WorldWideScience

Sample records for surface area porosity

  1. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  2. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    Science.gov (United States)

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  3. Negative plate macropore surfaces in lead-acid batteries: Porosity, Brunauer-Emmett-Teller area, and capacity

    Energy Technology Data Exchange (ETDEWEB)

    D' Alkaine, C.V.; de O. Brito, G.A. [Group of Electrochemistry and Polymers, DQ-UFSCar, Rodovia Washington Luis, Km 235, CP 676, 13565-905 Sao Carlos (SP) (Brazil)

    2009-06-01

    We propose an explanation for the production of an electrochemically active area during the electrochemical formation of lead-acid battery negative plates based on solid-state reactions. Our proposal is supported by experimental data. This study includes a critical review of the literature on charge/discharge mechanisms, porosity, and BET area. The critical review, through the latter two parameters, indicates the existence of both macro and micropores in positive plates, but only macropores in negative plates, with characteristic surface roughness. In the present paper the surface sulfation of the precursor is controlled using various acidic, neutral and alkaline solutions during an electrochemical formation process that does not include soaking. Our results confirm that variable roughness can be produced at the negative plate macropore surfaces. The morphological changes produced by different formation conditions are assessed by measuring the macroporosity, BET area, and capacity of single negative plates. Based on these concepts, a method was developed and applied to measure independently the contributions of geometrical surface macroporosity and roughness to the negative plate capacity. (author)

  4. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study

    Science.gov (United States)

    Lee, Bum Han; Lee, Sung Keun

    2013-07-01

    Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock

  5. Influence of THFA on the surface area and porosity of U3O8 kernel of produced by external gelation process

    International Nuclear Information System (INIS)

    Susilowati, Sri Rinanti; Triyono; Nawangsih, Endang; Widiyati, Sri

    2013-01-01

    The research of the influence of THFA on the surface area and porosity of U 3 O 8 by kernel external gelation results has done. U 3 0 8 kernel made by external gelation process using uranyl nitrate solution with various concentration of THFA in sol solution. UN solution preparation by dissolving UO 3 powder into 7N HNO 3 at a temperature of 60 °C with a certain amount and volume, resulting in a solution of uranyl nitrate with high uranium concentrations but low acidity. Preparation of sol begins by dissolving 1.8 9 of polyvinyl alcohol in demineralized water at 70 °C, the volume varied tetrahydrofurfural alcohol, then added a solution of UN stirring constantly until homogeneous. Sol solution was then dripped in 7N ammonia in the medium gelation column. Gel ADU diaging in ammonia solution 7N for 30 minutes, then washed with ammonia 2.5% and n propanol. ADU gel diameter was measured using calipers. ADU silenced gel at room temperature 48 hours and then dried in an oven 100 °C at a rate of temperature rising 5°C/minutes. After drying, the gel ADU calcined at 600°C with an increase rate of 5°C/minutes for 2 hours. Kernel density U 3 O 8 then analyzed, surface area, mean pore radius and total pore volume. U 3 O 8 best kernel at 2.5% THFA concentration conditions, because it has a high density is 7.877 g/mL and extensive porosity and lower surface area is 5,180 % and 4,898 m 2 /g. (author)

  6. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications.

    Science.gov (United States)

    El-Fiqi, Ahmed; Buitrago, Jennifer O; Yang, Sung Hee; Kim, Hae-Won

    2017-09-15

    Here we communicate the generation of biomimetically grown apatite spheres from aggregated bioglass nanoparticles and the potential properties applicable for drug delivery and cell/tissue engineering. Ion releasing nanoparticulates of bioglass (85%SiO 2 -15%CaO) in a mineralizing medium show an intriguing dynamic phenomenon - aggregation, mineralization to apatite, integration and growth into micron-sized (1.5-3μm) spheres. During the progressive ionic dissolution/precipitation reactions, nano-to-micro-morphology, glass-to-crystal composition, and the physico-chemical properties (porosity, surface area, and charge) change dynamically. With increasing reaction period, the apatite becomes more crystallized with increased crystallinity and crystal size, and gets a composition closer to the stoichiometry. The developed microspheres exhibit hierarchical surface nanostructure, negative charge (ς-potential of -20mV), and ultrahigh mesoporosity (mesopore size of 6.1nm, and the resultant surface area of 63.7m 2 /g and pore volume of 0.153cm 3 /g) at 14days of mineralization, which are even higher than those of its precursor bioglass nanoparticles. Thanks to these properties, the biomimetic mineral microspheres take up biological molecules effectively, i.e., loading capacity of positive-charged protein is over 10%. Of note, the release is highly sustainable at a constant rate, i.e., profiling almost 'zero-order' kinetics for 4weeks, suggesting the potential usefulness as protein delivery systems. The biomimetic mineral microspheres hold some remnant Si in the core region, and release calcium, phosphate, and silicate ions over the test period, implying the long-term ionic-related therapeutic functions. The mesenchymal stem cells favour the biomimetic spheres with an excellent viability. Due to the merit of sizes (a few micrometers), the spheres can be intercalated into cells, mediating cellular interactions in 3D cell-spheroid engineering, and also can stimulate osteogenic

  7. Porosity-dependent fractal nature of the porous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir [Department of Physics, Alzahra University, Tehran, 1993893973 (Iran, Islamic Republic of)

    2015-07-15

    Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layer due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.

  8. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications

    Science.gov (United States)

    Heimböckel, Ruben; Kraas, Sebastian; Hoffmann, Frank; Fröba, Michael

    2018-01-01

    A series of porous carbon samples were prepared by combining a semi-carbonization process of acidic polymerized phenol-formaldehyde resins and a following chemical activation with KOH used in different ratios to increase specific surface area, micropore content and pore sizes of the carbons which is favourable for supercapacitor applications. Samples were characterized by nitrogen physisorption, powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results show that the amount of KOH, combined with the semi-carbonization step had a remarkable effect on the specific surface area (up to SBET: 3595 m2 g-1 and SDFT: 2551 m2 g-1), pore volume (0.60-2.62 cm3 g-1) and pore sizes (up to 3.5 nm). The carbons were tested as electrode materials for electrochemical double layer capacitors (EDLC) in a two electrode setup with tetraethylammonium tetrafluoroborate in acetonitrile as electrolyte. The prepared carbon material with the largest surface area, pore volume and pore sizes exhibits a high specific capacitance of 145.1 F g-1 at a current density of 1 A g-1. With a high specific energy of 31 W h kg-1 at a power density of 33028 W kg-1 and a short time relaxation constant of 0.29 s, the carbon showed high power capability as an EDLC electrode material.

  9. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  10. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors

    Science.gov (United States)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng

    2018-01-01

    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  11. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  12. On the Use of Surface Porosity to Reduce Unsteady Lift

    Science.gov (United States)

    Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.

    2001-01-01

    An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.

  13. Correlation of Water Frost Porosity in Laminar Flow over Flat Surfaces

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    A dimensionless correlation has been proposed for water frost porosity expressing its dependence on frost surface temperature and Reynolds number for laminar forced flow over a flat surface. The correlation is presented in terms of a dimensionless frost surface temperature scaled with the cold plate temperature, and the freezing temperature. The flow Reynolds number is scaled with reference to the critical Reynolds number for laminar-turbulent transition. The proposed correlation agrees satisfactorily with the simultaneous measurements of frost density and frost surface temperature covering a range of plate temperature, ambient air velocity, humidity, and temperature. It is revealed that the frost porosity depends primarily on the frost surface and the plate temperatures and the flow Reynolds number, and is only weakly dependent on the relative humidity. The results also point out the general character of frost porosity displaying a decrease with an increase in flow Reynolds number.

  14. Controlling the porosity of a polyethersulfone membrane surface with an XeCl laser

    International Nuclear Information System (INIS)

    Pazokian, Hedieh; Mehrabadi, Adeleh H P; Mollabashi, Mahmoud; Barzin, Jalal

    2016-01-01

    Pure and polyvinyl pyrrolidone blend polyethersulfone (PES) membranes were irradiated by an XeCl laser with various numbers of pulses at different fluences to investigate the changes in the surface morphology and the porosity. The results show that the membrane pore size and distribution on the surface can be modified following irradiation dependent on the laser fluence, the number of pulses and the membrane composition. These changes are very attractive for improving the membrane surface in filtration processes and biological applications. (paper)

  15. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release

    NARCIS (Netherlands)

    van de Belt, H; Neut, D; Uges, DRA; Schenk, W; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2000-01-01

    In this study, the release of gentamicin as a function of time was measured for six different gentamicin-loaded bone cements and related with the surface roughness, porosity and wettability of the cements. Initial release rates varied little between the six bone cements (CMW1, CMW3, CMW Endurance,

  16. Optical probe for porosity defect detection on inner diameter surfaces of machined bores

    Science.gov (United States)

    Kulkarni, Ojas P.; Islam, Mohammed N.; Terry, Fred L.

    2010-12-01

    We demonstrate an optical probe for detection of porosity inside spool bores of a transmission valve body with diameters down to 5 mm. The probe consists of a graded-index relay rod that focuses a laser beam spot onto the inner surface of the bore. Detectors, placed in the specular and grazing directions with respect to the incident beam, measure the change in scattered intensity when a surface defect is encountered. Based on the scattering signatures in the two directions, the system can also validate the depth of the defect and distinguish porosity from bump-type defects coming out of the metal surface. The system can detect porosity down to a 50-μm lateral dimension and ~40 μm in depth with >3-dB contrast over the background intensity fluctuations. Porosity detection systems currently use manual inspection techniques on the plant floor, and the demonstrated probe provides a noncontact technique that can help automotive manufacturers meet high-quality standards during production.

  17. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations

    DEFF Research Database (Denmark)

    Holm, René; Borkenfelt, Simon; Allesø, Morten

    2016-01-01

    for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.......g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed......, however for six out of seven compounds similar results were obtained by applying a standard pressure (866MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle...

  18. Porosity Gradient at the Surface of Comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Christou, C.; Dadzie, S. K.; Thomas, N.; Hartogh, P.; Jorda, L.; Kuhrt, E.; Wright, I.; Zarnecki, J.

    2017-12-01

    The Rosetta mission has provided invaluable and unexpected information about our knowledge and understanding of comets until now. The on-board instruments, ROSINA and VIRTIS showed the non-uniformly outgassing of H2O over the surface of the nucleus. After Philae landing in a small lobe and the attempt to intrude MUPUS into the surface led to estimate the minimum compressive strength of material > 4MPa. This high strength of material (at least locally) along with different porosity ranges that have been presented for the 67P/Churyumov-Gerasimenko (67P) challenge our understanding of the surface and outgassing processes. Here we used the micro computed tomography (micro-CT) technology to represent 3D Earth rock samples with different porosity to investigate outgassing in the near surface boundary layer. The Direct Simulation of Monte Carlo (DSMC) method is used to simulate the rarefied cometary atmosphere. We presented results with H2O outgassing at a maximum production rate near perihelion. We show that an existence of a possible porosity gradient at the surface of the comet may explain some of the structures observed on 67P.

  19. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  20. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  1. Mapping porosity of the deep critical zone in 3D using near-surface geophysics, rock physics modeling, and drilling

    Science.gov (United States)

    Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.

    2017-12-01

    Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.

  2. Determinants of Transitional Zone Area and Porosity of the Proximal Femur Quantified In Vivo in Postmenopausal Women.

    Science.gov (United States)

    Shigdel, Rajesh; Osima, Marit; Lukic, Marko; Ahmed, Luai A; Joakimsen, Ragnar M; Eriksen, Erik F; Bjørnerem, Åshild

    2016-04-01

    Bone architecture as well as size and shape is important for bone strength and risk of fracture. Most bone loss is cortical and occurs by trabecularization of the inner part of the cortex. We therefore wanted to identify determinants of the bone architecture, especially the area and porosity of the transitional zone, an inner cortical region with a large surface/matrix volume available for intracortical remodeling. In 211 postmenopausal women aged 54 to 94 years with nonvertebral fractures and 232 controls from the Tromsø Study, Norway, we quantified femoral subtrochanteric architecture in CT images using StrAx1.0 software, and serum levels of bone turnover markers (BTM, procollagen type I N-terminal propeptide and C-terminal cross-linking telopeptide of type I collagen). Multivariable linear and logistic regression analyses were used to quantify associations of age, weight, height, and bone size with bone architecture and BTM, and odds ratio (OR) for fracture. Increasing age, height, and larger total cross-sectional area (TCSA) were associated with larger transitional zone CSA and transitional zone CSA/TCSA (standardized coefficients [STB] = 0.11 to 0.80, p ≤ 0.05). Increasing weight was associated with larger TCSA, but smaller transitional zone CSA/TCSA and thicker cortices (STB = 0.15 to 0.22, p zone (STB = 0.12 to 0.46, p zone CSA/TCSA, and higher porosity of each of the cortical compartments (p zone CSA and higher porosity than controls (p zone, OR for fracture was 1.71 (95% CI, 1.37 to 2.14) and 1.51 (95% CI, 1.23 to 1.85), respectively. Cortical bone architecture is determined mainly by bone size as built during growth and is modified by lifestyle factors throughout life through bone turnover. Fracture cases exhibited larger transitional zone area and porosity, highlighting the importance of cortical bone architecture for fracture propensity. © 2015 American Society for Bone and Mineral Research.

  3. Investigation of surface porosity measurements and compaction pressure as means to ensure consistent contact angle determinations.

    Science.gov (United States)

    Holm, René; Borkenfelt, Simon; Allesø, Morten; Andersen, Jens Enevold Thaulov; Beato, Stefania; Holm, Per

    2016-02-10

    Compounds wettability is critical for a number of central processes including disintegration, dispersion, solubilisation and dissolution. It is therefore an important optimisation parameter both in drug discovery but also as guidance for formulation selection and optimisation. Wettability for a compound is determined by its contact angle to a liquid, which in the present study was measured using the sessile drop method applied to a disc compact of the compound. Precise determination of the contact angle is important should it be used to either rank compounds or selected excipients to e.g. increase the wetting from a solid dosage form. Since surface roughness of the compact has been suggested to influence the measurement this study investigated if the surface quality, in terms of surface porosity, had an influence on the measured contact angle. A correlation to surface porosity was observed, however for six out of seven compounds similar results were obtained by applying a standard pressure (866 MPa) to the discs in their preparation. The data presented in the present work therefore suggest that a constant high pressure should be sufficient for most compounds when determining the contact angle. Only for special cases where compounds have poor compressibility would there be a need for a surface-quality-control step before the contact angle determination. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. On the role of melt flow into the surface structure and porosity development during selective laser melting

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Panwisawas, Chinnapat; Ward, Mark; Basoalto, Hector C.; Brooks, Jeffery W.; Attallah, Moataz M.

    2015-01-01

    In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material

  5. Correlation between porosity and roughness as obtained by porous silicon nano surface scattering spectrum

    Directory of Open Access Journals (Sweden)

    R Dariani

    2015-01-01

    Full Text Available Reflection spectra of four porous silicon samples under etching times of 2, 6, 10, and 14 min with current density of 10 mA/cm2 were measured. Reflection spectra behaviors for all samples were the same, but their intensities were different and decreased by increasing the etching time. The similar behavior of reflection spectra could be attributed to the electrolyte solution concentration which was the same during fabrication and reduction of reflection spectrum due to the reduction of particle size. Also, the region for the lowest intensity at reflection spectra was related to porous silicon energy gap which shows blue shift for porous silicon energy gap. Roughness study of porous silicon samples was done by scattering spectra measurements, Rayleigh criteria, and Davis-Bennet equation. Scattering spectra of the samples were measured at 10, 15, and 20 degrees by using spectrophotometer. Reflected light intensity reduced by increasing the scattering angle except for the normal scattering which agreed with Rayleigh criteria. Also, our results showed that by increasing the etching time, porosity (sizes and numbers of pores increases and therefore light absorption increases and scattering from surface reduces. But since scattering varies with the observation scale (wavelength, the relationship between scattering and porosity differs by varying the observation scale (wavelength

  6. Zeolites with Continuously Tuneable Porosity**

    Science.gov (United States)

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Čejka, Jiří; Morris, Russell E

    2014-01-01

    Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneable surface area and micropore volume over a wide range can be prepared. This means that a particular surface area or micropore volume can be precisely tuned. The range of porosity we can target covers the whole range of useful zeolite porosity: from small pores consisting of 8-rings all the way to extra-large pores consisting of 14-rings. PMID:25284344

  7. The effect of activation agent on surface morphology, density and porosity of palm shell and coconut shell activated carbon

    Science.gov (United States)

    Leman, A. M.; Zakaria, S.; Salleh, M. N. M.; Sunar, N. M.; Feriyanto, D.; Nazri, A. A.

    2017-09-01

    Activated carbon (AC) has one of the promising alternative technology for filtration and adsorption process. It inexpensive material because the sources is abundant especially in Malaysia. Main purpose of this project is to develop AC by chemical activation process to improve adsorption capacity by improving porosity of AC. AC developed via carbonization using designed burner at temperature of 650°C to 850 °C and activated by Potassium Hydroxide (KOH) in 12 hour and then dried at temperature of 300°C. Characterization and analysis is conducted by Scanning Electron Microscopy (SEM) for surface morphology analysis, Energy Dispersive Spectroscopy (EDS) for composition analysis, density and porosity analysis. Results shows that uneven surface has been observed both of AC and non-AC and also AC shows higher porosity as compared to non-AC materials. Density value of raw material has lower than AC up to 11.67% and 47.54% and porosity of raw material has higher than AC up to 31.45% and 45.69% for palm shell and coconut shell AC. It can be concluded that lower density represent higher porosity of material and higher porosity indicated higher adsorption capacity as well.

  8. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?

    Science.gov (United States)

    Torstrick, F Brennan; Evans, Nathan T; Stevens, Hazel Y; Gall, Ken; Guldberg, Robert E

    2016-11-01

    Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease

  9. Dual Orlicz geominimal surface area

    Directory of Open Access Journals (Sweden)

    Tongyi Ma

    2016-02-01

    Full Text Available Abstract The L p $L_{p}$ -geominimal surface area was introduced by Lutwak in 1996, which extended the important concept of the geominimal surface area. Recently, Wang and Qi defined the p-dual geominimal surface area, which belongs to the dual Brunn-Minkowski theory. In this paper, based on the concept of the dual Orlicz mixed volume, we extend the dual geominimal surface area to the Orlicz version and give its properties. In addition, the isoperimetric inequality, a Blaschke-Santaló type inequality, and the monotonicity inequality for the dual Orlicz geominimal surface areas are established.

  10. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  11. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  12. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  13. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values

  14. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  15. AN EXAMPLE IN SURFACE AREA*

    Science.gov (United States)

    Goffman, Casper

    1969-01-01

    For length and area, a central fact is that the value of the length of a curve or the area of a surface, as given by the Lebesgue theory, is at least as great as that given by the classical formula, whenever the latter has meaning. This is now found not to be valid in higher dimensions. We give an example of a continuous mapping of the unit cube into itself for which the value given by the formula exceeds the three-dimensional Lebesgue area of the corresponding suface. PMID:16591750

  16. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  17. Effect of porosity and surface chemistry on the adsorption-desorption of uranium(VI) from aqueous solution and groundwater

    International Nuclear Information System (INIS)

    Yakout, S.M.

    2016-01-01

    Rice straw-based biochars modified with different chemical regents were used as an adsorbent for uranium(VI). Effect of pyrolysis temperature and nature of modifying agent's as well as surface chemistry, surface charge, and pore structure on U(VI) removal was investigated. Amount and nature of the surface groups has, in general, more influence than its porosity on U(VI) adsorption. The adsorption was maximum for the initial pH of 5.5. Rice straw derived biochars had comparable U(VI) adsorption as compared to other adsorbents. The U(VI) removal was 90 % from groundwater. NaHCO 3 was found to be the most efficient desorbent eluent for U(VI). (author)

  18. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  19. Effects of Surface Wettability on the Porosity and Wickability of Frost

    Science.gov (United States)

    Witt, Katherine; Ahmadi, Farzad; Boreyko, Jonathan

    2017-11-01

    The wicking of liquids through porous media has been studied for many materials, but never for frost, despite its implications for arctic oil spills and oil-infused surfaces. Here, we characterize silicone oils wicking up frost sheets. A layer of frost was grown on aluminum plates of varying surface wettability: superhydrophilic, hydrophilic, hydrophobic, and superhydrophobic. Once the desired frost thickness was grown, a humidity chamber was used to maintain the frost at the dew point and the bottom of the plate was dipped in a reservoir of fluorescent silicone oil. For all surfaces, the wicking rate of the oil increased with increasing wettability. For the wetting surfaces, this is manifested in the length vs. time data following the classical Washburn equation, exhibiting a power slope of about 1/2 and resulting in a larger effective pore radius with increasing wettability. However, we observed that on the non-wetting surfaces, the discrete distribution of the frosted dew droplets resulted in a new scaling law with a slope much less than 1/2, especially for the superhydrophobic surface which promoted jumping-droplet condensation. This research shows that the wicking of oil up a layer of frost can give insight into the morphology of frost. Conversely, if the underlying wettability of a frost sheet can be controlled, the spread of oil can be widely tuned. This work was supported by a Virginia Space Grant Consortium Undergraduate Research Scholarship (PMPTX7EP).

  20. Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Imen Ghouma

    2018-04-01

    Full Text Available The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIR techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2.

  1. Lp-mixed affine surface area

    Science.gov (United States)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  2. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    of antifouling coating behaviour because the active binder surface area and porosity of the leached layer are substantially increased. A similar effect was not observed for a coating with a mixture of ZnO and TiO2 pigments. The two experimental methods are expected to be useful for practical analysis of leaching...

  3. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  4. L p -Dual geominimal surface area

    Directory of Open Access Journals (Sweden)

    Weidong Wang

    2011-01-01

    Full Text Available Abstract Lutwak proposed the notion of Lp -geominimal surface area according to the Lp -mixed volume. In this article, associated with the Lp -dual mixed volume, we introduce the Lp -dual geominimal surface area and prove some inequalities for this notion. 2000 Mathematics Subject Classification: 52A20 52A40.

  5. Wetted surface area of recreational boats

    NARCIS (Netherlands)

    Bakker J; van Vlaardingen PLA; ICH; VSP

    2018-01-01

    The wetted surface area of recreational craft is often treated with special paint that prevents growth of algae and other organisms. The active substances in this paint (antifouling) are also emitted into the water. The extent of this emission is among others determined by the treated surface area.

  6. Brazilian urban porosity : Treat or threat?

    NARCIS (Netherlands)

    Moreno Pessoa, I.; Tasan-Kok, M.T.; Korthals Altes, W.K.

    2016-01-01

    Urban areas have spatial discontinuities, such as disconnected neighbourhoods, brownfield areas and leftover places. They can be captured by the metaphor of urban porosity. This paper aims to highlight the potential social consequences of urban porosity by creating a ‘porosity index’. The authors

  7. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    Science.gov (United States)

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  8. Size and surface AREA analysis of some metallic and intermetallic powders

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Elsayed, A.A.; Abadir, M.F.

    1988-01-01

    The powder characterization of three intermetallic compounds ( Cr B, B 4 c and S ib 4 ) and three metallic powders (Fe, Co, and Ni) has been performed. This included the determination of powder density, chemical analysis, impurity analysis, shape factor, particle size analysis and specific surface area. The particle size analysis for the six powders was carried out using three techniques, namely; the 0-23, the microtrac and the fisher sub sieve and size. It was found that the analysis of the two powders and deviates from the log-normal probability distribution and the deviation was corrected. The specific surface area of the powders was measured using the high speed surface area analysis (BET method), and it was also calculated from surface area analysis findings, the BET technique was found to give the highest specific surface area values, and was attributed to the inclusion of internal porosity in the measurement. 8 fig., 10 tab

  9. Characterization of porosity via secondary reactions. Final technical report, 1 September 1991--30 November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Zhang, L.; Hall, P.J.; Antxustegi, M. [Brown Univ., Providence, RI (United States). Div. of Engineering

    1997-09-01

    A new approach to the study of porosity and porosity development in coal chars during gasification was investigated. This approach involves the establishment of the relationships between the amount and type of surface complexes evolved during post-activation temperature programmed desorption (TPD), and the porosity, as measured by gas adsorption and small angle neutron scattering (SANS) techniques. With this new method, the total surface area and micropore volume can be determined by the interpretation of post-activation TPD spectra. The primary conclusion of this work is that it is possible to predict total surface area and micropore volume from TPD spectra. From the extended random pore model, additional information about the micropore surface area, the nonmicroporous surface area, and the mean micropore size development as a function of reaction time (or burn-off) can also be predicted. Therefore, combining the TPD technique and the extended random pore model provides a new method for the characterization of char porosity.

  10. Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific

    International Nuclear Information System (INIS)

    Jahnke, R.A.; Emerson, S.R.; Cochran, J.K.; Hirschberg, D.J.

    1986-01-01

    Sediment samples were recovered from the central equatorial Pacific Ocean, sectioned at 1-mm intervals, and analyzed for porosity, organic carbon, excess 210 Pb and CaCO 3 . Steep porosity gradients were measured in the upper 1 cm of the sediment column with extremely high values observed near the sediment surface. Similarly, particulate organic carbon contents are highest at the sediment surface, decrease sharply in the upper 1 cm, and are relatively constant between 1 and 5 cm. CaCO 3 values, on the other hand, are lowest at the sediment surface and increase to a constant value below 5-10 mm depth. At the carbonate ooze sites, excess 210 Pb is present throughout the upper 5 cm of the sediments suggesting relatively rapid particle mixing rates. However, extremely high excess 210 Pb activities (> 100 dpm/g) are observed at the sediment surface with sharp gradients present in the upper 1 cm which would suggest slow rates of mixing. This apparent contradiction along with the major features of the CaCO 3 and particulate organic carbon profiles can be explained by a particle-selective feeding mechanism in which organic carbon, excess 210 Pb-enriched particles are preferentially maintained at the sediment surface via ingestion and defecation by benthic organisms. (orig.)

  11. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  12. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  13. Meteoric calcite cementation: diagenetic response to relative fall in sea-level and effect on porosity and permeability, Las Negras area, southeastern Spain

    Science.gov (United States)

    Li, Zhaoqi; Goldstein, Robert H.; Franseen, Evan K.

    2017-03-01

    A dolomitized Upper Miocene carbonate system in southeast Spain contains extensive upper and lower zones of calcite cementation that cut across the stratigraphy. Cement textures including isopachous and circumgranular, which are consistent with phreatic-zone cementation. Cements in the upper cemented zone are non-luminescent, whereas those in the lower cemented zone exhibit multiple bands of luminescent and non-luminescent cements. In the upper cemented zone, isotopic data show two meteoric calcite lines (MCL) with mean δ18O at - 5.1‰ and - 5.8‰ VPDB, whereas no clear MCL is defined in the lower cemented zone where mean δ18O for calcite cement is at - 6.7‰ VPDB. δ13C values in both cement zones are predominantly negative, ranging from - 10 to + 2‰ VPDB, suggestive of carbon from soil gas or decayed organics. Measurements of Tm ice in primary fluid inclusions yield a mode of 0.0 °C in both zones, indicating calcite cementation from fresh water. These two zones define the positions of two different paleo-water tables that formed during a relative sea-level fall and erosional downcutting during the Plio-Pleistocene. The upper cemented zone pre-dated the lower cemented zone on the basis of known relative sea-level history. Meteoric calcite cementation reduced porosity and permeability, but measured values are inconsistent with simple filling of open pore space. Each texture, boundstone, grainstone, packstone, wackestone, produces a different relationship between percent calcite cement and porosity/permeability. Distribution of cements may be predictable on the basis of known sea-level history, and the effect of the cementation can be incorporated into subsurface geomodels by defining surfaces of rock boundaries that separate cemented zones from uncemented zones, and applying texture-specific relationships among cementation, porosity and permeability.

  14. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  15. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner

    International Nuclear Information System (INIS)

    Cheng, Alice; Boyan, Barbara D; Humayun, Aiza; Cohen, David J; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2579–3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. (paper)

  16. Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.

    Science.gov (United States)

    Cheng, Alice; Humayun, Aiza; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2014-10-07

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15-70% with compressive moduli of 2579-3693 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity, an early differentiation marker, decreased as porosity increased, while osteocalcin, a late differentiation marker, as well as osteoprotegerin, vascular endothelial growth factor and bone morphogenetic proteins 2 and 4 increased with increasing porosity. Three-dimensional (3D) constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo.

  17. Clay mineralogy in different geomorphic surfaces in sugarcane areas

    Science.gov (United States)

    Camargo, L.; Marques, J., Jr.

    2012-04-01

    conditions of each surface. The rate goethite/(goethite+hematite) decreases the surface I to III this result is the variation of the source material that has an increase of clay which is characteristic of sandstone rock (Adamantine Formation) in the surface III. The rate kaolinite/(kaolinite+gibbsite) also shows a decrease of the surface I to the surface III. The spatial distribution pattern of mineralogy influenced the pattern of physical and chemical properties. On the surface III (with higher iron and gibbsite) had the best physical condition (lower density, higher porosity and aggregates) and greater phosphorus sorption. In this sense, the identification and mapping of the GSs, allowed a better understanding of cause and effect of the distribution of soils in the area, and the recognition of areas of controlled variability of soil attributes. These areas can be considered specific areas of management, useful for planning and management practices in the culture of sugarcane. Besides, suggesting criteria for the recognition of map units that would be equivalent to the future series of soils of the Brazilian System of Soil Classification.

  18. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  19. Osmosis and Surface Area to Volume Ratio.

    Science.gov (United States)

    Barrett, D. R. B.

    1984-01-01

    Describes an experiment designed to help students understand the concepts of osmosis and surface area to volume ratio (SA:VOL). The task for students is to compare water uptake in different sizes of potato cubes and relate differences to their SA:VOL ratios. (JN)

  20. Estimating surface area in early hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available Height and weight-based methods of estimating surface area have played an important role in the development of the current consensus regarding the role of thermoregulation in human evolution. However, such methods may not be reliable when applied to early hominins because their limb proportions differ markedly from those of humans. Here, we report a study in which this possibility was evaluated by comparing surface area estimates generated with the best-known height and weight-based method to estimates generated with a method that is sensitive to proportional differences. We found that the two methods yield indistinguishable estimates when applied to taxa whose limb proportions are similar to those of humans, but significantly different results when applied to taxa whose proportions differ from those of humans. We also found that the discrepancy between the estimates generated by the two methods is almost entirely attributable to inter-taxa differences in limb proportions. One corollary of these findings is that we need to reassess hypotheses about the role of thermoregulation in human evolution that have been developed with the aid of height and weight-based methods of estimating body surface area. Another is that we need to use other methods in future work on fossil hominin body surface areas.

  1. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.

    2010-01-01

    We describe a stereological procedure to estimate the total leaf surface area of a plant canopy in vivo, and address the problem of how to predict the variance of the corresponding estimator. The procedure involves three nested systematic uniform random sampling stages: (i) selection of plants from...... a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and evaluate both...... the time required and the precision of the estimator. Furthermore, we compare the precision of point counting for three different grid intensities with that of several standard leaf area measurement techniques. Results showed that the precision of the plant leaf area estimator based on point counting...

  2. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    International Nuclear Information System (INIS)

    Erdem, Savaş; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-01-01

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity — sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing. In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.

  3. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  4. High Surface Area Tunnels in Hexagonal WO₃.

    Science.gov (United States)

    Sun, Wanmei; Yeung, Michael T; Lech, Andrew T; Lin, Cheng-Wei; Lee, Chain; Li, Tianqi; Duan, Xiangfeng; Zhou, Jun; Kaner, Richard B

    2015-07-08

    High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.

  5. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek; Basset, Jean-Marie

    2014-01-01

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  6. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  7. The neutron porosity tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1988-01-01

    The report contains a review of available information on neutron porosity tools with the emphasis on dual thermal-neutron-detector porosity tools and epithermal-neutron-detector porosity tools. The general principle of such tools is discussed and theoretical models are very briefly reviewed. Available data on tool designs are summarized with special regard to the source-detector distance. Tool operational data, porosity determination and correction of measurements are briefly discussed. (author) 15 refs

  8. Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica

    Science.gov (United States)

    Fegyveresi, John M.; Alley, Richard B.; Muto, Atsuhiro; Orsi, Anaïs J.; Spencer, Matthew K.

    2018-01-01

    Observations at the West Antarctic Ice Sheet (WAIS) Divide site show that near-surface snow is strongly altered by weather-related processes such as strong winds and temperature fluctuations, producing features that are recognizable in the deep ice core. Prominent glazed surface crusts develop frequently at the site during summer seasons. Surface, snow pit, and ice core observations made in this study during summer field seasons from 2008-2009 to 2012-2013, supplemented by automated weather station (AWS) data with short- and longwave radiation sensors, revealed that such crusts formed during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession and was generally followed by surface hoar growth; vapor escaping through the cracks during sunny days may have contributed to the high humidity that favored nighttime formation of surface hoar. Temperature and radiation observations show that daytime solar heating often warmed the near-surface snow above the air temperature, contributing to upward mass transfer, favoring crust formation from below, and then surface hoar formation. A simple surface energy calculation supports this observation. Subsequent examination of the WDC06A deep ice core revealed that crusts are preserved through the bubbly ice, and some occur in snow accumulated during winters, although not as commonly as in summertime deposits. Although no one has been on site to observe crust formation during winter, it may be favored by greater wintertime wind packing from stronger peak winds, high temperatures and steep temperature gradients from rapid midwinter warmings reaching as high as -15 °C, and perhaps longer intervals of surface stability. Time variations in crust occurrence in the core may provide paleoclimatic information

  9. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  10. Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica

    Directory of Open Access Journals (Sweden)

    J. M. Fegyveresi

    2018-01-01

    Full Text Available Observations at the West Antarctic Ice Sheet (WAIS Divide site show that near-surface snow is strongly altered by weather-related processes such as strong winds and temperature fluctuations, producing features that are recognizable in the deep ice core. Prominent glazed surface crusts develop frequently at the site during summer seasons. Surface, snow pit, and ice core observations made in this study during summer field seasons from 2008–2009 to 2012–2013, supplemented by automated weather station (AWS data with short- and longwave radiation sensors, revealed that such crusts formed during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession and was generally followed by surface hoar growth; vapor escaping through the cracks during sunny days may have contributed to the high humidity that favored nighttime formation of surface hoar. Temperature and radiation observations show that daytime solar heating often warmed the near-surface snow above the air temperature, contributing to upward mass transfer, favoring crust formation from below, and then surface hoar formation. A simple surface energy calculation supports this observation. Subsequent examination of the WDC06A deep ice core revealed that crusts are preserved through the bubbly ice, and some occur in snow accumulated during winters, although not as commonly as in summertime deposits. Although no one has been on site to observe crust formation during winter, it may be favored by greater wintertime wind packing from stronger peak winds, high temperatures and steep temperature gradients from rapid midwinter warmings reaching as high as −15 °C, and perhaps longer intervals of surface stability. Time variations in crust occurrence in the core may provide

  11. Porosity-depth trends of carbonate deposits along the northwest shelf of Australia (IODP Expedition 356)

    Science.gov (United States)

    Lee, Eun Young; Kominz, Michelle; Reuning, Lars; Takayanagi, Hideko; Knierzinger, Wolfgang; Wagreich, Michael; Expedition 356 shipboard scientists, IODP

    2017-04-01

    The northwest shelf (NWS) of Australia extends from northern tropical to southern temperate latitudes situated offshore from the low-moderate-relief and semi-arid Australian continent. The shelf environment is dominated throughout by carbonate sedimentation with warm-water and tropical carbonate deposits, connected to the long-term northward drift of Australia bringing the NWS into tropical latitudes. IODP expedition 356 cored seven sites (U1458-U1464) covering a latitudinal range of 29°S-18°S off the NWS. This study focuses on porosity-depth trends of the Miocene - Pleistocene carbonate sediment on the NWS. The NWS is an ideal area to study regional (and furthermore general) carbonate porosity-depth relationships, because it contains a nearly continuous sequence of carbonate sediment ranging in depth from the surface to about 1,100m and in age from Pleistocene to Miocene. Porosity-depth trends of sedimentary rocks are generally controlled by a variety of factors which govern the rates of porosity loss due to mechanical compaction and of porosity loss (or gain) due to chemical processes during diagenesis. This study derives porosity data from Moisture and Density (MAD) technique conducted during IODP Expedition 356. MAD samples were collected from packstone (44%), wackestone (27%), mudstone (15%) and grainstone (7%), with the rest from floatstone, rudstone, dolostone, sandstone and other subordinate lithologies. To understand porosity-depth trends, the porosity data are arranged both exponentially and linearly, and correlated with age models and lithologic descriptions provided by IODP shipboard scientists. Porosity(%)-depth(m) trends of all the porosity data are Porosity=52e-0.0008/Depth (exponential) and Porosity=-0.03Depth+52 (linear). Porosities near surface and in the deepest parts of each well are least well represented by these trend lines. Porosity values of Pleistocene sediment are generally higher than those of Miocene - Pliocene sediment. The initial

  12. On semiautomatic estimation of surface area

    DEFF Research Database (Denmark)

    Dvorak, J.; Jensen, Eva B. Vedel

    2013-01-01

    and the surfactor. For ellipsoidal particles, it is shown that the flower estimator is equal to the pivotal estimator based on support function measurements along four perpendicular rays. This result makes the pivotal estimator a powerful approximation to the flower estimator. In a simulation study of prolate....... If the segmentation is correct the estimate is computed automatically, otherwise the expert performs the necessary measurements manually. In case of convex particles we suggest to base the semiautomatic estimation on the so-called flower estimator, a new local stereological estimator of particle surface area....... For convex particles, the estimator is equal to four times the area of the support set (flower set) of the particle transect. We study the statistical properties of the flower estimator and compare its performance to that of two discretizations of the flower estimator, namely the pivotal estimator...

  13. Effect of shrinkage porosity on mechanical properties of ferritic ductile iron

    Directory of Open Access Journals (Sweden)

    Wang Zehua

    2013-05-01

    Full Text Available Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.

