WorldWideScience

Sample records for surface amino groups

  1. OPA quantification of amino groups at the surface of lipidic nanocapsules (LNCs) for ligand coupling improvement.

    Science.gov (United States)

    Perrier, Thomas; Fouchet, Florian; Bastiat, Guillaume; Saulnier, Patrick; Benoît, Jean-Pierre

    2011-10-31

    Lipidic NanoCapsules (LNCs) were prepared via an emulsion phase inversion method. Nanoparticles with hydrodynamic diameter of 25, 50 and 100 nm were easily obtained. Their surfaces are covered with short PEG chains (PEG 660) which are not bearing any chemical reactivities. Thus, in order to overcome this handicap towards post-functionalization possibilities, post-insertion of DSPE-PEG2000 amino (DSPA) can be employed. In order to characterize the insertion step, we have developed a chemical assay for the quantification of amino group inside the PEG shell of LNCs. Subsequently, the post-insertion yield was found to be comprised between 60 and 90% whatever the hydrodynamic diameter of the LNCs is. By means of simple calculations, the density of amino group is estimated to be closed to 0.2 and 1.2 molecules/nm(2). The formulation of LNCs and their controlled functionalization represent an interesting system for the development of bionanoconjugates in a short and effective process. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface

    International Nuclear Information System (INIS)

    Durdureanu-Angheluta, A.; Dascalu, A.; Fifere, A.; Coroaba, A.; Pricop, L.; Chiriac, H.; Tura, V.; Pinteala, M.; Simionescu, B.C.

    2012-01-01

    This manuscript deals with the synthesis of new hydrophilic magnetite particles by employing a two-step method: in the first step magnetite particles with hydrophobic shell formed in presence of oleic acid–oleylamine complex through a synthesis in mass, without solvent, in a mortar with pestle were obtained; while in the second step the hydrophobic shell was interchanged with an aminosilane monomer. The influence of the Fe 2+ /Fe 3+ molar ratio on the dimension of the particles of high importance for their potential applications was carefully investigated. This paper, also presents an alternative method of synthesis of new core-shell magnetite particles and the complete study of their structure and morphology by FT-IR, XPS, TGA, ESEM and TEM techniques. The rheological properties and magnetization analysis of high importance for magnetic particles were also investigated. - Highlights: ► Magnetite particles are superparamagnetic materials. ► Magnetite has significant role in nanotechnology due to surface properties and applicability in physical and chemical processes. ► We used an ecological method of synthesis, a reaction in mass, without solvent, in a mortar with pestle. ► We prepared hydrophilic magnetite particles, precursors for biomedical applications.

  3. One-pot preparation of conducting composite containing abundant amino groups on electrode surface for electrochemical detection of von willebrand factor

    Science.gov (United States)

    Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang

    2018-03-01

    A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.

  4. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    Science.gov (United States)

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  5. Adsorption of amino acids on hydrophilic surfaces

    International Nuclear Information System (INIS)

    Paszti, Z; Keszthelyi, T; Hakkel, O; Guczi, L

    2008-01-01

    Sum frequency generation vibrational spectroscopy (SFG) is a powerful tool for in situ investigation of adsorption processes at biologically important solid-liquid interfaces. In this work adsorption of selected amino acids on fused silica, calcium fluoride and titanium dioxide substrates was studied by this technique. SFG spectra taken at the amino acid solution-fused SiO 2 interface revealed the lack of formation of any ordered adsorbate layer, regardless of whether acidic or other, e.g. aromatic, amino acids were used. Ex situ spectra (measured after drying the substrate) showed the formation and gradual growth of amino acid crystallites. In the case of CaF 2 , growth of randomly oriented aspartic acid crystallites was observed even at the solution-substrate interface. Finally, on the TiO 2 substrate, acidic amino acids formed a stable, uniform, more or less ordered coating, which remained unchanged even after drying the sample. On the other hand, non-acidic amino acids like phenylalanine showed very little affinity towards TiO 2 , emphasizing the role of the acidic side chain in the bonding to the substrate. The fact that formation of an amino acid overlayer was observed only on titanium dioxide is probably related to its biocompatibility property

  6. Electronic-state control of amino acids on semiconductor surfaces

    International Nuclear Information System (INIS)

    Oda, Masato; Nakayama, Takashi

    2005-01-01

    Electronic structures of amino acids on the Si(1 1 1) surfaces are investigated by using ab initio Hartree-Fock calculations. It is shown that among various polar amino acids, a histidine is the only one that can be positively ionized when hole carriers are supplied in the Si substrate, by transferring the hole charge from Si substrate to an amino acid. This result indicates that the ionization of a histidine, which will activate the protein functions, can be controlled electrically by producing amino acid/Si junctions

  7. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    Science.gov (United States)

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  8. Graphs, groups and surfaces

    CERN Document Server

    White, AT

    1985-01-01

    The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.

