WorldWideScience

Sample records for surface area model

  1. Modeling surface area to volume effects on borosilicate glass dissolution

    International Nuclear Information System (INIS)

    Bourcier, W.L.; Ebert, W.L.; Feng, X.

    1992-11-01

    We simulated the reaction of SRL-131 glass with equilibrated J-13 water in order to investigate the effects of surface area to volume ratio (SA/V) on glass dissolution. We show that glass-fluid ion exchange causes solution pH to rise to progressively higher values as SA/V increases. Because the ion exchange is rapid relative to the duration of the glass dissolution experiment, the pH effect does not scale with (SA/V)*time. Experiments compared at the same (SA/V)*time value therefore have different pHs, with higher pHs at higher SA/V ratios. Both experimental data and our simulation results show similar trends of increasing reaction rate as a function of SA/V ratio when scaled to (SA/V)*time. Glasses which react in systems of differing SA/V ratio therefore follow different reaction paths and high SA/V ratios cannot be used to generate data which accurately scales to long time periods unless the ion exchange effect is taken into account. We suggest some simple test designs which enable more reliable high. SA/V accelerated tests

  2. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    International Nuclear Information System (INIS)

    Moenkkoenen, H.

    2012-04-01

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  3. Models of bedrock surface and overburden thickness over Olkiluoto island and nearby sea area

    Energy Technology Data Exchange (ETDEWEB)

    Moenkkoenen, H. [WSP Finland Oy, Helsinki (Finland)

    2012-04-15

    In this report, a model of bedrock surface and a model of overburden thickness over the Olkiluoto Island and the nearby sea area are presented. Also in purpose to produce material for biosphere and radionuclide transport modelling, stratigraphy models of different sediment layers were created at two priority areas north and south of the Olkiluoto Island. The work concentrated on the collection and description of available data of bedrock surface and overburden thickness. Because the information on the bedrock surface and overburden is collected from different sources and is based on a number of types of data the quality and applicability of data sets varies. Consequently also the reliability in different parts of the models varies. Input data for the bedrock surface and overburden thickness models include 2928 single points and additional outcrops observations (611 polygons) in the modelled area. In addition, the input data include 173 seismic refraction lines (6534 points) and acousticseismic sounding lines (26655 points from which 13721 points are located in model area) in the Olkiluoto offshore area. The average elevation of bedrock surface in area is 2.1 metres above the sea level. The average thickness of overburden is 2.5 metres varying typically between 2 - 4 metres. Thickest overburden covers (approximately 16 metres) of terrestrial area are located at the western end of the Olkiluoto Island and in sea basin south of the island. (orig.)

  4. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  5. Whole object surface area and volume of partial-view 3D models

    International Nuclear Information System (INIS)

    Mulukutla, Gopal K; Proussevitch, Alexander A; Genareau, Kimberly D; Durant, Adam J

    2017-01-01

    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in ‘partial-view’ models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values. (paper)

  6. Modeled effects on permittivity measurements of water content in high surface area porous media

    International Nuclear Information System (INIS)

    Jones, S.B.; Or, Dani

    2003-01-01

    Time domain reflectometry (TDR) has become an important measurement technique for determination of porous media water content and electrical conductivity due to its accuracy, fast response and automation capability. Water content is inferred from the measured bulk dielectric constant based on travel time analysis along simple transmission lines. TDR measurements in low surface area porous media accurately describe water content using an empirical relationship. Measurement discrepancies arise from dominating influences such as bound water due to high surface area, extreme aspect ratio particles or atypical water phase configuration. Our objectives were to highlight primary factors affecting dielectric permittivity measurements for water content determination in porous mixtures, and demonstrate the influence of these factors on mixture permittivity as predicted by a three-phase dielectric mixture model. Modeled results considering water binding, higher porosity, constituent geometry or phase configuration suggest any of these effects individually are capable of causing permittivity reduction, though all likely contribute in high surface area porous media

  7. VEGETATION COVERAGE AND IMPERVIOUS SURFACE AREA ESTIMATED BASED ON THE ESTARFM MODEL AND REMOTE SENSING MONITORING

    Directory of Open Access Journals (Sweden)

    R. Hu

    2018-04-01

    Full Text Available Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC and impervious layer with high spatiotemporal resolution (30 m, 8 day were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1 ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2 The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  8. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    Science.gov (United States)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  9. Hydrological Modelling and data assimilation of Satellite Snow Cover Area using a Land Surface Model, VIC

    Directory of Open Access Journals (Sweden)

    S. Naha

    2016-06-01

    Full Text Available The snow cover plays an important role in Himalayan region as it contributes a useful amount to the river discharge. So, besides estimating rainfall runoff, proper assessment of snowmelt runoff for efficient management and water resources planning is also required. A Land Surface Model, VIC (Variable Infiltration Capacity is used at a high resolution grid size of 1 km. Beas river basin up to Thalot in North West Himalayas (NWH have been selected as the study area. At first model setup is done and VIC has been run in its energy balance mode. The fluxes obtained from VIC has been routed to simulate the discharge for the time period of (2003-2006. Data Assimilation is done for the year 2006 and the techniques of Data Assimilation considered in this study are Direct Insertion (D.I and Ensemble Kalman Filter (EnKF that uses observations of snow covered area (SCA to update hydrologic model states. The meteorological forcings were taken from 0.5 deg. resolution VIC global forcing data from 1979-2006 with daily maximum temperature, minimum temperature from Climate Research unit (CRU, rainfall from daily variability of NCEP and wind speed from NCEP-NCAR analysis as main inputs and Indian Meteorological Department (IMD data of 0.25 °. NBSSLUP soil map and land use land cover map of ISRO-GBP project for year 2014 were used for generating the soil parameters and vegetation parameters respectively. The threshold temperature i.e. the minimum rain temperature is -0.5°C and maximum snow temperature is about +0.5°C at which VIC can generate snow fluxes. Hydrological simulations were done using both NCEP and IMD based meteorological Forcing datasets, but very few snow fluxes were obtained using IMD data met forcing, whereas NCEP based met forcing has given significantly better snow fluxes throughout the simulation years as the temperature resolution as given by IMD data is 0.5°C and rainfall resolution of 0.25°C. The simulated discharge has been validated

  10. Estimating the surface area of birds: using the homing pigeon (Columba livia as a model

    Directory of Open Access Journals (Sweden)

    Cristina R. Perez

    2014-05-01

    Full Text Available Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird.

  11. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  12. Spatio-Temporal Modelling of Dust Transport over Surface Mining Areas and Neighbouring Residential Zones

    Directory of Open Access Journals (Sweden)

    Eva Gulikova

    2008-06-01

    Full Text Available Projects focusing on spatio-temporal modelling of the living environment need to manage a wide range of terrain measurements, existing spatial data, time series, results of spatial analysis and inputs/outputs from numerical simulations. Thus, GISs are often used to manage data from remote sensors, to provide advanced spatial analysis and to integrate numerical models. In order to demonstrate the integration of spatial data, time series and methods in the framework of the GIS, we present a case study focused on the modelling of dust transport over a surface coal mining area, exploring spatial data from 3D laser scanners, GPS measurements, aerial images, time series of meteorological observations, inputs/outputs form numerical models and existing geographic resources. To achieve this, digital terrain models, layers including GPS thematic mapping, and scenes with simulation of wind flows are created to visualize and interpret coal dust transport over the mine area and a neighbouring residential zone. A temporary coal storage and sorting site, located near the residential zone, is one of the dominant sources of emissions. Using numerical simulations, the possible effects of wind flows are observed over the surface, modified by natural objects and man-made obstacles. The coal dust drifts with the wind in the direction of the residential zone and is partially deposited in this area. The simultaneous display of the digital map layers together with the location of the dominant emission source, wind flows and protected areas enables a risk assessment of the dust deposition in the area of interest to be performed. In order to obtain a more accurate simulation of wind flows over the temporary storage and sorting site, 3D laser scanning and GPS thematic mapping are used to create a more detailed digital terrain model. Thus, visualization of wind flows over the area of interest combined with 3D map layers enables the exploration of the processes of coal dust

  13. Improved capacity to evaluate changes in intestinal mucosal surface area using mathematical modeling.

    Science.gov (United States)

    Greig, Chasen J; Cowles, Robert A

    2017-07-01

    Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.

  14. Estimating the surface area of birds: using the homing pigeon (Columba livia) as a model.

    Science.gov (United States)

    Perez, Cristina R; Moye, John K; Pritsos, Chris A

    2014-05-08

    Estimation of the surface area of the avian body is valuable for thermoregulation and metabolism studies as well as for assessing exposure to oil and other surface-active organic pollutants from a spill. The use of frozen carcasses for surface area estimations prevents the ability to modify the posture of the bird. The surface area of six live homing pigeons in the fully extended flight position was estimated using a noninvasive method. An equation was derived to estimate the total surface area of a pigeon based on its body weight. A pigeon's surface area in the fully extended flight position is approximately 4 times larger than the surface area of a pigeon in the perching position. The surface area of a bird is dependent on its physical position, and, therefore, the fully extended flight position exhibits the maximum area of a bird and should be considered the true surface area of a bird. © 2014. Published by The Company of Biologists Ltd | Biology Open.

  15. Construction of the Geological Model around KURT area based on the surface investigations

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Koh, Yong Kwon; Kim, Kyung Su; Choi, Jong Won

    2009-01-01

    To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geological elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  16. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    Science.gov (United States)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  17. Assessing the influence of groundwater and land surface scheme in the modelling of land surface-atmosphere feedbacks over the FIFE area in Kansas, USA

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Højmark Rasmussen, Søren; Drews, Martin

    2016-01-01

    The land surface-atmosphere interaction is described differently in large scale surface schemes of regional climate models and small scale spatially distributed hydrological models. In particular, the hydrological models include the influence of shallow groundwater on evapotranspiration during dry...... by HIRHAM simulated precipitation. The last two simulations include iv) a standard HIRHAM simulation, and v) a fully coupled HIRHAM-MIKE SHE simulation locally replacing the land surface scheme by MIKE SHE for the FIFE area, while HIRHAM in standard configuration is used for the remaining model area...

  18. Integrated surface-subsurface water flow modelling of the Laxemar area. Application of the hydrological model ECOFLOW

    International Nuclear Information System (INIS)

    Sokrut, Nikolay; Werner, Kent; Holmen, Johan

    2007-01-01

    Since 2002, the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations in the Simpevarp area, for the siting of a deep geological repository for spent nuclear fuel. The site descriptive modelling includes conceptual and quantitative modelling of surface-subsurface water interactions, which are key inputs to safety assessment and environmental impact assessment. Such modelling is important also for planning of continued site investigations. In this report, the distributed hydrological model ECOFLOW is applied to the Laxemar subarea to test the ability of the model to simulate surface water and near-surface groundwater flow, and to illustrate ECOFLOW's advantages and drawbacks. The ECOFLOW model area is generally characterised by large areas of exposed or shallow bedrock. The ECOFLOW modelling results are compared to previous results produced by MIKE SHE-MIKE 11 and PCRaster-POLFLOW, in order to check whether non-calibrated surface and subsurface water flows computed by ECOFLOW are consistent with these previous results. The analyses include quantification and comparison of inflow and outflow terms of the water balance, as well as analyses of groundwater recharge-discharge patterns. ECOFLOW is used to simulate a one-year non calibrated period, considering seven catchments (including three areas with direct runoff to the sea) within the Laxemar subarea. The modelling results show the ability of the model to produce reasonable results for a model domain including both porous media (Quaternary deposits) and discontinuous media (bedrock). The results demonstrate notable differences in the specific discharge between the considered catchments, with specific discharge values in the range 157-212 mm/year; the lowest value (the Lake Frisksjoen catchment) may however be erroneous due to numerical instability in the model. Overall, these results agree with specific discharge values computed by MIKE SHE-MIKE 11 and PCRaster-POLFLOW (190 and 128-186 mm

  19. Integrated surface-subsurface water flow modelling of the Laxemar area. Application of the hydrological model ECOFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Sokrut, Nikolay; Werner, Kent; Holmen, Johan [Golder Associates AB, Uppsala (Sweden)

    2007-01-15

    Since 2002, the Swedish Nuclear Fuel and Waste Management Co (SKB) performs site investigations in the Simpevarp area, for the siting of a deep geological repository for spent nuclear fuel. The site descriptive modelling includes conceptual and quantitative modelling of surface-subsurface water interactions, which are key inputs to safety assessment and environmental impact assessment. Such modelling is important also for planning of continued site investigations. In this report, the distributed hydrological model ECOFLOW is applied to the Laxemar subarea to test the ability of the model to simulate surface water and near-surface groundwater flow, and to illustrate ECOFLOW's advantages and drawbacks. The ECOFLOW model area is generally characterised by large areas of exposed or shallow bedrock. The ECOFLOW modelling results are compared to previous results produced by MIKE SHE-MIKE 11 and PCRaster-POLFLOW, in order to check whether non-calibrated surface and subsurface water flows computed by ECOFLOW are consistent with these previous results. The analyses include quantification and comparison of inflow and outflow terms of the water balance, as well as analyses of groundwater recharge-discharge patterns. ECOFLOW is used to simulate a one-year non calibrated period, considering seven catchments (including three areas with direct runoff to the sea) within the Laxemar subarea. The modelling results show the ability of the model to produce reasonable results for a model domain including both porous media (Quaternary deposits) and discontinuous media (bedrock). The results demonstrate notable differences in the specific discharge between the considered catchments, with specific discharge values in the range 157-212 mm/year; the lowest value (the Lake Frisksjoen catchment) may however be erroneous due to numerical instability in the model. Overall, these results agree with specific discharge values computed by MIKE SHE-MIKE 11 and PCRaster-POLFLOW (190 and 128

  20. Effect of uncertainty in Digital Surface Models on the boundary of inundated areas

    Science.gov (United States)

    Nalbantis, I.; Papageorgaki, I.; Sioras, P.; Ioannidis, Ch.

    2012-04-01

    The planning, design and operation of flood damage reduction works or non-structural measures require the construction of maps that indicate zones to be potentially inundated during floods. Referring to floods due to heavy rainfall, the common procedure for flood mapping consists of the following five computational steps: (1) Frequency analysis of extreme rainfall; (2) construction of design hyetographs for various return periods; (3) construction of the related direct runoff hydrographs; (4) routing of these hydrographs through the hydrographic network; (5) mapping of the inundated area that corresponds to the temporally maximum depth for each location in the flood plain. Steps 3 through 5 require the use of spatial information which can be easily obtained from a Digital Surface Model (DSM). The DSM contains grid-based elevations of the ground or overlying objects that influence the propagation of flood waves. In this work, the SCS-CN method is used in step 3 in combination with a synthetic Unit Hydrograph based on the SCS dimensionless Unit Hydrograph. In step 4, the full one-dimensional Saint Venant equations for non-uniform unsteady flow on fixed bed are used, which are numerically solved. The impact of uncertainty in the DSM on the inundated area boundary is investigated. For this the Monte Carlo simulation method is employed to produce a large number of erroneous DSMs through introducing errors in elevation with a standard deviation equal to σ. These DSMs are then used for delineating potentially flooded areas. The standard deviation of the distance (from the riverbed axis) of the boundary of these areas, herein denoted as σF, is used as the measure of the resulting uncertainty. The link between σ and σF is examined for a spectrum of large return periods (100 to 10000). A computer experiment was set up based on data from two drainage basins. The first basin is located in East Attica and is drained by a branch of the Erasinos Torrent named the South

  1. Evaluation of an atmospheric model with surface and ABL meteorological data for energy applications in structured areas

    Science.gov (United States)

    Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.

    2018-03-01

    This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.

  2. Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirkó; Bosco, Filippo; Yang, Jaeyoung

    2015-01-01

    Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot) inte...

  3. Dual Orlicz geominimal surface area

    Directory of Open Access Journals (Sweden)

    Tongyi Ma

    2016-02-01

    Full Text Available Abstract The L p $L_{p}$ -geominimal surface area was introduced by Lutwak in 1996, which extended the important concept of the geominimal surface area. Recently, Wang and Qi defined the p-dual geominimal surface area, which belongs to the dual Brunn-Minkowski theory. In this paper, based on the concept of the dual Orlicz mixed volume, we extend the dual geominimal surface area to the Orlicz version and give its properties. In addition, the isoperimetric inequality, a Blaschke-Santaló type inequality, and the monotonicity inequality for the dual Orlicz geominimal surface areas are established.

  4. Analysis and Application of River Surface Line in Hilly Area based on Hec-ras Model

    Directory of Open Access Journals (Sweden)

    Yang Congshan

    2017-01-01

    Full Text Available For example—Cixian Fuyang River Regulation Project. Due to the character that Fuyang River is located in hilly areas of Cixian, we use the Hex-ras software to calculate the status of the river water surface line for the goal of determining the final treatment plan. We maintain the present situation of the river channel design as principle, select the most appropriate pushed water level and roughnessas the basic, and we combine the classification calculation of crossing structures of backwater and the encryption calculation section to get the more accurate result. We compare the water level elevation and the calculation of cross strait, analyze the design parameters, calculate repeated the water line section, analyze the rationality of the design plan, and then finally determine the applicability of Hex-rac software in the large continuous variation of cross section of embankment of river river surface line.

  5. Modeling of surface dust concentration in snow cover at industrial area using neural networks and kriging

    Science.gov (United States)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.

    2017-06-01

    Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.

  6. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Babak. B. Naghshine

    2017-02-01

    Full Text Available Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  7. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    Science.gov (United States)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although

  8. The estimation of future surface water bodies at Olkiluoto area based on statistical terrain and land uplift models

    Energy Technology Data Exchange (ETDEWEB)

    Pohjola, J.; Turunen, J.; Lipping, T. [Tampere Univ. of Technology (Finland); Ikonen, A.

    2014-03-15

    In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified

  9. The estimation of future surface water bodies at Olkiluoto area based on statistical terrain and land uplift models

    International Nuclear Information System (INIS)

    Pohjola, J.; Turunen, J.; Lipping, T.; Ikonen, A.

    2014-03-01

    In this working report the modelling effort of future landscape development and surface water body formation at the modelling area in the vicinity of the Olkiluoto Island is presented. Estimation of the features of future surface water bodies is based on probabilistic terrain and land uplift models presented in previous working reports. The estimation is done using a GIS-based toolbox called UNTAMO. The future surface water bodies are estimated in 10 000 years' time span with 1000 years' intervals for the safety assessment of disposal of spent nuclear fuel at the Olkiluoto site. In the report a brief overview on the techniques used for probabilistic terrain modelling, land uplift modelling and hydrological modelling are presented first. The latter part of the report describes the results of the modelling effort. The main features of the future landscape - the four lakes forming in the vicinity of the Olkiluoto Island - are identified and the probabilistic model of the shoreline displacement is presented. The area and volume of the four lakes is modelled in a probabilistic manner. All the simulations have been performed for three scenarios two of which are based on 10 realizations of the probabilistic digital terrain model (DTM) and 10 realizations of the probabilistic land uplift model. These two scenarios differ from each other by the eustatic curve used in the land uplift model. The third scenario employs 50 realizations of the probabilistic DTM while a deterministic land uplift model, derived solely from the current land uplift rate, is used. The results indicate that the two scenarios based on the probabilistic land uplift model behave in a similar manner while the third model overestimates past and future land uplift rates. The main features of the landscape are nevertheless similar also for the third scenario. Prediction results for the volumes of the future lakes indicate that a couple of highly probably lake formation scenarios can be identified with other

  10. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data

    Directory of Open Access Journals (Sweden)

    C. Corbari

    2010-10-01

    Full Text Available Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST for a distributed hydrological water balance model (FEST-EWB using LST from AHS (airborne hyperspectral scanner, with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model.

    Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity.

    Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process.

    The study site is the agricultural area of Barrax (Spain that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.

  11. RBSURFpred: Modeling protein accessible surface area in real and binary space using regularized and optimized regression.

    Science.gov (United States)

    Tarafder, Sumit; Toukir Ahmed, Md; Iqbal, Sumaiya; Tamjidul Hoque, Md; Sohel Rahman, M

    2018-03-14

    Accessible surface area (ASA) of a protein residue is an effective feature for protein structure prediction, binding region identification, fold recognition problems etc. Improving the prediction of ASA by the application of effective feature variables is a challenging but explorable task to consider, specially in the field of machine learning. Among the existing predictors of ASA, REGAd 3 p is a highly accurate ASA predictor which is based on regularized exact regression with polynomial kernel of degree 3. In this work, we present a new predictor RBSURFpred, which extends REGAd 3 p on several dimensions by incorporating 58 physicochemical, evolutionary and structural properties into 9-tuple peptides via Chou's general PseAAC, which allowed us to obtain higher accuracies in predicting both real-valued and binary ASA. We have compared RBSURFpred for both real and binary space predictions with state-of-the-art predictors, such as REGAd 3 p and SPIDER2. We also have carried out a rigorous analysis of the performance of RBSURFpred in terms of different amino acids and their properties, and also with biologically relevant case-studies. The performance of RBSURFpred establishes itself as a useful tool for the community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Object based classification of high resolution data in urban areas considering digital surface models

    OpenAIRE

    Oczipka, Martin Eckhard

    2010-01-01

    Over the last couple of years more and more analogue airborne cameras were replaced by digital cameras. Digitally recorded image data have significant advantages to film based data. Digital aerial photographs have a much better radiometric resolution. Image information can be acquired in shaded areas too. This information is essential for a stable and continuous classification, because no data or unclassified areas should be as small as possible. Considering this technological progress, on...

  13. Retrieval of Specific Leaf Area From Landsat-8 Surface Reflectance Data Using Statistical and Physical Models

    NARCIS (Netherlands)

    Ali, Abebe Mohammed; Darvishzadeh, R.; Skidmore, Andrew K.

    2017-01-01

    One of the key traits in the assessment of ecosystem functions is a specific leaf area (SLA). The main aim of this study was to examine the potential of new generation satellite images, such as Landsat-8 imagery, for the retrieval of SLA at regional and global scales. Therefore, both statistical and

  14. Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2018-01-01

    Soil specific surface area (SA) controls fundamental soil processes such as retention of water, ion exchange, and adsorption and release of plant nutrients and contaminants. Conventional methods for determining SA include adsorption of polar or non‐polar fluid molecules with associated advantages...... parameters varied depending on the water activity or relative humidity range of measured data (0.03–0.93 compared with 0.10–0.80), whereas the variation for desorption was minimal. For desorption isotherms, the average water activity value at which the GAB monolayer parameter was obtained was 0......‐based modelling approaches to determine SA. Measured water vapour adsorption and desorption isotherms for 321 soil samples were used to parameterize the GAB model, the Brunauer–Emmet–Teller (BET) equation and a film adsorption Tuller–Or (TO) model to estimate SA. For adsorption isotherms, the values of the GAB...

  15. AN EXAMPLE IN SURFACE AREA*

    Science.gov (United States)

    Goffman, Casper

    1969-01-01

    For length and area, a central fact is that the value of the length of a curve or the area of a surface, as given by the Lebesgue theory, is at least as great as that given by the classical formula, whenever the latter has meaning. This is now found not to be valid in higher dimensions. We give an example of a continuous mapping of the unit cube into itself for which the value given by the formula exceeds the three-dimensional Lebesgue area of the corresponding suface. PMID:16591750

  16. Determination of retinal surface area.

    Science.gov (United States)

    Nagra, Manbir; Gilmartin, Bernard; Thai, Ngoc Jade; Logan, Nicola S

    2017-09-01

    Previous attempts at determining retinal surface area and surface area of the whole eye have been based upon mathematical calculations derived from retinal photographs, schematic eyes and retinal biopsies of donor eyes. 3-dimensional (3-D) ocular magnetic resonance imaging (MRI) allows a more direct measurement, it can be used to image the eye in vivo, and there is no risk of tissue shrinkage. The primary purpose of this study is to compare, using T2-weighted 3D MRI, retinal surface areas for superior-temporal (ST), inferior-temporal (IT), superior-nasal (SN) and inferior-nasal (IN) retinal quadrants. An ancillary aim is to examine whether inter-quadrant variations in area are concordant with reported inter-quadrant patterns of susceptibility to retinal breaks associated with posterior vitreous detachment (PVD). Seventy-three adult participants presenting without retinal pathology (mean age 26.25 ± 6.06 years) were scanned using a Siemens 3-Tesla MRI scanner to provide T2-weighted MR images that demarcate fluid-filled internal structures for the whole eye and provide high-contrast delineation of the vitreous-retina interface. Integrated MRI software generated total internal ocular surface area (TSA). The second nodal point was used to demarcate the origin of the peripheral retina in order to calculate total retinal surface area (RSA) and quadrant retinal surface areas (QRSA) for ST, IT, SN, and IN quadrants. Mean spherical error (MSE) was -2.50 ± 4.03D and mean axial length (AL) 24.51 ± 1.57 mm. Mean TSA and RSA for the RE were 2058 ± 189 and 1363 ± 160 mm 2 , respectively. Repeated measures anova for QRSA data indicated a significant difference within-quadrants (P area/mm increase in AL. Although the differences between QRSAs are relatively small, there was evidence of concordance with reported inter-quadrant patterns of susceptibility to retinal breaks associated with PVD. The data allow AL to be converted to QRSAs, which will assist further

  17. Modelling Distribution Function of Surface Ozone Concentration for Selected Suburban Areas in Malaysia

    International Nuclear Information System (INIS)

    Muhammad Izwan Zariq Mokhtar; Nurul Adyani Ghazali; Muhammad Yazid Nasir; Norhazlina Suhaimi

    2016-01-01

    Ozone is known as an important secondary pollutant in the atmosphere. The aim of this study is to find the best fit distribution for calculating exceedance and return period of ozone based on suburban areas; Perak (AMS1) and Pulau Pinang (AMS2). Three distributions namely Gamma, Rayleigh and Laplace were used to fit 2 years ozone data (2010 and 2011). The parameters were estimated by using Maximum Likelihood Estimation (MLE) in order to plot probability distribution function (PDF) and cumulative distribution function (CDF). Four performance indicators were used to find the best distribution namely, normalized absolute error (NAE), prediction accuracy (PA), coefficient of determination (R 2 ) and root mean square error (RMSE). The best distribution to represent ozone concentration at both sites in 2010 and 2011 is Gamma distribution with the smallest error measure (NAE and RMSE) and the highest adequacy measure (PA and R 2 ). For the 2010 data, AMS1 was predicted to exceed 0.1 ppm for 2 days in 2011 with a return period of one occurrence. (author)

  18. Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model

    Science.gov (United States)

    Gelati, Emiliano; Decharme, Bertrand; Calvet, Jean-Christophe; Minvielle, Marie; Polcher, Jan; Fairbairn, David; Weedon, Graham P.

    2018-04-01

    Physically consistent descriptions of land surface hydrology are crucial for planning human activities that involve freshwater resources, especially in light of the expected climate change scenarios. We assess how atmospheric forcing data uncertainties affect land surface model (LSM) simulations by means of an extensive evaluation exercise using a number of state-of-the-art remote sensing and station-based datasets. For this purpose, we use the CO2-responsive ISBA-A-gs LSM coupled with the CNRM version of the Total Runoff Integrated Pathways (CTRIP) river routing model. We perform multi-forcing simulations over the Euro-Mediterranean area (25-75.5° N, 11.5° W-62.5° E, at 0.5° resolution) from 1979 to 2012. The model is forced using four atmospheric datasets. Three of them are based on the ERA-Interim reanalysis (ERA-I). The fourth dataset is independent from ERA-Interim: PGF, developed at Princeton University. The hydrological impacts of atmospheric forcing uncertainties are assessed by comparing simulated surface soil moisture (SSM), leaf area index (LAI) and river discharge against observation-based datasets: SSM from the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative projects (ESA-CCI), LAI of the Global Inventory Modeling and Mapping Studies (GIMMS), and Global Runoff Data Centre (GRDC) river discharge. The atmospheric forcing data are also compared to reference datasets. Precipitation is the most uncertain forcing variable across datasets, while the most consistent are air temperature and SW and LW radiation. At the monthly timescale, SSM and LAI simulations are relatively insensitive to forcing uncertainties. Some discrepancies with ESA-CCI appear to be forcing-independent and may be due to different assumptions underlying the LSM and the remote sensing retrieval algorithm. All simulations overestimate average summer and early-autumn LAI. Forcing uncertainty impacts on simulated river discharge are

  19. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2d Image Mosaics and 3d Canopy Surface Models

    Science.gov (United States)

    Kalisperakis, I.; Stentoumis, Ch.; Grammatikopoulos, L.; Karantzalos, K.

    2015-08-01

    The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured LAI (ground truth) from several vines in Nemea, Greece. The overall evaluation indicated that the estimated canopy levels were correlated (r2 > 73%) with the in-situ, ground truth LAI measurements. As expected the lowest correlations were derived from the calculated greenness levels from the 2D RGB orthomosaics. The highest correlation rates were established with the hyperspectral canopy greenness and the 3D canopy surface models. For the later the accurate detection of canopy, soil and other materials in between the vine rows is required. All approaches tend to overestimate LAI in cases with sparse, weak, unhealthy plants and canopy.

  20. Lp-dual affine surface area

    Science.gov (United States)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  1. Surface area-volume ratios in insects.

    Science.gov (United States)

    Kühsel, Sara; Brückner, Adrian; Schmelzle, Sebastian; Heethoff, Michael; Blüthgen, Nico

    2017-10-01

    Body mass, volume and surface area are important for many aspects of the physiology and performance of species. Whereas body mass scaling received a lot of attention in the literature, surface areas of animals have not been measured explicitly in this context. We quantified surface area-volume (SA/V) ratios for the first time using 3D surface models based on a structured light scanning method for 126 species of pollinating insects from 4 orders (Diptera, Hymenoptera, Lepidoptera, and Coleoptera). Water loss of 67 species was measured gravimetrically at very dry conditions for 2 h at 15 and 30 °C to demonstrate the applicability of the new 3D surface measurements and relevance for predicting the performance of insects. Quantified SA/V ratios significantly explained the variation in water loss across species, both directly or after accounting for isometric scaling (residuals of the SA/V ∼ mass 2/3 relationship). Small insects with a proportionally larger surface area had the highest water loss rates. Surface scans of insects to quantify allometric SA/V ratios thus provide a promising method to predict physiological responses, improving the potential of body mass isometry alone that assume geometric similarity. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  3. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Science.gov (United States)

    Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.

    2017-10-01

    The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  4. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Directory of Open Access Journals (Sweden)

    M. Gergely

    2017-10-01

    Full Text Available The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs. Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  5. Assimilation of Leaf Area Index and Soil Wetness Index into the ISBA-A-gs land surface model over France

    Science.gov (United States)

    Barbu, A. L.; Calvet, J.-C.; Lafont, S.

    2012-04-01

    The development of a Land Data Assimilation System (LDAS) dedicated to carbon and water cycles is considered as a key aspect for monitoring activities of terrestrial carbon fluxes. It allows the assimilation of biophysical products in order to reduce the bias between the model simulations and the observations and have a positive impact on carbon and water fluxes. This work shows the benefits of data assimilation of Earth observations for the monitoring of vegetation status and carbon fluxes, in the framework of the GEOLAND2 project, co-funded by the European Commission within the GMES initiative in FP7. In this study, the SURFEX modelling platform developed at Meteo-France is used for describing the continental vegetation state, surface fluxes and soil moisture. It consists of the land surface model ISBA-A-gs that simulates photosynthesis and plant growth. The vegetation biomass and Leaf Area Index (LAI) evolve dynamically in response to weather and climate conditions. The ECOCLIMAP database provides detailed information about the land cover at a resolution of 1 km. Over the France domain, the most present ecosystem types are grasslands (32%), C3 crop lands (24%), deciduous forest (20%), bare soil (11%), and C4 crop lands (8%).The model also includes a representation of the soil moisture stress with two different types of drought responses for herbaceous vegetation and forests. A version of the Extended Kalman Filter (EKF) scheme is developed for the joint assimilation of satellite-derived surface soil moisture from ASCAT-25 km product, namely Soil Wetness Index (SWI-01) developed by TU-Wien, and remote sensing LAI product provided by GEOLAND2. The GEOLAND2 LAI product is derived from CYCLOPES V3.1 and MODIS collection 5 data. It is more consistent with an effective LAI for low LAI and close to the actual LAI for high values. The assimilation experiment was conducted across France at a spatial resolution of 8 km. The study period ranges from July 2007 to December

  6. Lp-mixed affine surface area

    Science.gov (United States)

    Wang, Weidong; Leng, Gangsong

    2007-11-01

    According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.

  7. The simulation of surface fire spread based on Rothermel model in windthrow area of Changbai Mountain (Jilin, China)

    Science.gov (United States)

    Yin, Hang; Jin, Hui; Zhao, Ying; Fan, Yuguang; Qin, Liwu; Chen, Qinghong; Huang, Liya; Jia, Xiang; Liu, Lijie; Dai, Yuhong; Xiao, Ying

    2018-03-01

    The forest-fire not only brings great loss to natural resources, but also destructs the ecosystem and reduces the soil fertility, causing some natural disasters as soil erosion and debris flow. However, due to the lack of the prognosis for forest fire spreading trend in forest fire fighting, it is difficult to formulate rational and effective fire-fighting scheme. In the event of forest fire, achieving accurate judgment to the fire behavior would greatly improve the fire-fighting efficiency, and reduce heavy losses caused by fire. Researches on forest fire spread simulation can effectively reduce the loss of disasters. The present study focused on the simulation of "29 May 2012" wildfire in windthrow area of Changbai Mountain. Basic data were retrieved from the "29 May 2012" wildfire and field survey. A self-development forest fire behavior simulated program based on Rothermel Model was used in the simulation. Kappa coefficient and Sørensen index were employed to evaluate the simulation accuracy. The results showed that: The perimeter of simulated burned area was 4.66 km, the area was 56.47 hm2 and the overlapped burned area was 33.68 hm2, and the estimated rate of fire spread was 0.259 m/s. Between the simulated fire and actual fire, the Kappa coefficient was 0.7398 and the Sørensen co-efficient was 0.7419. This proved the application of Rothermel model to conduct fire behavior simulation in windthrow meadow was feasible. It can achieve the goal of forecasting for the spread behavior in windthrow area of Changbai Mountain. Thus, our self-development program based on the Rothermel model can provide a effective forecast of fire spread, which will facilitate the fire suppression work.

  8. Sensitivity study of surface wind flow of a limited area model simulating the extratropical storm Delta affecting the Canary Islands

    Directory of Open Access Journals (Sweden)

    C. Marrero

    2009-04-01

    Full Text Available In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain. The high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW. A total of 27 simulations were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical parameterizations and geometrical factors (size and position of the outer domain, definition or not of nested grids, horizontal resolution and number of vertical levels. The Factor Separation Method was applied in order to identify the major model sensitivity parameters under this unusual meteorological situation. Results associated to percentage changes relatives to a control run simulation demonstrated that boundary layer and surface layer schemes, horizontal resolutions, hydrostaticity option and nesting grid activation were the model configuration parameters with the greatest impact on the 48 h maximum 10 m horizontal wind speed solution.

  9. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  10. L p -Dual geominimal surface area

    Directory of Open Access Journals (Sweden)

    Weidong Wang

    2011-01-01

    Full Text Available Abstract Lutwak proposed the notion of Lp -geominimal surface area according to the Lp -mixed volume. In this article, associated with the Lp -dual mixed volume, we introduce the Lp -dual geominimal surface area and prove some inequalities for this notion. 2000 Mathematics Subject Classification: 52A20 52A40.

  11. Wetted surface area of recreational boats

    NARCIS (Netherlands)

    Bakker J; van Vlaardingen PLA; ICH; VSP

    2018-01-01

    The wetted surface area of recreational craft is often treated with special paint that prevents growth of algae and other organisms. The active substances in this paint (antifouling) are also emitted into the water. The extent of this emission is among others determined by the treated surface area.

  12. Dynamics Change of Honghu Lake's Water Surface Area and Its Driving Force Analysis Based on Remote Sensing Technique and TOPMODEL model

    International Nuclear Information System (INIS)

    Wen, X; Cao, B; Shen, S; Hu, D; Tang, X

    2014-01-01

    Honghu Lake is the largest freshwater lake in the Hubei Province of China. This paper introduces a remote sensing approach to monitor the lake's water surface area dynamics over the last 40 years by using multi-temporal remote sensing imagery including Landsat and HJ-1. Meanwhile, the daily precipitation and evaporation data provided by Honghu meteorological station since 1970s were also collected and used to analyze the influence of climate change factors. The typical situation for precipitation was selected as an input into the TOPMODEL model to simulate the hydrological process in Honghu Lake. The simulation result with the water surface area extracted from remote sensing imagery was analyzed. This experiment shows the precipitation and timing of precipitation effects changes in the lake with remote sensing data and it showed the potential of using TOPMODEL model to analyze the combined hydrological process in Honghu Lake

  13. Modal Bin Hybrid Model: A surface area consistent, triple-moment sectional method for use in process-oriented modeling of atmospheric aerosols

    Science.gov (United States)

    Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.

    2013-09-01

    triple-moment sectional (TMS) aerosol dynamics model, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for aerosol processes and properties such as gas-to-particle mass transfer, heterogeneous reaction, and light extinction cross section. The performance of MBHM was evaluated against double-moment sectional (DMS) models with coarse (BIN4) to very fine (BIN256) size resolutions for simulating evolution of particles under simultaneously occurring nucleation, condensation, and coagulation processes (BINx resolution uses x sections to cover the 1 nm to 1 µm size range). Because MBHM gives a physically consistent form of the intrasectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments Mk (k: 0, 2, 3), dMk/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multicategory and/or mixing state) modeling: Primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from 1 to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photochemical age for aerosol mixing state studies.

  14. Detailed Geological Modelling in Urban Areas focused on Structures relevant to the Near Surface Groundwater Flow in the context of Climatic Changes

    Science.gov (United States)

    Bach, T.; Pallesen, T. M.; Jensen, N. P.; Mielby, S.; Sandersen, P.; Kristensen, M.

    2015-12-01

    This case demonstrates a practical example from the city of Odense (DK) where new geological modeling techniques has been developed and used in the software GeoScene3D, to create a detailed voxel model of the anthropogenic layer. The voxel model has been combined with a regional hydrostratigraphic layer model. The case is part of a pilot project partly financed by VTU (Foundation for Development of Technology in the Danish Water Sector) and involves many different datatypes such as borehole information, geophysical data, human related elements (landfill, pipelines, basements, roadbeds etc). In the last few years, there has been increased focus on detailed geological modeling in urban areas. The models serve as important input to hydrological models. This focus is partly due to climate changes as high intensity rainfalls are seen more often than in the past, and water recharge is a topic too. In urban areas, this arises new challenges. There is a need of a high level of detailed geological knowledge for the uppermost zone of the soil, which typically are problematic due to practically limitations, especially when using geological layer models. Furthermore, to accommodate the need of a high detail, all relevant available data has to be used in the modeling process. Human activity has deeply changed the soil layers, e.g. by constructions as roadbeds, buildings with basements, pipelines, landfill etc. These elements can act as barriers or pathways regarding surface near groundwater flow and can attribute to local flooding or mobilization and transport of contaminants etc. A geological voxel model is built by small boxes (a voxel). Each box can contain several parameters, ex. lithology, transmissivity or contaminant concentration. Human related elements can be implemented using tools, which gives the modeler advanced options for making detailed small-scale models. This case demonstrates the workflow and the resulting geological model for the pilot area.