  14. Particle track membranes with higher porosity

    International Nuclear Information System (INIS)

    Heinrich, B.; Gemende, B.; Lueck, H.B.

    1992-01-01

    Possibilities of improvement of flux and dirt loading capacity of particle track membranes have been examined. Three different ways were investigated: using a divergent ion beam for the irradiation; enlarging the surface porosity through a conical pore shape; creating an asymmetrical membrane structure with two different porosities. Mathematical models and experimental results have been discussed. 9 figs, 3 tabs

  15. A Simple Proof of Cauchy's Surface Area Formula

    OpenAIRE

    Tsukerman, Emmanuel; Veomett, Ellen

    2016-01-01

    We give a short and simple proof of Cauchy's surface area formula, which states that the average area of a projection of a convex body is equal to its surface area up to a multiplicative constant in the dimension.

  16. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  17. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  18. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    International Nuclear Information System (INIS)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.; Chapman, Jenny B.

    2003-01-01

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed. Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle

  19. Mesoporous high surface area Ce0.9Gd0.1O1.95 synthesized by spray drying

    DEFF Research Database (Denmark)

    Lundberg, Mats; Wang, Hsiang-Jen; Blennow Tullmar, Peter

    2011-01-01

    Mesoporous gadolinium doped cerium dioxide with high surface area was produced by spray drying using Pluronic 123 as surfactant. The powder, when calcined at 400 °C, had a BET surface area of 136 m2 g−1 and was polycrystalline as confirmed by XRD and TEM. XEDS confirmed Ce, Gd and O, as the only......, corresponding to the crystallite size calculated from XRD data. The similar size range of the mesopores and the observed crystallite size indicates that the porosity is partly formed from intergranular mesoporosity. Using the spray drying method of a surfactant assisted liquid precursor solution it can...

  20. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2014-06-01

    Full Text Available High surface area activated carbon fibers (ACF have been prepared from bamboo by steam activation after liquefaction and curing. The influences of activation temperature on the microstructure, surface area and porosity were investigated. The results showed that ACF from bamboo at 850 °C have the maximum iodine and methylene blue adsorption values. Aside from the graphitic carbon, phenolic and carbonyl groups were the predominant functions on the surface of activated carbon fiber from bamboo. The prepared ACF from bamboo were found to be mainly type I of isotherm, but the mesoporosity presented an increasing trend after 700 °C. The surface area and micropore volume of samples, which were determined by application of the Brunauer-Emmett-Teller (BET and t-plot methods, were as high as 2024 m2/g and 0.569 cm3/g, respectively. It was also found that the higher activation temperature produced the more ordered microcrystalline structure of ACF from bamboo.

  1. Homogeneity vs. Heterogeneity of Porosity in Boom Clay

    International Nuclear Information System (INIS)

    Hemes, Susanne; Desbois, Guillaume; Urai, Janos L.; De Craen, Mieke; Honty, Miroslav

    2013-01-01

    Microstructural investigations on Boom Clay at nano- to micrometer scale, using BIB-SEM methods, result in porosity characterization for different mineral phases from direct observations on high resolution SE2-images of representative elementary areas (REAs). High quality, polished surfaces of cross-sections of ∼ 1 mm 2 size were produced on three different samples from the Mol-Dessel research site (Belgium). More than 33,000 pores were detected, manually segmented and analyzed with regard to their size, shape and orientation. Two main pore classes were defined: Small pores (< 500 nm (ED)) within the clay matrices of samples and =big' pores (> 500 nm (ED)) at the interfaces between clay and non-clay mineral (NCM) grains. Samples investigated show similar porosities regarding the first pore-class, but differences occur at the interfaces between clay matrix and NCM grains. These differences were interpreted to be due to differences in quantitative mineralogy (amount of non-clay mineral grains) and grain-size distributions between samples investigated. Visible porosities were measured as 15 to 17 % for samples investigated. Pore-size distributions of pores in clay are similar for all samples, showing log-normal distributions with peaks around 60 nm (ED) and more than 95 % of the pores being smaller than 500 nm (ED). Fitting pore-size distributions using power-laws with exponents between 1.56 and 1.7, assuming self-similarity of the pore space, thus pores smaller than the pore detection resolution following the same power-laws and using these power-laws for extrapolation of pore-size distributions below the limit of pore detection resolution, results in total estimated porosities between 20 and 30 %. These results are in good agreement with data known from Mercury Porosimetry investigations (35-40 % porosity) and water content porosity measurements (∼ 36 %) performed on Boom Clay. (authors)

  2. Palatal Surface Area of Maxillary Plaster Casts

    DEFF Research Database (Denmark)

    Darvann, Tron Andre; Hermann, Nuno V.; Ersbøll, Bjarne Kjær

    2007-01-01

    Objective: To investigate the relationship between corresponding two-dimensional and three-dimensional measurements on maxillary plaster casts taken from photographs and three-dimensional surface scans, respectively. Materials and Methods: Corresponding two-dimensional and three-dimensional measu...

  3. Effect of impervious surface area and vegetation changes on mean ...

    African Journals Online (AJOL)

    adeniyi adeyemi

    Land surface temperature (LST) is measured by the surface energy balance, .... climatic and environmental conditions (Cheng et al., 2006). ..... urban areas have generally resulted in a high reflection and emission of solar radiation and greater.

  4. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  5. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, Winny

    2001-01-01

    .... Traditional composite electrode structures have prevented truly quantitative analysis of surface area effects in nanoscale battery materials, as well as a study of their innate electrochemical behavior...

  6. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  7. Ultrasonic maps of porosity in aluminum castings

    International Nuclear Information System (INIS)

    Ghaffari, Bita; Potter, Timothy J.; Mozurkewich, George

    2002-01-01

    The use of cast aluminum in the automotive industry has grown dramatically in recent years, leading to increased need for quantitative characterization of microporosity. As previously reported in the literature, the attenuation of ultrasound can be used to measure the porosity volume fraction and the mean pore size. An immersion ultrasound system has been built utilizing this technique to scan castings with high spatial resolution. Maps of attenuation are shown to locate areas of varying porosity readily and reliably

  8. Porosity Prediction of Plain Weft Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Muhammad Owais Raza Siddiqui

    2014-12-01

    Full Text Available Wearing comfort of clothing is dependent on air permeability, moisture absorbency and wicking properties of fabric, which are related to the porosity of fabric. In this work, a plug-in is developed using Python script and incorporated in Abaqus/CAE for the prediction of porosity of plain weft knitted fabrics. The Plug-in is able to automatically generate 3D solid and multifilament weft knitted fabric models and accurately determine the porosity of fabrics in two steps. In this work, plain weft knitted fabrics made of monofilament, multifilament and spun yarn made of staple fibers were used to evaluate the effectiveness of the developed plug-in. In the case of staple fiber yarn, intra yarn porosity was considered in the calculation of porosity. The first step is to develop a 3D geometrical model of plain weft knitted fabric and the second step is to calculate the porosity of the fabric by using the geometrical parameter of 3D weft knitted fabric model generated in step one. The predicted porosity of plain weft knitted fabric is extracted in the second step and is displayed in the message area. The predicted results obtained from the plug-in have been compared with the experimental results obtained from previously developed models; they agreed well.

  9. Surface Area Distribution Descriptor for object matching

    Directory of Open Access Journals (Sweden)

    Mohamed F. Gafar

    2010-07-01

    Full Text Available Matching 3D objects by their similarity is a fundamental problem in computer vision, computer graphics and many other fields. The main challenge in object matching is to find a suitable shape representation that can be used to accurately and quickly discriminate between similar and dissimilar shapes. In this paper we present a new volumetric descriptor to represent 3D objects. The proposed descriptor is used to match objects under rigid transformations including uniform scaling. The descriptor represents the object by dividing it into shells, acquiring the area distribution of the object through those shells. The computed areas are normalised to make the descriptor scale-invariant in addition to rotation and translation invariant. The effectiveness and stability of the proposed descriptor to noise and variant sampling density as well as the effectiveness of the similarity measures are analysed and demonstrated through experimental results.

  10. High-Surface-Area, Emulsion-Templated Carbon Foams by Activation of polyHIPEs Derived from Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Robert T. Woodward

    2016-09-01

    Full Text Available Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene. Poly(divinylbenzene was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion-templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas.

  11. Effects of acid treatment on the clay palygorskite: XRD, surface area, morphological and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Xavier, Katiane Cruz Magalhaes; Santos, Maria do Socorro Ferreira dos; Santos, Maria Rita Morais Chaves; Oliveira, Marilia Evelyn Rodrigues; Osajima, Josy Antevelli; Silva Filho, Edson Cavalcanti da [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil); Carvalho, Maria Wilma Nunes Cordeiro, E-mail: edsonfilho@ufpi.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2014-08-15

    The palygorskite is an aluminum-magnesium silicate that has a fibrous morphology. Their physicochemical characteristics are the result of high surface area, porosity and thermal resistance which make it an attractive adsorbent. Its adsorption capacity can be increased through chemical reactions and/or heat treatments. The objective of this work is to verify the effects of acid activation on the palygorskite, treated with HCl at 90 °C at concentrations of 2, 4 and 6 mol L{sup -1} in 2 and 4 hours, with clay/acid solution ratio 1 g 10 mL{sup -1} and characterized by techniques: XRF, XRD and surface area. A significant increase in specific surface area was observed in the sample treated with HCl at the concentration 6 mol L{sup -1}. The changes were more pronounced at stricter concentrations of acidity, with decreasing intensity of reflection of the clay indicated in the XRD. These changes were confirmed in the XRF with the leaching of some oxides and with increasing concentration of SiO{sub 2}. (author)

  12. Why Do We Need the Derivative for the Surface Area?

    Science.gov (United States)

    Hristova, Yulia; Zeytuncu, Yunus E.

    2016-01-01

    Surface area and volume computations are the most common applications of integration in calculus books. When computing the surface area of a solid of revolution, students are usually told to use the frustum method instead of the disc method; however, a rigorous explanation is rarely provided. In this note, we provide one by using geometric…

  13. On the specific surface area of nanoporous materials

    NARCIS (Netherlands)

    Detsi, E.; De Jong, E.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; ten Brinke, G.; De Raedt, H. A.; Onck, P. R.; De Hosson, J. T. M.

    2011-01-01

    A proper quantification of the specific surface area of nanoporous materials is necessary for a better understanding of the properties that are affected by the high surface-area-to-volume ratio of nanoporous metals, nanoporous polymers and nanoporous ceramics. In this paper we derive an analytical

  14. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    Directory of Open Access Journals (Sweden)

    Mathieu Bosch

    2014-12-01

    Full Text Available Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in {Li [In(1,3 − BDC2]}n and enhancement of the H2 uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  15. Lage-area planar RF plasma productions by surface waves

    International Nuclear Information System (INIS)

    Nonaka, S.

    1994-01-01

    Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs

  16. The Effect of Volumetric Porosity on Roughness Element Drag

    Science.gov (United States)

    Gillies, John; Nickling, William; Nikolich, George; Etyemezian, Vicken

    2016-04-01

    Much attention has been given to understanding how the porosity of two dimensional structures affects the drag force exerted by boundary-layer flow on these flow obstructions. Porous structures such as wind breaks and fences are typically used to control the sedimentation of sand and snow particles or create micro-habitats in their lee. Vegetation in drylands also exerts control on sediment transport by wind due to aerodynamic effects and interaction with particles in transport. Recent research has also demonstrated that large spatial arrays of solid three dimensional roughness elements can be used to reduce sand transport to specified targets for control of wind erosion through the effect of drag partitioning and interaction of the moving sand with the large (>0.3 m high) roughness elements, but porous elements may improve the effectiveness of this approach. A thorough understanding of the role porosity plays in affecting the drag force on three-dimensional forms is lacking. To provide basic understanding of the relationship between the porosity of roughness elements and the force of drag exerted on them by fluid flow, we undertook a wind tunnel study that systematically altered the porosity of roughness elements of defined geometry (cubes, rectangular cylinders, and round cylinders) and measured the associated change in the drag force on the elements under similar Reynolds number conditions. The elements tested were of four basic forms: 1) same sized cubes with tubes of known diameter milled through them creating three volumetric porosity values and increasing connectivity between the tubes, 2) cubes and rectangular cylinders constructed of brass screen that nested within each other, and 3) round cylinders constructed of brass screen that nested within each other. The two-dimensional porosity, defined as the ratio of total surface area of the empty space to the solid surface area of the side of the element presented to the fluid flow was conserved at 0.519 for

  17. Radiographically detectable intracortical porosity

    International Nuclear Information System (INIS)

    Meema, H.E.

    1986-01-01

    Since the measurement of intracortical resorptive spaces by histologic methods is difficult and very few data are available in normal humans, we have measured their lengths and widths and calculated the intracortical porosity in metacarpals and phalanges of 79 normal women and 69 normal men, using fine-detail radiographs of the hands and a computerized semi-automatic image analysis system (Zeiss MOP-3), this being the first study of this kind. Several methodological problems were solved satisfactorily, and the results of this study could serve as a data bank for further investigations concerned with intracortical resorption. Significant differences were found between age and sex versus several intracortical resorptive parameters; also significant correlations were found with age in some cases. Normal intracortical porosity was found to be about three times greater in the proximal phalanges than in the metacarpals. It is concluded that this methodology could be used for further studies of intracortical resorption in osteoporosis and other metabolic bone diseases. (orig.)

  18. Indexing aortic valve area by body surface area increases the prevalence of severe aortic stenosis

    DEFF Research Database (Denmark)

    Jander, Nikolaus; Gohlke-Bärwolf, Christa; Bahlmann, Edda

    2014-01-01

    To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are......To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are...

  19. Hand burns surface area: A rule of thumb.

    Science.gov (United States)

    Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan

    2018-03-11

    Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  20. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  1. On $L_p$ Affine Surface Area and Curvature Measures

    OpenAIRE

    Zhao, Yiming

    2015-01-01

    The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.

  2. Influence of shrinkage porosity on fatigue performance of iron castings and life estimation method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface (SPAFS and alternating stress intensity factor (ASIF were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.

  3. Quantifying object and material surface areas in residences

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.

    2005-01-05

    The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented for measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.

  4. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-11-01

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  5. Electrical resistivity and porosity structure of the upper Biscayne Aquifer in Miami-Dade County, Florida

    Science.gov (United States)

    Whitman, Dean; Yeboah-Forson, Albert

    2015-12-01

    Square array electrical soundings were made at 13 sites in the Biscayne Aquifer distributed between 1 and 20 km from the shoreline. These soundings were modeled to investigate how resistivity varies spatially and with depth in the upper 15 m of the aquifer. Porosity was estimated from the modeled formation resistivity and observed pore fluid resistivity with Archie's Law. The models were used to interpolate resistivity and porosity surfaces at -2, -5, -8, and -15 m elevations. Modeled resistivity in the unsaturated zone is generally higher than 300 Ω m with the resistivity at sites with thick unsaturated zones greater than 1000 Ω m. Resistivity in the saturated zone ranges from 30 to 320 Ω m. At many sites in the western portions of the study area, resistivity is constant or increases with depth whereas sites in the center of the Atlantic Coastal Ridge exhibit a distinct low resistivity zone (ρ aquifer. The estimated porosity ranges between 14% and 71% with modal values near 25%. The porosity structure varies both with depth and spatially. Western sites exhibit a high porosity zone at shallow depths best expressed in a NE-SW trending zone of 40-50% porosity situated near the western margin of the Atlantic Coastal Ridge. This zone roughly corresponds in depth with the Q5 chronostratigraphic unit of the Miami Fm. which constitutes the upper flow unit of the Biscayne Aquifer. The highest porosity (>50%) is seen at elevations below -5 m at sites in the center of the Atlantic Coastal Ridge and likely corresponds to solution features. The general NE-SW trend of the resistivity and porosity structure suggests a causal connection with the Pleistocene paleogeography and sedimentary environments.

  6. Quantification of lung surface area using computed tomography

    Directory of Open Access Journals (Sweden)

    Xing Li

    2010-10-01

    Full Text Available Abstract Objective To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume. Methods The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures. Results The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p Conclusion Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.

  7. Surface area considerations for corroding N reactor fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to open-quotes trueclose quotes surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated open-quotes trueclose quotes surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage

  8. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization

    International Nuclear Information System (INIS)

    Gosavi, Priti V.; Biniwale, Rajesh B.

    2010-01-01

    Three different wet chemistry routes, namely co-precipitation, combustion and sol-gel methods were used to synthesize LaFeO 3 perovskite with improved surface area. The synthesized perovskite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), Brunauer-Emmett-Teller (BET) nitrogen adsorption, ultraviolet diffused reflectance spectroscopy (UVDRS) and Fourier transform infrared (FTIR) spectroscopy techniques. Improved surface area was observed for all three methods as compared to the previously reported values. The perovskite synthesized using sol-gel method yields comparatively pure, crystalline phase of LaFeO 3 and relatively higher surface area of 16.5 m 2 g -1 and porosity. The material synthesized using co-precipitation method yielded other phases in addition to the targeted phase. The morphology of perovskite synthesized using co-precipitation method was uniform agglomerates. Combustion method yields flakes type morphology and that of sol-gel method was open pore type morphology. The selection of method for perovskite synthesis largely depends on the targeted application and the desired properties of perovskites. The results reported in this study are useful for establishing a simple scalable method for preparation of high surface area LaFeO 3 as compared to solid-oxide method. Further, the typical heating cycle followed for calcinations resulted in relatively high surface area in the case of all three methods.

  9. Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon

    Directory of Open Access Journals (Sweden)

    Pushpendra Kumar

    2007-01-01

    Full Text Available The most common fabrication technique of porous silicon (PS is electrochemical etching of a crystalline silicon wafer in a hydrofluoric (HF acid-based solution. The electrochemical process allows for precise control of the properties of PS such as thickness of the porous layer, porosity, and average pore diameter. The control of these properties of PS was shown to depend on the HF concentration in the used electrolyte, the applied current density, and the thickness of PS. The change in pore diameter, porosity, and specific surface area of PS was investigated by measuring nitrogen sorption isotherms.

  10. Assessment of dialyzer surface in online hemodiafiltration; objective choice of dialyzer surface area

    Directory of Open Access Journals (Sweden)

    Francisco Maduell

    2015-05-01

    Conclusion: The increase in 40% and 80% of dialyzer surface area entails an increase in convective volume of 6 and 16% respectively, showing minimal differences both in convective volume and clearance capacity when UFC was greater than 45 mL/h/mmHg. It is advisable to optimise dialyser efficiency to the smallest surface area possible, adjusting treatment prescription.

  11. Specific surface area evaluation method by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Petrescu, Camelia; Petrescu, Cristian; Axinte, Adrian

    2000-01-01

    Ceramics are among the most interesting materials for a large category of applications, including both industry and health. Among the characteristic of the ceramic materials, the specific surface area is often difficult to evaluate.The paper presents a method of evaluation for the specific surface area of two ceramic powders by means of scanning electron microscopy measurements and an original method of computing the specific surface area.Cumulative curves are used to calculate the specific surface area under assumption that the values of particles diameters follow a normal logarithmic distribution. For two powder types, X7R and NPO the results are the following: - for the density ρ (g/cm 2 ), 5.5 and 6.0, respectively; - for the average diameter D bar (μm), 0.51 and 0.53, respectively; - for σ, 1.465 and 1.385, respectively; - for specific surface area (m 2 /g), 1.248 and 1.330, respectively. The obtained results are in good agreement with the values measured by conventional methods. (authors)

  12. Estimation and measurement of porosity change in cement paste

    International Nuclear Information System (INIS)

    Lee, Eunyong; Jung, Haeryong; Kwon, Ki-jung; Kim, Do-Gyeum

    2011-01-01

    Laboratory-scale experiments were performed to understand the porosity change of cement pastes. The cement pastes were prepared using commercially available Type-I ordinary Portland cement (OPC). As the cement pastes were exposed in water, the porosity of the cement pastes sharply increased; however, the slow decrease of porosity was observed as the dissolution period was extended more than 50 days. As expected, the dissolution reaction was significantly influenced by w/c ratio and the ionic strength of solution. A thermodynamic model was applied to simulate the porosity change of the cement pastes. It was highly influenced by the depth of the cement pastes. There was porosity increase on the surface of the cement pastes due to dissolution of hydration products, such as portlandite, ettringite, and CSH. However, the decrease of porosity was estimated inside the cement pastes due to the precipitation of cement minerals. (author)

  13. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  14. Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments

    Science.gov (United States)

    Akbari, A.; Ghoshal, S.

    2016-12-01

    We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could

  15. STEREOLOGICAL ESTIMATION OF SURFACE AREA FROM DIGITAL IMAGES

    Directory of Open Access Journals (Sweden)

    Johanna Ziegel

    2011-05-01

    Full Text Available A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J. Rataj on infinitesimal increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is asymptotically unbiased in the case of sets contained in the ball centred at the origin with radius s and in the case of balls centred at the origin with unknown radius. For general shapes bounds for the asymptotic expected relative worst case error are given. A simulation example is discussed for surface area estimation based on 2×2×2-configurations.

  16. MCO gas composition for low reactive surface areas

    International Nuclear Information System (INIS)

    Packer, M.J.

    1998-01-01

    This calculation adjusts modeled output (HNF-SD-SNF-TI-040, Rev. 2) by considering lower reactive fuel surface areas and by increasing the input helium backfill overpressure from 0.5 to 1.5 atm (2.5 atm abs) to verify that MCO gas-phase oxygen concentrations can remain below 4 mole % over a 40 year interim period under a worst case condition of zero reactive surface area. Added backfill gas will dilute any gases generated during interim storage and is a strategy within the current design capability. The zero reactive surface area represents a hypothetical worst case example where there is no fuel scrap and/or damaged spent fuel rods in an MCO. Also included is a hypothetical case where only K East fuel exists in an MCO with an added backfill overpressure of 0.5 atm (1.5 atm abs)

  17. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  18. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  19. Porosity development in the Copper Ridge Dolomite and Maynardville Limestone, Bear Creek Valley and Chestnut Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goldstrand, P.M.; Menefee, L.S.; Dreier, R.B.

    1995-12-01

    Matrix porosity data from deep core obtained in Bear Creek Valley indicate that porosities in the Maynardville Limestone are lithology and depth dependent. Matrix porosities are greater in the Cooper Ridge Dolomite than in the Maynardville Limestone, yet there is no apparent correlation with depth. Two interrelated diagenetic processes are the major controlling factors on porosity development in the Copper Ridge Dolomite and Maynardville Limestone; dissolution of evaporate minerals and dedolomitization. Both of these diagenetic processes produce matrix porosities between 2.1 and 1.3% in the Copper Ridge Dolomite and upper part of the Maynardville Limestone (Zone 6) to depths of approximately 600 ft bgs. Mean matrix porosities in Zones 5 through 2 of the Maynardville Limestone range from 0.8 to 0.5%. A large number of cavities have been intersected during drilling activities in nearly all zones of the Maynardville Limestone in Bear Creek Valley. Therefore, any maynardville Limestone zone within approximately 200 ft of the ground surface is likely to contain cavities that allow significant and rapid flow of groundwater. Zone 6 could be an important stratigraphic unit in the Maynardville Limestone for groundwater flow and contaminant transport because of the abundance of vuggy and moldic porosities. There are large variations in the thickness and lithology in the lower part of the Maynardville (Zones 2, 3, and 4 in the Burial Grounds region). The direction and velocity of strike-parallel groundwater flow may be altered in this area within the lower Maynardville Limestone

  20. Stereological estimation of surface area from digital images

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Kiderlen, Markus

    2010-01-01

    A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J....... Rataj on infinitesimal increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is asymptotically unbiased in the case of sets contained in the ball centred at the origin with radius s and in the case of balls centred at the origin with unknown radius...

  1. Large area, surface discharge pumped, vacuum ultraviolet light source

    Science.gov (United States)

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  2. Installation and performance evaluation of an indigenous surface area analyser

    International Nuclear Information System (INIS)

    Pillai, S.N.; Solapurkar, M.N.; Venkatesan, V.; Prakash, A.; Khan, K.B.; Kumar, Arun; Prasad, R.S.

    2014-01-01

    An indigenously available surface area analyser was installed inside glove box and checked for its performance by analyzing uranium oxide and thorium oxide powders at RMD. The unit has been made ready for analysis of Plutonium oxide powders after incorporating several important features. (author)

  3. Influence of Ear Surface Area on Heat Tolerance of Composite ...

    African Journals Online (AJOL)

    Relative importance of ear surface area on heat tolerance of composite rabbit population was evaluated. The study was conducted during the dry and rainy seasons, climatic data were recorded to obtain categorical heat stress index. Physiological parameters, growth performance, ear length and ear width of the rabbits ...

  4. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  5. Thermoelectric materials having porosity

    Science.gov (United States)

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  6. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  7. Assessment of dialyzer surface in online hemodiafiltration; objective choice of dialyzer surface area

    OpenAIRE

    Francisco Maduell; Raquel Ojeda; Marta Arias-Guillén; Giannina Bazan; Manel Vera; Néstor Fontseré; Elisabeth Massó; Miquel Gómez; Lida Rodas; Mario Jiménez-Hernández; Gastón Piñeiro; Nayra Rico

    2015-01-01

    Introduction: Online haemodiafiltration (OL-HDF) is most effective technique; several randomised studies and meta-analyses have shown a reduction in mortality, with a directly related association with convective volume. At present, it is not properly established whether the increasing in dialyser surface area may suppose better outcomes in terms of convective and clearance efficacy. The purpose of the study was to assess the effect of increase in dialyser surface area on the convective volume...

  8. Porosity measurements of crystalline rocks by laboratory and geophysical methods

    International Nuclear Information System (INIS)

    Alexander, J.; Hall, D.H.; Storey, B.C.

    1981-12-01

    Porosity values of igneous and metamorphic crystalline rocks have been determined from core samples taken at specific depths from Altnabreac, by a combination of laboratory and geophysical techniques. Using resaturation and mercury injection methods in three laboratories within I.G.S., porosity values have been derived and the effect of variations in the measuring techniques and results obtained have been compared. Comparison of inter-laboratory porosity values illustrates that systematic errors are present, resulting in higher porosity values for samples subjected to re-testing. This is considered to be caused by the variable nature of the initial samples combined with the inability to completely dry or resaturate samples during a second testing. Geophysical techniques for determining in situ porosity using the neutron log have been carried out in borehole ALA. The neutron log has been calibrated with laboratory derived porosity values and an empirical formula derived enabling porosity values to be ascribed throughout the logged borehole ALA. Comparison of the porosity results from Altnabreac with crystalline samples elsewhere in America, Europe and the U.K. suggest that porosities at Altnabreac are lower than average. However, very few publications concerned with water movement in crystalline areas actually state the method used. (author)

  9. Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin

    Science.gov (United States)

    Smosna, R.; Bruner, K.R.; Riley, R.A.

    2005-01-01

    A karst-unconformity play at the top of the Ordovician Beekmantown Dolomite is judged to have great petroleum potential in Ohio and adjacent states; wells have high ultimate reserves and large areas remain untested. To better understand the origin, development, and distribution of Beekmantown porosity, we conducted a petrologic-stratigraphic study of cores and thin sections from 15 oil and gas wells. The massive dolomite, characterized by a hypidiotopic-idiotopic texture, formed by the replacement of stacked peritidal carbonate cycles. Secondary porosity occurs at two scales: (1) mesoscopic - breccia porosity, solution-enlarged fractures, large vugs, and caverns, and (2) microscopic - intercrystalline, intracrystalline, molds, small vugs, and microfractures. Mesoscopic pores (providing the major storage capacity in this reservoir) were produced by intrastratal solution and collapse of carbonate layers, whereas microscopic pores (connecting the larger pores) generally formed by the leaching of individual carbonate grains and crystals. Most pore types developed during periods of subaerial exposure across the carbonate bank, tied to either the numerous, though brief falls of relative sea level during Beekmantown deposition or more importantly the prolonged Knox unconformity at the close of sedimentation. The distribution of reservoir-quality porosity is quite heterogeneous, being confined vertically to a zone immediately below the unconformity and best developed laterally beneath buried hills and noses of this erosion surface. The inferred, shallow flow of ground water in the Beekmantown karst, primarily below topographic highs and above a diagenetic base level close to the water table, led to this irregular distribution of porosity.

  10. Small carpal bone surface area, a characteristic of Turner's syndrome

    International Nuclear Information System (INIS)

    Cleveland, R.H.; Done, S.; Correia, J.A.; Crawford, J.D.; Kushner, D.C.; Herman, T.E.

    1985-01-01

    An abnormality which has received little attention but may be easily recognized on radiographs of the hand of patients with Turner's syndrome is described. Eleven of thirty-one patients (35.5%) with Turner's syndrome were shown on radiographs of the hand to have a visually detectable smallness of the bone surface area of the carpus when compared to the area of the second through fifth metacarpals. Values for the ''C/M'' ratio (the area of the carpals divided by the area of the second through fifth metacarpals) were calculated for films of 31 individuals with gonadal dysgenesis and compared with those from bone age-matched films of seventy-six individuals with normal development of the hand and wrist. A consistent difference with minimal overlap was documented. (orig./WL)

  11. Sintering of uranium oxide of high specific surface area

    International Nuclear Information System (INIS)

    Bel, Alain; Francois, Bernard; Delmas, Roger; Caillat, Roger

    1959-01-01

    The extent to which a uranium oxide powder deriving from ammonium uranate or uranium peroxide lends itself to the sintering process depends largely on its specific surface area. When this is greater than 5 m 2 / g there is an optimum temperature for sintering in hydrogen. This temperature becomes less as the specific area of the powder is greater. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 1045-1047, sitting of 21 September 1959 [fr

  12. Soil plasticity with a different porosity

    Directory of Open Access Journals (Sweden)

    Klovanych Sergii

    2017-01-01

    Full Text Available The model of soils with different porosity in the framework of the associated theory of plasticity is presented The single analytical function describes the loading surface in the stress space. The deformational hardening/softening and the phenomenon of dilatancy during plastic flow are incorporated in the model. The triaxial compression tests are simulated and compared with the experimental results for different values of the void ratio and initial hydrostatic stresses.

  13. Spectral theory of infinite-area hyperbolic surfaces

    CERN Document Server

    Borthwick, David

    2016-01-01

    This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...

  14. Reliable nanomaterial classification of powders using the volume-specific surface area method

    Energy Technology Data Exchange (ETDEWEB)

    Wohlleben, Wendel, E-mail: wendel.wohlleben@basf.com [Department of Material Physics, BASF SE (Germany); Mielke, Johannes [BAM–Federal Institute for Materials Research and Testing (Germany); Bianchin, Alvise [MBN Nanomaterialia s.p.a (Italy); Ghanem, Antoine [R& I Centre Brussels, Solvay (Belgium); Freiberger, Harald [Department of Material Physics, BASF SE (Germany); Rauscher, Hubert [European Commission, Nanobiosciences Unit, Joint Research Centre (Italy); Gemeinert, Marion; Hodoroaba, Vasile-Dan, E-mail: dan.hodoroaba@bam.de [BAM–Federal Institute for Materials Research and Testing (Germany)

    2017-02-15

    The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of “nanomaterial” for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition.

  15. Reliable nanomaterial classification of powders using the volume-specific surface area method

    International Nuclear Information System (INIS)

    Wohlleben, Wendel; Mielke, Johannes; Bianchin, Alvise; Ghanem, Antoine; Freiberger, Harald; Rauscher, Hubert; Gemeinert, Marion; Hodoroaba, Vasile-Dan

    2017-01-01

    The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of “nanomaterial” for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition.

  16. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  17. Hand surface area estimation formula using 3D anthropometry.

    Science.gov (United States)

    Hsu, Yao-Wen; Yu, Chi-Yuang

    2010-11-01

    Hand surface area is an important reference in occupational hygiene and many other applications. This study derives a formula for the palm surface area (PSA) and hand surface area (HSA) based on three-dimensional (3D) scan data. Two-hundred and seventy subjects, 135 males and 135 females, were recruited for this study. The hand was measured using a high-resolution 3D hand scanner. Precision and accuracy of the scanner is within 0.67%. Both the PSA and HSA were computed using the triangular mesh summation method. A comparison between this study and previous textbook values (such as in the U.K. teaching text and Lund and Browder chart discussed in the article) was performed first to show that previous textbooks overestimated the PSA by 12.0% and HSA by 8.7% (for the male, PSA 8.5% and HSA 4.7%, and for the female, PSA 16.2% and HSA 13.4%). Six 1D measurements were then extracted semiautomatically for use as candidate estimators for the PSA and HSA estimation formula. Stepwise regressions on these six 1D measurements and variable dependency test were performed. Results show that a pair of measurements (hand length and hand breadth) were able to account for 96% of the HSA variance and up to 98% of the PSA variance. A test of the gender-specific formula indicated that gender is not a significant factor in either the PSA or HSA estimation.

  18. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  19. Solvent accessible surface area (ASA) of simulated phospholipid membranes

    DEFF Research Database (Denmark)

    Tuchsen, E.; Jensen, Morten Østergaard; Westh, P.

    2003-01-01

    The membrane-solvent interface has been investigated through calculations of the solvent accessible surface area (ASA) for simulated membranes of DPPC and POPE. For DPPC at 52 degreesC we found an ASA of 126 +/- 8 Angstrom(2) per lipid molecule, equivalent to twice the projected lateral area......, even the most exposed parts of the PC head-group show average ASAs of less than half of its maximal or 'fully hydrated' value. The average ASA of a simulated POPE membrane was 96 +/- 7 Angstrom(2) per lipid. The smaller value than for DPPC reflects much lower ASA of the ammonium ion, which is partially...... compensated by increased exposure of the ethylene and phosphate moieties. The ASA of the polar moieties Of (PO4, NH3 and COO) constitutes 65% of the total accessible area for POPE, making this interface more polar than that of DPPC. It is suggested that ASA information can be valuable in attempts...

  20. Zeolites with continuously tuneable porosity

    OpenAIRE

    Wheatley, Paul S; Chlubná-Eliášová, Pavla; Greer, Heather; Zhou, Wuzong; Seymour, Valerie R; Dawson, Daniel M; Ashbrook, Sharon E; Pinar, Ana B; McCusker, Lynne B; Opanasenko, Maksym; Cejka, Jiří; Morris, Russell E

    2014-01-01

    Czech Science Foundation. Grant Number: P106/12/G015 Zeolites are important materials whose utility in industry depends on the nature of their porous structure. Control over microporosity is therefore a vitally important target. Unfortunately, traditional methods for controlling porosity, in particular the use of organic structure-directing agents, are relatively coarse and provide almost no opportunity to tune the porosity as required. Here we show how zeolites with a continuously tuneabl...

  1. Total surface area change of Uranium dioxide fuel in function of burn-up and its impact on fission gas release during neutron irradiation for small, intermediate and high burn-up

    International Nuclear Information System (INIS)

    Szuta, M.

    2011-01-01

    In the early published papers it was observed that the fractional fission gas release from the specimen have a tendency to increase with the total surface area of the specimen - a fairy linear relationship was indicated. Moreover it was observed that the increase of total surface area during irradiation occurs in the result of connection the closed porosity with the open porosity what in turn causes the increase of fission gas release. These observations let us surmise that the process of knock-out release is the most significant process of fission gas release since its quantity is proportional to the total surface area. Review of the experiments related to the increase of total surface area in function of burn-up is presented in the paper. For very high burn-up the process of grain sub-division (polygonization) occurs under condition that the temperature of irradiated fuel lies below the temperature of grain re-crystallization. Simultaneously with the process of polygonization, the increase in local porosity and the decrease in local density in function of burn-up occurs, which leads to the increase of total surface area. It is suggested that the same processes take place in the transformed fuel as in the original fuel, with the difference that the total surface area is so big that the whole fuel can be treated as that affected by the knock-out process. This leads to explanation of the experimental data that for very high burn-up (>120 MWd/kgU) the concentration of xenon is constant. An explanation of the grain subdivision process in function of burn-up in the 'athermal' rim region in terms of total surface area, initial grain size and knock-out release is undertaken. Correlation of the threshold burn-up, the local fission gas concentration, local total surface area, initial and local grain size and burn-up in the rim region is expected. (author)

  2. Molecularly-Limited Fractal Surface Area of Mineral Powders

    Directory of Open Access Journals (Sweden)

    Petr Jandacka

    2016-05-01

    Full Text Available The topic of the specific surface area (SSA of powders is not sufficiently described in the literature in spite of its nontrivial contribution to adsorption and dissolution processes. Fractal geometry provides a way to determine this parameter via relation SSA ~ x(D − 3s(2 − D, where x (m is the particle size and s (m is a scale. Such a relation respects nano-, micro-, or macro-topography on the surface. Within this theory, the fractal dimension 2 ≤ D < 3 and scale parameter s plays a significant role. The parameter D may be determined from BET or dissolution measurements on several samples, changing the powder particle sizes or sizes of adsorbate molecules. If the fractality of the surface is high, the SSA does not depend on the particle size distribution and vice versa. In this paper, the SSA parameter is analyzed from the point of view of adsorption and dissolution processes. In the case of adsorption, a new equation for the SSA, depending on the term (2 − D∙(s2 − sBET/sBET, is derived, where sBET and s2 are effective cross-sectional diameters for BET and new adsorbates. Determination of the SSA for the dissolution process appears to be very complicated, since the fractality of the surface may change in the process. Nevertheless, the presented equations have good application potential.

