms a stable, silent, flame-like luminous region some 3 mm in diameter and 40 mm long, rooted to the electrodes by visible hot spots. It is known and we have confirmed that audio frequency modulation of the drive voltage makes the discharge act as an audio loudspeaker (tweeter) with its monopole radiation pattern constrained only by the electrodes. Time resolved `total' optical emission reveals an intensity variation that is synchronous with the audio frequency. Electrical characterisation of the high frequency discharge has been carried out. In the steady state, the high frequency arc burns without generating significant quantities of ozone, as determined by a commercial ozone detector. This is consistent with the high gas temperature within the arc, as measured by optical emission spectroscopy of molecular nitrogen. Phase-locked emission measurements illustrate the acoustic coupling.

  12. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Salarieh Setareh; Dorranian Davoud

    2013-01-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O 2 , He, and He/O 2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O 2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment

  13. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  14. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    Science.gov (United States)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  15. Atmospheric temperature and pressure influence the onset of spontaneous pneumothorax.

    Science.gov (United States)

    Motono, Nozomu; Maeda, Sumiko; Honda, Ryumon; Tanaka, Makoto; Machida, Yuichiro; Usuda, Katsuo; Sagawa, Motoyasu; Uramoto, Hidetaka

    2018-02-01

    The aim of the study was to examine the influence of the changes in the atmospheric temperature (ATemp) and the atmospheric pressure (APres) on the occurrence of a spontaneous pneumothorax (SP). From January 2000 to March 2014, 192 consecutive SP events were examined. The ATemp and APres data at the onset of SP, as well as those data at 12, 24, 36, 48, 60, and 72 h prior to the onset time, were analyzed. The frequencies of SP occurrence were not statistically different according to the months or seasons, but were statistically different according to the time period (P < .01) and SP events occurred most frequently from 12:00 to 18:00. SP events frequently occurred at an ATemp of 25 degrees Celsius or higher. There was a significantly negative correlation between the APres and the ATemp at the SP onset time. The values of change in the APres from 36 to 24 h prior to SP onset were significantly lower than the preceding values. In this study, we observed that a SP event was likely to occur in the time period from 12:00 to 18:00, at an ATemp of 25 degrees Celsius or higher, and at 24-36 h after a drop of APres. © 2016 John Wiley & Sons Ltd.

  16. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    Science.gov (United States)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  17. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  18. Superhydrophobic treatment using atmospheric-pressure He/C4F8 plasma for buoyancy improvement

    Science.gov (United States)

    Noh, Sooryun; Moon, A.-Young; Moon, Se Youn

    2015-04-01

    A superhydrophobic miniature boat was fabricated with aluminum alloy plates treated with atmospheric-pressure helium (He)/octafluorocyclobutane (C4F8) plasma using 13.56 MHz rf power. When only 0.13% C4F8 was added to He gas, the contact angle of the surface increased to 140° and the surface showed superhydrophobic properties. On the basis of chemical and morphological analyses, fluorinated functional groups (CF, CF2, and CF3) and nano-/micro-sized particles were detected on the Al surface. These features brought about superhydrophobicity similar to the lotus effect. While the miniature boat, assembled with plasma-treated plates, was immersed in water, a layer of air (i.e., a plastron) surrounded the superhydrophobic surfaces. This effect contributed to the development of a 4.7% increase in buoyancy. In addition, the superhydrophobic properties lasted for two months under the submerged condition. These results demonstrate that treatment with atmospheric-pressure He/C4F8 plasma is a promising method of improving the load capacity and antifouling properties, and reducing the friction of marine ships through a fast and low-cost superhydrophobic treatment process.

  19. The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.

    1999-01-01

    The MOLA topography of Mars is based on a new mean radius of the planet and new equipotential surface for the areoid. The mean atmospheric pressure surface of 6.1mbars that has been used in the past as a reference level for topography does not apply to the zero level of MOLA elevations. The MOLA mean radius of the planet is 3389508 meters and the mean equatorial radius is 339600 meters. The areoid of the zero level of the MOLA altimetry is defined to be the potential surface with the same potential as the mean equatorial radius. The MOLA topography differs from the USGS digital elevation data by approximately 1.6 km, with MOLA higher. The average pressure on the MOLA reference surface for Ls =0 is approximately 5.1 mbars and has been derived from occultation data obtained from the tracking of Viking, Mariner, and MGS spacecraft and interpolated with the aid of the Ames Mars GCM. The new topography and the new occultation data are providing a more reliable relationship between elevation and surface pressure.

  20. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  1. Analysis of atmospheric pressure and temperature effects on cosmic ray measurements

    Science.gov (United States)

    de MendonçA, R. R. S.; Raulin, J.-P.; Echer, E.; Makhmutov, V. S.; Fernandez, G.

    2013-04-01

    In this paper, we analyze atmospheric pressure and temperature effects on the records of the cosmic ray detector CARPET. This detector has monitored secondary cosmic ray intensity since 2006 at Complejo Astronómico El Leoncito (San Juan, Argentina, 31°S, 69°W, 2550 m over sea level) where the geomagnetic rigidity cutoff, Rc, is ~9.8 GV. From the correlation between atmospheric pressure deviations and relative cosmic ray variations, we obtain a barometric coefficient of -0.44 ± 0.01 %/hPa. Once the data are corrected for atmospheric pressure, they are used to analyze temperature effects using four methods. Three methods are based on the surface temperature and the temperature at the altitude of maximum production of secondary cosmic rays. The fourth method, the integral method, takes into account the temperature height profile between 14 and 111 km above Complejo Astronómico El Leoncito. The results obtained from these four methods are compared on different time scales from seasonal time variations to scales related to the solar activity cycle. Our conclusion is that the integral method leads to better results to remove the temperature effect of the cosmic ray intensity observed at ground level.

  2. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-30

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  3. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  4. Formation of oxygen complexes in controlled atmosphere at surface ...

    Indian Academy of Sciences (India)

    The effects of boron and phosphorus incorporation in phenolic resin precursor to the oxidation resistance of glassy carbon have been studied. In order to reveal the nature and composition of the oxygen complexes formed at the surface of doped glassy carbon, under controlled atmosphere, the surface of the samples was ...

  5. Effect of surface morphology on atmospheric corrosion behaviour of ...

    Indian Academy of Sciences (India)

    Co18Si1B14 ribbon, was evaluated. The wheel side surface of the ribbon was more corroded than the air side surface, due to the higher density of air pockets present. The phases present in atmospheric rust were analysed by X-ray diffraction ...

  6. Observations of the atmospheric surface layer parameters over a ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    1999-08-11

    Aug 11, 1999 ... This paper discusses the observations of the Atmospheric Surface Layer (ASL) parameters dur- ing the solar eclipse of August 11th, 1999. Intensive surface layer experiments were conducted at. Ahmedabad (23◦21 N, 72◦36 E), the western part of India, which was close to the totality path. This rare event ...

  7. Formation of oxygen complexes in controlled atmosphere at surface ...

    Indian Academy of Sciences (India)

    Abstract. The effects of boron and phosphorus incorporation in phenolic resin precursor to the oxidation resistance of glassy carbon have been studied. In order to reveal the nature and composition of the oxygen complexes formed at the surface of doped glassy carbon, under controlled atmosphere, the surface of the ...

  8. Exploring Scintillometry in the Stable Atmospheric Surface Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.

    2006-01-01

    The main objective of this thesis is to investigate observation methods of heat and momentum exchange and key variables that characterise turbulence in the atmospheric stable surface layer (SSL), a layer defined as the lower part of the stable boundary layer (SBL) where surface fluxes do not change

  9. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  10. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model

    Science.gov (United States)

    W. J. Massman

    2006-01-01

    Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...

  11. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  12. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    Science.gov (United States)

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  13. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui; Kuffel, E

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH 3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  14. Study of short atmospheric pressure dc glow microdischarge in air

    Science.gov (United States)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  15. Atmospheric Pressure Plasma Enhanced Spatial ALD of ZrO2 for Low-Temperature, Large-Area Applications

    OpenAIRE

    Mione, M.A.; Katsouras, I.; Creyghton, Y.; Boekel, W. van; Maas, J.; Gelinck, G.; Roozeboom, F.; Illiberi, A.

    2017-01-01

    High permittivity (high-k) materials have received considerable attention as alternatives to SiO2 for CMOS and low-power flexible electronics applications. In this study, we have grown high-quality ZrO2 by using atmospheric-pressure plasma-enhanced spatial ALD (PE-sALD), which, compared to temporal ALD, offers higher effective deposition rates and uses atmospheric-pressure plasma to activate surface reactions at lower temperatures. We used tetrakis(ethylmethylamino)zirconium (TEMAZ) as precur...

  16. A model for plasma modification of polypropylene using atmospheric pressure discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas are commonly used to improve the wetting and adhesion properties of polymers. In spite of their use, the mechanisms for achieving these properties are unclear. In this regard, we report on a computational investigation of the gas phase and surface kinetics during humid-air corona treatment of polypropylene (PP) and the resulting modification of its surface properties while varying energy deposition, relative humidity (RH), web speed, and gas temperature. Using results from a global plasma chemistry model validated against experiments, we found that increasing energy deposition increased the densities of alcohol, carbonyl, acid, and peroxy radicals on the PP surface. In doing so, significant amounts of gas phase O sub 3 and N sub x O sub y are produced. Increasing the RH increased the production of peroxy and acid groups, while decreasing those of alcohol and carbonyl groups. Production of O sub 3 decreased while that of HNO sub 3 increased. Increasing the temperature decreased the...

  17. Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD Plasma Treatment of Polypropylene Films

    Directory of Open Access Journals (Sweden)

    Lukas JW Seidelmann

    2017-03-01

    Full Text Available Atmospheric pressure plasma treatment of the surface of a polypropylene film can significantly increase its surface energy and, thereby improve the printability of the film. A laboratory-scale dielectric barrier discharge (DBD system has therefore been developed, which simulates the electrode configuration and reel-to-reel web transport mechanism used in a typical industrial-scale system. By treating the polypropylene in a nitrogen discharge, we have shown that the water contact angle could be reduced by as much as 40° compared to the untreated film, corresponding to an increase in surface energy of 14 mNm−1. Ink pull-off tests showed that the DBD plasma treatment resulted in excellent adhesion of solvent-based inks to the polypropylene film.

  18. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang

    2015-07-22

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow and pressure were investigated by a series of experiments conducted in an especially built wind tunnel in Lhasa, a city on the Tibetan plateau where the altitude is 3650 m and the atmospheric pressure condition is naturally low (64 kPa). These results were compared with results obtained from a wind tunnel at standard atmospheric pressure (100 kPa) in Hefei city (altitude 50 m). The size of the fuel nozzles used in the experiments ranged from 3 to 8 mm in diameter and propane was used as the fuel. It was found that the blow-out limit of the air speed of the cross flow first increased (“cross flow dominant” regime) and then decreased (“fuel jet dominant” regime) as the fuel jet velocity increased in both pressures; however, the blow-out limit of the air speed of the cross flow was much lower at sub-atmospheric pressure than that at standard atmospheric pressure whereas the domain of the blow-out limit curve (in a plot of the air speed of the cross flow versus the fuel jet velocity) shrank as the pressure decreased. A theoretical model was developed to characterize the blow-out limit of nonpremixed jet flames in a cross flow based on a Damköhler number, defined as the ratio between the mixing time and the characteristic reaction time. A satisfactory correlation was obtained at relative strong cross flow conditions (“cross flow dominant” regime) that included the effects of the air speed of the cross flow, fuel jet velocity, nozzle diameter and pressure.

  19. Surface Modification of Nonwoven fabrics by Atmospheric Brush Plasma

    Science.gov (United States)

    Oksuz, Lutfi; Uygun, Emre; Bozduman, Ferhat; Yurdabak Karaca, Gozde; Asan, Orkun Nuri; Uygun Oksuz, Aysegul

    2017-10-01

    Polypropylene nonwoven fabrics (PPNF) are used in disposable absorbent articles, such as diapers, feminine care products, wipes. PPNF need to be wettable by water or aqueous-based liquid. Plasma surface treatment/modification has turned out to be a well-accepted method since it offers superior surface property enhancement than other chemical methods. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical application. The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of two different nonwoven surfaces.

  20. Synthesis of nanoparticles in an atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Barankin, M.D.; Creyghton, Y.; Schmidt-Ott, A.

    2006-01-01

    Nanopowders are produced in a low temperature, non-equilibrium plasma jet (APPJ), which produces a glow discharge at atmospheric pressure, for the first time. Amorphous carbon and iron nanoparticles have been synthesized from Acetylene and Ferrocene/H 2 , respectively. High generation rates are achieved from the glow discharge at near-ambient temperature (40-80 deg. C), and rise with increasing plasma power and precursor concentration. Fairly narrow particle size distributions are measured with a differential mobility analyzer (DMA) and an aerosol electrometer (AEM), and are centered around 30-35 nm for carbon and 20-25 nm for iron. Particle characteristics analyzed by TEM and EDX reveal amorphous carbon and iron nanoparticles. The Fe particles are highly oxidized on exposure to air. Comparison of the mobility and micrograph diameters reveal that the particles are hardly agglomerated or unagglomerated. This is ascribed to the unipolar charge on particles in the plasma. The generated particle distributions are examined as a function of process parameters

  1. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    Science.gov (United States)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  2. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  3. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    Science.gov (United States)

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Room-temperature atmospheric pressure plasma plume for biomedical applications

    International Nuclear Information System (INIS)

    Laroussi, M.; Lu, X.

    2005-01-01

    As low-temperature nonequilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little ozone is generated and the gas temperature, as measured by emission spectroscopy, remains at room temperature even after hours of operations. The plasma plume can be touched by bare hands and can be directed manually by a user to come in contact with delicate objects and materials including skin and dental gum without causing any heating or painful sensation

  5. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films

    Science.gov (United States)

    Boscher, Nicolas D.; Blackman, Christopher S.; Carmalt, Claire J.; Parkin, Ivan P.; Prieto, A. Garcia

    2007-05-01

    Atmospheric pressure chemical vapour deposition (APCVD) of vanadium diselenide thin films on glass substrates was achieved by reaction of [V(NMe 2) 4] and tBu 2Se. X-ray diffraction showed that the VSe 2 films were crystalline with preferential growth either along the (1 0 1) or the (1 1 0) direction. Energy-dispersive analysis by X-rays (EDAX) gave a V:Se ratio close to 1:2 for all films. The films were matt black in appearance, were adhesive, passed the Scotch tape test but could be scratched with a steel scalpel. SEM showed that the films were composed of plate-like crystallites orientated parallel to the substrate which become longer and thicker with increasing deposition temperature. Attempts to produce vanadium selenide films were also performed using tBu 2Se and two different vanadium precursors: VCl 4 and VOCl 3. Both were found to be unsuitable for producing VSe 2 from the APCVD reaction with tBu 2Se. The VSe 2 showed charge density wave transition at 110-115 K.

  6. Atmospheric pressure reaction cell for operando sum frequency generation spectroscopy of ultrahigh vacuum grown model catalysts

    Science.gov (United States)

    Roiaz, Matteo; Pramhaas, Verena; Li, Xia; Rameshan, Christoph; Rupprechter, Günther

    2018-04-01

    A new custom-designed ultrahigh vacuum (UHV) chamber coupled to a UHV and atmospheric-pressure-compatible spectroscopic and catalytic reaction cell is described, which allows us to perform IR-vis sum frequency generation (SFG) vibrational spectroscopy during catalytic (kinetic) measurements. SFG spectroscopy is an exceptional tool to study vibrational properties of surface adsorbates under operando conditions, close to those of technical catalysis. This versatile setup allows performing surface science, SFG spectroscopy, catalysis, and electrochemical investigations on model systems, including single crystals, thin films, and deposited metal nanoparticles, under well-controlled conditions of gas composition, pressure, temperature, and potential. The UHV chamber enables us to prepare the model catalysts and to analyze their surface structure and composition by low energy electron diffraction and Auger electron spectroscopy, respectively. Thereafter, a sample transfer mechanism moves samples under UHV to the spectroscopic cell, avoiding air exposure. In the catalytic cell, SFG spectroscopy and catalytic tests (reactant/product analysis by mass spectrometry or gas chromatography) are performed simultaneously. A dedicated sample manipulation stage allows the model catalysts to be examined from LN2 temperature to 1273 K, with gaseous reactants in a pressure range from UHV to atmospheric. For post-reaction analysis, the SFG cell is rapidly evacuated and samples are transferred back to the UHV chamber. The capabilities of this new setup are demonstrated by benchmark results of CO adsorption on Pt and Pd(111) single crystal surfaces and of CO adsorption and oxidation on a ZrO2 supported Pt nanoparticle model catalyst grown by atomic layer deposition.