  15. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    International Nuclear Information System (INIS)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  16. Using the PCRaster-POLFLOW approach to GIS-based modelling of coupled groundwater-surface water hydrology in the Forsmark Area

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Shibuo, Yoshihiro; Destouni, Georgia [Stockholm Univ. (Sweden). Dept. of Physical Geography and Quaternary Geology

    2004-09-01

    The catchment-scale hydrologic modelling approach PCRaster-POLFLOW permits the integration of environmental process modelling functions with classical GIS functions such as database maintenance and screen display. It has previously successfully been applied at relatively large river basins and catchments, such as Rhine, Elbe and Norrstroem, for modelling stream water flow and nutrient transport. In this study, we review the PCRaster-POLFLOW modelling approach and apply it using a relatively fine spatial resolution to the smaller catchment of Forsmark. As input we use data from SKB's database, which includes detailed data from Forsmark (and Simpevarp), since these locations are being investigated as part of the process to find a suitable location for a deep repository for spent nuclear fuel. We show, by comparison with independently measured, area-averaged runoff data, that the PCRaster-POLFLOW model produces results that, without using site-specific calibration, agree well with these independent measurements. In addition, we deliver results for four planned hydrological stations within the Forsmark catchment thus allowing for future direct comparisons with streamflow monitoring. We also show that, and how, the PCRaster-POLFLOW model in its present state can be used for predicting average seasonal streamflow. The present modelling exercise provided insights into possible ways of extending and using the PCRaster-POLFLOW model for applications beyond its current main focus of surface water hydrology. In particular, regarding analysis of possible surface water-groundwater interactions, we identify the Analytic Element Method for groundwater modelling together with its GIS-based pre- and post processor ArcFlow as suitable and promising for use in combination with the PCRaster-POLFLOW modelling approach. Furthermore, for transport modelling, such as that of radionuclides entering the coupled shallow groundwater-surface water hydrological system from possible deep

  17. Assimilation of Soil Wetness Index and Leaf Area Index into the ISBA-A-gs land surface model: grassland case study

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2011-07-01

    Full Text Available The performance of the joint assimilation in a land surface model of a Soil Wetness Index (SWI product provided by an exponential filter together with Leaf Area Index (LAI is investigated. The data assimilation is evaluated with different setups using the SURFEX modeling platform, for a period of seven years (2001–2007, at the SMOSREX grassland site in southwestern France. The results obtained with a Simplified Extended Kalman Filter demonstrate the effectiveness of a joint data assimilation scheme when both SWI and Leaf Area Index are merged into the ISBA-A-gs land surface model. The assimilation of a retrieved Soil Wetness Index product presents several challenges that are investigated in this study. A significant improvement of around 13 % of the root-zone soil water content is obtained by assimilating dimensionless root-zone SWI data. For comparison, the assimilation of in situ surface soil moisture is considered as well. A lower impact on the root zone is noticed. Under specific conditions, the transfer of the information from the surface to the root zone was found not accurate. Also, our results indicate that the assimilation of in situ LAI data may correct a number of deficiencies in the model, such as low LAI values in the senescence phase by using a seasonal-dependent error definition for background and observations. In order to verify the specification of the errors for SWI and LAI products, a posteriori diagnostics are employed. This approach highlights the importance of the assimilation design on the quality of the analysis. The impact of data assimilation scheme on CO2 fluxes is also quantified by using measurements of net CO2 fluxes gathered at the SMOSREX site from 2005 to 2007. An improvement of about 5 % in terms of rms error is obtained.

  18. Internal variability of fine-scale components of meteorological fields in extended-range limited-area model simulations with atmospheric and surface nudging

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei

    2015-09-01

    Internal variability (IV) in dynamical downscaling with limited-area models (LAMs) represents a source of error inherent to the downscaled fields, which originates from the sensitive dependence of the models to arbitrarily small modifications. If IV is large it may impose the need for probabilistic verification of the downscaled information. Atmospheric spectral nudging (ASN) can reduce IV in LAMs as it constrains the large-scale components of LAM fields in the interior of the computational domain and thus prevents any considerable penetration of sensitively dependent deviations into the range of large scales. Using initial condition ensembles, the present study quantifies the impact of ASN on IV in LAM simulations in the range of fine scales that are not controlled by spectral nudging. Four simulation configurations that all include strong ASN but differ in the nudging settings are considered. In the fifth configuration, grid nudging of land surface variables toward high-resolution surface analyses is applied. The results show that the IV at scales larger than 300 km can be suppressed by selecting an appropriate ASN setup. At scales between 300 and 30 km, however, in all configurations, the hourly near-surface temperature, humidity, and winds are only partly reproducible. Nudging the land surface variables is found to have the potential to significantly reduce IV, particularly for fine-scale temperature and humidity. On the other hand, hourly precipitation accumulations at these scales are generally irreproducible in all configurations, and probabilistic approach to downscaling is therefore recommended.

  19. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  20. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  1. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  2. Scaling between reanalyses and high-resolution land-surface modelling in mountainous areas - enabling better application and testing of reanalyses in heterogeneous environments

    Science.gov (United States)

    Gruber, S.; Fiddes, J.

    2013-12-01

    In mountainous topography, the difference in scale between atmospheric reanalyses (typically tens of kilometres) and relevant processes and phenomena near the Earth surface, such as permafrost or snow cover (meters to tens of meters) is most obvious. This contrast of scales is one of the major obstacles to using reanalysis data for the simulation of surface phenomena and to confronting reanalyses with independent observation. At the example of modelling permafrost in mountain areas (but simple to generalise to other phenomena and heterogeneous environments), we present and test methods against measurements for (A) scaling atmospheric data from the reanalysis to the ground level and (B) smart sampling of the heterogeneous landscape in order to set up a lumped model simulation that represents the high-resolution land surface. TopoSCALE (Part A, see http://dx.doi.org/10.5194/gmdd-6-3381-2013) is a scheme, which scales coarse-grid climate fields to fine-grid topography using pressure level data. In addition, it applies necessary topographic corrections e.g. those variables required for computation of radiation fields. This provides the necessary driving fields to the LSM. Tested against independent ground data, this scheme has been shown to improve the scaling and distribution of meteorological parameters in complex terrain, as compared to conventional methods, e.g. lapse rate based approaches. TopoSUB (Part B, see http://dx.doi.org/10.5194/gmd-5-1245-2012) is a surface pre-processor designed to sample a fine-grid domain (defined by a digital elevation model) along important topographical (or other) dimensions through a clustering scheme. This allows constructing a lumped model representing the main sources of fine-grid variability and applying a 1D LSM efficiently over large areas. Results can processed to derive (i) summary statistics at coarse-scale re-analysis grid resolution, (ii) high-resolution data fields spatialized to e.g., the fine-scale digital elevation

  3. Sensitivity study of surface wind flow of a limited area model simulating the extratropical storm Delta affecting the Canary Islands

    OpenAIRE

    Marrero, C.; Jorba, O.; Cuevas, E.; Baldasano, J. M.

    2009-01-01

    In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain). The high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW). A total of 27 simulations were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical parameterizations and geometrical factors (size and position of the outer domain, d...

  4. Optimizing conjunctive use of surface water and groundwater for irrigation in arid and semi-arid areas: an integrated modeling approach

    Science.gov (United States)

    Wu, Xin; Wu, Bin; Zheng, Yi; Tian, Yong; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    In arid and semi-arid agricultural areas, groundwater (GW) is an important water source of irrigation, in addition to surface water (SW). Groundwater pumping would significantly alter the regional hydrological regime, and therefore complicate the water resources management process. This study explored how to optimize the conjunctive use of SW and GW for agricultural irrigation at a basin scale, based on integrated SW-GW modeling and global optimization methods. The improved GSFLOW model was applied to the Heihe River Basin, the second largest inland river basin in China. Two surrogate-based global optimization approaches were implemented and compared, including the well-established DYCORS algorithm and a new approach we proposed named as SOIM, which takes radial basis function (RBF) and support vector machine (SVM) as the surrogate model, respectively. Both temporal and spatial optimizations were performed, aiming at maximizing saturated storage change of midstream part conditioned on non-reduction of irrigation demand, constrained by certain annual discharge for the downstream part. Several scenarios for different irrigation demand and discharge flow are designed. The main study results include the following. First, the integrated modeling not only provides sufficient flexibility to formulation of optimization problems, but also makes the optimization results more physically interpretable and managerially meaningful. Second, the surrogate-based optimization approach was proved to be effective and efficient for the complex, time-consuming modeling, and is quite promising for decision-making. Third, the strong and complicated SW-GW interactions in the study area allow significant water resources conservation, even if neither irrigation demand nor discharge for the downstream part decreases. Under the optimal strategy, considerable part of surface water division is replaced by 'Stream leakage-Pump' process to avoid non-beneficial evaporation via canals. Spatially

  5. Integrating ASCAT surface soil moisture and GEOV1 leaf area index into the SURFEX modelling platform: a land data assimilation application over France

    Directory of Open Access Journals (Sweden)

    A. L. Barbu

    2014-01-01

    Full Text Available The land monitoring service of the European Copernicus programme has developed a set of satellite-based biogeophysical products, including surface soil moisture (SSM and leaf area index (LAI. This study investigates the impact of joint assimilation of remotely sensed SSM derived from Advanced Scatterometer (ASCAT backscatter data and the Copernicus Global Land GEOV1 satellite-based LAI product into the the vegetation growth version of the Interactions between Soil Biosphere Atmosphere (ISBA-A-gs land surface model within the the externalised surface model (SURFEX modelling platform of Météo-France. The ASCAT data were bias corrected with respect to the model climatology by using a seasonal-based CDF (Cumulative Distribution Function matching technique. A multivariate multi-scale land data assimilation system (LDAS based on the extended Kalman Filter (EKF is used for monitoring the soil moisture, terrestrial vegetation, surface carbon and energy fluxes across the domain of France at a spatial resolution of 8 km. Each model grid box is divided into a number of land covers, each having its own set of prognostic variables. The filter algorithm is designed to provide a distinct analysis for each land cover while using one observation per grid box. The updated values are aggregated by computing a weighted average. In this study, it is demonstrated that the assimilation scheme works effectively within the ISBA-A-gs model over a four-year period (2008–2011. The EKF is able to extract useful information from the data signal at the grid scale and distribute the root-zone soil moisture and LAI increments throughout the mosaic structure of the model. The impact of the assimilation on the vegetation phenology and on the water and carbon fluxes varies from one season to another. The spring drought of 2011 is an interesting case study of the potential of the assimilation to improve drought monitoring. A comparison between simulated and in situ soil

  6. Osmosis and Surface Area to Volume Ratio.

    Science.gov (United States)

    Barrett, D. R. B.

    1984-01-01

    Describes an experiment designed to help students understand the concepts of osmosis and surface area to volume ratio (SA:VOL). The task for students is to compare water uptake in different sizes of potato cubes and relate differences to their SA:VOL ratios. (JN)

  7. Estimating surface area in early hominins.

    Directory of Open Access Journals (Sweden)

    Alan Cross

    Full Text Available Height and weight-based methods of estimating surface area have played an important role in the development of the current consensus regarding the role of thermoregulation in human evolution. However, such methods may not be reliable when applied to early hominins because their limb proportions differ markedly from those of humans. Here, we report a study in which this possibility was evaluated by comparing surface area estimates generated with the best-known height and weight-based method to estimates generated with a method that is sensitive to proportional differences. We found that the two methods yield indistinguishable estimates when applied to taxa whose limb proportions are similar to those of humans, but significantly different results when applied to taxa whose proportions differ from those of humans. We also found that the discrepancy between the estimates generated by the two methods is almost entirely attributable to inter-taxa differences in limb proportions. One corollary of these findings is that we need to reassess hypotheses about the role of thermoregulation in human evolution that have been developed with the aid of height and weight-based methods of estimating body surface area. Another is that we need to use other methods in future work on fossil hominin body surface areas.

  8. Nondestructive, stereological estimation of canopy surface area

    DEFF Research Database (Denmark)

    Wulfsohn, Dvora-Laio; Sciortino, Marco; Aaslyng, Jesper M.

    2010-01-01

    We describe a stereological procedure to estimate the total leaf surface area of a plant canopy in vivo, and address the problem of how to predict the variance of the corresponding estimator. The procedure involves three nested systematic uniform random sampling stages: (i) selection of plants from...... a canopy using the smooth fractionator, (ii) sampling of leaves from the selected plants using the fractionator, and (iii) area estimation of the sampled leaves using point counting. We apply this procedure to estimate the total area of a chrysanthemum (Chrysanthemum morifolium L.) canopy and evaluate both...... the time required and the precision of the estimator. Furthermore, we compare the precision of point counting for three different grid intensities with that of several standard leaf area measurement techniques. Results showed that the precision of the plant leaf area estimator based on point counting...

  9. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  10. Brandon mathematical model describing the effect of calcination and reduction parameters on specific surface area of UO{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Nguyen Trong; Thuan, Le Ba [Institute for Technology of Radioactive and Rare Elements (ITRRE), 48 Lang Ha, Dong Da, Ha Noi (Viet Nam); Van Khoai, Do [Micro-Emission Ltd., 1-1 Asahidai, Nomi, Ishikawa, 923-1211 (Japan); Lee, Jin-Young, E-mail: jinlee@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of); Jyothi, Rajesh Kumar, E-mail: rkumarphd@kigam.re.kr [Convergence Research Center for Development of Mineral Resources (DMR), Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 305-350 (Korea, Republic of)

    2016-06-15

    Uranium dioxide (UO{sub 2}) powder has been widely used to prepare fuel pellets for commercial light water nuclear reactors. Among typical characteristics of the powder, specific surface area (SSA) is one of the most important parameter that determines the sintering ability of UO{sub 2} powder. This paper built up a mathematical model describing the effect of the fabrication parameters on SSA of UO{sub 2} powders. To the best of our knowledge, the Brandon model is used for the first time to describe the relationship between the essential fabrication parameters [reduction temperature (T{sub R}), calcination temperature (T{sub C}), calcination time (t{sub C}) and reduction time (t{sub R})] and SSA of the obtained UO{sub 2} powder product. The proposed model was tested with Wilcoxon's rank sum test, showing a good agreement with the experimental parameters. The proposed model can be used to predict and control the SSA of UO{sub 2} powder.

  11. High Surface Area Tunnels in Hexagonal WO₃.

    Science.gov (United States)

    Sun, Wanmei; Yeung, Michael T; Lech, Andrew T; Lin, Cheng-Wei; Lee, Chain; Li, Tianqi; Duan, Xiangfeng; Zhou, Jun; Kaner, Richard B

    2015-07-08

    High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.

  12. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek; Basset, Jean-Marie

    2014-01-01

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  13. High surface area fibrous silica nanoparticles

    KAUST Repository

    Polshettiwar, Vivek

    2014-11-11

    Disclosed are high surface area nanoparticles that have a fibrous morphology. The nanoparticles have a plurality of fibers, wherein each fiber is in contact with one other fiber and each fiber has a length of between about 1 nm and about 5000 nm. Also disclosed are applications of the nanoparticles of the present invention, and methods of fabrication of the nanoparticles of the present invention.

  14. OBSERVED ASTEROID SURFACE AREA IN THE THERMAL INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, C. R. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mainzer, A.; Masiero, J.; Bauer, J.; Kramer, E.; Sonnett, S. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wright, E. L. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ (United States)

    2017-02-01

    The rapid accumulation of thermal infrared observations and shape models of asteroids has led to increased interest in thermophysical modeling. Most of these infrared observations are unresolved. We consider what fraction of an asteroid’s surface area contributes the bulk of the emitted thermal flux for two model asteroids of different shapes over a range of thermal parameters. The resulting observed surface in the infrared is generally more fragmented than the area observed in visible wavelengths, indicating high sensitivity to shape. For objects with low values of the thermal parameter, small fractions of the surface contribute the majority of thermally emitted flux. Calculating observed areas could enable the production of spatially resolved thermal inertia maps from non-resolved observations of asteroids.

  15. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room.

    Science.gov (United States)

    Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-11-15

    Aerosol number size distributions, PM mass concentrations, alveolar deposited surface areas (ADSAs) and VOC concentrations were measured in a model room when aerosol was emitted by sources frequently encountered in indoor environments. Both combustion and non-combustion sources were considered. The most intense aerosol emission occurred when combustion sources were active (as high as 4.1×10 7 particlescm -3 for two meat grilling sessions; the first with exhaust ventilation, the second without). An intense spike generation of nucleation particles occurred when appliances equipped with brush electric motors were operating (as high as 10 6 particlescm -3 on switching on an electric drill). Average UFP increments over the background value were highest for electric appliances (5-12%) and lowest for combustion sources (as low as -24% for tobacco cigarette smoke). In contrast, average increments in ADSA were highest for combustion sources (as high as 3.2×10 3 μm 2 cm -3 for meat grilling without exhaust ventilation) and lowest for electric appliances (20-90μm 2 cm -3 ). The health relevance of such particles is associated to their ability to penetrate cellular structures and elicit inflammatory effects mediated through oxidative stress in a way dependent on their surface area. The highest VOC concentrations were measured (PID probe) for cigarette smoke (8ppm) and spray air freshener (10ppm). The highest PM mass concentration (PM 1 ) was measured for citronella candle burning (as high as 7.6mgm -3 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. On semiautomatic estimation of surface area

    DEFF Research Database (Denmark)

    Dvorak, J.; Jensen, Eva B. Vedel

    2013-01-01

    and the surfactor. For ellipsoidal particles, it is shown that the flower estimator is equal to the pivotal estimator based on support function measurements along four perpendicular rays. This result makes the pivotal estimator a powerful approximation to the flower estimator. In a simulation study of prolate....... If the segmentation is correct the estimate is computed automatically, otherwise the expert performs the necessary measurements manually. In case of convex particles we suggest to base the semiautomatic estimation on the so-called flower estimator, a new local stereological estimator of particle surface area....... For convex particles, the estimator is equal to four times the area of the support set (flower set) of the particle transect. We study the statistical properties of the flower estimator and compare its performance to that of two discretizations of the flower estimator, namely the pivotal estimator...

  17. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  18. Quantification of lung surface area using computed tomography

    Directory of Open Access Journals (Sweden)

    Xing Li

    2010-10-01

    Full Text Available Abstract Objective To refine the CT prediction of emphysema by comparing histology and CT for specific regions of lung. To incorporate both regional lung density measured by CT and cluster analysis of low attenuation areas for comparison with histological measurement of surface area per unit lung volume. Methods The histological surface area per unit lung volume was estimated for 140 samples taken from resected lung specimens of fourteen subjects. The region of the lung sampled for histology was located on the pre-operative CT scan; the regional CT median lung density and emphysematous lesion size were calculated using the X-ray attenuation values and a low attenuation cluster analysis. Linear mixed models were used to examine the relationships between histological surface area per unit lung volume and CT measures. Results The median CT lung density, low attenuation cluster analysis, and the combination of both were important predictors of surface area per unit lung volume measured by histology (p Conclusion Combining CT measures of lung density and emphysematous lesion size provides a more accurate estimate of lung surface area per unit lung volume than either measure alone.

  19. A Simple Proof of Cauchy's Surface Area Formula

    OpenAIRE

    Tsukerman, Emmanuel; Veomett, Ellen

    2016-01-01

    We give a short and simple proof of Cauchy's surface area formula, which states that the average area of a projection of a convex body is equal to its surface area up to a multiplicative constant in the dimension.

  20. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study

    Science.gov (United States)

    Lee, Bum Han; Lee, Sung Keun

    2013-07-01

    Despite the importance of understanding and quantifying the microstructure of porous networks in diverse geologic settings, the effects of the specific surface area and porosity on the key structural parameters of the networks have not been fully understood. We performed cube-counting fractal dimension (Dcc) and lacunarity analyses of 3D porous networks of model sands and configurational entropy analysis of 2D cross sections of model sands using random packing simulations and nuclear magnetic resonance (NMR) micro-imaging. We established relationships among porosity, specific surface area, structural parameters (Dcc and lacunarity), and the corresponding macroscopic properties (configurational entropy and permeability). The Dcc of the 3D porous networks increases with increasing specific surface area at a constant porosity and with increasing porosity at a constant specific surface area. Predictive relationships correlating Dcc, specific surface area, and porosity were also obtained. The lacunarity at the minimum box size decreases with increasing porosity, and that at the intermediate box size (∼0.469 mm in the current model sands) was reproduced well with specific surface area. The maximum configurational entropy increases with increasing porosity, and the entropy length of the pores decreases with increasing specific surface area and was used to calculate the average connectivity among the pores. The correlation among porosity, specific surface area, and permeability is consistent with the prediction from the Kozeny-Carman equation. From the relationship between the permeability and the Dcc of pores, the permeability can be expressed as a function of the Dcc of pores and porosity. The current methods and these newly identified correlations among structural parameters and properties provide improved insights into the nature of porous media and have useful geophysical and hydrological implications for elasticity and shear viscosity of complex composites of rock

  1. MCO gas composition for low reactive surface areas

    International Nuclear Information System (INIS)

    Packer, M.J.

    1998-01-01

    This calculation adjusts modeled output (HNF-SD-SNF-TI-040, Rev. 2) by considering lower reactive fuel surface areas and by increasing the input helium backfill overpressure from 0.5 to 1.5 atm (2.5 atm abs) to verify that MCO gas-phase oxygen concentrations can remain below 4 mole % over a 40 year interim period under a worst case condition of zero reactive surface area. Added backfill gas will dilute any gases generated during interim storage and is a strategy within the current design capability. The zero reactive surface area represents a hypothetical worst case example where there is no fuel scrap and/or damaged spent fuel rods in an MCO. Also included is a hypothetical case where only K East fuel exists in an MCO with an added backfill overpressure of 0.5 atm (1.5 atm abs)

  2. Can foot anthropometric measurements predict dynamic plantar surface contact area?

    Directory of Open Access Journals (Sweden)

    Collins Natalie

    2009-10-01

    Full Text Available Abstract Background Previous studies have suggested that increased plantar surface area, associated with pes planus, is a risk factor for the development of lower extremity overuse injuries. The intent of this study was to determine if a single or combination of foot anthropometric measures could be used to predict plantar surface area. Methods Six foot measurements were collected on 155 subjects (97 females, 58 males, mean age 24.5 ± 3.5 years. The measurements as well as one ratio were entered into a stepwise regression analysis to determine the optimal set of measurements associated with total plantar contact area either including or excluding the toe region. The predicted values were used to calculate plantar surface area and were compared to the actual values obtained dynamically using a pressure sensor platform. Results A three variable model was found to describe the relationship between the foot measures/ratio and total plantar contact area (R2 = 0.77, p R2 = 0.76, p Conclusion The results of this study indicate that the clinician can use a combination of simple, reliable, and time efficient foot anthropometric measurements to explain over 75% of the plantar surface contact area, either including or excluding the toe region.

  3. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  4. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: Uncertainties and probability distribution areas

    Science.gov (United States)

    Rixen, M.; Ferreira-Coelho, E.; Signell, R.

    2008-01-01

    Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).

  5. Adaptation of an urban land surface model to a tropical suburban area: Offline evaluation, sensitivity analysis, and optimization of TEB/ISBA (SURFEX)

    Science.gov (United States)

    Harshan, Suraj

    The main objective of the present thesis is the improvement of the TEB/ISBA (SURFEX) urban land surface model (ULSM) through comprehensive evaluation, sensitivity analysis, and optimization experiments using energy balance and radiative and air temperature data observed during 11 months at a tropical sub-urban site in Singapore. Overall the performance of the model is satisfactory, with a small underestimation of net radiation and an overestimation of sensible heat flux. Weaknesses in predicting the latent heat flux are apparent with smaller model values during daytime and the model also significantly underpredicts both the daytime peak and nighttime storage heat. Surface temperatures of all facets are generally overpredicted. Significant variation exists in the model behaviour between dry and wet seasons. The vegetation parametrization used in the model is inadequate to represent the moisture dynamics, producing unrealistically low latent heat fluxes during a particularly dry period. The comprehensive evaluation of the USLM shows the need for accurate estimation of input parameter values for present site. Since obtaining many of these parameters through empirical methods is not feasible, the present study employed a two step approach aimed at providing information about the most sensitive parameters and an optimized parameter set from model calibration. Two well established sensitivity analysis methods (global: Sobol and local: Morris) and a state-of-the-art multiobjective evolutionary algorithm (Borg) were employed for sensitivity analysis and parameter estimation. Experiments were carried out for three different weather periods. The analysis indicates that roof related parameters are the most important ones in controlling the behaviour of the sensible heat flux and net radiation flux, with roof and road albedo as the most influential parameters. Soil moisture initialization parameters are important in controlling the latent heat flux. The built (town) fraction

  6. Forecasting summertime surface temperature and precipitation in the Mexico City metropolitan area: sensitivity of the WRF model to land cover changes

    Science.gov (United States)

    López-Bravo, Clemente; Caetano, Ernesto; Magaña, Víctor

    2018-02-01

    Changes in the frequency and intensity of severe hydrometeorological events in recent decades in the Mexico City Metropolitan Area have motivated the development of weather warning systems. The weather forecasting system for this region was evaluated in sensitivity studies using the Weather Research and Forecasting Model (WRF) for July 2014, a summer time month. It was found that changes in the extent of the urban area and associated changes in thermodynamic and dynamic variables have induced local circulations that affect the diurnal cycles of temperature, precipitation, and wind fields. A newly implemented configuration (land cover update and Four-Dimensional Data Assimilation (FDDA)) of the WRF model has improved the adjustment of the precipitation field to the orography. However, errors related to the depiction of convection due to parameterizations and microphysics remains a source of uncertainty in weather forecasting in this region.

  7. Accuracy assessment of digital surface models based on a small format action camera in a North-East Hungarian sample area

    Directory of Open Access Journals (Sweden)

    Barkóczi Norbert

    2017-01-01

    Full Text Available The use of the small format digital action cameras has been increased in the past few years in various applications, due to their low budget cost, flexibility and reliability. We can mount these small cameras on several devices, like unmanned air vehicles (UAV and create 3D models with photogrammetric technique. Either creating or receiving these kind of databases, one of the most important questions will always be that how accurate these systems are, what the accuracy that can be achieved is. We gathered the overlapping images, created point clouds, and then we generated 21 different digital surface models (DSM. The differences based on the number of images we used in each model, and on the flight height. We repeated the flights three times, to compare the same models with each other. Besides, we measured 129 reference points with RTK-GPS, to compare the height differences with the extracted cell values from each DSM. The results showed that higher flight height has lower errors, and the optimal air base distance is one fourth of the flying height in both cases. The lowest median was 0.08 meter, at the 180 meter flight, 50 meter air base distance model. Raising the number of images does not increase the overall accuracy. The connection between the amount of error and distance from the nearest GCP is not linear in every case.

  8. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  9. Alternative model of random surfaces

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.

    1992-01-01

    We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)

  10. Palatal Surface Area of Maxillary Plaster Casts

    DEFF Research Database (Denmark)

    Darvann, Tron Andre; Hermann, Nuno V.; Ersbøll, Bjarne Kjær

    2007-01-01

    Objective: To investigate the relationship between corresponding two-dimensional and three-dimensional measurements on maxillary plaster casts taken from photographs and three-dimensional surface scans, respectively. Materials and Methods: Corresponding two-dimensional and three-dimensional measu...

  11. Effect of impervious surface area and vegetation changes on mean ...

    African Journals Online (AJOL)

    adeniyi adeyemi

    Land surface temperature (LST) is measured by the surface energy balance, .... climatic and environmental conditions (Cheng et al., 2006). ..... urban areas have generally resulted in a high reflection and emission of solar radiation and greater.

  12. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, Winny

    2001-01-01

    .... Traditional composite electrode structures have prevented truly quantitative analysis of surface area effects in nanoscale battery materials, as well as a study of their innate electrochemical behavior...

  13. Surface Area Distribution Descriptor for object matching

    Directory of Open Access Journals (Sweden)

    Mohamed F. Gafar

    2010-07-01

    Full Text Available Matching 3D objects by their similarity is a fundamental problem in computer vision, computer graphics and many other fields. The main challenge in object matching is to find a suitable shape representation that can be used to accurately and quickly discriminate between similar and dissimilar shapes. In this paper we present a new volumetric descriptor to represent 3D objects. The proposed descriptor is used to match objects under rigid transformations including uniform scaling. The descriptor represents the object by dividing it into shells, acquiring the area distribution of the object through those shells. The computed areas are normalised to make the descriptor scale-invariant in addition to rotation and translation invariant. The effectiveness and stability of the proposed descriptor to noise and variant sampling density as well as the effectiveness of the similarity measures are analysed and demonstrated through experimental results.

  14. An Improved MUSIC Model for Gibbsite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  15. Coupling Modified Linear Spectral Mixture Analysis and Soil Conservation Service Curve Number (SCS-CN Models to Simulate Surface Runoff: Application to the Main Urban Area of Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Jianhui Xu

    2016-11-01

    Full Text Available Land surface characteristics, including soil type, terrain slope, and antecedent soil moisture, have significant impacts on surface runoff during heavy precipitation in highly urbanized areas. In this study, a Linear Spectral Mixture Analysis (LSMA method is modified to extract high-precision impervious surface, vegetation, and soil fractions. In the modified LSMA method, the representative endmembers are first selected by combining a high-resolution image from Google Earth; the unmixing results of the LSMA are then post-processed to reduce errors of misclassification with Normalized Difference Built-up Index (NDBI and Normalized Difference Vegetation Index (NDVI. The modified LSMA is applied to the Landsat 8 Operational Land Imager (OLI image from 18 October 2015 of the main urban area of Guangzhou city. The experimental result indicates that the modified LSMA shows improved extraction performance compared with the conventional LSMA, as it can significantly reduce the bias and root-mean-square error (RMSE. The improved impervious surface, vegetation, and soil fractions are used to calculate the composite curve number (CN for each pixel according to the Soil Conservation Service curve number (SCS-CN model. The composite CN is then adjusted with regional data of the terrain slope and total 5-day antecedent precipitation. Finally, the surface runoff is simulated with the SCS-CN model by combining the adjusted CN and real precipitation data at 1 p.m., 4 May 2015.

  16. Body surface area prediction in normal, hypermuscular, and obese mice.

    Science.gov (United States)

    Cheung, Michael C; Spalding, Paul B; Gutierrez, Juan C; Balkan, Wayne; Namias, Nicholas; Koniaris, Leonidas G; Zimmers, Teresa A

    2009-05-15

    Accurate determination of body surface area (BSA) in experimental animals is essential for modeling effects of burn injury or drug metabolism. Two-dimensional surface area is related to three-dimensional body volume, which in turn can be estimated from body mass. The Meeh equation relates body surface area to the two-thirds power of body mass, through a constant, k, which must be determined empirically by species and size. We found older values of k overestimated BSA in certain mice; thus we determined empirically k for various strains of normal, obese, and hypermuscular mice. BSA was computed from digitally scanned pelts and nonlinear regression analysis was used to determine the best-fit k. The empirically determined k for C57BL/6J mice of 9.82 was not significantly different from other inbred and outbred mouse strains of normal body composition. However, mean k of the nearly spheroid, obese lepr(db/db) mice (k = 8.29) was significantly lower than for normals, as were values for dumbbell-shaped, hypermuscular mice with either targeted deletion of the myostatin gene (Mstn) (k = 8.48) or with skeletal muscle specific expression of a dominant negative myostatin receptor (Acvr2b) (k = 8.80). Hypermuscular and obese mice differ substantially from normals in shape and density, resulting in considerably altered k values. This suggests Meeh constants should be determined empirically for animals of altered body composition. Use of these new, improved Meeh constants will allow greater accuracy in experimental models of burn injury and pharmacokinetics.

  17. Why Do We Need the Derivative for the Surface Area?

    Science.gov (United States)

    Hristova, Yulia; Zeytuncu, Yunus E.

    2016-01-01

    Surface area and volume computations are the most common applications of integration in calculus books. When computing the surface area of a solid of revolution, students are usually told to use the frustum method instead of the disc method; however, a rigorous explanation is rarely provided. In this note, we provide one by using geometric…

  18. On the specific surface area of nanoporous materials

    NARCIS (Netherlands)

    Detsi, E.; De Jong, E.; Zinchenko, A.; Vukovic, Z.; Vukovic, I.; Punzhin, S.; Loos, K.; ten Brinke, G.; De Raedt, H. A.; Onck, P. R.; De Hosson, J. T. M.

    2011-01-01

    A proper quantification of the specific surface area of nanoporous materials is necessary for a better understanding of the properties that are affected by the high surface-area-to-volume ratio of nanoporous metals, nanoporous polymers and nanoporous ceramics. In this paper we derive an analytical

  19. Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil

    Science.gov (United States)

    Hou, Liang-pei; Zhao, Rong-xiang; Li, Xiu-ping; Gao, Xiao-han

    2018-03-01

    A series of catalysts of composition X-MoO2/g-C3N4 (X = 0, 0.5, 1, 3, 5 wt.%) were successfully synthesized by calcination of a mixture of (NH4)6Mo7O24·4H2O and g-C3N4. Oxidative desulfurization experiments were conducted using X-MoO2/g-C3N4 as a catalyst, H2O2 as an oxidant, and ionic liquids (ILs) as extraction agents. Catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller analysis (BET). Characterization results suggested that MoO2 was present in the catalyst and its crystallinity improved with increased Mo-loading. The catalysts had a larger specific surface area due to the presence of MoO2 dispersed on g-C3N4. Experimental results showed that 3%-MoO2/g-C3N4 had the highest catalytic activity among all the catalysts tested. A desulfurization rate of 96.0% was achieved under optimal conditions. Through gas chromatography-mass spectrometry (GC-MS) analysis, it was shown that dibenzothoiphene sulfone was the sole product of the oxidation desulfurization reaction. An apparent activation energy of 61.1 kJ/mol was estimated based on Arrhenius equation. The activity of 3%-MoO2/g-C3N4 slightly decreased after six runs. A possible mechanism for the reaction has been proposed.

  20. Lage-area planar RF plasma productions by surface waves

    International Nuclear Information System (INIS)

    Nonaka, S.

    1994-01-01

    Large-area rf plasmas are confirmed to be produced by means of RF discharges inside a large-area dielectric tube. The plasma space is 73 cm x 176 cm and 2.5 cm. The plasma is thought to be produced by an odd plasma-surface wave (PSW ο ) in case of using large-area electrodes and by an even plasma-surface wave (PSW ο ) in case of without the electrodes. (author). 7 refs, 4 figs

  1. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  2. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  3. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  4. Indexing aortic valve area by body surface area increases the prevalence of severe aortic stenosis

    DEFF Research Database (Denmark)

    Jander, Nikolaus; Gohlke-Bärwolf, Christa; Bahlmann, Edda

    2014-01-01

    To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are......To account for differences in body size in patients with aortic stenosis, aortic valve area (AVA) is divided by body surface area (BSA) to calculate indexed AVA (AVAindex). Cut-off values for severe stenosis are...

  5. Hand burns surface area: A rule of thumb.

    Science.gov (United States)

    Dargan, Dallan; Mandal, Anirban; Shokrollahi, Kayvan

    2018-03-11

    Rapid estimation of acute hand burns is important for communication, standardisation of assessment, rehabilitation and research. Use of an individual's own thumbprint area as a fraction of their total hand surface area was evaluated to assess potential utility in hand burn evaluation. Ten health professionals used an ink-covered dominant thumb pulp to cover the surfaces of their own non-dominant hand using the contralateral thumb. Thumbprints were assessed on the web spaces, sides of digits and dorsum and palm beyond the distal wrist crease. Hand surface area was estimated using the Banerjee and Sen method, and thumbprint ellipse area calculated to assess correlation. Mean estimated total hand surface area was 390.0cm 2 ±SD 51.5 (328.3-469.0), mean thumbprint ellipse area was 5.5cm 2 ±SD 1.3 (3.7-8.4), and mean estimated print number was 73.5±SD 11.0 (range 53.1-87.8, 95% CI 6.8). The mean observed number of thumbprints on one hand was 80.1±SD 5.9 (range 70.0-88.0, 95% CI 3.7), χ 2 =0.009. The combined mean of digital prints was 42, comprising a mean of two prints each on volar, dorsal, radial and ulnar digit surfaces, except volar middle and ring (3 prints each). Palmar prints were 15 (11-19), dorsal 15 (11-19), ulnar palm border 3, first web space 2, and second, third and fourth web spaces one each. Using the surface of the palm alone, excluding digits, as 0.5% of total body surface area, the area of one thumbprint was approximated as 1/30th of 1%. We have demonstrated how thumbprint area serves as a simple method for evaluating hand burn surface area. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  6. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature

  7. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  8. On $L_p$ Affine Surface Area and Curvature Measures

    OpenAIRE

    Zhao, Yiming

    2015-01-01

    The relationship between $L_p$ affine surface area and curvature measures is investigated. As a result, a new representation of the existing notion of $L_p$ affine surface area depending only on curvature measures is derived. Direct proofs of the equivalence between this new representation and those previously known are provided. The proofs show that the new representation is, in a sense, "polar" to that of Lutwak's and "dual" to that of Sch\\"utt & Werner's.

  9. Quantifying object and material surface areas in residences

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Ming, Katherine Y.; Singer, Brett C.

    2005-01-05

    The dynamic behavior of volatile organic compounds (VOCs) in indoor environments depends, in part, on sorptive interactions between VOCs in the gas phase and material surfaces. Since information on the types and quantities of interior material surfaces is not generally available, this pilot-scale study was conducted in occupied residences to develop and demonstrate a method for quantifying surface areas of objects and materials in rooms. Access to 33 rooms in nine residences consisting of bathrooms, bedroom/offices and common areas was solicited from among research group members living in the East San Francisco Bay Area. A systematic approach was implemented for measuring rooms and objects from 300 cm{sup 2} and larger. The ventilated air volumes of the rooms were estimated and surface area-to-volume ratios were calculated for objects and materials, each segregated into 20 or more categories. Total surface area-to-volume ratios also were determined for each room. The bathrooms had the highest total surface area-to-volume ratios. Bedrooms generally had higher ratios than common areas consisting of kitchens, living/dining rooms and transitional rooms. Total surface area-to-volume ratios for the 12 bedrooms ranged between 2.3 and 4.7 m{sup 2} m{sup -3}. The importance of individual objects and materials with respect to sorption will depend upon the sorption coefficients for the various VOC/materials combinations. When combined, the highly permeable material categories, which may contribute to significant interactions, had a median ratio of about 0.5 m{sup 2} m{sup -3} for all three types of rooms.