  3. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Anupama; Negi, Poonam; Garkhal, Kalpna; Verma, Shalini; Kumar, Neeraj, E-mail: neeraj@niper.ac.i [Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar-160 062, Punjab (India)

    2010-08-01

    In this study, porous poly(lactide-co-glycolide) (PLGA) (50/50) microspheres have been fabricated by the gas-foaming technique using ammonium bicarbonate as a gas-foaming agent. Microspheres of different porosities have been formulated by varying the concentration of the gas-foaming agent (0%, 5%, 10% and 15% w/v). These microspheres were characterized for particle size, porosity and average pore size, morphology, water uptake ratio and surface area and it was found that the porosity, pore size and surface area increased on increasing the concentration of the gas-foaming agent. Further, the effect of porosity on degradation behavior was evaluated over a 12 week period by measuring changes in mass, pH, molecular weight and morphology. Porosity was found to have an inverse relationship with degradation rate. To render the surface of the microspheres biomimetic, peptide P-15 was coupled to the surface of these microspheres. In vitro cell viability, proliferation and morphological evaluation were carried out on these microsphere scaffolds using MG-63 cell line to study the effect of the porosity and pore size of scaffolds and to evaluate the effect of P-15 on cell growth on porous scaffolds. MTT assay, actin, alizarin staining and SEM revealed the potential of biomimetic porous PLGA (50/50) microspheres as scaffolds for tissue engineering. As shown in graphical representation, an attempt has been made to correlate the cell behavior on the scaffolds (growth, proliferation and cell death) with the concurrent degradation of the porous microsphere scaffold as a function of time.

  4. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation

    International Nuclear Information System (INIS)

    Mittal, Anupama; Negi, Poonam; Garkhal, Kalpna; Verma, Shalini; Kumar, Neeraj

    2010-01-01

    In this study, porous poly(lactide-co-glycolide) (PLGA) (50/50) microspheres have been fabricated by the gas-foaming technique using ammonium bicarbonate as a gas-foaming agent. Microspheres of different porosities have been formulated by varying the concentration of the gas-foaming agent (0%, 5%, 10% and 15% w/v). These microspheres were characterized for particle size, porosity and average pore size, morphology, water uptake ratio and surface area and it was found that the porosity, pore size and surface area increased on increasing the concentration of the gas-foaming agent. Further, the effect of porosity on degradation behavior was evaluated over a 12 week period by measuring changes in mass, pH, molecular weight and morphology. Porosity was found to have an inverse relationship with degradation rate. To render the surface of the microspheres biomimetic, peptide P-15 was coupled to the surface of these microspheres. In vitro cell viability, proliferation and morphological evaluation were carried out on these microsphere scaffolds using MG-63 cell line to study the effect of the porosity and pore size of scaffolds and to evaluate the effect of P-15 on cell growth on porous scaffolds. MTT assay, actin, alizarin staining and SEM revealed the potential of biomimetic porous PLGA (50/50) microspheres as scaffolds for tissue engineering. As shown in graphical representation, an attempt has been made to correlate the cell behavior on the scaffolds (growth, proliferation and cell death) with the concurrent degradation of the porous microsphere scaffold as a function of time.

  5. Body surface area prediction in normal, hypermuscular, and obese mice.

    Science.gov (United States)

    Cheung, Michael C; Spalding, Paul B; Gutierrez, Juan C; Balkan, Wayne; Namias, Nicholas; Koniaris, Leonidas G; Zimmers, Teresa A

    2009-05-15

    Accurate determination of body surface area (BSA) in experimental animals is essential for modeling effects of burn injury or drug metabolism. Two-dimensional surface area is related to three-dimensional body volume, which in turn can be estimated from body mass. The Meeh equation relates body surface area to the two-thirds power of body mass, through a constant, k, which must be determined empirically by species and size. We found older values of k overestimated BSA in certain mice; thus we determined empirically k for various strains of normal, obese, and hypermuscular mice. BSA was computed from digitally scanned pelts and nonlinear regression analysis was used to determine the best-fit k. The empirically determined k for C57BL/6J mice of 9.82 was not significantly different from other inbred and outbred mouse strains of normal body composition. However, mean k of the nearly spheroid, obese lepr(db/db) mice (k = 8.29) was significantly lower than for normals, as were values for dumbbell-shaped, hypermuscular mice with either targeted deletion of the myostatin gene (Mstn) (k = 8.48) or with skeletal muscle specific expression of a dominant negative myostatin receptor (Acvr2b) (k = 8.80). Hypermuscular and obese mice differ substantially from normals in shape and density, resulting in considerably altered k values. This suggests Meeh constants should be determined empirically for animals of altered body composition. Use of these new, improved Meeh constants will allow greater accuracy in experimental models of burn injury and pharmacokinetics.

  6. Indexing Glomerular Filtration Rate to Body Surface Area

    DEFF Research Database (Denmark)

    Redal-Baigorri, Belén; Rasmussen, Knud; Heaf, James Goya

    2014-01-01

    BACKGROUND: Kidney function is mostly expressed in terms of glomerular filtration rate (GFR). A common feature is the expression as ml/min per 1.73 m(2) , which represents the adjustment of the individual kidney function to a standard body surface area (BSA) to allow comparison between individuals....... We investigated the impact of indexing GFR to BSA in cancer patients, as this BSA indexation might affect the reported individual kidney function. METHODS: Cross-sectional study of 895 adults who had their kidney function measured with (51) chrome ethylene diamine tetraacetic acid. Mean values of BSA...

  7. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  8. EFFECT OF RATIO OF SURFACE AREA ON THE CORROSION RATE

    OpenAIRE

    Dody Prayitno; M. Irsyad

    2018-01-01

    Aluminum and steel are used to be a construction for a building outdoor panel. Aluminum and steel are connected by bolt and nut. An atmosphere due to a corrosion of the aluminum. The corrosion possibly to cause the hole diameter of bolt and nut to become larger. Thus the bolt and nut can not enough strong to hold the panel. The panel may collapse. The aim of the research is first to answer a question where does the corrosion starts. The second is to know the effect of ratio surface area of st...

  9. Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones.

    Science.gov (United States)

    Skedros, John G; Knight, Alex N; Clark, Gunnar C; Crowder, Christian M; Dominguez, Victoria M; Qiu, Shijing; Mulhern, Dawn M; Donahue, Seth W; Busse, Björn; Hulsey, Brannon I; Zedda, Marco; Sorenson, Scott M

    2013-06-01

    Studies of secondary osteons in ribs have provided a great deal of what is known about remodeling dynamics. Compared with limb bones, ribs are metabolically more active and sensitive to hormonal changes, and receive frequent low-strain loading. Optimization for calcium exchange in rib osteons might be achieved without incurring a significant reduction in safety factor by disproportionally increasing central canal size with increased osteon size (positive allometry). By contrast, greater mechanical loads on limb bones might favor reducing deleterious consequences of intracortical porosity by decreasing osteon canal size with increased osteon size (negative allometry). Evidence of this metabolic/mechanical dichotomy between ribs and limb bones was sought by examining relationships between Haversian canal surface area (BS, osteon Haversian canal perimeter, HC.Pm) and bone volume (BV, osteonal wall area, B.Ar) in a broad size range of mature (quiescent) osteons from adult human limb bones and ribs (modern and medieval) and various adult and subadult non-human limb bones and ribs. Reduced major axis (RMA) and least-squares (LS) regressions of HC.Pm/B.Ar data show that rib and limb osteons cannot be distinguished by dimensional allometry of these parameters. Although four of the five rib groups showed positive allometry in terms of the RMA slopes, nearly 50% of the adult limb bone groups also showed positive allometry when negative allometry was expected. Consequently, our results fail to provide clear evidence that BS/BV scaling reflects a rib versus limb bone dichotomy whereby calcium exchange might be preferentially enhanced in rib osteons. Copyright © 2013 Wiley Periodicals, Inc.

  10. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    Science.gov (United States)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  11. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    Directory of Open Access Journals (Sweden)

    Stephen Gray

    2010-12-01

    Full Text Available Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT Bucky-Paper (BP composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90% and specific surface area (>400 m2/g. Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

  12. Investigation of the porosity of rocks

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Siitari-Kauppi, M.

    1990-06-01

    Methods for characterizing the nature of rock porosity in conjunction with diffusion experiments, are amongst the primary tools used in repository-site selection investigations. At this time no experimental method, alone, is capable of giving an unambiguous picture of the narrow-aperture pore space in crystalline rock. Methods giving information on overall properties must be complemented by those having high spatial resolution; then the lateral distribution of porosity within the matrix and its association with particular mineral phases or features, such as microfissures, fissure fillings, weathered or altered mineral phases etc, and the identification of diffusion pathways in inhomogeneous rock matrices can be determined. Nonsorbing, nonelectrolytic tracers should be used when one wants to determine rock-typical properties of the internal porosity without interference of interactions with surfaces. Preliminary information on a new method fulfilling these criteria is given. Impregnating rock samples with methylmethacrylate labeled with carbon-14 which, after impregnation, was polymerized by gamma radiation, gave specimens that made preparation of sections suitable for quantification by autoradiographic methods easy. Diffusion experiments can be conducted so that labeled MMA diffuses out of rock specimens into inactive free, MMA. Additional information may be gained by leaching PMMA fractions of lower molecular weight from the matrix

  13. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  14. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Science.gov (United States)

    2010-07-01

    ... alluvial valley floor exists if it finds that— (i) Unconsolidated streamlaid deposits holding streams are... on areas or adjacent to areas including alluvial valley floors in the arid and semiarid areas west of....19 Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

  15. Electromagnetic surface waves for large-area RF plasma productions between large-area planar electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1992-01-01

    Recently, large-area plasma production has been tested by means of a 13.56 MHz radio-frequency (RF) discharge between a pair of large-area planar electrodes, approximately 0.5 m x 1.4 m, as one of the semiconductor technologies for fabrication of large-area amorphous silicon solar cells in the ''Sunshine Project'' of the Agency of Industrial Science and Technology in Japan. We also confirmed long plasma production between a pair of long electrodes. In this paper, normal electromagnetic (EM) waves propagating in a region between a planar waveguide with one plasma and two dielectric layers are analyzed in order to study the feasibility of large-area plasma productions by EM wave-discharges between a pair of large-area RF electrodes larger than the half-wavelength of RF wave. In conclusion, plasmas higher than an electron plasma frequency will be produced by an odd TMoo surface mode. (author) 4 refs., 3 figs

  16. Human cortical areas involved in perception of surface glossiness.

    Science.gov (United States)

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2014-09-01

    Glossiness is the visual appearance of an object's surface as defined by its surface reflectance properties. Despite its ecological importance, little is known about the neural substrates underlying its perception. In this study, we performed the first human neuroimaging experiments that directly investigated where the processing of glossiness resides in the visual cortex. First, we investigated the cortical regions that were more activated by observing high glossiness compared with low glossiness, where the effects of simple luminance and luminance contrast were dissociated by controlling the illumination conditions (Experiment 1). As cortical regions that may be related to the processing of glossiness, V2, V3, hV4, VO-1, VO-2, collateral sulcus (CoS), LO-1, and V3A/B were identified, which also showed significant correlation with the perceived level of glossiness. This result is consistent with the recent monkey studies that identified selective neural response to glossiness in the ventral visual pathway, except for V3A/B in the dorsal visual pathway, whose involvement in the processing of glossiness could be specific to the human visual system. Second, we investigated the cortical regions that were modulated by selective attention to glossiness (Experiment 2). The visual areas that showed higher activation to attention to glossiness than that to either form or orientation were identified as right hV4, right VO-2, and right V3A/B, which were commonly identified in Experiment 1. The results indicate that these commonly identified visual areas in the human visual cortex may play important roles in glossiness perception. Copyright © 2014. Published by Elsevier Inc.

  17. Assessment of Surface Area Characteristics of Dental Implants with Gradual Bioactive Surface Treatment

    Science.gov (United States)

    Czan, Andrej; Babík, Ondrej; Miklos, Matej; Záušková, Lucia; Mezencevová, Viktória

    2017-10-01

    Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on successful osseointegration. Among other characteristics that predetermine titanium of different grades of pureness as ideal biomaterial, titanium shows high mechanical strength making precise miniature machining increasingly difficult. Current titanium-based implants are often anodized due to colour coding. This anodized layer has important functional properties for right usage and also bio-compatibility of dental implants. Physical method of anodizing and usage of anodizing mediums has a significant influence on the surface quality and itself functionality. However, basic requirement of the dental implant with satisfactory properties is quality of machined surface before anodizing. Roughness, for example, is factor affecting of time length of anodizing operation and so whole productivity. The paper is focused on monitoring of surface and area characteristics, such as roughness or surface integrity after different cutting conditions of miniature machining of dental implants and their impact on suitability for creation of satisfactory anodized layer with the correct biocompatible functional properties.

  18. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow

    Science.gov (United States)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.

    2017-12-01

    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  19. Estimating the surface area of birds: using the homing pigeon (Columba livia as a model

    Directory of Open Access Journals (Sweden)

    Cristina R. Perez

    2014-05-01

    Full Text Available Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird.

  20. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  1. NEW CONCEPTS AND TEST METHODS OF CURVE PROFILE AREA DENSITY IN SURFACE: ESTIMATION OF AREAL DENSITY ON CURVED SPATIAL SURFACE

    OpenAIRE

    Hong Shen

    2011-01-01

    The concepts of curve profile, curve intercept, curve intercept density, curve profile area density, intersection density in containing intersection (or intersection density relied on intersection reference), curve profile intersection density in surface (or curve intercept intersection density relied on intersection of containing curve), and curve profile area density in surface (AS) were defined. AS expressed the amount of curve profile area of Y phase in the unit containing surface area, S...

  2. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  3. Dynamic characterisation of the specific surface area for fracture networks

    Science.gov (United States)

    Cvetkovic, V.

    2017-12-01

    One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide

  4. Development of model hydroxyapatite bone scaffolds with multiscale porosity for potential load bearing applications

    Science.gov (United States)

    Dellinger, Jennifer Gwynne

    2005-11-01

    Model hydroxyapatite (HA) bone scaffolds consisting of a latticed pattern of rods were fabricated by a solid freeform fabrication (SFF) technique based on the robotic deposition of colloidal pastes. An optimal HA paste formulation for this method was developed. Local porosity, i.e. microporosity (1--30 mum) and sintering porosity (less than 1 mum), were produced by including polymer microsphere porogens in the HA pastes and by controlling the sintering of the scaffolds. Scaffolds with and without local porosity were evaluated with and without in vitro accelerated degradation. Percent weight loss of the scaffolds and calcium and phosphorus concentrations in solution increased with degradation time. After degradation, compressive strength and modulus decreased significantly for scaffolds with local porosity, but did not change significantly for scaffolds without local porosity. The compressive strength and modulus of scaffolds without local porosity were comparable to human cortical bone and were significantly greater than the scaffolds with local porosity. Micropores in HA disks caused surface pits that increased the surface roughness as compared to non-microporous HA disks. Mouse mesenchymal stem cells extended their cell processes into these microporous pits on HA disks in vitro. ALP expression was prolonged, cell attachment strength increased, and ECM production appeared greater on microporous HA disks compared to non-microporous HA disks and tissue culture treated polystyrene controls. Scaffolds with and without microporosity were implanted in goats bones. Microporous scaffolds with rhBMP-2 increased the percent of the scaffold filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone inside scaffolds was aligned near the rods junctions whereas lamellar bone was aligned in a more random configuration away from the rod junctions. Microporous scaffolds stained darkly with toluidine blue beneath areas of contact with new bone. This

  5. The winds regime of surface in the Colombian coffee area

    International Nuclear Information System (INIS)

    Orlando Guzman Martinez; Lucia Gomez Gomez

    1994-01-01

    The characteristics of the address and gust of wind of the surface winds have been studied in 15 stations of the Colombian coffee area. It was found that the relief plays an important paper in the wind circulation so that during the day (7 a.m. - 7 p.m.) these they blow of the low sector toward the mountain and at night (7 p.m. - 7 a.m.) this situation is invested, that which is consistent with the characteristic pattern of circulation valley-mountain of the mountainous regions. For this fact, in most of the analyzed places a single day and night dominant address that it takes the orientation in that it is the respective hydrographic basin. It was not observed that the Alisios winds of the northeast and southeast modify the address settled down by the local circulation (valley-mountain) on the other hand a remarkable increase of the gust of wind was appreciated in July and August in the Florida and Ospina, stations located to the south of the country, as direct consequence of the Alisios of the southeast. The daily gust of wind in most of the studied places is low and it doesn't exceed of the 10 km/h, reason why it can consider that the Colombian coffee area is free of important damages for the action of the wind. Nevertheless, in some stations as Alban, Maracay and Paraguaicito the daily maximum gust of wind can surpass the 30 km/h and in occasions to cause damage mechanic to cultivations of high behavior and not well anchored facilities

  6. Carbonate porosity: some remarks; Porosidade em reservatorios carbonaticos: algumas consideracoes

    Energy Technology Data Exchange (ETDEWEB)

    Spadini, Adali Ricardo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao]. E-mail: spadini@petrobras.com.br; Marcal, Rosely de Araujo [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-05-01

    Carbonate rocks are the major reservoirs of the largest super-giants fields in the world, including the Ghawar Field in Saudi Arabia, where the producing oil reservoir is the late Jurassic Arab-D limestone with five million barrels per day. Despite the great susceptibility to early diagenesis, that can dramatically modify the porous media, porosity values of carbonates remain essentially the same as that of deposition before burial. Porosity loss is essentially a subsurface process with a drastic reduction below 2500 m of burial depth. The occurrence of good reservoirs deeply buried, sometimes below 4,000 m, indicate that porosity can be preserved in subsurface in response to a series of mechanisms such as early oil emplacement, framework rigidity, abnormal pore pressure, among others. Percolation of geothermal fluids is a process considered to be responsible for generation of porosity in subsurface resulting in some good reservoir rocks. In Campos Basin, areas with burial around 2000 m, petrophysical data show a cyclic distribution that coincides with the shoaling upward cycles typical of the Albian carbonates. The greatest permeabilities coincide with the grain stones of the top of the cycles while the peloidal/oncolite wackestones/pack stones at the base show low values, reflecting the depositional texture. These relationships indicate that preservation of depositional porosity was very effective. The preservation of high porosity values for all the facies are related to early oil entrance in the reservoirs. In some cases, the presence of porosities of almost 30% in fine-grained peloidal carbonates, 3000 m of burial, without any clear effective preservation mechanism, suggest that corrosive subsurface brines have played an important role in porosity evolution. In Santos Basin, where reservoirs are deeply buried, only the grain stones have preserved porosity. The associated low energy facies has virtually no porosity. In this case, the depositional texture

  7. Extent of Stream Burial and Relationships to Watershed Area, Topography, and Impervious Surface Area

    Directory of Open Access Journals (Sweden)

    Roy E. Weitzell

    2016-11-01

    Full Text Available Stream burial—the routing of streams through culverts, pipes, and concrete lined channels, or simply paving them over—is common during urbanization, and disproportionately affects small, headwater streams. Burial undermines the physical and chemical processes governing life in streams, with consequences for water quality and quantity that may amplify from headwaters to downstream receiving waters. Knowledge of the extent of stream burial is critical for understanding cumulative impacts to stream networks, and for future decision-making allowing for urban development while protecting ecosystem function. We predicted stream burial across the urbanizing Potomac River Basin (USA for each 10-m stream segment in the basin from medium-resolution impervious cover data and training observations obtained from high-resolution aerial photography in a GIS. Results were analyzed across a range in spatial aggregation, including counties and independent cities, small watersheds, and regular spatial grids. Stream burial was generally correlated with total impervious surface area (ISA, with areas exhibiting ISA above 30% often subject to elevated ratios of stream burial. Recurring patterns in burial predictions related to catchment area and topographic slope were also detected. We discuss these results in the context of physiographic constraints on stream location and urban development, including implications for environmental management of aquatic resources.

  8. Discrepancy between body surface area and body composition in cancer.

    Science.gov (United States)

    Stobäus, Nicole; Küpferling, Susanne; Lorenz, Marie-Luise; Norman, Kristina

    2013-01-01

    Calculation of cytostatic dose is typically based on body surface area (BSA) regardless of body composition. The aim of this study was to assess the discrepancy between BSA and low fat-free mass (FFM) by investigating the prevalence of low FFM with regard to BSA in 630 cancer patients. First, BSA was calculated according to DuBois and DuBois. Patients were divided into 6 categories with respect to their BSA. Each BSA category was further divided into 3 groups according to FFM: low (FFM), normal (-0.99 and 0.99 SD of mean FFM) or high (>1 SD of mean FFM), which was derived through bioelectric impedance analysis. FFM was reduced in 15.7% of patients, 69% had normal and 15.2% had high FFM. In patients with low FFM (i.e., more than-1 SD lower than the mean FFM within their BSA group), body mass index and fatigue were higher whereas functional status was reduced. Moreover, in the subcohort of patients receiving chemotherapy, absolute FFM [Hazard ratio (HR) = 0.970, P = 0.026] as well as the allocation to the low FFM group (HR = 1.644, P = 0.025) emerged as predictors of increased 1-yr mortality. In conclusion, there was a large discrepancy between FFM and BSA. Particularly women were affected by low FFM.

  9. Modeling surface area to volume effects on borosilicate glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Ebert, W.L.; Feng, X.

    1992-11-01

    We simulated the reaction of SRL-131 glass with equilibrated J-13 water in order to investigate the effects of surface area to volume ratio (SA/V) on glass dissolution. We show that glass-fluid ion exchange causes solution pH to rise to progressively higher values as SA/V increases. Because the ion exchange is rapid relative to the duration of the glass dissolution experiment, the pH effect does not scale with (SA/V)*time. Experiments compared at the same (SA/V)*time value therefore have different pHs, with higher pHs at higher SA/V ratios. Both experimental data and our simulation results show similar trends of increasing reaction rate as a function of SA/V ratio when scaled to (SA/V)*time. Glasses which react in systems of differing SA/V ratio therefore follow different reaction paths and high SA/V ratios cannot be used to generate data which accurately scales to long time periods unless the ion exchange effect is taken into account. We suggest some simple test designs which enable more reliable high. SA/V accelerated tests

  10. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    Science.gov (United States)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  11. Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers

    Directory of Open Access Journals (Sweden)

    Fernanda Carmen Fuoco

    2017-01-01

    Full Text Available Cigarette smoke is the main cause of lung cancer events. Mainstream cigarette smoke (MSS is a direct concern for smokers, but also the secondhand smoke (SHS contributes to the smoker exposure. In addition, smoker exposure is affected by the “free-smoke” particle exposure (B, related to the micro-environments where smokers spend time. The aim of this paper is to evaluate the daily alveolar and tracheobronchial deposited fractions of airborne particles for smokers as the sum of these three contributions: MSS, SHS, and B. Measurements of particle surface area distributions in the MSS were performed through a Scanning Mobility Particle Sizer, an Aerodynamic Particle Sizer, and a Thermo-dilution system on five types of conventional cigarettes. A Monte Carlo method was then applied to evaluate the most probable value of dose received during the inhalation of MSS by smokers. Measurements of particle concentrations in SHS and at the “free-smoke” particle background (B were performed through 24-h monitoring at a personal scale of adult smoker through hand-held devices. This paper found that the total daily deposited dose for typical smokers was 1.03 × 105 mm2·day−1. The main contribution of such a huge daily dose was addressable to the MSS (98% while SHS contributed 1.1%, increasing up to 2% for people smoking only while traveling in a car.

  12. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    Science.gov (United States)

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented.

  13. Relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.K.Y.; Deverell, K.F.; Mackie, K.L.; Clark, T.A.; Donaldson, L.A.

    1988-04-05

    The use of lignocellulosic materials in bioconversion processes may be improved if the critical factors limiting conversion are better understood. Steam explosion after sulfur dioxide impregnation of wood chips is an effective method for improving the enzymatic digestibility of cellulose in the softwood Pinus radiata. Digestibility of pretreated fiber was progressively increased by altering the conditions of steam explosion. With increasing digestibility, there was an observed increase in fiber porosity as measured by the solute exclusion technique. Accessible pore volume and accessible surface area to a 5-nm dextran probe positively correlated with both 2- and 24-h digestion yields from pretreated fiber. The increase in accessibility was probably the result of hemicellulose extraction and lignin redistribution. A subsequent loss in accessibility, brought about by structural collapse or further lignin redistribution, resulted in a corresponding loss in digestibility. It appears that steam explosion increases cellulose digestibility in P. radiata by increasing fiber porosity.

  14. Competitive effect of KOH activation on the electrochemical performances of carbon nanotubes for EDLC: Balance between porosity and conductivity

    International Nuclear Information System (INIS)

    Xu Bin; Wu Feng; Su Yuefeng; Cao Gaoping; Chen Shi; Zhou Zhiming; Yang Yusheng

    2008-01-01

    This work is focused on the competitive effects on the performance of the electric double layer capacitors (EDLCs) between porosity increase and simultaneous conductivity decrease for KOH-activated carbon nanotubes (CNTs). A series of the CNTs have been activated with KOH to enhance their surface areas for application in EDLCs. The microstructure of the activated carbon nanotubes (ACNTs) is characterized with N 2 adsorption, transmission electron microscopy (TEM) observation and electric conductivity measurement. Their electrochemical performances are evaluated in aqueous KOH electrolyte with galvanostatic charge/discharge, cyclic voltammetry, and ac impedance spectroscopy. It is found that the KOH activation enhances the specific surface area of the CNTs and its specific capacitance but decreases its electric conductivity and the rate performance in EDLC. By controlling the activation of the CNTs to balance the porosity and conductivity, ACNTs with both high capacitance and good rate performance are obtained

  15. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yosep; Choi, Junhyun [Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561–756 (Korea, Republic of); Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Kim, Hyunjung, E-mail: kshjkim@jbnu.ac.kr [Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 561–756 (Korea, Republic of)

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despite the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.

  16. The efficiency of windbreaks on the basis of wind field and optical porosity measurement

    Directory of Open Access Journals (Sweden)

    Tomáš Středa

    2008-01-01

    Full Text Available Windbreaks have been used for many years to reduce wind speed as a wind-erosion control mea­su­re. To assessment of windbreak efficiency two main parameters are using: height of windbreak (H and aerodynamic porosity. In South Moravian Region the total area of windbreaks is approximately 1200 ha. For purposes of horizontal profile measurement of wind speed and wind direction windbreaks with various spices composition, age and construction in cadastral territory Suchá Loz and Micmanice were chosen. Windbreak influence on horizontal wind profile was found out in distance of 50, 100, 150 and 200 m in front and behind windbreak in two-meter height above surface. For the optical porosity measurement the ImageTool program was used. The wind field measurement results of windbreak in Suchá Loz cadastral shows limited effect of windbreak on wind speed. The windbreak is created mainly by Canadian poplars (Populus × canadensis. In dependence on main species foliage stage the effect of windbreak was obvious on leeward side to distance of 100–150 m (c. 5–7 H. Average optical porosity of windbreak in Suchá Loz was 50% (April. Reduction of average wind speed was about 17% maximally in this stage. Optical porosity was 20% and wind speed reduction was about 37% during second measurement (October. The second monitored windbreak (Micmanice had a significant influence on wind speed even to the maximal measured distance (200 m, c. 14 H. This windbreak crea­ted mainly by Acer sp. and Fraxinus excelsior reduced the wind speed about 64%. During first measurement (May the optical porosity of 20% and maximal wind speed reduction of 64% were assessed. For optical porosity of 21% (October the wind speed reduction was about 55%. Close relation between optical porosity and wind speed reduction was found out by statistical evaluation. Correlation coefficient regardless locality for distance of 50 m was −0.80, 100 m −0.92, 150 m −0.76 and for distance of 200 m

  17. Estimation of Specific Surface Area using Langmuir Isotherm ...

    African Journals Online (AJOL)

    Michael Horsfall

    Y= KCe/(1+KCe) (1) where Y is the fraction of fish carbon surface covered ..... transmigration of adsorbate in the plane surface. (Hameed et al., 2006). ... and to the Technologists of Agric Soil Science. Laboratory of ... Biosorption of Heavy Metals by Activated. Sludge and their Desorption Characteristics. J. Environ Mgt. 84: ...

  18. Cold spray NDE for porosity and other process anomalies

    Science.gov (United States)

    Glass, S. W.; Larche, M. R.; Prowant, M. S.; Suter, J. D.; Lareau, J. P.; Jiang, X.; Ross, K. A.

    2018-04-01

    This paper describes a technology review of nondestructive evaluation (NDE) methods that can be applied to cold spray coatings. Cold spray is a process for depositing metal powder at high velocity so that it bonds to the substrate metal without significant heating that would be likely to cause additional residual tensile stresses. Coatings in the range from millimeters to centimeters are possible at relatively high deposition rates. Cold spray coatings that may be used for hydroelectric components that are subject to erosion, corrosion, wear, and cavitation damage are of interest. The topic of cold spray NDE is treated generally, however, but may be considered applicable to virtually any cold spray application except where there are constraints of the hydroelectric component application that bear special consideration. Optical profilometry, eddy current, ultrasound, and hardness tests are shown for one set of good, fair, and poor nickel-chrome (NiCr) on 304 stainless steel (304SS) cold spray samples to demonstrate inspection possibilities. The primary indicator of cold spray quality is the cold spray porosity that is most directly measured with witness-sample destructive examinations (DE)—mostly photo-micrographs. These DE-generated porosity values are correlated with optical profilometry, eddy current, ultrasound, and hardness test NDE methods to infer the porosity and other information of interest. These parameters of interest primarily include: • Porosity primarily caused by improper process conditions (temperature, gas velocity, spray standoff, spray angle, powder size, condition, surface cleanliness, surface oxide, etc.) • Presence/absence of the cold spray coating including possible over-sprayed voids • Coating thicknessOptical profilometry measurements of surface roughness trended with porosity plus, if compared with a reference measurement or reference drawing, would provide information on the coating thickness. Ultrasound could provide similar

  19. Benchmark neutron porosity log calculations

    International Nuclear Information System (INIS)

    Little, R.C.; Michael, M.; Verghese, K.; Gardner, R.P.

    1989-01-01

    Calculations have been made for a benchmark neutron porosity log problem with the general purpose Monte Carlo code MCNP and the specific purpose Monte Carlo code McDNL. For accuracy and timing comparison purposes the CRAY XMP and MicroVax II computers have been used with these codes. The CRAY has been used for an analog version of the MCNP code while the MicroVax II has been used for the optimized variance reduction versions of both codes. Results indicate that the two codes give the same results within calculated standard deviations. Comparisons are given and discussed for accuracy (precision) and computation times for the two codes

  20. Physical properties of Martian meteorites: Porosity and density measurements

    Science.gov (United States)

    Coulson, Ian M.; Beech, Martin; Nie, Wenshuang

    Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet's surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. In comparison with the limited existing data for Martian meteorites we find fairly good agreement, although our porosity values typically lie at the low end of published values. Surprisingly, despite the increased data set, there is little by way of correlation between either porosity or density with parameters such as shock effect or terrestrial residency. Further data collection on additional meteorite samples is required before more definitive statements can be made concerning the validity of these observations.

  1. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek; Cha, Dong Kyu; Zhang, Xixiang; Basset, Jean-Marie

    2010-01-01

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Determining eyeball surface area directly exposed to the effects of external factors.

    Science.gov (United States)

    Juliszewski, Tadeusz; Kadłuczka, Filip; Kiełbasa, Paweł

    2016-01-01

    This article discusses determining the surface area of eyeballs of men and women exposed to the direct effects of external factors in the working environment. For one eye, the mean surface is 172-182 mm(2). The determined surface area can be used in formulas for calculating the exposure of eyeballs to harmful chemical substances in workplace air.

  3. 30 CFR 942.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 942.761 Section 942.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  4. 30 CFR 903.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 903.761 Section 903.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, applies to surface coal mining...

  5. 30 CFR 910.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 910.761 Section 910.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  6. 30 CFR 937.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... mining by Act of Congress. 937.761 Section 937.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... WITHIN EACH STATE OREGON § 937.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and...

  7. 30 CFR 921.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 921.761 Section 921.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  8. 30 CFR 912.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... mining by act of Congress. 912.761 Section 912.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... WITHIN EACH STATE IDAHO § 912.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and...

  9. 30 CFR 947.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 947.761 Section 947.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  10. 30 CFR 939.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 939.761 Section 939.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  11. 30 CFR 941.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 941.761 Section 941.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  12. 30 CFR 922.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 922.761 Section 922.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  13. 30 CFR 905.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 905.761 Section 905.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  14. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek

    2010-08-02

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Change in Soil Porosity under Load

    Science.gov (United States)

    Dyba, V. P.; Skibin, E. G.

    2017-11-01

    The theoretical basis for the process of soil compaction under various loading paths is considered in the article, the theoretical assumptions are compared with the results of the tests of clay soil on a stabilometer. The variant of the critical state model of the sealing plastic-rigid environment is also considered the strength characteristics of which depend on the porosity coefficient. The loading surface is determined by the results of compression and stabilometrical tests. In order to clarify the results of this task, it is necessary to carry out stabilometric tests under conditions of simple loading, i.e. where the vertical pressure would be proportional to the compression pressure σ3 = kσ1. Within the study the attempts were made to confirm the model given in the beginning of the article by laboratory tests. After the analysis of the results, the provided theoretical assumptions were confirmed.

  16. Restoration of eroded surfaces in Serbian ski-areas

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2009-01-01

    Full Text Available The environmental impacts in Serbian ski areas are very strong, leading to landscape degradation and functionality losses. Construction or improvement works cause serious destruction of topsoil and native vegetation. Some activities enhance erosion production and sediment yield: clear cuttings; trunk transport down the slope; road construction and large excavations. Also, lack of erosion control works in ski areas, especially between April and October, result in various forms of land degradation such as furrows, gullies, landslides, or debris from rock weathering. The consequences of mismanagement in ski areas are noticeable in downstream sections of river beds, causing floods and bed-load deposition. Planning and designing activities, with the application of technical and biotechnical erosion control structures, through the concept of restoration, are necessary measures in the protection of ski areas.

  17. Assessment of large aperture scintillometry for large-area surface ...

    Indian Academy of Sciences (India)

    29

    1995), flat pastoral surfaces. (McAneny ... heat flux using net radiometer and soil heat flux plate, respectively and synchronized with ..... order to facilitates development of satellite based application for ET and drought monitoring, the .... daytime sensible heat flux and momentum fluxes;Boundary- Layer Meteorol.,68 357-373.

  18. Surface albedo measurements in Mexico City metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T; Mar, B; Longoria, R; Ruiz Suarez, L. G [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Morales, L [Instituto de Geografia, UNAM, Mexico, D.F. (Mexico)

    2001-04-01

    Optical and thermal properties of soils are important input data for the meteorological and photochemical modules of air quality models. As development of these models increase on spatial resolution good albedo data become more important. In this paper measurements of surface albedo of UV (295-385 nm) and visible (450-550 nm) radiation are reported for different urban and rural surfaces in the vicinity of Mexico City. It was found for the downtown zone and average albedo value of 0.05 which is in very good agreement with reported values for urban surfaces. Our albedo values measured in UV region for grey cement and green grass are of 0.10 and 0.009, respectively, and quite similar to those found at the literature of 0.11 and 0.008 for those type of surfaces. [Spanish] Las propiedades opticas y termicas de suelos son datos importantes para los modulos meteorologicos y fotoquimicos de los modelos de calidad del aire. Conforme aumenta la resolucion espacial del modelo se vuelve mas importante contar con buenos datos de albedo. En este articulo se presentan mediciones de albedo superficial de radiacion Ultravioleta (295-385 nm) y visible (450-550 nm) para diferentes superficies urbanas. Los valores medidos de albedo en la region UV para cemento gris y pasto verde son de 0.10 y 0.009, respectivamente, y son muy similares a los reportados en la literatura, 0.11 y 0.008 para este tipo de superficies.

  19. Large Area Diamond Tribological Surfaces with Negligible Wear in Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I we propose to demonstrate the processing of very large area diamond sliding bearings and tribological surfaces. The bearings and surfaces will experience...

  20. Reflectance analysis of porosity gradient in nanostructured silicon layers

    Science.gov (United States)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  1. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    Science.gov (United States)

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  2. Possibilities of surface waters monitoring at mining areas using UAV

    Science.gov (United States)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  3. Effect of SCM on porosity

    DEFF Research Database (Denmark)

    Canut, Mariana

    Pores are an inherent part of cement-based materials. The pores range from nm to cm varying in shape and distribution. The amount, size and distribution of pores affect the engineering properties. As a first approximation, the total porosity affects the mechanical behavior, whereas the size...... blast furnaces, fly ash from coal fired power stations, and silica fume from ferrosilicon production. Studies suggest that the improvement of the strength and durability using SCMs are governed by refinement of the pores in the cement paste. Both the chemical and physical properties of the SCMs...... and connectivity of pores affect durability. Supplementary cementitious materials (SCMs) are being increasingly used as a substitute for Portland cement in the interests of sustainability and to improve the engineering properties of concrete as strength and durability. SCMs are by-products such as slag from iron...

  4. Evaluation of porosity in Al alloy die castings

    Directory of Open Access Journals (Sweden)

    M. Říhová

    2012-01-01

    Full Text Available Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was die- cast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.

  5. Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.

    Science.gov (United States)

    Perez, Cristina R; Moye, John K; Pritsos, Chris A

    2014-05-08

    Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.

  6. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  7. Tritium in Precipitation, Surface and Groundwaters in the Zagreb Area

    International Nuclear Information System (INIS)

    Horvatincic, N.; Baresic, J.; Sironic, A.; Krajcar Bronic, I.; Obelic, B.