  9. Beauville Surfaces and Groups 2012

    CERN Document Server

    Garion, Shelly; Vdovina, Alina

    2015-01-01

    This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces. Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and, after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject. These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville Surfaces and Groups 2012’, held at Newcastle University, UK in June 2012. This conference brought toge...

  10. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    International Nuclear Information System (INIS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-01-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  11. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Hu, Wenhan; Li, Yi [Suzhou Faith & Hope Membrane Technology Co., Ltd., Suzhou, 215000 (China); Li, Xinsong, E-mail: lixs@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2016-11-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  12. Amino Alcohol Oxidation with Gold Catalysts: The Effect of Amino Groups

    Science.gov (United States)

    Villa, Alberto; Campisi, Sebastiano; Schiavoni, Marco; Prati, Laura

    2013-01-01

    Gold catalysts have been prepared by sol immobilization using Tetrakis(hydroxymethyl) phosphonium chloride (THPC) as a protective and reducing agent or by deposition on different supports (Al2O3, TiO2, MgAl2O4, and MgO). The catalytic systems have been tested in the liquid phase oxidation of aminoalcohols (serinol and ethanolamine) and the corresponding polyols (glycerol and ethylene glycol). This comparison allowed us to state that the presence of amino groups has a crucial effect on the catalytic performance, in particular decreasing the durability to the catalysts, but did not substantially vary the selectivity. A support effect has been as well established. PMID:28811408

  13. Temporary Conversion of Protein Amino Groups to Azides: A Synthetic Strategy for Glycoconjugate Vaccines.

    Science.gov (United States)

    Lipinski, Tomasz; Bundle, David R

    2015-01-01

    Conjugation of synthetic oligosaccharides and native polysaccharides to proteins is an important tool in glycobiology to create vaccines and antigens to screen lectins, toxins, and antibodies. A novel approach to potentiate and profile the immune response to vaccines involves targeting antigens directly to dendritic cells (DCs), the key cells engaged in the immunization process. Inclusion of a carbohydrate ligand recognized by C-type lectins expressed on their cell surface ensures targeting of vaccines to DCs and improved immunological responses. Here we describe a strategy that permits three sequential orthogonal conjugation reactions to prepare glycoconjugates and apply them to the synthesis of a conjugate vaccine that is targeted for uptake by DCs. The carrier protein is treated with an azo-transfer reagent to convert accessible amino groups to azide and then amide bond formation via reaction with carboxylic acid side chains is used to attach amino tether groups of a ligand to the protein. Azide-alkyne Huisgen cycloaddition conjugation, "click chemistry" is used to attach a second ligand equipped with a propargyl group or an analogous terminal alkyne, and following reduction of protein azide groups back to amine, these amino acid side chains can be subjected to amide formation such as reaction with succinimide esters or homobifunctional coupling reagents such as dialkyl squarate.

  14. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Leiqing; Cheng, Jun, E-mail: juncheng@zju.edu.cn; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-15

    Highlights: • Amino group was introduced to improve surface polarity of PDMS membrane. • The water contact angle of PDMS membrane decreased after the modification. • The concentration of N atom on surface of PDMS membrane reached up to ∼6%. • The density of PDMS membrane decreased while the swelling degree increased. • CO{sub 2} permeability increased while selectivity decreased after the modification. - Abstract: This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO{sub 2} permeability and decreased CO{sub 2}/H{sub 2} selectivity, CO{sub 2}/CH{sub 4} selectivity, and CO{sub 2}/N{sub 2} selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO{sub 2} permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  15. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    International Nuclear Information System (INIS)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-01-01

    Highlights: • Amino group was introduced to improve surface polarity of PDMS membrane. • The water contact angle of PDMS membrane decreased after the modification. • The concentration of N atom on surface of PDMS membrane reached up to ∼6%. • The density of PDMS membrane decreased while the swelling degree increased. • CO 2 permeability increased while selectivity decreased after the modification. - Abstract: This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO 2 permeability and decreased CO 2 /H 2 selectivity, CO 2 /CH 4 selectivity, and CO 2 /N 2 selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO 2 permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  16. Amphoteric surfactants containing ?-hydroxy ester group and an amino acid residue

    Directory of Open Access Journals (Sweden)

    Eissa, A. M. F.