  10. A method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy

    International Nuclear Information System (INIS)

    Lu Yong; Song, Paul Y.; Li Shidong; Spelbring, Danny R.; Vijayakumar, Srinivasan; Haraf, Daniel J.; Chen, George T.Y.

    1995-01-01

    Purpose: To develop a method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy. Methods and Materials: Dose-surface histograms of the rectum, which state the rectal surface area irradiated to any given dose, were calculated for a group of 27 patients treated with a four-field box technique to a total (tumor minimum) dose ranging from 68 to 70 Gy. Occurrences of rectal toxicities as defined by the Radiation Therapy Oncology Group (RTOG) were recorded and examined in terms of dose and rectal surface area irradiated. For a specified end point of rectal complication, the complication probability was analyzed as a function of dose irradiated to a fixed rectal area, and as a function of area receiving a fixed dose. Lyman's model of normal tissue complication probability (NTCP) was used to fit the data. Results: The observed occurrences of rectal complications appear to depend on the rectal surface area irradiated to a given dose level. The patient distribution of each toxicity grade exhibits a maximum as a function of percentage surface area irradiated, and the maximum moves to higher values of percentage surface area as the toxicity grade increases. The dependence of the NTCP for the specified end point on dose and percentage surface area irradiated was fitted to Lyman's NTCP model with a set of parameters. The curvature of the NTCP as a function of the surface area suggests that the rectum is a parallel structured organ. Conclusions: The described method of analyzing rectal surface area irradiated yields interesting insight into understanding rectal complications in prostate conformal radiotherapy. Application of the method to a larger patient data set has the potential to facilitate the construction of a full dose-surface-complication relationship, which would be most useful in guiding clinical practice

  11. Outlining precision boundaries among areas with different variability standards using magnetic susceptibility and geomorphic surfaces

    OpenAIRE

    Matias,Sammy S. R.; Marques Júnior,José; Siqueira,Diego S.; Pereira,Gener T.

    2014-01-01

    There is an increasing demand for detailed maps that represent in a simplified way the knowledge of the variability of a particular area or region maps. The objective was to outline precision boundaries among areas with different accuracy variability standards using magnetic susceptibility and geomorphic surfaces. The study was conducted in an area of 110 ha, which identified three compartment landscapes based on the geomorphic surfaces model. To determinate pH, organic matter, phosphorus, po...

  12. Surface area considerations for corroding N reactor fuel

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Pitner, A.L.

    1996-06-01

    The N Reactor fuel is corroding at sites where the Zircaloy cladding was damaged when the fuel was discharged from the reactor. Corroding areas are clearly visible on the fuel stored in open cans in the K East Basin. There is a need to estimate the area of the corroding uranium to analyze aspects of fuel behavior as it is transitioned. from current wet storage to dry storage. In this report, the factors that contribute to open-quotes trueclose quotes surface area are analyzed in terms of what is currently known about the N Reactor fuel. Using observations from a visual examinations of the fuel in the K East wet storage facility, a value for the corroding geometric area is estimated. Based on observations of corroding uranium and surface roughness values for other metals, a surface roughness factor is also estimated and applied to the corroding K East fuel to provide an estimated open-quotes trueclose quotes surface area. While the estimated area may be modified as additional data become available from fuel characterization studies, the estimate provides a basis to assess effects of exposed uranium metal surfaces on fuel behavior in operations involved in transitioning from wet to dry storage, during shipment and staging, conditioning, and dry interim storage

  13. The ONKALO area model. Version 1

    International Nuclear Information System (INIS)

    Kemppainen, K.; Ahokas, T.; Ahokas, H.; Paulamaeki, S.; Paananen, M.; Gehoer, S.; Front, K.

    2007-11-01

    The geological model of the ONKALO area consists of three submodels: the lithological model, the brittle deformation model and the alteration model. The lithological model gives properties of definite rock units that can be defined on the basis the migmatite structures, textures and modal compositions. The brittle deformation model describes the results of brittle deformation, where geophysical and hydrogeological results are added. The alteration model describes occurrence of different alteration types and its possible effects. The rocks of Olkiluoto can be divided into two major classes: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, tonalitic-granodioriticgranitic gneisses, mica gneisses, quartz gneisses and mafic gneisses, and (2) igneous rocks including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite structure: veined gneisses, stromatic gneisses and diatexitic gneisses. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subject to polyphased ductile deformation, including five stages. In 3D modelling of the lithological units, an assumption has been made, on the basis of measurements in outcrops, investigation trenches and drill cores, that the pervasive, composite foliation produced as a result a polyphase ductile deformation has a rather constant attitude in the ONKALO area. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from the surface to the drillholes. The bedrock in the Olkiluoto site has been subject to extensive hydrothermal alteration, which has taken place at reasonably low temperature conditions, the estimated temperature interval being from slightly over 300 deg C to less than 100 deg C. Two types of alteration can be observed: (1) pervasive (disseminated

  14. Surface Rupture Effects on Earthquake Moment-Area Scaling Relations

    Science.gov (United States)

    Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro

    2017-09-01

    Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.

  15. Assessment of dialyzer surface in online hemodiafiltration; objective choice of dialyzer surface area

    Directory of Open Access Journals (Sweden)

    Francisco Maduell

    2015-05-01

    Conclusion: The increase in 40% and 80% of dialyzer surface area entails an increase in convective volume of 6 and 16% respectively, showing minimal differences both in convective volume and clearance capacity when UFC was greater than 45 mL/h/mmHg. It is advisable to optimise dialyser efficiency to the smallest surface area possible, adjusting treatment prescription.

  16. Specific surface area evaluation method by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Petrescu, Camelia; Petrescu, Cristian; Axinte, Adrian

    2000-01-01

    Ceramics are among the most interesting materials for a large category of applications, including both industry and health. Among the characteristic of the ceramic materials, the specific surface area is often difficult to evaluate.The paper presents a method of evaluation for the specific surface area of two ceramic powders by means of scanning electron microscopy measurements and an original method of computing the specific surface area.Cumulative curves are used to calculate the specific surface area under assumption that the values of particles diameters follow a normal logarithmic distribution. For two powder types, X7R and NPO the results are the following: - for the density ρ (g/cm 2 ), 5.5 and 6.0, respectively; - for the average diameter D bar (μm), 0.51 and 0.53, respectively; - for σ, 1.465 and 1.385, respectively; - for specific surface area (m 2 /g), 1.248 and 1.330, respectively. The obtained results are in good agreement with the values measured by conventional methods. (authors)

  17. Evaluation of Surface Water Quality by Using GIS and a Heavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; De Maio, Marina; Singh, Prasoon Kumar; Mahato, Mukesh Kumar

    2015-09-01

    Twenty eight surface water samples were collected from fourteen sites of the West Bokaro coalfield, India. The concentration of Mn, Cu, Zn, Ni, As, Se, Al, Cr, Ba, and Fe were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) for determination of seasonal fluctuations and a heavy metal pollution index (HPI). The HPI values were below the critical pollution index value of 100. Metal concentrations were higher in the pre-monsoon season as compared to the post-monsoon season. The Zn, Ni, Mn, As, Se, Al, Ba, Cu, and Cr concentrations did not exceed the desirable limits for drinking water in either season. However, at many sites, concentrations of Fe were above the desirable limit of the WHO (2006) and Indian drinking water standard (BIS 2003) in both seasons. The water that contained higher concentrations of Fe would require treatment before domestic use.

  18. Thermohydrogeological modelling of the Whiteshell research area

    International Nuclear Information System (INIS)

    Chan, T.; Nakka, B.W.; O'Connor, P.A.; Uphori, D.U.; Reid, J.A.K.; Scheier, N.W.; Stanchell, F.W.

    1998-01-01

    This report presents details of the modelling that was done to support the development of the simplified geosphere model (GEONET), which was used in the assessment that was presented in the Environmental Impact Statement on the proposed concept for the disposal of Canada's nuclear fuel waste. Detailed modelling of groundwater flow, heat transport and contaminant transport through the geosphere was performed using the MOTIF finite-element computer code and the particle-tracking code TRACK3D. The GEONET model was developed using data from the Whiteshell Research Area, with a hypothetical disposal vault located at a depth of 500 m. This report first briefly describes the conceptual model and summarises the two-dimensional (2-D) simulations that were used initially to define an adequate 3-D representation of the system. The analysis showed that the configuration of major fracture zones could have a large influence on the groundwater flow patterns. These major fracture zones can have high velocities and large flows. The proximity of the radionuclide source to a major fracture zone may strongly influence the time for a radionuclide to be transported from the disposal vault to the surface. Groundwater flow was then simulated and advective/convective particle tracking was conducted in the selected 3-D representation of the system, to aid in selecting a suitable form for the simplified model to be used in the overall systems assessment with the SYVAC3-CC3 computer code. Sensitivity analyses were performed on the effects of (a) different natural geometries of part of the model domain, (b) different hydraulic properties, (c) construction, operation and closure of the vault, (d) the presence of a water supply well and (e) the presence of an open borehole. These analyses indicated that the shape of the topography and the presence of a major low-dipping fracture zone focuses groundwater passing through the vault into a discharge area that is much smaller than the area of the

  19. INTEGRATION OF HETEROGENOUS DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2012-08-01

    distribution can be used to derive a local accuracy measure. For the calculation of a robust point distribution measure, a constrained triangulation of local points (within an area of 100m2 has been implemented using the Open Source project CGAL. The area of each triangle is a measure for the spatial distribution of raw points in this local area. Combining the FOM-map with the local evaluation of LiDAR points allows an appropriate local accuracy evaluation of both surface models. The currently implemented strategy ("partial replacement" uses the hypothesis, that the ADS-DSM is superior due to its better global accuracy of 1m. If the local analysis of the FOM-map within the 100m2 area shows significant matching errors, the corresponding area of the triangulated LiDAR points is analyzed. If the point density and distribution is sufficient, the LiDAR-DSM will be used in favor of the ADS-DSM at this location. If the local triangulation reflects low point density or the variance of triangle areas exceeds a threshold, the investigated location will be marked as NODATA area. In a future implementation ("anisotropic fusion" an anisotropic inverse distance weighting (IDW will be used, which merges both surface models in the point data space by using FOM-map and local triangulation to derive a quality weight for each of the interpolation points. The "partial replacement" implementation and the "fusion" prototype for the anisotropic IDW make use of the Open Source projects CGAL (Computational Geometry Algorithms Library, GDAL (Geospatial Data Abstraction Library and OpenCV (Open Source Computer Vision.

  20. Simplified models for surface hyperchannelling

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Webb, R.; Armour, D.G.; Karpuzov, D.S.

    1979-01-01

    Experimental and detailed, three-dimensional computer simulation studies of the scattering of low energy argon ions incident at grazing angles onto a nickel single crystal have shown that under certain, well defined conditions, surface hyperchannelling dominates the reflection process. The applicability of simple computer simulation models to the study of this type of scattering has been investigated by comparing the results obtained using a 'summation of binary collisions' model and a continuous string model with both the experimental observations and the three dimensional model calculations. It has been shown that all the major features of the phenomenon can be reproduced in a qualitative way using the simple models and that the continuous string represents a good approximation to the 'real' crystal over a wide range of angles. The saving in computer time compared with the more complex model makes it practicable to use the simple models to calculate cross-sections and overall scattering intensities for a wide range of geometries. The results of these calculations suggest that the critical angle for the onset of surface hyperchannelling, which is associated with a reduction in scattering intensity and which is thus not too sensitive to the parameters of experimental apparatus is a useful quantity from the point of view of comparison of theoretical calculations with experimental measurements. (author)

  1. STEREOLOGICAL ESTIMATION OF SURFACE AREA FROM DIGITAL IMAGES

    Directory of Open Access Journals (Sweden)

    Johanna Ziegel

    2011-05-01

    Full Text Available A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J. Rataj on infinitesimal increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is asymptotically unbiased in the case of sets contained in the ball centred at the origin with radius s and in the case of balls centred at the origin with unknown radius. For general shapes bounds for the asymptotic expected relative worst case error are given. A simulation example is discussed for surface area estimation based on 2×2×2-configurations.

  2. Surface EXAFS - A mathematical model

    International Nuclear Information System (INIS)

    Bateman, J.E.

    2002-01-01

    Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study

  3. Stereological estimation of surface area from digital images

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Kiderlen, Markus

    2010-01-01

    A sampling design of local stereology is combined with a method from digital stereology to yield a novel estimator of surface area based on counts of configurations observed in a digitization of an isotropic 2- dimensional slice with thickness s. As a tool, a result of the second author and J....... Rataj on infinitesimal increase of volumes of morphological transforms is refined and used. The proposed surface area estimator is asymptotically unbiased in the case of sets contained in the ball centred at the origin with radius s and in the case of balls centred at the origin with unknown radius...

  4. Large area, surface discharge pumped, vacuum ultraviolet light source

    Science.gov (United States)

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  5. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  6. Clay mineralogy in different geomorphic surfaces in sugarcane areas

    Science.gov (United States)

    Camargo, L.; Marques, J., Jr.

    2012-04-01

    The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment

  7. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    DEFF Research Database (Denmark)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in g...

  8. Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers

    NARCIS (Netherlands)

    Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker; Ahlstrøm, Andreas P.; Abermann, Jakob; Andersen, Morten L.; Andersen, Signe B.; Bjørk, Anders A.; Box, Jason E.; Braithwaite, Roger J.; Bøggild, Carl E.; Citterio, Michele; Clement, Poul; Colgan, William; Fausto, Robert S.; Gleie, Karin; Gubler, Stefanie; Hasholt, Bent; Hynek, Bernhard; Knudsen, Niels T.; Larsen, Signe H.; Mernild, Sebastian H.; Oerlemans, Johannes; Oerter, Hans; Olesen, Ole B.; Smeets, C. J P Paul; Steffen, Konrad; Stober, Manfred; Sugiyama, Shin; Van As, Dirk; Van Den Broeke, Michiel R.; Van De Wal, Roderik S W

    2016-01-01

    Glacier surface mass-balance measurements on Greenland started more than a century ago, but no compilation exists of the observations from the ablation area of the ice sheet and local glaciers. Such data could be used in the evaluation of modelled surface mass balance, or to document changes in

  9. A model for lightning in littoral areas

    NARCIS (Netherlands)

    Blaj, M.A.; Leferink, Frank Bernardus Johannes

    2009-01-01

    The littoral or coastal areas are different compared to the maritime or continental areas considering lightning. Only the last years some research about these areas has been carried out. The need for a model, regarding the lightning activity in these areas is much needed. And now, with the changes

  10. Installation and performance evaluation of an indigenous surface area analyser

    International Nuclear Information System (INIS)

    Pillai, S.N.; Solapurkar, M.N.; Venkatesan, V.; Prakash, A.; Khan, K.B.; Kumar, Arun; Prasad, R.S.

    2014-01-01

    An indigenously available surface area analyser was installed inside glove box and checked for its performance by analyzing uranium oxide and thorium oxide powders at RMD. The unit has been made ready for analysis of Plutonium oxide powders after incorporating several important features. (author)

  11. Influence of Ear Surface Area on Heat Tolerance of Composite ...

    African Journals Online (AJOL)

    Relative importance of ear surface area on heat tolerance of composite rabbit population was evaluated. The study was conducted during the dry and rainy seasons, climatic data were recorded to obtain categorical heat stress index. Physiological parameters, growth performance, ear length and ear width of the rabbits ...

  12. Surface water and groundwater interaction in Marala - Khanki area, Punjab

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Latif, Z.; Tariq, J.A.; Malik, M.R.

    2011-07-01

    Isotope hydrological investigations were carried out in two selected areas of Indus Basin viz. Haripur Area and Chashma- Taunsa Area for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no contribution of surface water to groundwater recharge in Haripur Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of the Haripur pocket of Tarbela Lake are higher than those of Main Lake / Indus River meaning that there is a significant contribution of base flow in this pocket. Indus River appeared to be the dominant source of groundwater recharge at most of the locations in Chashma- Taunsa Area. Isotopic data of Indus River showed an increase at Taunsa as compared to Chashma in low flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  13. Growth of contact area between rough surfaces under normal stress

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    1987-05-01

    The contact area between deforming rough surfaces in marble, alabaster, and quartz was measured from thin sections of surfaces bonded under load with low viscosity resin epoxy. The marble and alabaster samples had contact areas that increased with stress at an accelerating rate. This result suggests that the strength of the asperity contacts decreased progressively during the deformation, following some form of strain weakening relationship. This conclusion is supported by petrographic observation of the thin sections that indicate that much of the deformation was cataclastic, with minor twinning of calcite and kinking of gypsum. In the case of the quartz, the observed contact area was small and increased approximately linearly with normal stress. Only the irreversible cataclastic deformation was observed; however strain-induced birefringence and cracking of the epoxy, not observed with the other rocks, suggests that significant elastic deformation occurred, but recovered during unloading.

  14. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  15. Assessment of dialyzer surface in online hemodiafiltration; objective choice of dialyzer surface area

    OpenAIRE

    Francisco Maduell; Raquel Ojeda; Marta Arias-Guillén; Giannina Bazan; Manel Vera; Néstor Fontseré; Elisabeth Massó; Miquel Gómez; Lida Rodas; Mario Jiménez-Hernández; Gastón Piñeiro; Nayra Rico

    2015-01-01

    Introduction: Online haemodiafiltration (OL-HDF) is most effective technique; several randomised studies and meta-analyses have shown a reduction in mortality, with a directly related association with convective volume. At present, it is not properly established whether the increasing in dialyser surface area may suppose better outcomes in terms of convective and clearance efficacy. The purpose of the study was to assess the effect of increase in dialyser surface area on the convective volume...

  16. Root surface area measurement of permanent dentition in Indian population – CBCT analysis

    Directory of Open Access Journals (Sweden)

    Kanika Lakhani

    2017-01-01

    Full Text Available The area of the root surface of human teeth has been investigated extensively in the dental literature. All previous attempts mainly rely on the use of physical methods to calculate surface area on extracted teeth or use virtual 3D Models for the same. The aim is to develop an algorithm using MATLAB software that estimates the dimensions of 3-D image produced with the help of CBCT so that the same can be utilized to calculate the root surface area of teeth among Indian population. Present research utilizes CBCT images of samples of extracted teeth mounted on a customized jpg. A descriptive chart for statistical analysis has been prepared to obtain average root surface area of each tooth type. The currently developed algorithm has been successfully applied to the CBCT images of complete sample of teeth to obtain their root surface area. The algorithm developed to calculate root surface area of the teeth holds wide spread application in the field of dentistry pursuing its high expediency in even various specializations of dentistry including orthodontics, prosthodontics, periodontology and implantalogy. It is concluded that it has now become a reality to accurately determine the surface area of the root of human teeth without extracting them using the CBCT radiographs of the patients.

  17. Axelrod's model with surface tension

    Science.gov (United States)

    Pace, Bruno; Prado, Carmen P. C.

    2014-06-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.

  18. Development of cortical thickness and surface area in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Vincent T. Mensen

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder often associated with changes in cortical volume. The constituents of cortical volume – cortical thickness and surface area – have separable developmental trajectories and are related to different neurobiological processes. However, little is known about the developmental trajectories of cortical thickness and surface area in ASD. In this magnetic resonance imaging (MRI study, we used an accelerated longitudinal design to investigate the cortical development in 90 individuals with ASD and 90 typically developing controls, aged 9 to 20 years. We quantified cortical measures using the FreeSurfer software package, and then used linear mixed model analyses to estimate the developmental trajectories for each cortical measure. Our primary finding was that the development of surface area follows a linear trajectory in ASD that differs from typically developing controls. In typical development, we found a decline in cortical surface area between the ages of 9 and 20 that was absent in ASD. We found this pattern in all regions where developmental trajectories for surface area differed between groups. When we applied a more stringent correction that takes the interdependency of measures into account, this effect on cortical surface area retained significance for left banks of superior temporal sulcus, postcentral area, and right supramarginal area. These areas have previously been implicated in ASD and are involved in the interpretation and processing of audiovisual social stimuli and distinction between self and others. Although some differences in cortical volume and thickness were found, none survived the more stringent correction for multiple testing. This study underscores the importance of distinguishing between cortical surface area and thickness in investigating cortical development, and suggests the development of cortical surface area is of importance to ASD.

  19. Conceptual geohydrological model of the separations area

    International Nuclear Information System (INIS)

    Root, R.W.; Marine, I.W.

    1977-01-01

    Subsurface drilling in and around the Separations Areas (F-Area and H-Area of the Savannah River Plant) is providing detailed information for a conceptual model of the geology and hydrology underlying these areas. This conceptual model will provide the framework needed for a mathematical model of groundwater movement beneath these areas. Existing information substantiates the presence of two areally extensive clay layers and several discontinuous clay and sandy-clay layers. These layers occur in and between beds of clayey and silty sand that make up most of the subsurface material. Within these sand beds are geologic units of differing hydraulic conductivity. For the present scale of the model, the subsurface information is considered adequate in H-Area, but additional drilling is planned in F-Area

  20. Small carpal bone surface area, a characteristic of Turner's syndrome

    International Nuclear Information System (INIS)

    Cleveland, R.H.; Done, S.; Correia, J.A.; Crawford, J.D.; Kushner, D.C.; Herman, T.E.

    1985-01-01

    An abnormality which has received little attention but may be easily recognized on radiographs of the hand of patients with Turner's syndrome is described. Eleven of thirty-one patients (35.5%) with Turner's syndrome were shown on radiographs of the hand to have a visually detectable smallness of the bone surface area of the carpus when compared to the area of the second through fifth metacarpals. Values for the ''C/M'' ratio (the area of the carpals divided by the area of the second through fifth metacarpals) were calculated for films of 31 individuals with gonadal dysgenesis and compared with those from bone age-matched films of seventy-six individuals with normal development of the hand and wrist. A consistent difference with minimal overlap was documented. (orig./WL)

  1. Sintering of uranium oxide of high specific surface area

    International Nuclear Information System (INIS)

    Bel, Alain; Francois, Bernard; Delmas, Roger; Caillat, Roger

    1959-01-01

    The extent to which a uranium oxide powder deriving from ammonium uranate or uranium peroxide lends itself to the sintering process depends largely on its specific surface area. When this is greater than 5 m 2 / g there is an optimum temperature for sintering in hydrogen. This temperature becomes less as the specific area of the powder is greater. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 249, p. 1045-1047, sitting of 21 September 1959 [fr

  2. Mathematical modeling of rainwater runoff over catchment surface ...

    African Journals Online (AJOL)

    The subject of an article is the mathematical modeling of the rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface. The developed mathematical model consists of two types of equations: the ...

  3. Spectral theory of infinite-area hyperbolic surfaces

    CERN Document Server

    Borthwick, David

    2016-01-01

    This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added. Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constan...

  4. Career Area Rotation Model: User's Manual.

    Science.gov (United States)

    Williams, Richard B.; And Others

    The Career Area Rotation Model (CAROM) was developed as a result of the need for a computer based model describing the rotation of airmen within a specific career area (occupational specialty) through various categories of tour duty, accommodating all policies and interactions which are relevant for evaluation purposes. CAROM is an entity…

  5. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    Science.gov (United States)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  6. Hand surface area estimation formula using 3D anthropometry.

    Science.gov (United States)

    Hsu, Yao-Wen; Yu, Chi-Yuang

    2010-11-01

    Hand surface area is an important reference in occupational hygiene and many other applications. This study derives a formula for the palm surface area (PSA) and hand surface area (HSA) based on three-dimensional (3D) scan data. Two-hundred and seventy subjects, 135 males and 135 females, were recruited for this study. The hand was measured using a high-resolution 3D hand scanner. Precision and accuracy of the scanner is within 0.67%. Both the PSA and HSA were computed using the triangular mesh summation method. A comparison between this study and previous textbook values (such as in the U.K. teaching text and Lund and Browder chart discussed in the article) was performed first to show that previous textbooks overestimated the PSA by 12.0% and HSA by 8.7% (for the male, PSA 8.5% and HSA 4.7%, and for the female, PSA 16.2% and HSA 13.4%). Six 1D measurements were then extracted semiautomatically for use as candidate estimators for the PSA and HSA estimation formula. Stepwise regressions on these six 1D measurements and variable dependency test were performed. Results show that a pair of measurements (hand length and hand breadth) were able to account for 96% of the HSA variance and up to 98% of the PSA variance. A test of the gender-specific formula indicated that gender is not a significant factor in either the PSA or HSA estimation.

  7. Solvent accessible surface area (ASA) of simulated phospholipid membranes

    DEFF Research Database (Denmark)

    Tuchsen, E.; Jensen, Morten Østergaard; Westh, P.

    2003-01-01

    The membrane-solvent interface has been investigated through calculations of the solvent accessible surface area (ASA) for simulated membranes of DPPC and POPE. For DPPC at 52 degreesC we found an ASA of 126 +/- 8 Angstrom(2) per lipid molecule, equivalent to twice the projected lateral area......, even the most exposed parts of the PC head-group show average ASAs of less than half of its maximal or 'fully hydrated' value. The average ASA of a simulated POPE membrane was 96 +/- 7 Angstrom(2) per lipid. The smaller value than for DPPC reflects much lower ASA of the ammonium ion, which is partially...... compensated by increased exposure of the ethylene and phosphate moieties. The ASA of the polar moieties Of (PO4, NH3 and COO) constitutes 65% of the total accessible area for POPE, making this interface more polar than that of DPPC. It is suggested that ASA information can be valuable in attempts...

  8. Description of surface systems. Preliminary site description Simpevarp sub area - Version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias [ed.

    2005-03-01

    Swedish Nuclear Fuel and Waste Management Co is currently conducting site characterisation in the Simpevarp area. The area is divided into two subareas, the Simpevarp and the Laxemar subarea. The two subareas are surrounded by a common regional model area, the Simpevarp area. This report describes both the regional area and the subareas. This report is an interim version (model version 1.2) of the description of the surface systems at the Simpevarp area, and should be seen as a background report to the site description of the Simpevarp area, version 1.2, SKB-R--05-08. The basis for this description is quality-assured field data available in the SKB SICADA and GIS databases, together with generic data from the literature. The Surface system, here defined as everything above the bedrock, comprises a number of separate disciplines (e.g. hydrology, geology, topography, oceanography and ecology). Each discipline has developed descriptions and models for a number of properties that together represent the site description. The current methodology for developing the surface system description and the integration to ecosystem models is documented in a methodology strategy report SKB-R--03-06. The procedures and guidelines given in that report were followed in this report. Compared with version 1.1 of the surface system description SKB-R--04-25, this report presents considerable additional features, especially in the ecosystem description (Chapter 4) and in the description of the surface hydrology (Section 3.4). A first attempt has also been made to connect the flow of matter (carbon) between the different ecosystems into an overall ecosystem model at a landscape level. A summarised version of this report is also presented in SKB-R--05-08 together with geological-, hydrogeological-, transport properties-, thermal properties-, rock mechanics- and hydrogeochemical descriptions.

  9. Description of surface systems. Preliminary site description Simpevarp sub area - Version 1.2

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2005-03-01

    Swedish Nuclear Fuel and Waste Management Co is currently conducting site characterisation in the Simpevarp area. The area is divided into two subareas, the Simpevarp and the Laxemar subarea. The two subareas are surrounded by a common regional model area, the Simpevarp area. This report describes both the regional area and the subareas. This report is an interim version (model version 1.2) of the description of the surface systems at the Simpevarp area, and should be seen as a background report to the site description of the Simpevarp area, version 1.2, SKB-R--05-08. The basis for this description is quality-assured field data available in the SKB SICADA and GIS databases, together with generic data from the literature. The Surface system, here defined as everything above the bedrock, comprises a number of separate disciplines (e.g. hydrology, geology, topography, oceanography and ecology). Each discipline has developed descriptions and models for a number of properties that together represent the site description. The current methodology for developing the surface system description and the integration to ecosystem models is documented in a methodology strategy report SKB-R--03-06. The procedures and guidelines given in that report were followed in this report. Compared with version 1.1 of the surface system description SKB-R--04-25, this report presents considerable additional features, especially in the ecosystem description (Chapter 4) and in the description of the surface hydrology (Section 3.4). A first attempt has also been made to connect the flow of matter (carbon) between the different ecosystems into an overall ecosystem model at a landscape level. A summarised version of this report is also presented in SKB-R--05-08 together with geological-, hydrogeological-, transport properties-, thermal properties-, rock mechanics- and hydrogeochemical descriptions

  10. Molecularly-Limited Fractal Surface Area of Mineral Powders

    Directory of Open Access Journals (Sweden)

    Petr Jandacka

    2016-05-01

    Full Text Available The topic of the specific surface area (SSA of powders is not sufficiently described in the literature in spite of its nontrivial contribution to adsorption and dissolution processes. Fractal geometry provides a way to determine this parameter via relation SSA ~ x(D − 3s(2 − D, where x (m is the particle size and s (m is a scale. Such a relation respects nano-, micro-, or macro-topography on the surface. Within this theory, the fractal dimension 2 ≤ D < 3 and scale parameter s plays a significant role. The parameter D may be determined from BET or dissolution measurements on several samples, changing the powder particle sizes or sizes of adsorbate molecules. If the fractality of the surface is high, the SSA does not depend on the particle size distribution and vice versa. In this paper, the SSA parameter is analyzed from the point of view of adsorption and dissolution processes. In the case of adsorption, a new equation for the SSA, depending on the term (2 − D∙(s2 − sBET/sBET, is derived, where sBET and s2 are effective cross-sectional diameters for BET and new adsorbates. Determination of the SSA for the dissolution process appears to be very complicated, since the fractality of the surface may change in the process. Nevertheless, the presented equations have good application potential.

  11. Surface albedo measurements in Mexico City metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Castro, T; Mar, B; Longoria, R; Ruiz Suarez, L. G [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico); Morales, L [Instituto de Geografia, UNAM, Mexico, D.F. (Mexico)

    2001-04-01

    Optical and thermal properties of soils are important input data for the meteorological and photochemical modules of air quality models. As development of these models increase on spatial resolution good albedo data become more important. In this paper measurements of surface albedo of UV (295-385 nm) and visible (450-550 nm) radiation are reported for different urban and rural surfaces in the vicinity of Mexico City. It was found for the downtown zone and average albedo value of 0.05 which is in very good agreement with reported values for urban surfaces. Our albedo values measured in UV region for grey cement and green grass are of 0.10 and 0.009, respectively, and quite similar to those found at the literature of 0.11 and 0.008 for those type of surfaces. [Spanish] Las propiedades opticas y termicas de suelos son datos importantes para los modulos meteorologicos y fotoquimicos de los modelos de calidad del aire. Conforme aumenta la resolucion espacial del modelo se vuelve mas importante contar con buenos datos de albedo. En este articulo se presentan mediciones de albedo superficial de radiacion Ultravioleta (295-385 nm) y visible (450-550 nm) para diferentes superficies urbanas. Los valores medidos de albedo en la region UV para cemento gris y pasto verde son de 0.10 y 0.009, respectivamente, y son muy similares a los reportados en la literatura, 0.11 y 0.008 para este tipo de superficies.

  12. Indexing Glomerular Filtration Rate to Body Surface Area

    DEFF Research Database (Denmark)

    Redal-Baigorri, Belén; Rasmussen, Knud; Heaf, James Goya

    2014-01-01

    BACKGROUND: Kidney function is mostly expressed in terms of glomerular filtration rate (GFR). A common feature is the expression as ml/min per 1.73 m(2) , which represents the adjustment of the individual kidney function to a standard body surface area (BSA) to allow comparison between individuals....... We investigated the impact of indexing GFR to BSA in cancer patients, as this BSA indexation might affect the reported individual kidney function. METHODS: Cross-sectional study of 895 adults who had their kidney function measured with (51) chrome ethylene diamine tetraacetic acid. Mean values of BSA...

  13. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  14. EFFECT OF RATIO OF SURFACE AREA ON THE CORROSION RATE

    OpenAIRE

    Dody Prayitno; M. Irsyad

    2018-01-01

    Aluminum and steel are used to be a construction for a building outdoor panel. Aluminum and steel are connected by bolt and nut. An atmosphere due to a corrosion of the aluminum. The corrosion possibly to cause the hole diameter of bolt and nut to become larger. Thus the bolt and nut can not enough strong to hold the panel. The panel may collapse. The aim of the research is first to answer a question where does the corrosion starts. The second is to know the effect of ratio surface area of st...

  15. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori; McCabe, Matthew; Evans, Jason P.

    2015-01-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence

  16. Surface-complexation models for sorption onto heterogeneous surfaces

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-10-01

    This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)

  17. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    Science.gov (United States)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  18. Temporal variability of surface runoff due to cropping systems in cultivated catchment areas: Use of the DIAR model for the assessment of environmental public policies in the Pays de Caux (France).

    Science.gov (United States)

    Martin, P; Joannon, A; Piskiewicz, N

    2010-01-01

    This article proposes the use of a new model, DIAR (Diagnostic Agronomique du Ruissellement, or Agronomic Assessment of Runoff), for the prediction of the timing of the risk of runoff. DIAR is dedicated to loamy soils which are very sensitive to surface crusting, leading to runoff, soil erosion and muddy flows. The approach is proposed for the north-western European loess belt regions where muddy flows severely impact human activities. The likelihood of runoff is assessed from the sequence of soil surface states generated by cultivation practices. DIAR is based on the calculation of curve number values, for each stage of the soil-surface-state sequence, for calculating runoff for each of these stages. In this study, DIAR is applied to a catchment of 912 ha, cultivated by 26 farmers in the Pays de Caux (Normandy, France) where infrastructures located at the outlet have been damaged several times by muddy flows. Local public authorities involved in reducing muddy flows are eager to limit the agricultural upstream runoff by extending the planting of mustard as a winter cover crop. We tested the efficiency of such a policy on the reduction of the mean runoff. We also tested the year-to-year variability of this efficiency using the acreages of four successive years (1999-2000 to 2002-2003). Finally, the cost-efficiency of the policy was also considered. Though we used the same weather scenario, the initial situation (without much mustard cover) showed a wide year-to-year variation in the total runoff. This variation can be associated with the structure of the farms that cultivate the catchment (Utilised Agricultural Area (UAA) of each farm and percentage of this UAA inside the catchment). Our results showed that the widespread planting of winter cover crops could reduce the runoff by 10-20% compared with the initial situation (depending on the year), and also reduce the year-to-year variability of runoff. For each of the 4 tested years, the cost of the infiltrated m(3

  19. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    Science.gov (United States)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for

  20. Olkiluoto surface and near-surface hydrological modelling in 2010

    International Nuclear Information System (INIS)

    Karvonen, T.

    2011-08-01

    The modeling approaches carried out with the Olkiluoto surface hydrological model (SHYD) include palaeohydrological evolution of the Olkiluoto Island, examination of the boundary condition at the geosphere-biosphere interface zone, simulations related to infiltration experiment, prediction of the influence of ONKALO on hydraulic head in shallow and deep bedrock and optimisation of the shallow monitoring network. A so called short-term prediction system was developed for continuous updating of the estimated drawdowns caused by ONKALO. The palaeohydrological simulations were computed for a period starting from the time when the highest hills on Olkiluoto Island rose above sea level around 2 500 years ago. The input data needed in the model were produced by the UNTAMO-toolbox. The groundwater flow evolution is primarily driven by the postglacial land uplift and the uncertainty in the land uplift model is the biggest single factor that influences the accuracy of the results. The consistency of the boundary condition at the geosphere-biosphere interface zone (GBIZ) was studied during 2010. The comparison carried out during 2010 showed that pressure head profiles computed with the SHYD model and deep groundwater flow model FEFTRA are in good agreement with each other in the uppermost 100 m of the bedrock. This implies that flux profiles computed with the two approaches are close to each other and hydraulic heads computed at level z=0 m with the SHYD can be used as head boundary condition in the deep groundwater flow model FEFTRA. The surface hydrological model was used to analyse the results of the infiltration experiment. Increase in bedrock recharge inside WCA explains around 60-63 % from the amount of water pumped from OL-KR14 and 37-40 % of the water pumped from OL-KR14 flows towards pumping section via the hydrogeological zones. Pumping from OL-KR14 has only a minor effect on heads and fluxes in zones HZ19A and HZ19C compared to responses caused by leakages into

  1. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  2. Contribution to the study of techniques of measurement of interface surface area in bubble flows

    International Nuclear Information System (INIS)

    Veteau, Jean-Michel

    1981-01-01

    This research thesis addresses problems raised by the measurement of the interface area per volume unit in duct bubble flows. The author first reports a literature survey of existing methods (photographic, chemical and optical methods) which give access to the value of the parameter which is commonly named 'specific surface area'. He analyses under which conditions these methods lead to a rigorous determination of the SVIM (mean integral volume surface). The author highlights the theoretical contributions of models related to each of these methods which are indeed global methods as they allow the interface surface area to be directly obtained in a given volume of a two-phase mixture. Then, the author reports the development of an original technique based on the use of phase detecting local probes. In the next part, the author compares photographic and optical methods, on the one hand, and optical and local methods, on the other hand. Recommendations are made for the development of local methods [fr

  3. Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery

    Directory of Open Access Journals (Sweden)

    Weiqiang Ma

    2009-01-01

    Full Text Available Surface fluxes are important boundary conditions for climatological modeling and Asian monsoon system. The recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A parameterization method based on ASTER data and field observations has been proposed and tested for deriving surface albedo, surface temperature, Normalized Difference Vegetation Index (NDVI, Modified Soil Adjusted Vegetation Index (MSAVI, vegetation coverage, Leaf Area Index (LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the Coordinated Enhanced Observing Period (CEOP Asia-Australia Monsoon Project (CAMP on the Tibetan Plateau (CAMP/Tibet, located at the north Tibetan Plateau. The ASTER data of 24 July 2001, 29 November 2001 and 12 March 2002 was used in this paper for the case of summer, winter and spring. To validate the proposed methodology, the ground-measured surface variables (surface albedo and surface temperature and land surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in three different months over the study area are in good accordance with the land surface status. Also, the estimated land surface variables and land surface heat fluxes are in good accordance with ground measurements, and all their absolute percentage difference (APD is less than 10% in the validation sites

  4. 30 CFR 785.19 - Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

    Science.gov (United States)

    2010-07-01

    ... alluvial valley floor exists if it finds that— (i) Unconsolidated streamlaid deposits holding streams are... on areas or adjacent to areas including alluvial valley floors in the arid and semiarid areas west of....19 Surface coal mining and reclamation operations on areas or adjacent to areas including alluvial...