    2011-01-01

    Radioactive isotope tritium (3H) and stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O) were measured in Sava River, precipitation and groundwater at 3 monitoring wells (piezometers) and 1 production well of the Petrusevec aquifer, close to the Sava River. Samples were collected monthly during 2010. The investigation is included in the Regional IAEA Project RER/8/016 Using Environmental Isotopes for Evaluation of Streamwater/Groundwater Interactions in Selected Aquifers in the Danube Basin. Sava River is a tributary of Danube River and the aim of the investigation is to determine the influence of surface stream of Sava River to the groundwater of aquifer used for water exploitation. In this work only 3H results were presented. 3H was measured by liquid scintillation counter Quantulus 1220, using electrolytic enrichment for all samples. 3H activity in precipitation showed slight seasonal fluctuation between 4 TU and 14 TU, with higher values in summer. 3H activity of Sava River and groundwater of the Petrusevec aquifer followed 3H of precipitation till May 2010. Significant increase of 3H in Sava River was observed in June, (199 @ 20) TU, and in the next month it fell down at 6 TU. Increase of 3H was also observed in groundwater but with damped response (maximum 60 TU) and with delay of 2 - 3 months related to Sava River. Different response of different piezometers and the well indicated the different infiltration times of surface water of Sava River to groundwater of the Petrusevec aquifer. The increased 3H activity in surface and groundwaters was caused by release of tritiated water from the Krsko Nuclear Power Plant, 30 km upstream from Zagreb. The results of 3H, 2H/1H and 18O/16O measurements will be used to determine the infiltration time of groundwater of the Petrusevec aquifer using conceptual and mathematical models. (author)

  8. Possibilities of surface waters monitoring at mining areas using UAV

    Directory of Open Access Journals (Sweden)

    Lisiecka Ewa

    2018-01-01

    Full Text Available The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV. The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  9. On the field determination of effective porosity

    International Nuclear Information System (INIS)

    Javandel, I.

    1989-03-01

    Effective porosity of geologic materials is a very important parameter for estimating groundwater travel time and modeling contaminant transport in hydrologic systems. Determination of a representative effective porosity for nonideal systems is a problem still challenging hydrogeologists. In this paper, some of the conventional field geophysical and hydrological methods for estimating effective porosity of geologic materials are reviewed. The limitations and uncertainties associated with each method are discussed. 30 refs., 8 figs

  10. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. A method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy

    International Nuclear Information System (INIS)

    Lu Yong; Song, Paul Y.; Li Shidong; Spelbring, Danny R.; Vijayakumar, Srinivasan; Haraf, Daniel J.; Chen, George T.Y.

    1995-01-01

    Purpose: To develop a method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy. Methods and Materials: Dose-surface histograms of the rectum, which state the rectal surface area irradiated to any given dose, were calculated for a group of 27 patients treated with a four-field box technique to a total (tumor minimum) dose ranging from 68 to 70 Gy. Occurrences of rectal toxicities as defined by the Radiation Therapy Oncology Group (RTOG) were recorded and examined in terms of dose and rectal surface area irradiated. For a specified end point of rectal complication, the complication probability was analyzed as a function of dose irradiated to a fixed rectal area, and as a function of area receiving a fixed dose. Lyman's model of normal tissue complication probability (NTCP) was used to fit the data. Results: The observed occurrences of rectal complications appear to depend on the rectal surface area irradiated to a given dose level. The patient distribution of each toxicity grade exhibits a maximum as a function of percentage surface area irradiated, and the maximum moves to higher values of percentage surface area as the toxicity grade increases. The dependence of the NTCP for the specified end point on dose and percentage surface area irradiated was fitted to Lyman's NTCP model with a set of parameters. The curvature of the NTCP as a function of the surface area suggests that the rectum is a parallel structured organ. Conclusions: The described method of analyzing rectal surface area irradiated yields interesting insight into understanding rectal complications in prostate conformal radiotherapy. Application of the method to a larger patient data set has the potential to facilitate the construction of a full dose-surface-complication relationship, which would be most useful in guiding clinical practice

  12. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  13. BLM National Surface Management Agency: Area Polygons, Withdrawal Area Polygons, and Special Public Purpose Withdrawal Area Polygons

    Data.gov (United States)

    Federal Geographic Data Committee — The SMA implementation is comprised of one feature dataset, with several polygon feature classes, rather than a single feature class. SurfaceManagementAgency: The...

  14. Surface and subsurface conditions in permafrost areas - a literature review

    International Nuclear Information System (INIS)

    Vidstrand, Patrik

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that there is

  15. Surface and subsurface conditions in permafrost areas - a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik [Bergab, Goeteborg (Sweden)

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that

  16. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 933.761 Section 933.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with...

  17. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  18. The protection of urban areas from surface wastewater pollutions

    Directory of Open Access Journals (Sweden)

    Vialkova Elena

    2017-01-01

    Full Text Available In this paper it considered the problem of collection, treatment and discharge into waters of rain and melted wastewater. To reduce the load on the combined sewer system, there are engineering solutions collect rain and melt water for use in the irrigation of lawns and green spaces. Research carried out at the department “Water supply and sanitation”, (Russia, confirm the high pollution concentrations of meltwater and rainfall in urban arias. Series of measurements of heavy metal in rainwater runoff carried out in Hungary demonstrates clearly the differences in concentrations in the function of distance from the edge of the road. Also differences are introduced between pollution concentrations in runoff water from within and outside urban traffic roads. The quality of snow cover, forming meltwater is observed to be changing in dependence on roadway location. Quality characteristics of surface runoff and its sediments can be effectively improved with super-high frequency radiation (SHF treatment which is presented in this paper.

  19. High surface area silicon materials: fundamentals and new technology.

    Science.gov (United States)

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  20. Washcoat Deposition of Ni- and Co-ZrO2 Low Surface Area Powders onto Ceramic Open-Cell Foams: Influence of Slurry Formulation and Rheology

    Directory of Open Access Journals (Sweden)

    Riccardo Balzarotti

    2015-12-01

    Full Text Available The effect of formulations and procedures to deposit thin active layers based on low surface area powders on complex geometry substrates (open-cell foams was experimentally assessed. An acid-free liquid medium based on water, glycerol, and polyvinyl alcohol was used for powder dispersion, while a dip-coating technique was chosen for washcoat deposition on 30 PPI ceramic open-cell foams. The rheological behavior was explained on the bases of both porosity and actual powder density. It was proved that the use of multiple dippings fulfills flexibility requirements for washcoat load management. Multiple depositions with intermediate flash drying steps at 350 °C were carried out. Washcoat loads in the 2.5 to 22 wt. % range were obtained. Pore clogging was seldom observed in a limited extent in samples with high loading (>20 wt. %. Adhesion, evaluated by means of accelerated stress test in ultrasound bath, pointed out good results of all the deposited layers.

  1. Surface area and pore size characteristics of nanoporous gold subjected to thermal, mechanical, or surface modification studied using gas adsorption isotherms, cyclic voltammetry, thermogravimetric analysis, and scanning electron microscopy

    Science.gov (United States)

    Tan, Yih Horng; Davis, Jason A.; Fujikawa, Kohki; Ganesh, N. Vijaya; Demchenko, Alexei V.

    2012-01-01

    Nitrogen adsorption/desorption isotherms are used to investigate the Brunauer, Emmett, and Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size distribution of physically modified, thermally annealed, and octadecanethiol functionalized np-Au monoliths. We present the full adsorption-desorption isotherms for N2 gas on np-Au, and observe type IV isotherms and type H1 hysteresis loops. The evolution of the np-Au under various thermal annealing treatments was examined using scanning electron microscopy (SEM). The images of both the exterior and interior of the thermally annealed np-Au show that the porosity of all free standing np-Au structures decreases as the heat treatment temperature increases. The modification of the np-Au surface with a self-assembled monolayer (SAM) of C18-SH (coverage of 2.94 × 1014 molecules cm−2 based from the decomposition of the C18-SH using thermogravimetric analysis (TGA)), was found to reduce the strength of the interaction of nitrogen gas with the np-Au surface, as reflected by a decrease in the ‘C’ parameter of the BET equation. From cyclic voltammetry studies, we found that the surface area of the np-Au monoliths annealed at elevated temperatures followed the same trend with annealing temperature as found in the BET surface area study and SEM morphology characterization. The study highlights the ability to control free-standing nanoporous gold monoliths with high surface area, and well-defined, tunable pore morphology. PMID:22822294

  2. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  3. Surface and groundwater Nitrate distribution in the area of Vicenza

    International Nuclear Information System (INIS)

    Altissimo, L.; Dal Pra, A.

    1999-01-01

    Public aqueducts in the Province of Vicenza (Italy) are supplied entirely by various kinds of water sources: the sub river bed strata of the mountain valleys, water-bearing aquifers of the high plan, pressurized water-bearing aquifers of the middle plain, karstic reservoirs of the mountain massifs and local springs. Progressive increase in nitrate concentration has long been detected in the underground water of many parts of the Vicenza region. The nitrates originate from various sources: human waste, industrial dumping (e.g. the tanning industry) and the use of animal and chemical fertilizers. Nitrate distribution was studied in all wells used for extracting underground water including source waters which replenishing underground aquifers. During the study period ('91-'95), water courses in the recharge areas were found to have nitrate concentrations ranging between 2.0 and 42.0 mg/l. These values remained substantially stable in time. Underground aquifers showed stable nitrate concentration between 5.0 mg/l (mountain karstic aquifers; sub-river bed strata of valley bottom) and 44.0 mg/l (water bearing strata of the high plain of Astico and Brenta rivers). The pressurized flooding aquifers of the middle plain have lower concentrations (6.0-21.0 mg/l) but tend to increase by about 0.5 mg/l per year [it

  4. Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.

    Science.gov (United States)

    Khachikian, Crist S; Harmon, Thomas C

    2002-01-01

    This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.

  5. The impact of porosity on the formation of manganese based copper diffusion barrier layers on low-κ dielectric materials

    International Nuclear Information System (INIS)

    McCoy, A P; Bogan, J; Walsh, L; Byrne, C; O’Connor, R; Hughes, G; Woicik, J C

    2015-01-01

    This work investigates the impact of porosity in low-κ dielectric materials on the chemical and structural properties of deposited Mn thin films for copper diffusion barrier layer applications. X-ray photoelectron spectrscopy (XPS) results highlight the difficulty in distinguishing between the various Mn oxidation states which form at the interlayer dielectric (ILD)/Mn interface. The presence of MnSiO 3 and MnO were identified using x-ray absorption spectroscopy (XAS) measurements on both porous and non-porous dielectric materials with evidence of Mn 2 O 3 and Mn 3 O 4 in the deposited film on the latter surface. It is shown that a higher proportion of deposited Mn converts to Mn silicate on an ILD film which has 50% porosity compared with the same dielectric material with no porosity, which is attributed to an enhanced chemical interaction with the effective larger surface area of porous dielectric materials. Transmission electron microscopy (TEM) and energy-dispersive x-ray spectroscopy (EDX) data shows that the Mn overlayer remains predominately surface localised on both porous and non-porous materials. (paper)

  6. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  7. Electromagnetic methods for rapidly characterizing porosity distributions in the upper part of the Biscayne aquifer, southern Florida

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Cunningham, K. J.

    2010-12-01

    measurements of bulk porosity from the data available, a complex refractive index model (CRIM) was used. This allows for the delineation of the distribution of estimated porosity values from both 1D and 2D velocity models. All data are further constrained with terrain conductivity measurements and porosity values measured from whole-core samples. Porosity estimates calculated using the CRIM, range from about 10 to 45% and strongly correspond with the porosity values from the whole-core samples This study illustrates the potential of electromagnetic methods for quickly mapping areas of enhanced porosity. Furthermore, this information may improve understanding of surface water-groundwater exchange in the Everglades, which is a key component of ongoing and future restoration efforts.

  8. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  9. Outlining precision boundaries among areas with different variability standards using magnetic susceptibility and geomorphic surfaces

    OpenAIRE

    Matias,Sammy S. R.; Marques Júnior,José; Siqueira,Diego S.; Pereira,Gener T.

    2014-01-01

    There is an increasing demand for detailed maps that represent in a simplified way the knowledge of the variability of a particular area or region maps. The objective was to outline precision boundaries among areas with different accuracy variability standards using magnetic susceptibility and geomorphic surfaces. The study was conducted in an area of 110 ha, which identified three compartment landscapes based on the geomorphic surfaces model. To determinate pH, organic matter, phosphorus, po...

  10. Relationship between micro-porosity and tensile properties of 6063 alloy

    Directory of Open Access Journals (Sweden)

    Li Xiehua

    2013-01-01

    Full Text Available The micro-porosity is usually present in the as-cast microstructure, which decreases the tensile strength and ductility and therefore limit the application of cast aluminum parts. Although much work has been done to investigate the effects of various casting parameters on the formation of porosity in various aluminum alloys, up to now, little information has been available for the relationship between micro-porosity and tensile properties of 6063 alloy. In this study, the influences of size and area fraction of micro-porosity on the tensile properties and fracture behavior of 6063 aluminum alloy were investigated by means of tensile testing, optical microscopy (OM, and scanning electron microscopy (SEM. The tensile tests were conducted in air at 100 ℃, 200 ℃ and 300 ℃, respectively. Results show that the large micro-porosity with sizes between 100 μm and 800 μm located at the center and top of the ingot, while the small micro-porosity with size between 2 μm and 60 μm distributed at the edge and bottom of the ingot. The area fraction of micro-porosity at the center of the ingot is much bigger than that at the edge of the ingot. When tested at 100 ℃, with the decrease in the area fraction of micro-porosity from the top of the ingot to the bottom of the ingot, the ultimate tensile strength, yield strength and the elongation are increased from 82 to 99 MPa, 32 to 66 MPa and 7% to 11%, respectively. When the temperature is no more than 200 ℃, the strain hardening exponent decreases with an increase in the area fraction of micro-porosity; while the deviation disappears when the temperature reaches 300 ℃. The fracture mode of the alloy is greatly influenced by the size and area fraction of the micro-porosity.

  11. Influence of coal preoxidation on the porosity of the activated carbons with steam activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuwen; Gao, Jihui; Sun, Fei; Li, Yang; Wu, Shaohua; Qin, Yukun [Harbin Institute of Technology, Harbin (China). School of Energy Science and Engineering

    2013-07-01

    Activated carbons have been prepared from a low ash content anthracite preoxidized in air to different degrees. Steam has been used as activating agent to prepare different burn-off samples. The preoxidation effect on the physico-chemical characteristics of the resulting chars and activated carbons were comparatively studied. The surface area and porosity of sample was studied by N{sub 2} adsorption at 77 0A0;K. The results show that introduced oxygen in coal structure had a great influence on the carbonization and subsequent activation process. The carbonization of oxidized coal exhibited a broader volatile evolution with respect to temperature, and the resulting chars had a larger microporosity. The porosity of the char is a primary foundation to develop more microporosity upon activation. Activation of char from oxidized coal facilitated development of small scale micropore, however, the micropore widening was also observed at high burn-offs. Compared with development of supermicropore, the evolution of mesoporosity is hindered strongly by preoxidation treatment. The quantity of basic surface sites in activated carbons increased with an increase in oxidation degree, while the quantity of acidic sites appeared equivalent. It seemed that the amount of surface groups and the microporosity mainly developed in a parallel way.

  12. Changes in the Surface Area of Glaciers in Northern Eurasia

    Science.gov (United States)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however

  13. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  14. Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno The most important methods for the characterization of porosity of styrene-divinylbenzene based resins

    Directory of Open Access Journals (Sweden)

    Viviane Gomes Teixeira

    2001-12-01

    Full Text Available This paper reviews the most important methods used to characterize the porosity of styrene-divinylbenzene resins. Methods such as adsorption of nitrogen for determination of surface area and mercury intrusion porosimetry for characterization of pore size distribution are related.

  15. Development of cortical thickness and surface area in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Vincent T. Mensen

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder often associated with changes in cortical volume. The constituents of cortical volume – cortical thickness and surface area – have separable developmental trajectories and are related to different neurobiological processes. However, little is known about the developmental trajectories of cortical thickness and surface area in ASD. In this magnetic resonance imaging (MRI study, we used an accelerated longitudinal design to investigate the cortical development in 90 individuals with ASD and 90 typically developing controls, aged 9 to 20 years. We quantified cortical measures using the FreeSurfer software package, and then used linear mixed model analyses to estimate the developmental trajectories for each cortical measure. Our primary finding was that the development of surface area follows a linear trajectory in ASD that differs from typically developing controls. In typical development, we found a decline in cortical surface area between the ages of 9 and 20 that was absent in ASD. We found this pattern in all regions where developmental trajectories for surface area differed between groups. When we applied a more stringent correction that takes the interdependency of measures into account, this effect on cortical surface area retained significance for left banks of superior temporal sulcus, postcentral area, and right supramarginal area. These areas have previously been implicated in ASD and are involved in the interpretation and processing of audiovisual social stimuli and distinction between self and others. Although some differences in cortical volume and thickness were found, none survived the more stringent correction for multiple testing. This study underscores the importance of distinguishing between cortical surface area and thickness in investigating cortical development, and suggests the development of cortical surface area is of importance to ASD.

  16. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  17. Root surface area measurement of permanent dentition in Indian population – CBCT analysis

    Directory of Open Access Journals (Sweden)

    Kanika Lakhani

    2017-01-01

    Full Text Available The area of the root surface of human teeth has been investigated extensively in the dental literature. All previous attempts mainly rely on the use of physical methods to calculate surface area on extracted teeth or use virtual 3D Models for the same. The aim is to develop an algorithm using MATLAB software that estimates the dimensions of 3-D image produced with the help of CBCT so that the same can be utilized to calculate the root surface area of teeth among Indian population. Present research utilizes CBCT images of samples of extracted teeth mounted on a customized jpg. A descriptive chart for statistical analysis has been prepared to obtain average root surface area of each tooth type. The currently developed algorithm has been successfully applied to the CBCT images of complete sample of teeth to obtain their root surface area. The algorithm developed to calculate root surface area of the teeth holds wide spread application in the field of dentistry pursuing its high expediency in even various specializations of dentistry including orthodontics, prosthodontics, periodontology and implantalogy. It is concluded that it has now become a reality to accurately determine the surface area of the root of human teeth without extracting them using the CBCT radiographs of the patients.

  18. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  19. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  20. Influence of Ecological Factors on Estimation of Impervious Surface Area Using Landsat 8 Imagery

    Directory of Open Access Journals (Sweden)

    Yuqiu Jia

    2017-07-01

    Full Text Available Estimation of impervious surface area is important to the study of urban environments and social development, but surface characteristics, as well as the temporal, spectral, and spatial resolutions of remote sensing images, influence the estimation accuracy. To investigate the effects of regional environmental characteristics on the estimation of impervious surface area, we divided China into seven sub-regions based on climate, soil type, feature complexity, and vegetation phenology: arid and semi-arid areas, Huang-Huai-Hai winter wheat production areas, typical temperate regions, the Pearl River Delta, the middle and lower reaches of the Yangtze River, typical tropical and subtropical regions, and the Qinghai Tibet Plateau. Impervious surface area was estimated from Landsat 8 images of five typical cities, including Yinchuan, Shijiazhuang, Shenyang, Ningbo, and Kunming. Using the linear spectral unmixing method, impervious and permeable surface areas were determined at the pixel-scale based on end-member proportions. We calculated the producer’s accuracy, user’s accuracy, and overall accuracy to assess the estimation accuracy, and compared the accuracies among images acquired from different seasons and locations. In tropical and subtropical regions, vegetation canopies can confound the identification of impervious surfaces and, thus, images acquired in winter, early spring, and autumn are most suitable; estimations in the Pearl River Delta, the middle and lower reaches of the Yangtze River are influenced by soil, vegetation phenology, vegetation canopy, and water, and images acquired in spring, summer, and autumn provide the best results; in typical temperate areas, images acquired from spring to autumn are most effective for estimations; in winter wheat-growing areas, images acquired throughout the year are suitable; and in arid and semi-arid areas, summer and early autumn, during which vegetation is abundant, are the optimal seasons for

  1. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  2. Structural dynamics of fore-crisis area on a heat emission surface of a fuel element's

    International Nuclear Information System (INIS)

    Sharaevskij, I.G.; Fialko, N.M.; Sharaevskaya, E.I.

    2011-01-01

    The known theoretical and experimental data regarding the nature of dry spots evolution are reviewed and the idea regarding the mechanism of heat emission from the heated surface in fore-crisis area are defined more precisely.

  3. Lp-dual affine surface area forms of Busemann–Petty type problems

    Indian Academy of Sciences (India)

    Associated with the notion of Lp-intersection body which was defined ... Lp-dual affine surface area; Lp-intersection body; Busemann–Petty ..... [11] Schneider R, Convex Bodies: The Brunn–Minkowski Theory (1993) (Cambridge: Cam-.

  4. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Science.gov (United States)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  5. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    International Nuclear Information System (INIS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-01-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SA REF ) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SA PSD ) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SA INV1 ) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SA INV2 ) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SA PSD was 0.7–1.8 times higher and SA INV1 and SA INV2 were 2.2–8 times higher than SA REF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SA REF . However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SA REF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SA PSD ) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  6. Interdependence between body surface area and ultraviolet B dose in vitamin D production

    DEFF Research Database (Denmark)

    Bogh, M K B; Schmedes, Anne; Philipsen, P A

    2011-01-01

    Ultraviolet (UV) B radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) [25(OH)D], but the relationship to body surface area and UVB dose needs investigation.......Ultraviolet (UV) B radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) [25(OH)D], but the relationship to body surface area and UVB dose needs investigation....

  7. Examining the social porosity of environmental features on neighborhood sociability and attachment.

    Directory of Open Access Journals (Sweden)

    John R Hipp

    Full Text Available The local neighborhood forms an integral part of our lives. It provides the context through which social networks are nurtured and the foundation from which a sense of attachment and cohesion with fellow residents can be established. Whereas much of the previous research has examined the role of social and demographic characteristic in relation to the level of neighboring and cohesion, this paper explores whether particular environmental features in the neighborhood affect social porosity. We define social porosity as the degree to which social ties flow over the surface of a neighborhood. The focus of our paper is to examine the extent to which a neighborhood's environmental features impede the level of social porosity present among residents. To do this, we integrate data from the census, topographic databases and a 2010 survey of 4,351 residents from 146 neighborhoods in Australia. The study introduces the concepts of wedges and social holes. The presence of two sources of wedges is measured: rivers and highways. The presence of two sources of social holes is measured: parks and industrial areas. Borrowing from the geography literature, several measures are constructed to capture how these features collectively carve up the physical environment of neighborhoods. We then consider how this influences residents' neighboring behavior, their level of attachment to the neighborhood and their sense of neighborhood cohesion. We find that the distance of a neighborhood to one form of social hole-industrial areas-has a particularly strong negative effect on all three dependent variables. The presence of the other form of social hole-parks-has a weaker negative effect. Neighborhood wedges also impact social interaction. Both the length of a river and the number of highway fragments in a neighborhood has a consistent negative effect on neighboring, attachment and cohesion.

  8. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  9. Plant fibre composites - porosity and volumetric interaction

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2007-01-01

    the combination of a high fibre volume fraction, a low porosity and a high composite density is optimal. Experimental data from the literature on volumetric composition and density of four types of plant fibre composites are used to validate the model. It is demonstrated that the model provides a concept......Plant fibre composites contain typically a relative large amount of porosity, which considerably influences properties and performance of the composites. The large porosity must be integrated in the conversion of weight fractions into volume fractions of the fibre and matrix parts. A model...... is presented to predict the porosity as a function of the fibre weight fractions, and to calculate the related fibre and matrix volume fractions, as well as the density of the composite. The model predicts two cases of composite volumetric interaction separated by a transition fibre weight fraction, at which...

  10. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh; Hadwiger, Markus; Ben Romdhane, Mohamed; Behzad, Ali Reza; Madhavan, Poornima; Nunes, Suzana Pereira

    2016-01-01

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore

  11. Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev S. [Ernest Orlando Lawrence Berkeley National Laboratory, Indoor Environment Department (United States)], E-mail: LSRuzer@lbl.gov

    2008-05-15

    A number of studies on the exposure of nanometer aerosols have indicated that health effects associated with low-solubility inhaled particles in the range of 1-100 nm may be more appropriately associated with particulate surface area than mass concentration. Such data on correlation between number, surface area and mass concentration are needed for exposure investigations, but the means for measuring aerosol surface area are not readily available. In this paper we propose a method for particle surface area assessment based on a new approach, deposition of the 'unattached fraction of radon progeny' onto nanometer aerosols.The proposed approach represents a synthesis of:(1) Derived direct analytical correlation between the 'unattached fraction' of radon progeny and surface area particle concentration in the range of 1-100 nm particle diameter;(2) Experimental data on correlation between the unattached fraction of radon progeny and particle surface area for particles with diameter in the range of 44 nm-2.1 {mu}m.

  12. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  13. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in g...

  14. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  15. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS UNDERGROUND MINING GENERAL PERFORMANCE STANDARDS § 717.15 Disposal of excess rock and...

  16. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    NARCIS (Netherlands)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker; Ahlstrøm, Andreas P.; Abermann, Jakob; Andersen, Morten L.; Andersen, Signe B.; Bjørk, Anders A.; Box, Jason E.; Braithwaite, Roger J.; Bøggild, Carl E.; Citterio, Michele; Clement, Poul; Colgan, William; Fausto, Robert S.; Gleie, Karin; Gubler, Stefanie; Hasholt, Bent; Hynek, Bernhard; Knudsen, Niels T.; Larsen, Signe H.; Mernild, Sebastian H.; Oerlemans, Johannes; Oerter, Hans; Olesen, Ole B.; Smeets, C. J P Paul; Steffen, Konrad; Stober, Manfred; Sugiyama, Shin; Van As, Dirk; Van Den Broeke, Michiel R.; Van De Wal, Roderik S W

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in

  17. Changes in Thickness and Surface Area of the Human Cortex and Their Relationship with Intelligence

    NARCIS (Netherlands)

    Schnack, H.G.; van Haren, N.E.M.; Brouwer, R.M.; Evans, A.; Durston, S.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E.

    2015-01-01

    Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface

  18. Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.

    Science.gov (United States)

    Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi

    2017-09-04

    About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2  g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fabrication of dual porosity electrode structure

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-02-12

    A substantially entirely fibrous ceramic is described which may have dual porosity of both micro and macro pores. Total porosity may be 60-75% by volume. A method of spraying a slurry perpendicularly to an ambient stream of air is disclosed along with a method of removing binders without altering the fiber morphology. Adding fine ceramic particulates to the green ceramic fibers enhances the sintering characteristics of the fibers. 3 figures.

  20. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    International Nuclear Information System (INIS)

    Moenkkoenen, H.

    2012-04-01

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  1. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H. [WSP Finland Oy, Helsinki (Finland)

    2012-04-15

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  2. Multiscale study of the porosity of carbon deposits collected in Tore Supra

    International Nuclear Information System (INIS)

    Martin, C.; Richou, M.; Saikaily, W.; Pegourie, B.; Brosset, C.; Roubin, P.

    2007-01-01

    Carbon deposits collected in Tore Supra, on the neutralisers and on the toroidal pump limiter, are analysed by adsorption isotherm measurements and electron microscopy. Both techniques are suitable to study the porosity in a multiscale range and allow the characterisation of the volume and the structure of the pore network. The neutraliser deposits show an oval shape structure and a high specific surface area. This area corresponds to microporosity, i.e. pores with a typical size lower than 2 nm, (∼11%), mesoporosity (∼5%) and macroporosity, i.e. pores with a typical size more than 50 nm. Surprisingly, transmission electron microscopy performed on thin foils cut from an oval reveals a regular network of parallel slit-shaped mesopores (size ∼ 10 nm) and macropores (size ∼ 100 nm), with a well-defined orientation with respect to the oval axis

  3. [Effects of soil crusts on surface hydrology in the semiarid Loess hilly area].

    Science.gov (United States)

    Wei, Wei; Wen, Zhi; Chen, Li-Ding; Chen, Jin; Wu, Dong-Ping

    2012-11-01

    Soil crusts are distributed extensively in the Chinese Loess Plateau and play key roles in surface hydrological processes. In this study, a typical loess hilly region in Anjiagou catchment, Dingxi city, Gansu province was selected as the study region, and soil crusts in the catchment were investigated. Then, the hydrological effect of soil crusts was studied by using multi-sampling and hydrological monitoring experiments. Several key results were shown as follows. Firstly, compared with bared soil without crust cover, soil crusts can greatly reduce the bulk density, improve the porosity of soil, and raise the holding capacity of soil moisture which ranges from 1.4 to 1.9 times of that of bared soil. Secondly, the role of soil crust on rainfall interception was very significant. Moss crust was found to be strongest on rainfall interception, followed by synantectic crusts and lichen crusts. Bared soil without covering crusts was poorest in resisting rainfall splash. Thirdly, hydrological simulation experiments indicate that soil crusts play a certain positive role in promoting the water infiltration capacity, and the mean infiltration rate of the crusted soil was 2 times higher than that of the no-crust covered soils. While the accumulated infiltrated water amounts was also far higher than that of the bared soil.

  4. Application of stereological methods to estimate post-mortem brain surface area using 3T MRI

    DEFF Research Database (Denmark)

    Furlong, Carolyn; García-Fiñana, Marta; Puddephat, Michael

    2013-01-01

    The Cavalieri and Vertical Sections methods of design based stereology were applied in combination with 3 tesla (i.e. 3T) Magnetic Resonance Imaging (MRI) to estimate cortical and subcortical volume, area of the pial surface, area of the grey-white matter boundary, and thickness of the cerebral...

  5. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    International Nuclear Information System (INIS)

    Kuva, J.; Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M.; Lindberg, A.; Aaltonen, I.

    2012-01-01

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  6. Comparison of porosity measurement techniques for porous titanium scaffolds evaluation

    International Nuclear Information System (INIS)

    Oliveira, M.V.; Ribeiro, A.A.; Moreira, A.C.; Moraes, A.M.C.; Appoloni, C.R.; Pereira, L.C.

    2009-01-01

    Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds. (author)

  7. Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Kuva, J. (ed.); Myllys, M.; Timonen, J. [Jyvaeskylae Univ. (Finland); Kelokaski, M.; Ikonen, J.; Siitari-Kauppi, M. [Helsinki Univ. (Finland); Lindberg, A. [Geological Survey of Finland, Espoo (Finland); Aaltonen, I.

    2012-01-15

    3D distributions of minerals and porosities were determined for samples that included waterconducting fractures. The analysis of these samples was performed using conventional petrography methods, electron microscopy, C-14-PMMA porosity analysis and X-ray tomography. While X-ray tomography proved to be a very useful method when determining the inner structure of the samples, combining tomography results with those obtained by other methods turned out to be difficult without very careful sample preparation design. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that a combination of different analysis methods can be useful and used to infer novel structural information about alteration zones adjacent to fracture surfaces. (orig.)

  8. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  9. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    . The Cl porosity is lower than the total physical porosity, because clays have different types of water (interlayer water, adsorbed water and free water), and ions can be affected by anionic exclusion processes. The geochemical porosity includes only the free water and some of the diffuse layer and surface-sorbed water; while the total physical porosity includes both the external and interlayer water. In order to calculate the Cl or geochemical porosity (n cl ), a relationship was used, which relates leaching data and the chloride content of the pore water extracted by the squeezing technique. Aqueous leaching tests were performed at anoxic conditions in order to obtain the chloride inventory in different core samples from each argillaceous formation. Besides, the chemical composition of the pore water was obtained by squeezing at high pressures. Taking into account the measured physical properties of the rock samples, such as water content, dry density, total porosity and degree of saturation; the geochemical porosity was calculated by using the above relationship. For Boom Clay core samples, the mean Cl porosity/water loss porosity ratio is 0.81. In the case of Opalinus Clay, the mean Cl porosity/water loss porosity ratio is 0.59. In Mont Terri core samples, this ratio ranges from 0.5 to 0.7, although a value of 0.55 is frequently used. As conclusion, for indurated mud-rock formations (Callovo-Oxfordian and Opalinus Clay), the mean geochemical porosity obtained was around 8-10 %vol. (0.5-0.6 porosity ratio), whereas in the plastic Boom Clay the geochemical porosity was around 29 %vol. (0.8 porosity ratio)

  10. Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie

    International Nuclear Information System (INIS)

    Asrar, G.; Harris, T.R.; Lapitan, R.L.; Cooper, D.I.

    1988-01-01

    This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. Our objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions. (author)

  11. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1998-01-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well

  12. Effect of surface area of substrates aiming the optimization of carbon nanotube production from ferrocene

    International Nuclear Information System (INIS)

    Osorio, A.G.; Bergmann, C.P.

    2013-01-01

    Highlights: ► An optimized synthesis of CNTs by ferrocene is proposed. ► The surface area of substrates influences the nucleation of CNTs. ► The higher the surface area of substrates the lower the temperature of synthesis. ► Chemical composition of substrates has no influence on the growth of CNTs. - Abstract: Ferrocene is widely used for the synthesis of carbon nanotubes due to its ability to act as catalyst and precursor of the synthesis. This paper proposes an optimization of the synthesis of carbon nanotubes from ferrocene, using a substrate with high surface area for their nucleation. Four different surface areas of silica powder were tested: 0.5, 50, 200 and 300 m 2 /g. Raman spectroscopy and microscopy were used to characterize the product obtained and X-ray diffraction and thermal analysis were also performed to evaluate the phases of the material. It was observed that the silica powder with the highest surface area allowed the synthesis of carbon nanotubes to occur at a lower temperature (600 °C), whereas substrates with a surface area lower than 50 m 2 /g will only form carbon nanotubes at temperatures higher than 750 °C. In order to evaluate the influence of chemical composition of the substrate, three different ceramic powders were analyzed: alumina, silica and zirconia. carbon black and previously synthesized carbon nanotubes were also used as substrate for the synthesis and the results showed that the chemical composition of the substrate does not play a relevant role in the synthesis of carbon nanotubes, only the surface area showed an influence.

  13. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  14. Technology of surface wastewater purification, including high-rise construction areas

    Science.gov (United States)

    Tsyba, Anna; Skolubovich, Yury

    2018-03-01

    Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.

  15. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  16. Assessment of spatial distrilbution of porosity and aquifer geohydraulic parameters in parts of the Tertiary - Quaternary hydrogeoresource of south-eastern Nigeria

    Science.gov (United States)

    George, N. J.; Akpan, A. E.; Akpan, F. S.

    2017-12-01

    An integrated attempt exploring information deduced from extensive surface resistivity study in three Local Government Areas of Akwa Ibom State, Nigeria and data from hydrogeological sources obtained from water boreholes have been explored to economically estimate porosity and coefficient of permeability/hydraulic conductivity in parts of the clastic Tertiary - Quaternary sediments of the Niger Delta region. Generally, these parameters are predominantly estimated from empirical analysis of core samples and pumping test data generated from boreholes in the laboratory. However, this analysis is not only costly and time consuming, but also limited in areal coverage. The chosen technique employs surface resistivity data, core samples and pumping test data in order to estimate porosity and aquifer hydraulic parameters (transverse resistance, hydraulic conductivity and transmissivity). In correlating the two sets of results, Porosity and hydraulic conductivity were observed to be more elevated near the riverbanks. Empirical models utilising Archie's, Waxman-Smits and Kozeny-Carman Bear relations were employed characterising the formation parameters with wonderfully deduced good fits. The effect of surface conduction occasioned by clay usually disregarded or ignored in Archie's model was estimated to be 2.58 × 10-5 Siemens. This conductance can be used as a corrective factor to the conduction values obtained from Archie's equation. Interpretation aided measures such as graphs, mathematical models and maps which geared towards realistic conclusions and interrelationship between the porosity and other aquifer parameters were generated. The values of the hydraulic conductivity estimated from Waxman-Smits model was approximately 9.6 × 10-5m/s everywhere. This revelation indicates that there is no pronounced change in the quality of the saturating fluid and the geological formations that serve as aquifers even though the porosities were varying. The deciphered parameter

  17. VEGETATION COVERAGE AND IMPERVIOUS SURFACE AREA ESTIMATED BASED ON THE ESTARFM MODEL AND REMOTE SENSING MONITORING

    Directory of Open Access Journals (Sweden)

    R. Hu

    2018-04-01

    Full Text Available Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC and impervious layer with high spatiotemporal resolution (30 m, 8 day were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1 ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2 The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  18. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    Science.gov (United States)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  19. Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Hee; Park, Dong Gon [Sookmyung Women' s University, Seoul (Korea, Republic of)

    2003-10-15

    Thermal decomposition of hydrated surface layer of Mg(OH){sub 2} at 500 .deg. C in vacuum turned non-porous MgO into porous one with high surface area of around 270 m{sup 2}/g. Most of its surface area, 74 %, was from micropores, and rest of it was from mesopores in wedge-shaped slits, exhibiting bimodal size distribution centered around 30 and 90 A. Rehydration followed by subsequent dehydration at 300 .deg. C in dynamic vacuum further raised the surface area to 340 m{sup 2}/g. Fraction of microporous surface area was increased to 93%, and the shape of the mesopores was modified into parallel slits with a specific dimension of 32 A. Application of Fe{sub 2}O{sub 3} over MgO via iron complex formation did not alter the pore characteristics of MgO core, except slightly increased pore dimension. Over the course of the modification, Fe{sub 2}O{sub 3} stayed on the surface possibly via spill-over reaction.

  20. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass

    International Nuclear Information System (INIS)

    Danish, Mohammed; Hashim, Rokiah; Ibrahim, M.N. Mohamad; Sulaiman, Othman

    2014-01-01

    The preparation of activated carbon from date stone treated with phosphoric acid was optimized using rotatable central composite design of response surface methodology (RSM). The chemical activating agent concentration and temperature of activation plays a crucial role in preparation of large surface area activated carbons. The optimized activated carbon was characterized using thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the larger surface area of activated carbon from date stone can be achieved under optimum activating agent (phosphoric acid) concentration, 50.0% (8.674 mol L −1 ) and activation temperature, 900 °C. The Brunauer–Emmett–Teller (BET) surface area of optimized activated carbon was found to be 1225 m 2  g −1 , and thermogravimetric analysis revealed that 55.2% mass of optimized activated carbon was found thermally stable till 900 °C. The leading chemical functional groups found in the date stone activated carbon were aliphatic carboxylic acid salt ν(C=O) 1561.22 cm −1 and 1384.52 cm −1 , aliphatic hydrocarbons ν(C–H) 2922.99 cm −1 (C–H sym./asym. stretch frequency), aliphatic phosphates ν(P–O–C) 1054.09 cm −1 , and secondary aliphatic alcohols ν(O–H) 3419.81 cm −1 and 1159.83 cm −1 . - Highlights: • RSM optimization was done for the production of large surface area activated carbon. • Two independent variables with two responses were selected for optimization. • Characterization was done for surface area, morphology and chemical constituents. • Optimized date stone activated carbon achieved surface area 1225 m 2  g −1

  1. Evaluating polymer degradation with complex mixtures using a simplified surface area method.

    Science.gov (United States)

    Steele, Kandace M; Pelham, Todd; Phalen, Robert N

    2017-09-01

    Chemical-resistant gloves, designed to protect workers from chemical hazards, are made from a variety of polymer materials such as plastic, rubber, and synthetic rubber. One material does not provide protection against all chemicals, thus proper polymer selection is critical. Standardized testing, such as chemical degradation tests, are used to aid in the selection process. The current methods of degradation ratings based on changes in weight or tensile properties can be expensive and data often do not exist for complex chemical mixtures. There are hundreds of thousands of chemical products on the market that do not have chemical resistance data for polymer selection. The method described in this study provides an inexpensive alternative to gravimetric analysis. This method uses surface area change to evaluate degradation of a polymer material. Degradation tests for 5 polymer types against 50 complex mixtures were conducted using both gravimetric and surface area methods. The percent change data were compared between the two methods. The resulting regression line was y = 0.48x + 0.019, in units of percent, and the Pearson correlation coefficient was r = 0.9537 (p ≤ 0.05), which indicated a strong correlation between percent weight change and percent surface area change. On average, the percent change for surface area was about half that of the weight change. Using this information, an equivalent rating system was developed for determining the chemical degradation of polymer gloves using surface area.