    2006-09-01

    Full Text Available A series of amphoteric surfactants containing α-hydroxy ester group and an amino acid residue were prepared with the addition of epoxy derivatives (which were prepared from epoxidation of alkyl methacrylate to different types of amino acids (glycine, alanine, valine, isoleucine, phenylalanine, tyrosine, serine, threonine, aspartic and anthranilic acid.The structures of the prepared compounds were confirmed by infrared spectra, proton magnetic resonance spectra, Mass spectra and elementary analysis. Surface tension, Kraft point, foaming power, critical micelle concentration emulsion and Ca++ stabilities were determined. Antimicrobial activity and biodegradability were also screened.Se prepararon una serie de tensioactivos anfóteros conteniendo un grupo alfa hidroxi éster y un residuo de aminoácido por adición de derivados epoxy (obtenidos mediante epoxidación de metacrilato de alquilo a diferentes tipos de aminoácidos (glicina, alanina, valina, isoleucina, fenilalanina, tirosina, serina, treonina y ácidos aspártico y antranílico. Las estructuras de los compuestos preparados se confirmaron por los espectros de infrarrojo, de masa, resonancia magnética nuclear de protones y análisis elemental. Se determinaron la tensión superficial, el punto de Kraft, el poder espumante, la concentración micelar crítica en emulsión y las estabilidades de Ca++. También se estudiaron la actividad antimicrobiana y la biodegradabilidad.

  17. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    Science.gov (United States)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-01

    This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO2 permeability and decreased CO2/H2 selectivity, CO2/CH4 selectivity, and CO2/N2 selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO2 permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  18. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  19. Increased resistance of peptides to serum proteases by modification of their amino groups.

    Science.gov (United States)

    Galati, Rossella; Verdina, Alessandra; Falasca, Giuliana; Chersi, Alberto

    2003-01-01

    The ability of synthetic protein fragments to survive the degradative action of aminopeptidases and serum proteolytic enzymes can be remarkably enhanced by slight modifications at their N-terminal alpha-amino group. This can be achieved by addition of beta-alanine or amino acids of the D-configuration, amino acids which are seldom found in a living organism. These modifications do scarcely modify the chemical and physical properties of the peptides, and should be preferred, especially for in vivo tests, to drastic alterations of peptides as produced by dinitrophenylation or dansylation of the amino groups.

  20. Investigating the parameters affecting the adsorption of amino acids onto AgCl nanoparticles with different surface charges.

    Science.gov (United States)

    Absalan, Ghodratollah; Ghaemi, Maryam

    2012-11-01

    In this paper, adsorption behaviors of typical neutral (alanine), acidic (glutamic acid) and basic (lysine) amino acids onto the surfaces of neutral as well as positively and negatively charged silver chloride nanoparticles were examined. Silver chloride nanoparticles with different charges and different water content were synthesized by reverse micelle method. The adsorptions of the above mentioned amino acids onto the surfaces of differently charged silver chloride nanoparticles were found to depend strongly on various parameters including pH of the aqueous solution, type of amino acid, water to surfactant mole ratio, and type of charges on the surfaces of silver chloride nanoparticles. It was found that the interaction of -NH(3) (+) groups of the amino acids with silver ion could be a driving force for adsorption of amino acids. Alanine and Glutamic acid showed almost similar trend for being adsorbed on the surface of silver chloride nanoparticles. Electrostatic interaction, hydrophobicity of both nanoparticle and amino acid, complex formation between amine group and silver ion, interaction between protonated amine and silver ion as well as the number of nanoparticles per unit volume of solution were considered for interpreting the observed results.