  5. Electromagnetic surface waves for large-area RF plasma productions between large-area planar electrodes

    International Nuclear Information System (INIS)

    Nonaka, S.

    1992-01-01

    Recently, large-area plasma production has been tested by means of a 13.56 MHz radio-frequency (RF) discharge between a pair of large-area planar electrodes, approximately 0.5 m x 1.4 m, as one of the semiconductor technologies for fabrication of large-area amorphous silicon solar cells in the ''Sunshine Project'' of the Agency of Industrial Science and Technology in Japan. We also confirmed long plasma production between a pair of long electrodes. In this paper, normal electromagnetic (EM) waves propagating in a region between a planar waveguide with one plasma and two dielectric layers are analyzed in order to study the feasibility of large-area plasma productions by EM wave-discharges between a pair of large-area RF electrodes larger than the half-wavelength of RF wave. In conclusion, plasmas higher than an electron plasma frequency will be produced by an odd TMoo surface mode. (author) 4 refs., 3 figs

  6. Human cortical areas involved in perception of surface glossiness.

    Science.gov (United States)

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2014-09-01

    Glossiness is the visual appearance of an object's surface as defined by its surface reflectance properties. Despite its ecological importance, little is known about the neural substrates underlying its perception. In this study, we performed the first human neuroimaging experiments that directly investigated where the processing of glossiness resides in the visual cortex. First, we investigated the cortical regions that were more activated by observing high glossiness compared with low glossiness, where the effects of simple luminance and luminance contrast were dissociated by controlling the illumination conditions (Experiment 1). As cortical regions that may be related to the processing of glossiness, V2, V3, hV4, VO-1, VO-2, collateral sulcus (CoS), LO-1, and V3A/B were identified, which also showed significant correlation with the perceived level of glossiness. This result is consistent with the recent monkey studies that identified selective neural response to glossiness in the ventral visual pathway, except for V3A/B in the dorsal visual pathway, whose involvement in the processing of glossiness could be specific to the human visual system. Second, we investigated the cortical regions that were modulated by selective attention to glossiness (Experiment 2). The visual areas that showed higher activation to attention to glossiness than that to either form or orientation were identified as right hV4, right VO-2, and right V3A/B, which were commonly identified in Experiment 1. The results indicate that these commonly identified visual areas in the human visual cortex may play important roles in glossiness perception. Copyright © 2014. Published by Elsevier Inc.

  7. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    Science.gov (United States)

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  8. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Johansson, Per-Olof; Werner, Kent; Bosson, Emma; Berglund, Sten; Juston, John

    2005-06-01

    The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 ''data freeze'' (July 31, 2004). The area covered in the conceptual and descriptive modelling is characterised by a low relief and a small-scale topography. Almost the whole area is located below 20 m a s l (metres above sea level). The corrected mean annual precipitation is 600-650 mm and the mean annual evapotranspiration can be estimated to a little more than 400 mm, leaving approximately 200 mm x year-1 for runoff. Till is the dominating Quaternary deposit covering approximately 75% of the area. In most of the area, the till is sandy. Bedrock outcrops are frequent but cover only approximately 5% of the area. Direct groundwater recharge from precipitation is the dominant source of groundwater recharge. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The sediment stratigraphy of lakes and wetlands is crucial for their function as discharge areas for groundwater. Comparisons between measured lake water levels and groundwater levels below and around lakes indicate that the lakes in some cases may act as sources of groundwater recharge. Specifically, observations from Lake Bolundsfjaerden and Lake Eckarfjaerden show that such conditions were at hand during the dry summer of 2003. However, whether the observed water level relations correspond to significant water fluxes depends also on the hydrogeological properties of the lake sediments and the underlying Quaternary deposits. ''Old'' water with high

  9. Assessment of Surface Area Characteristics of Dental Implants with Gradual Bioactive Surface Treatment

    Science.gov (United States)

    Czan, Andrej; Babík, Ondrej; Miklos, Matej; Záušková, Lucia; Mezencevová, Viktória

    2017-10-01

    Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on successful osseointegration. Among other characteristics that predetermine titanium of different grades of pureness as ideal biomaterial, titanium shows high mechanical strength making precise miniature machining increasingly difficult. Current titanium-based implants are often anodized due to colour coding. This anodized layer has important functional properties for right usage and also bio-compatibility of dental implants. Physical method of anodizing and usage of anodizing mediums has a significant influence on the surface quality and itself functionality. However, basic requirement of the dental implant with satisfactory properties is quality of machined surface before anodizing. Roughness, for example, is factor affecting of time length of anodizing operation and so whole productivity. The paper is focused on monitoring of surface and area characteristics, such as roughness or surface integrity after different cutting conditions of miniature machining of dental implants and their impact on suitability for creation of satisfactory anodized layer with the correct biocompatible functional properties.

  10. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow

    Science.gov (United States)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.

    2017-12-01

    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  11. Dynamical modeling of surface tension

    International Nuclear Information System (INIS)

    Brackbill, J.U.; Kothe, D.B.

    1996-01-01

    In a recent review it is said that free-surface flows ''represent some of the difficult remaining challenges in computational fluid dynamics''. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin. This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin are discussed

  12. E-Area LLWF Vadose Zone Model: Probabilistic Model for Estimating Subsided-Area Infiltration Rates

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-12

    A probabilistic model employing a Monte Carlo sampling technique was developed in Python to generate statistical distributions of the upslope-intact-area to subsided-area ratio (AreaUAi/AreaSAi) for closure cap subsidence scenarios that differ in assumed percent subsidence and the total number of intact plus subsided compartments. The plan is to use this model as a component in the probabilistic system model for the E-Area Performance Assessment (PA), contributing uncertainty in infiltration estimates.

  13. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  14. NEW CONCEPTS AND TEST METHODS OF CURVE PROFILE AREA DENSITY IN SURFACE: ESTIMATION OF AREAL DENSITY ON CURVED SPATIAL SURFACE

    OpenAIRE

    Hong Shen

    2011-01-01

    The concepts of curve profile, curve intercept, curve intercept density, curve profile area density, intersection density in containing intersection (or intersection density relied on intersection reference), curve profile intersection density in surface (or curve intercept intersection density relied on intersection of containing curve), and curve profile area density in surface (AS) were defined. AS expressed the amount of curve profile area of Y phase in the unit containing surface area, S...

  15. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    Science.gov (United States)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  16. Impact of microstructure evolution on the difference between geometric and reactive surface areas in natural chalk

    Science.gov (United States)

    Yang, Y.; Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2018-05-01

    The coupling between flow and mineral dissolution drives the evolution of many natural and engineered flow systems. Pore surface changes as microstructure evolves but this transient behaviour has traditionally been difficult to model. We combined a reactor network model with experimental, greyscale tomography data to establish the morphological grounds for differences among geometric, reactive and apparent surface areas in dissolving chalk. This approach allowed us to study the effects of initial geometry and macroscopic flow rate independently. The simulations showed that geometric surface, which represents a form of local transport heterogeneity, increases in an imposed flow field, even when the porous structure is chemically homogeneous. Hence, the fluid-reaction coupling leads to solid channelisation, which further results in fluid focusing and an increase in geometric surface area. Fluid focusing decreases the area of reactive surface and the residence time of reactant, both contribute to the over-normalisation of reaction rate. In addition, the growing and merging of microchannels, near the fluid entrance, contribute to the macroscopic, fast initial dissolution rate of rocks.

  17. An empirical method for estimating surface area of aggregates in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    R.P. Panda

    2016-04-01

    Full Text Available Bitumen requirement in hot mix asphalt (HMA is directly dependent on the surface area of the aggregates in the mix, which in turn has effect on the asphalt film thickness and the flow characteristics. The surface area of aggregate blend in HMA is calculated using the specific surface area factors assigned to percentage passing through some specific standard sieve sizes and the imaging techniques. The first process is less capital intensive, but purely manual and labour intensive and prone to human errors. Imaging techniques though eliminating the human errors, still have limited use due to capital intensiveness and requirement of well-established laboratories with qualified technicians. Most of the developing countries like India are shortage of well-equipped laboratories and qualified technicians. To overcome these difficulties, the present mathematical model has been developed to estimate the surface area of aggregate blend of HMA from physical properties of aggregates evaluated using simple laboratory equipment. This model has been validated compared with the existing established methods of calculations and can be used as one of the tools in different developing and under developed countries for proper design of HMA.

  18. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  19. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    International Nuclear Information System (INIS)

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.; Chapman, Jenny B.

    2003-01-01

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed. Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle

  20. Tritium in Precipitation, Surface and Groundwaters in the Zagreb Area

    International Nuclear Information System (INIS)

    Horvatincic, N.; Baresic, J.; Sironic, A.; Krajcar Bronic, I.; Obelic, B.

    2011-01-01

    Radioactive isotope tritium (3H) and stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O) were measured in Sava River, precipitation and groundwater at 3 monitoring wells (piezometers) and 1 production well of the Petrusevec aquifer, close to the Sava River. Samples were collected monthly during 2010. The investigation is included in the Regional IAEA Project RER/8/016 Using Environmental Isotopes for Evaluation of Streamwater/Groundwater Interactions in Selected Aquifers in the Danube Basin. Sava River is a tributary of Danube River and the aim of the investigation is to determine the influence of surface stream of Sava River to the groundwater of aquifer used for water exploitation. In this work only 3H results were presented. 3H was measured by liquid scintillation counter Quantulus 1220, using electrolytic enrichment for all samples. 3H activity in precipitation showed slight seasonal fluctuation between 4 TU and 14 TU, with higher values in summer. 3H activity of Sava River and groundwater of the Petrusevec aquifer followed 3H of precipitation till May 2010. Significant increase of 3H in Sava River was observed in June, (199 @ 20) TU, and in the next month it fell down at 6 TU. Increase of 3H was also observed in groundwater but with damped response (maximum 60 TU) and with delay of 2 - 3 months related to Sava River. Different response of different piezometers and the well indicated the different infiltration times of surface water of Sava River to groundwater of the Petrusevec aquifer. The increased 3H activity in surface and groundwaters was caused by release of tritiated water from the Krsko Nuclear Power Plant, 30 km upstream from Zagreb. The results of 3H, 2H/1H and 18O/16O measurements will be used to determine the infiltration time of groundwater of the Petrusevec aquifer using conceptual and mathematical models. (author)

  1. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    Science.gov (United States)

    Charalampidis, C.; van As, D.; Box, J. E.; van den Broeke, M. R.; Colgan, W. T.; Doyle, S. H.; Hubbard, A. L.; MacFerrin, M.; Machguth, H.; Smeets, C. J. P. P.

    2015-11-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l. - above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ~ 0.78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface energy fluxes. The model reproduces the observed melt rates as well as the SMB for each season. A sensitivity analysis reveals that 71 % of the additional solar radiation in 2012 was used for melt, corresponding to 36 % (0.64 m) of the 2012 surface lowering. The remaining 64 % (1.14 m) of surface lowering resulted from high atmospheric temperatures, up to a +2.6 °C daily average, indicating that 2012 would have been a negative SMB year at this site even without the melt-albedo feedback. Longer time series of SMB, regional temperature, and remotely sensed albedo (MODIS) show that 2012 was the first strongly negative SMB year, with the lowest albedo, at this elevation on record. The warm conditions of recent years have resulted in enhanced melt and reduction of the refreezing capacity in the lower accumulation area. If high temperatures continue, the current lower accumulation area will turn into a region with superimposed ice in coming years.

  2. Dynamic characterisation of the specific surface area for fracture networks

    Science.gov (United States)

    Cvetkovic, V.

    2017-12-01

    One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide

  3. The winds regime of surface in the Colombian coffee area

    International Nuclear Information System (INIS)

    Orlando Guzman Martinez; Lucia Gomez Gomez

    1994-01-01

    The characteristics of the address and gust of wind of the surface winds have been studied in 15 stations of the Colombian coffee area. It was found that the relief plays an important paper in the wind circulation so that during the day (7 a.m. - 7 p.m.) these they blow of the low sector toward the mountain and at night (7 p.m. - 7 a.m.) this situation is invested, that which is consistent with the characteristic pattern of circulation valley-mountain of the mountainous regions. For this fact, in most of the analyzed places a single day and night dominant address that it takes the orientation in that it is the respective hydrographic basin. It was not observed that the Alisios winds of the northeast and southeast modify the address settled down by the local circulation (valley-mountain) on the other hand a remarkable increase of the gust of wind was appreciated in July and August in the Florida and Ospina, stations located to the south of the country, as direct consequence of the Alisios of the southeast. The daily gust of wind in most of the studied places is low and it doesn't exceed of the 10 km/h, reason why it can consider that the Colombian coffee area is free of important damages for the action of the wind. Nevertheless, in some stations as Alban, Maracay and Paraguaicito the daily maximum gust of wind can surpass the 30 km/h and in occasions to cause damage mechanic to cultivations of high behavior and not well anchored facilities

  4. Extent of Stream Burial and Relationships to Watershed Area, Topography, and Impervious Surface Area

    Directory of Open Access Journals (Sweden)

    Roy E. Weitzell

    2016-11-01

    Full Text Available Stream burial—the routing of streams through culverts, pipes, and concrete lined channels, or simply paving them over—is common during urbanization, and disproportionately affects small, headwater streams. Burial undermines the physical and chemical processes governing life in streams, with consequences for water quality and quantity that may amplify from headwaters to downstream receiving waters. Knowledge of the extent of stream burial is critical for understanding cumulative impacts to stream networks, and for future decision-making allowing for urban development while protecting ecosystem function. We predicted stream burial across the urbanizing Potomac River Basin (USA for each 10-m stream segment in the basin from medium-resolution impervious cover data and training observations obtained from high-resolution aerial photography in a GIS. Results were analyzed across a range in spatial aggregation, including counties and independent cities, small watersheds, and regular spatial grids. Stream burial was generally correlated with total impervious surface area (ISA, with areas exhibiting ISA above 30% often subject to elevated ratios of stream burial. Recurring patterns in burial predictions related to catchment area and topographic slope were also detected. We discuss these results in the context of physiographic constraints on stream location and urban development, including implications for environmental management of aquatic resources.

  5. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  6. Discrepancy between body surface area and body composition in cancer.

    Science.gov (United States)

    Stobäus, Nicole; Küpferling, Susanne; Lorenz, Marie-Luise; Norman, Kristina

    2013-01-01

    Calculation of cytostatic dose is typically based on body surface area (BSA) regardless of body composition. The aim of this study was to assess the discrepancy between BSA and low fat-free mass (FFM) by investigating the prevalence of low FFM with regard to BSA in 630 cancer patients. First, BSA was calculated according to DuBois and DuBois. Patients were divided into 6 categories with respect to their BSA. Each BSA category was further divided into 3 groups according to FFM: low (FFM), normal (-0.99 and 0.99 SD of mean FFM) or high (>1 SD of mean FFM), which was derived through bioelectric impedance analysis. FFM was reduced in 15.7% of patients, 69% had normal and 15.2% had high FFM. In patients with low FFM (i.e., more than-1 SD lower than the mean FFM within their BSA group), body mass index and fatigue were higher whereas functional status was reduced. Moreover, in the subcohort of patients receiving chemotherapy, absolute FFM [Hazard ratio (HR) = 0.970, P = 0.026] as well as the allocation to the low FFM group (HR = 1.644, P = 0.025) emerged as predictors of increased 1-yr mortality. In conclusion, there was a large discrepancy between FFM and BSA. Particularly women were affected by low FFM.

  7. Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers

    Directory of Open Access Journals (Sweden)

    Fernanda Carmen Fuoco

    2017-01-01

    Full Text Available Cigarette smoke is the main cause of lung cancer events. Mainstream cigarette smoke (MSS is a direct concern for smokers, but also the secondhand smoke (SHS contributes to the smoker exposure. In addition, smoker exposure is affected by the “free-smoke” particle exposure (B, related to the micro-environments where smokers spend time. The aim of this paper is to evaluate the daily alveolar and tracheobronchial deposited fractions of airborne particles for smokers as the sum of these three contributions: MSS, SHS, and B. Measurements of particle surface area distributions in the MSS were performed through a Scanning Mobility Particle Sizer, an Aerodynamic Particle Sizer, and a Thermo-dilution system on five types of conventional cigarettes. A Monte Carlo method was then applied to evaluate the most probable value of dose received during the inhalation of MSS by smokers. Measurements of particle concentrations in SHS and at the “free-smoke” particle background (B were performed through 24-h monitoring at a personal scale of adult smoker through hand-held devices. This paper found that the total daily deposited dose for typical smokers was 1.03 × 105 mm2·day−1. The main contribution of such a huge daily dose was addressable to the MSS (98% while SHS contributed 1.1%, increasing up to 2% for people smoking only while traveling in a car.

  8. Bag model with diffuse surface

    International Nuclear Information System (INIS)

    Phatak, S.C.

    1986-01-01

    The constraint of a sharp bag boundary in the bag model is relaxed in the present work. This has been achieved by replacing the square-well potential of the bag model by a smooth scalar potential and introducing a term similar to the bag pressure term. The constraint of the conservation of the energy-momentum tensor is used to obtain an expression for the added bag pressure term. The model is then used to determine the static properties of the nucleon. The calculation shows that the rms charge radius and the nucleon magnetic moment are larger than the corresponding bag model values. Also, the axial vector coupling constant and the πNN coupling constant are in better agreement with the experimental values

  9. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  10. Surface chemistry of cellulose : from natural fibres to model surfaces

    NARCIS (Netherlands)

    Kontturi, E.J.

    2005-01-01

    The theme of the thesis was to link together the research aspects of cellulose occurring in nature (in natural wood fibres) and model surfaces of cellulose. Fundamental changes in cellulose (or fibre) during recycling of paper was a pragmatic aspect which was retained throughout the thesis with

  11. Joint surface modeling with thin-plate splines.

    Science.gov (United States)

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  12. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  13. Accuracy Assessment of Different Digital Surface Models

    Directory of Open Access Journals (Sweden)

    Ugur Alganci

    2018-03-01

    Full Text Available Digital elevation models (DEMs, which can occur in the form of digital surface models (DSMs or digital terrain models (DTMs, are widely used as important geospatial information sources for various remote sensing applications, including the precise orthorectification of high-resolution satellite images, 3D spatial analyses, multi-criteria decision support systems, and deformation monitoring. The accuracy of DEMs has direct impacts on specific calculations and process chains; therefore, it is important to select the most appropriate DEM by considering the aim, accuracy requirement, and scale of each study. In this research, DSMs obtained from a variety of satellite sensors were compared to analyze their accuracy and performance. For this purpose, freely available Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER 30 m, Shuttle Radar Topography Mission (SRTM 30 m, and Advanced Land Observing Satellite (ALOS 30 m resolution DSM data were obtained. Additionally, 3 m and 1 m resolution DSMs were produced from tri-stereo images from the SPOT 6 and Pleiades high-resolution (PHR 1A satellites, respectively. Elevation reference data provided by the General Command of Mapping, the national mapping agency of Turkey—produced from 30 cm spatial resolution stereo aerial photos, with a 5 m grid spacing and ±3 m or better overall vertical accuracy at the 90% confidence interval (CI—were used to perform accuracy assessments. Gross errors and water surfaces were removed from the reference DSM. The relative accuracies of the different DSMs were tested using a different number of checkpoints determined by different methods. In the first method, 25 checkpoints were selected from bare lands to evaluate the accuracies of the DSMs on terrain surfaces. In the second method, 1000 randomly selected checkpoints were used to evaluate the methods’ accuracies for the whole study area. In addition to the control point approach, vertical cross

  14. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  15. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  16. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    Science.gov (United States)

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future

  17. Gravimetric Model of Quasigeoid in the Area of Slovakia

    Directory of Open Access Journals (Sweden)

    Juraj Papčo

    2005-06-01

    Full Text Available The gravimetric model of quasigeoid in the area of Slovakia was determined by using the revised and homogenised gravity mapping data in the scale of 1:25 000 from the area of Slovakia, and by using the mean Bouguer gravity anomalies with the resolution of 5´x7.5´ in the area 44°<φ<56° and 12°<λ<30° from abroad and by the digital terrain model DMR-2/ERTS89 with the resolution 3“ in the ellipsoidal latitude and 5“ in the ellipsoidal longitude from the area of Slovakia and the digital terrain model GTOPO30 with the resolution of 30“ in the ellipsoidal latitude and 30“ in the ellipsoidal longitude from abroad. The global part of the height anomaly was determined from the global geopotential model EGM96. The residual part of the height anomaly was determined by the Stokes integral formula. For the solution of the Stokes integra,l the Fast Fourier Transformation method in the spherical approximation was used. The gravimetric quasigeoid was tested by the GPS/levelling method using 46 points distributed on the area of Slovakia. The systematic trend of differences between height anomalies was rejected by the surface polynomial of second degree with 6 coefficients. The standard deviation after removing a systematic trend was 0.017 m

  18. Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples.

    NARCIS (Netherlands)

    Hiemstra, T.; Antelo, J.; Rahnemaie, R.; Riemsdijk, van W.H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to

  19. Estimation of Specific Surface Area using Langmuir Isotherm ...

    African Journals Online (AJOL)

    Michael Horsfall

    Y= KCe/(1+KCe) (1) where Y is the fraction of fish carbon surface covered ..... transmigration of adsorbate in the plane surface. (Hameed et al., 2006). ... and to the Technologists of Agric Soil Science. Laboratory of ... Biosorption of Heavy Metals by Activated. Sludge and their Desorption Characteristics. J. Environ Mgt. 84: ...

  20. Minimal model for spoof acoustoelastic surface states

    Directory of Open Access Journals (Sweden)

    J. Christensen

    2014-12-01

    Full Text Available Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  1. Location of unaccessible implant surface areas during debridement in simulated peri-implantitis therapy.

    Science.gov (United States)

    Steiger-Ronay, Valerie; Merlini, Andrea; Wiedemeier, Daniel B; Schmidlin, Patrick R; Attin, Thomas; Sahrmann, Philipp

    2017-11-28

    An in vitro model for peri-implantitis treatment was used to identify areas that are clinically difficult to clean by analyzing the pattern of residual stain after debridement with commonly employed instruments. Original data from two previous publications, which simulated surgical (SA) and non-surgical (NSA) implant debridement on two different implant systems respectively, were reanalyzed regarding the localization pattern of residual stains after instrumentation. Two blinded examiners evaluated standardized photographs of 360 initially ink-stained dental implants, which were cleaned at variable defect angulations (30, 60, or 90°), using different instrument types (Gracey curette, ultrasonic scaler or air powder abrasive device) and treatment approaches (SA or NSA). Predefined implant surface areas were graded for residual stain using scores ranging from one (stain-covered) to six (clean). Score differences between respective implant areas were tested for significance by pairwise comparisons using Wilcoxon-rank-sum-tests with a significance level α = 5%. Best scores were found at the machined surface areas (SA: 5.58 ± 0.43, NSA: 4.76 ± 1.09), followed by the tips of the threads (SA: 4.29 ± 0.44, NSA: 4.43 ± 0.61), and areas between threads (SA: 3.79 ± 0.89, NSA: 2.42 ± 1.11). Apically facing threads were most difficult to clean (SA: 1.70 ± 0.92, NSA: 2.42 ± 1.11). Here, air powder abrasives provided the best results. Machined surfaces at the implant shoulder were well accessible and showed least amounts of residual stain. Apically facing thread surfaces constituted the area with most residual stain regardless of treatment approach.

  2. Foundations of elastoplasticity subloading surface model

    CERN Document Server

    Hashiguchi, Koichi

    2017-01-01

    This book is the standard text book of elastoplasticity in which the elastoplasticity theory is comprehensively described from the conventional theory for the monotonic loading to the unconventional theory for the cyclic loading behavior. Explanations of vector-tensor analysis and continuum mechanics are provided first as a foundation for elastoplasticity theory, covering various strain and stress measures and their rates with their objectivities. Elastoplasticity has been highly developed by the creation and formulation of the subloading surface model which is the unified fundamental law for irreversible mechanical phenomena in solids. The assumption that the interior of the yield surface is an elastic domain is excluded in order to describe the plastic strain rate due to the rate of stress inside the yield surface in this model aiming at the prediction of cyclic loading behavior, although the yield surface enclosing the elastic domain is assumed in all the elastoplastic models other than the subloading surf...

  3. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    Directory of Open Access Journals (Sweden)

    H. Beydoun

    2016-10-01

    Full Text Available Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS density (ns often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown

  4. Specific surface area of overlapping spheres in the presence of obstructions.

    Science.gov (United States)

    Jenkins, D R

    2013-02-21

    This study considers the random placement of uniform sized spheres, which may overlap, in the presence of another set of randomly placed (hard) spheres, which do not overlap. The overlapping spheres do not intersect the hard spheres. It is shown that the specific surface area of the collection of overlapping spheres is affected by the hard spheres, such that there is a minimum in the specific surface area as a function of the relative size of the two sets of spheres. The occurrence of the minimum is explained in terms of the break-up of pore connectivity. The configuration can be considered to be a simple model of the structure of a porous composite material. In particular, the overlapping particles represent voids while the hard particles represent fillers. Example materials are pervious concrete, metallurgical coke, ice cream, and polymer composites. We also show how the material properties of such composites are affected by the void structure.

  5. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  6. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  7. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek; Cha, Dong Kyu; Zhang, Xixiang; Basset, Jean-Marie

    2010-01-01

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determining eyeball surface area directly exposed to the effects of external factors.

    Science.gov (United States)

    Juliszewski, Tadeusz; Kadłuczka, Filip; Kiełbasa, Paweł

    2016-01-01

    This article discusses determining the surface area of eyeballs of men and women exposed to the direct effects of external factors in the working environment. For one eye, the mean surface is 172-182 mm(2). The determined surface area can be used in formulas for calculating the exposure of eyeballs to harmful chemical substances in workplace air.

  9. 30 CFR 942.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 942.761 Section 942.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  10. 30 CFR 903.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 903.761 Section 903.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, applies to surface coal mining...

  11. 30 CFR 910.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 910.761 Section 910.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  12. 30 CFR 937.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... mining by Act of Congress. 937.761 Section 937.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... WITHIN EACH STATE OREGON § 937.761 Areas designated unsuitable for surface coal mining by Act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and...

  13. 30 CFR 921.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 921.761 Section 921.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  14. 30 CFR 912.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... mining by act of Congress. 912.761 Section 912.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... WITHIN EACH STATE IDAHO § 912.761 Areas designated unsuitable for surface coal mining by act of Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining and...

  15. 30 CFR 947.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 947.761 Section 947.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  16. 30 CFR 939.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 939.761 Section 939.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  17. 30 CFR 941.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 941.761 Section 941.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  18. 30 CFR 922.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 922.761 Section 922.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  19. 30 CFR 905.761 - Areas designated unsuitable for surface coal mining by act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by act of Congress. 905.761 Section 905.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated by Act of Congress, shall apply to surface coal mining...

  20. High-surface-area silica nanospheres (KCC-1) with a fibrous morphology

    KAUST Repository

    Polshettiwar, Vivek

    2010-08-02

    Fibrous nanosilica: A new family of high-surface-area silica nanospheres (KCC-1) have been prepared (see picture). KCC-1 features excellent physical properties, including high surface area, unprecedented fibrous surface morphology, high thermal (up to 950 °C) and hydrothermal stabilities, and high mechanical stability. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.

    2006-01-01

    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed......., because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail...

  2. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  3. Changing surface-atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland

    DEFF Research Database (Denmark)

    Charalampidis, C.; Van As, D.; Box, J. E.

    2015-01-01

    We present 5 years (2009-2013) of automatic weather station measurements from the lower accumulation area (1840 m a.s.l.-above sea level) of the Greenland ice sheet in the Kangerlussuaq region. Here, the summers of 2010 and 2012 were both exceptionally warm, but only 2012 resulted in a strongly...... negative surface mass budget (SMB) and surface meltwater run-off. The observed run-off was due to a large ice fraction in the upper 10 m of firn that prevented meltwater from percolating to available pore volume below. Analysis reveals an anomalously low 2012 summer-averaged albedo of 0.71 (typically ∼ 0.......78), as meltwater was present at the ice sheet surface. Consequently, during the 2012 melt season, the ice sheet surface absorbed 28 % (213 MJ m-2) more solar radiation than the average of all other years. A surface energy balance model is used to evaluate the seasonal and interannual variability of all surface...

  4. Restoration of eroded surfaces in Serbian ski-areas

    Directory of Open Access Journals (Sweden)

    Ristić Ratko

    2009-01-01

    Full Text Available The environmental impacts in Serbian ski areas are very strong, leading to landscape degradation and functionality losses. Construction or improvement works cause serious destruction of topsoil and native vegetation. Some activities enhance erosion production and sediment yield: clear cuttings; trunk transport down the slope; road construction and large excavations. Also, lack of erosion control works in ski areas, especially between April and October, result in various forms of land degradation such as furrows, gullies, landslides, or debris from rock weathering. The consequences of mismanagement in ski areas are noticeable in downstream sections of river beds, causing floods and bed-load deposition. Planning and designing activities, with the application of technical and biotechnical erosion control structures, through the concept of restoration, are necessary measures in the protection of ski areas.

  5. Modelling the appearance of heritage metallic surfaces

    Directory of Open Access Journals (Sweden)

    L. MacDonald

    2014-06-01

    Full Text Available Polished metallic surfaces exhibit a high degree of specularity, which makes them difficult to reproduce accurately. We have applied two different techniques for modelling a heritage object known as the Islamic handbag. Photogrammetric multi-view stereo enabled a dense point cloud to be extracted from a set of photographs with calibration targets, and a geometrically accurate 3D model produced. A new method based on photometric stereo from a set of images taken in an illumination dome enabled surface normals to be generated for each face of the object and its appearance to be rendered, to a high degree of visual realism, when illuminated by one or more light sources from any angles. The specularity of the reflection from the metal surface was modelled by a modified Lorentzian function.

  6. Assessment of large aperture scintillometry for large-area surface ...

    Indian Academy of Sciences (India)

    29

    1995), flat pastoral surfaces. (McAneny ... heat flux using net radiometer and soil heat flux plate, respectively and synchronized with ..... order to facilitates development of satellite based application for ET and drought monitoring, the .... daytime sensible heat flux and momentum fluxes;Boundary- Layer Meteorol.,68 357-373.

  7. Dependence of the specific surface area of the nuclear fuel with the matrix oxidation

    International Nuclear Information System (INIS)

    Gomez, F.; Quinones, J.; Iglesias, E.; Rodriguez, N.

    2008-01-01

    This paper is focused on the study of the changes in the specific surface area measured using BET techniques. The objective is to obtain a relation between this parameter and the change in the matrix stoichiometry (i.e., oxidation increase). None of the actual models used for extrapolating the behaviour of the spent fuel matrix under repository conditions have included this dependence yet. In this work the specific surface area of different uranium oxide were measured using N 2 (g) and Kr(g). The starting material was UO 2+x (s) with a size powder distribution lower than 20 μm. The results included in this paper shown a strong dependence on specific surface area with the matrix stoichiometry, i.e., and increase of more than one order of magnitude (SUO 2 = 6 m 2 *g -1 and SU 3 O 8 = 16.07 m 2 *g -1 ). Furthermore, the particle size distribution measured as a function of the thermal treatment done shows changes on the powder size related to the changes observed in the uranium oxide stoichiometry. (authors)

  8. PROBABILISTIC MODEL FOR AIRPORT RUNWAY SAFETY AREAS

    Directory of Open Access Journals (Sweden)

    Stanislav SZABO

    2017-06-01

    Full Text Available The Laboratory of Aviation Safety and Security at CTU in Prague has recently started a project aimed at runway protection zones. The probability of exceeding by a certain distance from the runway in common incident/accident scenarios (take-off/landing overrun/veer-off, landing undershoot is being identified relative to the runway for any airport. As a result, the size and position of safety areas around runways are defined for the chosen probability. The basis for probability calculation is a probabilistic model using statistics from more than 1400 real-world cases where jet airplanes have been involved over the last few decades. Other scientific studies have contributed to understanding the issue and supported the model’s application to different conditions.

  9. Large Area Diamond Tribological Surfaces with Negligible Wear in Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I we propose to demonstrate the processing of very large area diamond sliding bearings and tribological surfaces. The bearings and surfaces will experience...

  10. A new approach for calculation of volume confined by ECR surface and its area in ECR ion source

    International Nuclear Information System (INIS)

    Filippov, A.V.

    2007-01-01

    The volume confined by the resonance surface and its area are important parameters of the balance equations model for calculation of ion charge-state distribution (CSD) in the electron-cyclotron resonance (ECR) ion source. A new approach for calculation of these parameters is given. This approach allows one to reduce the number of parameters in the balance equations model

  11. [Modeling polarimetric BRDF of leaves surfaces].

    Science.gov (United States)

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  12. Possibilities of surface waters monitoring at mining areas using UAV

    Science.gov (United States)

    Lisiecka, Ewa; Motyka, Barbara; Motyka, Zbigniew; Pierzchała, Łukasz; Szade, Adam

    2018-04-01

    The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV). The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  13. The use of large surface area for particle and power deposition

    International Nuclear Information System (INIS)

    Seigneur, A.; Guilhem, D.; Hogan, J.

    1993-01-01

    Since the parallel heat flux passing through the LCFS has increased dramatically with the size of machines one has to cope with very large particle and power fluxes on the limiters. Thus the size of the limiters has been increased by the use of inner bumper limiters (for example in JET, TFTR, TORE-SUPRA and JT60). The 'exponential-sine' model is widely used to estimate the heat flux (Q) to a wall for a plasma flux surface with incident angle θ. The model predict Q = q || (0) sinθ e -ρ/λ q + q(0) cosθ e -ρ/λ q , (where θ=0 o when the flux surface is exactly tangential to the limiting surface), ρ is the minor radius measured from the last closed flux surface (LCFS), λ q is the SOL decay length of the heat flux density and q(0) is the heat flux density at the last closed surface. If we approximate the heat flux as Q = q || (0) e -ρ/λ q sin(θ+α), with α ≡ tan -1 [q(0)/q || (0)], then α can be interpreted as an effective 'minimum angle of incidence'. Under conditions where the geometric angle θ has been made almost grazing (below 5 o ) the predictions of the simplest model (with α=0 o ) is not adequate to represent the observation made in TORE-SUPRA; a similar result is found in TFTR. Experimental observations of heat and particle deposition on the large area limiter on the inner wall of TORE-SUPRA are presented. These results have been analyzed with a Monte Carlo code (THOR) describing the diffusion of hydrogenic particles across the LCFS to the limiting objects in the Scrape Off Layer (SOL), and by impurity generation calculations using the full 'exponential-sine' model (α ≠ 0) used as input to an impurity (carbon) Monte Carlo code (BBQ). (author) 6 refs., 3 figs., 1 tab

  14. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Huaiyu; Huang, Shanqian [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Zhou, Sen [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Department of Pediatrics, Harvard Medical School, Boston, MA (United States); Bi, Peng [Discipline of Public Health, University of Adelaide, Adelaide (Australia); Yang, Zhicong, E-mail: yangzc@gzcdc.org.cn [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Li, Xiujun [School of Public Health, Shandong University, Jinan (China); Chen, Lifan [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Cazelles, Bernard [UMMISCO, UMI 209 IRD – UPMC, 93142 Bondy (France); Eco-Evolutionary Mathematic, IBENS UMR 8197, ENS, 75230 Paris Cedex 05 (France); Yang, Jing [State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Luo, Lei; Jing, Qinlong [Guangzhou Center for Disease Control and Prevention, Guangzhou (China); Yuan, Wenping [State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing (China); Pei, Yao; Sun, Zhe [Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing (China); Yue, Tianxiang [State Key Laboratory of Resources and Environment Information System, Chinese Academy of Sciences, Beijing (China); Kwan, Mei-Po [Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820 (United States); and others

    2016-10-15

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  15. Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China

    International Nuclear Information System (INIS)

    Tian, Huaiyu; Huang, Shanqian; Zhou, Sen; Bi, Peng; Yang, Zhicong; Li, Xiujun; Chen, Lifan; Cazelles, Bernard; Yang, Jing; Luo, Lei; Jing, Qinlong; Yuan, Wenping; Pei, Yao; Sun, Zhe; Yue, Tianxiang; Kwan, Mei-Po

    2016-01-01

    Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface area covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.

  16. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  17. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    Science.gov (United States)

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  18. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  19. Urban surface energy fluxes based on remotely-sensed data and micrometeorological measurements over the Kansai area, Japan

    Science.gov (United States)

    Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.

    2017-12-01

    The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.

  20. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  1. Quantitative Modeling of Earth Surface Processes

    Science.gov (United States)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes. More details...

  2. Towards predictive models for transitionally rough surfaces

    Science.gov (United States)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  3. Possibilities of surface waters monitoring at mining areas using UAV

    Directory of Open Access Journals (Sweden)

    Lisiecka Ewa

    2018-01-01

    Full Text Available The selected, remote measurement methods are discussed, useful for determining surface water properties using mobile unmanned aerial platforms (UAV. The possibilities of using this type of solutions in the scope of measuring spatial, physicochemical and biological parameters of both natural and anthropogenic water reservoirs, including flood polders, water-filled pits, settling tanks and mining sinks were analyzed. Methods of remote identification of the process of overgrowing this type of ecosystems with water and coastal plant formations have also been proposed.

  4. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers

    Directory of Open Access Journals (Sweden)

    Cleiton A. Nunes

    2011-01-01

    Full Text Available Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

  5. Surface area-burnoff correlation for the steam--graphite reaction

    International Nuclear Information System (INIS)

    Stark, W.A. Jr.; Malinauskas, A.P.

    1977-01-01

    The oxidation of core graphite by steam of air represents a problem area of significant concern in safety analyses for the high temperature gas cooled reactor (HTGR). Core and core-support graphite integrity and strength deteriorate with oxidation of the graphite, and oxidation furthermore could affect the rate of fission product release under upset conditions. Consequently, modeling of core response during steam or air ingress conditions requires an expression for the rate of graphite interaction with those impurities. The steam--graphite reaction in particular is a complex interaction of mass transport within the graphite with chemi-sorption and reaction on accessible surfaces; experimental results from graphite to graphite are highly variable, and the description of the reaction is not yet completely consistent. A simple etch pit model relating surface area to burnoff has been proposed and shown to provide reasonable correlation with experimental data obtained from steam oxidation studies of nuclear grade H-327 graphite. Unaccounted differences between theory and experiment arise at burnoffs exceeding 3 to 5 percent. The model, while not complete nor comprehensive, is consistent with experimental observations of graphite oxidation by O 2 (air), CO 2 , or H 2 O, and could have some utility in safety analysis

  6. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  7. FOOTPRINT: A Screening Model for Estimating the Area of a Plume Produced From Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a screening model used to estimate the length and surface area of benzene, toluene, ethylbenzene, and xylene (BTEX) plumes in groundwater, produced from a gasoline spill that contains ethanol.