  2. Study of measurement methods of ultrafine aerosols surface-area for characterizing occupational exposure

    International Nuclear Information System (INIS)

    Bau, S.

    2008-12-01

    This work aims at improving knowledge on ultrafine aerosols surface-area measurement. Indeed, the development of nano-technologies may lead to occupational exposure to airborne nano-structured particles, which involves a new prevention issue. There is currently no consensus concerning what parameter (mass, surface-area, number) should be measured. However, surface-area could be a relevant metric, since it leads to a satisfying correlation with biological effects when nano-structured particles are inhaled. Hence, an original theoretical work was performed to position the parameter of surface-area in relation to other aerosol characteristics. To investigate measurement techniques of nano-structured aerosols surface-area, the experimental facility CAIMAN (Characterization of Instruments for the Measurement of Aerosols of Nano-particles) was designed and built. Within CAIMAN, it is possible to produce nano-structured aerosols with varying and controlled properties (size, concentration, chemical nature, morphology, state-of-charge), stable and reproducible in time. The generated aerosols were used to experimentally characterize the response of the instruments in study (NSAM and AeroTrak 9000 TSI, LQ1-DC Matter Engineering). The response functions measured with monodisperse aerosols show a good agreement with the corresponding theoretical curves in a large size range, from 15 to 520 nm. Furthermore, hypotheses have been formulated to explain the reasonable biases observed when measuring poly-disperse aerosols. (author)

  3. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Directory of Open Access Journals (Sweden)

    Megan M Herting

    Full Text Available Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  4. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Science.gov (United States)

    Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Dahl, Ronald E; Sowell, Elizabeth R

    2015-01-01

    Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal) on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  5. Large area smoothing of surfaces by ion bombardment: fundamentals and applications

    International Nuclear Information System (INIS)

    Frost, F; Fechner, R; Ziberi, B; Voellner, J; Flamm, D; Schindler, A

    2009-01-01

    Ion beam erosion can be used as a process for achieving surface smoothing at microscopic length scales and for the preparation of ultrasmooth surfaces, as an alternative to nanostructuring of various surfaces via self-organization. This requires that in the evolution of the surface topography different relaxation mechanisms dominate over the roughening, and smoothing of initially rough surfaces can occur. This contribution focuses on the basic mechanisms as well as potential applications of surface smoothing using low energy ion beams. In the first part, the fundamentals for the smoothing of III/V semiconductors, Si and quartz glass surfaces using low energy ion beams (ion energy: ≤2000 eV) are reviewed using examples. The topography evolution of these surfaces with respect to different process parameters (ion energy, ion incidence angle, erosion time, sample rotation) has been investigated. On the basis of the time evolution of different roughness parameters, the relevant surface relaxation mechanisms responsible for surface smoothing are discussed. In this context, physical constraints as regards the effectiveness of surface smoothing by direct ion bombardment will also be addressed and furthermore ion beam assisted smoothing techniques are introduced. In the second application-orientated part, recent technological developments related to ion beam assisted smoothing of optically relevant surfaces are summarized. It will be demonstrated that smoothing by direct ion bombardment in combination with the use of sacrificial smoothing layers and the utilization of appropriate broad beam ion sources enables the polishing of various technologically important surfaces down to 0.1 nm root mean square roughness level, showing great promise for large area surface processing. Specific examples are given for ion beam smoothing of different optical surfaces, especially for substrates used for advanced optical applications (e.g., in x-ray optics and components for extreme

  6. SALTSTONE VARIABILITY STUDY - MEASUREMENT OF POROSITY

    International Nuclear Information System (INIS)

    Harbour, J; Vickie Williams, V; Tommy Edwards, T; Russell Eibling, R; Ray Schumacher, R

    2007-01-01

    One of the goals of the Saltstone Variability Study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. One of the key performance properties is porosity which is a measure of the volume percent of a cured grout that is occupied by salt solution (for the saturated case). This report presents (1) the results of efforts to develop a method for the measurement of porosity of grout samples and (2) initial results of porosity values for samples that have been previously produced as part of the Saltstone Variability Study. A cost effective measurement method for porosity was developed that provides reproducible results, is relatively fast (30 to 60 minutes per sample) and uses a Mettler Toledo HR83 Moisture Analyzer that is already operational and routinely calibrated at Aiken County Technology Laboratory. The method involves the heating of the sample at 105 C until no further mass loss is observed. This mass loss value, which is due to water evaporation, is then used to calculate the volume percent porosity of the mix. The results of mass loss for mixes at 105 C were equivalent to the results obtained using thermal gravimetric analysis. The method was validated by comparing measurements of mass loss at 105 C for cured portland cement in water mixes to values presented in the literature for this system. A stereopycnometer from Quantachrome Instruments was selected to measure the cured grout bulk densities. Density is a property that is required to calculate the porosities. A stereopycnometer was already operational at Aiken County Technology Laboratory, has been calibrated using a solid stainless steel sphere of known volume, is cost effective and fast (∼15 minutes per sample). Cured grout densities are important in their own right because they can be used to project the volume of waste form produced from a given amount of salt feed of known composition. For mixes

  7. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    Science.gov (United States)

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  8. Surface Area of Patellar Facets: Inferential Statistics in the Iraqi Population

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Imam

    2017-01-01

    Full Text Available Background. The patella is the largest sesamoid bone in the body; its three-dimensional complexity necessitates biomechanical perfection. Numerous pathologies occur at the patellofemoral unit which may end in degenerative changes. This study aims to test the presence of statistical correlation between the surface areas of patellar facets and other patellar morphometric parameters. Materials and Methods. Forty dry human patellae were studied. The morphometry of each patella was measured using a digital Vernier Caliper, electronic balance, and image analyses software known as ImageJ. The patellar facetal surface area was correlated with patellar weight, height, width, and thickness. Results. Inferential statistics proved the existence of linear correlation of total facetal surface area and patellar weight, height, width, and thickness. The correlation was strongest for surface area versus patellar weight. The lateral facetal area was found persistently larger than the medial facetal area, the p value was found to be <0.001 (one-tailed t-test for right patellae, and another significant p value of < 0.001 (one-tailed t-test was found for left patellae. Conclusion. These data are vital for the restoration of the normal biomechanics of the patellofemoral unit; these are to be consulted during knee surgeries and implant designs and can be of an indispensable anthropometric, interethnic, and biometric value.

  9. Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Taylor, John A.; Easton, Mark A.

    2012-01-01

    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings...... of the casting, while Sr-modified castings solidify in a mushy manner that creates a more homogeneous distribution of porosity in the casting. The amount of porosity was highest in the Sr-modified alloys, lower in the Na-modified alloys, and lowest in the unmodified alloys. The size of the porosity-free layer...... as a function of modification and Si content in sand- and chill-cast samples. Eutectic modification, Si content, and cooling conditions have a great impact on the distribution of porosity. Unmodified and Na-modified castings are more easily fed with porosity tending to congregate near the centerline...

  10. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  11. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  12. Digital photography and transparency-based methods for measuring wound surface area.

    Science.gov (United States)

    Bhedi, Amul; Saxena, Atul K; Gadani, Ravi; Patel, Ritesh

    2013-04-01

    To compare and determine a credible method of measurement of wound surface area by linear, transparency, and photographic methods for monitoring progress of wound healing accurately and ascertaining whether these methods are significantly different. From April 2005 to December 2006, 40 patients (30 men, 5 women, 5 children) admitted to the surgical ward of Shree Sayaji General Hospital, Baroda, had clean as well as infected wound following trauma, debridement, pressure sore, venous ulcer, and incision and drainage. Wound surface areas were measured by these three methods (linear, transparency, and photographic methods) simultaneously on alternate days. The linear method is statistically and significantly different from transparency and photographic methods (P value transparency and photographic methods (P value >0.05). Photographic and transparency methods provided measurements of wound surface area with equivalent result and there was no statistically significant difference between these two methods.

  13. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  14. Development of a certified reference material for specific surface area of quartz sand

    Directory of Open Access Journals (Sweden)

    Egor P Sobina

    2017-01-01

    Full Text Available The paper presents results of conducting research on the development of a certified reference material (CRM for specific surface area of quartz sand, which is practically non-porous and therefore has low specific surface area value ~ 0.8 m2/g. The standard uncertainty due to RM inhomogeneity, the standard uncertainty due to RM instability, as well as the standard uncertainty due to characterization were estimated using the State Primary Standard GET 210‑2014 for Units of Specific Absorption of Gases, Specific Surface Area, Specific Volume, and Pore Size of Solid Substances and Materials. The metrological characteristics of the CRM were determined using a low-temperature gas adsorption method. Krypton was used as an adsorbate to increase measurement accuracy.

  15. High surface area V-Mo-N materials synthesized from amine intercalated foams

    International Nuclear Information System (INIS)

    Krawiec, Piotr; Narayan Panda, Rabi; Kockrick, Emanuel; Geiger, Dorin; Kaskel, Stefan

    2008-01-01

    Nanocrystalline ternary V-Mo nitrides were prepared via nitridation of amine intercalated oxide foams or bulk ternary oxides. Specific surface areas were in the range between 40 and 198 m 2 g -1 and strongly depended on the preparation method (foam or bulk oxide). Foamed precursors were favorable for vanadium rich materials, while for molybdenum rich samples bulk ternary oxides resulted in higher specific surface areas. The materials were characterized via nitrogen physisorption at 77 K, X-ray diffraction patterns, electron microscopy, and elemental analysis. - Graphical abstract: Nanocrystalline ternary V-Mo nitrides were prepared via nitridation of amine intercalated oxide foams or bulk ternary oxides. Foamed precursors were favorable for vanadium rich materials, while for molybdenum rich samples bulk ternary oxides resulted in higher specific surface areas

  16. Contribution to the study of techniques of measurement of interface surface area in bubble flows

    International Nuclear Information System (INIS)

    Veteau, Jean-Michel

    1981-01-01

    This research thesis addresses problems raised by the measurement of the interface area per volume unit in duct bubble flows. The author first reports a literature survey of existing methods (photographic, chemical and optical methods) which give access to the value of the parameter which is commonly named 'specific surface area'. He analyses under which conditions these methods lead to a rigorous determination of the SVIM (mean integral volume surface). The author highlights the theoretical contributions of models related to each of these methods which are indeed global methods as they allow the interface surface area to be directly obtained in a given volume of a two-phase mixture. Then, the author reports the development of an original technique based on the use of phase detecting local probes. In the next part, the author compares photographic and optical methods, on the one hand, and optical and local methods, on the other hand. Recommendations are made for the development of local methods [fr

  17. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  18. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  19. Infinitesimal-area 2D radiative analysis using parametric surface representation, through NURBS

    Energy Technology Data Exchange (ETDEWEB)

    Daun, K J; Hollands, K G.T.

    1999-07-01

    The use of form factors in the treatment of radiant enclosures requires that the radiosity and surface properties be treated as uniform over finite areas. This restriction can be relaxed by applying an infinitesimal-area analysis, where the radiant exchange is taken to be between infinitesimal areas, rather than finite areas. This paper presents a generic infinitesimal-area formulation that can be applied to two-dimensional enclosure problems. (Previous infinitesimal-area analyses have largely been restricted to specific, one-dimensional problems.) Specifically, the paper shows how the analytical expression for the kernel of the integral equation can be obtained without human intervention, once the enclosure surface has been defined parametrically. This can be accomplished by using a computer algebra package or by using NURBS algorithms, which are the industry standard for the geometrical representations used in CAD-CAM codes. Once the kernel has been obtained by this formalism, the 2D integral equation can be set up and solved numerically. The result is a single general-purpose infinitesimal-area analysis code that can proceed from surface specification to solution. The authors have implemented this 2D code and tested it on 1D problems, whose solutions have been given in the literature, obtaining agreement commensurate with the accuracy of the published solutions.

  20. Microbiology of the surface water samples in the high background radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Motamedifar, Mohammad; Zamani, Khosrow; Sedigh, Hadi; Mortazavi, Seyed Mohammad Javad; Taeb, Shahram; Haghani, M.; Mortazavi, Seyed Ali Reza; Soofi, Amir

    2014-01-01

    Residents of high background radiation areas of Ramsar have lived in these areas for many generations and received radiation doses much higher than the dose limit recommended by ICRP for radiation workers. The radioactivity of the high background radiation areas of Ramsar is reported to be due to 226 Ra and its decay products, which have been brought to the surface by the waters of hot springs. Over the past years the department has focused on different aspects of the health effects of the elevated levels of natural radiation in Ramsar. This study was aimed to perform a preliminary investigation on the bioeffects of exposure to elevated levels of natural radiation on the microbiology of surface water samples. Water samples were collected from surface water streams in Talesh Mahalleh district, Ramsar as well as a nearby area with normal levels of background radiation. Only two strains of bacteria, that is, Providencia stuartii and Shimwellia blattae, could be isolated from the water samples collected from high background radiation areas, while seven strains (Escherichia coli, Enterobacter asburiae, Klebsiella pneumoniae, Shigella dysenteriae, Buttiauxella agerstis, Tatumella punctuata and Raoultella ornithinolytica) were isolated from the water samples collected from normal background radiation areas. All the bacteria isolated from water samples of high and normal background radiation areas were sensitive to ultraviolet radiation, heat, betadine, alcohol, and deconex. Although other investigators have reported that bacteria isolated from hot springs show radioresistance, the results reported here do not reveal any adaptive response. (author)

  1. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  2. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    OpenAIRE

    Chen, Po Chun; Hsieh, Sheng Jen; Chen, Chien Chon; Zou, Jun

    2013-01-01

    We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless inj...

  3. Plant fibre composites - porosity and stiffness

    DEFF Research Database (Denmark)

    Madsen, Bo; Thygesen, Anders; Lilholt, Hans

    2009-01-01

    Plant fibre composites contain typically a relatively large amount of porosity which influences their performance. A model, based on a modified rule of mixtures, is presented to include the influence of porosity on the composite stiffness. The model integrates the volumetric composition...... of the composites with their mechanical properties. The fibre weight fraction is used as an independent parameter to calculate the complete volumetric composition. A maximum obtainable stiffness of the composites is calculated at a certain transition fibre weight fraction, which is characterised by a best possible...... combination of high fibre volume fraction and low porosity. The model is validated with experimental data from the literature on several types of composites. A stiffness diagram is presented to demonstrate that the calculations can be used for tailoring and design of composites with a given profile...

  4. DMSA scan nomograms for renal length and area: Related to patient age and to body weight, height or surface area

    International Nuclear Information System (INIS)

    Hassan, I.M.; Que, L.; Rutland, M.D.

    2002-01-01

    Aim: To create nomograms for renal size as measured from DMSA renal studies, and to test the nomograms for their ability to separate normal from abnormal kidneys. Method: Renal length was measured from posterior oblique views and renal area from posterior views. Results from 253 patients with bilateral normal kidneys were used to create nomograms for renal size relative to patient age, body height, weight or body surface area (BSA). The nomograms enclosed 95% of the normal kidneys, thus indicating the range for 95% confidence limits, and hence the specificity. Each nomogram was then tested against 46 hypertrophied kidneys and 46 damaged kidneys. Results: The results from nomograms of renal length and renal area, compared to age, body height, body weight and BSA are presented. For each nomogram, the range is presented as a fraction of the mean value, and the number of abnormal kidneys (hypertrophied or damaged) outside the normal range is presented as a percentage (indicating the sensitivity). Conclusion: Renal Area was no better than renal length for detecting abnormal kidneys. Patient age was the least useful method of normalisation. BSA normalisation produced the best results most frequently (narrower ranges and highest detection of abnormal kidneys)

  5. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  6. Whole object surface area and volume of partial-view 3D models

    International Nuclear Information System (INIS)

    Mulukutla, Gopal K; Proussevitch, Alexander A; Genareau, Kimberly D; Durant, Adam J

    2017-01-01

    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in ‘partial-view’ models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values. (paper)

  7. Stereological estimation of surface area and barrier thickness of fish gills in vertical sections.

    Science.gov (United States)

    Da Costa, Oscar T F; Pedretti, Ana Carolina E; Schmitz, Anke; Perry, Steven F; Fernandes, Marisa N

    2007-01-01

    Previous morphometric methods for estimation of the volume of components, surface area and thickness of the diffusion barrier in fish gills have taken advantage of the highly ordered structure of these organs for sampling and surface area estimations, whereas the thickness of the diffusion barrier has been measured orthogonally on perpendicularly sectioned material at subjectively selected sites. Although intuitively logical, these procedures do not have a demonstrated mathematical basis, do not involve random sampling and measurement techniques, and are not applicable to the gills of all fish. The present stereological methods apply the principles of surface area estimation in vertical uniform random sections to the gills of the Brazilian teleost Arapaima gigas. The tissue was taken from the entire gill apparatus of the right-hand or left-hand side (selected at random) of the fish by systematic random sampling and embedded in glycol methacrylate for light microscopy. Arches from the other side were embedded in Epoxy resin. Reference volume was estimated by the Cavalieri method in the same vertical sections that were used for surface density and volume density measurements. The harmonic mean barrier thickness of the water-blood diffusion barrier was calculated from measurements taken along randomly selected orientation lines that were sine-weighted relative to the vertical axis. The values thus obtained for the anatomical diffusion factor (surface area divided by barrier thickness) compare favourably with those obtained for other sluggish fish using existing methods.

  8. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  9. Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister

    International Nuclear Information System (INIS)

    J.W. Davis

    1999-01-01

    The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR. Estimates of volumes, masses, and surface areas are needed as input to structural, thermal, geochemical, nuclear criticality, and radiation shielding calculations to ensure the viability of the proposed disposal configuration

  10. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  11. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira; El Tall, Omar; Rasul, Shahid; Hedhili, Mohamed N.; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  12. Description of surface systems. Preliminary site description Simpevarp sub area - Version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias [ed.

    2005-03-01

    Swedish Nuclear Fuel and Waste Management Co is currently conducting site characterisation in the Simpevarp area. The area is divided into two subareas, the Simpevarp and the Laxemar subarea. The two subareas are surrounded by a common regional model area, the Simpevarp area. This report describes both the regional area and the subareas. This report is an interim version (model version 1.2) of the description of the surface systems at the Simpevarp area, and should be seen as a background report to the site description of the Simpevarp area, version 1.2, SKB-R--05-08. The basis for this description is quality-assured field data available in the SKB SICADA and GIS databases, together with generic data from the literature. The Surface system, here defined as everything above the bedrock, comprises a number of separate disciplines (e.g. hydrology, geology, topography, oceanography and ecology). Each discipline has developed descriptions and models for a number of properties that together represent the site description. The current methodology for developing the surface system description and the integration to ecosystem models is documented in a methodology strategy report SKB-R--03-06. The procedures and guidelines given in that report were followed in this report. Compared with version 1.1 of the surface system description SKB-R--04-25, this report presents considerable additional features, especially in the ecosystem description (Chapter 4) and in the description of the surface hydrology (Section 3.4). A first attempt has also been made to connect the flow of matter (carbon) between the different ecosystems into an overall ecosystem model at a landscape level. A summarised version of this report is also presented in SKB-R--05-08 together with geological-, hydrogeological-, transport properties-, thermal properties-, rock mechanics- and hydrogeochemical descriptions.

  13. Is the planum temporale surface area a marker of hemispheric or regional language lateralization?

    Science.gov (United States)

    Tzourio-Mazoyer, Nathalie; Crivello, Fabrice; Mazoyer, Bernard

    2018-04-01

    We investigated the association between the left planum temporale (PT) surface area or asymmetry and the hemispheric or regional functional asymmetries during language production and perception tasks in 287 healthy adults (BIL&GIN) who were matched for sex and handedness. The measurements of the PT surface area were performed after manually delineating the region using brain magnetic resonance images (MRI) and considering the Heschl's gyrus (HG) duplication pattern; the measurements either included (PT tot ) or did not include (PT post ) the second gyrus. A region encompassing both the PT and HG (HGPT) was also studied. Regardless of the ROI measured, 80% of the sample had a positive left minus right PT asymmetry. We first tested whether the PT tot , PT post and HGPT surface areas in the left or right hemispheres or PT asymmetries differed in groups of individuals varying in language lateralization by assessing their hemispheric index during a sentence production minus word list production task. We then investigated the association between these different measures of the PT anatomy and the regional asymmetries measured during the task. Regardless of the anatomical definition used, we observed no correlations between the left surface areas or asymmetries and the hemispheric or regional functional asymmetries during the language production task. We then performed a similar analysis using the same sample measuring language functional lateralization during speech listening tasks (i.e., listening to sentences and lists of words). Although the hemispheric lateralization during speech listening was not correlated with the left PT tot , PT post or HGPT surface areas or the PT asymmetries, significant positive correlations were observed between the asymmetries in these regions and the regional functional asymmetries measured in areas adjacent to the end of the Sylvian fissure while participants listened to the word lists or sentences. The PT asymmetry thus appears to be

  14. Description of surface systems. Preliminary site description Simpevarp sub area - Version 1.2

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2005-03-01

    Swedish Nuclear Fuel and Waste Management Co is currently conducting site characterisation in the Simpevarp area. The area is divided into two subareas, the Simpevarp and the Laxemar subarea. The two subareas are surrounded by a common regional model area, the Simpevarp area. This report describes both the regional area and the subareas. This report is an interim version (model version 1.2) of the description of the surface systems at the Simpevarp area, and should be seen as a background report to the site description of the Simpevarp area, version 1.2, SKB-R--05-08. The basis for this description is quality-assured field data available in the SKB SICADA and GIS databases, together with generic data from the literature. The Surface system, here defined as everything above the bedrock, comprises a number of separate disciplines (e.g. hydrology, geology, topography, oceanography and ecology). Each discipline has developed descriptions and models for a number of properties that together represent the site description. The current methodology for developing the surface system description and the integration to ecosystem models is documented in a methodology strategy report SKB-R--03-06. The procedures and guidelines given in that report were followed in this report. Compared with version 1.1 of the surface system description SKB-R--04-25, this report presents considerable additional features, especially in the ecosystem description (Chapter 4) and in the description of the surface hydrology (Section 3.4). A first attempt has also been made to connect the flow of matter (carbon) between the different ecosystems into an overall ecosystem model at a landscape level. A summarised version of this report is also presented in SKB-R--05-08 together with geological-, hydrogeological-, transport properties-, thermal properties-, rock mechanics- and hydrogeochemical descriptions

  15. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  16. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Khoda, A K M [Department of Industrial Engineering, University at Buffalo, Buffalo, NY 14260 (United States); Ozbolat, Ibrahim T [Department of Mechanical and Industrial Engineering, Center for Computer Aided Design, University of Iowa, Iowa City, IA 52242-1527 (United States); Koc, Bahattin, E-mail: bahattinkoc@sabanciuniv.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956 (Turkey)

    2011-09-15

    This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieved with a combination of two geometrically oriented consecutive layers. The desired porosity has been achieved with consecutive layers by geometrically partitioning each layer into sub-regions based on the area and the tissue scaffold design constraints. A continuous, interconnected and optimized tool-path for layers has been generated for a three-dimensional biomaterial deposition/printing process. A zigzag pattern tool-path has been proposed for an accumulated sub-region layer, and a concentric spiral-like optimal tool-path pattern has been generated for the successive layer to ensure continuity along the structure. Three-dimensional layers, formed by the proposed tool-path plan, vary the pore size and the porosity based on the biological and mechanical requirements. Several examples demonstrate the proposed methodology along with illustrative results. Also a comparative study between the proposed design and conventional Cartesian coordinate scaffolds has been performed. The results demonstrate a significant reduction in design error with the proposed method. Moreover, sample examples have been fabricated using a micro-nozzle biomaterial deposition system, and characterized for validation.

  17. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication

    International Nuclear Information System (INIS)

    Khoda, A K M; Ozbolat, Ibrahim T; Koc, Bahattin

    2011-01-01

    This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieved with a combination of two geometrically oriented consecutive layers. The desired porosity has been achieved with consecutive layers by geometrically partitioning each layer into sub-regions based on the area and the tissue scaffold design constraints. A continuous, interconnected and optimized tool-path for layers has been generated for a three-dimensional biomaterial deposition/printing process. A zigzag pattern tool-path has been proposed for an accumulated sub-region layer, and a concentric spiral-like optimal tool-path pattern has been generated for the successive layer to ensure continuity along the structure. Three-dimensional layers, formed by the proposed tool-path plan, vary the pore size and the porosity based on the biological and mechanical requirements. Several examples demonstrate the proposed methodology along with illustrative results. Also a comparative study between the proposed design and conventional Cartesian coordinate scaffolds has been performed. The results demonstrate a significant reduction in design error with the proposed method. Moreover, sample examples have been fabricated using a micro-nozzle biomaterial deposition system, and characterized for validation.

  18. A functionally gradient variational porosity architecture for hollowed scaffolds fabrication.

    Science.gov (United States)

    Khoda, A K M; Ozbolat, Ibrahim T; Koc, Bahattin

    2011-09-01

    This paper presents a novel continuous tool-path planning methodology for hollowed scaffold fabrication in tissue engineering. A new functionally gradient porous architecture is proposed with a continuous material deposition planning scheme. A controllable variational pore size and hence the porosity have been achieved with a combination of two geometrically oriented consecutive layers. The desired porosity has been achieved with consecutive layers by geometrically partitioning each layer into sub-regions based on the area and the tissue scaffold design constraints. A continuous, interconnected and optimized tool-path for layers has been generated for a three-dimensional biomaterial deposition/printing process. A zigzag pattern tool-path has been proposed for an accumulated sub-region layer, and a concentric spiral-like optimal tool-path pattern has been generated for the successive layer to ensure continuity along the structure. Three-dimensional layers, formed by the proposed tool-path plan, vary the pore size and the porosity based on the biological and mechanical requirements. Several examples demonstrate the proposed methodology along with illustrative results. Also a comparative study between the proposed design and conventional Cartesian coordinate scaffolds has been performed. The results demonstrate a significant reduction in design error with the proposed method. Moreover, sample examples have been fabricated using a micro-nozzle biomaterial deposition system, and characterized for validation.

  19. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    Science.gov (United States)

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  20. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    Science.gov (United States)

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  1. Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images

    International Nuclear Information System (INIS)

    N'Diaye, Mambaye; Degeratu, Cristinel; Bouler, Jean-Michel; Chappard, Daniel

    2013-01-01

    Porous structures are becoming more and more important in biology and material science because they help in reducing the density of the grafted material. For biomaterials, porosity also increases the accessibility of cells and vessels inside the grafted area. However, descriptors of porosity are scanty. We have used a series of biomaterials with different types of porosity (created by various porogens: fibers, beads …). Blocks were studied by microcomputed tomography for the measurement of 3D porosity. 2D sections were re-sliced to analyze the microarchitecture of the pores and were transferred to image analysis programs: star volumes, interconnectivity index, Minkowski–Bouligand and Kolmogorov fractal dimensions were determined. Lacunarity and succolarity, two recently described fractal dimensions, were also computed. These parameters provided a precise description of porosity and pores' characteristics. Non-linear relationships were found between several descriptors e.g. succolarity and star volume of the material. A linear correlation was found between lacunarity and succolarity. These techniques appear suitable in the study of biomaterials usable as bone substitutes. Highlights: ► Interconnected porosity is important in the development of bone substitutes. ► Porosity was evaluated by 2D and 3D morphometry on microCT images. ► Euclidean and fractal descriptors measure interconnectivity on 2D microCT images. ► Lacunarity and succolarity were evaluated on a series of porous biomaterials

  2. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    2014-01-01

    of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35......, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying...... prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area...

  3. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries.

    Science.gov (United States)

    Costello, Mark John; Cheung, Alan; De Hauwere, Nathalie

    2010-12-01

    Depth and topography directly and indirectly influence most ocean environmental conditions, including light penetration and photosynthesis, sedimentation, current movements and stratification, and thus temperature and oxygen gradients. These parameters are thus likely to influence species distribution patterns and productivity in the oceans. They may be considered the foundation for any standardized classification of ocean ecosystems and important correlates of metrics of biodiversity (e.g., species richness and composition, fisheries). While statistics on ocean depth and topography are often quoted, how they were derived is rarely cited, and unless calculated using the same spatial resolution the resulting statistics will not be strictly comparable. We provide such statistics using the best available resolution (1-min) global bathymetry, and open source digital maps of the world's seas and oceans and countries' Exclusive Economic Zones, using a standardized methodology. We created a terrain map and calculated sea surface and seabed area, volume, and mean, standard deviation, maximum, and minimum, of both depth and slope. All the source data and our database are freely available online. We found that although the ocean is flat, and up to 71% of the area has a ocean volume exceeds 1.3 billion km(3) (or 1.3 sextillion liters), and sea surface and seabed areas over 354 million km(2). We propose the coefficient of variation of slope as an index of topographic heterogeneity. Future studies may improve on this database, for example by using a more detailed bathymetry, and in situ measured data. The database could be used to classify ocean features, such as abyssal plains, ridges, and slopes, and thus provide the basis for a standards based classification of ocean topography.

  4. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Science.gov (United States)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  5. The effects of porosity in friction performance of brake pad using waste tire dust

    Directory of Open Access Journals (Sweden)

    İbrahim Mutlu

    2015-10-01

    Full Text Available Abstract This research is focused on the effect of porosity on the friction-wear properties of automotive brake pads. Waste Tire Dust (WTD was used as a new friction material in brake pads. Newly formulated brake pad materials with five different components have been produced by conventional techniques. In the experimental studies, the change of the friction coefficient, the temperature of the friction surface, the specific wear rate, and the hardness, density and porosity were measured. In addition, the micro-structural characterizations of brake pads are determined using Scanning Electron Microscopy (SEM. The mean coefficient of friction, porosity and specific wear are increased due to a WTD rate increases, on the other hand, hardness and density are decreased. As a result, WTD can be considered as an alternative to revalorize this kind of waste products in the brake pads and the amount of porosity of the brake pad affected the friction coefficient and wear behavior of the pad.

  6. Rayleigh waves in elastic medium with double porosity

    Directory of Open Access Journals (Sweden)

    Rajneesh KUMAR

    2018-03-01

    Full Text Available The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous elastic half-space with double porosity whose surface is subjected to stress-free boundary conditions. The compact secular equations for elastic solid half-space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of Rayleigh wave velocity and attenuation coe¢ cient have been presented graphically.

  7. Changes in thickness and surface area of the human cortex and their relationship with intelligence.

    Science.gov (United States)

    Schnack, Hugo G; van Haren, Neeltje E M; Brouwer, Rachel M; Evans, Alan; Durston, Sarah; Boomsma, Dorret I; Kahn, René S; Hulshoff Pol, Hilleke E

    2015-06-01

    Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface over time in 504 healthy subjects. At 10 years of age, more intelligent children have a slightly thinner cortex than children with a lower IQ. This relationship becomes more pronounced with increasing age: with higher IQ, a faster thinning of the cortex is found over time. In the more intelligent young adults, this relationship reverses so that by the age of 42 a thicker cortex is associated with higher intelligence. In contrast, cortical surface is larger in more intelligent children at the age of 10. The cortical surface is still expanding, reaching its maximum area during adolescence. With higher IQ, cortical expansion is completed at a younger age; and once completed, surface area decreases at a higher rate. These findings suggest that intelligence may be more related to the magnitude and timing of changes in brain structure during development than to brain structure per se, and that the cortex is never completed but shows continuing intelligence-dependent development. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Surface runoff from urban areas. New aspects; Neue Aspekte in der Behandlung von Siedlungsabfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Stephan [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Bereich Siedlungswasserwirtschaft und Wasserguetewirtschaft; Lambert, Benedikt [Bioplan Landeskulturgesellschaft, Sinsheim (Germany); Grotehusmann, Dieter [Ingenieurgesellschaft fuer Stadthydrologie, Hannover (Germany)

    2010-12-15

    The surface runoff from urban areas is one of the most important sources of pollutants emitted into surface waters. Suspended solids which act as a transport vehicle for many anthropogenic pollutants (e. g. heavy metals, PAH) are a key factor in this regard. The development of efficient measures of storm water runoff treatment thus requires a further differentiation of suspended solids in a fine (clay and silt) and coarse (sand and gravel) fraction. Both fractions show distinctly different characteristics in pollutant loading, transport and retention on urban surfaces and sewer systems. The primary aim of storm water runoff treatment is the reduction of the fine particles which are always highly loaded with anthropogenic pollutants. In contrast the coarse particles are almost unpolluted especially if they have a low organic share. The widespread sedimentation tanks with surface loadings between 10 and 2 m/h are very inefficient. A significant, save and lasting reduction of the emitted load of fine particles requires a considerable reduction of the surface loads. That can be achieved with the installation of lamellar settler or the utilization of the very large volumes of flood management tanks frequently present in urban areas. Filtration plants are highly efficient but there application in urban areas is limited due to their high space demands. (orig.)

  9. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  10. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    Science.gov (United States)

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  11. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  12. Aggregate surface areas quantified through laser measurements for South African asphalt mixtures

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available design. This paper introduces the use of a three-dimensional (3D) laser scanning method to directly measure the surface area of aggregates used in road pavements in South Africa. As an application of the laser-based measurements, the asphalt film...

  13. Uncovering surface area and micropores in almond shell biochars by rainwater wash

    Science.gov (United States)

    Biochars have been considered for adsorption of contaminants in soil and water, as well as conditioning and improving soil quality. One important property of the biochar is surface area in the pores of the biochar. Biochars were created from almond shells from two almond varieties with different ash...

  14. Specific surface area behavior of a dissolving population of particles. Augmenting Mercer Dissolution Theory

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Rothenberg, S.J.

    1986-01-01

    Specific surface area (Sp) measurements were made on two uranium oxide aerosol materials before and after in vitro dissolution studies were performed on the materials. The results of these Sp measurements were evaluated relative to predictions made from extending Mercer dissolution theory to describe the Sp behavior of a dissolving population of particles

  15. An empirical method for estimating surface area of aggregates in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    R.P. Panda

    2016-04-01

    Full Text Available Bitumen requirement in hot mix asphalt (HMA is directly dependent on the surface area of the aggregates in the mix, which in turn has effect on the asphalt film thickness and the flow characteristics. The surface area of aggregate blend in HMA is calculated using the specific surface area factors assigned to percentage passing through some specific standard sieve sizes and the imaging techniques. The first process is less capital intensive, but purely manual and labour intensive and prone to human errors. Imaging techniques though eliminating the human errors, still have limited use due to capital intensiveness and requirement of well-established laboratories with qualified technicians. Most of the developing countries like India are shortage of well-equipped laboratories and qualified technicians. To overcome these difficulties, the present mathematical model has been developed to estimate the surface area of aggregate blend of HMA from physical properties of aggregates evaluated using simple laboratory equipment. This model has been validated compared with the existing established methods of calculations and can be used as one of the tools in different developing and under developed countries for proper design of HMA.

  16. Developing Open-Ended Questions for Surface Area and Volume of Beam

    Science.gov (United States)

    Kurniawan, Henry; Putri, Ratu Ilma Indra; Hartono, Yusuf

    2018-01-01

    The purpose of this research was to show open-ended questions about surface area and beam volume which valid and practice, have potential effect. This research is research development which consists of two main phases: preliminary phase (preparation phase and problem design) and formative evaluation phase (evaluation and revision phases). The…

  17. Flow analysis of water-powder mixtures: Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  18. Flow analysis of water-powder mixtures : Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  19. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents

    NARCIS (Netherlands)

    E. Chatelut (Etienne); M.L. White-Koning (M.); A.H.J. Mathijssen (Ron); F. Puisset (F.); S.D. Baker (Sharyn); A. Sparreboom (Alex)

    2012-01-01

    textabstractBackground: Dose banding is a recently suggested dosing method that uses predefined ranges (bands) of body surface area (BSA) to calculate each patients dose by using a single BSA-value per band. Thus, drugs with sufficient long-term stability can be prepared in advance. The main

  20. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  1. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  2. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    NARCIS (Netherlands)

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This

  3. Preparation of MgO Catalytic Support in Shaped Mesoporous High Surface Area Form

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Šolcová, Olga; Zdražil, Miroslav

    2004-01-01

    Roč. 76, 1-3 (2004), s. 137-149 ISSN 1387-1811 R&D Projects: GA AV ČR IAA4072306 Institutional research plan: CEZ:AV0Z4072921 Keywords : MgO support * sigh Surface area * texture Subject RIV: CC - Organic Chemistry Impact factor: 2.093, year: 2004

  4. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    International Nuclear Information System (INIS)

    Piepsz, Amy; Tondeur, Marianne; Ham, Hamphrey

    2008-01-01

    51 Cr ethylene diamine tetraacetic acid ( 51 Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right 99m Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for 51 Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  5. Allometric relationships for surface area and dry mass of young Norway spruce aboveground organs

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Radek; Tomášková, Ivana

    53 2007, č. 12 (2007), s. 548-554 ISSN 1212-4834 R&D Projects: GA MŽP(CZ) SP/2D1/93/07 Institutional research plan: CEZ:AV0Z60870520 Keywords : allometry * biomass, * Picea abies * sapwood * surface area Subject RIV: GK - Forestry

  6. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    Science.gov (United States)

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  7. Should blood flow during cardiopulmonary bypass be individualized more than to body surface area?