  7. Pressure ulcer prevention and pressure-relieving surfaces.

    Science.gov (United States)

    Benbow, Maureen

    Although rarely subject to media attention, political interest or research funding, pressure ulcers, and their almost inevitable increase in incidence, detrimentally affect the quality of life of thousands of patients, both in the hospital and community setting. In addition, the costs to the NHS of pressure-ulcer-related care in hospitals is estimated to be pounds sterling 1.8-pounds sterling 2.5 billion annually. Many pressure ulcers that develop could have been prevented, and there are several up-to-date, easily-accessible sources of evidence to guide decision-making regarding appropriate interventions in pressure care. Consideration and assessment of the patient holistically, followed by appropriate intervention and evaluation, is the key to any prevention strategy.

  8. Beds: practical pressure management for surfaces/mattresses.

    Science.gov (United States)

    Norton, Linda; Coutts, Patricia; Sibbald, R Gary

    2011-07-01

    The prevention and management of pressure ulcers, including support surface selection, are a primary focus of healthcare providers. This article discusses the forces contributing to pressure ulcer formation and explores choosing therapeutic support surface features based on the patient's clinical needs and on using the evidence-informed support surface algorithm and decision trees.

  9. Support surfaces for pressure ulcer prevention

    OpenAIRE

    Cullum, N; McInnes, E; Bell-Syer, SE; Legood, R

    2004-01-01

    : Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. : This systematic review seeks to answer the following questions: to what extent do press...

  10. Support surfaces for pressure ulcer prevention

    OpenAIRE

    McInnes, E; Bell-Syer, SE; Dumville, JC; Legood, R; Cullum, NA

    2008-01-01

    Background Pressure ulcers (also known as bedsores, pressure sores, decubitus ulcers) are areas of localised damage to the skin and underlying tissue due to pressure, shear or friction. They are common in the elderly and immobile and costly in financial and human terms. Pressure-relieving beds, mattresses and seat cushions are widely used as aids to prevention in both institutional and non-institutional settings. Objectives This systematic review seeks to answer the following questions: (1) t...

  11. Rapidly tuning miniature transversely excited atmospheric-pressure CO2 laser.

    Science.gov (United States)

    Qu, Yanchen; Ren, Deming; Hu, Xiaoyong; Liu, Fengmei; Zhao, Jingshan

    2002-08-20

    An experimental study of a rapidly tuning miniature transversely excited atmospheric-pressure CO2 laser is reported. To rapidly shift laser wavelengths over selected transitions in the 9-11 microm wavelength region, we have utilized a high-frequency stepping motor and a diffraction grating. The laser is highly automated with a monolithic microprocessor controlled laser line selection. For the achievement of stable laser output, a system of laser excitation with a voltage of 10 kV, providing effective surface corona preionization and allowing one to work at various gas pressures, is utilized. Laser operation at 59 emission lines of the CO2 molecule rotational transition is obtained and at 51 lines, the pulse energy of laser radiation exceeds 30 mJ. The system can be tuned between two different rotational lines spanning the wavelength range from 9.2 to 10.8 microm within 10 ms.

  12. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    Science.gov (United States)

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Study on the surface oxidation of uranium in different gaseous atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou

    1996-03-01

    The studying for the surface oxidation of uranium and oxide by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and the surface oxidation of uranium in different gaseous atmospheres such as O 2 , H 2 , CO, CO 2 , H 2 O(v) and air were reviewed. The surface oxidation of uranium is greatly influenced by a number of parameters including atmospheric temperature, pressure, diffusion of adsorbed gas atoms through the oxide layer, surface and interface chemical component, and defect structure and electron nature of the oxide layer. The initial oxidation mechanism and kinetics have been discussed. Suggestions for future work have also been presented. (32 refs., 7 figs., 5 tabs.)

  14. Windowless transition between atmospheric pressure and high vacuum via differential pumping for synchrotron radiation applications

    International Nuclear Information System (INIS)

    Gog, T.; Casa, D. M.; Kuzmenko, I.; Krakora, R. J.; Bolin, T. B.; X-Ray Science Division

    2007-01-01

    A differential pump assembly is introduced which can provide a windowless transition between the full atmospheric pressure of an in-air sample environment and the high-vacuum region of a synchrotron radiation beamline, while providing a clear aperture of approximately 1 mm to pass through the X-ray beam from a modern third-generation synchrotron radiation source. This novel pump assembly is meant to be used as a substitute for an exit vacuum window on synchrotron beamlines, where the existence of such a window would negatively impact the coherent nature of the X-ray beam or would introduce parasitic scattering, distorting weak scattering signals from samples under study. It is found that the length of beam pipe necessary to reduce atmospheric pressure to below 10 mbar is only about 130 mm, making the expected photon transmission for hard X-rays through this pipe competitive with that of a regular Be beamline window. This result is due to turbulent flow dominating the first pumping stage, providing a mechanism of strong gas conductance limitation, which is further enhanced by introducing artificial surface roughness in the pipe. Successive reduction of pressure through the transitional flow regime into the high-vacuum region is accomplished over a length of several meters, using beam pipes of increasing diameter. While the pump assembly has not been tested with X-rays, possible applications are discussed in the context of coherent and small-angle scattering

  15. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    Science.gov (United States)

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  16. Synthesis and atmospheric pressure field emission operation of W18O49 nanowires

    NARCIS (Netherlands)

    Agiral, A.; Gardeniers, Johannes G.E.

    2008-01-01

    Tungsten oxide W18O49 nanorods with diameters of 15−20 nm were grown on tungsten thin films exposed to ethene and nitrogen at 700 °C at atmospheric pressure. It was found that tungsten carbide formation enhances nucleation and growth of nanorods. Atmospheric pressure field emission measurements in

  17. Atmospheric pressure plasma polymers for tuned QCM detection of protein adhesion.

    Science.gov (United States)

    Rusu, G B; Asandulesa, M; Topala, I; Pohoata, V; Dumitrascu, N; Barboiu, M

    2014-03-15

    Our efforts have been concentrated in preparing plasma polymeric thin layers at atmospheric pressure grown on Quartz Crystal Microbalance-QCM electrodes for which the non-specific absorption of proteins can be efficiently modulated, tuned and used for QCM biosensing and quantification. Plasma polymerization reaction at atmospheric pressure has been used as a simple and viable method for the preparation of QCM bioactive surfaces, featuring variable protein binding properties. Polyethyleneglycol (ppEG), polystyrene (ppST) and poly(ethyleneglycol-styrene) (ppST-EG) thin-layers have been grown on QCM electrodes. These layers were characterized by Atomic Force Microscopy (AFM), Contact angle measurements, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The plasma ppST QCM electrodes present a higher adsorption of Concanavalin A (ConA) and Bovine Serum Albumin (BSA) proteins when compared with the commercial coated polystyrene (ppST) ones. The minimum adsorption was found for ppEG, surface, known by their protein anti-fouling properties. The amount of adsorbed proteins can be tuned by the introduction of PEG precursors in the plasma discharge during the preparation of ppST polymers. © 2013 Elsevier B.V. All rights reserved.

  18. Virtual Polar Motion and Universal Time Variations in Space Geodetic Techniques due to Atmospheric Pressure Loading

    Science.gov (United States)

    Mendes Cerveira, P. J.; Englich, S.; Boehm, J.; Weber, R.; Schuh, H.

    2006-12-01

    Earth rotation variations, in polar motion and universal time (ERP), appear as a response due to the sum of solid Earth displacements, fluid and gaseous mass transports. In finite networks, e.g., the network of eleven operational VLBI stations during the CONT05 VLBI experiment, horizontal displacements due to atmospheric pressure loading (APL) may accidentally introduce a net rotation. Generally, a no-net-rotation is expected, hypothesizing a surface normal stress due to APL upon a radially symmetric Earth. However, the horizontal crustal deformations due to APL given on a 2.5x2.5 degrees grid provided by the Goddard VLBI Group show systematic temporal net rotations. We compared the change of the eleven station network of CONT05 with and without APL, every six hours, by a three Helmert parameter transformation (three rotations). The "virtual" predicted ERP variations were validated w.r.t. the estimated ones, obtained from CONT05 (using the OCCAM 61E VLBI software). These tiny ERP variations, representing about 2 mm on Earth's surface, could statistically be detected if more VLBI sessions were processed. Even the inverted and non-inverted barometric assumptions of the response of the oceans to atmospheric pressure variations could potentially be verified.

  19. Noble Gas Surface Flux Simulations And Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Charles R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Yunwei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-30

    Signatures from underground nuclear explosions or UNEs are strongly influenced by the containment regime surrounding them. The degree of gas leakage from the detonation cavity to the surface obviously affects the magnitude of surface fluxes of radioxenon that might be detected during the course of a Comprehensive Test Ban Treaty On-Site Inspection. In turn, the magnitude of surface fluxes will influence the downwind detectability of the radioxenon atmospheric signature from the event. Less obvious is the influence that leakage rates have on the evolution of radioxenon isotopes in the cavity or the downwind radioisotopic measurements that might be made. The objective of this letter report is to summarize our attempt to better understand how containment conditions affect both the detection and interpretation of radioxenon signatures obtained from sampling at the ground surface near an event as well as at greater distances in the atmosphere. In the discussion that follows, we make no attempt to consider other sources of radioactive noble gases such as natural backgrounds or atmospheric contamination and, for simplicity, only focus on detonation-produced radioxenon gases. Summarizing our simulations, they show that the decay of radioxenon isotopes (e.g., Xe-133, Xe-131m, Xe-133m and Xe-135) and their migration to the surface following a UNE means that the possibility of detecting these gases exists within a window of opportunity. In some cases, seeps or venting of detonation gases may allow significant quantities to reach the surface and be released into the atmosphere immediately following a UNE. In other release scenarios – the ones we consider here – hours to days may be required for gases to reach the surface at detectable levels. These release models are most likely more characteristic of “fully contained” events that lack prompt venting, but which still leak gas slowly across the surface for periods of months.

  20. Microwave Investigation of the Mars Atmosphere and Surface

    Science.gov (United States)

    Gulkis, S.; Forget, F.; Janssen, M.; Riley, A. L.; Hartogh, P.; Clancy, T.; Allen, M.; Frerking, M.

    2000-01-01

    The Microwave Investigation of the Mars Atmosphere and Surface Experiment (MIMAS) is designed to address two major scientific goals: 1) To understand the three dimensional general circulation of the Martian atmosphere, and 2) To understand the hydrologic cycle of water on Mars, including the time-variable sources, sinks, and atmospheric transport of water vapor. The proposed instrument is a submillimeter wave, heterodyne receiver, with both continuum and very high spectral resolution capability. A small reflector antenna will be used to feed the receiver. Instrument heritage comes from the MIRO receiver, currently under design for the ESA Rosetta Mission, and from SWAS, a NASA astrophysics mission. The instrument will be able to measure atmospheric spectral lines from both water and carbon monoxide and use these lines as tracers of atmospheric winds. Measurement objectives of MIMAS are to measure surface temperature, atmospheric temperature from the surface up to an altitude of 60 km or more, the distribution of CO and H2O in the atmosphere, and certain wind fields (zonal and meridional). The global distribution of CO, as well as temperature distributions, will be used as input data for GCMs (general circulation models). Water vapor profiles will be used to understand the sources and sinks of water on Mars and to understand how it is transported globally by the general circulation. Zonal and meridional wind fields will provide further tests of the GCMs. An important aspect of this experiment is that the temperature and humidity measurements are insensitive to dust and ice condensates thereby making the measurement capability independent of the presence of dust clouds and ice particles. Temperature measurements derived from the data can be used in conjunction with infrared measurements to determine dust profiles.

  1. Whirlwinds and hairpins in the atmospheric surface layer

    NARCIS (Netherlands)

    Oncley, Steven P.; Hartogensis, O.K.; Tong, Chenning

    2016-01-01

    Vortices in the atmospheric surface layer are characterized using observations at unprecedented resolution from a fixed array of 31 turbulence sensors. During the day, these vortices likely are dust devils, though no visual observations are available for confirmation. At night, hairpin vortices

  2. The determination of turbulent structures in the atmospheric surface layer

    NARCIS (Netherlands)

    Schols, J.L.J.

    1984-01-01

    The turbulent flow in the atmospheric surface layer (ASL) contains turbulent structures, which are defined as spatially coherent, organized flow motions. 'Organized' means that characteristic patterns, observed at a point in space, occur almost simultaneously in more than one turbulence signal and

  3. Synthesis of carbon nanotubes in atmospheric pressure microwave torch

    International Nuclear Information System (INIS)

    Zajickova, L.; Jasek, O.; Elias, M.; Bublan, M.; Kudrle, V.; Matejkova, J.; Bursik, J.; Kadlecikova, M.

    2005-01-01

    The synthesis of carbon nanotubes in microwave plasma torch is reported at atmospheric pressure from the mixture of methane, hydrogen and argon. The plasma torch was generated at the frequency of 2.45 GHz using an iron hollow electrode. Argon flowing through the hollow electrode was used to stabilize the torch. Methane and hydrogen were added to the expanding torch from outside. The CNTs were grown on substrates placed at various distances from the torch electrode either in direct contact with the torch or in remote plasma conditions. Substrate temperature was measured by pyrometer from the backside of the substrate. Optical emission spectra were recorded along the discharge axis. The samples were imaged by scanning and transmission electron microscopes. Further information about the chemical structure was obtained from Raman spectroscopy. The substrates for the CNT growth were specially prepared silicon pieces. A thin layer of metal catalyst was vacuum evaporated on the top of the silicon oxide layer. A significant difference in the CNT growth was found when nickel instead of iron was used. A thick silicon oxide layer served as a barrier against metal catalyst diffusion into the silicon substrate. Besides the substrate preparation other parameters, such as the position of the substrate with respect to the torch electrode and the substrate temperature were found critical for the growth of high quality CNTs. The best results were achieved in remote plasma conditions where optical emission of excited species rapidly decreased. Using iron catalyst and the temperature about 700 oC well aligned CNTs with the length of 75 mum were prepared during .5 min. (Author)

  4. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin [Univ. of Illinois, Urbana, IL (United States); Eden, James Gary [Univ. of Illinois, Urbana, IL (United States)

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  5. Interface pressure mapping pilot study to select surfaces that effectively redistribute pediatric occipital pressure.

    Science.gov (United States)

    Higer, Samantha; James, Thomas

    2016-02-01

    The aim of this pilot study was to better inform clinical decisions to prevent pediatric occipital pressure ulcers with quantitative data to choose an appropriate reactive support surface. A commercially available capacitive pressure mapping system (XSENSOR, X3 Medical Seat System, Calgary, Canada) was used to evaluate a standard pediatric mattress and four commercially available pressure-redistributing support surfaces. The pressure mapping system was validated for use in the pediatric population through studies on sensitivity, accuracy, creep, and repeatability. Then, a pilot pressure mapping study on healthy children under 6 years old (n = 22) was performed to determine interface pressure and pressure distribution between the occipital region of the skull and each surface: standard mattress, gel, foam, air and fluidized. The sensor was adequate to measure pressure generated by pediatric occipital loading, with 0.5-9% error in accuracy in the 25-95 mmHg range. The air surface had the lowest mean interface pressure (p pressure index (PPI), defined as the peak pressure averaged over four sensels, (p pressure for mattress, foam, fluidized, gel, and air materials were 24.8 ± 4.42, 24.1 ± 1.89, 19.4 ± 3.25, 17.9 ± 3.10, and 14.2 ± 1.41 mmHg, respectively. The air surface also had the most homogenous pressure distribution, with the highest mean to PPI ratio (p surfaces (p surface was the most effective pressure-redistributing material for pediatric occipital pressure as it had the lowest interface pressure and a homogeneous pressure distribution. This implies effective envelopment of the bony prominence of the occiput and increasing contact area to decrease peak pressure points. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  6. Atmospheric moisture supersaturatons in the near-surface atmosphere of Dome C, Antarctic Plateau

    Science.gov (United States)

    Genthon, Christophe; Piard, Luc; Vignon, Etienne; Madeleine, Jean-Baptiste; Casado, Mathieu; Gallée, Hubert

    2017-04-01

    Moisture supersaturations occur at the top of the troposphere where cirrus clouds form, but is comparatively unusual near the surface where the air is generally warmer and laden with liquid and/or ice condensation nuclei. One exception is the surface of the high antarctic plateau. This study presents one year of atmospheric moisture measurement at the surface of Dome C on the East Antarctic plateau. The measurements are obtained using commercial hygrometry sensors adapted to allow air sampling without affecting the moisture content even in case of supersaturation. Supersaturation is found to be very frequent. Common unadapted hygrometry sensors generally fail to report supersaturation, and most reports of atmospheric moisture on the antarctic plateau are thus likely biased low. The measurements are compared with results from 2 models with cold microphysics parametrizations: the European Center for Medium-range Weather Forecasts through its operational analyses, and the Model Atmosphérique Régional. As in the observations, supersaturation is frequent in the models but the statistical distribution differs both between models and observations and between the 2 models, leaving much room for model improvement. The representation of supersaturations is not critical for the estimations of surface sublimation since they are more frequent as temperature is lower i.e. as moisture quantities and water fluxes are small. However, ignoring near-surface supersaturation may be a more serious issue for the modeling of fog and when considering water isotopes, a tracer of phase change and temperature, largely used to reconstruct past climates and environments from ice cores. Because observations are easier in the surface atmosphere, longer and more continuous in situ observation series of atmospheric supersaturation can be obtained than higher in the atmosphere to test parameterizations of cold microphysics, such as those used in the formation of high altitude cirrus clouds in

  7. Advancements, Challenges and Prospects of Chemical Vapour Pressure at Atmospheric Pressure on Vanadium Dioxide Structures

    Directory of Open Access Journals (Sweden)

    Charalampos Drosos

    2018-03-01

    Full Text Available Vanadium (IV oxide (VO2 layers have received extensive interest for applications in smart windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially competitive because of its simplicity when performed at atmospheric pressure (APCVD. APCVD’s success has shown that it is possible to create tough and stable materials in which their stoichiometry may be precisely controlled. Initially, we give a brief overview of the basic processes taking place during this procedure. Then, we present recent progress on experimental procedures for isolating different polymorphs of VO2. We outline emerging techniques and processes that yield in optimum characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO2 by APCVD.