  8. Effect of solution and leaf surface polarity on droplet spread area and contact angle.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2016-03-01

    How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Dynamic modeling of interfacial structures via interfacial area transport equation

    International Nuclear Information System (INIS)

    Seungjin, Kim; Mamoru, Ishii

    2004-01-01

    bubbles due to surface instability. In the present paper, the interfacial area transport equations currently available are reviewed to address the feasibility and reliability of the model. Results from extensive benchmark experiments for the model evaluation are also present. These include the data from adiabatic upward air-water two-phase flow in round tubes of various sizes, from a rectangular duct, and from adiabatic co-current downward air-water two-phase flow in round pipes of two different sizes. Furthermore, some guidelines for the future study on interfacial area transport equation are discussed. (authors)

  10. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  11. Replication fidelity assessment of large area sub-μm structured polymer surfaces using scatterometry

    International Nuclear Information System (INIS)

    Calaon, M; Hansen, H N; Tosello, G; Madsen, M H; Weirich, J; Hansen, P E; Garnaes, J; Tang, P T

    2015-01-01

    The present study addresses one of the key challenges in the product quality control of transparent structured polymer substrates, the replication fidelity of sub-μm structures over a large area. Additionally the work contributes to the development of new techniques focused on in-line characterization of large nanostructured surfaces using scatterometry. In particular an approach to quantify the replication fidelity of high volume manufacturing processes such as polymer injection moulding is presented. Both periodic channels and semi-spherical structures were fabricated on nickel shims used for later injection moulding of Cyclic-olefin-copolymer (COC) substrate were the sub-μm features where ultimately transferred. The scatterometry system was validated using calibrated atomic force microscopy measurements and a model based on scalar diffraction theory employed to calculate the expected angular distribution of the reflected and the transmitted intensity for the nickel surfaces and structured COC and, respectively. (paper)

  12. Nuclear surface vibrations in bag models

    International Nuclear Information System (INIS)

    Tomio, L.

    1984-01-01

    The main difficulties found in the hadron bag models are reviewed from the original version of the MIT bag model. Following, with the aim to answer two of the main difficulties in bag models, viz., the parity and the divergence illness, a dynamical model is presented. In the model, the confinement surface of the quarks (bag) is treated like a real physical object which interacts with the quarks and is exposed to vibrations. The model is applied to the nucleon, being observed that his spectrum, in the first excited levels, can be reproduced with resonable precision and obeying to the correct parity order. In the same way that in a similar work of Brown et al., it is observed to be instrumental the inclusion of the effect due to pions. (L.C.) [pt

  13. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  14. Assessment of runoff contributing catchment areas in rainfall runoff modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Johansen, C.; Schaarup-Jensen, Kjeld

    2006-01-01

    In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult...... to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now...... recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions...

  15. BLM National Surface Management Agency: Area Polygons, Withdrawal Area Polygons, and Special Public Purpose Withdrawal Area Polygons

    Data.gov (United States)

    Federal Geographic Data Committee — The SMA implementation is comprised of one feature dataset, with several polygon feature classes, rather than a single feature class. SurfaceManagementAgency: The...

  16. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu, E-mail: aykutlu@unam.bilkent.edu.tr [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  17. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    Science.gov (United States)

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Geological model of the ONKALO area version 0

    International Nuclear Information System (INIS)

    Paananen, M.; Paulamaeki, S.; Gehoer, S.; Kaerki, A.

    2006-03-01

    The geological model of the ONKALO area is composed of four submodels: ductile deformation model, lithological model, brittle deformation model and alteration model. The ductile deformation model describes and models the products of polyphase ductile deformation, which facilitates the definition of dimensions and geometrical properties of individual lithological units determined in the lithological model. The lithological model describes the properties of rock units that can be defined on the basis the migmatite structures, textures and modal compositions. The brittle deformation model describes the products of multiple phases of brittle deformation, and the alteration model describes the types, occurrence and the effects of the hydrothermal alteration. On the basis of refolding and crosscutting relationships, the metamorphic supracrustal rocks have been subject to five stages of ductile deformation. This resulted in a pervasive, composite foliation which shows a rather constant attitude in the ONKALO area. Based on observations in outcrops, investigation trenches and drill cores, 3D modelling of the lithological units is carried out assuming that the contacts are quasiconcordant. Using this assumption, the strike and dip of the foliation has been used as a tool to correlate the lithologies between the drillholes, and from surface and tunnel outcrops to drillholes. Consequently, the strike and dip of the foliation has been used as a tool, through which the lithologies have been correlated between the drillholes and from surface to drillholes. The rocks at Olkiluoto can be divided into two major groups: (1) supracrustal high-grade metamorphic rocks including various migmatitic gneisses, homogeneous tonaliticgranodioritic- granitic gneisses, mica gneisses and quartzitic gneisses, and mafic gneisses, (2) igneous rocks, including pegmatitic granites and diabase dykes. The migmatitic gneisses can further be divided into three subgroups in terms of the type of migmatite

  19. Surface and subsurface conditions in permafrost areas - a literature review

    International Nuclear Information System (INIS)

    Vidstrand, Patrik

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that there is

  20. Surface and subsurface conditions in permafrost areas - a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik [Bergab, Goeteborg (Sweden)

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that

  1. 30 CFR 933.761 - Areas designated unsuitable for surface coal mining by Act of Congress.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas designated unsuitable for surface coal mining by Act of Congress. 933.761 Section 933.761 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... Congress. Part 761 of this chapter, Areas Designated Unsuitable for Coal Mining by Act of Congress, with...

  2. Surface area of antimony oxide by isotope exchange and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.K.; Acharya, B.V.; Rangamannar, B.

    1985-06-17

    Specific surface areas of antimony oxide samples, one commercial, the other prepared from antimony trichloride were measured by heterogeneous isotope exchange, gas adsorption, air permeability and microscopic methods. Specific surface areas obtained by these four methods for the two samples were compared and the observed differences are explained.

  3. The protection of urban areas from surface wastewater pollutions

    Directory of Open Access Journals (Sweden)

    Vialkova Elena

    2017-01-01

    Full Text Available In this paper it considered the problem of collection, treatment and discharge into waters of rain and melted wastewater. To reduce the load on the combined sewer system, there are engineering solutions collect rain and melt water for use in the irrigation of lawns and green spaces. Research carried out at the department “Water supply and sanitation”, (Russia, confirm the high pollution concentrations of meltwater and rainfall in urban arias. Series of measurements of heavy metal in rainwater runoff carried out in Hungary demonstrates clearly the differences in concentrations in the function of distance from the edge of the road. Also differences are introduced between pollution concentrations in runoff water from within and outside urban traffic roads. The quality of snow cover, forming meltwater is observed to be changing in dependence on roadway location. Quality characteristics of surface runoff and its sediments can be effectively improved with super-high frequency radiation (SHF treatment which is presented in this paper.

  4. High surface area silicon materials: fundamentals and new technology.

    Science.gov (United States)

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  5. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  6. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  7. Mathematical modeling for surface hardness in investment casting applications

    International Nuclear Information System (INIS)

    Singh, Rupinder

    2012-01-01

    Investment casting (IC) has many potential engineering applications. Not much work hitherto has been reported for modeling the surface hardness (SH) in IC of industrial components. In the present study, outcome of Taguchi based macro model has been used for developing a mathematical model for SH; using Buckingham's π theorem. Three input parameters namely volume/surface area (V/A) ratio of cast components, slurry layer's combination (LC) and molten metal pouring temperature were selected to give output in form of SH. This study will provide main effects of these variables on SH and will shed light on the SH mechanism in IC. The comparison with experimental results will also serve as further validation of model

  8. Estimation of body surface area in the musk shrew ( Suncus murinus): a small animal for testing chemotherapy-induced emesis.

    Science.gov (United States)

    Eiseman, Julie L; Sciullo, Michael; Wang, Hong; Beumer, Jan H; Horn, Charles C

    2017-10-01

    Several cancer chemotherapies cause nausea and vomiting, which can be dose-limiting. Musk shrews are used as preclinical models for chemotherapy-induced emesis and for antiemetic effectiveness. Unlike rats and mice, shrews possess a vomiting reflex and demonstrate an emetic profile similar to humans, including acute and delayed phases. As with most animals, dosing of shrews is based on body weight, while translation of such doses to clinically equivalent exposure requires doses based on body surface area. In the current study body surface area in musk shrews was directly assessed to determine the Meeh constant (K m ) conversion factor (female = 9.97, male = 9.10), allowing estimation of body surface area based on body weight. These parameters can be used to determine dosing strategies for shrew studies that model human drug exposures, particularly for investigating the emetic liability of cancer chemotherapeutic agents.

  9. Size and surface AREA analysis of some metallic and intermetallic powders

    International Nuclear Information System (INIS)

    Elmasry, M.A.A.; Elsayed, A.A.; Abadir, M.F.

    1988-01-01

    The powder characterization of three intermetallic compounds ( Cr B, B 4 c and S ib 4 ) and three metallic powders (Fe, Co, and Ni) has been performed. This included the determination of powder density, chemical analysis, impurity analysis, shape factor, particle size analysis and specific surface area. The particle size analysis for the six powders was carried out using three techniques, namely; the 0-23, the microtrac and the fisher sub sieve and size. It was found that the analysis of the two powders and deviates from the log-normal probability distribution and the deviation was corrected. The specific surface area of the powders was measured using the high speed surface area analysis (BET method), and it was also calculated from surface area analysis findings, the BET technique was found to give the highest specific surface area values, and was attributed to the inclusion of internal porosity in the measurement. 8 fig., 10 tab

  10. Surface and groundwater Nitrate distribution in the area of Vicenza

    International Nuclear Information System (INIS)

    Altissimo, L.; Dal Pra, A.

    1999-01-01

    Public aqueducts in the Province of Vicenza (Italy) are supplied entirely by various kinds of water sources: the sub river bed strata of the mountain valleys, water-bearing aquifers of the high plan, pressurized water-bearing aquifers of the middle plain, karstic reservoirs of the mountain massifs and local springs. Progressive increase in nitrate concentration has long been detected in the underground water of many parts of the Vicenza region. The nitrates originate from various sources: human waste, industrial dumping (e.g. the tanning industry) and the use of animal and chemical fertilizers. Nitrate distribution was studied in all wells used for extracting underground water including source waters which replenishing underground aquifers. During the study period ('91-'95), water courses in the recharge areas were found to have nitrate concentrations ranging between 2.0 and 42.0 mg/l. These values remained substantially stable in time. Underground aquifers showed stable nitrate concentration between 5.0 mg/l (mountain karstic aquifers; sub-river bed strata of valley bottom) and 44.0 mg/l (water bearing strata of the high plain of Astico and Brenta rivers). The pressurized flooding aquifers of the middle plain have lower concentrations (6.0-21.0 mg/l) but tend to increase by about 0.5 mg/l per year [it

  11. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Science.gov (United States)

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  12. Long-term studies on the effects of nonvolatile organic compounds on porous media surface areas.

    Science.gov (United States)

    Khachikian, Crist S; Harmon, Thomas C

    2002-01-01

    This paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied. Lampblack is a carbonaceous skeleton containing polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons. It is hypothesized that soils contaminated by these types of chemicals will exhibit significantly less surface area than their clean counterparts. The surface areas for the contaminated MS samples increased toward their clean-MS values during the 700-h aging period, but achieved the clean values only after pentane extraction or heating at 60 degrees C. Heating at 50 degrees C failed to achieve a similar recovery of the clean-MS surface area value. Nonspecific mass loss tracked the increase in surface area as indirect evidence that naphthalene loss was the cause of the surface area increase. For the LB samples, aging at 100 degrees C produced a slight decrease in surface area and mass while aging at 250 degrees C caused the surface area to increase roughly threefold while the mass decreased by approximately 1%. These results suggest that, under moderate heating and over the time scale of this investigation, there is a redistribution of the complex contaminant mixture on the solid matrix. Greater temperatures remove mass more efficiently and therefore exhibited the surface area increase expected in this experiment.

  13. Modeling superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, M. A.; Tafreshi, H. Vahedi; Gad-El-Hak, M.

    2011-11-01

    We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  14. Measured and modeled dry deposition velocities over the ESCOMPTE area

    Science.gov (United States)

    Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.

    2005-03-01

    Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant

  15. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  16. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  17. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  18. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  19. Regional hydrogeological conceptual model of candidate Beishan area for high level radioactive waste disposal repository

    International Nuclear Information System (INIS)

    Wang Hailong; Guo Yonghai

    2014-01-01

    The numerical modeling of groundwater flow is an important aspect of hydrogeological assessment in siting of a high level radioactive waste disposal repository. Hydrogeological conceptual model is the basic and premise of numerical modeling of groundwater flow. Based on the hydrogeological analysis of candidate Beishan area, surface water system was created by using DEM data and the modeling area is determined. Three-dimensional hydrogeological structure model was created through GMS software. On the basis of analysis and description of boundary condition, flow field, groundwater budget and hydrogeological parameters, hydrogeological conceptual model was set up for the Beishan area. (authors)

  20. Changes in the Surface Area of Glaciers in Northern Eurasia

    Science.gov (United States)

    Khromova, T.; Nosenko, G.

    2012-12-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies the landscape changes in the glacial zone, origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, and etc. The presence of glaciers in itself threats to human life, economic activity and growing infrastructure. Economical and recreational human activity in mountain regions requires relevant information on snow and ice objects. Absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies, their volume and changes The first estimation of glaciers state and glaciers distribution in the big part of Northern Eurasia has been done in the USSR Glacier Inventory published in 1966 -1980 as a part of IHD activity. The Inventory is based on topographic maps and air photos and reflects the status of the glaciers in 1957-1970y. There is information about 23796 glaciers with area of 78222.3 km2 in the Inventory. It covers 23 glacier systems on Northern Eurasia. In the 80th the USSR Glacier Inventory has been transformed in the digital form as a part of the World Glacier Inventory. Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of XX century. In the paper we report about 15 000 glaciers outlines for Caucasus, Pamir, Tien-Shan, Altai, Syntar-Khayata, Cherskogo Range, Kamchatka and Russian Arctic which have been derived from ASTER and Landsat imagery and could be used for glacier changes evaluation. The results show that glaciers are retreating in all these regions. There is, however

  1. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias [ed.

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  2. Description of surface systems. Preliminary site description. Forsmark area Version 1.2

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2005-06-01

    Swedish Nuclear Fuel and Waste Management Co (SKB) started site investigations for a deep repository for spent nuclear fuel in 2002 at two different sites in Sweden, Forsmark and Oskarshamn. The investigations should provide necessary information for a license application aimed at starting underground exploration. For this reason, ecosystem data need to be interpreted and assessed into site descriptive models, which in turn are used for safety assessment studies and for environmental impact assessment. Descriptions of the surface system are also needed for further planning of the site investigations. This report describes the surface ecosystems of the Forsmark site (e.g. hydrology, Quaternary deposits, chemistry, vegetation, animals and the human land use). The ecosystem description is an integration of the site and its regional setting, covering the current state of the biosphere as well as the ongoing natural processes affecting the longterm development. Improving the descriptions is important during both the initial and the complete site investigation phase. Before starting of the initial phase in Forsmark, version 0 of the site descriptive model was developed. The results of the initial site investigation phase is compiled into a preliminary site description of Forsmark (version 1.2) in June 2005. This report provides the major input and background to the biosphere description, in the 1.2 version of the Forsmark site description. The basis for this interim version is quality-assured field data from the Forsmark sub area and regional area, available in the SKB SICADA, and GIS data bases as of July 31th 2004 as well as version 1.1 of the Site Descriptive Model. To achieve an ecosystem site description there is a need to develop discipline-specific models by interpreting and analysing primary data. The different discipline-specific models are then integrated into a system describing interactions and flows and stocks of matter between and within functional units in

  3. Ground-water, surface-water, and water-chemistry data, Black Mesa Area, northeastern Arizona: 2000-2001, and performance and sensitivity of the 1988 USGS numerical model of the N aquifer

    Science.gov (United States)

    Thomas, Blakemore E.

    2002-01-01

    The N aquifer is the major source of water in the 5,400-square-mile area of Black Mesa in northeastern Arizona. Availability of water is an important issue in this area because of continued industrial and municipal use, a growing population, and precipitation of about 6 to 14 inches per year. The monitoring program in Black Mesa has been operating since 1971 and is designed to determine the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. The monitoring program includes measurements of (1) ground-water pumping, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. In 2000, total ground-water withdrawals were 7,740 acre-feet, industrial use was 4,490 acre-feet, and municipal use was 3,250 acre-feet. From 1999 to 2000, total withdrawals increased by 9 percent, industrial use increased by 7 percent, and municipal use increased by 12 percent. From 1999 to 2001, water levels declined in 10 of 15 wells in the unconfined part of the aquifer, and the median change was -0.4 foot. Water levels declined in 8 of 16 wells in the confined part of the aquifer, and the median change was -0.2 foot. From the prestress period (prior to 1965) to 2001, the median water-level change for 33 wells was -17.2 feet. Median water-level changes were -1.2 feet for 15 wells in the unconfined part of the aquifer and -31.0 feet for 18 wells in the confined part. Discharges were measured once in 1999 and once in 2001 at four springs. Discharges decreased by 5 percent and 33 percent at two springs and increased by 3 percent and 81 percent at two springs. For about the past 10 years, discharges did not significantly change in Burro Spring, the unnamed spring near Dennehotso, and Moenkopi School Spring. The record of discharge from a consistent measuring point for Pasture Canyon Spring is too short for statistical analysis of trends. Continuous records of surface-water discharge have been collected

  4. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    Science.gov (United States)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  5. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  6. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    Science.gov (United States)

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  7. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    solute sources in the rock these were located at 140 m.b.s.l. In the PT simulations particles were entered both all over the model area and only inside the area for the planned repository. The pattern of recharge and discharge areas at the surface were studied, but also the flow paths in the bedrock. The PT simulations were run for 300 years and 5,000 years. The AD simulations were run for 200 years. The particle tracking results indicated a relative slow transport from the bedrock up to the ground surface. The horizontal fractures/sheet joints short-circuited the upward transport paths of the particles released in the area where these structures were represented. The particles reaching ground surface when introducing particles all over the model area were concentrated to lake areas, the depressions around the streams, and the sea. When introducing particles inside the planned repository area only, all exit points were found in the sea; no particles discharged in the land part of the model area.

  8. Study of the mobility, surface area, and sintering behavior of agglomerates in the transition regime by tandem differential mobility analysis

    International Nuclear Information System (INIS)

    Cho, Kuk; Hogan, Christopher J.; Biswas, Pratim

    2007-01-01

    The surface area of nanosized agglomerates is of great importance as the reactivity and health effects of such particles are highly dependent on surface area. Changes in surface area through sintering during nanoparticle synthesis processes are also of interest for precision control of synthesised particles. Unfortunately, information on particle surface area and surface area dynamics is not readily obtainable through traditional particle mobility sizing techniques. In this study, we have experimentally determined the mobility diameter of transition regime agglomerates with 3, 4, and 5 primary particles. Agglomerates were produced by spray drying well-characterised polystyrene latex particles with diameters of 55, 67, 76, and 99 nm. Tandem differential mobility analysis was used to determine agglomerate mobility diameter by selecting monodisperse agglomerates with the same number of primary particles in the first DMA, and subsequently completely sintering the agglomerates in a furnace aerosol reactor. The size distribution of the completely sintered particles was measured by an SMPS system, which allowed for the determination of the number of primary particles in the agglomerates. A simple power law regression was used to express mobility diameter as a function of primary particle size and the number of primary particles, and had an excellent correlation (R 2 = 0.9971) with the experimental data. A scaling exponent was determined from the experimental data to relate measured mobility diameter to surface area for agglomerates. Using this relationship, the sintering characteristics of agglomerates were also examined for varying furnace temperatures and residence times. The sintering data agreed well with the geometric sintering model (GSM) model proposed by Cho and Biswas (2006a) as well as with the model proposed Koch and Friedlander (1990) for sintering by viscous flow

  9. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  10. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  11. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  12. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  13. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  14. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    Science.gov (United States)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  15. Soliton surfaces associated with sigma models: differential and algebraic aspects

    International Nuclear Information System (INIS)

    Goldstein, P P; Grundland, A M; Post, S

    2012-01-01

    In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the CP N-1 sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler–Lagrange equations for sigma models. On the other hand, we show that the Euler–Lagrange equations for surfaces immersed in the Lie algebra su(N), with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler–Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model. (paper)

  16. Pinogram : a pine growth area model

    NARCIS (Netherlands)

    Leersnijder, R.P.

    1992-01-01

    Ideas about forest and forestry in the Netherlands have changed in recent years, partly because nature and recreation are in greater demand, partly because of growing environmental problems (air pollution, global warming) and partly because of the decrease in forest area worldwide. This has

  17. Experimental Study on the Microstructure Evolution of Mixed Disposal Paste in Surface Subsidence Areas

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2016-05-01

    Full Text Available The integrated disposal of surface subsidence pits and surface solid waste can be realized by backfilling a surface subsidence area with a paste made from the solid wastes of mines, such as tailings and waste rock. The microstructures of these wastes determine the macroscopic properties of a paste backfill. This paper presents an experimental study on the internal structure evolution of pasty fluid mixed with different waste rock concentrations (10%, 30%, and 50% and cement dosages (1% and 2% under damage. To this end, a real-time computed tomography (CT scan is conducted using medical CT and a small loading device. Results show that UCS (uniaxial compressive strength increases when the amount of cement increases. Given a constant amount of cement, UCS increases first and then decreases as waste rock content increases. UCS is maximized at 551 kPa when the waste rock content is 30%. The paste body is a typical medium used to investigate initial damage, which mainly consists of microholes, pores, and microcracks. The initial damages also exhibit a high degree of random inhomogeneity. After loading, cracks are initiated and expand gradually from the original damage location until the overall damages are generated. The mesostructure evolution model of the paste body is divided into six categories, and this mesostructure is reasonable when the waste rock content is 30%.

  18. A model to predict impervious surface for regional and municipal land use planning purposes

    International Nuclear Information System (INIS)

    Reilly, James; Maggio, Patricia; Karp, Steven

    2004-01-01

    The area of impervious surface in a watershed is a forcing variable in many hydrologic models and has been proposed as a policy variable surrogate for water quality. We report a new statistical model which will allow land use planners to estimate impervious surface given minimal, readily available information about future growth. Our model is suitable for master planning purposes. In more urbanized areas, it tends to produce quite accurate forecasts. However, in less developed, more rural places, forecast error will increase

  19. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    Science.gov (United States)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  20. Geologic waste disposal and a model for the surface movement of radionuclides

    International Nuclear Information System (INIS)

    Helton, J.; Iman, R.; Brown, J.; Schreurs, S.

    1979-01-01

    A model for the surface movement of radionuclides is presented. This model, which is referred to as the Pathways Model, was constructed in a NRC project to develop a methodology to assess the risk associated with the goelogic disposal of high-level radioactive waste. The methodology development involves work in two major areas: (a) models for physical processes, and (b) statistical techniques for the use and assessment of these models. The presentation of the Pathways Model involves topics from both areas

  1. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  2. Ecosystem modelling in the Forsmark area. Proceedings from two workshops modelling Eckarfjaerden and Bolundsfjaerden catchment areas

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias; Kautsky, Ulrik [eds.

    2004-11-01

    The siting program for a repository of spent fuel currently collects large set of data from the surface ecosystem, as well as from the geosphere. The data collected at the sites will be used for various purposes, mainly for the safety assessment for the repository and for environmental impact assessment. The safety assessment of the encapsulation plant also includes an assessment of the postclosure of the repository (SRCAN) at the two sites of current interest for a repository. To show important methods on how data from the sites should be used in a safety assessment, a report for methods concerning SRCAN will be produced. This report is a first step in showing how the site data will be used to understand the function and dynamics of the ecosystems and how it may be translated in various dose models. A more extensive report from The SurfaceNet taskforce is presented in SKB-R--05-01. This report is based on two workshops held in Grisslehamn, Uppland October 20-23, 2003 and in Marholmen, Uppland April 16-19, 2004. Participants from the site investigation program, the analysis group, safety assessment and research attended the workshops. The groups worked intensively for 3 full days respectively, and achieved the major findings in this report. The two workshops had approximately the same approach, although Marholmen was more focused on the terrestrial ecosystems and Grisslehamn on aquatic systems. Besides the major aim of the workshops, to examine function and dynamics of ecosystems translated into dose modelling, another purpose was to communicate the reasons for the sampling programmes, to train new resources and to get plenty of undisturbed time to generate a large amount of creative work. It also got the important role of increased understanding between different scientific disciplines. High quality data is important for validating the dose- and ecosystem models.

  3. Ecosystem modelling in the Forsmark area. Proceedings from two workshops modelling Eckarfjaerden and Bolundsfjaerden catchment areas

    International Nuclear Information System (INIS)

    Lindborg, Tobias; Kautsky, Ulrik

    2004-11-01

    The siting program for a repository of spent fuel currently collects large set of data from the surface ecosystem, as well as from the geosphere. The data collected at the sites will be used for various purposes, mainly for the safety assessment for the repository and for environmental impact assessment. The safety assessment of the encapsulation plant also includes an assessment of the postclosure of the repository (SRCAN) at the two sites of current interest for a repository. To show important methods on how data from the sites should be used in a safety assessment, a report for methods concerning SRCAN will be produced. This report is a first step in showing how the site data will be used to understand the function and dynamics of the ecosystems and how it may be translated in various dose models. A more extensive report from The SurfaceNet taskforce is presented in SKB-R--05-01. This report is based on two workshops held in Grisslehamn, Uppland October 20-23, 2003 and in Marholmen, Uppland April 16-19, 2004. Participants from the site investigation program, the analysis group, safety assessment and research attended the workshops. The groups worked intensively for 3 full days respectively, and achieved the major findings in this report. The two workshops had approximately the same approach, although Marholmen was more focused on the terrestrial ecosystems and Grisslehamn on aquatic systems. Besides the major aim of the workshops, to examine function and dynamics of ecosystems translated into dose modelling, another purpose was to communicate the reasons for the sampling programmes, to train new resources and to get plenty of undisturbed time to generate a large amount of creative work. It also got the important role of increased understanding between different scientific disciplines. High quality data is important for validating the dose- and ecosystem models

  4. Water redistribution at the soil surface : ponding and surface runoff in flat areas

    NARCIS (Netherlands)

    Appels, W.M.

    2013-01-01

    In The Netherlands, one of the most important targets for the improvement of surface water quality as aimed for in the European Water Framework Directive, is the reduction of nutrient concentrations (both nitrogen and phosphorus). To identify the most suitable and effective measures for reducing the

  5. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  6. Influence of Ecological Factors on Estimation of Impervious Surface Area Using Landsat 8 Imagery

    Directory of Open Access Journals (Sweden)

    Yuqiu Jia

    2017-07-01

    Full Text Available Estimation of impervious surface area is important to the study of urban environments and social development, but surface characteristics, as well as the temporal, spectral, and spatial resolutions of remote sensing images, influence the estimation accuracy. To investigate the effects of regional environmental characteristics on the estimation of impervious surface area, we divided China into seven sub-regions based on climate, soil type, feature complexity, and vegetation phenology: arid and semi-arid areas, Huang-Huai-Hai winter wheat production areas, typical temperate regions, the Pearl River Delta, the middle and lower reaches of the Yangtze River, typical tropical and subtropical regions, and the Qinghai Tibet Plateau. Impervious surface area was estimated from Landsat 8 images of five typical cities, including Yinchuan, Shijiazhuang, Shenyang, Ningbo, and Kunming. Using the linear spectral unmixing method, impervious and permeable surface areas were determined at the pixel-scale based on end-member proportions. We calculated the producer’s accuracy, user’s accuracy, and overall accuracy to assess the estimation accuracy, and compared the accuracies among images acquired from different seasons and locations. In tropical and subtropical regions, vegetation canopies can confound the identification of impervious surfaces and, thus, images acquired in winter, early spring, and autumn are most suitable; estimations in the Pearl River Delta, the middle and lower reaches of the Yangtze River are influenced by soil, vegetation phenology, vegetation canopy, and water, and images acquired in spring, summer, and autumn provide the best results; in typical temperate areas, images acquired from spring to autumn are most effective for estimations; in winter wheat-growing areas, images acquired throughout the year are suitable; and in arid and semi-arid areas, summer and early autumn, during which vegetation is abundant, are the optimal seasons for

  7. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  8. Bedrock model of the Veitsivaara area

    International Nuclear Information System (INIS)

    Saksa, P.; Kuivamaeki, A.; Kurimo, M.; Anttila, P.; Front, K.; Pitkaenen, P.; Korkealaakso, J.; Vaittinen, T.

    1993-07-01

    Site investigations were carried out at Veitsivaara, in 1987-1991 in accordance with an investigation programme for radioactive waste disposal drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock types, fracturing, fracture structures and geophysical conditions, the main focus of examination was on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified by means a three-dimensional model. The descriptions of the models were stored in a computer system for illustration purposes. The rock types at Veitsivaara are tonalite gneiss, Tuliniemet potassium granite, amphipolite, granite porphyry and metadiabase, the last two of which occur in dykes

  9. Investigation and modelling of rubber stationary friction on rough surfaces

    International Nuclear Information System (INIS)

    Le Gal, A; Klueppel, M

    2008-01-01

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks

  10. Investigation and modelling of rubber stationary friction on rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Gal, A; Klueppel, M [Deutsches Institut fuer Kautschuktechnologie, Eupener Strasse 33, D-30519 Hannover (Germany)

    2008-01-09

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks.

  11. Structural dynamics of fore-crisis area on a heat emission surface of a fuel element's

    International Nuclear Information System (INIS)

    Sharaevskij, I.G.; Fialko, N.M.; Sharaevskaya, E.I.

    2011-01-01

    The known theoretical and experimental data regarding the nature of dry spots evolution are reviewed and the idea regarding the mechanism of heat emission from the heated surface in fore-crisis area are defined more precisely.

  12. Lp-dual affine surface area forms of Busemann–Petty type problems

    Indian Academy of Sciences (India)

    Associated with the notion of Lp-intersection body which was defined ... Lp-dual affine surface area; Lp-intersection body; Busemann–Petty ..... [11] Schneider R, Convex Bodies: The Brunn–Minkowski Theory (1993) (Cambridge: Cam-.

  13. On the relationship between enamel band complexity and occlusal surface area in Equids (Mammalia, Perissodactyla

    Directory of Open Access Journals (Sweden)

    Nicholas A. Famoso

    2016-07-01

    significant (p = 0.4912 relationship between D and occlusal surface area, but the relationship for Equini was significantly negative (p = 0.0177. λ was 0 for both tests, indicating no important phylogenetic signal is present in the relationship between these two characters, thus the PGLS collapses down to a non-phylogenetic generalized least squares (GLS model. The t-test comparing the slopes of the regressions was not significant, indicating that the two lineages could have the same relationship between D and occlusal surface area. Our results suggest that the two tribes have the same negative relationship between D and occlusal surface area but the Hipparionini are offset to higher values than the Equini. This offset reflects the divergence between the two lineages since their last common ancestor and may have constrained their ability to respond to environmental change over the Neogene, leading to the differential survival of the Equini.

  14. MODELING OF OIL POLLUTION OF ARTIC SEA COASTAL AREAS

    Directory of Open Access Journals (Sweden)

    2017-01-01

    Full Text Available This article studies the elastic filtration oil drive of oil in a layer based on the estimation of risks of environmental oil pollution because of accidental releases. The model of oil spillage and resorption by the precoat is based on continuity equation and Darcy rule as well as on equations of state taking into account fluid compressibility due to pressure. Filtering area is a line between the precoat and air. Oil filtering area is limited by soil surface below and by free surface above, its equation is known beforehand and is to be defined. The case of soil pollution from the point source, which is the point of fracture of pipeline or borehole, is considered. Upper and approximate estimates of the oil pollution radius due to different types of underlying terrains and to oil characteristics as well as to environmental conditions. The dynamics of oil free sur- face depending on spillage radii is calculated and presented. The estimates of temporary duration of oil filtering by the pre- coat in terms of light ends and soil type are made. The thickness of the oil film and the square of the spill upon condition of constant speed of oil spillage, horizontal position of underlying terrain and the proximity of pressure to normal are deter- mined. For the numerical implementation of the model different cases of oil spillage were considered. Under given values of air temperature, soil porosity and filtration speed the pollution radii according to light end, the time from the moment of accident till the leakage suppression and the speed of oil spillage was calculated.

  15. THE EFFECTS OF BUILT-UP AND GREEN AREAS ON THE LAND SURFACE TEMPERATURE OF THE KUALA LUMPUR CITY

    Directory of Open Access Journals (Sweden)

    N. A. Isa

    2017-10-01

    Full Text Available A common consequence of rapid and uncontrollable urbanization is Urban Heat Island (UHI. It occurs due to the negligence on climate behaviour which degrades the quality of urban climate condition. Recently, addressing urban climate in urban planning through mapping has received worldwide attention. Therefore, the need to identify the significant factors is a must. This study aims to analyse the relationships between Land Surface Temperature (LST and two urban parameters namely built-up and green areas. Geographical Information System (GIS and remote sensing techniques were used to prepare the necessary data layers required for this study. The built-up and the green areas were extracted from Landsat 8 satellite images either using the Normalized Difference Built-Up Index (NDBI, Normalized Difference Vegetation Index (NDVI or Modified Normalize Difference Water Index (MNDWI algorithms, while the mono-window algorithm was used to retrieve the Land Surface Temperature (LST. Correlation analysis and Multi-Linear Regression (MLR model were applied to quantitatively analyse the effects of the urban parameters. From the study, it was found that the two urban parameters have significant effects on the LST of Kuala Lumpur City. The built-up areas have greater influence on the LST as compared to the green areas. The built-up areas tend to increase the LST while green areas especially the densely vegetated areas help to reduce the LST within an urban areas. Future studies should focus on improving existing urban climatic model by including other urban parameters.

  16. SWAT Modeling for Depression-Dominated Areas: How Do Depressions Manipulate Hydrologic Modeling?

    Directory of Open Access Journals (Sweden)

    Mohsen Tahmasebi Nasab

    2017-01-01

    Full Text Available Modeling hydrologic processes for depression-dominated areas such as the North American Prairie Pothole Region is complex and reliant on a clear understanding of dynamic filling-spilling-merging-splitting processes of numerous depressions over the surface. Puddles are spatially distributed over a watershed and their sizes, storages, and interactions vary over time. However, most hydrologic models fail to account for these dynamic processes. Like other traditional methods, depressions are filled as a required preprocessing step in the Soil and Water Assessment Tool (SWAT. The objective of this study was to facilitate hydrologic modeling for depression-dominated areas by coupling SWAT with a Puddle Delineation (PD algorithm. In the coupled PD-SWAT model, the PD algorithm was utilized to quantify topographic details, including the characteristics, distribution, and hierarchical relationships of depressions, which were incorporated into SWAT at the hydrologic response unit (HRU scale. The new PD-SWAT model was tested for a large watershed in North Dakota under real precipitation events. In addition, hydrologic modeling of a small watershed was conducted under two extreme high and low synthetic precipitation conditions. In particular, the PD-SWAT was compared against the regular SWAT based on depressionless DEMs. The impact of depressions on the hydrologic modeling of the large and small watersheds was evaluated. The simulation results for the large watershed indicated that SWAT systematically overestimated the outlet discharge, which can be attributed to the failure to account for the hydrologic effects of depressions. It was found from the PD-SWAT modeling results that at the HRU scale surface runoff initiation was significantly delayed due to the threshold control of depressions. Under the high precipitation scenario, depressions increased the surface runoff peak. However, the low precipitation scenario could not fully fill depressions to reach

  17. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    Directory of Open Access Journals (Sweden)

    Y.-H. Ryu

    2013-02-01

    Full Text Available Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3 episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ. Under fair weather conditions, the temperature excess (urban heat island significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the

  18. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    Science.gov (United States)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  19. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    International Nuclear Information System (INIS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-01-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SA REF ) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SA PSD ) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SA INV1 ) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SA INV2 ) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SA PSD was 0.7–1.8 times higher and SA INV1 and SA INV2 were 2.2–8 times higher than SA REF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SA REF . However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SA REF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SA PSD ) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  20. Interdependence between body surface area and ultraviolet B dose in vitamin D production

    DEFF Research Database (Denmark)

    Bogh, M K B; Schmedes, Anne; Philipsen, P A

    2011-01-01

    Ultraviolet (UV) B radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) [25(OH)D], but the relationship to body surface area and UVB dose needs investigation.......Ultraviolet (UV) B radiation increases serum vitamin D level expressed as 25-hydroxyvitamin-D(3) [25(OH)D], but the relationship to body surface area and UVB dose needs investigation....

  1. Error rate of automated calculation for wound surface area using a digital photography.

    Science.gov (United States)

    Yang, S; Park, J; Lee, H; Lee, J B; Lee, B U; Oh, B H

    2018-02-01

    Although measuring would size using digital photography is a quick and simple method to evaluate the skin wound, the possible compatibility of it has not been fully validated. To investigate the error rate of our newly developed wound surface area calculation using digital photography. Using a smartphone and a digital single lens reflex (DSLR) camera, four photographs of various sized wounds (diameter: 0.5-3.5 cm) were taken from the facial skin model in company with color patches. The quantitative values of wound areas were automatically calculated. The relative error (RE) of this method with regard to wound sizes and types of camera was analyzed. RE of individual calculated area was from 0.0329% (DSLR, diameter 1.0 cm) to 23.7166% (smartphone, diameter 2.0 cm). In spite of the correction of lens curvature, smartphone has significantly higher error rate than DSLR camera (3.9431±2.9772 vs 8.1303±4.8236). However, in cases of wound diameter below than 3 cm, REs of average values of four photographs were below than 5%. In addition, there was no difference in the average value of wound area taken by smartphone and DSLR camera in those cases. For the follow-up of small skin defect (diameter: <3 cm), our newly developed automated wound area calculation method is able to be applied to the plenty of photographs, and the average values of them are a relatively useful index of wound healing with acceptable error rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Three-dimensional measurement of periodontal surface area for quantifying inflammatory burden.