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Larsson, A; Andreasen, Jan Jesper

    Blood flow during cardiopulmonary bypass (CPB) is calculated on body surface area (BSA). Increasing comorbidity, age and weight of today's cardiac patients question this calculation as it may not reflect individual metabolic requirement. The hypothesis was that a measured cardiac index (CI) prior...

  8. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    Energy Technology Data Exchange (ETDEWEB)

    Piepsz, Amy; Tondeur, Marianne [CHU St. Pierre, Department of Radioisotopes, Brussels (Belgium); Ham, Hamphrey [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2008-09-15

    {sup 51}Cr ethylene diamine tetraacetic acid ({sup 51}Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right {sup 99m}Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for {sup 51}Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  9. Area densitometry using rotating Scheimpflug photography for posterior capsule opacification and surface light scattering analyses.

    Science.gov (United States)

    Minami, Keiichiro; Honbo, Masato; Mori, Yosai; Kataoka, Yasushi; Miyata, Kazunori

    2015-11-01

    To compare area densitometry analysis using rotating Scheimpflug photography in quantifications of posterior capsule opacification (PCO) and surface light scattering with previous anterior-segment analyzer measurement. Miyata Eye Hospital, Miyazaki, Japan. Prospective observational case series. Scheimpflug images of eyes with foldable intraocular lenses (IOLs) were obtained using rotating and fixed Scheimpflug photography. Area densitometry on the posterior and anterior surfaces was conducted for PCO and surface light scattering analyses, respectively, with an identical area size. Correlation between two measurements was analyzed using linear regression. The study included 105 eyes of 74 patients who received IOLs 1 to 18 years (mean, 4.9 ± 4.5 years) postoperatively. In the PCO analysis on the posterior IOL surface, there was a significant correlation between the two measurements (P photography exhibited saturation due to intensive scatterings. Area densitometry combined with a rotating Scheimpflug photography was exchangeable to previously established densitometry measurement, and allowed successive evaluation in longer-term observations. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Surface area of lactose and lactose granulates on consolidation and compaction

    NARCIS (Netherlands)

    Riepma, Klaas Alouis

    1993-01-01

    This dissertation discusses the effect of short time storage at different conditions on the strength and the specific BET surface area of lactose tablets. In addition, some aspects are studied of the consolidation and compaction properties of crystalline lactose fractions in heterogeneous systems.

  11. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  12. Oscillations of centroid position and surface area of soccer teams in small-sided games

    NARCIS (Netherlands)

    Frencken, Wouter; Lemmink, Koen; Delleman, Nico; Visscher, Chris

    2011-01-01

    There is a need for a collective variable that captures the dynamics of team sports like soccer at match level. The centroid positions and surface areas of two soccer teams potentially describe the coordinated flow of attacking and defending in small-sided soccer games at team level. The aim of the

  13. Determination of Meteorite Porosity Using Liquid Nitrogen

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  14. Void porosity measurements in coastal structures

    NARCIS (Netherlands)

    Bosma, C.; Verhagen, H.J.; D'Angremond, K.; Sint Nicolaas, W.

    2002-01-01

    The paper describes the use of two fundamental design parameters, the void porosity and layer thickness in rock armour constructions. These design parameters are very sensible for factors such as the boundary definition of a rock layer, rock production properties, intrinsic properties and

  15. Optimization and Development of Swellable Controlled Porosity ...

    African Journals Online (AJOL)

    Purpose: To develop swellable controlled porosity osmotic pump tablet of theophylline and to define the formulation and process variables responsible for drug release by applying statistical optimization technique. Methods: Formulations were prepared based on Taguchi Orthogonal Array design and Fraction Factorial ...

  16. Surface water and groundwater interaction in selected areas of Indus basin

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Tariq, J.A.; Latif, Z.; Malik, M.R.

    2011-08-01

    Isotope hydrological investigations were carried out in Marala-Khanki Area of Punjab for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water (Chenab River) samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no significant contribution of surface water to groundwater recharge in Marala-Khanki Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of Tarbala lake are higher than those of main lake. Indus river meaning that there is significant contribution of base flow in this pocket. Isotopic data of Indus river showed an increase at Tunsa as compared to Chashma in flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  17. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  18. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  19. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    International Nuclear Information System (INIS)

    Chen, P.Ch.; Zou, J.; Hsieh, Sh.J.; Chen, Ch.Ch.

    2013-01-01

    We proposed fabricating an aluminum micro needle array with a nano channel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The micro needle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nano channel template. Therefore, the micro needle array can potentially be used in many technology applications. This 3D micro needle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the micro needle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the micro needle array can further be used on many detecting, storing, or drug delivering applications.

  20. Investigation on large-area fabrication of vivid shark skin with superior surface functions

    Science.gov (United States)

    Chen, Huawei; Zhang, Xin; Ma, Lingxi; Che, Da; Zhang, Deyuan; Sudarshan, T. S.

    2014-10-01

    Shark skin has attracted worldwide attention because of its superior drag reduction, antifouling performance induced from its unique surface morphology. Although the vivid shark skin has been fabricated by a bio-replicated micro-imprinting approach in previous studies and superior drag reduction effect has been validated in water tunnel, continuous large-area fabrication is still an obstacle to wide apply. In this paper, one novel bio-replication coating technology is proposed for large-area transfer of shark skin based on rapid UV curable paint. Apart from design of coating system, bio-replication accuracy of surface morphology was validated about 97% by comparison between shark skin template and coating surface morphology. Finally, the drag reduction and anti-fouling function of coating surface were tested in water tunnel and open algae pond respectively. Drag reduction rate of coating surface was validated about 12% higher and anti-fouling was proved to about hundred times ameliorate, all of which are more excellent than simple 2D riblet surface.

  1. Changes in porosity of graphite caused by radiolytic gasification by carbon dioxide

    International Nuclear Information System (INIS)

    Murdie, Neil; Edwards, I.A.S.; Marsh, Harry

    1986-01-01

    Methods have been developed to study porosity in nuclear grade graphite. The changes induced during the radiolytic gasification of graphite in carbon dioxide have been investigated. Porosity in radiolytically gasified graphite (0-22.8% wt. loss) was examined by optical microscopy and scanning electron microscopy (SEM). Each sample was vacuum impregnated with a slow-setting resin containing a fluorescent dye. Optical microscopy was used to study pores >2 μm 2 c.s.a. A semi-automatic image analysis system linked to the optical microscope enabled pore parameter data including cross-sectional areas, perimeters, Feret's diameters and shape factors, to be collected. The results showed that radiolytic gasification produced a large increase in the number of pores 2 c.s.a. New open pores 2 c.s.a. were developed by gasification of existing open porosity into the closed porosity ( 2 c.s.a.) within the binder-coke. Open pores, 2-100 μm 2 c.s.a., which were gasified within the coarse-grained mosaics of the binder-coke. In the gasification process to 22.8% wt. loss, the apparent open pore volume increased from 6.6 to 33.8% and the apparent closed pore volumes decreased from approx. 3% to 0.1%. The increase in apparent open porosity from 6.6% (virgin) to 33.8% resulted from gasification within original open porosity and by the opening and development of closed porosity. There was no evidence for creation of porosity from within the 'bulk' graphite, it being developed from existing fine porosity. The structure of pores > 100 μm 2 c.s.a. showed no change because of the inhibition of oxidation by deposition of carbonaceous species from the CH 4 inhibitor. Such species diffuse to the pore wall and are sacrificially oxidised. (author)

  2. Study of LiFePO{sub 4} cathode materials coated with high surface area carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng-Zhang; Fey, George Ting-Kuo [Department of Chemical and Materials Engineering, National Central University, Chung-Li 32054 (China); Kao, Hsien-Ming [Department of Chemistry, National Central University, Chung-Li 32054 (China)

    2009-04-01

    LiFePO{sub 4} is a potential cathode material for 4 V lithium-ion batteries. Carbon-coated lithium iron phosphates were prepared using a high surface area carbon to react precursors through a solid-state process, during which LiFePO{sub 4} particles were embedded in amorphous carbon. The carbonaceous materials were synthesized by the pyrolysis of peanut shells under argon, where they were carbonized in a two-step process that occurred between 573 and 873 K. The shells were also treated with a proprietary porogenic agent with the goal of altering the pore structure and surface area of the pyrolysis products. The electrochemical properties of the as-prepared LiFePO{sub 4}/C composite cathode materials were systematically characterized by X-ray diffraction, scanning electron microscope, element mapping, energy dispersive spectroscopy, Raman spectroscopy, and total organic carbon (TOC) analysis. In LiFePO{sub 4}/C composites, the carbon not only increases rate capability, but also stabilizes capacity. In fact, the capacity of the composites increased with the specific surface area of carbon. The best result was observed with a composite made of 8.0 wt.% with a specific surface area of 2099 m{sup 2} g{sup -1}. When high surface area carbon was used as a carbon source to produce LiFePO{sub 4}, overall conductivity increased from 10{sup -8} to 10{sup -4} S cm{sup -1}, because the inhibition of particle growth during the final sintering process led to greater specific capacity, improved cycling properties and better rate capability compared to a pure olivine LiFePO{sub 4} material. (author)

  3. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  4. Location of unaccessible implant surface areas during debridement in simulated peri-implantitis therapy.

    Science.gov (United States)

    Steiger-Ronay, Valerie; Merlini, Andrea; Wiedemeier, Daniel B; Schmidlin, Patrick R; Attin, Thomas; Sahrmann, Philipp

    2017-11-28

    An in vitro model for peri-implantitis treatment was used to identify areas that are clinically difficult to clean by analyzing the pattern of residual stain after debridement with commonly employed instruments. Original data from two previous publications, which simulated surgical (SA) and non-surgical (NSA) implant debridement on two different implant systems respectively, were reanalyzed regarding the localization pattern of residual stains after instrumentation. Two blinded examiners evaluated standardized photographs of 360 initially ink-stained dental implants, which were cleaned at variable defect angulations (30, 60, or 90°), using different instrument types (Gracey curette, ultrasonic scaler or air powder abrasive device) and treatment approaches (SA or NSA). Predefined implant surface areas were graded for residual stain using scores ranging from one (stain-covered) to six (clean). Score differences between respective implant areas were tested for significance by pairwise comparisons using Wilcoxon-rank-sum-tests with a significance level α = 5%. Best scores were found at the machined surface areas (SA: 5.58 ± 0.43, NSA: 4.76 ± 1.09), followed by the tips of the threads (SA: 4.29 ± 0.44, NSA: 4.43 ± 0.61), and areas between threads (SA: 3.79 ± 0.89, NSA: 2.42 ± 1.11). Apically facing threads were most difficult to clean (SA: 1.70 ± 0.92, NSA: 2.42 ± 1.11). Here, air powder abrasives provided the best results. Machined surfaces at the implant shoulder were well accessible and showed least amounts of residual stain. Apically facing thread surfaces constituted the area with most residual stain regardless of treatment approach.

  5. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 ''data freeze'' (July 31, 2004). The area covered in the conceptual and descriptive modelling is characterised by a low relief and a small-scale topography. Almost the whole area is located below 20 m a s l (metres above sea level). The corrected mean annual precipitation is 600-650 mm and the mean annual evapotranspiration can be estimated to a little more than 400 mm, leaving approximately 200 mm x year-1 for runoff. Till is the dominating Quaternary deposit covering approximately 75% of the area. In most of the area, the till is sandy. Bedrock outcrops are frequent but cover only approximately 5% of the area. Direct groundwater recharge from precipitation is the dominant source of groundwater recharge. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The sediment stratigraphy of lakes and wetlands is crucial for their function as discharge areas for groundwater. Comparisons between measured lake water levels and groundwater levels below and around lakes indicate that the lakes in some cases may act as sources of groundwater recharge. Specifically, observations from Lake Bolundsfjaerden and Lake Eckarfjaerden show that such conditions were at hand during the dry summer of 2003. However, whether the observed water level relations correspond to significant water fluxes depends also on the hydrogeological properties of the lake sediments and the underlying Quaternary deposits. ''Old'' water with high

  6. Monte Carlo Study on Gas Pressure Response of He-3 Tube in Neutron Porosity Logging

    Directory of Open Access Journals (Sweden)

    TIAN Li-li;ZHANG Feng;WANG Xin-guang;LIU Jun-tao

    2016-10-01

    Full Text Available Thermal neutrons are detected by (n,p reaction of Helium-3 tube in the compensated neutron logging. The helium gas pressure in the counting area influences neutron detection efficiency greatly, and then it is an important parameter for neutron porosity measurement accuracy. The variation law of counting rates of a near detector and a far one with helium gas pressure under different formation condition was simulated by Monte Carlo method. The results showed that with the increasing of helium pressure the counting rate of these detectors increased firstly and then leveled off. In addition, the neutron counting rate ratio and porosity sensitivity increased slightly, the porosity measurement error decreased exponentially, which improved the measurement accuracy. These research results can provide technical support for selecting the type of Helium-3 detector in developing neutron porosity logging.

  7. In vitro degradation of calcium phosphates: Effect of multiscale porosity, textural properties and composition.

    Science.gov (United States)

    Diez-Escudero, A; Espanol, M; Beats, S; Ginebra, M-P

    2017-09-15

    The capacity of calcium phosphates to be replaced by bone is tightly linked to their resorbability. However, the relative importance of some textural parameters on their degradation behavior is still unclear. The present study aims to quantify the effect of composition, specific surface area (SSA), and porosity at various length scales (nano-, micro- and macroporosity) on the in vitro degradation of different calcium phosphates. Degradation studies were performed in an acidic medium to mimic the osteoclastic environment. Small degradations were found in samples with interconnected nano- and micropores with sizes below 3µm although they were highly porous (35-65%), with maximum weight loss of 8wt%. Biomimetic calcium deficient hydroxyapatite, with high SSA and low crystallinity, presented the highest degradation rates exceeding even the more soluble β-TCP. A dependence of degradation on SSA was indisputable when porosity and pore sizes were increased. The introduction of additional macroporosity with pore interconnections above 20µm significantly impacted degradation, more markedly in the substrates with high SSA (>15m 2 /g), whereas in sintered substrates with low SSA (calcium deficient hydroxyapatite did not increase its degradation rate. Overall, the study highlights the importance of textural properties, which can modulate or even outweigh the effect of other features such as the solubility of the compounds. The physicochemical features of calcium phosphates are crucial to tune biological events like resorption during bone remodeling. Understanding in vitro resorption can help to predict the in vivo behavior. Besides chemical composition, other parameters such as porosity and specific surface area have a strong influence on resorption. The complexity of isolating the contribution of each parameter lies in the close interrelation between them. In this work, a multiscale study was proposed to discern the extent to which each parameter influences degradation in

  8. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1.

    Science.gov (United States)

    Feldblyum, Jeremy I; Liu, Ming; Gidley, David W; Matzger, Adam J

    2011-11-16

    There are several compounds for which there exists a disconnect between porosity as predicted by crystallography and porosity measured by gas sorption analysis. In this paper, the Zn-based analogue of Cu(3)(btc)(2) (HKUST-1), Zn(3)(btc)(2) (Zn-HKUST-1; btc = 1,3,5-benzenetricarboxylate) is investigated. Conventional analysis of Zn-HKUST-1 by powder X-ray diffraction and gas sorption indicates retention of crystalline structure but negligible nitrogen uptake at 77 K. By using positron annihilation lifetime spectroscopy, a densified surface layer preventing the entry of even small molecular species into the crystal framework is revealed. The material is shown to have inherent surface instability after solvent removal, rendering it impermeable to molecular guests irrespective of handling and processing methods. This previously unobserved surface instability may provide insight into the failure of other microporous coordination polymers to exhibit significant porosity despite crystal structures indicative of regular, interconnected, microporous networks.

  9. Surface area and volume determination of subgingival calculus using laser fluorescence.

    Science.gov (United States)

    Shakibaie, Fardad; Walsh, Laurence J

    2014-03-01

    Visible red (655 nm) laser fluorescence (LF) devices are currently used for identifying deposits of subgingival calculus on the root surfaces of teeth during dental examination and treatment; however, it is not known how the fluorescence readings produced by commercially available LF systems correlate to the nature of the deposits. This laboratory study explored the correlation between LF digital readings and the surface area and volume of subgingival calculus deposits on teeth. A collection of 30 extracted human posterior teeth with various levels of subgingival deposits of calculus across 240 sites were used in a clinical simulation, with silicone impression material used to replicate periodontal soft tissues. The teeth were scored by two examiners by using three commercial LF systems (DIAGNOdent, DIAGNOdent Pen and KEY3). The silicone was removed, and the teeth were removed for photography at × 20 magnification under white or ultraviolet light. The surface area, thickness, and volume were calculated, and both linear least squares regression and nonlinear (Spearman's rank method) correlation coefficients were determined. Visible red LF digital readings showed better correlation to calculus volume than to surface area. Overall, the best performance was found for the KEY3 system (Spearman coefficient 0.59), compared to the Classic DIAGNOdent (0.56) and the DIAGNOdent Pen (0.49). These results indicate that while visible red LF systems vary somewhat in performance, their LF readings provide a useful estimation of the volume of subgingival calculus deposits present on teeth.

  10. Verification of surface source's characteristics using large-area 2π gas flow counter

    International Nuclear Information System (INIS)

    Abu Naser Waheed, M.M.; Mikami, S.; Kobayashi, H.; Noda, K.

    1998-09-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has large-area 2π gas flow counter for the purpose of measuring activity of surface sources of alpha or beta ray emitter. Surface sources are used for the calibration of radiation measuring equipment for radiation control. Due to sequent use of sources, the surface of these sources are inclined to go in bad condition because of unwanted accidental incidents. For the better calibration achievement of radiation measuring instruments the rate of emission of these sources are to be checked periodically by the large-area 2π gas flow counter. In this paper described that eight U 3 O 8 surface sources were selected from many sources of PNC Tokai Works and activity of these sources was measured by the 2π gas flow counter. The results were compared with the values certified by Japan Radio Isotope Association (JRIA). It is evident from the result of comparison that the surface sources are in good condition, i.e., the sources are reliable to calibrate the radiation control instruments. (author)

  11. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    Science.gov (United States)

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  12. Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces

    Directory of Open Access Journals (Sweden)

    Suzan Biran Ay

    2015-01-01

    Full Text Available Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.

  13. The reliability of three psoriasis assessment tools: Psoriasis area and severity index, body surface area and physician global assessment.

    Science.gov (United States)

    Bożek, Agnieszka; Reich, Adam

    2017-08-01

    A wide variety of psoriasis assessment tools have been proposed to evaluate the severity of psoriasis in clinical trials and daily practice. The most frequently used clinical instrument is the psoriasis area and severity index (PASI); however, none of the currently published severity scores used for psoriasis meets all the validation criteria required for an ideal score. The aim of this study was to compare and assess the reliability of 3 commonly used assessment instruments for psoriasis severity: the psoriasis area and severity index (PASI), body surface area (BSA) and physician global assessment (PGA). On the scoring day, 10 trained dermatologists evaluated 9 adult patients with plaque-type psoriasis using the PASI, BSA and PGA. All the subjects were assessed twice by each physician. Correlations between the assessments were analyzed using the Pearson correlation coefficient. Intra-class correlation coefficient (ICC) was calculated to analyze intra-rater reliability, and the coefficient of variation (CV) was used to assess inter-rater variability. Significant correlations were observed among the 3 scales in both assessments. In all 3 scales the ICCs were > 0.75, indicating high intra-rater reliability. The highest ICC was for the BSA (0.96) and the lowest one for the PGA (0.87). The CV for the PGA and PASI were 29.3 and 36.9, respectively, indicating moderate inter-rater variability. The CV for the BSA was 57.1, indicating high inter-rater variability. Comparing the PASI, PGA and BSA, it was shown that the PGA had the highest inter-rater reliability, whereas the BSA had the highest intra-rater reliability. The PASI showed intermediate values in terms of interand intra-rater reliability. None of the 3 assessment instruments showed a significant advantage over the other. A reliable assessment of psoriasis severity requires the use of several independent evaluations simultaneously.

  14. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    Directory of Open Access Journals (Sweden)

    H. Beydoun

    2016-10-01

    Full Text Available Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS density (ns often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown

  15. The triazine-based porous organic polymer: Novel synthetic strategy for high specific surface area

    International Nuclear Information System (INIS)

    Park, Jin Kuen

    2017-01-01

    A new type of microporous polymer has been successively synthesized via a simple polycondensation reaction with the 2,4-diaminotriazine moiety and dianhydride monomer. Diaminotriazine moieties in M1 especially can provide effective branching sites, resulting in high surface areas up to 1150 m"2 /g. In addition, the specific pore structure of the polyimide POP in its solid state can be modified by the surface activation method. Therefore, it can be expected that the resulting material will be a promising candidate for gas storage, and with this synthetic strategy, various type of derivatives will also be optimized

  16. The triazine-based porous organic polymer: Novel synthetic strategy for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Kuen [Dept. of Chemistry, Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2017-02-15

    A new type of microporous polymer has been successively synthesized via a simple polycondensation reaction with the 2,4-diaminotriazine moiety and dianhydride monomer. Diaminotriazine moieties in M1 especially can provide effective branching sites, resulting in high surface areas up to 1150 m{sup 2} /g. In addition, the specific pore structure of the polyimide POP in its solid state can be modified by the surface activation method. Therefore, it can be expected that the resulting material will be a promising candidate for gas storage, and with this synthetic strategy, various type of derivatives will also be optimized.

  17. Petroleum Hydrocarbon in Surface Sediment from Coastal Area of Putatan and Papar, Sabah

    International Nuclear Information System (INIS)

    Siti Aishah Mohd Ali; Rohana Tair; Yang, S.Z.; Masni Mohd Ali

    2013-01-01

    Total petroleum hydrocarbons (TPH) and percent total organic carbon (TOC) were investigated in surface sediments from coastal area of Papar and Putatan, Sabah. Samples were collected in five different stations in each area by using Ponar grab sampler. Samples were extracted with Soxhlet, concentrated and analyzed by using UV/ VIS spectrophotometer. The overall mean and range of TPH concentrations in the sediments from coastal area of Papar and Putatan were 1.95 (0.53-4.59 mg/ kg dw Miri crude oil equivalents) and 0.85 (0.26-1.64 mg/ kg dw Miri crude oil equivalents) respectively. Meanwhile, the TOC ranged from 0.81-2.32 % and 0.35-0.81 % respectively. Statistical analysis using Pearson correlation showed no significant differences between TPH and TOC (p<0.05) in both areas. (author)

  18. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  19. Controlling porosity of porous carbon cathode for lithium oxygen batteries: Influence of micro and meso porosity

    Science.gov (United States)

    Kim, Minjae; Yoo, Eunjoo; Ahn, Wha-Seung; Shim, Sang Eun

    2018-06-01

    In rechargeable lithium-oxygen (Li-O2) batteries, the porosity of porous carbon materials plays a crucial role in the electrochemical performance serving as oxygen diffusion path and Li ion transfer passage. However, the influence of optimization of porous carbon as an air electrode on cell electrochemical performance remains unclear. To understand the role of carbon porosity in Li-O2 batteries, carbon materials featuring controlled pore sizes and porosity, including C-800 (nearly 96% microporous) and AC-950 (55:45 micro/meso porosity), are designed and synthesized by carbonization using a triazine-based covalent organic polymer (TCOP). We find that the microporous C-800 cathode allows 120 cycles with a limited capacity of 1000 mAh g-1, about 2 and 10 times higher than that of mixed-porosity AC-950 and mesoporous CMK-3, respectively. Meanwhile, the specific discharge capacity of the C-800 electrode at 200 mA g-1 is 6003 mAh g-1, which is lower than that of the 8433 and 9960 mAh g-1 when using AC-950 and CMK-3, respectively. This difference in the electrochemical performance of the porous carbon cathode with different porosity causes to the generation and decomposition of Li2O2 during the charge and discharge cycle, which affects oxygen diffusion and Li ion transfer.

  20. A program to compute the area of an irregular polygon on a spheroidal surface

    Digital Repository Service at National Institute of Oceanography (India)

    Sivakholundu, K.M.; Prabaharan, N.

    (MATLAB). Short Note824 lar shapes. The analytical integrations were carried out with the software package MATLAB on a SUN workstation. The comparisons were made to check: 1. The eC128ect of varying strip width for integration. 2. Variation of accuracy... this program can be used to calculate the area on the spheroidal surface for irregular shapes without losing accuracy. REFERENCES Bomford, G. (1977) Geodesy. Oxford University Press, 731 pp. Larkin, B. J. (1988) A FORTRAN 77 program to calcu- late areas...

  1. Surface and ground waters evaluation at Brazilian Multiproposed Reactor installation area

    International Nuclear Information System (INIS)

    Stellato, Thamiris B.; Silva, Tatiane B.S.C.da; Soares, Sabrina M.V.; Faustino, Mainara G.; Marques, Joyce R.; Oliveira, Cintia C. de; Monteiro, Lucilena R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2017-01-01

    This study evaluates six surface and ground waters physicochemical characteristics on the area of the future Brazilian Multipurpose Reactor (RMB), at Iperó/SP. One of the main goals is to establish reference values for future operation monitoring programs, as well as for environmental permits and regulation. Considering analyzed parameters, all collection points presented values within CONAMA Resolution 396/08 and 357/05 regulation limits, showing similar characteristics among collection points.Only two points groundwater (RMB-005 and RMB-006) presented higher alkalinity, total dissolved solids and conductivity. The studied area was considered in good environmental conservation condition, as far as water quality is concerned. (author)

  2. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    DEFF Research Database (Denmark)

    Charalampidis, C.; Van As, D.; Box, J. E.

    2015-01-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l.-above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly...... negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ∼ 0.......78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface...

  3. Characterization of bentonite pore structure by combining chloride porosity and SAXS measurements

    International Nuclear Information System (INIS)

    Muurinen, A.

    2010-01-01

    Document available in extended abstract form only. The total water porosity, chloride porosity and the microstructure were studied in compacted samples prepared from MX-80 and Deponit bentonites equilibrated through filter plates with 0.1 M NaCl solution for 12.5 months. The dry densities of the samples varied approximately from 0.7 to 1.55 g/cm 3 . XRD and SAXS (Small Angle X-ray Scattering) were used to study the microstructure of the bentonites. It was obvious that the chloride porosity was lower than the water porosity in both clays, which indicates the exclusion caused by the negatively charged montmorillonite surfaces. In the XRD and SAXS measurements the measured basal spaces represented by the diffraction peaks were smaller than the theoretical ones assuming a homogenous microstructure. This indicates that there was a substantial amount of water also in the pores, which were not represented by the peaks. This could explain the difference between the measured chloride porosity and the modelling curve obtained with the Donnan model. By combining the information from the SAXS measurements and the chloride exclusion measurements, it was possible to evaluate the volumes of the soft and dense fractions and the pore sizes in each fraction for MX-80. The chloride porosity was mostly caused by the pores in the soft clay where the pore size is larger. The volume of the soft fraction decreased and its density increased with increasing density of the sample. (authors)

  4. In situ detection of porosity initiation during aluminum thin film anodizing

    Science.gov (United States)

    Van Overmeere, Quentin; Nysten, Bernard; Proost, Joris

    2009-02-01

    High-resolution curvature measurements have been performed in situ during aluminum thin film anodizing in sulfuric acid. A well-defined transition in the rate of internal stress-induced curvature change is shown to allow for the accurate, real-time detection of porosity initiation. The validity of this in situ diagnostic tool was confirmed by a quantitative analysis of the spectral density distributions of the anodized surfaces. These were obtained by analyzing ex situ atomic force microscopy images of surfaces anodized for different times, and allowed to correlate the in situ detected transition in the rate of curvature change with the appearance of porosity.

  5. Investigating porosity of anthracites during thermoprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, A.S.; Gilyazov, U.Sh.; Samoilov, V.S.; Mel' nichenko, V.M.; Kovalevskii, N.N.

    1983-07-01

    Changes in the porous structure of anthracite during thermoprocessing up to 3000 C, and the effect of mineral impurities on the materials were studied. A mercury porometer and an electron scanning microscope were used to study Donbass anthracites. A wider spectrum of pore volume distribution was observed for high rank anthracites than for lower rank anthracites. It was established that the specific pore volume in thermographite with an apparent density of more than one unit is three times less than in thermographite with an apparent density of less than one unit. The porosity of thermoanthracite increases sharply in comparison with the starting anthracite. Anthracites are suitable for graphitization after thermoprocessing at 2800-3000 C. The porosity of thermoanthracites depends on the presence and distribution of mineral impurities in the starting anthracite. 4 references.

  6. Specific surface area of overlapping spheres in the presence of obstructions.

    Science.gov (United States)

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  7. A method of surface area measurement of fuel materials by fission gas release at low temperature

    International Nuclear Information System (INIS)

    Kaimal, K.N.G.; Naik, M.C.; Paul, A.R.; Venkateswarlu, K.S.

    1989-01-01

    The present report deals with the development of a method for surface area measurement of nuclear fuel as well as fissile doped materials by fission gas release study at low temperature. The method is based on the evaluation of knock-out release rate of fission 133 Xe from irradiated fuel after sufficient cooling to decay the short lived activity. The report also describes the fabrication of an ampoule breaker unit for such study. Knock-out release rate of 133 Xe has been studied from UO 2 powders having varying surface area 'S' ranging from 270 cm 2 /gm to 4100 cm 2 /gm at two fissioning rates 10 12 f/cm 3 . sec. and 3.2x10 10 f/cm.sec. A relation between K and A has been established and discussed in this report. (author). 6 refs

  8. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  9. Air filled porosity in composting processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-07-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  10. Porosity influence on UO2 pellet fracture

    International Nuclear Information System (INIS)

    Quadros, N.F. de; Abreu Aires, M. de; Gentile, E.F.

    1976-01-01

    Compression tests were made with UO 2 pellets with grain size of 0,01 mm, approximately the same for all pellets, and with different porosities. The strain rate was 5,5 X 10 -5 sec -1 at room temperature. From fractographic studies and observations made during the compression tests, it was suggested that the pores and flaws resulting from sintering at 1650 0 C, play a fundamental role on the fracture mechanism of the UO 2 pellets [pt

  11. Air filled porosity in composting processes

    International Nuclear Information System (INIS)

    Ruggieri, L.; Gea, T.; Artola, A.; Sanchez, A.

    2009-01-01

    As it is widely known, the composting process consists in the aerobic decomposition of the biodegradable organic matter present in different types of solid wastes. Water and oxygen are necessary for the biological activity of microorganisms involved in the composting process and their availability is directly related to the total and the air filled porosity (AFP). Maintaining adequate AFP level satisfies the oxygen content requirement to achieve the desired composting conditions and thus, tho enhance biological activity. (Author)

  12. Acoustics of a Mixed Porosity Felt Airfoil

    Science.gov (United States)

    2016-06-06

    NUWC-NPT Technical Report 12,212 6 June 2016 Acoustics of a Mixed Porosity Felt Airfoil Aren M. Hellum Undersea Warfare Weapons...Felt Airfoil 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Aren M. Hellum 5.d PROJECT NUMBER 5e...existing literature. Geyer et al. [5] measured a sound reduction of 5 to 15 dB for airfoils made entirely of porous material. A 1973 patent

  13. Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature

    International Nuclear Information System (INIS)

    Abbatt, J P D; Bartels-Rausch, T; Ullerstam, M; Ye, T J

    2008-01-01

    The interactions of gas-phase acetone, ethanol and benzene with smooth ice films and artificial snow have been studied. In one technique, the snow is packed into a cylindrical column and inserted into a low-pressure flow reactor coupled to a chemical-ionization mass spectrometer for gas-phase analysis. At 214 and 228 K, it is found for acetone and ethanol that the adsorbed amounts per surface area match those for adsorption to thin films of ice formed by freezing liquid water, when the specific surface area of the snow (as determined from Kr adsorption at 77 K) and the geometric surface area of the ice films are used. This indicates that freezing thin films of water leads to surfaces that are smooth at the molecular level. Experiments performed to test the effect of film growth on ethanol uptake indicate that uptake is independent of ice growth rate, up to 2.4 μm min -1 . In addition, traditional Brunauer-Emmett-Teller (BET) experiments were performed with these gases on artificial snow from 238 to 266.5 K. A transition from a BET type I isotherm indicative of monolayer formation to a BET type II isotherm indicative of multilayer uptake is observed for acetone at T≥263 K and ethanol at T≥255 K, arising from solution formation on the ice. When multilayer formation does not occur, as was the case for benzene at T≤263 K and for acetone at T≤255 K, the saturated surface coverage increased with increasing temperature, consistent with the quasi-liquid layer affecting adsorption prior to full dissolution/multilayer formation.

  14. n-Alkylamine-assisted preparation of a high surface area vanadyl phosphate/tetraethylorthosilicate nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, João Paulo L., E-mail: billbrujah@yahoo.com.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil); Zampronio, Elaine C.; Oliveira, Herenilton P. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil)

    2013-02-15

    Graphical abstract: CuK{sub α} X-ray diffraction patterns of the VP, VPOc, VPOcT, VPOcT200 and VPOcT500. Highlights: ► TEOS and octylamine incorporation into the VP was achieved by expanding the lamellar. ► The specific surface area increased from 15 m{sup 2} g{sup −1} in VP to 237 m{sup 2} g{sup −1} in VPOcT. ► The VPOcT exhibited thermal resistance up to 200 °C in air. ► Upon thermal treatment up to 500 °C, the surface area increased to 838 m{sup 2} g{sup −1}. -- Abstract: We have developed a vanadyl phosphate/tetraethylorthosilicate (VPO/TEOS) nanocomposite comprised of silicate chains interleaved with VPO layers, prepared by using an n-alkylamines such as octylamine as the structure directing agent. The nanocomposites were synthesized by reacting amine-intercalated vanadyl phosphate with tetraethylorthosilicate via the soft chemistry approach. The synthetic procedure encompassed the exfoliation of the layered vanadyl phosphate as well as the reorganization of this exfoliated solid into a mesostructured lamellar phase with the same V–P–O connectivity as in the original matrix. TEOS incorporation into the vanadyl phosphate was achieved by expanding the lamellar structure with n-alkylamine (Δd = 13 Å with n-octylamine). The specific surface area increased from 15 m{sup 2} g{sup −1} in the vanadyl phosphate matrix to 237 m{sup 2} g{sup −1} in VPOcT, and the isotherm curves revealed the characteristic hysteresis of mesoporous materials. Upon thermal treatment up to 500 °C, the surface area increased to 837 m{sup 2} g{sup −1}, which is suitable for catalytic purposes.

  15. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    OpenAIRE

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defin...

  16. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    Science.gov (United States)

    2016-08-19

    Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser- plasma ,mass-limited, fast electrons , sheath...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser... plasma interactions CZulick, ARaymond,AMcKelvey, VChvykov, AMaksimchuk, AGRThomas, LWillingale, VYanovsky andKKrushelnick Center forUltrafast Optical

  17. Synthesis of high-surface-area spinel-type MgAl2O4 nanoparticles ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 40; Issue 1. Synthesis of high-surface-area spinel-type MgAl 2 O 4 nanoparticles by [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] and [Mg(H 2 O) 6 ][Al(ox) 2 (H 2 O) 2 ] 2 ·5H 2 O: influence of inorganic precursor type. Volume 40 Issue 1 February 2017 pp 45-53 ...

  18. Surface area of lactose and lactose granulates on consolidation and compaction

    OpenAIRE

    Riepma, Klaas Alouis

    1993-01-01

    This dissertation discusses the effect of short time storage at different conditions on the strength and the specific BET surface area of lactose tablets. In addition, some aspects are studied of the consolidation and compaction properties of crystalline lactose fractions in heterogeneous systems. The crystalline lactose types used are: a-lactose monohydrate, anhydrous a-lactose, crystalline B-lactose and roller dried B-lactose. ... Zie: Summary

  19. Surface area-dependence of gas-particle interactions influences pulmonary and neuroinflammatory outcomes

    OpenAIRE

    Tyler, Christina R.; Zychowski, Katherine E.; Sanchez, Bethany N.; Rivero, Valeria; Lucas, Selita; Herbert, Guy; Liu, June; Irshad, Hammad; McDonald, Jacob D.; Bleske, Barry E.; Campen, Matthew J.

    2016-01-01

    Background Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE?/?) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, ge...

  20. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  1. Mathematical aspects of multi-porosity continua

    CERN Document Server

    Straughan, Brian

    2017-01-01

    This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wa...

  2. [Distribution, surface and protected area of palm-swamps in Costa Rica and Nicaragua].