  8. Pressure and Humidity Measurements at the MSL Landing Site Supported by Modeling of the Atmospheric Conditions

    Science.gov (United States)

    Harri, A.; Savijarvi, H. I.; Schmidt, W.; Genzer, M.; Paton, M.; Kauhanen, J.; Atlaskin, E.; Polkko, J.; Kahanpaa, H.; Kemppinen, O.; Haukka, H.

    2012-12-01

    The Mars Science Laboratory (MSL) called Curiosity Rover landed safely on the Martian surface at the Gale crater on 6th August 2012. Among the MSL scientific objectives are investigations of the Martian environment that will be addressed by the Rover Environmental Monitoring Station (REMS) instrument. It will investigate habitability conditions at the Martian surface by performing a versatile set of environmental measurements including accurate observations of pressure and humidity of the Martian atmosphere. This paper describes the instrumental implementation of the MSL pressure and humidity measurement devices and briefly analyzes the atmospheric conditions at the Gale crater by modeling efforts using an atmospheric modeling tools. MSL humidity and pressure devices are based on proprietary technology of Vaisala, Inc. Humidity observations make use of Vaisala Humicap® relative humidity sensor heads and Vaisala Barocap® sensor heads are used for pressure observations. Vaisala Thermocap® temperature sensors heads are mounted in a close proximity of Humicap® and Barocap® sensor heads to enable accurate temperature measurements needed for interpretation of Humicap® and Barocap® readings. The sensor heads are capacitive. The pressure and humidity devices are lightweight and are based on a low-power transducer controlled by a dedicated ASIC. The transducer is designed to measure small capacitances in order of a few pF with resolution in order of 0.1fF (femtoFarad). The transducer design has a good spaceflight heritage, as it has been used in several previous missions, for example Mars mission Phoenix as well as the Cassini Huygens mission. The humidity device has overall dimensions of 40 x 25 x 55 mm. It weighs18 g, and consumes 15 mW of power. It includes 3 Humicap® sensor heads and 1 Thermocap®. The transducer electronics and the sensor heads are placed on a single multi-layer PCB protected by a metallic Faraday cage. The Humidity device has measurement range

  9. Noise Evaluation Technique Based on Surface Pressure

    DEFF Research Database (Denmark)

    Fischer, Andreas

    2012-01-01

    In this chapter the relevant theory for the understanding of TE noise modeling is collected. It contains the acoustic formulations of [31] and [57]. Both give a relation for the far field sound pressure in dependence of the frequency wave number spectral density of the pressure on the airfoil...

  10. Atmospheric moisture supersaturation in the near-surface atmosphere at Dome C, Antarctic Plateau

    Science.gov (United States)

    Genthon, Christophe; Piard, Luc; Vignon, Etienne; Madeleine, Jean-Baptiste; Casado, Mathieu; Gallée, Hubert

    2017-01-01

    Supersaturation often occurs at the top of the troposphere where cirrus clouds form, but is comparatively unusual near the surface where the air is generally warmer and laden with liquid and/or ice condensation nuclei. One exception is the surface of the high Antarctic Plateau. One year of atmospheric moisture measurement at the surface of Dome C on the East Antarctic Plateau is presented. The measurements are obtained using commercial hygrometry sensors modified to allow air sampling without affecting the moisture content, even in the case of supersaturation. Supersaturation is found to be very frequent. Common unadapted hygrometry sensors generally fail to report supersaturation, and most reports of atmospheric moisture on the Antarctic Plateau are thus likely biased low. The measurements are compared with results from two models implementing cold microphysics parameterizations: the European Center for Medium-range Weather Forecasts through its operational analyses, and the Model Atmosphérique Régional. As in the observations, supersaturation is frequent in the models but the statistical distribution differs both between models and observations and between the two models, leaving much room for model improvement. This is unlikely to strongly affect estimations of surface sublimation because supersaturation is more frequent as temperature is lower, and moisture quantities and thus water fluxes are small anyway. Ignoring supersaturation may be a more serious issue when considering water isotopes, a tracer of phase change and temperature, largely used to reconstruct past climates and environments from ice cores. Because observations are easier in the surface atmosphere, longer and more continuous in situ observation series of atmospheric supersaturation can be obtained than higher in the atmosphere to test parameterizations of cold microphysics, such as those used in the formation of high-altitude cirrus clouds in meteorological and climate models.

  11. Threefold atmospheric-pressure annealing for suppressing graphene nucleation on copper in chemical vapor deposition

    Science.gov (United States)

    Suzuki, Seiya; Nagamori, Takashi; Matsuoka, Yuki; Yoshimura, Masamichi

    2014-09-01

    Chemical vapor deposition (CVD) is a promising method of producing a large single-crystal graphene on a catalyst, especially on copper (Cu), and a further increase in domain size is desirable for electro/optic applications. Here, we report on threefold atmospheric-pressure (ATM) annealing for suppressing graphene nucleation in atmospheric CVD. Threefold ATM annealing formed a step and terrace surface of the underlying Cu, in contrast to ATM annealing. Atomic force microscopy and Auger electron mapping revealed that Si-containing particles existed on threefold-ATM- and ATM-annealed surfaces; particles on Cu had a lower density after threefold ATM annealing than after ATM annealing. The formation of a step and terrace surface and the lower density of particles following the threefold ATM annealing would play a role in reducing graphene nucleation. By combining threefold ATM annealing and electropolishing of Cu, the nucleation of graphene was effectively suppressed, and a submillimeter-sized hexagonal single-crystal graphene was successfully obtained.

  12. Hydrophilic Surface Modification of PDMS Using Atmospheric RF Plasma

    International Nuclear Information System (INIS)

    Hong, Sung M; Kim, Seong H; Kim, Jeong H; Hwang, Hak I

    2006-01-01

    Control of surface properties in microfluidics systems is an indispensable prerequisite for the success of bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and the lack of methods to control electroosmotic flow(EOF). Among the various methods of hydrophilic treatment, a new cleaner technology was chosen to treat PDMS. By using atmospheric RF plasma, hydrophilic surfaces can be created. Thus, analysis was conducted with AFM, XPS, and contact angle before and after plasma treatment. Constructing hydrophilic surfaces without changing the true character of that surface has previously been costly and time consuming. But by using atmospheric plasma cost and time are both greatly reduced. There are many other benefits of hydrophilic surface treatment, including the capability to increase adhesion and capillary effects, etc. Also, with hydrophilic treatment of the micro channels on the PDMS surface, surface tension is reduced thus allowing fluids to move easily along those channels. However, the most important aim is to increase the capillary effects without any deposition or chemical treatment

  13. Irradiated ignition of solid materials in reduced pressure atmosphere with various oxygen concentrations for fire safety in space habitats

    Science.gov (United States)

    Nakamura, Y.; Aoki, A.

    Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (safety in space agriculture since it has been reported that higher oxygen concentrations are preferable for plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of

  14. Investigation of atmospheric dielectric barrier discharge and its application to surface modification of textile material

    International Nuclear Information System (INIS)

    Xiaoliang Tang; Gao Qiu; Hankun Xie; Xianping Feng

    2005-01-01

    The dielectric barrier discharge (DBD) is characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. In this paper, the spectral lines of plasma emission at atmospheric pressure were recorded by using a grating spectrograph, and all signals will be directly and immediately sent to the computer for data processing and analysis during the experiments. The spectrum lines of nitrogen, helium and argon plasma emission at atmospheric pressure were separately recorded and qualitatively analyzed using spectral diagnosis equipment of atmospheric pressure DBD plasma. The spectrum lines of the second positive system of nitrogen (c 3 π μ → B 3 Π g ), two characteristic spectrum lines of helium (3 1 P 1 → 2 1 S 0 , 3 3 D → 3 3 P), and all of neutral argon atom spectrum lines in the range 680 to 780 nm are recognized. For controlling the process of material surface modification promptly, the electron temperature of DBD plasma is quantitatively analyzed using relative intensity of argon spectrum lines. The relationships among the plasma parameters, such as discharge current and discharge power measured by Lissajous figure of the oscilloscope, were analyzed by using improved DBD equipment. The variation of plasma discharge current following the change of discharge gaps indicates an existence of critical gap distance. When the gap between electrodes is less than that the critical gap, a quasi-stable atmospheric pressure DBD plasma source can be achieved after carefully controlled discharge voltage and current. The experimental results indicate that a critical discharge gap is an important parameter to improve the quality of materials processing. The result is of great importance to DBD at atmospheric pressure and its application to materials processing. (author)

  15. Contamination of Teflon surfaces by PCBs in the atmosphere

    Science.gov (United States)

    Murphy, Thomas J.; Sweet, Clyde W.

    Collection of a valid precipitation sample involves careful attention to all aspects of the sampling and analysis process. Difficulties in obtaining low field blanks were experienced for a collector used in a project to determine precipitation inputs to Green Bay of Lake Michigan. The cause of high field blanks was found to be PCBs scavenged from the atmosphere and adsorbed on the Teflon™ surface of the sampler. These PCBs were extracted from the collector surface by the methanol used as a rinse solvent. The amounts of PCBs on the surface were found to be a factor of 20-50 higher than the amounts in a typical precipitation sample. After rinsing the Teflon surface several times with methanol, additional PCBs could be obtained by rinsing the surface with hexane or dichloromethane.

  16. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    Science.gov (United States)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. Copyright © 2015. Published by Elsevier B.V.

  17. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  18. Stabilization of atmospheric pressure and seasonal variations of polar caps in the model of chemically inhomogeneous atmosphere of Mars

    International Nuclear Information System (INIS)

    Aleshin, V.I.

    1985-01-01

    It is shownthat in the model Martian atmosphere, consisting of pure carbon dioxide, the pressure falls to 1 mBar, due to gradual freezing of CO 2 . A small admixture of noncondensing gases alters the situation considerably. The mean atmospheric pressure is thereby stabilized at the level close to 6 mBar. At the end of the winter, a snow bank is formed at the edge of the polar cap. The temperature near the poles in winter falls down to 120 K. As a result of the condensation of carbon dioxide, in polar regions enrichment of the air by noncondensing components occurs

  19. High-power laser-metal interactions in pressurized gaseous atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Lugomer, S.; Furic, K.; Ivanda, M. [Ruder Boskovic Institute, Zagreb (Croatia); Stipancic, M. [Electrotechnical faculty, Osijek (Croatia); Stubicar, M. [Faculty of natural sciences and mathematics, Zagreb (Croatia); Gamulin, O. [School of medicine, Univ. of Zagreb, Zagreb (Croatia)

    1996-09-01

    Metal surfaces were irradiated in pressurized gaseous atmospheres by a CO{sub 2} laser beam. The gaseous pressures ranged from 2 atm to 6 atm, the energy density of the light beam was about 20-50 J/cm{sup 2} with a power density {approx} 10{sup 9} W/cm{sup 2} and a pulse duration p 150 ns. In the above conditions some new effects were observed. The laser-material interaction occurred in a highly absorptive plasma regime, meaning that the metal surface was effectively screened from the beam. The interaction ended either with plasma adiabatic expansion, in the case of Mo (in O{sub 2}), Te (in N{sub 2}) and T{sub i} (in N{sub 2}), or with plasma explosion, in the case of T{sub i} (in O{sub 2}). The metal surface properties were studied by means of optical analysis, microhardness tests, X-ray diffraction and Raman backscattering.

  20. Thermodynamic analysis and experimental study of the effect of atmospheric pressure on the ice point

    International Nuclear Information System (INIS)

    Harvey, A. H.; McLinden, M. O.; Tew, W. L.

    2013-01-01

    We present a detailed thermodynamic analysis of the temperature of the ice point as a function of atmospheric pressure. This analysis makes use of accurate international standards for the properties of water and ice, and of available high-accuracy data for the Henry's constants of atmospheric gases in liquid water. The result is an ice point of 273.150 019(5) K at standard atmospheric pressure, with higher ice-point temperatures (varying nearly linearly with pressure) at lower pressures. The effect of varying ambient CO 2 concentration is analyzed and found to be significant in comparison to other uncertainties in the model. The thermodynamic analysis is compared with experimental measurements of the temperature difference between the ice point and the triple point of water performed at elevations ranging from 145 m to 4302 m, with atmospheric pressures from 101 kPa to 60 kPa

  1. Cosmic rays intensity and atmosphere humidity at near earth surface

    Science.gov (United States)

    Oskomov, V. V.; Sedov, A. N.; Saduyev, N. O.; Kalikulov, O. A.; Naurzbayeva, A. Zh; Alimgazinova, N. Sh; Kenzhina, I. E.

    2016-08-01

    Experimental studies of estimation the mutual influence of humidity and flux of cosmic rays in first approximation were carried out. Normalized cross-correlation function of time series of neutron monitors count rate and level of relative atmosphere humidity near cosmic rays registration point is studied. Corrected and uncorrected on pressure minute and hour data of 6NM64 neutron monitor count rate were used for the study. Neutron monitor is located in Al-Farabi Kazakh National University, at an altitude of 850 m above sea level. Also, data from NM64 neutron monitor of Tien Shan mountain research station of Institute of Ionosphere, located at an altitude of 3340 m above sea level were used. Uncorrected on pressure cosmic rays intensity better reflects the changes in relative atmosphere humidity. Average and sometimes strong relationship is often observed by time changes of atmosphere humidity near the point of cosmic rays detection and their intensity: the value of normalized cross-correlation function of respective signals, even in case of their long duration and a large number of data (eg, for minute changes at intervals of up to several months) covers 0.5 - 0.75 range, sometimes falling to ∼⃒ 0.4.