  1. Surface coverage dictates the surface bio-activity of D-amino acid oxidase.

    Science.gov (United States)

    Herrera, Elisa; Giacomelli, Carla E

    2014-05-01

    This work presents a systematic study on the relationship between the adsorption mechanism and the surface bio-activity of D-amino acid oxidase (pkDAAO). This rational approach is based on measuring the characteristic filling and relaxation times under different experimental conditions. With such a goal, real-time adsorption-desorption experiments at different degrees of surface coverage were performed tuning the electrostatic and hydrophobic interactions by changing the pH condition for the adsorption and the substrate properties (silica or gold). Surface bio-activity was measured in situ by amperometry using the bio-functional surface as the working electrode and ex situ by spectrophotometry. On both solid substrates, pkDAAO adsorption is a transport-controlled process, even under unfavorable electrostatic interactions (charged protein and substrate with the same sign) due to the high percentage of basic amino acids in the enzyme. On silica, the relaxation step is electrostatic in nature and occurs in the same time-scale as filling the surface when the substrate and the enzyme are oppositely charged at low surface coverage. Under unfavorable electrostatic conditions, the relaxation (if any) occurs at long time. Accordingly, the bio-activity of the native pkDAAO is preserved at any surface coverage. On gold, this step is driven by hydrophobic interactions (pH-independent) and the surface bio-activity is highly dependent on the degree of surface coverage. Under these conditions, the surface bio-activity is preserved only at high surfaces coverage. Our results clearly indicate that pkDAAO bio-functionalized surfaces cannot be coupled to amperometry because the analyte interferes the electrochemical signal. However, this simple bio-functionalized strategy can be joined to other detection methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multi-walled carbon nanotubes (MWCNTs) functionalized with amino groups by reacting with supercritical ammonia fluids

    International Nuclear Information System (INIS)

    Shao Lu; Bai Yongping; Huang Xu; Gao Zhangfei; Meng Linghui; Huang Yudong; Ma Jun

    2009-01-01

    For the first time, supercritical ammonia fluid was utilized to simply functionalize multi-walled carbon nanotube (MWCNT) with amino groups. The successful amino functionalization of MWCNTs was proven and the physicochemical properties of MWCNTs before and after supercritical ammonia fluids modifications were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM) and Raman spectroscopy. The results also indicated that the supercritical ammonia fluids had the visible effects on the nanostructure of carbon nanotubes. Our novel modification approach provides an easy way to modify MWCNTs with amino groups, which is very useful for realizing 'carbon nanotube economy' in the near future.

  3. Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach

    International Nuclear Information System (INIS)

    Vanossi, Davide; Benassi, Rois; Parenti, Francesca; Tassinari, Francesco; Giovanardi, Roberto; Florini, Nicola; De Renzi, Valentina; Arnaud, Gaelle; Fontanesi, Claudio

    2012-01-01

    Highlights: ► Glassy carbon is functionalized via electrochemical assisted grafting of amino acids. ► The grafting mechanism is suggested to involve the “zwitterionic” species. ► DFT calculations allowed to determine the electroactive species. ► An original grafting mechanism is proposed. - Abstract: Glassy carbon (GC) electrode surfaces are functionalized through electrochemical assisted grafting, in oxidation regime, of six amino acids (AA): β-alanine (β-Ala), L-aspartic acid (Asp), 11-aminoundecanoic acid (UA), 4-aminobenzoic acid (PABA), 4-(4-amino-phenyl)-butyric acid (PFB), 3-(4-amino-phenyl)-propionic acid (PFP). Thus, a GC/AA interface is produced featuring carboxylic groups facing the solution. Electrochemical (cyclic voltammetry and electrochemical impedance spectroscopy) and XPS techniques are used to experimentally characterize the grafting process and the surface state. The theoretical results are compared with the experimental evidence to determine, at a molecular level, the overall grafting mechanism. Ionization potentials, standard oxidation potentials, HOMO and electron spin distributions are calculated at the CCD/6-31G* level of the theory. The comparison of experimental and theoretical data suggests that the main electroactive species is the “zwitterionic” form for the three aliphatic amino acids, while the amino acids featuring the amino group bound to the phenyl aromatic moiety show a different behaviour. The comparison between experimental and theoretical results suggests that both the neutral and the zwitterionic forms are present in the acetonitrile solution in the case of 4-(4-amino-phenyl)-butyric acid (PFB) and 3-(4-amino-phenyl)-propionic acid.