    Science.gov (United States)

    Serrano-Sandí, Juan; Bonilla-Murillo, Fabian; Sasa, Mahmood

    2013-09-01

    In Central America, palm swamps are known collectively as yolillales. These wetlands are usually dominated by the raffia palm Raphia taedigera, but also by the royal palm Manicaria saccifera and -in lower extensions- by the American oil palm Elaeis oleifera. The yolillales tend to be poor in woody species and are characteristic of regions with high rainfall and extensive hydroperiods, so they remain flooded most of the year. The dominance of large raffia palm leaves in the canopy, allow these environments to be distinguishable in aerial photographs, which consequently has helped to map them along most of their distribution. However, while maps depicting yolillales are available, the extent of their surface area, perimeter and connectivity remains poorly understood. This is particularly true for yolillales in Costa Rica and Nicaragua, countries that share a good proportion of palm dominated swaps in the Rio San Juan Basin. In addition, it is not known the actual area of these environments that is under any category of protection according to the conservation systems of both countries. As a first step to catalog yolillal wetlands in Costa Rica and Nicaragua, this paper evaluates cartographic maps to delineate yolillales in the region. A subsample of yolillales mapped in this study were visited and we geo-referenced them and evaluate the extent and condition of the swamp. A total of 110 883.2ha are classified as yolillales in Nicaragua, equivalent to 22% of wetland surface area recorded for that country (excluding the Cocibolca and Xolothn Lakes). In Costa Rica, 53 931.3ha are covered by these palm dominated swamps, which represent 16.24% of the total surface area covered by wetlands. About 47% of the area covered by yolillales in Nicaragua is under some category of protection, the largest extensions protected by Cerro Silva, Laguna Tale Sulumas and Indio Maiz Nature Reserves. In Costa Rica, 55.5% of the area covered by yolillal is located within protected areas

  3. Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors

    Science.gov (United States)

    Xu, Hailing; Li, Xingwei; Wang, Gengchao

    2015-10-01

    Polyaniline (PANI) with a high specific surface area and an improved pore structure (HSSA-PANI) has been prepared by using a facile method, treating PANI nanofibers with chloroform (CHCl3), and its structure, morphology and pore structure are investigated. The specific surface area and pore volume of HSSA-PANI are 817.3 m2 g-1 and 0.6 cm3 g-1, and those of PANI are 33.6 m2 g-1 and 0.2 cm3 g-1. As electrode materials, a large specific surface area and pore volume can provide high electroactive regions, accelerate the diffusion of ions, and mitigate the electrochemical degradation of active materials. Compared with PANI, the capacity retention rate of HSSA-PANI is 90% with a growth of current density from 5.0 to 30 A g-1, and that of PANI is 29%. At a current density of 30 A g-1, the specific capacitance of HSSA-PANI still reaches 278.3 F g-1, and that of PANI is 86.7 F g-1. At a current density of 5.0 A g-1, the capacitance retention of HSSA-PANI is 53.1% after 2000 cycles, and that of PANI electrode is only 28.1%.

  4. Evaluation of The Surface Ozone Concentrations In Greater Cairo Area With Emphasis On Helwan, Egypt

    International Nuclear Information System (INIS)

    Ramadan, A.; Kandil, A.T.; Abd Elmaged, S.M.; Mubarak, I.

    2011-01-01

    Various biogenic and anthropogenic sources emit huge quantities of surface ozone. The main purpose of this study is to evaluate the surface ozone levels present at Helwan area in order to improve the knowledge and understanding troposphere processes. Surface Ozone has been measured at 2 sites at Helwan; these sites cover the most populated area in Helwan. Ozone concentration is continuously monitored by UV absorption photometry using the equipment O 3 41 M UV Photometric Ozone Analyzer. The daily maximum values of the ozone concentration in the greater Cairo area have approached but did not exceeded the critical levels during the year 2008. Higher ozone concentrations at Helwan are mainly due to the transport of ozone from regions further to the north of greater Cairo and to a lesser extent of ozone locally generated by photochemical smog process. The summer season has the largest diurnal variation, with the tendency of the daily ozone maxima occur in the late afternoon. The night time concentration of ozone was significantly higher at Helwan because there are no fast acting sinks, destroying ozone since the average night time concentration of ozone is maintained at 40 ppb at the site. No correlation between the diurnal total suspended particulate (TSP) matter and the diurnal cumulative ozone concentration was observed during the Khamasin period

  5. Detailed effects of particle size and surface area on 222Rn emanation of a phosphate rock.

    Science.gov (United States)

    Haquin, Gustavo; Yungrais, Zohar; Ilzycer, Danielle; Zafrir, Hovav; Weisbrod, Noam

    2017-12-01

    The dependency of radon emanation on soil texture was investigated using the closed chamber method. Ground phosphate rock with a large specific surface area was analyzed, and the presence of inner pores, as well as a high degree of roughness and heterogeneity in the phosphate particles, was found. The average radon emanation of the dry phosphate was 0.145 ± 0.016. The emanation coefficient was highest (0.169 ± 0.019) for the smallest particles (210 μm). The reduction rate followed an inverse power law. As expected, a linear dependence between the emanation coefficient and the specific surface area was found, being lower than predicted for the large specific surface area. This was most likely due to an increase in the embedding effect of radon atoms in adjacent grains separated by micropores. Results indicate that knowledge of grain radium distribution is crucial to making accurate emanation predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Surface area, crystal morphology and characterization of transition alumina powders from a new gibbsite precursor

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Vieira Coelho

    2007-06-01

    Full Text Available A new procedure was used to prepare a microcrystalline powder constituted by thin euhedral hexagonal gibbsite plates, 0.2 to 0.6 µm in diameter and 32 nm thick. The powder, fired between 200 and 1000 °C, produced chi and kappa transition aluminas. Alpha-alumina is formed from 1000 °C and recrystallized up to 1500 °C. At 1000 °C, kappa- and alpha-alumina coexisted, but kappa-alumina could only be characterized by SAED. The details of the internal organization of the transition alumina pseudomorphs were clearly observable in TEM due to the great thinness of the I-gibbsite plates. The specific surface area varied from pristine I-gibbsite (24.9 m².g-1 to chi- and kappa transition aluminas (25.4 m².g-1 at 1000 °C to alpha-alumina (4.0 m².g-1 at 1500 °C. The maximum value of specific surface area is 347 m².g-1 in chi-alumina powder at 300 °C, a difference from Bayer gibbsite, in which the chi-alumina highest surface area is 370 m².g-1 at 400 °C.

  7. Preparation of high surface area and high conductivity polyaniline nanoparticles using chemical oxidation polymerization technique

    Science.gov (United States)

    Budi, S.; Yusmaniar; Juliana, A.; Cahyana, U.; Purwanto, A.; Imaduddin, A.; Handoko, E.

    2018-03-01

    In this work, polyaniline nanoparticles were synthesized using a chemical oxidation polymerization technique. The ammonium peroxydisulfate (APS)/aniline ratio, APS dropping time, and polymerization temperature were optimized to increase the surface area and conductivity of the polyaniline.The Fourier-transform infrared (FTIR) spectrum confirmed the formation of emeraldine salt polyaniline. X-ray diffraction (XRD) patterns indicated that amorphous and crystalline phases of the polyaniline were formed with crystallinity less than 40%. Scanning electron microscope (SEM) micrographs showed that the finest nanoparticles with uniform size distribution were obtained at the polymerization temperature of 0°C. A surface area analyzer (SAA) showed that the highest Brunauer-Emmett-Teller surface area (SBET ) of 42.14 m2/gwas obtained from an APS/aniline ratio of 0.75 with a dropping time of 0 s at a polymerization temperature of 0°C. A four-point probe measurement conducted at 75–300K indicated relatively high conductivity of the semiconductor characteristic of the polyaniline.

  8. Correlation of lung surface area to apoptosis and proliferation in human emphysema.

    Science.gov (United States)

    Imai, K; Mercer, B A; Schulman, L L; Sonett, J R; D'Armiento, J M

    2005-02-01

    Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alveolar cells in emphysematous lungs with convoluted nuclei characteristic of apoptosis. DNA fragmentation was detected using terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) and gel electrophoresis. TUNEL revealed higher apoptosis in emphysematous than normal lungs. Markers of apoptosis, including active caspase-3, proteolytic fragment of poly (ADP-ribose) polymerase, Bax and Bad, were detected in emphysematous lungs. Linear regression showed that apoptosis was inversely correlated with surface area. Emphysematous lungs demonstrated lower surface areas and increased cell proliferation. There was no correlation between apoptosis and proliferation, suggesting that, although both events increase during emphysema, they are not in equilibrium, potentially contributing to reduced lung surface area. In summary, cell-based mechanisms associated with emphysematous parenchymal damage include increased apoptosis and cell proliferation. Apoptosis correlated with airspace enlargement, supporting epidemiological evidence of the progressive nature of emphysema. These data extend the understanding of cell dynamics and structural changes within the lung during emphysema pathogenesis.

  9. A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose.

    Science.gov (United States)

    Mihranyan, Albert; Nyholm, Leif; Bennett, Alfonso E Garcia; Strømme, Maria

    2008-10-02

    We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.

  10. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  11. ERROR BOUNDS FOR SURFACE AREA ESTIMATORS BASED ON CROFTON’S FORMULA

    Directory of Open Access Journals (Sweden)

    Markus Kiderlen

    2011-05-01

    Full Text Available According to Crofton's formula, the surface area S(A of a sufficiently regular compact set A in Rd is proportional to the mean of all total projections pA (u on a linear hyperplane with normal u, uniformly averaged over all unit vectors u. In applications, pA (u is only measured in k directions and the mean is approximated by a finite weighted sum bS(A of the total projections in these directions. The choice of the weights depends on the selected quadrature rule. We define an associated zonotope Z (depending only on the projection directions and the quadrature rule, and show that the relative error bS (A/S (A is bounded from below by the inradius of Z and from above by the circumradius of Z. Applying a strengthened isoperimetric inequality due to Bonnesen, we show that the rectangular quadrature rule does not give the best possible error bounds for d =2. In addition, we derive asymptotic behavior of the error (with increasing k in the planar case. The paper concludes with applications to surface area estimation in design-based digital stereology where we show that the weights due to Bonnesen's inequality are better than the usual weights based on the rectangular rule and almost optimal in the sense that the relative error of the surface area estimator is very close to the minimal error.

  12. Dependence of the specific surface area of the nuclear fuel with the matrix oxidation

    International Nuclear Information System (INIS)

    Gomez, F.; Quinones, J.; Iglesias, E.; Rodriguez, N.

    2008-01-01

    This paper is focused on the study of the changes in the specific surface area measured using BET techniques. The objective is to obtain a relation between this parameter and the change in the matrix stoichiometry (i.e., oxidation increase). None of the actual models used for extrapolating the behaviour of the spent fuel matrix under repository conditions have included this dependence yet. In this work the specific surface area of different uranium oxide were measured using N 2 (g) and Kr(g). The starting material was UO 2+x (s) with a size powder distribution lower than 20 μm. The results included in this paper shown a strong dependence on specific surface area with the matrix stoichiometry, i.e., and increase of more than one order of magnitude (SUO 2 = 6 m 2 *g -1 and SU 3 O 8 = 16.07 m 2 *g -1 ). Furthermore, the particle size distribution measured as a function of the thermal treatment done shows changes on the powder size related to the changes observed in the uranium oxide stoichiometry. (authors)

  13. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Huaiyu; Huang, Shanqian [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Zhou, Sen [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Department of Pediatrics, Harvard Medical School, Boston, MA (United States); Bi, Peng [Discipline of Public Health, University of Adelaide, Adelaide (Australia); Yang, Zhicong, E-mail: yangzc@gzcdc.org.cn [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Li, Xiujun [School of Public Health, Shandong University, Jinan (China); Chen, Lifan [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Cazelles, Bernard [UMMISCO, UMI 209 IRD – UPMC, 93142 Bondy (France); Eco-Evolutionary Mathematic, IBENS UMR 8197, ENS, 75230 Paris Cedex 05 (France); Yang, Jing [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Luo, Lei; Jing, Qinlong [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Yuan, Wenping [State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Pei, Yao; Sun, Zhe [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Yue, Tianxiang [State Key Laboratory of Resources and Environment Information System, Chinese Academy of Sciences, Beijing (China); Kwan, Mei-Po [Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820 (United States); and others

    2016-10-15

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  14. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    International Nuclear Information System (INIS)

    Tian, Huaiyu; Huang, Shanqian; Zhou, Sen; Bi, Peng; Yang, Zhicong; Li, Xiujun; Chen, Lifan; Cazelles, Bernard; Yang, Jing; Luo, Lei; Jing, Qinlong; Yuan, Wenping; Pei, Yao; Sun, Zhe; Yue, Tianxiang; Kwan, Mei-Po

    2016-01-01

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  15. Spreading of 137 C in the Goiania urban area by resuspension and transport of surface soil

    International Nuclear Information System (INIS)

    Rio, Monica Pires do; Amaral, Eliana

    2002-01-01

    The resuspension of surface soil was considered the mechanism responsible by the spreading of 137 Cs after the Goiania accident, which affected an urban area of about 1 km 2 . Studies on the transport of 137 Cs associated to the surface soil were performed in a house located at 57 th Street, close to the main focus of contamination, from 05/89 to 07/00. Periodically, samples of surface soil and soil profile were collected at the house yards and street dust sampling at representative locations was performed in order to know the extension of the contamination in the city. The soil profile samples have shown the low mobility of 137 Cs in deep layers of the soil, although a slight long-term decrease of the 137 Cs activity concentration in the surface soil were observed. The 137 Cs activity concentration in the street dust samples also decrease with time, suggesting a natural dilution of the contamination in those samples; higher values were only found in few locations close to the foci of primary deposition and no additional spreading of the radionuclide is expected to occur from that area. Street dust sampling is a suitable method to assess the spreading of caesium in urban environment. (author)

  16. Monitoring of Surface Subsidence of the Mining Area Based on Sbas

    Science.gov (United States)

    Zhu, Y.; Zhou, S.; Zang, D.; Lu, T.

    2018-05-01

    This paper has collected 7 scenes of L band PALSAR sensor radar data of a mine in FengCheng city, jiangxi province, using the Small-baseline Subset (SBAS) method to invert the surface subsidence of the mine. Baselines of interference less than 800m has been chosen to constitute short baseline differential interference atlas, using pixels whose average coherent coefficient was larger than or equal to 0.3 as like high coherent point target, using singular value decomposition (SVD) method to calculate deformation phase sequence based on these high coherent points, and the accumulation of settlements of study area of different period had been obtained, so as to reflect the ground surface settlement evolution of the settlement of the area. The results of the study has showed that: SBAS technology has overcome coherent problem of the traditionality D-InSAR technique, continuous deformation field of surface mining in time dimension of time could been obtained, characteristics of ground surface settlement of mining subsidence in different period has been displayed, so to improve the accuracy and reliability of the monitoring results.

  17. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  18. Fabrication of porous ethyl cellulose microspheres based on the acetone-glycerin-water ternary system: Controlling porosity via the solvent-removal mode.

    Science.gov (United States)

    Murakami, Masahiro; Matsumoto, Akihiro; Watanabe, Chie; Kurumado, Yu; Takama, Masashi

    2015-08-01

    Porous ethyl cellulose (EC) microspheres were prepared from the acetone-glycerin-water ternary system using an oil/water (O/W)-type emulsion solvent extraction method. The O/ W type emulsion was prepared using acetone dissolved ethyl cellulose as an oil phase and aqueous glycerin as a water phase. The effects of the different solvent extraction modes on the porosity of the microspheres were investigated. The specific surface area of the porous EC microspheres was estimated by the gas adsorption method. When the solvent was extracted rapidly by mixing the emulsion with water instantaneously, porous EC microspheres with a maximum specific surface area of 40.7±2.1 m2/g were obtained. On the other hand, when water was added gradually to the emulsion, the specific surface area of the fabricated microspheres decreased rapidly with an increase in the infusion period, with the area being 25-45% of the maximum value. The results of an analysis of the ternary phase diagram of the system suggested that the penetration of water and glycerin from the continuous phase to the dispersed phase before solidification affected the porosity of the fabricated EC microspheres.

  19. Stochastic modelling of porosity using seismic impedances on a volume of chalk in the Dan Field

    Energy Technology Data Exchange (ETDEWEB)

    Vejbaek, O.V.

    1995-12-31

    Seismic impedances calculated from logs show very good correlation to log porosities in wells penetrating the chalk reservoir in the Dan Field, Danish North Sea. This is the basis for an attempt to use seismic impedances derived from inversion as soft data for geostatistical reservoir characterization. The study focusses on porosity description of the Maastrichtian chalk reservoir unit, laterally restricted to an area covered by a subset of a 3D seismic survey. This seismic volume was inverted using the ISIS software producing a volume of seismic impedances. Spatial porosity realizations are produced using a gaussian collocated co-simulation algorithm, where well log porosities constitute the hard data input and seismic impedances are the soft data input. The simulated volume measures 1400 m x 1525 m x 102 m and is oriented parallel to lines and cross lines in the seismic dataset. Simulated blocks measures 25 m x 25 m x 6 m equivalent to twice the line and trace spacing, and approximately equivalent to the seismic sample rate. The correlation coefficient between log porosities and impedances calculated from logs alone are shown to be misleading since they suggest unrealistic high coefficients. However, the actual data used, namely inversion derived impedances and log porosities, still show correlation coefficients in the order of -0,45, which is quite sufficient to make the inversion results very useful. It is remarkable that the calculated correlation coefficient is based on 15 wells, and the inversion is based on only one well. The negative correlation coefficient indicate that high impedances correspond to low porosities and vice-versa. The impedance data indicate the level of average porosities at locations between wells. The fine structure is produced by the geostatistic process, with averages constrained by seismic impedances. The seismic impedances derived from the inversion process are thus shown to constitute useful primary data to constrain reservoir

  20. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    Science.gov (United States)

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  1. Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals

    Science.gov (United States)

    Liu, Lin; Larson, Kristine M.

    2018-02-01

    Conventional benchmark-based survey and Global Positioning System (GPS) have been used to measure surface elevation changes over permafrost areas, usually once or a few times a year. Here we use reflected GPS signals to measure temporal changes of ground surface elevation due to dynamics of the active layer and near-surface permafrost. Applying the GPS interferometric reflectometry technique to the multipath signal-to-noise ratio data collected by a continuously operating GPS receiver mounted deep in permafrost in Barrow, Alaska, we can retrieve the vertical distance between the antenna and reflecting surface. Using this unique kind of observables, we obtain daily changes of surface elevation during July and August from 2004 to 2015. Our results show distinct temporal variations at three timescales: regular thaw settlement within each summer, strong interannual variability that is characterized by a sub-decadal subsidence trend followed by a brief uplift trend, and a secular subsidence trend of 0.26 ± 0.02 cm year-1 during 2004 and 2015. This method provides a new way to fully utilize data from continuously operating GPS sites in cold regions for studying dynamics of the frozen ground consistently and sustainably over a long time.

  2. Assessment of spatial distrilbution of porosity and aquifer geohydraulic parameters in parts of the Tertiary – Quaternary hydrogeoresource of south-eastern Nigeria

    Directory of Open Access Journals (Sweden)

    N.J. George

    2017-12-01

    Full Text Available An integrated attempt exploring information deduced from extensive surface resistivity study in three Local Government Areas of Akwa Ibom State, Nigeria and data from hydrogeological sources obtained from water boreholes have been explored to economically estimate porosity and coefficient of permeability/hydraulic conductivity in parts of the clastic Tertiary – Quaternary sediments of the Niger Delta region. Generally, these parameters are predominantly estimated from empirical analysis of core samples and pumping test data generated from boreholes in the laboratory. However, this analysis is not only costly and time consuming, but also limited in areal coverage. The chosen technique employs surface resistivity data, core samples and pumping test data in order to estimate porosity and aquifer hydraulic parameters (transverse resistance, hydraulic conductivity and transmissivity. In correlating the two sets of results, Porosity and hydraulic conductivity were observed to be more elevated near the riverbanks. Empirical models utilising Archie’s, Waxman-Smits and Kozeny-Carman Bear relations were employed characterising the formation parameters with wonderfully deduced good fits. The effect of surface conduction occasioned by clay usually disregarded or ignored in Archie’s model was estimated to be 2.58 × 10−5 Siemens. This conductance can be used as a corrective factor to the conduction values obtained from Archie’s equation. Interpretation aided measures such as graphs, mathematical models and maps which geared towards realistic conclusions and interrelationship between the porosity and other aquifer parameters were generated. The values of the hydraulic conductivity estimated from Waxman-Smits model was approximately 9.6 × 10−5m/s everywhere. This revelation indicates that there is no pronounced change in the quality of the saturating fluid and the geological formations that serve as

  3. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  4. Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach.

    Science.gov (United States)

    Lecloux, André J; Atluri, Rambabu; Kolen'ko, Yury V; Deepak, Francis Leonard

    2017-10-12

    The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the

  5. Investigation on the growth of DAST crystals of large surface area for THz applications

    International Nuclear Information System (INIS)

    Vijay, R. Jerald; Melikechi, N.; Thomas, Tina; Gunaseelan, R.; Arockiaraj, M. Antony; Sagayaraj, P.

    2012-01-01

    Graphical abstract: It is evident from the photographs that the crystal tend to grow as a needle (Fig. 1a) in the lower concentration region (2–3 g/200 mL); whereas, in the high concentration region (5 g/200 mL) though there is a marked enlargement in the size of the crystal, the morphology of the resulting DAST crystal is slightly irregular (Fig. 1d) in nature. Among the four concentrations employed, best result was obtained with the DAST–methanol solution of concentration 4 g/200 mL; which resulted in the DAST crystal of large surface area (270 mm 2 ) with high transparency and nearly square shape (Fig. 1c) in a growth period of 20–25 days. Highlights: ► DAST crystals of different sizes are obtained for different concentrations. ► The main focus is to grow DAST crystals with large surface area. ► Structural, optical, thermal and mechanical properties are investigated. - Abstract: The growth of high quality 4-N,N-dimethylamino-4-N-methyl-stilbazoliumtosylate (DAST) crystal with large surface area is reported by adopting the slope nucleation coupled slow evaporation method (SNM-SE). The structure and composition of the crystal are studied by single crystal X-ray diffraction and CHN analyses. The linear optical properties are investigated by UV–vis absorption. The melting point and thermal behavior of DAST are investigated using differential scanning calorimetric (DSC) and thermogravimetric analyses (TGA). The Vickers microhardness number (VHN) and work hardening coefficient of the grown crystal have been determined. The surface features of the DAST crystal are analyzed by scanning electron microscopy (SEM) and it confirmed the presence of narrow line defects (NLDs) in the sample.

  6. A Mathematical Method to Calculate Tumor Contact Surface Area: An Effective Parameter to Predict Renal Function after Partial Nephrectomy.

    Science.gov (United States)

    Hsieh, Po-Fan; Wang, Yu-De; Huang, Chi-Ping; Wu, Hsi-Chin; Yang, Che-Rei; Chen, Guang-Heng; Chang, Chao-Hsiang

    2016-07-01

    We proposed a mathematical formula to calculate contact surface area between a tumor and renal parenchyma. We examined the applicability of using contact surface area to predict renal function after partial nephrectomy. We performed this retrospective study in patients who underwent partial nephrectomy between January 2012 and December 2014. Based on abdominopelvic computerized tomography or magnetic resonance imaging, we calculated the contact surface area using the formula (2*π*radius*depth) developed by integral calculus. We then evaluated the correlation between contact surface area and perioperative parameters, and compared contact surface area and R.E.N.A.L. (Radius/Exophytic/endophytic/Nearness to collecting system/Anterior/Location) score in predicting a reduction in renal function. Overall 35, 26 and 45 patients underwent partial nephrectomy with open, laparoscopic and robotic approaches, respectively. Mean ± SD contact surface area was 30.7±26.1 cm(2) and median (IQR) R.E.N.A.L. score was 7 (2.25). Spearman correlation analysis showed that contact surface area was significantly associated with estimated blood loss (p=0.04), operative time (p=0.04) and percent change in estimated glomerular filtration rate (p contact surface area and R.E.N.A.L. score independently affected percent change in estimated glomerular filtration rate (p contact surface area was a better independent predictor of a greater than 10% change in estimated glomerular filtration rate compared to R.E.N.A.L. score (AUC 0.86 vs 0.69). Using this simple mathematical method, contact surface area was associated with surgical outcomes. Compared to R.E.N.A.L. score, contact surface area was a better predictor of functional change after partial nephrectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    Science.gov (United States)

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-05-01

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer

  8. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of

  9. Effect of Heat Treatment on the Surface Properties of Activated Carbons

    Directory of Open Access Journals (Sweden)

    Meriem Belhachemi

    2011-01-01

    Full Text Available This work reports the effect of heat treatment on the porosity and surface chemistry of two series of activated carbons prepared from a local agricultural biomass material, date pits, by physical activation with carbon dioxide and steam. Both series samples were oxidized with nitric acid and subsequently heat treated under N2 at 973 K in order to study the effect of these treatments in porosity and surface functional groups of activated carbons. When the activated carbons were heat treated after oxidation the surface area and the pore volume increase for both activated carbons prepared by CO2 and steam activations. However the amount of surface oxygen complexes decreases, the samples keep the most stable oxygen surface groups evolved as CO by temperature-programmed desorption experiments at high temperature. The results show that date pits can be used as precursors to produce activated carbons with a well developed porosity and tailored oxygen surface groups.

  10. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu, E-mail: aykutlu@unam.bilkent.edu.tr [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  11. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    Science.gov (United States)

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    Directory of Open Access Journals (Sweden)

    N. S. Ahmad Zauzi

    2016-01-01

    Full Text Available Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipitation, and calcination process. The optimum result from this study was the surface area of aluminium dross increases from 10.1 m2/g up to 80.0 m2/g at 40°C, 1% NaOH, and 15-minute reaction time. Thus, aluminium dross has a potential to be converted into other useful material such as catalyst and absorbent. The benefit of this research is that the hazardous industrial waste can be turned into wealth to be used in other applications such as in catalytic activities and absorber in waste water treatment. Further investigation on the physicochemical of aluminium dross with different acid or alkali should be conducted to get deeper understanding on the aluminium dross as a catalyst-type material.

  13. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  14. Characteristics of surface O{sub 3} over Qinghai Lake area in Northeast Tibetan Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhenxing, E-mail: zxshen@mail.xjtu.edu.cn [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Cao, Junji [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Leiming [Air Quality Research Division, Environment Canada, Toronto (Canada); Zhao, Zhuzi [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Dong, Jungang [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Wang, Linqing [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China); Wang, Qiyuan; Li, Guohui; Liu, Suixin [Key Lab of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an (China); Zhang, Qian [Department of Environmental Sciences and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2014-12-01

    Surface O{sub 3} was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O{sub 3} ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O{sub 3} followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O{sub 3} showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O{sub 3}. It was found that O{sub 3} was poorly correlated with solar radiation due to the insufficient NO{sub x} in the ambient air, thus limiting O{sub 3} formation under strong solar radiation. In contrast, high O{sub 3} levels always coincided with strong winds, suggesting that stratospheric O{sub 3} and long range transport might be the main sources of O{sub 3} in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O{sub 3} was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O{sub 3} chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O{sub 3} and transport might be the main sources of O{sub 3} in this area.

  15. Characteristics of surface O3 over Qinghai Lake area in Northeast Tibetan Plateau, China

    International Nuclear Information System (INIS)

    Shen, Zhenxing; Cao, Junji; Zhang, Leiming; Zhao, Zhuzi; Dong, Jungang; Wang, Linqing; Wang, Qiyuan; Li, Guohui; Liu, Suixin; Zhang, Qian

    2014-01-01

    Surface O 3 was monitored continuously during Aug. 12, 2010 to Jul. 21, 2011 at a high elevation site (3200 m above sea level) in Qinghai Lake area (36°58′37″N, 99°53′56″E) in Northeast Tibetan Plateau, China. Daily average O 3 ranged from 21.8 ppbv to 65.3 ppbv with an annual average of 41.0 ppbv. Seasonal average of O 3 followed a decreasing order of summer > autumn > spring > winter. Diurnal variations of O 3 showed low concentrations during daytime and high concentrations during late night and early morning. An intensive campaign was also conducted during Aug. 13–31, 2010 to investigate correlations between meteorological or chemical conditions and O 3 . It was found that O 3 was poorly correlated with solar radiation due to the insufficient NO x in the ambient air, thus limiting O 3 formation under strong solar radiation. In contrast, high O 3 levels always coincided with strong winds, suggesting that stratospheric O 3 and long range transport might be the main sources of O 3 in this rural area. Back-trajectory analysis supported this hypothesis and further indicated the transport of air masses from northwest, northeast and southeast directions. - Highlights: • Surface O 3 was measured in Qinghai Lake area in Northeast Tibetan Plateau, China. • The O 3 chemical formation was under a strong NOx-limited in Qinghai Lake areas. • Stratospheric O 3 and transport might be the main sources of O 3 in this area

  16. Assessment of mercury erosion by surface water in Wanshan mercury mining area.

    Science.gov (United States)

    Dai, ZhiHui; Feng, Xinbin; Zhang, Chao; Shang, Lihai; Qiu, Guangle

    2013-08-01

    Soil erosion is a main cause of land degradation, and in its accelerated form is also one of the most serious ecological environmental problems. Moreover, there are few studies on migration of mercury (Hg) induced by soil erosion in seriously Hg-polluted districts. This paper selected Wanshan Hg mining area, SW China as the study area. Revised universal soil loss equation (RUSLE) and Geographic information system (GIS) methods were applied to calculate soil and Hg erosion and to classify soil erosion intensity. Our results show that the soil erosion rate can reach up to 600,884tkm(-2)yr(-1). Surfaces associated with very slight and extremely severe erosion include 76.6% of the entire land in Wanshan. Furthermore, the cumulative erosion rates in the area impacted by extremely severe erosion make up 90.5% of the total. On an annual basis, Hg surface erosion load was predicted to be 505kgyr(-1) and the corresponding mean migration flux of Hg was estimated to be 3.02kgkm(-2)yr(-1). The erosion loads of Hg resulting from farmland and meadow soil were 175 and 319kgyr(-1) respectively, which were enhanced compared to other landscape types due to the fact that they are generally located in the steep zones associated with significant reclamation. Contributing to establish a mass balance of Hg in Wanshan Hg mining area, this study supplies a dependable scientific basis for controlling soil and water erosion in the local ecosystems. Land use change is the most effective way for reducing Hg erosion load in Wanshan mining area. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor

    Directory of Open Access Journals (Sweden)

    Jules L. Hammond

    2016-12-01

    Full Text Available Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL to pattern an 11 mm long serpentine nanogap (215 nm between two electrodes. For the second method we use inductively-coupled plasma (ICP reactive ion etching (RIE to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA−DNA binding events using dielectric spectroscopy with the horizontal coplanar device.

  18. Estimating Surface Area of Sponges and Marine Gorgonians as Indicators of Habitat Availability on Caribbean Coral Reefs

    Science.gov (United States)

    Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...

  19. Atomic layer deposition of highly dispersed Pt nanoparticles on a high surface area electrode backbone for electrochemical promotion of catalysis

    NARCIS (Netherlands)

    Hajar, Y.; di Palma, V.; Kyriakou, V.; Verheijen, M. A.; Baranova, E. A.; Vernoux, P.; Kessels, W. M. M.; Creatore, M.; van de Sanden, M. C. M.; Tsampas, M. N.

    2017-01-01

    A novel catalyst design for electrochemical promotion of catalysis (EPOC) is proposed which overcomes the main bottlenecks that limit EPOC commercialization, i.e., the low dispersion and small surface area of metal catalysts. We have increased the surface area by using a porous composite electrode

  20. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms.

    Science.gov (United States)

    Ecker, Christine; Ginestet, Cedric; Feng, Yue; Johnston, Patrick; Lombardo, Michael V; Lai, Meng-Chuan; Suckling, John; Palaniyappan, Lena; Daly, Eileen; Murphy, Clodagh M; Williams, Steven C; Bullmore, Edward T; Baron-Cohen, Simon; Brammer, Michael; Murphy, Declan G M

    2013-01-01

    Neuroimaging studies of brain anatomy in autism spectrum disorder (ASD) have mostly been based on measures of cortical volume (CV). However, CV is a product of 2 distinct parameters, cortical thickness (CT) and surface area (SA), that in turn have distinct genetic and developmental origins. To investigate regional differences in CV, SA, and CT as well as their relationship in a large and well-characterized sample of men with ASD and matched controls. Multicenter case-control design using quantitative magnetic resonance imaging. Medical Research Council UK Autism Imaging Multicentre Study. A total of 168 men, 84 diagnosed as having ASD and 84 controls who did not differ significantly in mean (SD) age (26 [7] years vs 28 [6] years, respectively) or full-scale IQ (110 [14] vs 114 [12], respectively). Between-group differences in CV, SA, and CT investigated using a spatially unbiased vertex-based approach; the degree of spatial overlap between the differences in CT and SA; and their relative contribution to differences in regional CV. Individuals with ASD differed from controls in all 3 parameters. These mainly consisted of significantly increased CT within frontal lobe regions and reduced SA in the orbitofrontal cortex and posterior cingulum. These differences in CT and SA were paralleled by commensurate differences in CV. The spatially distributed patterns for CT and SA were largely nonoverlapping and shared only about 3% of all significantly different locations on the cerebral surface. Individuals with ASD have significant differences in CV, but these may be underpinned by (separable) variations in its 2 components, CT and SA. This is of importance because both measures result from distinct developmental pathways that are likely modulated by different neurobiological mechanisms. This finding may provide novel targets for future studies into the etiology of the condition and a new way to fractionate the disorder.

  1. Body surface area determined by whole-body CT scanning: need for new formulae?

    DEFF Research Database (Denmark)

    Villa, Chiara; Primeau, Charlotte; Hesse, Ulrik

    2017-01-01

    Calculation of the estimated body surface area (BSA) by body height and weight has been a challenge in the past centuries due to lack of a well-documented gold standard. More recently, available techniques such as 3D laser surface scanning and CT scanning may be expected to quantify the BSA...... Mimics software, and BSA values were automatically extracted from the program. They were compared with nine predictive equations from the literature. Remarkably, close correlations (r > 0·90) were found between BSA values from CT scans and those from the predictive formulae. A mean BSA of the 54 cadavers...... equations, with the CT scan determination as gold standard. It is concluded that DuBois and DuBois' equation can be safely used in normal-weight male subjects with high accuracy, but it seems likely that BSA is underestimated in underweight subjects and overestimated in overweight individuals. Creation...

  2. Replication fidelity assessment of large area sub-μm structured polymer surfaces using scatterometry

    International Nuclear Information System (INIS)

    Calaon, M; Hansen, H N; Tosello, G; Madsen, M H; Weirich, J; Hansen, P E; Garnaes, J; Tang, P T

    2015-01-01

    The present study addresses one of the key challenges in the product quality control of transparent structured polymer substrates, the replication fidelity of sub-μm structures over a large area. Additionally the work contributes to the development of new techniques focused on in-line characterization of large nanostructured surfaces using scatterometry. In particular an approach to quantify the replication fidelity of high volume manufacturing processes such as polymer injection moulding is presented. Both periodic channels and semi-spherical structures were fabricated on nickel shims used for later injection moulding of Cyclic-olefin-copolymer (COC) substrate were the sub-μm features where ultimately transferred. The scatterometry system was validated using calibrated atomic force microscopy measurements and a model based on scalar diffraction theory employed to calculate the expected angular distribution of the reflected and the transmitted intensity for the nickel surfaces and structured COC and, respectively. (paper)

  3. Analysis and Application of River Surface Line in Hilly Area based on Hec-ras Model

    Directory of Open Access Journals (Sweden)

    Yang Congshan

    2017-01-01

    Full Text Available For example—Cixian Fuyang River Regulation Project. Due to the character that Fuyang River is located in hilly areas of Cixian, we use the Hex-ras software to calculate the status of the river water surface line for the goal of determining the final treatment plan. We maintain the present situation of the river channel design as principle, select the most appropriate pushed water level and roughnessas the basic, and we combine the classification calculation of crossing structures of backwater and the encryption calculation section to get the more accurate result. We compare the water level elevation and the calculation of cross strait, analyze the design parameters, calculate repeated the water line section, analyze the rationality of the design plan, and then finally determine the applicability of Hex-rac software in the large continuous variation of cross section of embankment of river river surface line.

  4. GC/MS analysis of pesticides in the Ferrara area (Italy) surface water: a chemometric study.

    Science.gov (United States)

    Pasti, Luisa; Nava, Elisabetta; Morelli, Marco; Bignami, Silvia; Dondi, Francesco

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides--determined by GC-MS on samples from 11 points along the Ferrara area rivers--have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content.

  5. GC/MS Analysis of Pesticides in the Ferrara Area (Italy) Surface Water: A Chemometric Study

    International Nuclear Information System (INIS)

    Pasti, L.; Dondi, F.; Nava, E.; Morelli, M.; Bignami, S.

    2007-01-01

    The development of a network to monitor surface waters is a critical element in the assessment, restoration and protection of water quality. In this study, concentrations of 42 pesticides - determined by GC-MS on samples from 11 points along the Ferrara area rivers - have been analyzed by chemometric tools. The data were collected over a three-year period (2002-2004). Principal component analysis of the detected pesticides was carried out in order to define the best spatial locations for the sampling points. The results obtained have been interpreted in view of agricultural land use. Time series data regarding pesticide contents in surface waters has been analyzed using the Autocorrelation function. This chemometric tool allows for seasonal trends and makes it possible to optimize sampling frequency in order to detect the effective maximum pesticide content

  6. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  7. Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials?

    DEFF Research Database (Denmark)

    Levin, Marcus; Witschger, Olivier; Bau, Sebastien

    2016-01-01

    A comparison between various methods for real-time measurements of lung deposited surface area (LDSA) using spherical particles and powder dust with specific surface area ranging from 0.03 to 112 m2 g-1 was conducted. LDSA concentrations measured directly using Nanoparticle Surface Area Monitor...... gravimetrical filter measurements and specific surface areas. Measurement of LDSA showed very good correlation in measurements of spherical particles (R2 > 0.97, Ratio 1.0 to 1.04). High surface area nanomaterial powders showed a fairly reliable correlation between NSAM and Aerotrak (R2 0...... present. We conclude that there is currently insufficient reliability and comparability between methods in the measurement of LDSA concentrations. Further development is required to enable use of LDSA for reliable dose metric and regulatory enforcement of exposure....