  2. Electrical and optical characterization of an atmospheric pressure, uniform, large-area processing, dielectric barrier discharge

    International Nuclear Information System (INIS)

    Zeniou, A; Dimitrakellis, P; Gogolides, E; Puač, N; Škoro, N; Selaković, N; Petrović, Z Lj

    2017-01-01

    A printed-circuit-board (PCB) based atmospheric pressure dielectric barrier discharge (DBD) capable of uniform processing over a large area was constructed consisting of two parallel plates. The first perforated plate is comprised of four layers: a RF powered metal layer, a polymeric dielectric layer, a floating metal grid and another dielectric layer. The second, grounded, plate was fluorine doped tin oxide (FTO) glass plate with surface of 100  ×  100 mm 2 and thickness of 2 mm. The PCB based atmospheric pressure DBD was characterized by (a) measuring electrical characteristics of the device using derivative I – V probes, (b) ICCD imaging and (c) optical emission spectroscopy (OES). Optical and electrical characteristics, as well as plasma uniformity were measured by changing He flow rate and input power, while keeping the gap between the PCB and the FTO glass plate ground electrode constant at 2 mm. The plasma uniformity strongly depends on the applied power and on the flow rate of the buffer gas. When increasing the flow rate, the intensity of the nitrogen-dominated emission drops, while emission of helium and oxygen lines increases. The source allows low temperature, uniform plasma operation over a wide area of 100  ×  100 mm 2 , which could be essential for numerous applications. Examples of etching rate and hydrophilization are demonstrated. (paper)

  3. Electrical and optical characteristics of atmospheric pressure plasma needle jet driven by neon trasformer

    Science.gov (United States)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Mamat, Mohamad Hafiz; Rusop, Mohamad; Nayan, Nafarizal

    2017-09-01

    The atmospheric pressure plasma needle jet driven by double sinusoidal waveform of neon transformer is reported in this paper. The commercial neon transformer produces about 5 kV of peak sinusoidal voltages and 35 kHz of frequency. Argon gas has been used as discharge gas for this system since the discharge was easily developed rather than using helium gas. In addition, argon gas is three times cheaper than helium gas. The electrical property of the argon discharge has been analyzed in details by measuring its voltage, current and power during the discharge process. Interestingly, it has been found that the total power on the inner needle electrode was slightly lower than that of outer electrode. This may be due to the polarization charges that occurred at inner needle electrode. Then, further investigation to understand the discharge properties was carried out using optical emission spectroscopy (OES) analysis. During OES measurements, two positions of plasma discharge are measured by aligning the quartz optical lens and spectrometer fiber. The OH emission intensity was found higher than that of N2 at the plasma orifice. However, OH emission intensity was lower at 1.5 cm distance from orifice which may be due to penning ionization effect. These results and understanding are essential for surface modification and biomedical applications of atmospheric pressure plasma needle jet.

  4. Separated Type Atmospheric Pressure Plasma Microjets Array for Maskless Microscale Etching

    Directory of Open Access Journals (Sweden)

    Yichuan Dai

    2017-06-01

    Full Text Available Maskless etching approaches such as microdischarges and atmospheric pressure plasma jets (APPJs have been studied recently. Nonetheless, a simple, long lifetime, and efficient maskless etching method is still a challenge. In this work, a separated type maskless etching system based on atmospheric pressure He/O2 plasma jet and microfabricated Micro Electro Mechanical Systems (MEMS nozzle have been developed with advantages of simple-structure, flexibility, and parallel processing capacity. The plasma was generated in the glass tube, forming the micron level plasma jet between the nozzle and the surface of polymer. The plasma microjet was capable of removing photoresist without masks since it contains oxygen reactive species verified by spectra measurement. The experimental results illustrated that different features of microholes etched by plasma microjet could be achieved by controlling the distance between the nozzle and the substrate, additive oxygen ratio, and etch time, the result of which is consistent with the analysis result of plasma spectra. In addition, a parallel etching process was also realized by plasma microjets array.

  5. Electrical and optical characterization of an atmospheric pressure, uniform, large-area processing, dielectric barrier discharge

    Science.gov (United States)

    Zeniou, A.; Puač, N.; Škoro, N.; Selaković, N.; Dimitrakellis, P.; Gogolides, E.; Petrović, Z. Lj

    2017-04-01

    A printed-circuit-board (PCB) based atmospheric pressure dielectric barrier discharge (DBD) capable of uniform processing over a large area was constructed consisting of two parallel plates. The first perforated plate is comprised of four layers: a RF powered metal layer, a polymeric dielectric layer, a floating metal grid and another dielectric layer. The second, grounded, plate was fluorine doped tin oxide (FTO) glass plate with surface of 100  ×  100 mm2 and thickness of 2 mm. The PCB based atmospheric pressure DBD was characterized by (a) measuring electrical characteristics of the device using derivative I-V probes, (b) ICCD imaging and (c) optical emission spectroscopy (OES). Optical and electrical characteristics, as well as plasma uniformity were measured by changing He flow rate and input power, while keeping the gap between the PCB and the FTO glass plate ground electrode constant at 2 mm. The plasma uniformity strongly depends on the applied power and on the flow rate of the buffer gas. When increasing the flow rate, the intensity of the nitrogen-dominated emission drops, while emission of helium and oxygen lines increases. The source allows low temperature, uniform plasma operation over a wide area of 100  ×  100 mm2, which could be essential for numerous applications. Examples of etching rate and hydrophilization are demonstrated.

  6. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    Science.gov (United States)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  7. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    International Nuclear Information System (INIS)

    Kelly, Seán; Golda, Judith; Schulz-von der Gathen, Volker; Turner, Miles M

    2015-01-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration. (paper)

  8. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  9. The extended surface forces apparatus. IV. Precision static pressure control

    OpenAIRE

    Schurtenberger E; Heuberger M

    2011-01-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under am...

  10. Simulation of rarefied gas flows in atmospheric pressure interfaces for mass spectrometry systems.

    Science.gov (United States)

    Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

    2013-12-01

    The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (pressure stage (1 to 10(-3) Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

  11. Influence of the acoustic radiation pressure on the atmosphere of the sun

    International Nuclear Information System (INIS)

    Bschorr, O.

    1982-01-01

    In addition to the heating the corona by sound waves, there exists a radiation pressure caused by the absorption of acoustic waves as well as plasma waves. Whereas in the hydrostatic balance of the solar atmosphere, the light pressure can be neglected, the radiation pressure due to acoustic waves and Alfven waves is much higher and has to be taken into account. In the solar atmosphere, the acoustic radiation pressure is generated by (I) absorption of sound energy, (II) reflection of sound energy, and (III) change of the sound velocity. The radiation pressure caused by absorption is dominating within the solar corona. The radiation pressure caused by reflection and the wave velocity change probably produce a pressure inversion in the transition zone between chromosphere and corona. Furthermore, the spicule phenomena are due to instationary radiation pressure. (orig.)

  12. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    Science.gov (United States)

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  13. Airfoil Trailing Edge Noise Generation and Its Surface Pressure Fluctuation

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2015-01-01

    where the time history pressure data are recorded by the surface pressure microphones. After the flow-field is stabilized, the generated noise from the airfoil Trailing Edge (TE) is predicted using the acoustic analogy solver, where the results from LES are the input. It is found that there is a strong......In the present work, Large Eddy Simulation (LES) of turbulent flows over a NACA 0015 airfoil is performed. The purpose of such numerical study is to relate the aerodynamic surface pressure with the noise generation. The results from LES are validated against detailed surface pressure measurements...... relation between TE noise and the aerodynamic pressure. The results of power spectrum density show that the fluctuation of aerodynamic pressure is responsible for noise generation....

  14. Relationship between heating atmosphere and copper foil impurities during graphene growth via low pressure chemical vapor deposition

    OpenAIRE

    Çelik, Yasemin; Escoffier, Walter; Yang, Ming; Flahaut, Emmanuel; Suvacı, Ender

    2016-01-01

    International audience; Low-pressure chemical vapor deposition synthesis of graphene films on two different Cu foils, with different surface oxygen and carbon contents, was performed by controlling H2 and/or Ar flow rates during heating. The influences of heating atmosphere on the final impurity level, quality of the synthesized graphene films and thickness uniformity were investigated depending on Cu foil impurities. Heating of carbon-rich, but oxygen-poor Cu foil in H2 environment resulted ...

  15. Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Van Vrekhem, S., E-mail: stijn.vanvrekhem@ugent.be [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Cools, P. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Declercq, H. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium); Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); Van Tongel, A. [Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185 13K12, 9000 Ghent (Belgium); Vercruysse, C.; Cornelissen, M. [Tissue Engineering Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185 6B3, 9000 Ghent (Belgium); De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent (Belgium)

    2015-12-01

    Biopolymers are often subjected to surface modification in order to improve their surface characteristics. The goal of this study is to show the use of plasma technology to enhance the adhesion of ultra-high molecular weight polyethylene (UHMWPE) shoulder prostheses. Two different plasma techniques (low pressure plasma activation and atmospheric pressure plasma polymerization) are performed on UHMWPE to increase the adhesion between (1) the polymer and polymethylmethacrylate (PMMA) bone cement and (2) the polymer and osteoblast cells. Both techniques are performed using a dielectric barrier discharge (DBD). A previous paper showed that low pressure plasma activation of UHMWPE results in the incorporation of oxygen-containing functional groups, which leads to an increased surface wettability. Atmospheric pressure plasma polymerization of methylmethacrylate (MMA) on UHMWPE results in a PMMA-like coating, which could be deposited with a high degree of control of chemical composition and layer thickness. The thin film also proved to be relatively stable upon incubation in a phosphate buffer solution (PBS). This paper discusses the next stage of the study, which includes testing the adhesion of the plasma-activated and plasma-polymerized samples to bone cement through pull-out tests and testing the cell adhesion and proliferation on the samples. In order to perform the pull-out tests, all samples were cut to standard dimensions and fixed in bone cement in a reproducible way with a sample holder specially designed for this purpose. The cell adhesion and proliferation were tested by means of an MTS assay and live/dead staining after culturing MC3T3 osteoblast cells on UHMWPE samples. The results show that both plasma activation and plasma polymerization significantly improve the adhesion to bone cement and enhance cell adhesion and proliferation. In conclusion, it can be stated that the use of plasma technology can lead to an implant with improved quality and a subsequent

  16. Lavoisier: A Low Altitude Balloon Network for Probing the Deep Atmosphere and Surface of Venus

    Science.gov (United States)

    Chaasefiere, E.; Berthelier, J. J.; Bertaux, J.-L.; Quemerais, E.; Pommereau, J.-P.; Rannou, P.; Raulin, F.; Coll, P.; Coscia, D.; Jambon, A.; hide

    2005-01-01

    The in-situ exploration of the low atmosphere and surface of Venus is clearly the next step of Venus exploration. Understanding the geochemistry of the low atmosphere, interacting with rocks, and the way the integrated Venus system evolved, under the combined effects of inner planet cooling and intense atmospheric greenhouse, is a major challenge of modern planetology. Due to the dense atmosphere (95 bars at the surface), balloon platforms offer an interesting means to transport and land in-situ measurement instruments. Due to the large Archimede force, a 2 cubic meter He-pressurized balloon floating at 10 km altitude may carry up to 60 kg of payload. LAVOISIER is a project submitted to ESA in 2000, in the follow up and spirit of the balloon deployed at cloud level by the Russian Vega mission in 1986. It is composed of a descent probe, for detailed noble gas and atmosphere composition analysis, and of a network of 3 balloons for geochemical and geophysical investigations at local, regional and global scales.

  17. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    Science.gov (United States)

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus

    2017-04-01

    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  18. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    Science.gov (United States)

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  19. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    Science.gov (United States)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  20. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis

  1. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    Science.gov (United States)

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  2. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  3. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS IN AN ATMOSPHERIC PRESSURE ETHYLENE DIFFUSION FLAME. (R825412)

    Science.gov (United States)

    AbstractThe microstructure of an atmospheric pressure, counterflow, sooting, flat, laminar ethylene diffusion flame has been studied experimentally by withdrawing samples from within the flame using a heated quartz microprobe coupled to an online gas chromatograph/mas...

  4. MGS RS: ATMOSPHERIC TEMPERATURE-PRESSURE PROFILES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains over 21000 temperature-pressure profiles (TPS files) of the neutral atmosphere derived from Mars Global Surveyor (MGS) radio occultation data....

  5. Inactivation of Microorganisms in Model Biofilms by an Atmospheric Pressure Pulsed Non-thermal Plasma

    Science.gov (United States)

    Akishev, Yuri; Trushkin, N.; Grushin, M.; Petryakov, A.; Karal'nik, V.; Kobzev, E.; Kholodenko, V.; Chugunov, V.; Kireev, G.; Rakitsky, Yu.; Irkhina, I.

    Non-thermal plasma jet formed by self-running pulsed-periodical high-current spark generator (PPSG) was used for atmospheric pressure inactivation of microorganisms including biofilms. A distinctive feature of the PPSG is a formation of transient hot plasma clouds (plasma bullets) periodically flying out to the target. We experimented with model biofilms of E. coli and Bacillus subtilis monocultures which were grown on agar and surfaces of steel and polypropylene coupons. High efficiency of plasma inactivation was demonstrated. This effect is associated primarily with an interaction of transient hot plasma clouds with biofilms. Besides complete or partial degradation of the cell membrane, weakening of the cell wall of E.coli culture by active plasma was found.

  6. Study of structural modification of sugarcane bagasse employing hydrothermal treatment followed by atmospheric pressure plasmas treatment

    Science.gov (United States)

    Amorim, Jayr; Pimenta, Maria Teresa; Gurgel, Leandro; Squina, Fabio; Souza-Correa, Jorge; Curvelo, Antonio

    2009-10-01

    Nowadays, the cellulosic ethanol is an important alternative way to many liquid biofuels using renewable biomass rich in polysaccharides. To be used as feedstock for ethanol production, the bagasse needs to be pretreated in order to expose its main constitutive. The present work proposes the use of different pretreatment processes to better expose the cellulose for hydrolysis and fermentation. In the present paper the sugarcane bagasse was submitted to a hydrothermal pretreatment followed by atmospheric pressure plasmas (APPs). An RF microplasma torch was employed as APPs in Ar and Ar/O2 mixing. The bagasse was treated in discharge and post-discharge regions. The position and time of treatment was varied as well as the gas mixture. The quantity of polysaccharides was determined by using high performance liquid chromatography. It was observed the release of a fraction of the hemicelluloses in the sugarcane bagasse. Modifications in the surface of the sugarcane fibers were monitored by employing scanning electron microscopy.

  7. Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films

    Science.gov (United States)

    Gao, Zhiqiang; Peng, Shujing; Sun, Jie; Yao, Lan; Qiu, Yiping

    2009-06-01

    This study is designed to systematically investigate how various factors, such as treatment duration, output power, oxygen gas flux, jet to substrate distance, and moisture regain, influence atmospheric pressure plasma etching rate of polyamide 6 (PA 6) films. The etching rate increased as the output power, oxygen gas flux, and moisture regain increased. As the treatment time increased, the etching rate increased first and then decreased. When the substrate was too close or too far from the nozzle, the etching rate was almost not measurable. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show an increased surface roughness after the plasma treatment. X-ray photoelectron spectroscopy (XPS) shows a decreased carbon content and an increased oxygen content after the plasma treatment. T-peel strength shows an improved bonding strength between the PA 6 films and an adhesive tape after the plasma treatment.

  8. Atmospheric-pressure plasma jet system for silicon etching without fluorocarbon gas feed

    Science.gov (United States)

    Ohtsu, Yasunori; Nagamatsu, Kenta

    2018-01-01

    We developed an atmospheric-pressure plasma jet (APPJ) system with a tungsten rod electrode coated with C2F4 particles of approximately 0.3 µm diameter for the surface treatment of a silicon wafer. The APPJ was generated by dielectric barrier discharge with a driving frequency of 22 kHz using a He gas flow. The characteristics of the APPJ were examined under various experimental conditions. The plasma jet length increased proportionally to the electric field. It was found that the treatment area of the silicon wafer was approximately 1 mm in diameter. By atomic force microscopy analysis, minute irregularities with a maximum length of about 600 nm and part of a ring-shaped trench were observed. A Si etching rate of approximately 400 nm/min was attained at a low power of 6 W and a He flow rate of 1 L/min without introducing molecular gas including F atoms.

  9. Pressure Contact Sounding Data for NASA's Atmospheric Variability Experiment (AVE 3)

    Science.gov (United States)

    Fuelberg, H. E.; Hill, C. K.; Turner, R. E.; Long, K. E.

    1975-01-01

    The basic rawinsonde data are described at each pressure contact from the surface to sounding termination for the 41 stations participating in the AVE III measurement program that began at 0000 GMT on February 6 and ended at 1200 GMT on February 7, 1975. Soundings were taken at 3-hour intervals during a large period of the experiment from most stations within the United States east of about 105 degrees west longitude. Methods of data processing, change in reduction scheme since the AVE II pilot experiment, and data accuracy are briefly discussed. An example of contact data is presented, and microfiche cards of all the contact data are included in the appendix. The AVE III project was conducted to better understand and establish the extent of applications for meteorological satellite sensor data through correlative ground truth experiments and to provide basic experimental data for use in studies of atmospheric scales of-motion interrelationships.

  10. Pressure contact sounding data for NASA's Atmospheric Variability Experiment (AVE 2). [rawinsondes

    Science.gov (United States)

    Fuelberg, H. E.; Turner, R. E.