    Science.gov (United States)

    Park, Sa-Beom; An, So-Youn; Han, Won-Jeong; Park, Jong-Tae

    2017-06-01

    Measurement of the root surface area (RSA) is important in periodontal treatment and for the evaluation of periodontal disease as a risk factor for systemic disease. The aim of this study was to measure the RSA at 6 mm below the cementoenamel junction (CEJ) using the Mimics software (Materialise, Leuven, Belgium). We obtained cone-beam computed tomography (CBCT) data from 33 patients who had visited the Department of Oral and Maxillofacial Radiology of Dankook University Dental Hospital. The patients comprised 17 men and 16 women aged from 20 to 35 years, with a mean age of 24.4 years. Only morphologically intact teeth were included in our data. Because the third molars of the maxilla and mandible have a high deformation rate and were absent in some participants, they were not included in our research material. The CBCT data were reconstructed into 3-dimensional (3D) teeth models using the Mimics software, and the RSA at 6 mm below the CEJ was separated and measured using 3-Matic (Materialise). In total, 924 3D teeth models were created, and the area at 6 mm below the CEJ could be isolated in all the models. The area at 6 mm below the CEJ was measured in all teeth from the 33 patients and compared based on sex and position (maxilla vs. mandible). In this study, we demonstrated that it was feasible to generate 3D data and to evaluate RSA values using CBCT and the Mimics software. These results provide deeper insights into the relationship between periodontal inflammatory burden and systemic diseases.

  3. Lake Chad Total Surface Water Area as Derived from Land Surface Temperature and Radar Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Frederick Policelli

    2018-02-01

    Full Text Available Lake Chad, located in the middle of the African Sahel belt, underwent dramatic decreases in the 1970s and 1980s leaving less than ten percent of its 1960s surface water extent as open water. In this paper, we present an extended record (dry seasons 1988–2016 of the total surface water area of the lake (including both open water and flooded vegetation derived using Land Surface Temperature (LST data (dry seasons 2000–2016 from the NASA Terra MODIS sensor and EUMETSAT Meteosat-based LST measurements (dry seasons 1988–2001 from an earlier study. We also examine the total surface water area for Lake Chad using radar data (dry seasons 2015–2016 from the ESA Sentinel-1a mission. For the limited number of radar data sets available to us (18 data sets, we find on average a close match between the estimates from these data and the corresponding estimates from LST, though we find spatial differences in the estimates using the two types of data. We use these spatial differences to adjust the record (dry seasons 2000–2016 from MODIS LST. Then we use the adjusted record to remove the bias of the existing LST record (dry seasons 1988–2001 derived from Meteosat measurements and combine the two records. From this composite, extended record, we plot the total surface water area of the lake for the dry seasons of 1988–1989 through 2016–2017. We find for the dry seasons of 1988–1989 to 2016–2017 that the maximum total surface water area of the lake was approximately 16,800 sq. km (February and May, 2000, the minimum total surface water area of the lake was approximately 6400 sq. km (November, 1990, and the average was approximately 12,700 sq. km. Further, we find the total surface water area of the lake to be highly variable during this period, with an average rate of increase of approximately 143 km2 per year.

  4. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  5. Bedrock model of the Romuvaara area

    International Nuclear Information System (INIS)

    Saksa, P.; Paananen, M.; Paulamaeki, S.; Anttila, P.; Pitkaenen, P.; Front, K.; Vaittinen, T.

    1992-05-01

    Site for the final disposal of the spent nuclear fuel investigations implemented in accordance with the research programme drawn up by Teollisuuden Voima Oy were carried out at Romuvaara, Kuhmo, in 1987 - 1991. Model of the site were compiled and used for describing the rock types, fractures, fracturing structures and geohydrological conditions, the main emphasis being on the examination of the bedrock fracturing and related hydraulic conductivity. Three-dimensional models were used for the classification of the various properties of the bedrock structures. The descriptive models were gathered together in a computerized system to facilitate illustration and strage. The rock types at Romuvaara are gneiss, mica gneiss, leucotonalite gneiss, amphibolite, granodiorite and metadiabase. The structural model for fracturing at the site contains 19 zones described in terms of a number of properties. The fracturing observed at Romuvaara ranges from local occurences of dence fracturing to significant, altered fracture zones. The structural model includes deduced values for hydraulic conductivity, deduced points of flow in the boreholes and measured hydraulic heads.Various classifications were used for assessment of hydraulic conductivity in the zones and solid bedrock, and in both cases conductivity was found to diminish with depth. Measured hydraulic heads were mostly found to support structural interpretation. The results were used for estimation of a three-dimensional hydraulic head distribution. Results from pumping tests carried out in the significant flow zone support the geometric interpretation

  6. Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev S. [Ernest Orlando Lawrence Berkeley National Laboratory, Indoor Environment Department (United States)], E-mail: LSRuzer@lbl.gov

    2008-05-15

    A number of studies on the exposure of nanometer aerosols have indicated that health effects associated with low-solubility inhaled particles in the range of 1-100 nm may be more appropriately associated with particulate surface area than mass concentration. Such data on correlation between number, surface area and mass concentration are needed for exposure investigations, but the means for measuring aerosol surface area are not readily available. In this paper we propose a method for particle surface area assessment based on a new approach, deposition of the 'unattached fraction of radon progeny' onto nanometer aerosols.The proposed approach represents a synthesis of:(1) Derived direct analytical correlation between the 'unattached fraction' of radon progeny and surface area particle concentration in the range of 1-100 nm particle diameter;(2) Experimental data on correlation between the unattached fraction of radon progeny and particle surface area for particles with diameter in the range of 44 nm-2.1 {mu}m.

  7. Determining surface areas of marine alga cells by acid-base titration method.

    Science.gov (United States)

    Wang, X; Ma, Y; Su, Y

    1997-09-01

    A new method for determining the surface area of living marine alga cells was described. The method uses acid-base titration to measure the surface acid/base amount on the surface of alga cells and uses the BET (Brunauer, Emmett, and Teller) equation to estimate the maximum surface acid/base amount, assuming that hydrous cell walls have carbohydrates or other structural compounds which can behave like surface Brönsted acid-base sites due to coordination of environmental H2O molecules. The method was applied to 18 diverse alga species (including 7 diatoms, 2 flagellates, 8 green algae and 1 red alga) maintained in seawater cultures. For the species examined, the surface areas of individual cells ranged from 2.8 x 10(-8) m2 for Nannochloropsis oculata to 690 x 10(-8) m2 for Dunaliella viridis, specific surface areas from 1,030 m2.g-1 for Dunaliella salina to 28,900 m2.g-1 for Pyramidomonas sp. Measurement accuracy was 15.2%. Preliminary studies show that the method may be more promising and accurate than light/electron microscopic measurements for coarse estimation of the surface area of living algae.

  8. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS UNDERGROUND MINING GENERAL PERFORMANCE STANDARDS § 717.15 Disposal of excess rock and...

  9. Changes in Thickness and Surface Area of the Human Cortex and Their Relationship with Intelligence

    NARCIS (Netherlands)

    Schnack, H.G.; van Haren, N.E.M.; Brouwer, R.M.; Evans, A.; Durston, S.; Boomsma, D.I.; Kahn, R.S.; Hulshoff Pol, H.E.

    2015-01-01

    Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface

  10. Large area window on vacuum chamber surface for neutron scattering instruments

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Yokoo, Tetsuya; Ueno, Kenji; Suzuki, Junichi; Teraoku, Takuji; Tsuchiya, Masao

    2012-01-01

    The feasibility of a large area window using a thin aluminum plate on the surface of the vacuum chamber for neutron scattering instruments at a pulsed neutron source was investigated. In the prototype investigation for a window with an area of 1m×1.4m and a thickness of 1 mm, the measured pressure dependence of the displacement agreed well with a calculation using a nonlinear strain–stress curve up to the plastic deformation region. In addition, we confirmed the repetition test up to 2000 pressurization-and-release cycles, which is sufficient for the lifetime of the vacuum chamber for neutron scattering instruments. Based on these investigations, an actual model of the window to be mounted on the vacuum chamber of the High Resolution Chopper Spectrometer (HRC) at J-PARC was designed. By using a calculated stress distribution on the window, the clamping structure capable of balancing the tension in the window was determined. In a model with a structure identical to the actual window, we confirmed the repetition test over more than 7000 pressurization-and-release cycles, which shows a lifetime long enough for the actual usage of the vacuum chamber on the HRC.

  11. Surface-Casting Synthesis of Mesoporous Zirconia with a CMK-5-Like Structure and High Surface Area.

    Science.gov (United States)

    Gu, Dong; Schmidt, Wolfgang; Pichler, Christian M; Bongard, Hans-Josef; Spliethoff, Bernd; Asahina, Shunsuke; Cao, Zhengwen; Terasaki, Osamu; Schüth, Ferdi

    2017-09-04

    About 15 years ago, the Ryoo group described the synthesis of CMK-5, a material consisting of a hexagonal arrangement of carbon nanotubes. Extension of the surface casting synthesis to oxide compositions, however, was not possible so far, in spite of many attempts. Here it is demonstrated, that crystalline mesoporous hollow zirconia materials with very high surface areas up to 400 m 2  g -1 , and in selected cases in the form of CMK-5-like, are indeed accessible via such a surface casting process. The key for the successful synthesis is an increased interaction between the silica hard template surface and the zirconia precursor species by using silanol group-rich mesoporous silica as a hard template. The surface areas of the obtained zirconias exceed those of conventionally hard-templated ones by a factor of two to three. The surface casting process seems to be applicable also to other oxide materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bedrock model of the Kivetty area

    International Nuclear Information System (INIS)

    Saksa, P.; Paulamaeki, S.; Paananen, M.; Anttila, P.; Front, K.; Pitkaenen, P.; Korkealaakso, J.; Okko, O.

    1993-07-01

    Preliminary site investigations were carried out at Kivetty (in Finland), in 1987-1992 in accordance with the investigation programme drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock type, fracturing, fracture structures and geohydrological conditions, with the main emphasis being placed on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified in relation to a three-dimensional model. The descriptions of the models were stored in a computer system for the purpose of illustration. The principal rock types encountered at the Kivetty site are porphyritic granodiorite and porphyritic granite, in addition to which even-grained granite and granodiorite, gabbro, and small felsic and mafic veins occur. The rocks have undergone two distinct phases of deformation. (41 refs., 50 figs.)

  13. Bedrock model of the Olkiluoto area

    International Nuclear Information System (INIS)

    Saksa, P.; Paananen, M.; Paulamaeki, S.; Anttila, P.; Front, K.; Pitkaenen, P.; Hassinen, P.; Ylinen, A.

    1993-07-01

    Site investigations were carried out at Olkiluoto (in Finland) in 1987-1992 in accordance with an investigation programme drawn up by Teollisuuden Voima Oy (TVO). The site was modelled in terms of rock types, fracturing, fracture structures and geohydrological conditions, the main focus of examination was on fracturing and associated hydraulic conductivity. The various properties of the bedrock structures were classified by means of a three-dimensional model. The descriptions of the models were gathered in a computer system for illustration and storage purposes. The rock types at Olkiluoto are migmatite, which may be divided into mica gneiss and veined gneiss, and also tonalite and coarse-grained migmatite granite (pegmatite). (64 refs., 65 figs.)

  14. A model-based approach to estimating forest area

    Science.gov (United States)

    Ronald E. McRoberts

    2006-01-01

    A logistic regression model based on forest inventory plot data and transformations of Landsat Thematic Mapper satellite imagery was used to predict the probability of forest for 15 study areas in Indiana, USA, and 15 in Minnesota, USA. Within each study area, model-based estimates of forest area were obtained for circular areas with radii of 5 km, 10 km, and 15 km and...

  15. A new MRI land surface model HAL

    Science.gov (United States)

    Hosaka, M.

    2011-12-01

    A land surface model HAL is newly developed for MRI-ESM1. It is used for the CMIP simulations. HAL consists of three submodels: SiByl (vegetation), SNOWA (snow) and SOILA (soil) in the current version. It also contains a land coupler LCUP which connects some submodels and an atmospheric model. The vegetation submodel SiByl has surface vegetation processes similar to JMA/SiB (Sato et al. 1987, Hirai et al. 2007). SiByl has 2 vegetation layers (canopy and grass) and calculates heat, moisture, and momentum fluxes between the land surface and the atmosphere. The snow submodel SNOWA can have any number of snow layers and the maximum value is set to 8 for the CMIP5 experiments. Temperature, SWE, density, grain size and the aerosol deposition contents of each layer are predicted. The snow properties including the grain size are predicted due to snow metamorphism processes (Niwano et al., 2011), and the snow albedo is diagnosed from the aerosol mixing ratio, the snow properties and the temperature (Aoki et al., 2011). The soil submodel SOILA can also have any number of soil layers, and is composed of 14 soil layers in the CMIP5 experiments. The temperature of each layer is predicted by solving heat conduction equations. The soil moisture is predicted by solving the Darcy equation, in which hydraulic conductivity depends on the soil moisture. The land coupler LCUP is designed to enable the complicated constructions of the submidels. HAL can include some competing submodels (precise and detailed ones, and simpler ones), and they can run at the same simulations. LCUP enables a 2-step model validation, in which we compare the results of the detailed submodels with the in-situ observation directly at the 1st step, and follows the comparison between them and those of the simpler ones at the 2nd step. When the performances of the detailed ones are good, we can improve the simpler ones by using the detailed ones as reference models.

  16. High resolution modelling of extreme precipitation events in urban areas

    Science.gov (United States)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  17. Merging Digital Surface Models Implementing Bayesian Approaches

    Science.gov (United States)

    Sadeq, H.; Drummond, J.; Li, Z.

    2016-06-01

    In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades). It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  18. MERGING DIGITAL SURFACE MODELS IMPLEMENTING BAYESIAN APPROACHES

    Directory of Open Access Journals (Sweden)

    H. Sadeq

    2016-06-01

    Full Text Available In this research different DSMs from different sources have been merged. The merging is based on a probabilistic model using a Bayesian Approach. The implemented data have been sourced from very high resolution satellite imagery sensors (e.g. WorldView-1 and Pleiades. It is deemed preferable to use a Bayesian Approach when the data obtained from the sensors are limited and it is difficult to obtain many measurements or it would be very costly, thus the problem of the lack of data can be solved by introducing a priori estimations of data. To infer the prior data, it is assumed that the roofs of the buildings are specified as smooth, and for that purpose local entropy has been implemented. In addition to the a priori estimations, GNSS RTK measurements have been collected in the field which are used as check points to assess the quality of the DSMs and to validate the merging result. The model has been applied in the West-End of Glasgow containing different kinds of buildings, such as flat roofed and hipped roofed buildings. Both quantitative and qualitative methods have been employed to validate the merged DSM. The validation results have shown that the model was successfully able to improve the quality of the DSMs and improving some characteristics such as the roof surfaces, which consequently led to better representations. In addition to that, the developed model has been compared with the well established Maximum Likelihood model and showed similar quantitative statistical results and better qualitative results. Although the proposed model has been applied on DSMs that were derived from satellite imagery, it can be applied to any other sourced DSMs.

  19. Application of stereological methods to estimate post-mortem brain surface area using 3T MRI

    DEFF Research Database (Denmark)

    Furlong, Carolyn; García-Fiñana, Marta; Puddephat, Michael

    2013-01-01

    The Cavalieri and Vertical Sections methods of design based stereology were applied in combination with 3 tesla (i.e. 3T) Magnetic Resonance Imaging (MRI) to estimate cortical and subcortical volume, area of the pial surface, area of the grey-white matter boundary, and thickness of the cerebral...

  20. Bedrock Model of the Syyry area

    International Nuclear Information System (INIS)

    Saksa, P.; Kuivamaeki, A.; Kurimo, M.; Paananen, M.; Anttila, P.; Front, K.; Pitkaenen, P.; Hassinen, P.; Ylinen, A.

    1993-09-01

    Preliminary site investigations implemented in accordance with the research programme drawn up by Teollisuuden Voima Oy (TVO) were carried out at Syyry (in Finland) in 1987-1992. Models of the site were compiled and used for describing the rock types, fracturing, fracture structures and geohydrological conditions, the main emphasis being on the examination of the bedrock fracturing and related hydraulic conductivity. Three-dimensional models were used for the classification of the various properties of the bedrock structures. The descriptive models were gathered into a computer system to facilitate illustration and storage. The main rock type at Syyry is tonalite. A mica gneiss formation SE of the investigation site dips towards the NW and delimits the tonalite as far as the central part of the investigation site. The miga gneiss has a heterogeneous composition and includes intermediate layers consisting of quartz feldspar schist and amphibolite. There are mafic formations in the vicinity of the investigation site. The intrusive rocks have been deformed during three plastic and three mainly brittle deformation stages. (47 refs., 61 figs.)

  1. Human arachnoid granulations Part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Holman David W

    2007-07-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are herniations of the arachnoid membrane into the dural venous sinuses on the surface of the brain. Previous morphological studies of AGs have been limited in scope and only one has mentioned surface area measurements. The purpose of this study was to investigate the topographic distribution of AGs on the superior surface of the cerebral cortex. Methods En face images were taken of the superior surface of 35 formalin-fixed human brains. AGs were manually identified using Adobe Photoshop, with a pixel location containing an AG defined as 'positive'. A set of 25 standard fiducial points was marked on each hemisphere for a total of 50 points on each image. The points were connected on each hemisphere to create a segmented image. A standard template was created for each hemisphere by calculating the average position of the 25 fiducial points from all brains. Each segmented image was mapped to the standard template using a linear transformation. A topographic distribution map was produced by calculating the proportion of AG positive images at each pixel in the standard template. The AG surface area was calculated for each hemisphere and for the total brain superior surface. To adjust for different brain sizes, the proportional involvement of AGs was calculated by dividing the AG area by the total area. Results The total brain average surface area of AGs was 78.53 ± 13.13 mm2 (n = 35 and average AG proportional involvement was 57.71 × 10-4 ± 7.65 × 10-4. Regression analysis confirmed the reproducibility of AG identification between independent researchers with r2 = 0.97. The surface AGs were localized in the parasagittal planes that coincide with the region of the lateral lacunae. Conclusion The data obtained on the spatial distribution and en face surface area of AGs will be used in an in vitro model of CSF outflow. With an increase in the number of samples, this analysis technique can be used

  2. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  3. Determination of the surface area and sizes of supported copper nanoparticles through organothiol adsorption—ñhemisorption

    Energy Technology Data Exchange (ETDEWEB)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2016-12-30

    Highlights: • Cu on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • The ligand sorption-based technique was used for the determination of specific surface area and particle sizes. • The ligand packing density on Cu nanoparticles was quantified. • A fair agreement was found between the Cu particle sizes obtained from ligand adsorption and TEM methods. • The oxidation of morin by hydrogen peroxide was used to evaluate the catalytic activities of the Cu supported catalysts. - Abstract: The mechanisms involving the nanoparticle surfaces in catalytic reactions are more difficult to elucidate due to the nanoparticle surface unevenness, size distributions, and morphological irregularity. True surface area and particle sizes determination are key aspects of the activity of metal nanoparticle catalysts. Here we report on the organothiol adsorption-based technique for the determination of specific surface area of Cu nanoparticles, and their resultant sizes on γ-Al{sub 2}O{sub 3} supports. Quantification of ligand packing density on copper nanoparticles is also reported. The concentration of the probe ligand, 2-mercaptobenzimidazole (2-MBI) before and after immersion of supported copper catalysts was determined by ultraviolet-visible spectrometry (UV–vis). The amount of ligand adsorbed was found to be proportional to the copper nanoparticles surface area. Atomic absorption spectrometry (AAS), N{sub 2}-physisorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) were used for the characterization of the catalysts. A fair agreement was found between particle sizes obtained from ligand adsorption and TEM methods. The catalytic activity of the copper nanoparticles related to their inherent surface area was evaluated using the model reaction of the oxidation of morin by hydrogen peroxide.

  4. Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc

    2015-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.

  5. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2014-06-01

    Full Text Available High surface area activated carbon fibers (ACF have been prepared from bamboo by steam activation after liquefaction and curing. The influences of activation temperature on the microstructure, surface area and porosity were investigated. The results showed that ACF from bamboo at 850 °C have the maximum iodine and methylene blue adsorption values. Aside from the graphitic carbon, phenolic and carbonyl groups were the predominant functions on the surface of activated carbon fiber from bamboo. The prepared ACF from bamboo were found to be mainly type I of isotherm, but the mesoporosity presented an increasing trend after 700 °C. The surface area and micropore volume of samples, which were determined by application of the Brunauer-Emmett-Teller (BET and t-plot methods, were as high as 2024 m2/g and 0.569 cm3/g, respectively. It was also found that the higher activation temperature produced the more ordered microcrystalline structure of ACF from bamboo.

  6. Investigation of the effect of sealed surfaces on local climate in urban areas

    Science.gov (United States)

    Weihs, Philipp; Hasel, Stefan; Mursch-Radlgruber, Erich; Gützer, Christian; Krispel, Stefan; Peyerl, Martin; Trimmel, Heidi

    2015-04-01

    Local climate is driven by the interaction between energy balance and energy transported by advected air. Short-wave and long-wave radiation are major components in this interaction. Some few studies (e.g. Santamouris et al.) showed that adjusting the grade of reflection of surfaces is an efficient way to influence temperature. The present study investigates the influence of high albedo concrete surfaces on local climate. The first step of the study consisted of experimental investigations: routine measurements of the short and longwave radiation balance, of the ground and of the air temperature and humidity at different heights above 6 different types of sealed surfaces were performed. During this measurement campaign the above mentioned components were measured over a duration of 4 months above two conventional asphalt surfaces, one conventional concrete and three newly developed concrete surfaces with increased reflectances. Measured albedo values amounted to 0.12±0.02 for the asphalt surfaces and to maximum values of 0.56 for high albedo concrete. The maximum difference in surface temperature between the asphalt surfaces and the high albedo concrete surfaces amounted to 15°C. In addition the emission constants of the different sealed surfaces were also determined and were compared to values from literature.. In a second step the urban energy balance model Envi_Met was used to simulate the surface temperature of the six surfaces. The simulated surface temperatures were compared to the measured surface temperatures and statements as to uncertainties of the model simulations were made In a third step, Envi_Met was used to simulate the local climate of an urban district in Vienna. The surface and air temperature and the SW, LW fluxes were calculated for different types of sealed surfaces. By performing calculations of thermal stress indices (UTCI, PMV), statements as to the influence of the type of sealed surface on thermal stress on humans was made.

  7. Radiative surface temperatures of the burned and unburned areas in a tallgrass prairie

    International Nuclear Information System (INIS)

    Asrar, G.; Harris, T.R.; Lapitan, R.L.; Cooper, D.I.

    1988-01-01

    This study was conducted in a natural tallgrass prairie area in the Flint Hills of Kansas. Our objective was to evaluate the surface radiative temperatures of burned and unburned treatments of the grassland as a means of delineating the areas covered by each treatment. Burning is used to remove the senescent vegetation resulting from the previous year's growth. Surface temperatures were obtained in situ and by an airborne scanner. Burned and unburned grass canopies had distinctly different diurnal surface radiative temperatures. Measurements of surface energy balance components revealed a difference in partitioning of the available energy between the two canopies, which resulted in the difference in their measured surface temperatures. The magnitude of this difference is dependent on the time of measurements and topographic conditions. (author)

  8. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1998-01-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well

  9. Effect of surface area of substrates aiming the optimization of carbon nanotube production from ferrocene

    International Nuclear Information System (INIS)

    Osorio, A.G.; Bergmann, C.P.

    2013-01-01

    Highlights: ► An optimized synthesis of CNTs by ferrocene is proposed. ► The surface area of substrates influences the nucleation of CNTs. ► The higher the surface area of substrates the lower the temperature of synthesis. ► Chemical composition of substrates has no influence on the growth of CNTs. - Abstract: Ferrocene is widely used for the synthesis of carbon nanotubes due to its ability to act as catalyst and precursor of the synthesis. This paper proposes an optimization of the synthesis of carbon nanotubes from ferrocene, using a substrate with high surface area for their nucleation. Four different surface areas of silica powder were tested: 0.5, 50, 200 and 300 m 2 /g. Raman spectroscopy and microscopy were used to characterize the product obtained and X-ray diffraction and thermal analysis were also performed to evaluate the phases of the material. It was observed that the silica powder with the highest surface area allowed the synthesis of carbon nanotubes to occur at a lower temperature (600 °C), whereas substrates with a surface area lower than 50 m 2 /g will only form carbon nanotubes at temperatures higher than 750 °C. In order to evaluate the influence of chemical composition of the substrate, three different ceramic powders were analyzed: alumina, silica and zirconia. carbon black and previously synthesized carbon nanotubes were also used as substrate for the synthesis and the results showed that the chemical composition of the substrate does not play a relevant role in the synthesis of carbon nanotubes, only the surface area showed an influence.

  10. Impact of Surface Soil Moisture Variations on Radar Altimetry Echoes at Ku and Ka Bands in Semi-Arid Areas

    Directory of Open Access Journals (Sweden)

    Christophe Fatras

    2018-04-01

    Full Text Available Radar altimetry provides information on the topography of the Earth surface. It is commonly used for the monitoring not only sea surface height but also ice sheets topography and inland water levels. The radar altimetry backscattering coefficient, which depends on surface roughness and water content, can be related to surface properties such as surface soil moisture content. In this study, the influence of surface soil moisture on the radar altimetry echo and backscattering coefficient is analyzed over semi-arid areas. A semi-empirical model of the soil’s complex dielectric permittivity that takes into account that small-scale roughness and large-scale topography was developed to simulate the radar echoes. It was validated using waveforms acquired at Ku and Ka-bands by ENVISAT RA-2 and SARAL AltiKa respectively over several sites in Mali. Correlation coefficients ranging from 0.66 to 0.94 at Ku-band and from 0.27 to 0.96 at Ka-band were found. The increase in surface soil moisture from 0.02 to 0.4 (i.e., the typical range of variations in semi-arid areas increase the backscattering from 10 to 15 dB between the core of the dry and the maximum of the rainy seasons.

  11. Technology of surface wastewater purification, including high-rise construction areas

    Science.gov (United States)

    Tsyba, Anna; Skolubovich, Yury

    2018-03-01

    Despite on the improvements in the quality of high-rise construction areas and industrial wastewater treatment, the pollution of water bodies continues to increase. This is due to the organized and unorganized surface untreated sewage entry into the reservoirs. The qualitative analysis of some cities' surface sewage composition is carried out in the work. Based on the published literature review, the characteristic contamination present in surface wastewater was identified. The paper proposes a new technology for the treatment of surface sewage and presents the results of preliminary studies.

  12. Site characterization at Groningen gas field area through joint surface-borehole H/V analysis

    Science.gov (United States)

    Spica, Zack J.; Perton, Mathieu; Nakata, Nori; Liu, Xin; Beroza, Gregory C.

    2018-01-01

    A new interpretation of the horizontal to vertical (H/V) spectral ratio in terms of the Diffuse Field Assumption (DFA) has fuelled a resurgence of interest in that approach. The DFA links H/V measurements to Green's function retrieval through autocorrelation of the ambient seismic field. This naturally allows for estimation of layered velocity structure. In this contribution, we further explore the potential of H/V analysis. Our study is facilitated by a distributed array of surface and co-located borehole stations deployed at multiple depths, and by detailed prior information on velocity structure that is available due to development of the Groningen gas field. We use the vertical distribution of H/V spectra recorded at discrete depths inside boreholes to obtain shear wave velocity models of the shallow subsurface. We combine both joint H/V inversion and borehole interferometry to reduce the non-uniqueness of the problem and to allow faster convergence towards a reliable velocity model. The good agreement between our results and velocity models from an independent study validates the methodology, demonstrates the power of the method, but more importantly provides further constraints on the shallow velocity structure, which is an essential component of integrated hazard assessment in the area.

  13. Fluid flow modeling in complex areas*, **

    Directory of Open Access Journals (Sweden)

    Poullet Pascal

    2012-04-01

    Full Text Available We show first results of 3D simulation of sea currents in a realistic context. We use the full Navier–Stokes equations for incompressible viscous fluid. The problem is solved using a second order incremental projection method associated with the finite volume of the staggered (MAC scheme for the spatial discretization. After validation on classical cases, it is used in a numerical simulation of the Pointe à Pitre harbour area. The use of the fictious domain method permits us to take into account the complexity of bathymetric data and allows us to work with regular meshes and thus preserves the efficiency essential for a 3D code. Dans cette étude, nous présentons les premiers résultats de simulation d’un écoulement d’un fluide incompressible visqueux dans un contexte environnemental réel. L’approche utilisée utilise une méthode de domaines fictifs pour une prise en compte d’un domaine physique tridimensionnel très irrégulier. Le schéma numérique combine un schéma de projection incrémentale et des volumes finis utilisant des volumes de contrôle adaptés à un maillage décalé. Les tests de validation sont menés pour les cas tests de la cavité double entraînée ainsi que l’écoulement dans un canal avec un obstacle placé de manière asymmétrique.

  14. Surface deformation analysis over Vrancea seismogenic area through radar and GPS geospatial data

    Science.gov (United States)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Serban, Florin S.; Teleaga, Delia M.; Mateciuc, Doru N.

    2017-10-01

    Time series analysis of GPS (Global Positioning Systems) and InSAR (Interferometric Synthetic Aperture Radar) data are important tools for Earth's surface deformation assessment, which can result from a wide range of geological phenomena like as earthquakes, landslides or ground water level changes. The aim of this paper was to identify several types of earthquake precursors that might be observed from geospatial data in Vrancea seismogenic region in Romania. Continuous GPS Romanian network stations and few field campaigns data recorded between 2005-2012 years revealed a displacement of about 5 or 6 millimeters per year in horizontal direction relative motion, and a few millimeters per year in vertical direction. In order to assess possible deformations due to earthquakes and respectively for possible slow deformations, have been used also time series Sentinel 1 satellite data available for Vrancea zone during October 2014 till October 2016 to generate two types of interferograms (short-term and medium- term). During investigated period were not recorded medium or strong earthquakes, so interferograms over test area revealed small displacements on vertical direction (subsidence or uplifts) of 5-10 millimeters per year. Based on GPS continuous network data and satellite Sentinel 1 results, different possible tectonic scenarios were developed. The localization of horizontal and vertical motions, fault slip, and surface deformation of the continental blocks provides new information, in support of different geodynamic models for Vrancea tectonic active region in Romania and Europe.

  15. Modeling of terminal-area airplane fuel consumption

    Science.gov (United States)

    2009-08-01

    Accurate modeling of airplane fuel consumption is necessary for air transportation policy-makers to properly : adjudicate trades between competing environmental and economic demands. Existing public models used for : computing terminal-area airplane ...

  16. Tear-Film Evaporation Rate from Simultaneous Ocular-Surface Temperature and Tear-Breakup Area.

    Science.gov (United States)

    Dursch, Thomas J; Li, Wing; Taraz, Baseem; Lin, Meng C; Radke, Clayton J

    2018-01-01

    A corneal heat-transfer model is presented to quantify simultaneous measurements of fluorescein tear-breakup area (TBA) and ocular-surface temperature (OST). By accounting for disruption of the tear-film lipid layer (TFLL), we report evaporation rates through lipid-covered tear. The modified heat-transfer model provides new insights into evaporative dry eye. A quantitative analysis is presented to assess human aqueous tear evaporation rate (TER) through intact TFLLs from simultaneous in vivo measurement of time-dependent infrared OST and fluorescein TBA. We interpret simultaneous OST and TBA measurements using an extended heat-transfer model. We hypothesize that TBAs are ineffectively insulated by the TFLL and therefore exhibit higher TER than does that for a well-insulting TFLL-covered tear. As time proceeds, TBAs increase in number and size, thereby increasing the cornea area-averaged TER and decreasing OST. Tear-breakup areas were assessed from image analysis of fluorescein tear-film-breakup video recordings and are included in the heat-transfer description of OST. Model-predicted OSTs agree well with clinical experiments. Percent reductions in TER of lipid-covered tear range from 50 to 95% of that for pure water, in good agreement with literature. The physical picture of noninsulating or ruptured TFLL spots followed by enhanced evaporation from underlying cooler tear-film ruptures is consistent with the evaporative-driven mechanism for local tear rupture. A quantitative analysis is presented of in vivo TER from simultaneous clinical measurement of transient OST and TBA. The new heat-transfer model accounts for increased TER through expanding TBAs. Tear evaporation rate varies strongly across the cornea because lipid is effectively missing over tear-rupture troughs. The result is local faster evaporation compared with nonruptured, thick lipid-covered tear. Evaporative-driven tear-film ruptures deepen to a thickness where fluorescein quenching commences and local

  17. A surface hydrology model for regional vector borne disease models

    Science.gov (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  18. A framework for consistent estimation of leaf area index, fraction of absorbed photosynthetically active radiation, and surface albedo from MODIS time-series data

    DEFF Research Database (Denmark)

    Xiao, Zhiqiang; Liang, Shunlin; Wang, Jindi

    2015-01-01

    -series MODerate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data. If the reflectance data showed snow-free areas, an ensemble Kalman filter (EnKF) technique was used to estimate leaf area index (LAI) for a two-layer canopy reflectance model (ACRM) by combining predictions from a phenology...... model and the MODIS surface reflectance data. The estimated LAI values were then input into the ACRM to calculate the surface albedo and the fraction of absorbed photosynthetically active radiation (FAPAR). For snow-covered areas, the surface albedo was calculated as the underlying vegetation canopy...... albedo plus the weighted distance between the underlying vegetation canopy albedo and the albedo over deep snow. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43...

  19. Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Hee; Park, Dong Gon [Sookmyung Women' s University, Seoul (Korea, Republic of)

    2003-10-15

    Thermal decomposition of hydrated surface layer of Mg(OH){sub 2} at 500 .deg. C in vacuum turned non-porous MgO into porous one with high surface area of around 270 m{sup 2}/g. Most of its surface area, 74 %, was from micropores, and rest of it was from mesopores in wedge-shaped slits, exhibiting bimodal size distribution centered around 30 and 90 A. Rehydration followed by subsequent dehydration at 300 .deg. C in dynamic vacuum further raised the surface area to 340 m{sup 2}/g. Fraction of microporous surface area was increased to 93%, and the shape of the mesopores was modified into parallel slits with a specific dimension of 32 A. Application of Fe{sub 2}O{sub 3} over MgO via iron complex formation did not alter the pore characteristics of MgO core, except slightly increased pore dimension. Over the course of the modification, Fe{sub 2}O{sub 3} stayed on the surface possibly via spill-over reaction.

  20. Surface science models of CoMoS hydrodesulfurisation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, A.M.; De Beer, V.H.J.; Van Veen, J.A.R.; Niemantsverdriet, J.W. [Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven (Netherlands)

    1997-07-01

    Characterization of supported catalysts with surface spectroscopic techniques is often limited due to restraints imposed by the support material. The use of flat conducting substrates as a model support offers a way to apply these techniques to their full potential. Such surface science models of silica and alumina supported CoMoS catalysts have been made by impregnating thin SiO{sub 2} and Al{sub 2}O{sub 3} films with a solution of nitrilotriacetic acid (NTA) complexes of cobalt and molybdenum. X-ray Photoelectron Spectroscopy (XPS) spectra indicate that the order in which cobalt and molybdenum transfer to the sulfided state is reversed with respect to oxidic Co and Mo systems prepared by conventional methods, implying that NTA complexation retards the sulfidation of cobalt to temperatures where MoS{sub 2} is already formed. Catalytic tests show that the CoMoS model catalysts exhibit activities for thiophene desulfurisation and product distributions similar to those of their high surface area counterparts. 25 refs.

  1. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  2. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass

    International Nuclear Information System (INIS)

    Danish, Mohammed; Hashim, Rokiah; Ibrahim, M.N. Mohamad; Sulaiman, Othman

    2014-01-01

    The preparation of activated carbon from date stone treated with phosphoric acid was optimized using rotatable central composite design of response surface methodology (RSM). The chemical activating agent concentration and temperature of activation plays a crucial role in preparation of large surface area activated carbons. The optimized activated carbon was characterized using thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the larger surface area of activated carbon from date stone can be achieved under optimum activating agent (phosphoric acid) concentration, 50.0% (8.674 mol L −1 ) and activation temperature, 900 °C. The Brunauer–Emmett–Teller (BET) surface area of optimized activated carbon was found to be 1225 m 2  g −1 , and thermogravimetric analysis revealed that 55.2% mass of optimized activated carbon was found thermally stable till 900 °C. The leading chemical functional groups found in the date stone activated carbon were aliphatic carboxylic acid salt ν(C=O) 1561.22 cm −1 and 1384.52 cm −1 , aliphatic hydrocarbons ν(C–H) 2922.99 cm −1 (C–H sym./asym. stretch frequency), aliphatic phosphates ν(P–O–C) 1054.09 cm −1 , and secondary aliphatic alcohols ν(O–H) 3419.81 cm −1 and 1159.83 cm −1 . - Highlights: • RSM optimization was done for the production of large surface area activated carbon. • Two independent variables with two responses were selected for optimization. • Characterization was done for surface area, morphology and chemical constituents. • Optimized date stone activated carbon achieved surface area 1225 m 2  g −1

  3. Evaluating polymer degradation with complex mixtures using a simplified surface area method.

    Science.gov (United States)

    Steele, Kandace M; Pelham, Todd; Phalen, Robert N

    2017-09-01

    Chemical-resistant gloves, designed to protect workers from chemical hazards, are made from a variety of polymer materials such as plastic, rubber, and synthetic rubber. One material does not provide protection against all chemicals, thus proper polymer selection is critical. Standardized testing, such as chemical degradation tests, are used to aid in the selection process. The current methods of degradation ratings based on changes in weight or tensile properties can be expensive and data often do not exist for complex chemical mixtures. There are hundreds of thousands of chemical products on the market that do not have chemical resistance data for polymer selection. The method described in this study provides an inexpensive alternative to gravimetric analysis. This method uses surface area change to evaluate degradation of a polymer material. Degradation tests for 5 polymer types against 50 complex mixtures were conducted using both gravimetric and surface area methods. The percent change data were compared between the two methods. The resulting regression line was y = 0.48x + 0.019, in units of percent, and the Pearson correlation coefficient was r = 0.9537 (p ≤ 0.05), which indicated a strong correlation between percent weight change and percent surface area change. On average, the percent change for surface area was about half that of the weight change. Using this information, an equivalent rating system was developed for determining the chemical degradation of polymer gloves using surface area.

  4. Study of measurement methods of ultrafine aerosols surface-area for characterizing occupational exposure

    International Nuclear Information System (INIS)

    Bau, S.