  8. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    Science.gov (United States)

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  9. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenjun; Wan, Ying [Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234 (China); Dou, Yuqian; Zhao, Dongyuan [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2011-01-01

    Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock-copolymer-templating method. Pluronic F127 is used as a structure-directing agent, with a low-molecular-weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small-angle XRD and N{sub 2} sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area ({proportional_to}1300 m{sup 2}/g), and large pore volumes ({proportional_to}1.50 cm{sup 3}/g) after low-temperature pyrolysis (900 C). All surface areas come from mesopores. Wide-angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp{sup 2} carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular-shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The Investigation of a Sinkhole Area in Germany by Near-Surface Active Seismic Tomography

    Science.gov (United States)

    Tschache, S.; Becker, D.; Wadas, S. H.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    In November 2010, a 30 m wide and 17 m deep sinkhole occurred in a residential area of Schmalkalden, Germany, which fortunately did not harm humans, but led to damage of buildings and property. Subsequent geoscientific investigations showed that the collapse was naturally caused by the subrosion of sulfates in a depth of about 80 m. In 2012, an early warning system was established including 3C borehole geophones deployed in 50 m depth around the backfilled sinkhole. During the acquisition of two shallow 2D shear wave seismic profiles, the signals generated by a micro-vibrator at the surface were additionally recorded by the four borehole geophones of the early warning system and a VSP probe in a fifth borehole. The travel time analysis of the direct arrivals enhanced the understanding of wave propagation in the area. Seismic velocity anomalies were detected and related to structural seismic images of the 2D profiles. Due to the promising first results, the experiment was further extended by distributing vibration points throughout the whole area around the sinkhole. This time, micro-vibrators for P- and S-wave generation were used. The signals were recorded by the borehole geophones and temporary installed seismometers at surface positions close to the boreholes. The travel times and signal attenuations are evaluated to detect potential instable zones. Furthermore, array analyses are performed. The first results reveal features in the active tomography datasets consistent with structures observed in the 2D seismic images. The advantages of the presented method are the low effort and good repeatability due to the permanently installed borehole geophones. It has the potential to determine P-wave and S-wave velocities in 3D. It supports the interpretation of established investigation methods as 2D surface seismics and VSP. In our further research we propose to evaluate the suitability of the method for the time lapse monitoring of changes in the seismic wave

  11. Characterization of the porosity of human dental enamel and shear bond strength in vitro after variable etch times: initial findings using the BET method.

    Science.gov (United States)

    Nguyen, Trang T; Miller, Arthur; Orellana, Maria F

    2011-07-01

    (1) To quantitatively characterize human enamel porosity and surface area in vitro before and after etching for variable etching times; and (2) to evaluate shear bond strength after variable etching times. Specifically, our goal was to identify the presence of any correlation between enamel porosity and shear bond strength. Pore surface area, pore volume, and pore size of enamel from extracted human teeth were analyzed by Brunauer-Emmett-Teller (BET) gas adsorption before and after etching for 15, 30, and 60 seconds with 37% phosphoric acid. Orthodontic brackets were bonded with Transbond to the samples with variable etch times and were subsequently applied to a single-plane lap shear testing system. Pore volume and surface area increased after etching for 15 and 30 seconds. At 60 seconds, this increase was less pronounced. On the contrary, pore size appears to decrease after etching. No correlation was found between variable etching times and shear strength. Samples etched for 15, 30, and 60 seconds all demonstrated clinically viable shear strength values. The BET adsorption method could be a valuable tool in enhancing our understanding of enamel characteristics. Our findings indicate that distinct quantitative changes in enamel pore architecture are evident after etching. Further testing with a larger sample size would have to be carried out for more definitive conclusions to be made.

  12. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    Science.gov (United States)

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  13. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers

    Directory of Open Access Journals (Sweden)

    Cleiton A. Nunes

    2011-01-01

    Full Text Available Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

  14. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  15. Ocular surface area and human eye blink frequency during VDU work

    DEFF Research Database (Denmark)

    Nielsen, Pernille Kofoed; Søgaard, Karen; Skotte, Jørgen

    2008-01-01

    . The low BF during the active task was succeded by a burst with high BF after cessation of the active task, indicating a compensatory blinking process. This stresses that interchange of work tasks with different cognitive load is as important as the monitor position in the prevention of visual......The purpose of this study was to investigate how the ocular surface area (OSA) and the eye blink frequency (BF) are affected by a high versus a low-monitor position during visual display unit (VDU) work with varying cognitive demands. In a balanced randomized (2 x 2) design ten healthy subjects...

  16. Agriculture and brown coal surface mining. The example of the Rhenish brown coal mining area

    International Nuclear Information System (INIS)

    Heck, B.

    1994-01-01

    Extensive surface mining in the Rhenish brown coal exploitation area has led to marked changes to the environment and living conditions there. This applies particularly to agriculture, which now has to subsist with a competitor for land. The progressive sacrifice of farmland and widespread relocation compaigns are grossly interfering with the business of farming. Only in exceptional cases do farms move as part of the relocation of whole villages. New sites are often found in hamlets and group settlements. This happens in connection with farming of newly reclaimed land or recultivated land reorganised and returned in land consolidation campaigns. (orig.) [de

  17. Quantification of aluminium-27 NMR spectra of high-surface-area oxides

    International Nuclear Information System (INIS)

    Pearson, R.M.; Schramm, C.M.

    1990-01-01

    This paper discusses the quantitation of 27 Al NMR spectra. It is showns that the so called 'invisible' aluminium atoms seen by recent workers are completely consistent with known continuous wave NMR studies of the 27 Al NMR spectra of high surface area aluminium oxides. The use of pulsed NMR techniques further complicate the quantitative measurement of 27 Al NMR spectra, especially when high resolution NMR spectrometers are used for this purpose. Methods are described which allow both the estimation of aluminium not seen by continuous wave techniques and the amounts of the NMR spectra lost in pulsed work. (author). 24 refs.; 6 figs.; 1 tab

  18. A microbial-mineralization approach for syntheses of iron oxides with a high specific surface area.

    Science.gov (United States)

    Yagita, Naoki; Oaki, Yuya; Imai, Hiroaki

    2013-04-02

    Of minerals and microbes: A microbial-mineralization-inspired approach was used to facilitate the syntheses of iron oxides with a high specific surface area, such as 253 m(2)g(-1) for maghemite (γ-Fe(2)O(3)) and 148 m(2)g(-1) for hematite (α-Fe(2)O(3)). These iron oxides can be applied to electrode material of lithium-ion batteries, adsorbents, and catalysts. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  20. Surface area and chemical reactivity characteristics of uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m 2 /g. The reactivity of the products in Ar-9%O 2 and Ar-20%O 2 were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal

  1. Radioecological state of some surface water systems of contaminated areas of both Gomel and Mogilev Regions

    International Nuclear Information System (INIS)

    Datskevich, P. I.; Komissariv, F. D.; Khvale', O. D.; Basharina, L. P.; Lobach, I. L.

    1997-01-01

    The radioecological situation of different ecosystems of Belarus and their components has been analysed. Such components of the surface water ecosystems as water, suspensions, sediments and soils of water-collection areas were used for the investigation of the content of cesium 137 and strontium 90. The received data were given since 1990. The content of cesium 137 and strontium 90 in the components of water ecosystems was counted in the laboratory conditions by means of standard methods of beta radiometry, semiconductor gamma spectrometry and radiochemistry. The error of measurement of radioactivity was not higher than 25 and 35% for cesium 137 and strontium 90 accordingly. Water ecosystems were distinguished by the state of contamination of water-collection areas and hydrological parameters. These and some other reasons considered in the article influence on the character of cesium 137 and strontium 90 behaviour in water ecosystems

  2. High Surface Area Nanoporous Ti02 Coating for Effective Water Condensation.

    Science.gov (United States)

    Kaynar, Mehmet; McGarity, Mark; Yassitepe, Emre; Shah, S.

    2013-03-01

    A water collection device utilizing nanoparticles has been researched, towards the possible goal of providing water in much needed areas on Earth. Titanium dioxide nanoparticles were spray coated on stainless steel substrates to measure their effect on atmospheric water condensation. A simple thermoelectric cooler, also called a Peltier device, was used to lower the temperature of the coated and uncoated stainless steel substrates to below the dew point temperature of the surrounding air. The thickness of the spray coating was varied to measure its effect on water condensation. This increase in surface area had a direct effect on the amount of water condensed. Compared with bare stainless steel, the TiO2 spray coated stainless steel had a considerably smaller contact angle of H20 droplets. In addition, the super-hydrophilic properties of TiO2 allowed water to flow more easily off the device. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  3. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Wei, Z.J.; Wong, M.H.

    2011-01-01

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L -1 ) and a soil pot trail (control, 60 mg As kg -1 ). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O 2 kg -1 root d.w. d -1 ), As uptake (e.g., 8.8-151 mg kg -1 in shoots in 0.8 mg As L -1 treatment), translocation factor (2.1-47% in 0.8 mg As L -1 ) and tolerance (29-106% in 0.8 mg As L -1 ). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: → There is significant correlation between the porosity of roots and rates of ROL. → The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. → The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  4. Porosity, permeability, and their relationship in granite, basalt, and tuff

    International Nuclear Information System (INIS)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report

  5. Coherence of land surface layout as intangible environmental resource (Vooremaa landscape protection area, Estonia

    Directory of Open Access Journals (Sweden)

    Oleksandr Karasov

    2017-09-01

    Full Text Available Vooremaa Landscape Protection Area provides a specimen of native Estonian agricultural lands, alternating with picturesque moraine lakes. The overall visual environment within this area was basically changed by glacial agents and, hereafter, by cultural activities, such as crop farming. Topography consists of about 100 drumlins (some of them are cultivated, as well as depressions, filled with lakes and covered by forests and grasslands. A rich combination of the mentioned factors determined the study area selection. There was accepted, that the harmony, or pleasing organization of distinguishable units of visual environment (with no attention to their colours or textures, but regarding their geographical meaning only, depends on the system effect: the more complexity of the overall system exceeds the algebraic sum of the complexity of its components, the more its organization does. In this way, some developments of information theory could be applied to the analysis of visual environment (from top view, similarly to the analysis of the text (considering units of land relief, land cover, and land cover relief, or a land surface in total, as the symbols of some alphabet, and their diversity within the floating circle – as words, consisting of the symbols. Since mentioned notions of organization and harmony are frequently implied in the concept of landscape coherence, the latter term was used as a fixed and well-known one in the landscape and environmental aesthetics. Hartley’s formula was used to compute the coherence of the land surface layout and the respective regionalization within the study area and surroundings. The effectiveness of the proposed method for representation of visual harmony was non-rigorously verified with transect of Google Street View panoramic photo series, while everyone is welcomed to use the Google Street View to compare the presented results with his own conclusions. There was found, that the proposed index

  6. On the relationship between enamel band complexity and occlusal surface area in Equids (Mammalia, Perissodactyla

    Directory of Open Access Journals (Sweden)

    Nicholas A. Famoso

    2016-07-01

    Full Text Available Enamel patterns on the occlusal surfaces of equid teeth are asserted to have tribal-level differences. The most notable example compares the Equini and Hipparionini, where Equini have higher crowned teeth with less enamel-band complexity and less total occlusal enamel than Hipparionini. Whereas previous work has successfully quantified differences in enamel band shape by dividing the length of enamel band by the square root of the occlusal surface area (Occlusal Enamel Index, OEI, it was clear that OEI only partially removes the effect of body size. Because enamel band length scales allometrically, body size still has an influence on OEI, with larger individuals having relatively longer enamel bands than smaller individuals. Fractal dimensionality (D can be scaled to any level, so we have used it to quantify occlusal enamel complexity in a way that allows us to get at an accurate representation of the relationship between complexity and body size. To test the hypothesis of tribal-level complexity differences between Equini and Hipparionini, we digitally traced a sample of 98 teeth, one tooth per individual; 31 Hipparionini and 67 Equini. We restricted our sampling to the P3-M2 to reduce the effect of tooth position. After calculating the D of these teeth with the fractal box method which uses the number of boxes of various sizes to calculate the D of a line, we performed a t-test on the individual values of D for each specimen, comparing the means between the two tribes, and a phylogenetically informed generalized least squares regression (PGLS for each tribe with occlusal surface area as the independent variable and D as the dependent variable. The slopes of both PGLS analyses were compared using a t-test to determine if the same linear relationship existed between the two tribes. The t-test between tribes was significant (p < 0.0001, suggesting different D populations for each lineage. The PGLS for Hipparionini was a positive but not

  7. Use of SEM and EDS analysis in the investigation of Al-Si-Cu piston alloy cast porosity

    Directory of Open Access Journals (Sweden)

    D. Kakaš

    2009-07-01

    Full Text Available Porosity formation was detected in the casting thinnest section in the proximity of the as cast surface and near the wall centerline. In order to investigate the cause of the porosity formation light microscopy was used to define as cast structure. After initial findings SEM and EDS analyses were performed. Based on the results it is possible to define cause of the observed porosity. A number of pores originates from the mould filling stage and entrainment of the oxide films, while others appear due to insufficient feeding during solidification.

  8. The effect of limestone aggregate porosity and saturation degree on the interfacial zone

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Le Saout, G.; Devillers, P.; Garcia-Diaz, E.

    2015-01-01

    The recycling of concrete wastes concerns the nuclear industry as many nuclear facilities will have to be dismantled and the reduction and reuse of the decommissioning concrete wastes in order to minimize the total waste volume is a key issue. The recycled aggregates have the potential to replace natural resources however it is necessary to assess the effect of recycled aggregates on the final concrete. One important issue to be addressed to achieve the required mechanical properties is the water absorption of the recycled aggregates. As a first step, we have used in this study limestone aggregates with different porosities (total porosity from 2 to 20 %) and have investigated the influence of the porosity and the initial saturation degree of these aggregates on the porosity of the interfacial transition zone (ITZ) using scanning electron microscope. The equation of Feret for the strength-porosity relationship of our mortars was applied σ = K(100-p) 2 where σ is the compressive strength in MPa, p is the capillary pore volume in % and K a constant. Aggregates with lower porosity follow the same law characterized by a K value higher than the value for the more porous aggregate law. The K parameter is not dependent of the humidity degree of the aggregate: for a given aggregate, family mortars made with dry and wet aggregate follow the same law. But for porous aggregates as the meso-porosity of the ITZ for a given time of hydration is higher for mortars made with wet aggregates, the compressive strength of these mortars is less than those of mortars made with dry aggregates. Contrary to the low porous aggregate, it was not possible for porous limestone aggregates, and with a calculation based on the saturated surface dry state as reference state to obtain the same net water to cement ratio with wet and dry aggregates. This study reflects the difficulty to control the amount of efficient water in concrete when using porous aggregates and its influence on compressive

  9. The use of large surface area for particle and power deposition

    International Nuclear Information System (INIS)

    Seigneur, A.; Guilhem, D.; Hogan, J.

    1993-01-01

    Since the parallel heat flux passing through the LCFS has increased dramatically with the size of machines one has to cope with very large particle and power fluxes on the limiters. Thus the size of the limiters has been increased by the use of inner bumper limiters (for example in JET, TFTR, TORE-SUPRA and JT60). The 'exponential-sine' model is widely used to estimate the heat flux (Q) to a wall for a plasma flux surface with incident angle θ. The model predict Q = q || (0) sinθ e -ρ/λ q + q(0) cosθ e -ρ/λ q , (where θ=0 o when the flux surface is exactly tangential to the limiting surface), ρ is the minor radius measured from the last closed flux surface (LCFS), λ q is the SOL decay length of the heat flux density and q(0) is the heat flux density at the last closed surface. If we approximate the heat flux as Q = q || (0) e -ρ/λ q sin(θ+α), with α ≡ tan -1 [q(0)/q || (0)], then α can be interpreted as an effective 'minimum angle of incidence'. Under conditions where the geometric angle θ has been made almost grazing (below 5 o ) the predictions of the simplest model (with α=0 o ) is not adequate to represent the observation made in TORE-SUPRA; a similar result is found in TFTR. Experimental observations of heat and particle deposition on the large area limiter on the inner wall of TORE-SUPRA are presented. These results have been analyzed with a Monte Carlo code (THOR) describing the diffusion of hydrogenic particles across the LCFS to the limiting objects in the Scrape Off Layer (SOL), and by impurity generation calculations using the full 'exponential-sine' model (α ≠ 0) used as input to an impurity (carbon) Monte Carlo code (BBQ). (author) 6 refs., 3 figs., 1 tab

  10. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  11. Application of a novel cellular automaton porosity prediction model to aluminium castings

    International Nuclear Information System (INIS)

    Atwood, R.C.; Chirazi, A.; Lee, P.D.

    2002-01-01

    A multiscale model was developed to predict the formation of porosity within a solidifying aluminium-silicon alloy. The diffusion of silicon and dissolved gas was simulated on a microscopic scale combined with cellular automaton models of gas porosity formation within the growing three-dimensional solidification microstructure. However, due to high computational cost, the modelled volume is limited to the millimetre range. This renders the application of direct modelling of complex shape castings unfeasible. Combining the microstructural modelling with a statistical response-surface prediction method allows application of the microstructural model results to industrial scale casts by incorporating them in commercial solidification software. (author)

  12. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    Directory of Open Access Journals (Sweden)

    Eva Gulikova

    2008-06-01

    Full Text Available Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust

  13. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    Directory of Open Access Journals (Sweden)

    Y.-H. Ryu

    2013-02-01

    Full Text Available Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3 episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ. Under fair weather conditions, the temperature excess (urban heat island significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the

  14. AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities.

    Science.gov (United States)

    Rota, A; Serpini, E; Gazzadi, G C; Valeri, S

    2016-04-06

    Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating 'really nano-' structures and detecting their tribological properties. In the present work we show how the probe-surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO2 has been observed as well. The results suggest a scenario for capillary formation on the patterns.

  15. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bounds on area and charge for marginally trapped surfaces with a cosmological constant

    International Nuclear Information System (INIS)

    Simon, Walter

    2012-01-01

    We sharpen the known inequalities AΛ ≤ 4π(1 - g) (Hayward et al 1994 Phys. Rev. D 49 5080, Woolgar 1999 Class. Quantum Grav. 16 3005) and A ≤ 4πQ 2 (Dain et al 2012 Class. Quantum Grav. 29 035013) between the area A and the electric charge Q of a stable marginally outer-trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ. In particular, instead of requiring stability we include the principal eigenvalue λ of the stability operator. For Λ* Λ+λ > 0, we obtain a lower and an upper bound for Λ*A in terms of Λ*Q 2 , as well as the upper bound Q≤1/(2√(Λ * )) for the charge, which reduces to Q≤1/(2√(Λ)) in the stable case λ ≥ 0. For Λ* < 0, there only remains a lower bound on A. In the spherically symmetric, static, stable case, one of our area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for 'jumps' and mergers of charged MOTS. (fast track communication)

  17. Closure Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.B.

    2001-11-01

    This Closure Report provides the documentation for closure of the Central Nevada Test Area (CNTA) surface Corrective Action Unit (CAU) 417. The CNTA is located in Hot Creek Valley in Nye County, Nevada, approximately 22.5 kilometers (14 miles) west of U.S. State Highway 6 near the Moores Station historical site, and approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. A nuclear device for Project Faultless was detonated approximately 975 meters (3,200 feet) below ground surface on January 19, 1968, in emplacement boring UC-1 (Department of Energy, Nevada Operation Office [DOE/NV], 1997). CAU 417 consists of 34 Corrective Action Sites (CASs). Site closure was completed using a Nevada Department of Environmental Protection (NDEP) approved Corrective Action Plan (CAP) (DOE/NV, 2000) which was based on the recommendations presented in the NDEP-approved Corrective Action Decision Document (DOE/NV, 1999). Closure of CAU 417 was completed in two phases. Phase I field activities were completed with NDEP concurrence during 1999 as outlined in the Phase I Work Plan, Appendix A of the CAP (DOE/NV, 2000), and as summarized in Section 2.1.2 of this document

  18. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    Science.gov (United States)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  19. AFM-based tribological study of nanopatterned surfaces: the influence of contact area instabilities

    International Nuclear Information System (INIS)

    Rota, A; Serpini, E; Gazzadi, G C; Valeri, S

    2016-01-01

    Although the importance of morphology on the tribological properties of surfaces has long been proved, an exhaustive understanding of nanopatterning effects is still lacking due to the difficulty in both fabricating ‘really nano-’ structures and detecting their tribological properties. In the present work we show how the probe–surface contact area can be a critical parameter due to its remarkable local variability, making a correct interpretation of the data very difficult in the case of extremely small nanofeatures. Regular arrays of parallel 1D straight nanoprotrusions were fabricated by means of a low-dose focused ion beam, taking advantage of the amorphization-related swelling effect. The tribological properties of the patterns were detected in the presence of air and in vacuum (dry ambient) by atomic force microscopy. We have introduced a novel procedure and data analysis to reduce the uncertainties related to contact instabilities. The real time estimation of the radius of curvature of the contacting asperity enables us to study the dependence of the tribological properties of the patterns from their geometrical characteristics. The effect of the patterns on both adhesion and the coefficient of friction strongly depends on the contact area, which is linked to the local radius of curvature of the probe. However, a detectable hydrophobic character induced on the hydrophilic native SiO 2 has been observed as well. The results suggest a scenario for capillary formation on the patterns. (paper)

  20. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    Science.gov (United States)

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (S BET : 3301 m 2 g -1 ), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g -1 at 90 A g -1 for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg -1 or 53 Wh L -1 has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  1. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    International Nuclear Information System (INIS)

    Kaita, R.; Majeski, R.; Boaz, M.; Efthimion, P.; Jones, B.; Hoffman, D.; Kugel, H.; Menard, J.; Munsat, T.; Post-Zwicker, A.; Soukhanovskii, V.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L.; Finkenthal, M.; Stutman, D.; Antar, G.; Doerner, R.; Luckhardt, S.; Maingi, R.; Maiorano, M.; Smith, S.

    2002-01-01

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance

  2. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  3. Surface area-burnoff correlation for the steam--graphite reaction

    International Nuclear Information System (INIS)

    Stark, W.A. Jr.; Malinauskas, A.P.

    1977-01-01

    The oxidation of core graphite by steam of air represents a problem area of significant concern in safety analyses for the high temperature gas cooled reactor (HTGR). Core and core-support graphite integrity and strength deteriorate with oxidation of the graphite, and oxidation furthermore could affect the rate of fission product release under upset conditions. Consequently, modeling of core response during steam or air ingress conditions requires an expression for the rate of graphite interaction with those impurities. The steam--graphite reaction in particular is a complex interaction of mass transport within the graphite with chemi-sorption and reaction on accessible surfaces; experimental results from graphite to graphite are highly variable, and the description of the reaction is not yet completely consistent. A simple etch pit model relating surface area to burnoff has been proposed and shown to provide reasonable correlation with experimental data obtained from steam oxidation studies of nuclear grade H-327 graphite. Unaccounted differences between theory and experiment arise at burnoffs exceeding 3 to 5 percent. The model, while not complete nor comprehensive, is consistent with experimental observations of graphite oxidation by O 2 (air), CO 2 , or H 2 O, and could have some utility in safety analysis

  4. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.

    Science.gov (United States)

    Symeonidou, Evangelia-Regkina; Nordin, Andrew D; Hairston, W David; Ferris, Daniel P

    2018-04-03

    More neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion. In the current study, we tested how motion artifacts are affected by the overall mass and surface area of commercially available electrodes, as well as how cable sway contributes to motion artifacts. To provide a ground-truth signal, we used a gelatin head phantom with embedded antennas broadcasting electrical signals, and recorded EEG with a commercially available electrode system. A robotic platform moved the phantom head through sinusoidal displacements at different frequencies (0-2 Hz). Results showed that a larger electrode surface area can have a small but significant effect on improving EEG signal quality during motion and that cable sway is a major contributor to motion artifacts. These results have implications in the development of future hardware for mobile brain imaging with EEG.

  5. Non-activated high surface area expanded graphite oxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.E.; Boukos, N.; Giannouri, M. [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece); Lei, C.; Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece)

    2015-12-15

    Graphical abstract: - Highlights: • One-step exfoliation and reduction of graphite oxide via microwave irradiation. • Effect of pristine graphite (type, flake size) on the microwave expanded material. • Effect of pretreatment and oxidation cycles on the produced expanded material. • Expanded graphene materials with high BET surface areas (940 m{sup 2}/g–2490 m{sup 2}/g). • Non-activated graphene based materials suitable for supercapacitors. - Abstract: Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m{sup 2}/g to 2490 m{sup 2}/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  6. Effect of lung injuries on [14C]urea permeability-surface area product in dogs

    International Nuclear Information System (INIS)

    Zelter, M.; Lipavsky, A.; Hoeffel, J.M.; Murray, J.F.

    1984-01-01

    To determine whether [ 14 C]urea permeability-surface area product (PS) is a reliable indicator of changes in permeability in various injuries and its relationship to indicator-dilution and gravimetric lung water contents, we studied six groups of anesthetized, paralyzed, and mechanically ventilated dogs (5 animals each). The groups consisted of control dogs, those injured by intravenous alloxan, oleic acid, or glass beads, and those exposed to acute hypoxia or increased left atrial pressure from volume loading (Pla). Interanimal variation of PS was large (3.0-15.0 ml/s), but successive hourly values in individual animals were stable for 2 h in experimental groups and for 4 h in controls. The PS increased after alloxan, elevated Pla, and 2 h of hypoxia; PS decreased after oleic acid and micremboli. The gravimetric lung water increased after alloxan, oleic acid, and microemboli, and indicator-dilution lung water increased only after alloxan. We conclude (1) that intersubject variability requires normalization to enable detection of significant deviation from base line, and (2) that decreased PS after oleic acid and microvascular injury occurred because vascular obstruction, which decreased surface area, masked probable coexisting increases in capillary permeability

  7. High sensitivity, high surface area Enzyme-linked Immunosorbent Assay (ELISA).

    Science.gov (United States)

    Singh, Harpal; Morita, Takahiro; Suzuki, Yuma; Shimojima, Masayuki; Le Van, An; Sugamata, Masami; Yang, Ming

    2015-01-01

    Enzyme-linked immunosorbent assays (ELISA) are considered the gold standard in the demonstration of various immunological reactions with an application in the detection of infectious diseases such as during outbreaks or in patient care. This study aimed to produce an ELISA-based diagnostic with an increased sensitivity of detection compared to the standard 96-well method in the immunologic diagnosis of infectious diseases. A '3DStack' was developed using readily available, low cost fabrication technologies namely nanoimprinting and press stamping with an increased surface area of 4 to 6 times more compared to 96-well plates. This was achieved by stacking multiple nanoimprinted polymer sheets. The flow of analytes between the sheets was enhanced by rotating the 3DStack and confirmed by Finite-Element (FE) simulation. An Immunoglobulin G (IgG) ELISA for the detection of antibodies in human serum raised against Rubella virus was performed for validation. An improved sensitivity of up to 1.9 folds higher was observed using the 3DStack compared to the standard method. The increased surface area of the 3DStack developed using nanoimprinting and press stamping technologies, and the flow pattern between sheets generated by rotating the 3DStack were potential contributors to a more sensitive ELISA-based diagnostic device.

  8. Reduction Expansion Synthesis as Strategy to Control Nitrogen Doping Level and Surface Area in Graphene

    Directory of Open Access Journals (Sweden)

    Russell Canty

    2015-10-01

    Full Text Available Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES method utilizing graphite oxide (GO and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i promoting the reduction of the GO and (ii providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD, Raman Spectroscopy, and Brunauer Emmet Teller (BET. The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA coupled with mass spectroscopy (MS analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene.

  9. Experiment Study on Determination of Surface Area of Finegrained Soils by Mercury Intrusion Porosimetry

    Science.gov (United States)

    Yan, X. Q.; Zhou, C. Y.; Fang, Y. G.; Lin, L. S.

    2017-12-01

    The specific surface area (SSA) has a great influence on the physical and chemical properties of fine-grained soils. Determination of specific surface area is an important content for fine-grained soils micro-meso analysis and characteristic research. In this paper, mercury intrusion porosimetry (MIP) was adopted to determine the SSA of fine-grained soils including quartz, kaolinite, bentonite and natural Shenzhen soft clay. The test results show that the average values of SSA obtained by MIP are 0.78m2/g, 11.31m2/g, 57.28m2/g and 27.15m2/g respectively for very fine-grained quartz, kaolin, bentonite and natural Shenzhen soft clay, and that it is feasible to apply MIP to obtain the SSA of fine-grained soils through statistical analysis of 97 samples. Through discussion, it is necessary to consider the state of fine-grained soils such as pore ratio when the SSA of fine-grained soils is determined by MIP.

  10. Surface area changes of Himalayan ponds as a proxy of hydrological climate-driven fluctuations

    Science.gov (United States)

    Salerno, Franco; Thakuri, Sudeep; Guyennon, Nicolas; Viviano, Gaetano; Tartari, Gianni

    2016-04-01

    The meteorological measurements at high-elevations of the Himalayan range are scarce due to the harsh conditions of these environments which limit the suitable maintenance of weather stations. As a consequence, the meager knowledge on how the climate is changed in the last decades at Himalayan high-elevations sets a serious limit upon the interpretation of relationships between causes and recent observed effects on the cryosphere. Although the glaciers masses reduction in Himalaya is currently sufficiently well described, how changes in climate drivers (precipitation and temperature) have influenced the melting and shrinkage processes are less clear. Consequently, the uncertainty related to the recent past amplifies when future forecasts are done, both for climate and impacts. In this context, a substantial body of research has already demonstrated the high sensitivity of lakes and ponds to climate. Some climate-related signals are highly visible and easily measurable in lakes. For example, climate-driven fluctuations in lake surface area have been observed in many remote sites. On interior Tibetan Plateau the lake growth since the late 1990s is mainly attributed to increased regional precipitation and weakened evaporation. Differently, other authors attribute at the observed increases of lake surfaces at the enhanced glacier melting. In our opinion these divergences found in literature are due to the type of glacial lakes considered in the study and in particular their relationship with glaciers. In general, in Himalaya three types of glacial lakes can be distinguished: (i) lakes that are not directly connected with glaciers, but that may have a glacier located in their basin (unconnected glacial lakes); (ii) supraglacial lakes, which develop on the surface of the glacier downstream; or (iii) proglacial lakes, which are moraine-dammed lakes that are in contact with the glacier front. Some of these lakes store large quantities of water and are susceptible to GLOFs

  11. Surface heat flow and lithosphere thermal structure of the larger Luxembourg area as a basis for the evaluation of its geothermal potential

    Science.gov (United States)

    Schintgen, Tom; Förster, Andrea

    2014-05-01

    The evaluation of the geothermal potential and the type of geothermal use necessitates knowledge of the subsurface temperature distribution in combination with hydraulic properties (e.g. porosity, permeability and hydraulic conductivity). In the larger Luxembourg area, only a few subsurface temperature data are available restricted to shallow depth. This paucity in data required to assess the thermal regime to drillable depths by modeling. The thermal model was constrained by surface heat flow and the lithosphere-asthenosphere boundary (LAB) characterized by the 1300° C isotherm. A surface heat-flow value of 75 ± 7 (2σ) mW m-2 was determined in central Luxembourg, which corroborates most values known from adjacent areas. The conceptual geological model for thermal modeling has a high resolution in the upper 15 km due to a wealth of geological data, while refraction seismic data and xenoliths provide petrological constraints for the lower part of the model down to the crust/mantle boundary. Thermal rock properties assigned to geological units are based on a large set of laboratory data, complemented by some literature data for the lower parts of the crust. The thermal structure is investigated by calculating 2-D steady-state thermal models along three crustal cross sections developed for the study area assuming a purely conductive lithosphere. The location of the LAB at 100 km depth, as typical for the Ardennes, provides the best fit with the measured surface heat flow of about 75 mW m-2. This LAB model provides temperatures at 5 km of 115-118° C on average and of about 600° C at the Moho. The resulting mantle heat flow in this model is 39-40 mW m-2. A reduced lithosphere thickness of 50 km as typical for the Eifel area to the east results in an increase of surface heat flow to 97 mW m-2 and of the mantle heat flow to 65 mW m-2, respectively. If heating from the Eifel plume had reached the surface yet, temperatures at 5 km would be about 20° C higher (and

  12. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    Science.gov (United States)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  13. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds.

    Science.gov (United States)

    Fröhlich, Eleonore; Mercuri, Annalisa; Wu, Shengqian; Salar-Behzadi, Sharareh

    2016-01-01

    Modern strategies in drug development employ in silico techniques in the design of compounds as well as estimations of pharmacokinetics, pharmacodynamics and toxicity parameters. The quality of the results depends on software algorithm, data library and input data. Compared to simulations of absorption, distribution, metabolism, excretion, and toxicity of oral drug compounds, relatively few studies report predictions of pharmacokinetics and pharmacodynamics of inhaled substances. For calculation of the drug concentration at the absorption site, the pulmonary epithelium, physiological parameters such as lung surface and distribution volume (lung lining fluid) have to be known. These parameters can only be determined by invasive techniques and by postmortem studies. Very different values have been reported in the literature. This review addresses the state of software programs for simulation of orally inhaled substances and focuses on problems in the determination of particle deposition, lung surface and of lung lining fluid. The different surface areas for deposition and for drug absorption are difficult to include directly into the simulations. As drug levels are influenced by multiple parameters the role of single parameters in the simulations cannot be identified easily.

  14. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  15. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    2014-12-01

    Full Text Available Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc. within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water. Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users.

  16. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  17. High Porosity Alumina as Matrix Material for Composites of Al-Mg Alloys

    International Nuclear Information System (INIS)

    Gömze, L A; Egész, Á; Gömze, L N; Ojima, F

    2013-01-01

    The sophisticated industry and technologies require higher and higher assumptions against mechanical strength and surface hardness of ceramic reinforced metal alloys and metal matrix composites. Applying the well-known alumina powders by dry pressing technology and some special pore-forming additives and sintering technology the authors have successfully developed a new, high porosity alumina matrix material for composites of advenced Al-Mg alloys. The developed new matrix material have higher than 30% porosity, with homogenous porous structure and pore sizes from few nano up to 2–3 mm depending on the alloys containments. Thanks to the used materials and the sintering conditions the authors could decrease the wetting angles less than 90° between the high porosity alumina matrix and the Al-Mg alloys. Applied analytical methods in this research were laser granulometry, scanning electron microscopy, and X-ray diffraction. Digital image analysis was applied to microscopy results, to enhance the results of transformation

  18. In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine.

    Science.gov (United States)

    Brünler, Ronny; Aibibu, Dilbar; Wöltje, Michael; Anthofer, Anna-Maria; Cherif, Chokri

    2017-07-01

    Additive manufacturing technologies are a promising technology towards patient-specific implants for applications in regenerative medicine. The Net-Shape-Nonwoven technology is used to manufacture structures from short fibers with interconnected pores and large functional surfaces that are predestined for cell adhesion and growth. The present study reports on a modeling approach with a particular focus on the specific structural properties. The overall porosities and mean pore-sizes of the digital models are simulated according to liquid-displacement porosity in a tool implemented in the modeling software. This allows adjusting the process parameters fiber length and fiber diameter to generate biomimetic structures with pore-sizes adapted to the requirements of the tissue that is to be replaced. Modeling the structural and porosity properties of scaffolds and implants leads to an efficient use of the processed biomaterials as the trial-and-error method is avoided. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Relating porosity and mechanical properties in spray formed tubulars

    International Nuclear Information System (INIS)

    Payne, R.D.; Naval Surface Warfare Center, Annapolis, MD; Moran, A.L.; United States Naval Academy, Annapolis, MD; Cammarata, R.C.

    1993-01-01

    Because the spray forming process holds the potential to reduce the cost of alloy production, there is significant interest in developing methods to industrialized and automate this process through advanced sensing techniques. These advanced sensing techniques will observe the process real-time and give inputs to a process controller. By determining relationships between part quality, process parameters and sensor inputs, the process controller will be able to determine the quality of a part while it is being made and make adjustments if necessary. A Tinius-Olsen Tensile Tester was used to test five tensile specimens. The five tensile specimens were taken from five alloy 625 (60% Ni, 20% Cr, 8%Mo, 5% Fe) tubulars with varying properties. Among the advanced sensing techniques currently used to monitor the spray forming process is a surface roughness sensor. It consists of an argon laser, a charge coupled device (CCD) camera and roughness determination software. The laser emission is expanded into a long, thin line and projected onto the substrate as the molten metal consolidates on the surface. The roughness determination software will grab a frame with the laser stripe, digitize it and calculate the root mean square (RMS) value of the roughness in that particular frame. Each frame has a time stamp and can be related back to other time stamped process parameters. Recent sensor work has tried to find correlations between RMS values and porosities determined after processing. This venture has met with limited success. The object of this paper is to link porosity with mechanical properties and therefore define quality. Eventually the input from all sensors and process parameters will be entered into a process controller. If there is a link between sensor data and quality, this controller will be able to determine the quality of a forming material from sensor inputs and make changes in the process parameters if the quality is poor

  20. Error rate of automated calculation for wound surface area using a digital photography.

    Science.gov (United States)

    Yang, S; Park, J; Lee, H; Lee, J B; Lee, B U; Oh, B H

    2018-02-01

    Although measuring would size using digital photography is a quick and simple method to evaluate the skin wound, the possible compatibility of it has not been fully validated. To investigate the error rate of our newly developed wound surface area calculation using digital photography. Using a smartphone and a digital single lens reflex (DSLR) camera, four photographs of various sized wounds (diameter: 0.5-3.5 cm) were taken from the facial skin model in company with color patches. The quantitative values of wound areas were automatically calculated. The relative error (RE) of this method with regard to wound sizes and types of camera was analyzed. RE of individual calculated area was from 0.0329% (DSLR, diameter 1.0 cm) to 23.7166% (smartphone, diameter 2.0 cm). In spite of the correction of lens curvature, smartphone has significantly higher error rate than DSLR camera (3.9431±2.9772 vs 8.1303±4.8236). However, in cases of wound diameter below than 3 cm, REs of average values of four photographs were below than 5%. In addition, there was no difference in the average value of wound area taken by smartphone and DSLR camera in those cases. For the follow-up of small skin defect (diameter: <3 cm), our newly developed automated wound area calculation method is able to be applied to the plenty of photographs, and the average values of them are a relatively useful index of wound healing with acceptable error rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.