    1975-01-01

    The basic rawinsonde data are described at each pressure contact from the surface to sounding termination for the 54 stations participating in the AVE 2 pilot experiment. Soundings were taken at three-hour intervals from stations within the United States east of about 105 degrees west longitude. Methods of data reduction and estimates of data accuracy are discussed. Examples of the data records produced are shown. The AVE 2 pilot experiment was conducted as part of NASA's program to better understand and establish the extent of applications for meteorological satellite sensor data through correlative ground truth experiments and to provide basic experimental data for use in studies of atmospheric scales-of-motion interrelationships.

  11. Estimation of methane emission flux at landfill surface using laser methane detector: Influence of gauge pressure.

    Science.gov (United States)

    Park, Jin-Kyu; Kang, Jong-Yun; Lee, Nam-Hoon

    2016-08-01

    The aim of this study was to investigate the possibility of measuring methane emission fluxes, using surface methane concentration and gauge pressure, by analyzing the influence of gauge pressure on the methane emission flux and the surface methane concentration, as well as the correlation between the methane emission flux and surface methane concentrations. The surface methane concentration was measured using a laser methane detector. Our results show a positive linear relationship between the surface methane concentration and the methane emission flux. Furthermore, the methane emission flux showed a positive linear relationship with the gauge pressure; this implies that when the surface methane concentration and the surface gauge pressure are measured simultaneously, the methane emission flux can be calculated using Darcy's law. A decrease in the vertical permeability was observed when the gauge pressure was increased, because reducing the vertical permeability may lead to a reduced landfill gas emission to the atmosphere, and landfill gas would be accumulated inside the landfill. Finally, this method is simple and can allow for a greater number of measurements during a relatively shorter period. Thus, it provides a better representation of the significant space and time variations in methane emission fluxes. © The Author(s) 2016.

  12. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review

    International Nuclear Information System (INIS)

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J.

    2015-01-01

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a “soft” ion source for preserving highly diagnostic molecular ion is desirable, as compared to the “hard” ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. - Highlights: • Atmospheric pressure ion sources (APCI, ESI, APPI, APLC etc) enable the coupling of LC-based high-end MS to GC. • APIs show advantages in selectivity and sensitivity compared with EI in GC-MS. • Accurate mass database in GC-APCI/MS is emerging as an alternative to GC-EI/MS database.

  13. Selection of suitable diagnostic techniques for an RF atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Kong, M.G.; Deng, X.T.

    2001-01-01

    As an early report of our study, this paper summaries the RF atmospheric pressure plasma system we intend to characterize and a number of diagnostic techniques presently under assessment for our plasma rig. By discussing the advantages and disadvantages of these diagnostic techniques at this meeting, we hope to gain feedback and comments to improve our choice of appropriate diagnostic techniques as well as our subsequent application of these techniques to nonthermal RF atmospheric pressure plasmas

  14. Meter-Scale Atmospheric-Pressure Microwave Plasma Using Sub-Millimeter-Gap Slot

    Science.gov (United States)

    Toyoda, Hirotaka

    2013-09-01

    Atmospheric-pressure pulsed plasmas have been given much attention because of its various possibilities for industrial applications such as surface wettability control, sterilization and so on. Among various atmospheric-pressure plasma sources, microwave plasma that is produced inside waveguide-slots is attractive because high-density plasma up to 1015 cm-3 can be easily produced along very long waveguide with light-weight and rather simple antenna configuration. So far, we have investigated plasma production inside slot of the waveguide and in this talk, elongation of the plasma up to meter-scale with newly-designed plasma source will be presented. In this study, two types of antennas are proposed to elongate the atmospheric-pressure microwave plasma. Firstly, array-structured slot design with a closed-end waveguide is adopted using X-band microwave (10 GHz). In this structure, slot antennas with a total number of more than 40 are positioned with λg/2-pitch along ~1m waveguide so as to utilize standing wave inside the waveguide and to increase the electric field inside the slot. By optimizing the antenna design, arrayed microwave plasmas are successfully produced along ~1m-length waveguide. The arrayed-slot structure, however, the plasma is not completely uniform along the waveguide and plasma density drastically decreases between two adjacent slots. To solve this, an alternative type of antenna that is free from the standing wave effect is designed. In this new-type antenna, travelling wave inside the waveguide with no reflection wave is realized by a combination of a microwave circulator and a ring-structured waveguide. By this transmission line, microwave power flows only to one direction and the average microwave power becomes spatially uniform along the waveguide. By using a single but very long slot up to several tens cm, very uniform plasma is produced along the slot. The result strongly suggests easy scale-up of the plasma source more than one meter that

  15. Physiological responses to low atmospheric pressure stunning and the implications for welfare

    NARCIS (Netherlands)

    Mckeegan, D.E.F.; Sandercock, D.A.; Gerritzen, M.A.

    2013-01-01

    In low atmospheric pressure stunning (LAPS), poultry are rendered unconscious before slaughter by gradually reducing oxygen tension in the atmosphere to achieve a progressive anoxia. The effects of LAPS are not instantaneous, so there are legitimate welfare concerns around the experience of birds

  16. Solvated electrons at the atmospheric pressure plasma-water anodic interface

    Science.gov (United States)

    Gopalakrishnan, R.; Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Graves, D. B.

    2016-07-01

    We present results from a particle-in-cell/Monte Carlo model of a dc discharge in argon at atmospheric pressure coupled with a fluid model of an aqueous electrolyte acting as anode to the plasma. The coupled models reveal the structure of the plasma-electrolyte interface and near-surface region, with a special emphasis on solvated or hydrated electrons. Results from the coupled models are in generally good agreement with the experimental results of Rumbach et al (2016 Nat. Commun. 6 7248). Electrons injected from the plasma into the water are solvated, then lost by reaction with water within about 10-20 nm from the surface. The major reaction products are OH- and H2. The solvated electron density profile is controlled by the injected electron current density and subsequent reactions with water, and is relatively independent of the external plasma electric field and the salt concentration in the aqueous electrolyte. Simulations of the effects of added scavenger compounds (H2O2, \\text{NO}2- , \\text{NO}2- and H+) on near-surface solvated electron density generally match the experimental results. The generation of near-surface OH- following electron-water decomposition in the presence of bulk acid creates a highly basic region (pH ~ 11) very near the surface. In the presence of bulk solution acidity, pH can vary from a very acidic pH 2 away from the surface to a very basic pH 11 over a distance of ~200 nm. High near-surface gradients in aqueous solution properties could strongly affect plasma-liquid applications and challenge theoretical understanding of this complex region.

  17. Atmospheres – Through Projections on a Living Surface

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2013-01-01

    of space, liveness and atmosphere. With the development of this model I wish to contribute to the on-going development of the use of video projections and motion graphics as important visual, spatial and narrative elements within the field of spatial experience design, e.g. in performance, exhibition...... design and events. The model is being designed with two purposes in mind. One is a tool for analyzing empirical examples or cases where video projections are used in spatial experience design. The second is to create a tool that can be useful in actual design processes. In this paper I describe a case...... where video projection on a living surface was part of an experimental dance performance. Based on this case I incorporate descriptions derived from the field of aesthetics, specifically atmospheres understood as a concept of new aesthetics as described by philosopher Gernot Böhme.2 Finally I look...

  18. Averaging of diffusing contaminant concentrations in atmosphere surface layer

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Ramzina, T.V.

    1985-01-01

    Calculations permitting to average concentration fields of diffusing radioactive contaminant coming from the NPP exhaust stack in the atmospheric surface layer are given. Formulae of contaminant concentration field calculation are presented; it depends on the average wind direction value (THETA) for time(T) and stability of this direction (σsub(tgTHETA) or σsub(THETA)). Probability of wind direction deviation from the average value for time T is satisfactory described by the Gauss law. With instability increase in the atmosphere σ increases, when wind velocity increasing the values of σ decreases for all types of temperature gradients. Nonuniformity of σ value dependence on averaging time T is underlined, that requires accurate choice of σsub(tgTHETA) and σsub(THETA) parameters in calculations

  19. Experimental study on enhancement of flow boiling CHF in a completely wetted tube over atmospheric pressure

    International Nuclear Information System (INIS)

    Hwang, Kyung Won; Kang, Jun Young; Kim, Moo Hwan

    2013-01-01

    Critical Heat Flux (CHF) enhancement has been receiving a great attention due to the importance of safety margin at NPPs(Nuclear Power Plants). Especially, the effect of liquid spreading effect or completely wetting (CA ∼ 0 .deg.) on the CHF enhancement was well explained for pool boiling, internal flow boiling at atmospheric pressure condition. But, there has been no report yet in real NPPs operation which is flow boiling situation beyond the atmospheric pressure. So, in this study internal flow boiling experiment is conducted beyond the atmospheric pressure to explain the CHF enhancement with liquid spreading effect and completely wetting. Flow boiling CHF were investigated in bare zirconium alloy 702 tube and micro-structured tubes at a pressure higher than the atmospheric pressure. The enhanced CHF was confirmed at conditions with the highest pressure as well as atmospheric condition from Ahn et al. However, the enhancement ratio decreased with pressure and the mechanism of CHF enhancement in completely wetting tube at annular regime is not clear thus, requires further investigations

  20. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    International Nuclear Information System (INIS)

    Nisticò, Roberto; Magnacca, Giuliana; Faga, Maria Giulia; Gautier, Giovanna; D’Angelo, Domenico; Ciancio, Emanuele; Lamberti, Roberta; Martorana, Selanna

    2013-01-01

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O 2 , He/O 2 /H 2 O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O 2 + , O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  1. Atmospheric teleconnection influence on North American land surface phenology

    Science.gov (United States)

    Dannenberg, Matthew P.; Wise, Erika K.; Janko, Mark; Hwang, Taehee; Kolby Smith, W.

    2018-03-01

    Short-term forecasts of vegetation activity are currently not well constrained due largely to our lack of understanding of coupled climate-vegetation dynamics mediated by complex interactions between atmospheric teleconnection patterns. Using ecoregion-scale estimates of North American vegetation activity inferred from remote sensing (1982-2015), we examined seasonal and spatial relationships between land surface phenology and the atmospheric components of five teleconnection patterns over the tropical Pacific, north Pacific, and north Atlantic. Using a set of regression experiments, we also tested for interactions among these teleconnection patterns and assessed predictability of vegetation activity solely based on knowledge of atmospheric teleconnection indices. Autumn-to-winter composites of the Southern Oscillation Index (SOI) were strongly correlated with start of growing season timing, especially in the Pacific Northwest. The two leading modes of north Pacific variability (the Pacific-North American, PNA, and West Pacific patterns) were significantly correlated with start of growing season timing across much of southern Canada and the upper Great Lakes. Regression models based on these Pacific teleconnections were skillful predictors of spring phenology across an east-west swath of temperate and boreal North America, between 40°N-60°N. While the North Atlantic Oscillation (NAO) was not strongly correlated with start of growing season timing on its own, we found compelling evidence of widespread NAO-SOI and NAO-PNA interaction effects. These results suggest that knowledge of atmospheric conditions over the Pacific and Atlantic Oceans increases the predictability of North American spring phenology. A more robust consideration of the complexity of the atmospheric circulation system, including interactions across multiple ocean basins, is an important step towards accurate forecasts of vegetation activity.

  2. Support surface interface pressure, microenvironment, and the prevalence of pressure ulcers: an analysis of the literature.

    Science.gov (United States)

    Reger, Steven I; Ranganathan, Vinoth K; Sahgal, Vinod

    2007-10-01

    External pressure is the most frequently considered stress factor in the formation of ulcers. A review and analysis of existing literature addressing the relationship between pressure ulcer prevalence and interface pressures at various anatomic sites was conducted. Results suggest a nearly non-existent or slightly negative correlation between interface pressure and ulcer prevalence in general and spinal cord injured populations, respectively. Despite limitations of the analysis methods used, the observed lack of a direct relationship confirms the results of other studies and suggests that ulcer formation also may involve factors secondary to pressure and mechanical factors (eg, temperature, moisture, duration of the applied load, atrophy, and posture). Based on currently available information, clinicians should include these considerations when selecting a support surface. Studies directly relating primary stress factors and tissue viability with prevalence and incidence of pressure ulcers are needed to better understand the benefits of pressure-relieving support surfaces and to improve the effectiveness of prevention and treatment.

  3. Ignition during hydrogen release from high pressure into the atmosphere

    Science.gov (United States)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  4. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    International Nuclear Information System (INIS)

    Dowling, D P; Law, V J; Ardhaoui, M; Stallard, C; Maher, S; Keenan, A

    2016-01-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV–VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer. (paper)

  5. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  6. Plastic collapse pressure of cylindrical vessels containing longitudinal surface cracks

    Energy Technology Data Exchange (ETDEWEB)

    Zarrabi, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Zhang, H. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Nhim, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.

    1997-05-01

    Based on nonlinear finite element analysis, the plastic collapse pressures of cylindrical vessels with longitudinal surface cracks are computed. A general formula of plastic collapse pressure of such structures are given and compared with the literature solutions. The results of the present study could be applied for the integrity assessments, failure analyses, remanent life assessment, and licence extensions of the vessels. (orig.)

  7. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Schultz-Jensen, Nadja; Kusano, Yukihiro

    2011-01-01

    The decontamination of objects (food) in a sealed container by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua, is used....... The ambient atmosphere was air at atmospheric pressure. A plasma is generated inside the bag forming ozone from the oxygen. The maximum ozone concentration in the bag was found to be 140 ppm. A log 6 reduction of L. innocua is obtained after 15 min of exposure time. The temperature of the slides after...

  8. Rates of chemical reaction and atmospheric heating during core debris expulsion from a pressurized vessel

    International Nuclear Information System (INIS)

    Powers, D.A.; Tarbell, W.W.; Brockman, J.E.; Pilch, M.

    1986-01-01

    Core debris may be expelled from a pressurized reactor vessel during a severe nuclear reactor accident. Experimental studies of core debris expulsion from pressurized vessels have established that the expelled material can be lofted into the atmosphere of the reactor containment as particulate 0.4 to 2 mm in diameter. These particles will vigorously react with steam and oxygen in the containment atmosphere. Data on such reactions during tests with 80 kg of expelled melt will be reported. A model of the reaction rates based on gas phase mass transport will be described and shown to account for atmospheric heating and aerosol generation observed in the tests

  9. The conceptual design of high temporal resolution HCN interferometry for atmospheric pressure air plasmas

    Science.gov (United States)

    Zhang, J. B.; Liu, H. Q.; Jie, Y. X.; Wei, X. C.; Hu, L. Q.

    2018-01-01

    A heterodyne interferometer operating at the frequency f = 890 GHz has been designed for measuring the electron density of atmospheric pressure air plasmas, it's density range is from 1015 to 3×1019 m-3 and the pressure range is from 1 Pa to 20 kPa. The system is configured as a Mach\

  10. ATMOSPHERIC-PRESSURE-IONIZATION MASS-SPECTROMETRY .1. INSTRUMENTATION AND IONIZATION TECHNIQUES

    NARCIS (Netherlands)

    BRUINS, AP

    Mass spectrometer ion sources are normally located inside a high-vacuum envelope. Such low-pressure ion sources can make use of a range of different ionization methods and are in routine use in analytical mass spectrometers. An ion source operating at atmospheric pressure is better suited, and may

  11. The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.

    Science.gov (United States)

    Leitner, Alfred

    1982-01-01

    The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

  12. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using...

  13. High pressure gas laser technology for atmospheric remote sensing

    Science.gov (United States)

    Javan, A.

    1980-01-01

    The development of a fixed frequency chirp-free and highly stable intense pulsed laser made for Doppler wind velocity measurements with accurate ranging is described. Energy extraction from a high pressure CO2 laser at a tunable single mode frequency is also examined.