    2008-12-01

    This work aims at improving knowledge on ultrafine aerosols surface-area measurement. Indeed, the development of nano-technologies may lead to occupational exposure to airborne nano-structured particles, which involves a new prevention issue. There is currently no consensus concerning what parameter (mass, surface-area, number) should be measured. However, surface-area could be a relevant metric, since it leads to a satisfying correlation with biological effects when nano-structured particles are inhaled. Hence, an original theoretical work was performed to position the parameter of surface-area in relation to other aerosol characteristics. To investigate measurement techniques of nano-structured aerosols surface-area, the experimental facility CAIMAN (Characterization of Instruments for the Measurement of Aerosols of Nano-particles) was designed and built. Within CAIMAN, it is possible to produce nano-structured aerosols with varying and controlled properties (size, concentration, chemical nature, morphology, state-of-charge), stable and reproducible in time. The generated aerosols were used to experimentally characterize the response of the instruments in study (NSAM and AeroTrak 9000 TSI, LQ1-DC Matter Engineering). The response functions measured with monodisperse aerosols show a good agreement with the corresponding theoretical curves in a large size range, from 15 to 520 nm. Furthermore, hypotheses have been formulated to explain the reasonable biases observed when measuring poly-disperse aerosols. (author)

  5. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Directory of Open Access Journals (Sweden)

    Megan M Herting

    Full Text Available Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  6. A longitudinal study: changes in cortical thickness and surface area during pubertal maturation.

    Science.gov (United States)

    Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Dahl, Ronald E; Sowell, Elizabeth R

    2015-01-01

    Sex hormones have been shown to contribute to the organization and function of the brain during puberty and adolescence. Moreover, it has been suggested that distinct hormone changes in girls versus boys may contribute to the emergence of sex differences in internalizing and externalizing behavior during adolescence. In the current longitudinal study, the influence of within-subject changes in puberty (physical and hormonal) on cortical thickness and surface area was examined across a 2-year span, while controlling for age. Greater increases in Tanner Stage predicted less superior frontal thinning and decreases in precuneus surface area in both sexes. Significant Tanner Stage and sex interactions were also seen, with less right superior temporal thinning in girls but not boys, as well as greater decreases in the right bank of the superior temporal sulcus surface area in boys compared to girls. In addition, within-subject changes in testosterone over the 2-year follow-up period were found to relate to decreases in middle superior frontal surface area in boys, but increases in surface area in girls. Lastly, larger increases in estradiol in girls predicted greater middle temporal lobe thinning. These results show that within-subject physical and hormonal markers of puberty relate to region and sex-specific changes in cortical development across adolescence.

  7. Large area smoothing of surfaces by ion bombardment: fundamentals and applications

    International Nuclear Information System (INIS)

    Frost, F; Fechner, R; Ziberi, B; Voellner, J; Flamm, D; Schindler, A

    2009-01-01

    Ion beam erosion can be used as a process for achieving surface smoothing at microscopic length scales and for the preparation of ultrasmooth surfaces, as an alternative to nanostructuring of various surfaces via self-organization. This requires that in the evolution of the surface topography different relaxation mechanisms dominate over the roughening, and smoothing of initially rough surfaces can occur. This contribution focuses on the basic mechanisms as well as potential applications of surface smoothing using low energy ion beams. In the first part, the fundamentals for the smoothing of III/V semiconductors, Si and quartz glass surfaces using low energy ion beams (ion energy: ≤2000 eV) are reviewed using examples. The topography evolution of these surfaces with respect to different process parameters (ion energy, ion incidence angle, erosion time, sample rotation) has been investigated. On the basis of the time evolution of different roughness parameters, the relevant surface relaxation mechanisms responsible for surface smoothing are discussed. In this context, physical constraints as regards the effectiveness of surface smoothing by direct ion bombardment will also be addressed and furthermore ion beam assisted smoothing techniques are introduced. In the second application-orientated part, recent technological developments related to ion beam assisted smoothing of optically relevant surfaces are summarized. It will be demonstrated that smoothing by direct ion bombardment in combination with the use of sacrificial smoothing layers and the utilization of appropriate broad beam ion sources enables the polishing of various technologically important surfaces down to 0.1 nm root mean square roughness level, showing great promise for large area surface processing. Specific examples are given for ion beam smoothing of different optical surfaces, especially for substrates used for advanced optical applications (e.g., in x-ray optics and components for extreme

  8. Surface Area of Patellar Facets: Inferential Statistics in the Iraqi Population

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Imam

    2017-01-01

    Full Text Available Background. The patella is the largest sesamoid bone in the body; its three-dimensional complexity necessitates biomechanical perfection. Numerous pathologies occur at the patellofemoral unit which may end in degenerative changes. This study aims to test the presence of statistical correlation between the surface areas of patellar facets and other patellar morphometric parameters. Materials and Methods. Forty dry human patellae were studied. The morphometry of each patella was measured using a digital Vernier Caliper, electronic balance, and image analyses software known as ImageJ. The patellar facetal surface area was correlated with patellar weight, height, width, and thickness. Results. Inferential statistics proved the existence of linear correlation of total facetal surface area and patellar weight, height, width, and thickness. The correlation was strongest for surface area versus patellar weight. The lateral facetal area was found persistently larger than the medial facetal area, the p value was found to be <0.001 (one-tailed t-test for right patellae, and another significant p value of < 0.001 (one-tailed t-test was found for left patellae. Conclusion. These data are vital for the restoration of the normal biomechanics of the patellofemoral unit; these are to be consulted during knee surgeries and implant designs and can be of an indispensable anthropometric, interethnic, and biometric value.

  9. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2011-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak T M 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  10. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite (INRS), Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette (France); Thomas, Dominique, E-mail: sebastien.bau@inrs.fr [Laboratoire Reactions et Genie des Procedes (LRGP), groupe SAFE, 1 rue Grandville, BP 20041, 54001 Nancy Cedex (France)

    2011-07-06

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak{sup TM} 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  11. Representing Reservoir Stratification in Land Surface and Earth System Models

    Science.gov (United States)

    Yigzaw, W.; Li, H. Y.; Leung, L. R.; Hejazi, M. I.; Voisin, N.; Payn, R. A.; Demissie, Y.

    2017-12-01

    A one-dimensional reservoir stratification modeling has been developed as part of Model for Scale Adaptive River Transport (MOSART), which is the river transport model used in the Accelerated Climate Modeling for Energy (ACME) and Community Earth System Model (CESM). Reservoirs play an important role in modulating the dynamic water, energy and biogeochemical cycles in the riverine system through nutrient sequestration and stratification. However, most earth system models include lake models that assume a simplified geometry featuring a constant depth and a constant surface area. As reservoir geometry has important effects on thermal stratification, we developed a new algorithm for deriving generic, stratified area-elevation-storage relationships that are applicable at regional and global scales using data from Global Reservoir and Dam database (GRanD). This new reservoir geometry dataset is then used to support the development of a reservoir stratification module within MOSART. The mixing of layers (energy and mass) in the reservoir is driven by eddy diffusion, vertical advection, and reservoir inflow and outflow. Upstream inflow into a reservoir is treated as an additional source/sink of energy, while downstream outflow represented a sink. Hourly atmospheric forcing from North American Land Assimilation System (NLDAS) Phase II and simulated daily runoff by ACME land component are used as inputs for the model over the contiguous United States for simulations between 2001-2010. The model is validated using selected observed temperature profile data in a number of reservoirs that are subject to various levels of regulation. The reservoir stratification module completes the representation of riverine mass and heat transfer in earth system models, which is a major step towards quantitative understanding of human influences on the terrestrial hydrological, ecological and biogeochemical cycles.

  12. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.

    Science.gov (United States)

    Wu, You; Kharge, Angana Banerjee; Perlman, Carrie E

    2014-10-01

    With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity. Copyright © 2014 the American Physiological Society.

  13. PARATI - a dynamic model for radiological assessments in urban areas. Pt. 1. Modelling of urban areas, their contamination and radiation fields

    International Nuclear Information System (INIS)

    Rochedo, E.R.R.; Conti, L.F.C.; Paretzke, H.G.

    1996-01-01

    The structure and mathematical model of PARATI, a detailed computer programme developed for the assessment of the radiological consequences of an accidental contamination of urban areas, is described with respect to the scenarios used for the estimation of exposure fields in a village or town, the models for the initial and secondary contamination with the radionuclide 137 Cs, the concepts for calculating the resulting radiation exposures and the changes with time of the contamination and radiation fields. Kerma rates at various locations in tropical urban areas are given, and the contribution of different contaminated surfaces to these rates after dry or wet deposition are discussed. (orig.). With 6 figs., 12 tabs

  14. Digital photography and transparency-based methods for measuring wound surface area.

    Science.gov (United States)

    Bhedi, Amul; Saxena, Atul K; Gadani, Ravi; Patel, Ritesh

    2013-04-01

    To compare and determine a credible method of measurement of wound surface area by linear, transparency, and photographic methods for monitoring progress of wound healing accurately and ascertaining whether these methods are significantly different. From April 2005 to December 2006, 40 patients (30 men, 5 women, 5 children) admitted to the surgical ward of Shree Sayaji General Hospital, Baroda, had clean as well as infected wound following trauma, debridement, pressure sore, venous ulcer, and incision and drainage. Wound surface areas were measured by these three methods (linear, transparency, and photographic methods) simultaneously on alternate days. The linear method is statistically and significantly different from transparency and photographic methods (P value transparency and photographic methods (P value >0.05). Photographic and transparency methods provided measurements of wound surface area with equivalent result and there was no statistically significant difference between these two methods.

  15. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  16. Development of a certified reference material for specific surface area of quartz sand

    Directory of Open Access Journals (Sweden)

    Egor P Sobina

    2017-01-01

    Full Text Available The paper presents results of conducting research on the development of a certified reference material (CRM for specific surface area of quartz sand, which is practically non-porous and therefore has low specific surface area value ~ 0.8 m2/g. The standard uncertainty due to RM inhomogeneity, the standard uncertainty due to RM instability, as well as the standard uncertainty due to characterization were estimated using the State Primary Standard GET 210‑2014 for Units of Specific Absorption of Gases, Specific Surface Area, Specific Volume, and Pore Size of Solid Substances and Materials. The metrological characteristics of the CRM were determined using a low-temperature gas adsorption method. Krypton was used as an adsorbate to increase measurement accuracy.

  17. High surface area V-Mo-N materials synthesized from amine intercalated foams

    International Nuclear Information System (INIS)

    Krawiec, Piotr; Narayan Panda, Rabi; Kockrick, Emanuel; Geiger, Dorin; Kaskel, Stefan

    2008-01-01

    Nanocrystalline ternary V-Mo nitrides were prepared via nitridation of amine intercalated oxide foams or bulk ternary oxides. Specific surface areas were in the range between 40 and 198 m 2 g -1 and strongly depended on the preparation method (foam or bulk oxide). Foamed precursors were favorable for vanadium rich materials, while for molybdenum rich samples bulk ternary oxides resulted in higher specific surface areas. The materials were characterized via nitrogen physisorption at 77 K, X-ray diffraction patterns, electron microscopy, and elemental analysis. - Graphical abstract: Nanocrystalline ternary V-Mo nitrides were prepared via nitridation of amine intercalated oxide foams or bulk ternary oxides. Foamed precursors were favorable for vanadium rich materials, while for molybdenum rich samples bulk ternary oxides resulted in higher specific surface areas

  18. Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Innocent Safeukui

    Full Text Available Ex vivo perfusion of human spleens revealed innate retention of numerous cultured Plasmodium falciparum ring-infected red blood cells (ring-iRBCs. Ring-iRBC retention was confirmed by a microsphiltration device, a microbead-based technology that mimics the mechanical filtering function of the human spleen. However, the cellular alterations underpinning this retention remain unclear. Here, we use ImageStream technology to analyze infected RBCs' morphology and cell dimensions before and after fractionation with microsphiltration. Compared to fresh normal RBCs, the mean cell membrane surface area loss of trophozoite-iRBCs, ring-iRBCs and uninfected co-cultured RBCs (uRBCs was 14.2% (range: 8.3-21.9%, 9.6% (7.3-12.2% and 3.7% (0-8.4, respectively. Microsphilters retained 100%, ∼50% and 4% of trophozoite-iRBCs, ring-iRBCs and uRBCs, respectively. Retained ring-iRBCs display reduced surface area values (estimated mean, range: 17%, 15-18%, similar to the previously shown threshold of surface-deficient RBCs retention in the human spleen (surface area loss: >18%. By contrast, ring-iRBCs that successfully traversed microsphilters had minimal surface area loss and normal sphericity, suggesting that these parameters are determinants of their retention. To confirm this hypothesis, fresh normal RBCs were exposed to lysophosphatidylcholine to induce a controlled loss of surface area. This resulted in a dose-dependent retention in microsphilters, with complete retention occurring for RBCs displaying >14% surface area loss. Taken together, these data demonstrate that surface area loss and resultant increased sphericity drive ring-iRBC retention in microsphilters, and contribute to splenic entrapment of a subpopulation of ring-iRBCs. These findings trigger more interest in malaria research fields, including modeling of infection kinetics, estimation of parasite load, and analysis of risk factors for severe clinical forms. The determination of the threshold of

  19. Infinitesimal-area 2D radiative analysis using parametric surface representation, through NURBS

    Energy Technology Data Exchange (ETDEWEB)

    Daun, K J; Hollands, K G.T.

    1999-07-01

    The use of form factors in the treatment of radiant enclosures requires that the radiosity and surface properties be treated as uniform over finite areas. This restriction can be relaxed by applying an infinitesimal-area analysis, where the radiant exchange is taken to be between infinitesimal areas, rather than finite areas. This paper presents a generic infinitesimal-area formulation that can be applied to two-dimensional enclosure problems. (Previous infinitesimal-area analyses have largely been restricted to specific, one-dimensional problems.) Specifically, the paper shows how the analytical expression for the kernel of the integral equation can be obtained without human intervention, once the enclosure surface has been defined parametrically. This can be accomplished by using a computer algebra package or by using NURBS algorithms, which are the industry standard for the geometrical representations used in CAD-CAM codes. Once the kernel has been obtained by this formalism, the 2D integral equation can be set up and solved numerically. The result is a single general-purpose infinitesimal-area analysis code that can proceed from surface specification to solution. The authors have implemented this 2D code and tested it on 1D problems, whose solutions have been given in the literature, obtaining agreement commensurate with the accuracy of the published solutions.

  20. Microbiology of the surface water samples in the high background radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Motamedifar, Mohammad; Zamani, Khosrow; Sedigh, Hadi; Mortazavi, Seyed Mohammad Javad; Taeb, Shahram; Haghani, M.; Mortazavi, Seyed Ali Reza; Soofi, Amir

    2014-01-01

    Residents of high background radiation areas of Ramsar have lived in these areas for many generations and received radiation doses much higher than the dose limit recommended by ICRP for radiation workers. The radioactivity of the high background radiation areas of Ramsar is reported to be due to 226 Ra and its decay products, which have been brought to the surface by the waters of hot springs. Over the past years the department has focused on different aspects of the health effects of the elevated levels of natural radiation in Ramsar. This study was aimed to perform a preliminary investigation on the bioeffects of exposure to elevated levels of natural radiation on the microbiology of surface water samples. Water samples were collected from surface water streams in Talesh Mahalleh district, Ramsar as well as a nearby area with normal levels of background radiation. Only two strains of bacteria, that is, Providencia stuartii and Shimwellia blattae, could be isolated from the water samples collected from high background radiation areas, while seven strains (Escherichia coli, Enterobacter asburiae, Klebsiella pneumoniae, Shigella dysenteriae, Buttiauxella agerstis, Tatumella punctuata and Raoultella ornithinolytica) were isolated from the water samples collected from normal background radiation areas. All the bacteria isolated from water samples of high and normal background radiation areas were sensitive to ultraviolet radiation, heat, betadine, alcohol, and deconex. Although other investigators have reported that bacteria isolated from hot springs show radioresistance, the results reported here do not reveal any adaptive response. (author)

  1. Area-averaged surface fluxes and their time-space variability over the FIFE experimental domain

    Science.gov (United States)

    Smith, E. A.; Hsu, A. Y.; Crosson, W. L.; Field, R. T.; Fritschen, L. J.; Gurney, R. J.; Kanemasu, E. T.; Kustas, W. P.; Nie, D.; Shuttleworth, W. J.

    1992-01-01

    The underlying mean and variance properties of surface net radiation, sensible-latent heat fluxes and soil heat flux are studied over the densely instrumented grassland region encompassing FIFE. Flux variability is discussed together with the problem of scaling up to area-averaged fluxes. Results are compared and contrasted for cloudy and clear situations and examined for the influence of surface-induced biophysical controls (burn and grazing treatments) and topographic controls (aspect ratios and slope factors).

  2. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    OpenAIRE

    Chen, Po Chun; Hsieh, Sheng Jen; Chen, Chien Chon; Zou, Jun

    2013-01-01

    We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless inj...

  3. DMSA scan nomograms for renal length and area: Related to patient age and to body weight, height or surface area

    International Nuclear Information System (INIS)

    Hassan, I.M.; Que, L.; Rutland, M.D.

    2002-01-01

    Aim: To create nomograms for renal size as measured from DMSA renal studies, and to test the nomograms for their ability to separate normal from abnormal kidneys. Method: Renal length was measured from posterior oblique views and renal area from posterior views. Results from 253 patients with bilateral normal kidneys were used to create nomograms for renal size relative to patient age, body height, weight or body surface area (BSA). The nomograms enclosed 95% of the normal kidneys, thus indicating the range for 95% confidence limits, and hence the specificity. Each nomogram was then tested against 46 hypertrophied kidneys and 46 damaged kidneys. Results: The results from nomograms of renal length and renal area, compared to age, body height, body weight and BSA are presented. For each nomogram, the range is presented as a fraction of the mean value, and the number of abnormal kidneys (hypertrophied or damaged) outside the normal range is presented as a percentage (indicating the sensitivity). Conclusion: Renal Area was no better than renal length for detecting abnormal kidneys. Patient age was the least useful method of normalisation. BSA normalisation produced the best results most frequently (narrower ranges and highest detection of abnormal kidneys)

  4. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania

    Directory of Open Access Journals (Sweden)

    Gytautas Ignatavičius

    2017-02-01

    Full Text Available Surface runoff from urbanized territories carries a wide range of pollutants. Sediments in untreated runoff from direct discharge stormwater systems significantly contribute to urban waterway pollution. In this study, heavy metal (Pb, Zn, Cu, Cr, Ba, As and Fe contamination in surface runoff sediments of the urban area of the city of Vilnius was investigated. The surface runoff sediment samples were collected from seven dischargers with the highest volume rate of water flow and concentrations of suspended solids. The geospatial analysis of the distribution of heavy metals shows that there are several active pollution sources supplying the dischargers with contaminated sediments. Most of these areas are located in the central part of the city and in old town with intense traffic. Principal components analysis and t-test results clearly depicted the significantly different chemical compositions of winter and autumn surface sediment samples. The sampling approach and assessment of results provide a useful tool to examine the contamination that is generated in urban areas, distinguish pollution sources and give a better understanding of the importance of permeable surfaces and green areas.

  5. Stereological estimation of surface area and barrier thickness of fish gills in vertical sections.

    Science.gov (United States)

    Da Costa, Oscar T F; Pedretti, Ana Carolina E; Schmitz, Anke; Perry, Steven F; Fernandes, Marisa N

    2007-01-01

    Previous morphometric methods for estimation of the volume of components, surface area and thickness of the diffusion barrier in fish gills have taken advantage of the highly ordered structure of these organs for sampling and surface area estimations, whereas the thickness of the diffusion barrier has been measured orthogonally on perpendicularly sectioned material at subjectively selected sites. Although intuitively logical, these procedures do not have a demonstrated mathematical basis, do not involve random sampling and measurement techniques, and are not applicable to the gills of all fish. The present stereological methods apply the principles of surface area estimation in vertical uniform random sections to the gills of the Brazilian teleost Arapaima gigas. The tissue was taken from the entire gill apparatus of the right-hand or left-hand side (selected at random) of the fish by systematic random sampling and embedded in glycol methacrylate for light microscopy. Arches from the other side were embedded in Epoxy resin. Reference volume was estimated by the Cavalieri method in the same vertical sections that were used for surface density and volume density measurements. The harmonic mean barrier thickness of the water-blood diffusion barrier was calculated from measurements taken along randomly selected orientation lines that were sine-weighted relative to the vertical axis. The values thus obtained for the anatomical diffusion factor (surface area divided by barrier thickness) compare favourably with those obtained for other sluggish fish using existing methods.

  6. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  7. Volumes, Masses, and Surface Areas for Shippingport LWBR Spent Nuclear Fuel in a DOE SNF Canister

    International Nuclear Information System (INIS)

    J.W. Davis

    1999-01-01

    The purpose of this calculation is to estimate volumes, masses, and surface areas associated with (a) an empty Department of Energy (DOE) 18-inch diameter, 15-ft long spent nuclear fuel (SNF) canister, (b) an empty DOE 24-inch diameter, 15-ft long SNF canister, (c) Shippingport Light Water Breeder Reactor (LWBR) SNF, and (d) the internal basket structure for the 18-in. canister that has been designed specifically to accommodate Seed fuel from the Shippingport LWBR. Estimates of volumes, masses, and surface areas are needed as input to structural, thermal, geochemical, nuclear criticality, and radiation shielding calculations to ensure the viability of the proposed disposal configuration

  8. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  9. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira; El Tall, Omar; Rasul, Shahid; Hedhili, Mohamed N.; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  10. Is the planum temporale surface area a marker of hemispheric or regional language lateralization?

    Science.gov (United States)

    Tzourio-Mazoyer, Nathalie; Crivello, Fabrice; Mazoyer, Bernard

    2018-04-01

    We investigated the association between the left planum temporale (PT) surface area or asymmetry and the hemispheric or regional functional asymmetries during language production and perception tasks in 287 healthy adults (BIL&GIN) who were matched for sex and handedness. The measurements of the PT surface area were performed after manually delineating the region using brain magnetic resonance images (MRI) and considering the Heschl's gyrus (HG) duplication pattern; the measurements either included (PT tot ) or did not include (PT post ) the second gyrus. A region encompassing both the PT and HG (HGPT) was also studied. Regardless of the ROI measured, 80% of the sample had a positive left minus right PT asymmetry. We first tested whether the PT tot , PT post and HGPT surface areas in the left or right hemispheres or PT asymmetries differed in groups of individuals varying in language lateralization by assessing their hemispheric index during a sentence production minus word list production task. We then investigated the association between these different measures of the PT anatomy and the regional asymmetries measured during the task. Regardless of the anatomical definition used, we observed no correlations between the left surface areas or asymmetries and the hemispheric or regional functional asymmetries during the language production task. We then performed a similar analysis using the same sample measuring language functional lateralization during speech listening tasks (i.e., listening to sentences and lists of words). Although the hemispheric lateralization during speech listening was not correlated with the left PT tot , PT post or HGPT surface areas or the PT asymmetries, significant positive correlations were observed between the asymmetries in these regions and the regional functional asymmetries measured in areas adjacent to the end of the Sylvian fissure while participants listened to the word lists or sentences. The PT asymmetry thus appears to be

  11. Response Surface Modeling Tool Suite, Version 1.x

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-05

    The Response Surface Modeling (RSM) Tool Suite is a collection of three codes used to generate an empirical interpolation function for a collection of drag coefficient calculations computed with Test Particle Monte Carlo (TPMC) simulations. The first code, "Automated RSM", automates the generation of a drag coefficient RSM for a particular object to a single command. "Automated RSM" first creates a Latin Hypercube Sample (LHS) of 1,000 ensemble members to explore the global parameter space. For each ensemble member, a TPMC simulation is performed and the object drag coefficient is computed. In the next step of the "Automated RSM" code, a Gaussian process is used to fit the TPMC simulations. In the final step, Markov Chain Monte Carlo (MCMC) is used to evaluate the non-analytic probability distribution function from the Gaussian process. The second code, "RSM Area", creates a look-up table for the projected area of the object based on input limits on the minimum and maximum allowed pitch and yaw angles and pitch and yaw angle intervals. The projected area from the look-up table is used to compute the ballistic coefficient of the object based on its pitch and yaw angle. An accurate ballistic coefficient is crucial in accurately computing the drag on an object. The third code, "RSM Cd", uses the RSM generated by the "Automated RSM" code and the projected area look-up table generated by the "RSM Area" code to accurately compute the drag coefficient and ballistic coefficient of the object. The user can modify the object velocity, object surface temperature, the translational temperature of the gas, the species concentrations of the gas, and the pitch and yaw angles of the object. Together, these codes allow for the accurate derivation of an object's drag coefficient and ballistic coefficient under any conditions with only knowledge of the object's geometry and mass.

  12. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  13. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  14. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  15. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    Science.gov (United States)

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  16. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    Science.gov (United States)

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  17. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2008-12-01

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  18. Understanding Surface Adhesion in Nature: A Peeling Model.

    Science.gov (United States)

    Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao

    2016-07-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.

  19. Modeling land-surface/atmosphere dynamics for CHAMMP

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    1993-01-01

    Project progress is described on a DOE CHAMP project to model the land-surface/atmosphere coupling in a heterogeneous environment. This work is a collaboration between scientists at Iowa State University and the University of New Hampshire. Work has proceeded in two areas: baseline model coupling and data base development for model validation. The core model elements (land model, atmosphere model) have been ported to the Principal Investigator's computing system and baseline coupling has commenced. The initial target data base is the set of observations from the FIFE field campaign, which is in the process of being acquired. For the remainder of the project period, additional data from the region surrounding the FIFE site and from other field campaigns will be acquired to determine how to best extrapolate results from the initial target region to the rest of the globe. In addition, variants of the coupled model will be used to perform experiments examining resolution requirements and coupling strategies for land-atmosphere coupling in a heterogeneous environment

  20. Predicting artificailly drained areas by means of selective model ensemble

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Beucher, Amélie; Iversen, Bo Vangsø

    . The approaches employed include decision trees, discriminant analysis, regression models, neural networks and support vector machines amongst others. Several models are trained with each method, using variously the original soil covariates and principal components of the covariates. With a large ensemble...... out since the mid-19th century, and it has been estimated that half of the cultivated area is artificially drained (Olesen, 2009). A number of machine learning approaches can be used to predict artificially drained areas in geographic space. However, instead of choosing the most accurate model....... The study aims firstly to train a large number of models to predict the extent of artificially drained areas using various machine learning approaches. Secondly, the study will develop a method for selecting the models, which give a good prediction of artificially drained areas, when used in conjunction...

  1. Impact of membrane lung surface area and blood flow on extracorporeal CO2 removal during severe respiratory acidosis.

    Science.gov (United States)

    Karagiannidis, Christian; Strassmann, Stephan; Brodie, Daniel; Ritter, Philine; Larsson, Anders; Borchardt, Ralf; Windisch, Wolfram

    2017-12-01

    Veno-venous extracorporeal CO 2 removal (vv-ECCO 2 R) is increasingly being used in the setting of acute respiratory failure. Blood flow rates through the device range from 200 ml/min to more than 1500 ml/min, and the membrane surface areas range from 0.35 to 1.3 m 2 . The present study in an animal model with similar CO 2 production as an adult patient was aimed at determining the optimal membrane lung surface area and technical requirements for successful vv-ECCO 2 R. Four different membrane lungs, with varying lung surface areas of 0.4, 0.8, 1.0, and 1.3m 2 were used to perform vv-ECCO 2 R in seven anesthetized, mechanically ventilated, pigs with experimentally induced severe respiratory acidosis (pH 7.0-7.1) using a 20Fr double-lumen catheter with a sweep gas flow rate of 8 L/min. During each experiment, the blood flow was increased stepwise from 250 to 1000 ml/min. Amelioration of severe respiratory acidosis was only feasible when blood flow rates from 750 to 1000 ml/min were used with a membrane lung surface area of at least 0.8 m 2 . Maximal CO 2 elimination was 150.8 ml/min, with pH increasing from 7.01 to 7.30 (blood flow 1000 ml/min; membrane lung 1.3 m 2 ). The membrane lung with a surface of 0.4 m 2 allowed a maximum CO 2 elimination rate of 71.7 mL/min, which did not result in the normalization of pH, even with a blood flow rate of 1000 ml/min. Also of note, an increase of the surface area above 1.0 m 2 did not result in substantially higher CO 2 elimination rates. The pressure drop across the oxygenator was considerably lower (respiratory acidosis, irrespective of the surface area of the membrane lung being used. The converse was also true, low surface membrane lungs (0.4 m 2 ) were not capable of completely correcting severe respiratory acidosis across the range of blood flows used in this study.

  2. Groundwater Pathway Model for the Los Alamos National Laboratory Technical Area 54, Area G, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Terry A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Strobridge, Daniel M. [Neptune Inc., Los Alamos, NM (United States); Cole, Gregory L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robinson, Bruce Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gable, Carl Walter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broxton, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Springer, Everett P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schofield, Tracy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-10

    This report consists of four major sections, including this introductory section. Section 2 provides an overview of previous investigations related to the development of the current sitescale model. The methods and data used to develop the 3-D groundwater model and the techniques used to distill that model into a form suitable for use in the GoldSim models are discussed in Section 3. Section 4 presents the results of the model development effort and discusses some of the uncertainties involved. Eight attachments that provide details about the components and data used in this groundwater pathway model are also included with this report. The groundwater modeling effort reported here is a revision of the work that was conducted in 2005 (Stauffer et al., 2005a) in support of the 2008 Area G performance assessment and composite analysis (LANL, 2008). The revision effort was undertaken primarily to incorporate new geologic information that has been collected since 2003 at, and in the vicinity of, Area G. The new data were used to create a more accurate geologic framework model (GFM) that forms the basis of the numerical modeling of the site’s long-term performance. The groundwater modeling uses mean hydrologic properties of the geologic strata underlying Area G; this revision includes an evaluation of the impacts that natural variability in these properties may have on the model projections.

  3. Surface and near-surface hydrological model of Olkiluoto island

    International Nuclear Information System (INIS)

    Karvonen, T.

    2008-04-01

    The aim of the study was to develop a 3D-model that calculates the overall water balance components of Olkiluoto Island in the present-day condition utilizing the existing extensive data sets available. The model links the unsaturated and saturated soil water in the overburden and groundwater in bedrock to a continuous pressure system. The parameterization of land use and vegetation was done in such a way that the model can later on be used for description of the past evolution of the overburden hydrology at the site and overburden's hydrological evolution in the future. Measured groundwater level in overburden tubes, pressure heads in shallow bedrock holes, snow depth, soil temperature, frost depth and discharge measurements were used in assessing the performance of the models in the calibration period (01.05.2001- 31.12.2005). Computed groundwater level variation can be characterized by variables ΔH MEAS and ΔH COMP , which are the difference between maximum and minimum measured and computed groundwater level value during the calibration period. Average ΔH MEAS for all tubes located in fine-textured till soil was 1.99 m and the corresponding computed value ΔH COMP was 1.83 m. Average ΔH MEAS for all tubes located in sandy till soil was 2.12 m and the corresponding computed value ΔH COMP was 1.93 m. The computed results indicate that in future studies it is necessary to divide the two most important soil types into several subclasses. In the present study the uncertainty and sensitivity analysis was carried out through a parameter uncertainty framework known as GLUE. According to the uncertainty analysis the average yearly runoff was around 175 mm a -1 and 50 % confidence limits were 155 and 195 mm a -1 . Measured average yearly runoff during the calibration period was 190 mm a -1 . Average yearly evapotranspiration estimate was 310 mm a -1 and the 50 % confidence limits were 290 and 330 mm a -1 . Average value for recharge through the bedrock system was 1

  4. Surface area and the seabed area, volume, depth, slope, and topographic variation for the world's seas, oceans, and countries.

    Science.gov (United States)

    Costello, Mark John; Cheung, Alan; De Hauwere, Nathalie

    2010-12-01

    Depth and topography directly and indirectly influence most ocean environmental conditions, including light penetration and photosynthesis, sedimentation, current movements and stratification, and thus temperature and oxygen gradients. These parameters are thus likely to influence species distribution patterns and productivity in the oceans. They may be considered the foundation for any standardized classification of ocean ecosystems and important correlates of metrics of biodiversity (e.g., species richness and composition, fisheries). While statistics on ocean depth and topography are often quoted, how they were derived is rarely cited, and unless calculated using the same spatial resolution the resulting statistics will not be strictly comparable. We provide such statistics using the best available resolution (1-min) global bathymetry, and open source digital maps of the world's seas and oceans and countries' Exclusive Economic Zones, using a standardized methodology. We created a terrain map and calculated sea surface and seabed area, volume, and mean, standard deviation, maximum, and minimum, of both depth and slope. All the source data and our database are freely available online. We found that although the ocean is flat, and up to 71% of the area has a ocean volume exceeds 1.3 billion km(3) (or 1.3 sextillion liters), and sea surface and seabed areas over 354 million km(2). We propose the coefficient of variation of slope as an index of topographic heterogeneity. Future studies may improve on this database, for example by using a more detailed bathymetry, and in situ measured data. The database could be used to classify ocean features, such as abyssal plains, ridges, and slopes, and thus provide the basis for a standards based classification of ocean topography.

  5. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  6. Surface CUrrents from a Diagnostic model (SCUD): Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SCUD data product is an estimate of upper-ocean velocities computed from a diagnostic model (Surface CUrrents from a Diagnostic model). This model makes daily...

  7. An Improved QTM Subdivision Model with Approximate Equal-area

    Directory of Open Access Journals (Sweden)

    ZHAO Xuesheng

    2016-01-01

    Full Text Available To overcome the defect of large area deformation in the traditional QTM subdivision model, an improved subdivision model is proposed which based on the “parallel method” and the thought of the equal area subdivision with changed-longitude-latitude. By adjusting the position of the parallel, this model ensures that the grid area between two adjacent parallels combined with no variation, so as to control area variation and variation accumulation of the QTM grid. The experimental results show that this improved model not only remains some advantages of the traditional QTM model(such as the simple calculation and the clear corresponding relationship with longitude/latitude grid, etc, but also has the following advantages: ①this improved model has a better convergence than the traditional one. The ratio of area_max/min finally converges to 1.38, far less than 1.73 of the “parallel method”; ②the grid units in middle and low latitude regions have small area variations and successive distributions; meanwhile, with the increase of subdivision level, the grid units with large variations gradually concentrate to the poles; ③the area variation of grid unit will not cumulate with the increasing of subdivision level.

  8. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  9. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    Empirical model for estimating the surface roughness of machined ... as well as surface finish is one of the most critical quality measure in mechanical products. ... various cutting speed have been developed using regression analysis software.

  10. Modelling atmospheric deposition flux of Cadmium and Lead in urban areas

    International Nuclear Information System (INIS)

    Cherin, Nicolas

    2017-01-01

    According to WHO, air pollution is responsible for more than 3.7 million premature deaths each year (OMS, 2014). Moreover, among these deaths, more than 70 within urban areas. Consequently, the health and environmental impacts of pollutants within these urban areas are of great concern in air quality studies. The deposition fluxes of air pollutants, which can be significant near sources of pollution, have rarely been modeled within urban areas. Historically, atmospheric deposition studies have focused mostly on remote areas to assess the potential impacts on ecosystems of acid deposition and nitrogen loading. Therefore, current atmospheric deposition models may not be suitable to simulate deposition fluxes in urban areas, which include complex surface geometries and diverse land use types. Atmospheric dry deposition is typically modeled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parameterize momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parameterization of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. This approach provides spatially distributed dry deposition fluxes depending on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area. (author) [fr

  11. General Models for Assessing Hazards Aircraft Pose to Surface Facilities

    International Nuclear Information System (INIS)

    Ragan, G.E.

    2002-01-01

    This paper derives formulas for estimating the frequency of accidental aircraft crashes into surface facilities. Objects unintentionally dropped from aircraft are also considered. The approach allows the facility to be well within the flight area; inside the flight area, but close to the edge; or completely outside the flight area

  12. Changes in thickness and surface area of the human cortex and their relationship with intelligence.

    Science.gov (United States)

    Schnack, Hugo G; van Haren, Neeltje E M; Brouwer, Rachel M; Evans, Alan; Durston, Sarah; Boomsma, Dorret I; Kahn, René S; Hulshoff Pol, Hilleke E

    2015-06-01

    Changes in cortical thickness over time have been related to intelligence, but whether changes in cortical surface area are related to general cognitive functioning is unknown. We therefore examined the relationship between intelligence quotient (IQ) and changes in cortical thickness and surface over time in 504 healthy subjects. At 10 years of age, more intelligent children have a slightly thinner cortex than children with a lower IQ. This relationship becomes more pronounced with increasing age: with higher IQ, a faster thinning of the cortex is found over time. In the more intelligent young adults, this relationship reverses so that by the age of 42 a thicker cortex is associated with higher intelligence. In contrast, cortical surface is larger in more intelligent children at the age of 10. The cortical surface is still expanding, reaching its maximum area during adolescence. With higher IQ, cortical expansion is completed at a younger age; and once completed, surface area decreases at a higher rate. These findings suggest that intelligence may be more related to the magnitude and timing of changes in brain structure during development than to brain structure per se, and that the cortex is never completed but shows continuing intelligence-dependent development. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Surface runoff from urban areas. New aspects; Neue Aspekte in der Behandlung von Siedlungsabfluessen

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Stephan [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Bereich Siedlungswasserwirtschaft und Wasserguetewirtschaft; Lambert, Benedikt [Bioplan Landeskulturgesellschaft, Sinsheim (Germany); Grotehusmann, Dieter [Ingenieurgesellschaft fuer Stadthydrologie, Hannover (Germany)

    2010-12-15

    The surface runoff from urban areas is one of the most important sources of pollutants emitted into surface waters. Suspended solids which act as a transport vehicle for many anthropogenic pollutants (e. g. heavy metals, PAH) are a key factor in this regard. The development of efficient measures of storm water runoff treatment thus requires a further differentiation of suspended solids in a fine (clay and silt) and coarse (sand and gravel) fraction. Both fractions show distinctly different characteristics in pollutant loading, transport and retention on urban surfaces and sewer systems. The primary aim of storm water runoff treatment is the reduction of the fine particles which are always highly loaded with anthropogenic pollutants. In contrast the coarse particles are almost unpolluted especially if they have a low organic share. The widespread sedimentation tanks with surface loadings between 10 and 2 m/h are very inefficient. A significant, save and lasting reduction of the emitted load of fine particles requires a considerable reduction of the surface loads. That can be achieved with the installation of lamellar settler or the utilization of the very large volumes of flood management tanks frequently present in urban areas. Filtration plants are highly efficient but there application in urban areas is limited due to their high space demands. (orig.)

  14. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  15. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  16. Surfaces foliated by planar geodesics: a model forcurved wood design

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens

    2017-01-01

    Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle......Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle...

  17. Aggregate surface areas quantified through laser measurements for South African asphalt mixtures

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available design. This paper introduces the use of a three-dimensional (3D) laser scanning method to directly measure the surface area of aggregates used in road pavements in South Africa. As an application of the laser-based measurements, the asphalt film...

  18. Uncovering surface area and micropores in almond shell biochars by rainwater wash

    Science.gov (United States)

    Biochars have been considered for adsorption of contaminants in soil and water, as well as conditioning and improving soil quality. One important property of the biochar is surface area in the pores of the biochar. Biochars were created from almond shells from two almond varieties with different ash...

  19. Specific surface area behavior of a dissolving population of particles. Augmenting Mercer Dissolution Theory

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Rothenberg, S.J.

    1986-01-01

    Specific surface area (Sp) measurements were made on two uranium oxide aerosol materials before and after in vitro dissolution studies were performed on the materials. The results of these Sp measurements were evaluated relative to predictions made from extending Mercer dissolution theory to describe the Sp behavior of a dissolving population of particles

  20. Developing Open-Ended Questions for Surface Area and Volume of Beam

    Science.gov (United States)

    Kurniawan, Henry; Putri, Ratu Ilma Indra; Hartono, Yusuf

    2018-01-01

    The purpose of this research was to show open-ended questions about surface area and beam volume which valid and practice, have potential effect. This research is research development which consists of two main phases: preliminary phase (preparation phase and problem design) and formative evaluation phase (evaluation and revision phases). The…

  1. Flow analysis of water-powder mixtures: Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  2. Flow analysis of water-powder mixtures : Application to specific surface area and shape factor

    NARCIS (Netherlands)

    Hunger, M.; Brouwers, H.J.H.

    2009-01-01

    This paper addresses the characterization of powder materials with respect to their application in concrete. Given that powders provide by far highest percentage of specific surface area in a concrete mix, their packing behavior and water demand is of vital interest for the design of concrete. They

  3. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents

    NARCIS (Netherlands)

    E. Chatelut (Etienne); M.L. White-Koning (M.); A.H.J. Mathijssen (Ron); F. Puisset (F.); S.D. Baker (Sharyn); A. Sparreboom (Alex)

    2012-01-01

    textabstractBackground: Dose banding is a recently suggested dosing method that uses predefined ranges (bands) of body surface area (BSA) to calculate each patients dose by using a single BSA-value per band. Thus, drugs with sufficient long-term stability can be prepared in advance. The main

  4. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  5. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  6. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    of antifouling coating behaviour because the active binder surface area and porosity of the leached layer are substantially increased. A similar effect was not observed for a coating with a mixture of ZnO and TiO2 pigments. The two experimental methods are expected to be useful for practical analysis of leaching...

  7. Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    NARCIS (Netherlands)

    Gomez del Campo, E.; Jousma, G.; Massop, H.T.L.

    1993-01-01

    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This

  8. Preparation of MgO Catalytic Support in Shaped Mesoporous High Surface Area Form

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Šolcová, Olga; Zdražil, Miroslav

    2004-01-01

    Roč. 76, 1-3 (2004), s. 137-149 ISSN 1387-1811 R&D Projects: GA AV ČR IAA4072306 Institutional research plan: CEZ:AV0Z4072921 Keywords : MgO support * sigh Surface area * texture Subject RIV: CC - Organic Chemistry Impact factor: 2.093, year: 2004

  9. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    International Nuclear Information System (INIS)

    Piepsz, Amy; Tondeur, Marianne; Ham, Hamphrey

    2008-01-01

    51 Cr ethylene diamine tetraacetic acid ( 51 Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right 99m Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for 51 Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  10. Allometric relationships for surface area and dry mass of young Norway spruce aboveground organs

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Radek; Tomášková, Ivana

    53 2007, č. 12 (2007), s. 548-554 ISSN 1212-4834 R&D Projects: GA MŽP(CZ) SP/2D1/93/07 Institutional research plan: CEZ:AV0Z60870520 Keywords : allometry * biomass, * Picea abies * sapwood * surface area Subject RIV: GK - Forestry

  11. Proportional Reasoning Ability and Concepts of Scale: Surface Area to Volume Relationships in Science

    Science.gov (United States)

    Taylor, Amy; Jones, Gail

    2009-01-01

    The "National Science Education Standards" emphasise teaching unifying concepts and processes such as basic functions of living organisms, the living environment, and scale. Scale influences science processes and phenomena across the domains. One of the big ideas of scale is that of surface area to volume. This study explored whether or not there…

  12. Should blood flow during cardiopulmonary bypass be individualized more than to body surface area?

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Larsson, A; Andreasen, Jan Jesper

    Blood flow during cardiopulmonary bypass (CPB) is calculated on body surface area (BSA). Increasing comorbidity, age and weight of today's cardiac patients question this calculation as it may not reflect individual metabolic requirement. The hypothesis was that a measured cardiac index (CI) prior...

  13. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    Energy Technology Data Exchange (ETDEWEB)

    Piepsz, Amy; Tondeur, Marianne [CHU St. Pierre, Department of Radioisotopes, Brussels (Belgium); Ham, Hamphrey [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2008-09-15

    {sup 51}Cr ethylene diamine tetraacetic acid ({sup 51}Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right {sup 99m}Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for {sup 51}Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  14. Area densitometry using rotating Scheimpflug photography for posterior capsule opacification and surface light scattering analyses.

    Science.gov (United States)

    Minami, Keiichiro; Honbo, Masato; Mori, Yosai; Kataoka, Yasushi; Miyata, Kazunori

    2015-11-01

    To compare area densitometry analysis using rotating Scheimpflug photography in quantifications of posterior capsule opacification (PCO) and surface light scattering with previous anterior-segment analyzer measurement. Miyata Eye Hospital, Miyazaki, Japan. Prospective observational case series. Scheimpflug images of eyes with foldable intraocular lenses (IOLs) were obtained using rotating and fixed Scheimpflug photography. Area densitometry on the posterior and anterior surfaces was conducted for PCO and surface light scattering analyses, respectively, with an identical area size. Correlation between two measurements was analyzed using linear regression. The study included 105 eyes of 74 patients who received IOLs 1 to 18 years (mean, 4.9 ± 4.5 years) postoperatively. In the PCO analysis on the posterior IOL surface, there was a significant correlation between the two measurements (P photography exhibited saturation due to intensive scatterings. Area densitometry combined with a rotating Scheimpflug photography was exchangeable to previously established densitometry measurement, and allowed successive evaluation in longer-term observations. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Surface area of lactose and lactose granulates on consolidation and compaction

    NARCIS (Netherlands)

    Riepma, Klaas Alouis

    1993-01-01

    This dissertation discusses the effect of short time storage at different conditions on the strength and the specific BET surface area of lactose tablets. In addition, some aspects are studied of the consolidation and compaction properties of crystalline lactose fractions in heterogeneous systems.

  16. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  17. Oscillations of centroid position and surface area of soccer teams in small-sided games

    NARCIS (Netherlands)

    Frencken, Wouter; Lemmink, Koen; Delleman, Nico; Visscher, Chris

    2011-01-01

    There is a need for a collective variable that captures the dynamics of team sports like soccer at match level. The centroid positions and surface areas of two soccer teams potentially describe the coordinated flow of attacking and defending in small-sided soccer games at team level. The aim of the

  18. Leaf Area Estimation Models for Ginger ( Zingibere officinale Rosc ...

    African Journals Online (AJOL)

    The study was carried out to develop leaf area estimation models for three cultivars (37/79, 38/79 and 180/73) and four accessions (29/86, 30/86, 47/86 and 52/86) of ginger. Significant variations were observed among the tested genotypes in leaf length (L), leaf width (W) and actual leaf area (ALA). Leaf area was highly ...

  19. Surface water and groundwater interaction in selected areas of Indus basin

    International Nuclear Information System (INIS)

    Akram, W.; Ahmad, M.; Tariq, J.A.; Latif, Z.; Malik, M.R.

    2011-08-01

    Isotope hydrological investigations were carried out in Marala-Khanki Area of Punjab for elucidating various aspects of surface water and groundwater interaction. Groundwater samples were collected on seasonal basis (low and high river discharge periods) while surface water (Chenab River) samples were collected more frequently (weekly or monthly basis). Isotopic data suggested that there is no significant contribution of surface water to groundwater recharge in Marala-Khanki Area and rain is the prevailing source of groundwater recharge. The data further revealed that isotopic values of Tarbala lake are higher than those of main lake. Indus river meaning that there is significant contribution of base flow in this pocket. Isotopic data of Indus river showed an increase at Tunsa as compared to Chashma in flow period indicating the high contribution of base flow at this point in time. Stable isotopes were successfully used to quantify the base flow contribution. (author)

  20. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  1. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    International Nuclear Information System (INIS)

    Chen, P.Ch.; Zou, J.; Hsieh, Sh.J.; Chen, Ch.Ch.

    2013-01-01

    We proposed fabricating an aluminum micro needle array with a nano channel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The micro needle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nano channel template. Therefore, the micro needle array can potentially be used in many technology applications. This 3D micro needle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the micro needle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the micro needle array can further be used on many detecting, storing, or drug delivering applications.

  2. Static allometry of unicellular green algae: scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales).

    Science.gov (United States)

    Neustupa, J

    2016-02-01

    The surface area-to-volume ratio of cells is one of the key factors affecting fundamental biological processes and, thus, fitness of unicellular organisms. One of the general models for allometric increase in surface-to-volume scaling involves fractal-like elaboration of cellular surfaces. However, specific data illustrating this pattern in natural populations of the unicellular organisms have not previously been available. This study shows that unicellular green algae of the genus Micrasterias (Desmidiales) have positive allometric surface-to-volume scaling caused by changes in morphology of individual species, especially in the degree of cell lobulation. This allometric pattern was also detected within most of the cultured and natural populations analysed. Values of the allometric S:V scaling within individual populations were closely correlated to the phylogenetic structure of the clade. In addition, they were related to species-specific cellular morphology. Individual populations differed in their allometric patterns, and their position in the allometric space was strongly correlated with the degree of allometric S:V scaling. This result illustrates that allometric shape patterns are an important correlate of the capacity of individual populations to compensate for increases in their cell volumes by increasing the surface area. However, variation in allometric patterns was not associated with phylogenetic structure. This indicates that the position of the populations in the allometric space was not evolutionarily conserved and might be influenced by environmental factors. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  3. Functional Mixed Effects Model for Small Area Estimation.

    Science.gov (United States)

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  4. Investigation on large-area fabrication of vivid shark skin with superior surface functions

    Science.gov (United States)

    Chen, Huawei; Zhang, Xin; Ma, Lingxi; Che, Da; Zhang, Deyuan; Sudarshan, T. S.

    2014-10-01

    Shark skin has attracted worldwide attention because of its superior drag reduction, antifouling performance induced from its unique surface morphology. Although the vivid shark skin has been fabricated by a bio-replicated micro-imprinting approach in previous studies and superior drag reduction effect has been validated in water tunnel, continuous large-area fabrication is still an obstacle to wide apply. In this paper, one novel bio-replication coating technology is proposed for large-area transfer of shark skin based on rapid UV curable paint. Apart from design of coating system, bio-replication accuracy of surface morphology was validated about 97% by comparison between shark skin template and coating surface morphology. Finally, the drag reduction and anti-fouling function of coating surface were tested in water tunnel and open algae pond respectively. Drag reduction rate of coating surface was validated about 12% higher and anti-fouling was proved to about hundred times ameliorate, all of which are more excellent than simple 2D riblet surface.

  5. A whole stand basal area projection model for Appalachian hardwoods

    Science.gov (United States)

    John R. Brooks; Lichun Jiang; Matthew Perkowski; Benktesh Sharma

    2008-01-01

    Two whole-stand basal area projection models were developed for Appalachian hardwood stands. The proposed equations are an algebraic difference projection form based on existing basal area and the change in age, trees per acre, and/or dominant height. Average equation error was less than 10 square feet per acre and residuals exhibited no irregular trends.

  6. Inverse Gaussian model for small area estimation via Gibbs sampling

    African Journals Online (AJOL)

    We present a Bayesian method for estimating small area parameters under an inverse Gaussian model. The method is extended to estimate small area parameters for finite populations. The Gibbs sampler is proposed as a mechanism for implementing the Bayesian paradigm. We illustrate the method by application to ...

  7. Structure, specific surface area and thermal conductivity of the snowpack around Barrow, Alaska

    Science.gov (United States)

    Domine, Florent; Gallet, Jean-Charles; Bock, Josué; Morin, Samuel

    2012-07-01

    The structure of the snowpack near Barrow was studied in March-April 2009. Vertical profiles of density, specific surface area (SSA) and thermal conductivity were measured on tundra, lakes and landfast ice. The average thickness was 41 cm on tundra and 21 cm on fast ice. Layers observed were diamond dust or recent wind drifts on top, overlaying wind slabs, occasional faceted crystals and melt-freeze crusts, and basal depth hoar layers. The top layer had a SSA between 45 and 224 m2 kg-1. All layers at Barrow had SSAs higher than at many other places because of the geographical and climatic characteristics of Barrow. In particular, a given snow layer was remobilized several times by frequent winds, which resulted in SSA increases each time. The average snow area index (SAI, the dimensionless vertically integrated SSA) on tundra was 3260, higher than in the Canadian High Arctic or in the Alaskan taiga. This high SAI, combined with low snow temperatures, imply that the Barrow snowpack efficiently traps persistent organic pollutants, as illustrated with simple calculations for PCB 28 and PCB 180. The average thermal conductivity was 0.21 Wm-1 K-1, and the average thermal resistance on tundra was 3.25 m2 K W-1. This low value partly explains why the snow-ground interface was cold, around -19°C. The high SAI and low thermal resistance values illustrate the interplay between climate, snow physical properties, and their potential impact on atmospheric chemistry, and the need to describe these relationships in models of polar climate and atmospheric chemistry, especially in a climate change context.

  8. Modelling of energetic molecule-surface interactions

    International Nuclear Information System (INIS)

    Kerford, M.

    2000-09-01

    This thesis contains the results of molecular dynamics simulations of molecule-surface interactions, looking particularly at fullerene molecules and carbon surfaces. Energetic impacts of fullerene molecules on graphite create defect craters. The relationship between the parameters of the impacting molecule and the parameters of the crater axe examined and found to be a function of the energy and velocity of the impacting molecule. Less energetic fullerene molecules can be scattered from a graphite surface and the partitioning of energy after a scattering event is investigated. It is found that a large fraction of the kinetic energy retained after impact is translational energy, with a small fraction of rotational energy and a number of vibrational modes. At impact energies where the surface is not broken and at normal incidence, surface waves axe seen to occur. These waves axe used to develop a method of desorbing molecules from a graphite surface without damage to either the surface or the molecules being desorbed. A number of fullerene molecules are investigated and ways to increase the desorption yield are examined. It is found that this is a successful technique for desorbing large numbers of intact molecules from graphite. This technique could be used for desorbing intact molecules into a gas phase for mass spectrometric analysis. (author)

  9. Study of LiFePO{sub 4} cathode materials coated with high surface area carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng-Zhang; Fey, George Ting-Kuo [Department of Chemical and Materials Engineering, National Central University, Chung-Li 32054 (China); Kao, Hsien-Ming [Department of Chemistry, National Central University, Chung-Li 32054 (China)

    2009-04-01

    LiFePO{sub 4} is a potential cathode material for 4 V lithium-ion batteries. Carbon-coated lithium iron phosphates were prepared using a high surface area carbon to react precursors through a solid-state process, during which LiFePO{sub 4} particles were embedded in amorphous carbon. The carbonaceous materials were synthesized by the pyrolysis of peanut shells under argon, where they were carbonized in a two-step process that occurred between 573 and 873 K. The shells were also treated with a proprietary porogenic agent with the goal of altering the pore structure and surface area of the pyrolysis products. The electrochemical properties of the as-prepared LiFePO{sub 4}/C composite cathode materials were systematically characterized by X-ray diffraction, scanning electron microscope, element mapping, energy dispersive spectroscopy, Raman spectroscopy, and total organic carbon (TOC) analysis. In LiFePO{sub 4}/C composites, the carbon not only increases rate capability, but also stabilizes capacity. In fact, the capacity of the composites increased with the specific surface area of carbon. The best result was observed with a composite made of 8.0 wt.% with a specific surface area of 2099 m{sup 2} g{sup -1}. When high surface area carbon was used as a carbon source to produce LiFePO{sub 4}, overall conductivity increased from 10{sup -8} to 10{sup -4} S cm{sup -1}, because the inhibition of particle growth during the final sintering process led to greater specific capacity, improved cycling properties and better rate capability compared to a pure olivine LiFePO{sub 4} material. (author)

  10. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias [ed.

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  11. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  12. Atmospheric release model for the E-area low-level waste facility: Updates and modifications

    International Nuclear Information System (INIS)

    None, None

    2017-01-01

    The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.

  13. Atmospheric release model for the E-area low-level waste facility: Updates and modifications

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-11-16

    The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.

  14. Footprint (A Screening Model for Estimating the Area of a Plume Produced from Gasoline Containing Ethanol

    Science.gov (United States)

    FOOTPRINT is a simple and user-friendly screening model to estimate the length and surface area of BTEX plumes in ground water produced from a spill of gasoline that contains ethanol. Ethanol has a potential negative impact on the natural biodegradation of BTEX compounds in groun...

  15. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  16. A Surface Modeling Paradigm for Electromagnetic Applications in Aerospace Structures

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakar, V; Mahapatra, PR

    1989-01-01

    A systematic approach has been developed to model the surfaces encountered in aerospace engineering for EM applications. The basis of this modeling is the quadric canonical shapes which are the coordinate surfaces of the Eisenhart Coordinate systems. The building blocks are visualized as sections of quadric cylinders and surfaces of revolution. These truncated quadrics can successfully model realistic aerospace structures which are termed a s hybrid quadrics, of which the satellite launch veh...

  17. Model for the Evolving Bed Surface around an Offshore Monopile

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    2012-01-01

    This paper presents a model for the bed surface around an offshore monopile. The model has been designed from measured laboratory bed surfaces and is shown to reproduce these satisfactorily for both scouring and backfilling. The local rate of the bed elevation is assumed to satisfy a certain...... general parametrized surface. The model also accounts for sliding of sediment particles when the angle of the local bed slope exceeds the angle of repose....

  18. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  19. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  20. Radiative Transfer Model for Contaminated Rough Surfaces

    Science.gov (United States)

    2013-02-01

    reflectance of potassium chlorate and ammonium nitrate contaminated surfaces in mid-wavelength and long-wavelength infrared for detection. Our framework...obtained excellent or good results for lab measurements of potassium chlorate on most aluminum surfaces; however, ammonium nitrate on painted aluminum...misidentify potassium chlorate as ammonium nitrate and vice versa). We also observed moderate success on field data. 15. SUBJECT TERMS radiative

  1. Data-Model Comparison of Pliocene Sea Surface Temperature

    Science.gov (United States)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  2. Surface tension modelling of liquid Cd-Sn-Zn alloys

    Science.gov (United States)

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  3. Analytical fitting model for rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  4. Models to support students’ understanding of measuring area of circles

    Science.gov (United States)

    Rejeki, S.; Putri, R. I. I.

    2018-01-01

    Many studies showed that enormous students got confused about the concepts of measuring area of circles. The main reason is because mathematics classroom practices emphasized on memorizing formulas rather than understanding concepts. Therefore, in this study, a set of learning activities were designed as an innovation in learning area measurement of circles. The activities involved two models namely grid paper and reshaping which are respectively as a means and a strategy to support students’ learning of area measurement of circles. Design research was used as the research approach to achieve the aim. Thirty-eight of 8th graders in Indonesia were involved in this study. In this study, together with the contextual problems, the grid paper and reshaping sectors, which used as the models in this learning, helped the students to gradually develop their understanding of the area measurement of circles. The grid papers plays important role in comparing and estimating areas. Whereas, the reshaping sectors might support students’ understanding of the circumference and the area measurement of circles. Those two models could be the tool for promoting the informal theory of area measurement. Besides, the whole activities gave important role on distinguishing the area and perimeter of circles.

  5. Surface area and volume determination of subgingival calculus using laser fluorescence.

    Science.gov (United States)

    Shakibaie, Fardad; Walsh, Laurence J

    2014-03-01

    Visible red (655 nm) laser fluorescence (LF) devices are currently used for identifying deposits of subgingival calculus on the root surfaces of teeth during dental examination and treatment; however, it is not known how the fluorescence readings produced by commercially available LF systems correlate to the nature of the deposits. This laboratory study explored the correlation between LF digital readings and the surface area and volume of subgingival calculus deposits on teeth. A collection of 30 extracted human posterior teeth with various levels of subgingival deposits of calculus across 240 sites were used in a clinical simulation, with silicone impression material used to replicate periodontal soft tissues. The teeth were scored by two examiners by using three commercial LF systems (DIAGNOdent, DIAGNOdent Pen and KEY3). The silicone was removed, and the teeth were removed for photography at × 20 magnification under white or ultraviolet light. The surface area, thickness, and volume were calculated, and both linear least squares regression and nonlinear (Spearman's rank method) correlation coefficients were determined. Visible red LF digital readings showed better correlation to calculus volume than to surface area. Overall, the best performance was found for the KEY3 system (Spearman coefficient 0.59), compared to the Classic DIAGNOdent (0.56) and the DIAGNOdent Pen (0.49). These results indicate that while visible red LF systems vary somewhat in performance, their LF readings provide a useful estimation of the volume of subgingival calculus deposits present on teeth.

  6. Desenvolvimento e validação de um modelo matemático para o cálculo da área superficial de frangos de corte Development and validation of a model to compute the surface area of broiler chickens

    Directory of Open Access Journals (Sweden)

    Eberson Silva

    2009-03-01

    Full Text Available A área superficial de frangos de corte é importante parâmetro de entrada em modelos de transferência de calor e massa. Dessa forma, o presente trabalho teve o objetivo de desenvolver e validar modelo matemático empírico para estimar a área superficial (As de frangos de corte. Para a realização desta pesquisa, foram utilizadas 84 aves de corte da linhagem Ross, sendo 37 machos e 47 fêmeas, com animais abrangendo todo o período da fase de criação. Em cada teste realizado em laboratório, uma ave, aleatoriamente selecionada, teve as suas dimensões (comprimento, largura e altura e massa corporal avaliadas. A pele com penas da ave foi retirada para a determinação da As. Parte dos dados foi usada para ajuste da equação para a determinação da As e parte para a validação. Os resultados mostraram que a equação empírica para a determinação da As é estatisticamente significativa (P0,05.Surface area (As of poultry is an important input parameter in heat and mass transfer calculation; thus, it was aimed with the present work to develop and to validate an empirical model to estimate the broiler chicken's surface area. Eighty four Ross broiler chickens were used in this research, thirty seven male and forty seven female, with body masses during all growth phase. In the laboratory, each randomly selected chicken had its dimensions (length, width and height and body mass evaluated. The chicken skin with feathers was taken off to determine As. Portion of the data was used to fit the equation to estimate the surface area and another portion was used to validate it. Results showed that the empirical equation to determine As was statically significant (P0.05.

  7. Verification of surface source's characteristics using large-area 2π gas flow counter

    International Nuclear Information System (INIS)

    Abu Naser Waheed, M.M.; Mikami, S.; Kobayashi, H.; Noda, K.

    1998-09-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has large-area 2π gas flow counter for the purpose of measuring activity of surface sources of alpha or beta ray emitter. Surface sources are used for the calibration of radiation measuring equipment for radiation control. Due to sequent use of sources, the surface of these sources are inclined to go in bad condition because of unwanted accidental incidents. For the better calibration achievement of radiation measuring instruments the rate of emission of these sources are to be checked periodically by the large-area 2π gas flow counter. In this paper described that eight U 3 O 8 surface sources were selected from many sources of PNC Tokai Works and activity of these sources was measured by the 2π gas flow counter. The results were compared with the values certified by Japan Radio Isotope Association (JRIA). It is evident from the result of comparison that the surface sources are in good condition, i.e., the sources are reliable to calibrate the radiation control instruments. (author)

  8. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    Science.gov (United States)

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  9. Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces

    Directory of Open Access Journals (Sweden)

    Suzan Biran Ay

    2015-01-01

    Full Text Available Large-area catalytic thin films offer great potential for green technology applications in order to save energy, combat pollution, and reduce global warming. These films, either embedded with nanoparticles, shaped with nanostructuring techniques, hybridized with other systems, or functionalized with bionanotechnological methods, can include many different surface properties including photocatalytic, antifouling, abrasion resistant and mechanically resistive, self-cleaning, antibacterial, hydrophobic, and oleophobic features. Thus, surface functionalization with such advanced structuring methods is of significance to increase the performance and wide usage of large-area thin film coatings specifically for environmental remediation. In this review, we focus on methods to increase the efficiency of catalytic reactions in thin film and hence improve the performance in relevant applications while eliminating high cost with the purpose of widespread usage. However, we also include the most recent hybrid architectures, which have potential to make a transformational change in surface applications as soon as high quality and large area production techniques are available. Hence, we present and discuss research studies regarding both organic and inorganic methods that are used to structure thin films that have potential for large-area and eco-friendly coatings.

  10. Simple model of surface roughness for binary collision sputtering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Sloan J. [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Hobler, Gerhard, E-mail: gerhard.hobler@tuwien.ac.at [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Maciążek, Dawid; Postawa, Zbigniew [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30348 Kraków (Poland)

    2017-02-15

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  11. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  12. General Separations Area (GSA) Groundwater Flow Model Update: Hydrostratigraphic Data

    Energy Technology Data Exchange (ETDEWEB)

    Bagwell, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Bennett, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-02-21

    This document describes the assembly, selection, and interpretation of hydrostratigraphic data for input to an updated groundwater flow model for the General Separations Area (GSA; Figure 1) at the Department of Energy’s (DOE) Savannah River Site (SRS). This report is one of several discrete but interrelated tasks that support development of an updated groundwater model (Bagwell and Flach, 2016).

  13. The reliability of three psoriasis assessment tools: Psoriasis area and severity index, body surface area and physician global assessment.

    Science.gov (United States)

    Bożek, Agnieszka; Reich, Adam

    2017-08-01

    A wide variety of psoriasis assessment tools have been proposed to evaluate the severity of psoriasis in clinical trials and daily practice. The most frequently used clinical instrument is the psoriasis area and severity index (PASI); however, none of the currently published severity scores used for psoriasis meets all the validation criteria required for an ideal score. The aim of this study was to compare and assess the reliability of 3 commonly used assessment instruments for psoriasis severity: the psoriasis area and severity index (PASI), body surface area (BSA) and physician global assessment (PGA). On the scoring day, 10 trained dermatologists evaluated 9 adult patients with plaque-type psoriasis using the PASI, BSA and PGA. All the subjects were assessed twice by each physician. Correlations between the assessments were analyzed using the Pearson correlation coefficient. Intra-class correlation coefficient (ICC) was calculated to analyze intra-rater reliability, and the coefficient of variation (CV) was used to assess inter-rater variability. Significant correlations were observed among the 3 scales in both assessments. In all 3 scales the ICCs were > 0.75, indicating high intra-rater reliability. The highest ICC was for the BSA (0.96) and the lowest one for the PGA (0.87). The CV for the PGA and PASI were 29.3 and 36.9, respectively, indicating moderate inter-rater variability. The CV for the BSA was 57.1, indicating high inter-rater variability. Comparing the PASI, PGA and BSA, it was shown that the PGA had the highest inter-rater reliability, whereas the BSA had the highest intra-rater reliability. The PASI showed intermediate values in terms of interand intra-rater reliability. None of the 3 assessment instruments showed a significant advantage over the other. A reliable assessment of psoriasis severity requires the use of several independent evaluations simultaneously.

  14. The triazine-based porous organic polymer: Novel synthetic strategy for high specific surface area

    International Nuclear Information System (INIS)

    Park, Jin Kuen

    2017-01-01

    A new type of microporous polymer has been successively synthesized via a simple polycondensation reaction with the 2,4-diaminotriazine moiety and dianhydride monomer. Diaminotriazine moieties in M1 especially can provide effective branching sites, resulting in high surface areas up to 1150 m"2 /g. In addition, the specific pore structure of the polyimide POP in its solid state can be modified by the surface activation method. Therefore, it can be expected that the resulting material will be a promising candidate for gas storage, and with this synthetic strategy, various type of derivatives will also be optimized

  15. The triazine-based porous organic polymer: Novel synthetic strategy for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Kuen [Dept. of Chemistry, Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2017-02-15

    A new type of microporous polymer has been successively synthesized via a simple polycondensation reaction with the 2,4-diaminotriazine moiety and dianhydride monomer. Diaminotriazine moieties in M1 especially can provide effective branching sites, resulting in high surface areas up to 1150 m{sup 2} /g. In addition, the specific pore structure of the polyimide POP in its solid state can be modified by the surface activation method. Therefore, it can be expected that the resulting material will be a promising candidate for gas storage, and with this synthetic strategy, various type of derivatives will also be optimized.

  16. Petroleum Hydrocarbon in Surface Sediment from Coastal Area of Putatan and Papar, Sabah

    International Nuclear Information System (INIS)

    Siti Aishah Mohd Ali; Rohana Tair; Yang, S.Z.; Masni Mohd Ali

    2013-01-01

    Total petroleum hydrocarbons (TPH) and percent total organic carbon (TOC) were investigated in surface sediments from coastal area of Papar and Putatan, Sabah. Samples were collected in five different stations in each area by using Ponar grab sampler. Samples were extracted with Soxhlet, concentrated and analyzed by using UV/ VIS spectrophotometer. The overall mean and range of TPH concentrations in the sediments from coastal area of Papar and Putatan were 1.95 (0.53-4.59 mg/ kg dw Miri crude oil equivalents) and 0.85 (0.26-1.64 mg/ kg dw Miri crude oil equivalents) respectively. Meanwhile, the TOC ranged from 0.81-2.32 % and 0.35-0.81 % respectively. Statistical analysis using Pearson correlation showed no significant differences between TPH and TOC (p<0.05) in both areas. (author)

  17. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  18. Modeling Surface Water Flow in the Atchafalaya Basin

    Science.gov (United States)

    Liu, K.; Simard, M.

    2017-12-01

    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  19. ENHANCED MODELING OF REMOTELY SENSED ANNUAL LAND SURFACE TEMPERATURE CYCLE

    Directory of Open Access Journals (Sweden)

    Z. Zou

    2017-09-01

    Full Text Available Satellite thermal remote sensing provides access to acquire large-scale Land surface temperature (LST data, but also generates missing and abnormal values resulting from non-clear-sky conditions. Given this limitation, Annual Temperature Cycle (ATC model was employed to reconstruct the continuous daily LST data over a year. The original model ATCO used harmonic functions, but the dramatic changes of the real LST caused by the weather changes remained unclear due to the smooth sine curve. Using Aqua/MODIS LST products, NDVI and meteorological data, we proposed enhanced model ATCE based on ATCO to describe the fluctuation and compared their performances for the Yangtze River Delta region of China. The results demonstrated that, the overall root mean square errors (RMSEs of the ATCE was lower than ATCO, and the improved accuracy of daytime was better than that of night, with the errors decreased by 0.64 K and 0.36 K, respectively. The improvements of accuracies varied with different land cover types: the forest, grassland and built-up areas improved larger than water. And the spatial heterogeneity was observed for performance of ATC model: the RMSEs of built-up area, forest and grassland were around 3.0 K in the daytime, while the water attained 2.27 K; at night, the accuracies of all types significantly increased to similar RMSEs level about 2 K. By comparing the differences between LSTs simulated by two models in different seasons, it was found that the differences were smaller in the spring and autumn, while larger in the summer and winter.

  20. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2009-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak x2122 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  1. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite, INRS, Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire, IRSN, Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette Cedex (France); Thomas, Dominique [Laboratoire des Sciences du Genie Chimique, LSGC/CNRS, Nancy Universite, BP 2041, 54001 Nancy Cedex (France)], E-mail: sebastien.bau@inrs.fr

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak{sup x2122} 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  2. Digital Modeling Phenomenon Of Surface Ground Movement

    OpenAIRE

    Ioan Voina; Maricel Palamariu; Iohan Neuner; Tudor Salagean; Dumitru Onose; Mircea Ortelecan; Anca Maria Moscovici; Mariana Calin

    2016-01-01

    With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations th...

  3. A program to compute the area of an irregular polygon on a spheroidal surface

    Digital Repository Service at National Institute of Oceanography (India)

    Sivakholundu, K.M.; Prabaharan, N.

    (MATLAB). Short Note824 lar shapes. The analytical integrations were carried out with the software package MATLAB on a SUN workstation. The comparisons were made to check: 1. The eC128ect of varying strip width for integration. 2. Variation of accuracy... this program can be used to calculate the area on the spheroidal surface for irregular shapes without losing accuracy. REFERENCES Bomford, G. (1977) Geodesy. Oxford University Press, 731 pp. Larkin, B. J. (1988) A FORTRAN 77 program to calcu- late areas...

  4. Surface and ground waters evaluation at Brazilian Multiproposed Reactor installation area

    International Nuclear Information System (INIS)

    Stellato, Thamiris B.; Silva, Tatiane B.S.C.da; Soares, Sabrina M.V.; Faustino, Mainara G.; Marques, Joyce R.; Oliveira, Cintia C. de; Monteiro, Lucilena R.; Pires, Maria A.F.; Cotrim, Marycel E.B.

    2017-01-01

    This study evaluates six surface and ground waters physicochemical characteristics on the area of the future Brazilian Multipurpose Reactor (RMB), at Iperó/SP. One of the main goals is to establish reference values for future operation monitoring programs, as well as for environmental permits and regulation. Considering analyzed parameters, all collection points presented values within CONAMA Resolution 396/08 and 357/05 regulation limits, showing similar characteristics among collection points.Only two points groundwater (RMB-005 and RMB-006) presented higher alkalinity, total dissolved solids and conductivity. The studied area was considered in good environmental conservation condition, as far as water quality is concerned. (author)

  5. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  6. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  7. A method of surface area measurement of fuel materials by fission gas release at low temperature

    International Nuclear Information System (INIS)

    Kaimal, K.N.G.; Naik, M.C.; Paul, A.R.; Venkateswarlu, K.S.

    1989-01-01

    The present report deals with the development of a method for surface area measurement of nuclear fuel as well as fissile doped materials by fission gas release study at low temperature. The method is based on the evaluation of knock-out release rate of fission 133 Xe from irradiated fuel after sufficient cooling to decay the short lived activity. The report also describes the fabrication of an ampoule breaker unit for such study. Knock-out release rate of 133 Xe has been studied from UO 2 powders having varying surface area 'S' ranging from 270 cm 2 /gm to 4100 cm 2 /gm at two fissioning rates 10 12 f/cm 3 . sec. and 3.2x10 10 f/cm.sec. A relation between K and A has been established and discussed in this report. (author). 6 refs

  8. [Adsorption behavior and influence factors of p-nitroaniline on high surface area activated carbons prepared from plant stems].

    Science.gov (United States)

    Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang

    2010-08-01

    Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.

  9. Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model

    International Nuclear Information System (INIS)

    Stotler, D.P.

    2005-01-01

    The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model

  10. Uptake of acetone, ethanol and benzene to snow and ice: effects of surface area and temperature

    International Nuclear Information System (INIS)

    Abbatt, J P D; Bartels-Rausch, T; Ullerstam, M; Ye, T J

    2008-01-01

    The interactions of gas-phase acetone, ethanol and benzene with smooth ice films and artificial snow have been studied. In one technique, the snow is packed into a cylindrical column and inserted into a low-pressure flow reactor coupled to a chemical-ionization mass spectrometer for gas-phase analysis. At 214 and 228 K, it is found for acetone and ethanol that the adsorbed amounts per surface area match those for adsorption to thin films of ice formed by freezing liquid water, when the specific surface area of the snow (as determined from Kr adsorption at 77 K) and the geometric surface area of the ice films are used. This indicates that freezing thin films of water leads to surfaces that are smooth at the molecular level. Experiments performed to test the effect of film growth on ethanol uptake indicate that uptake is independent of ice growth rate, up to 2.4 μm min -1 . In addition, traditional Brunauer-Emmett-Teller (BET) experiments were performed with these gases on artificial snow from 238 to 266.5 K. A transition from a BET type I isotherm indicative of monolayer formation to a BET type II isotherm indicative of multilayer uptake is observed for acetone at T≥263 K and ethanol at T≥255 K, arising from solution formation on the ice. When multilayer formation does not occur, as was the case for benzene at T≤263 K and for acetone at T≤255 K, the saturated surface coverage increased with increasing temperature, consistent with the quasi-liquid layer affecting adsorption prior to full dissolution/multilayer formation.

  11. Mathematical model of parking space unit for triangular parking area

    Science.gov (United States)

    Syahrini, Intan; Sundari, Teti; Iskandar, Taufiq; Halfiani, Vera; Munzir, Said; Ramli, Marwan

    2018-01-01

    Parking space unit (PSU) is an effective measure for the area size of a vehicle, including the free space and the width of the door opening of the vehicle (car). This article discusses a mathematical model for parking space of vehicles in triangular shape area. An optimization model for triangular parking lot is developed. Integer Linear Programming (ILP) method is used to determine the maximum number of the PSU. The triangular parking lot is in isosceles and equilateral triangles shape and implements four possible rows and five possible angles for each field. The vehicles which are considered are cars and motorcycles. The results show that the isosceles triangular parking area has 218 units of optimal PSU, which are 84 units of PSU for cars and 134 units of PSU for motorcycles. Equilateral triangular parking area has 688 units of optimal PSU, which are 175 units of PSU for cars and 513 units of PSU for motorcycles.

  12. n-Alkylamine-assisted preparation of a high surface area vanadyl phosphate/tetraethylorthosilicate nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, João Paulo L., E-mail: billbrujah@yahoo.com.br [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil); Zampronio, Elaine C.; Oliveira, Herenilton P. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14040-901 (Brazil)

    2013-02-15

    Graphical abstract: CuK{sub α} X-ray diffraction patterns of the VP, VPOc, VPOcT, VPOcT200 and VPOcT500. Highlights: ► TEOS and octylamine incorporation into the VP was achieved by expanding the lamellar. ► The specific surface area increased from 15 m{sup 2} g{sup −1} in VP to 237 m{sup 2} g{sup −1} in VPOcT. ► The VPOcT exhibited thermal resistance up to 200 °C in air. ► Upon thermal treatment up to 500 °C, the surface area increased to 838 m{sup 2} g{sup −1}. -- Abstract: We have developed a vanadyl phosphate/tetraethylorthosilicate (VPO/TEOS) nanocomposite comprised of silicate chains interleaved with VPO layers, prepared by using an n-alkylamines such as octylamine as the structure directing agent. The nanocomposites were synthesized by reacting amine-intercalated vanadyl phosphate with tetraethylorthosilicate via the soft chemistry approach. The synthetic procedure encompassed the exfoliation of the layered vanadyl ph