  14. Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid

    International Nuclear Information System (INIS)

    Norberg, Seth A; Johnsen, Eric; Tian, Wei; Kushner, Mark J

    2014-01-01

    In the use of atmospheric pressure plasma jets in biological applications, the plasma-produced charged and neutral species in the plume of the jet often interact with a thin layer of liquid covering the tissue being treated. The plasma-produced reactivity must then penetrate through the liquid layer to reach the tissue. In this computational investigation, a plasma jet created by a single discharge pulse at three different voltages was directed onto a 200 µm water layer covering tissue followed by a 10 s afterglow. The magnitude of the voltage and its pulse length determined if the ionization wave producing the plasma plume reached the surface of the liquid. When the ionization wave touches the surface, significantly more charged species were created in the water layer with H 3 O + aq , O 3 − aq , and O 2 − aq being the dominant terminal species. More aqueous OH aq , H 2 O 2aq , and O 3aq were also formed when the plasma plume touches the surface. The single pulse examined here corresponds to a low repetition rate plasma jet where reactive species would be blown out of the volume between pulses and there is not recirculation of flow or turbulence. For these conditions, N x O y species do not accumulate in the volume. As a result, aqueous nitrites, nitrates, and peroxynitrite, and the HNO 3aq and HOONO aq , which trace their origin to solvated N x O y , have low densities. (paper)

  15. Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure

    International Nuclear Information System (INIS)

    Kim, Sung Joong; McKrell, Tom; Buongiorno, Jacopo; Hu Linwen

    2010-01-01

    A nanofluid is a colloidal suspension of nano-scale particles in water, or other base fluids. Previous pool boiling studies have shown that nanofluids can improve the critical heat flux (CHF) by as much as 200%. In a previous paper, we reported on subcooled flow boiling CHF experiments with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤0.1% by volume) at atmospheric pressure, which revealed a substantial CHF enhancement (∼40-50%) at the highest mass flux (G = 2500 kg/m 2 s) and concentration (0.1 vol.%) for all nanoparticle materials (). In this paper, we focus on the flow boiling heat transfer coefficient data collected in the same tests. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient are similar (within ±20%). The heat transfer coefficient increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. A confocal microscopy-based examination of the test section revealed that nanoparticle deposition on the boiling surface occurred during nanofluid boiling. Such deposition changes the number of micro-cavities on the surface, but also changes the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found.

  16. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms.

    Directory of Open Access Journals (Sweden)

    Katja Fricke

    Full Text Available INTRODUCTION: The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. METHOD: In this study a Candida albicans biofilm, formed on polystyrene (PS wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture. The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. RESULTS: The Candida albicans biofilm, with a thickness of 10 to 20 µm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.

  17. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    International Nuclear Information System (INIS)

    Li, Ying; Manolache, Sorin; Qiu, Yiping; Sarmadi, Majid

    2016-01-01

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  18. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  19. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  20. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  1. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    Science.gov (United States)

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality

    DEFF Research Database (Denmark)

    Rød, Sara Katrine; Hansen, Flemming; Leipold, Frank

    2012-01-01

    The application of cold atmospheric pressure plasma for decontamination of a sliced ready-to-eat (RTE) meat product (bresaola) inoculated with Listeria innocua was investigated. Inoculated samples were treated at 15.5, 31, and 62 W for 2–60 s inside sealed linear-low-density-polyethylene bags...... the sensory threshold level. Surface colour changes included loss of redness of ∼40% and 70% after 1 and 14 days of storage, respectively, regardless of plasma treatment. The results indicate that plasma may be applicable in surface decontamination of pre-packed RTE food products. However, oxidation may...... constitute an issue in some products....

  3. Modeling land-surface/atmosphere dynamics for CHAMMP

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    1993-01-01

    Project progress is described on a DOE CHAMP project to model the land-surface/atmosphere coupling in a heterogeneous environment. This work is a collaboration between scientists at Iowa State University and the University of New Hampshire. Work has proceeded in two areas: baseline model coupling and data base development for model validation. The core model elements (land model, atmosphere model) have been ported to the Principal Investigator's computing system and baseline coupling has commenced. The initial target data base is the set of observations from the FIFE field campaign, which is in the process of being acquired. For the remainder of the project period, additional data from the region surrounding the FIFE site and from other field campaigns will be acquired to determine how to best extrapolate results from the initial target region to the rest of the globe. In addition, variants of the coupled model will be used to perform experiments examining resolution requirements and coupling strategies for land-atmosphere coupling in a heterogeneous environment

  4. Research of Infrared Imaging at Atmospheric Pressure Using a Substrate-Free Focal Plane Array

    International Nuclear Information System (INIS)

    Wu Jian-Xiong; Cheng Teng; Zhang Qing-Chuan; Zhang Yong; Mao Liang; Gao Jie; Wu Xiao-Ping; Chen Da-Peng

    2013-01-01

    An equivalent circuit model to the substrate-free focal plane array (FPA) is established. Using this fast and effective model, the performance of infrared (IR) imaging at atmospheric pressure is investigated and it is found that the substrate-free FPA has the ability of IR imaging at atmospheric pressure, whereas it has a slightly degraded noise equivalent temperature difference (NETD) as compared with IR imaging under a high vacuum. This feature is also identified experimentally by a substrate-free FPA with pixel size of 50 × 50 μm 2 . The NETDs are measured to be 160 mK at 10 −2 Pa pressure and 1.08 K at atmospheric pressure

  5. Application of Langmuir Probe Method to the Atmospheric Pressure Discharge Plasma

    International Nuclear Information System (INIS)

    Matsuura, Hiroto; Matsumura, Yasuhiro; Nakano, Ken

    2008-01-01

    The heat balance model in the probe tip applied to atmospheric pressure plasma is constructed. Considering the natural convective heat loss, the limitation of plasma density for probe application to such a plasma is estimated. The rough limit is about n e = 10 18 m -3 . Four kind of materials (Cu, SUS, W, Al) are used for probe tips, and are tested in DC atmospheric pressure discharge. Heat conductivity is found to be a more important property than melting point in design of probes in high pressure discharge. DC atmospheric pressure discharge plasma parameters are obtained with our test probes. Obtained density is the order of 10 17 m -3 and does not contradict with the above density limitation. Change of space potential in air/Ar plasma is also confirmed.

  6. Surface layer conditions of the atmosphere over western Bay of Bengal during Monex

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Rao, L.V.G.; Somayajulu, Y.K.

    Based on surface meteorological data and wave data collected from 2 stations in the western Bay of Bengal in July 1979, surface layer (SL) conditions of the atmosphere for different situations of surface circulations and the associated sea surface...

  7. Plasma treatment of carbon fibres and glass-fibre-reinforced polyesters at atmospheric pressure for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Toftegaard, Helmuth Langmaack

    2014-01-01

    Atmospheric pressure plasma treatment is useful for adhesion improvement, because cleaning, roughening and addition of polar functional groups can be expected at the surfaces. Its possible applications in the wind energy industry include plasma treatment of fibres and fibre-reinforced polymer....... The plasma treatment improved fracture toughness, indicating that adhesion between the fibres and the epoxy was enhanced by the treatment. In addition, glass-fibre-reinforced polyester plates are treated using a gliding arc and an ultrasound enhanced dielectric barrier discharge, improving the wettability...... composites before assembling them to build wind turbine blades. In the present work, unsized carbon fibres are continuously treated using a dielectric barrier discharge plasma in helium at atmospheric pressure, and carbon fibre reinforced epoxy composite plates are manufactured for the mechanical test...

  8. Surface Treatment of PET Nonwovens with Atmospheric Plasma

    International Nuclear Information System (INIS)

    Li Shufang

    2013-01-01

    In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.

  9. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    Science.gov (United States)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  10. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial.

    Science.gov (United States)

    Chuangsuwanich, Apirag; Assadamongkol, Tananchai; Boonyawan, Dheerawan

    2016-12-01

    Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.

  11. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    Science.gov (United States)

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  12. Production of TEMPO by O atoms in atmospheric pressure non-thermal plasma–liquid interactions

    Science.gov (United States)

    Elg, Daniel T.; Yang, I.-Wei; Graves, David B.

    2017-11-01

    Non-thermal atmospheric pressure plasmas enable plasma treatment of surfaces without requiring a low-pressure environment. These plasmas are currently of interest for, among other things, their biomedical applications, many of which are enabled by production of reactive oxygen and nitrogen species (RONS). Plasma–liquid interactions are especially important due to the high amounts of water in biological materials. However, the chemistries of these plasmas are very complex and are not well-understood. One method to quantify plasma–liquid interactions is to dissolve a reactant into the liquid which, when exposed to plasma-created RONS, forms a measurable product. In particular, the oxidation of the spin trap TEMP to TEMPO has been used to track trends in reactive oxygen species. However, the effect of individual species on TEMP has not previously been determined. This paper differentiates the oxidation of TEMP due to various oxygen species produced by a He plasma jet operating in a controllable environment. Oxidation of TEMP is mainly to O atoms, with small or negligible contributions from other species. Thus, the TEMPO yield will also be used to illuminate trends in O atom production.

  13. Double Ionization Gauge for Atmosphere Density/Pressure Measurements On Board the Rocket

    Science.gov (United States)

    Yushkov, V.; Shturkov, O.; Balugin, N.; Zhurin, S.; Kusov, A.

    2015-09-01

    A description of the ionization gauge for atmospheric density/pressure measurements on board a Russian meteorological rocket is presented. Its operation is based on the principle employed in an ionization gauge. The measuring density/pressure range is 1 06 102 kg/m3 / 10 ~ - 10 mm Hg. There are two output channels for ion and electron current measurements, respectively. The calibration curves are in a fairly good agreement with the classical electron impact ionization theory. The calibration error is less than 7%, that has been definitely confirmed through laboratory bench calibration. This rocket-borne device does not require pre-flight sealing. It greatly simplifies the design of the flight device. The ionization source is an electron flux emitted from the surface of a semi-impermeable metal plate under the influence of vacuum ultraviolet (VUV) radiation. The vUv radiation source is a portable glow-discharge krypton lamp. The flight instrument has been tested for shock loads up to 200 g for rocket measurement applications.

  14. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  15. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  16. Effects of initiating anaerobic digestion of layer-hen poultry dung at sub-atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Chima C. Ngumah

    2013-12-01

    Full Text Available This study investigated the effects of initiating anaerobic digestion (AD of dry layer-hen poultry dung at the sub-atmospheric pressure of -30 cmHg on biodegradation, biogasification, and biomethanation. The setup was performed as a batch process at an average ambient temperature of 29±2 0C and a retention time of 15 days. Comparisons were made with two other experiments which were both begun at ambient atmospheric pressure; one was inoculated with digestate from a previous layer-hen dung AD, while the other was not inoculated. The bioreactors initiated at sub-atmospheric pressure, ambient atmospheric pressure without inoculum, and ambient atmospheric pressure with inoculum showed the following for biogas and biomethane yields respectively: 16.8 cm3 g-1 VS and 15.46 cm3 g 1 VS, 25.10 cm3 g-1 VS and 12.85 cm3 g-1 VS, 21.44 cm3 g-1 VS and 14.88 cm3 g 1 VS. In the same order, after AD, the following values were recorded for volatile solids and total viable counts (prokaryotes and fungi in the digestates: 40.33% and 23.22 x 106 cfu mL-1, 43.42% and 22.17 x 106 cfu mL-1, 41.11% and 13.3 x 106 cfu mL-1. The feedstock showed values of 83.93% and 3.98 x 106 cfu mL-1 for volatile solids and total viable count respectively. There was a slight difference in the volatile solids of the digestates of the three bioreactors after AD. The pH recorded for the feedstock slurry before AD was 7.9 at 30oC, while after AD, the digestates from all the three bioreactors showed the same pH of 5.9 at 29 0C. Statistical analysis using ANOVA showed no significant difference in biogas yields of the feedstock for the three bioreactors (A, B, C. ANOVA showed no significant difference for biomethane yields in the bioreactors initiated at sub-atmospheric pressure and for those initiated at ambient atmospheric pressure with inoculums. However, it showed significant difference in the bioreactor initiated at sub-atmospheric pressure and that initiated at ambient atmospheric

  17. Constraining Agricultural Irrigation Surface Energy Budget Feedbacks in Atmospheric Models

    Science.gov (United States)

    Aufforth, M. E.; Desai, A. R.; Suyker, A.

    2017-12-01

    The expansion and modernization of irrigation increased the relevance of knowing the effects it has on regional weather and climate feedbacks. We conducted a set of observationally-constrained simulations determining the result irrigation exhibits on the surface energy budget, the atmospheric boundary layer, and regional precipitation feedbacks. Eddy covariance flux tower observations were analyzed from two irrigated and one rain-fed corn/soybean rotation sites located near Mead, Nebraska. The evaluated time period covered the summer growing months of June, July, and August (JJA) during the years when corn grew at all three sites. As a product of higher continuous surface moisture availability, the irrigated crops had significantly higher amounts of energy partitioned towards latent heating than the non-irrigated site. The daily average peak of latent heating at the rain-fed site occurred before the irrigated sites and was approximately 45 W/m2 lower. Land surface models were evaluated on their ability to reproduce these effects, including those used in numerical weather prediction and those used in agricultural carbon cycle projection. Model structure, mechanisms, and parameters that best represent irrigation-surface energy impacts will be compared and discussed.

  18. Novel diagnostics for direct measurements of radical densities in atmospheric pressure plasma jets

    Science.gov (United States)

    Wagenaars, Erik

    2017-10-01

    Atmospheric-pressure plasma jets (APPJs) are widely studied for potential applications in industry and healthcare, e.g. surface modification of plastics, plasma medicine and photoresist removal. These plasmas can operate in open air, remain at room temperature and still have a non-equilibrium chemistry. Even though the exact mechanisms through which APPJs affect target surfaces remain largely unknown, it is clear that reactive species play a pivotal role in the success of APPJs. Therefore, reactive species diagnostics of APPJs play an important role in further developing our understanding of the plasma chemistry and will enable increases in treatment efficacy. Two-photon Absorption Laser Induced Fluorescence (TALIF) is a well-known technique for the measurement of absolute densities of atomic radicals such as O, N and H. Unfortunately, application of this technique on APPJs that are operating under realistic conditions for applications, i.e. in open air and with complex admixtures, is not straightforward. The highly collisional environment of APPJs means that collisional quenching of the laser-excited state becomes significant and needs to be taken into account. For well-controlled atmospheres and simple admixtures the effect can be estimated using quenching coefficients, however under realistic operating conditions the identity and density of the quenching partners is unknown due to the complexity of the plasma chemistry. I will present a picosecond TALIF diagnostic which uses a sub-nanosecond laser and iCCD camera that allows the measurement of the quenching-affected fluorescence decay rate directly, enabling absolute measurements of O and N density maps in the open-air effluent of an APPJ. The author acknowledges his collaborators at UoY, A. West, J. Bredin, S. Schroeter, K. Niemi, T. Gans, J. Dedrick and D. O'Connell and support from the UK EPSRC (EP/K018388/1 & EP/H003797/1).

  19. The extended surface forces apparatus. IV. Precision static pressure control.

    Science.gov (United States)

    Schurtenberger, E; Heuberger, M

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ~3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  20. The extended surface forces apparatus. IV. Precision static pressure control

    Science.gov (United States)

    Schurtenberger, E.; Heuberger, M.

    2011-10-01

    We report on design and performance of an extended surface forces apparatus (eSFA) built into a pressurized system. The aim of this instrument is to provide control over static pressure and temperature to facilitate direct surface force experiments in equilibrium with fluids at different loci of their phase diagram. We built an autoclave that can bear a miniature eSFA. To avoid mechanical or electrical feedtroughs the miniature apparatus uses an external surface coarse approach stage under ambient conditions. The surface separation is thus pre-adjusted to approximately ˜3 μm before sliding the apparatus into the autoclave. Inside the autoclave, the surface separation can be further controlled with a magnetic drive at sub-Ångstrom precision over a 14 μm range. The autoclave pressure can then be set and maintained between 20 mbar and 170 bars with few mbar precision. The autoclave is connected to a specially designed pressurization system to precondition the fluids. The temperature can be controlled between -20 and 60 °C with few mK precision. We demonstrate the operation of the instrument in the case of gaseous or liquid carbon dioxide. Thanks to a consequent decoupling of the eSFA mechanical loop from the autoclave structure, the obtained measurement stability and reproducibility, at elevated pressures, is comparable to the one established for the conventional eSFA, operated under ambient conditions.

  1. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff......This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...

  2. Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections?

    Science.gov (United States)

    O'Connor, N; Cahill, O; Daniels, S; Galvin, S; Humphreys, H

    2014-10-01

    Healthcare-associated infections (HCAIs) affect ∼4.5 million patients in Europe alone annually. With the ever-increasing number of 'multi-resistant' micro-organisms, alternative and more effective methods of environmental decontamination are being sought as an important component of infection prevention and control. One of these is the use of cold atmospheric pressure plasma (CAPP) systems with clinical applications in healthcare facilities. CAPPs have been shown to demonstrate antimicrobial, antifungal and antiviral properties and have been adopted for other uses in clinical medicine over the past decade. CAPPs vary in their physical and chemical nature depending on the plasma-generating mechanism (e.g. plasma jet, dielectric barrier discharge, etc.). CAPP systems produce a 'cocktail' of species including positive and negative ions, reactive atoms and molecules (e.g. atomic oxygen, ozone, superoxide and oxides of nitrogen), intense electric fields, and ultraviolet radiation (UV). The effects of these ions have been studied on micro-organisms, skin, blood, and DNA; thus, a range of possible applications of CAPPs has been identified, including surface decontamination, wound healing, biofilm removal, and even cancer therapy. Here we evaluate plasma devices, their applications, mode of action and their potential role specifically in combating HCAIs on clinical surfaces. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Modification of polypropylene in the afterglow of the atmospheric pressure discharges in air and argon

    Science.gov (United States)

    Vasilkin, D. P.; Shikova, T. G.; Titov, V. A.; Smirnov, S. A.; Khomyakova, N. S.

    2017-11-01

    Polypropylene films were modified in the flowing afterglow of the atmospheric pressure DC discharge in argon and in air. The modification was carried out at a discharge current of 15 mA, a gas flow rate of 24 and 105 m/s and a treatment time of 3 - 30 s. Polymer samples were placed on the distance of 5 - 15 mm downstream the plasma Contact angles for water and ATR-FTIR spectra were used for the film surface characterization. Concentrations of oxygen containing groups in modified polymer layer were estimated on the base of ATR-FTIR data. Modification in the both plasma forming gases results in the decrease of the contact angles and in the formation of oxygen containing groups in the polymer surface layer. Dependencies of contact angles on treatment time, gas flow rate and plasma - polymer distance were obtained. Increasing the treatment time and the gas flow rate results in a higher oxidation degree of the PP. Treatment in the afterglow of the argon plasma has been shown to give the less water contact angles and more densities of oxygen containing groups in polypropilene at the gas flow rate of 105 m/s and the treatment time of 30 s.

  4. Improvement of wettability and absorbancy of textile using atmospheric pressure dielectric barrier discharge

    Science.gov (United States)

    Ghimire, Bhagirath; Subedi, Deepak Prasad; Khanal, Raju

    2017-08-01

    In this study, cotton textile samples, commonly used in making quilt covers were subjected to atmospheric pressure dielectric barrier discharge treatment to study their surface wettability and absorbancy. Samples were treated in the discharge using a rotatory mechanism and the effects of plasma treatment were examined by contact angle measurement and weight measurement. Air plasma treatment was successful in incorporating hydrophilic functional groups on the textile surface due to which wettability as well as absorbancy immediately after the treatment were highly improved. Effects of plasma treatment started to appear only after 20 cycles (9 mins) and got saturated after 24 cycles (10.8 mins) of treatment. The contact angle reduced from 137 ° (untreated sample) to a value less than 30 ° while absorbancy increased by more than two times as compared to untreated sample. Also, the aging behavior of the plasma treated samples were studied for about a week after plasma treatment. It was observed that the induced oxygen containing groups re-oriented into the bulk of the material during their storage in the environment due to which initial properties of the samples recovered gradually. Our results indicate that low temperature plasma can be successfully applied to modify the properties of textiles and textile industries could utilize this by standardization.

  5. Improvement of wettability and absorbancy of textile using atmospheric pressure dielectric barrier discharge

    Directory of Open Access Journals (Sweden)

    Bhagirath Ghimire

    2017-08-01

    Full Text Available In this study, cotton textile samples, commonly used in making quilt covers were subjected to atmospheric pressure dielectric barrier discharge treatment to study their surface wettability and absorbancy. Samples were treated in the discharge using a rotatory mechanism and the effects of plasma treatment were examined by contact angle measurement and weight measurement. Air plasma treatment was successful in incorporating hydrophilic functional groups on the textile surface due to which wettability as well as absorbancy immediately after the treatment were highly improved. Effects of plasma treatment started to appear only after 20 cycles (9 mins and got saturated after 24 cycles (10.8 mins of treatment. The contact angle reduced from 137 ° (untreated sample to a value less than 30 ° while absorbancy increased by more than two times as compared to untreated sample. Also, the aging behavior of the plasma treated samples were studied for about a week after plasma treatment. It was observed that the induced oxygen containing groups re-oriented into the bulk of the material during their storage in the environment due to which initial properties of the samples recovered gradually. Our results indicate that low temperature plasma can be successfully applied to modify the properties of textiles and textile industries could utilize this by standardization.

  6. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    Science.gov (United States)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  7. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    Science.gov (United States)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  8. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters.

    Science.gov (United States)

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-04-16

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators - a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes.

  9. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters

    Science.gov (United States)

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-01-01

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes. PMID:25938699

  10. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma.

    Science.gov (United States)

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Hori, Masaru; Kikkawa, Fumitaka

    2014-01-01

    Ovarian clear cell carcinoma (CCC) is a histological type of epithelial ovarian cancer that is less responsive to chemotherapy and associated with a poorer prognosis than serous and endometrioid carcinoma. Non-thermal atmospheric pressure plasma which produces reactive species has recently led to an explosion of research in plasma medicine. Plasma treatment can be applied to cancer treatment to induce apoptosis and tumor growth arrest. Furthermore, recent studies have shown that a medium exposed to plasma also has an anti-proliferative effect against cancer in the absence of direct exposure to plasma. In this study, we confirmed whether this indirect plasma has an anti-tumor effect against CCC, and investigated whether this efficacy is selective for cancer cells. Non-thermal atmospheric pressure plasma induced apoptosis in CCC cells, while human peritoneal mesothelial cells remained viable. Non-thermal atmospheric pressure plasma exhibits selective cytotoxicity against CCC cells which are resistant to chemotherapy.

  11. 2.45 GHz microwave-excited atmospheric pressure air microplasmas based on microstrip technology

    International Nuclear Information System (INIS)

    Kim, Jaeho; Terashima, Kazuo

    2005-01-01

    A plasma system based on microstrip technology was developed for the generation of atmospheric pressure microplasmas. A discharge gap was placed between the striplines and the ground plane on the transverse cross section in the direction of microwave propagation. This microstrip structure permits the concentration of electric fields at the discharge gap, which is confirmed by a computer simulation using the three-dimensional simulation code based on the finite-difference time-domain method, and can produce atmospheric pressure plasmas even in air. The microplasmas were sustained in the discharge gap (width: 0.2 mm, length: 6 mm) at a microwave power of 1 W. The experimentally measured rotational temperature of nitrogen molecules was 800 K, indicating these plasmas to be nonthermal plasmas. This plasma system will provide a portable microplasma system utilizing a small semiconductor microwave source and a large-scale atmospheric pressure nonthermal plasma using the array configuration

  12. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  13. Surface Characterization for Land-Atmosphere Studies of CLASIC

    Science.gov (United States)

    Jackson, T. J.; Kustas, W.; Torn, M. S.; Meyers, T.; Prueger, J.; Fischer, M. L.; Avissar, R.; Yueh, S.; Anderson, M.; Miller, M.

    2006-12-01

    The Cloud and Land Surface Interaction Campaign will focus on interactions between the land surface, convective boundary layer, and cumulus clouds. It will take place in the Southern Great Plains (SGP) area of the U.S, specifically within the US DOE ARM Climate Research Facility. The intensive observing period will be June of 2007, which typically covers the winter wheat harvest in the region. This region has been the focus of several related experiments that include SGP97, SGP99, and SMEX03. For the land surface, some of the specific science questions include 1) how do spatial variations in land cover along this trajectory modulate the cloud structure and the low-level water vapor budget, 2) what are the relationships between land surface characteristics (i.e., soil texture, vegetation type and fractional cover) and states (particularly soil moisture and surface temperature) and the resulting impact of the surface energy balance on boundary layer and cloud structure and dynamics and aerosol loading; and 3) what is the interplay between cumulus cloud development and surface energy balance partitioning between latent and sensible heat, and implications for the carbon flux? Most of these objectives will require flux and state measurements throughout the dominant land covers and distributed over the geographic domain. These observations would allow determining the level of up- scaling/aggregation required in order to understand the impact of landscape changes affecting energy balance/flux partitioning and impact on cloud/atmospheric dynamics. Specific contributions that are planned to be added to CLASIC include continuous tower-based monitoring of surface fluxes for key land cover types prior to, during, and post-IOP, replicate towers to quantify flux variance within each land cover, boundary layer properties and fluxes from a helicopter-based system, airplane- and satellite-based flux products throughout the region, aircraft- and tower-based concentration data for

  14. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, Stefano, E-mail: stefano.zanini@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Grimoldi, Elisa [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Citterio, Attilio [Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Via Mancinelli 7, I-20131 Milano (Italy); Riccardi, Claudia, E-mail: riccardi@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy)

    2015-09-15

    Highlights: • We treated cashmere and wool/cashmere textiles with atmospheric pressure plasma. • Wettability of the fabrics was increased. • The increment in wettability derived from a surface oxidation of the fibers. • Only minor etching effects were observed with scanning electron microscopy. - Abstract: We performed atmospheric pressure plasma treatments of pure cashmere and wool/cashmere textiles with a dielectric barrier discharge (DBD) in humid air (air/water vapor mixtures). Treatment parameters have been optimized in order to enhance the wettability of the fabrics without changing their bulk properties as well as their touch. A deep characterization has been performed to study the wettability, the surface morphologies, the chemical composition and the mechanical properties of the plasma treated textiles. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy and X-ray photoelectron microscopy (XPS). The analyses reveal a surface oxidation of the treated fabrics, which enhances their surface wettability. Morphological characterization of the treated fibers with scanning electron microscopy (SEM) reveals minor etching effects, an essential feature for the maintenance of the textile softness.

  15. Acoustics and Surface Pressure Measurements from Tandem Cylinder Configurations

    Science.gov (United States)

    Hutcheson, Florence V.; Brooks, Thomas F.; Lockard, David P.; Choudhari, Meelan M.; Stead, Daniel J.

    2014-01-01

    Acoustic and unsteady surface pressure measurements from two cylinders in tandem configurations were acquired to study the effect of spacing, surface trip and freestream velocity on the radiated noise. The Reynolds number ranged from 1.15x10(exp 5) to 2.17x10(exp 5), and the cylinder spacing varied between 1.435 and 3.7 cylinder diameters. The acoustic and surface pressure spectral characteristics associated with the different flow regimes produced by the cylinders' wake interference were identified. The dependence of the Strouhal number, peak Sound Pressure Level and spanwise coherence on cylinder spacing and flow velocity was examined. Directivity measurements were performed to determine how well the dipole assumption for the radiation of vortex shedding noise holds for the largest and smallest cylinder spacing tested.

  16. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang

    2015-01-01

    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  17. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Algorithm for Recovery of Integrated Water Vapor Content in the Atmosphere over Land Surfaces Based on Satellite Spectroradiometer Data

    Science.gov (United States)

    Lisenko, S. A.

    2017-05-01

    An algorithm is proposed for making charts of the distribution of water vapor in the atmosphere based on multispectral images of the earth by the Ocean and Land Color Instrument (OLCI) on board of the European research satellite Sentinel-3. The algorithm is based on multiple regression fits of the spectral brightness coefficients at the upper boundary of the atmosphere, the geometric parameters of the satellite location (solar and viewing angles), and the total water vapor content in the atmosphere. A regression equation is derived from experimental data on the variation in the optical characteristics of the atmosphere and underlying surface, together with Monte-Carlo calculations of the radiative transfer characteristics. The equation includes the brightness coefficients in the near IR channels of the OLCI for the absorption bands of water vapor and oxygen, as well as for the transparency windows of the atmosphere. Together these make it possible to eliminate the effect of the reflection spectrum of the underlying surface and air pressure on the accuracy of the measurements. The algorithm is tested using data from a prototype OLCI, the medium resolution imaging spectrometer (MERIS). A sample chart of the distribution of water vapor in the atmosphere over Eastern Europe is constructed without using subsatellite data and digital models of the surface relief. The water vapor contents in the atmosphere determined using MERIS images and data provided by earthbound measurements with the aerosol robotic network (AERONET) are compared with a mean square deviation of 1.24 kg/m2.

  19. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  20. Surface-Atmosphere Moisture Coupling in Eurasian Frozen Ground Regions

    Science.gov (United States)

    Frauenfeld, O. W.; Ford, T.

    2014-12-01

    Permafrost represents an impermeable barrier to moisture, resulting in a saturated or near-saturated surface layer during the warm season in many continuous and discontinuous permafrost zones. These surface conditions could lead to enhanced convection and precipitation during the warm season, and significant local recycling of moisture. In areas underlain by sporadic or isolated permafrost, or in seasonally frozen areas, the moisture can drain away more readily, resulting in much drier soil conditions. As climate change causes frozen ground degradation, this will thus also alter the patterns of atmospheric convection, moisture recycling, and the hydrologic cycle in high-latitude land areas. In this study, we analyze evaporative fraction (EF) as a proxy for evapotranspiration, and precipitation from the Modern-Era Retrospective analysis for Research and Applications (MERRA-land) reanalysis dataset. We focus on 1979-2012 and document patterns and changes in EF over the Eurasian high latitudes. We find strong, positive April EF trends over the study period, particularly in the Lena River Basin, 80% of which is underlain by continuous permafrost. In fact, these significant positive trends in spring EF are strongest over continuous permafrost across the Eurasian high latitudes, but negative for sporadic and isolated permafrost. In addition, we find a strong, statistically significant relationship between EF anomalies and the probability of subsequent precipitation over the Lena Basin during April. This association therefore suggests a potential land-atmosphere coupling between frozen ground and precipitation. As the permafrost and seasonally frozen ground distribution changes in the future, this will likely have repercussions for the Arctic hydrologic cycle.

  1. Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching

    Science.gov (United States)

    Lee, Jae Koo; Kim, Myoung Soo; Byun, June Ho; Kim, Kyong Tai; Kim, Gyoo Cheon; Park, Gan Young

    2011-08-01

    Low temperature atmospheric pressure plasmas have attracted great interests and they have been widely applied to biomedical applications to interact with living tissues, cells, and bacteria due to their non-thermal property. This paper reviews the biomedical applications of low temperature atmospheric pressure plasmas to cancerous cell treatment and tooth bleaching. Gold nanoparticles conjugated with cancer-specific antibodies have been introduced to cancerous cells to enhance selective killing of cells, and the mechanism of cell apoptosis induced by plasma has been investigated. Tooth exposed to helium plasma jet with hydrogen peroxide has become brighter and the productions of hydroxyl radicals from hydrogen peroxide have been enhanced by plasma exposure.

  2. Spectral measurement of atmospheric pressure plasma by means of digital camera

    International Nuclear Information System (INIS)

    Ge Yuanjing; Zhang Guangqiu; Liu Yimin; Zhao Zhifa

    2002-01-01

    A digital camera measuring system has been used successfully to measure the space fluctuation behaviors of Induced Dielectric Barrier Discharge (IDBD) plasma at atmospheric pressure. The experimental results showed that: (1) The uniformity of electron temperature in space depends on discharge condition and structure of web electrode. For a certain web electrode the higher the discharge voltage is, the more uniform distribution of electron temperature in space will be. For a certain discharge the finer and denser the holes on web electrode are, the more uniform distribution of electron temperature in space will be. (2) Digital camera is an available equipment to measure some behaviors of the plasma working at atmospheric pressure

  3. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    Gliding arc discharges have generally been used to generate non-equilibrium plasma at atmospheric pressure. Temperature distributions of a gliding arc are of great interest both for fundamental plasma research and for practical applications. In the presented studies, translational, rotational...... and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  4. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  5. Destruction of Bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma

    International Nuclear Information System (INIS)

    Panikov, N.S.; Paduraru, S.; Crowe, R.; Ricatto, P.J.; Christodoulatos, C.; Becker, K.

    2002-01-01

    The results of experiments aimed at the investigation of the destruction of spore-forming bacteria, which are believed to be among the most resistant microorganisms, using a novel atmospheric-pressure dielectric capillary electrode discharge plasma are reported. Various well-characterized cultures of Bacillus subtilis were prepared, subjected to atmospheric-pressure plasma jets emanating from a plasma shower reactor operated either in He or in air (N 2 /O 2 mixture) at various power levels and exposure times, and analyzed after plasma treatment. Reductions in colony-forming units ranged from 10 4 (He plasma) to 10 8 (air plasma) for plasma exposure times of less than 10 minutes. (author)

  6. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  7. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    National Research Council Canada - National Science Library

    Sullivan, Peter P; McWilliams, James C; Melville, W. K

    2008-01-01

    ... planetary boundary layers (PBL). Efforts were focused on the effects of surface gravity waves on the near-surface dynamics, surface fluxes, and coupling between the atmospheric and oceanic PBLs...

  8. Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    Science.gov (United States)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Namkung, J.

    1987-01-01

    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments.

  9. Surface underway measurements of partial pressure of CO2 (pCO2), temperature, salinity and atmospheric pressure during the R/V Thetys-2 CARBORHONE 3 and 4 cruises (EXPOCODEs: 35TT20120222, 35TT20120720) in the Mediterranean Sea from 2012-02-22 to 2012-07-27 (NCEI Accession 0162460)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The air-sea CO2 fluxes in Mediterranean coastal ecosystems impacted by estuaries inputs have been particularly poorly investigated. The Gulf of Lions is a coastal...

  10. Atmospheric pressure plasma treatment of black peppercorns inoculated with Salmonella and held under controlled storage.

    Science.gov (United States)

    Sun, Shengqian; Anderson, Nathan M; Keller, Susanne

    2014-12-01

    Spices, including black pepper, are a source of microbial contamination and have been linked to outbreaks of salmonellosis when added to products that undergo no further processing. Traditional thermal processing employed to reduce microbial contamination can lead to losses of heat-sensitive compounds. Thus, alternative processes such as atmospheric pressure plasma (APP) are desirable. The purpose of this research was to determine the efficacy of APP in the destruction of Salmonella inoculated on the surface of peppercorns. Secondarily, we examined the effect of storage on the subsequent inactivation of Salmonella on the surfaces of black peppercorns by APP. Black peppercorns inoculated with a cocktail of Salmonella enterica serotypes Oranienburg, Tennessee, Anatum, and Enteritidis were stored at 25 °C, 33% relative humidity (RH); 25 °C, 97% RH; and, 37 °C, 33% RH for 10 d and additionally at 25 °C, 33% RH for 1 and 30 d then treated with APP. Results showed that Salmonella populations decreased significantly (P storage conditions (P > 0.05). Approximately a 4.5- to 5.5-log10 reduction in population was achieved after 60 to 80 s treatment. A combination of treatments, storage and 80 s of plasma, may achieve a total reduction on the order of 7-log10 CFU/g. These findings support the potential of APP to decontaminate Salmonella on the surfaces of black peppercorns and other dry foods and illustrate that a multiple hurdle approach may prove effective for achieving significant reductions of Salmonella in many low-moisture foods. © 2014 Institute of Food Technologists®

  11. Observations. Surface and Atmospheric Climate Change. Chapter 3

    Energy Technology Data Exchange (ETDEWEB)

    Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; Soden, B.; Zhai, P.

    2007-09-15

    This chapter assesses the observed changes in surface and atmospheric climate, placing new observations and new analyses made during the past six years (since the Third Assessment Report TAR) in the context of the previous instrumental record. In previous IPCC reports, palaeo-observations from proxy data for the pre-instrumental past and observations from the ocean and ice domains were included within the same chapter. This helped the overall assessment of the consistency among the various variables and their synthesis into a coherent picture of change. A short synthesis and scrutiny of the consistency of all the observations is included here (see Section 3.9). In the TAR, surface temperature trends were examined from 1860 to 2000 globally, for 1901 to 2000 as maps and for three sub-periods (1910-1945, 1946-1975 and 1976-2000). The first and third sub-periods had rising temperatures, while the second sub-period had relatively stable global mean temperatures. The 1976 divide is the date of a widely acknowledged 'climate shift' and seems to mark a time when global mean temperatures began a discernible upward trend that has been at least partly attributed to increases in greenhouse gas concentrations in the atmosphere. The picture prior to 1976 has essentially not changed and is therefore not repeated in detail here. However, it is more convenient to document the sub-period after 1979, rather than 1976, owing to the availability of increased and improved satellite data since then (in particular Television InfraRed Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) data) in association with the Global Weather Experiment (GWE) of 1979. The post-1979 period allows, for the first time, a global perspective on many fields of variables, such as precipitation, that was not previously available. The availability of high-quality data has led to a focus on the post-1978 period, although physically this new regime seems to have begun in 1976

  12. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice.

    Science.gov (United States)

    Almeida, Francisca Diva Lima; Gomes, Wesley Faria; Cavalcante, Rosane Souza; Tiwari, Brijesh K; Cullen, Patrick J; Frias, Jesus Maria; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2017-12-01

    In this study, the effect of atmospheric pressure cold plasma and high-pressure processing on the prebiotic orange juice was evaluated. Orange juice containing 7g/100g of commercial fructooligosaccharides (FOS) was directly and indirectly exposed to a plasma discharge at 70kV with processing times of 15, 30, 45 and 60s. For high-pressure processing, the juice containing the same concentration of FOS was treated at 450MPa for 5min at 11.5°C in an industrial equipment (Hyperbaric, model: 300). After the treatments, the fructooligosaccharides were qualified and quantified by thin layer chromatography. The organic acids and color analysis were also evaluated. The maximal overall fructooligosaccharides degradation was found after high-pressure processing. The total color difference was pressure and plasma processing. citric and ascorbic acid (Vitamin C) showed increased content after plasma and high-pressure treatment. Thus, atmospheric pressure cold plasma and high-pressure processing can be used as non-thermal alternatives to process prebiotic orange juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Directory of Open Access Journals (Sweden)

    Benjamin Tardy

    2016-08-01

    Full Text Available Land surface temperature (LST is an important variable involved in the Earth’s surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure and the composition (water vapor, ozone of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific community’s demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earth’s atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR bands of the same Landsat image. This permitted an estimation of LST for the entire

  14. An Evaluation of Atmospheric-pressure Plasma for the Cost-Effective Deposition of Antireflection Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rob Sailer; Guruvenket Srinivasan; Kyle W. Johnson; Douglas L. Schulz

    2010-04-01

    Atmospheric-pressure plasma deposition (APPD) has previously been used to deposit various functional materials including polymeric surface modification layers, transparent conducting oxides, and photo catalytic materials. For many plasma polymerized coatings, reaction occurs via free radical mechanism where the high energy electrons from the plasma activate the olefinic carbon-carbon double bonds - a typical functional group in such precursors. The precursors for such systems are typically inexpensive and readily available and have been used in vacuum PECVD previously. The objectives are to investigate: (1) the effect of plasma power, gas composition and substrate temperature on the Si-based film properties using triethylsilane(TES) as the precursor; and (2) the chemical, mechanical, and optical properties of several experimental matrices based on Design of Experiment (DOE) principals. A simple APPD route has been utilized to deposit Si based films from an inexpensive precursor - Triethylsilane (TES). Preliminary results indicates formation of Si-C & Si-O and Si-O, Si-C & Si-N bonds with oxygen and nitrogen plasmas respectively. N{sub 2}-O{sub 2} plasma showed mixed trend; however oxygen remains a significant portion of all films, despite attempts to minimize exposure to atmosphere. SiN, SiC, and SiO ratios can be modified by the reaction conditions resulting in differing film properties. SE studies revealed that films with SiN bond possess refractive index higher than coatings with Si-O/Si-C bonds. Variable angle reflectance studies showed that SiOCN coatings offer AR properties; however thickness and refractive index optimization of these coatings remains necessary for application as potential AR coatings.

  15. A land surface scheme for atmospheric and hydrologic models: SEWAB (Surface Energy and Water Balance)

    Energy Technology Data Exchange (ETDEWEB)

    Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)

  16. Are pressure redistribution surfaces or heel protection devices effective for preventing heel pressure ulcers?

    Science.gov (United States)

    Junkin, Joan; Gray, Mikel

    2009-01-01

    Heel pressure ulcers are recognized as second in prevalence only to pressure ulcer (PU) on the heel among hospitalized patients, and recent studies suggest their incidence may be higher than even sacral ulcers. We systematically reviewed the literature to identify and evaluate whether pressure redistribution surfaces or heel protection devices are effective for the prevention of heel ulcers. We searched CINAHL and MEDLINE databases, using the keywords "pressure ulcer" and "heel," which we also searched the Cochrane Library, using the key terms "pressure ulcer," "heel," and "support surface." We hand searched the ancestry of pertinent research reports and review articles in order to identify additional studies. Inclusion criteria were (1) any study that compared one or more pressure redistribution surfaces or heel protection devices designed specifically to prevent heel PU and (2) any study comparing 2 or more pressure redistribution surfaces designed to prevent PU that specifically reported differences in the incidence of heel PU. Exclusion criteria were (1) studies that did not measure heel PU incidence as an outcome, (2) studies without an English language abstract, and (3) studies that reported overall PU incidence but did not analyze heel PU incidence separately. Clinical evidence concerning the efficacy of pressure redistribution surfaces or heel protection devices is sparse. Existing evidence suggests that pressure redistribution surfaces vary in their ability to prevent heel pressure ulcers, but there is insufficient evidence to determine which surfaces are optimal for this purpose. A single study suggests that a wedge-shaped viscoelastic foam cushion is superior to standard foam pillows for preventing heel PU, but further research is needed before a definitive conclusion concerning this issue can be reached. There is insufficient evidence to determine whether heel protection devices are more effective than a standard hospital foam pillow for the prevention

  17. Atmospheric pressure plasma and electron cyclotron resonance plasma and their applications

    Science.gov (United States)

    Koretzky, Edward Van

    1999-03-01

    Based on a capacitively coupled electrical discharge scheme, an array of plasma torches is generated to form a dense plasma layer in the open air. In order to use a single power source to supply several torches simultaneously, capacitors are used as ballasting impedances coupling all the torches together. Several diagnostics are performed on a single plasma torch to find its temperature, dimensions, and plasma density. To ease constructing an atmospheric pressure plasma source, a modular system is then presented. The design and construction of the plasma torch module is described. The electrical characteristics of the module is studied for the case of a single module and two capacitively coupled modules. For understanding the plasma torch, each is represented by a parallel RC circuit, in which both R and C are time dependent due to the plasma. The dynamics of the plasma is described by the rate equations for the various plasma species. Numerical simulations have been performed to determine the parameter space for efficient generation of the plasma. Scattering (and absorption) of electromagnetic waves by the plasma torches in a rectangular waveguide is studied experimentally and theoretically. By changing the number of torches appearing in the waveguide, the dependence of the microwave power loss on the plasma volume is determined. ECR plasma-assisted chemical vapor deposition (PACVD) is a technique currently receiving much interest because the ECR plasma system offers a more complex parameter space than the conventional PACVD process. Moreover, a unique feature of the ECR plasma is the production of an energetic electron tail, establishing a large sheath potential on the substrate surface for energizing the bombarding ions, which enhances the nucleation rate. An ECR system for PACVD of diamond film on silicon substrates is designed and built. After surface treatment by the ECR produced energetic ions, the low pressure ECR plasma operation is switched, in situ, to a

  18. Effects of long-term low atmospheric pressure on gas exchange and growth of lettuce

    Science.gov (United States)

    Tang, Yongkang; Guo, Shuangsheng; Dong, Wenping; Qin, Lifeng; Ai, Weidang; Lin, Shan

    2010-09-01

    The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce ( Lactuca sativa L . cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa p) or 101 kPa total pressure (20.9 kPa p) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.

  19. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    Science.gov (United States)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  20. Hydrogen termination of CVD diamond films by high-temperature annealing at atmospheric pressure

    NARCIS (Netherlands)

    Seshan, V.; Ullien, D.; Castellanos-Gomez, A.; Sachdeva, S.; Murthy, D.H.K.; Savenije, T.J.; Ahmad, H.A.; Nunney, T.S.; Janssens, S.D.; Haenen, K.; Nesládek, M.; Van der Zant, H.S.J.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    A high-temperature procedure to hydrogenate diamond films using molecular hydrogen at atmospheric pressure was explored. Undoped and doped chemical vapour deposited (CVD) polycrystalline diamond films were treated according to our annealing method using a H2 gas flow down to ?50 ml/min (STP) at

  1. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2016-01-01

    Roč. 88, č. 24 (2016), s. 12279-12286 ISSN 0003-2700 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * thin - layer chromatography * lipids Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  2. From Fundamentals to Applications: Recent Developments in Atmospheric Pressure Photoionization Mass Spectrometry

    NARCIS (Netherlands)

    Bos, Suzanne J.; van Leeuwen, S.M.; Karst, U.

    2006-01-01

    Only five years after the first publication on atmospheric pressure photoionization (APPI), this technique has evolved rapidly as a very useful complement to established ionization techniques for liquid chromatography/mass spectrometry (LC/MS). This is reflected in a rapidly increasing number of

  3. Atmospheric pressure photoionisation : An ionization method for liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Robb, DB; Covey, TR; Bruins, AP

    2000-01-01

    Atmospheric pressure photoionization (APPI) has been successfully demonstrated to provide high sensitivity to LC-MS analysis. A vacuum-ultraviolet lamp designed for photoionization detection in gas chromatography is used as a source of 10-eV photons. The mixture of samples and solvent eluting from

  4. Experimental study of a negative corona in atmospheric-pressure argon

    International Nuclear Information System (INIS)

    Dandaron, G.-N. B.; Baldanov, B. B.

    2007-01-01

    Results are presented from experimental studies of a negative point-to-plane dc corona in atmospheric-pressure argon. Several operating modes are identified: a hysteresis region, a repetitive mode, and a glow-discharge mode. The effect of gas-dynamic parameters on the characteristics of a repetitive negative corona is investigated

  5. Sterilization of packed matter by means of low temperature atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank

    2010-01-01

    Summary form only given. The decontamination of material in closed containers by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua...

  6. ATMOSPHERIC-PRESSURE-IONIZATION MASS-SPECTROMETRY .2. APPLICATIONS IN PHARMACY, BIOCHEMISTRY AND GENERAL-CHEMISTRY

    NARCIS (Netherlands)

    BRUINS, AP

    Mass spectrometer ion sources are normally located inside a high-vacuum envelope. An ion source operating at atmospheric pressure is better suited, it not essential, for a growing number of applications. MS analysis of samples pyrolyzed under controlled conditions makes use of chemical ionization at

  7. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...

  8. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    Science.gov (United States)

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...

  10. Low-temperature atmospheric-pressure plasma sources for plasma medicine.

    Science.gov (United States)

    Setsuhara, Yuichi

    2016-09-01

    In this review paper, fundamental overviews of low-temperature atmospheric-pressure plasma generation are provided and various sources for plasma medicine are described in terms of operating conditions and plasma properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Characterization of typical chemical background interferences in atmospheric pressure ionization liquid chromatography-mass spectrometry

    NARCIS (Netherlands)

    Guo, Xinghua; Bruins, Andries P.; Covey, Thomas R.

    2006-01-01

    The structures and origins of typical chemical background noise ions in positive atmospheric pressure ionization liquid chromatography/mass spectrometry (API LC/MS) are investigated and summarized in this study. This was done by classifying chemical background ions using precursor and product ion

  12. 50-Hz plasma treatment of glass fibre reinforced polyester at atmospheric pressure enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Singh, Shailendra Vikram

    2011-01-01

    Glass fibre reinforced polyester (GFRP) plates are treated using a 50-Hz dielectric barrier discharge at peak-to-peak voltage of 30 kV in helium at atmospheric pressure with and without ultrasonic irradiation to study adhesion improvement. The ultrasonic waves at the fundamental frequency of around...

  13. Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode

    Czech Academy of Sciences Publication Activity Database

    Bruggeman, P.; Ribežl, E.; Degroote, J.; Malesevic, A.; Rego, R.; Vierendeels, J.; Leys, C.; Mašláni, Alan

    2008-01-01

    Roč. 17, č. 2 (2008), s. 1-11 ISSN 0963-0252 Institutional research plan: CEZ:AV0Z20430508 Keywords : atmospheric pressure air discharge * liquid cathode * voltage drop * optical emission spectroscopy Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.685, year: 2008

  14. REFERENCE ON THERMOPHYSICAL PROPERTIES: DENSITY AND VISCOSITY OF WATER FOR ATMOSPHERIC PRESSURE

    OpenAIRE

    Elin Yusibani; Aprina .; Teuku Khairuman

    2016-01-01

    A reference on thermophysical properties, density and viscosity, for water at atmospheric pressure has been developed in MS Excel (as a macros). Patterson’s density equations and Kestin’s viscosity equations have been chosen as a basic equation in the VBA programming as a user-defined function. These results have been compared with REFPROF as a wellknow standart reference

  15. Reference on Thermophysical Properties: Density and Viscosity of Water for Atmospheric Pressure

    OpenAIRE

    Yusibani, Elin; Aprina; Khairuman, Teuku

    2016-01-01

    A reference on thermophysical properties, density and viscosit