  4. Estimation of Physical Properties of Amino Acids by Group-Contribution Method

    DEFF Research Database (Denmark)

    Jhamb, Spardha Virendra; Liang, Xiaodong; Gani, Rafiqul

    2018-01-01

    In this paper, we present group-contribution (GC) based property models for estimation of physical properties of amino acids using their molecular structural information. The physical properties modelled in this work are normal melting point (Tm), aqueous solubility (Ws), and octanol....../water partition coefficient (Kow) of amino acids. The developed GC-models are based on the published GC-method by Marrero and Gani (J. Marrero, R. Gani, Fluid Phase Equilib. 2001, 183-184, 183-208) with inclusion of new structural parameters (groups and molecular weight of compounds). The main objective...... of introducing these new structural parameters in the GC-model is to provide additional structural information for amino acids having large and complex structures and thereby improve predictions of physical properties of amino acids. The group-contribution values were calculated by regression analysis using...

  5. Surface Functionalization of Piezoelectric Aluminum Nitride with Selected Amino Acid and Peptides

    Science.gov (United States)

    Chan, Edmund Ho Man

    In the present contribution, we elaborate on the covalent attachment of the amino acid cysteine and selected cysteine-bearing peptides, in aqueous buffered media, onto AlN surfaces modified with adlayers of one of our homemade bifunctional alkyltrichlorosilane cross-linking molecules bearing the benzenethiosulfonate head group. Surface characterizations confirmed the successful covalent immobilization of cysteine in buffered media, whereas the attachment of the peptides proved to be difficult as the undesired partial destruction of the adlayer on AlN by hydrolysis in aqueous/buffered solvent systems, which was confirmed in a separate study, appeared to have interfered with the covalent attachment and resulted in one of the peptides failing to immobilize. Future directions from this will focus on optimizing the solvent conditions for the cysteine/peptide immobilizations and the implementation of the surface chemistry to the covalent functionalization of AlN with biologically significant protein fragments, among them the antigen-binding fragment of antibodies.

  6. Two dialkylammonium salts of 2-amino-4-nitrobenzoic acid: crystal structures and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2016-12-01

    Full Text Available The crystal structures of two ammonium salts of 2-amino-4-nitrobenzoic acid are described, namely dimethylazanium 2-amino-4-nitrobenzoate, C2H8N+·C7H5N2O4−, (I, and dibutylazanium 2-amino-4-nitrobenzoate, C8H20N+·C7H5N2O4−, (II. The asymmetric unit of (I comprises a single cation and a single anion. In the anion, small twists are noted for the carboxylate and nitro groups from the ring to which they are connected, as indicated by the dihedral angles of 11.45 (13 and 3.71 (15°, respectively; the dihedral angle between the substituents is 7.9 (2°. The asymmetric unit of (II comprises two independent pairs of cations and anions. In the cations, different conformations are noted in the side chains in that three chains have an all-trans [(+-antiperiplanar] conformation, while one has a distinctive kink resulting in a (+-synclinal conformation. The anions, again, exhibit twists with the dihedral angles between the carboxylate and nitro groups and the ring being 12.73 (6 and 4.30 (10°, respectively, for the first anion and 8.1 (4 and 12.6 (3°, respectively, for the second. The difference between anions in (I and (II is that in the anions of (II, the terminal groups are conrotatory, forming dihedral angles of 17.02 (8 and 19.0 (5°, respectively. In each independent anion of (I and (II, an intramolecular amino-N—H...O(carboxylate hydrogen bond is formed. In the crystal of (I, anions are linked into a jagged supramolecular chain by charge-assisted amine-N—H...O(carboxylate hydrogen bonds and these are connected into layers via charge-assisted ammonium-N—H...O(carboxylate hydrogen bonds. The resulting layers stack along the a axis, being connected by nitro-N—O...π(arene and methyl-C—H...O(nitro interactions. In the crystal of (II, the anions are connected into four-ion aggregates by charge-assisted amino-N—H...O(carboxylate hydrogen bonding. The formation of ammonium-N—H...O(carboxylate hydrogen bonds, involving

  7. Osteoblast response to the surface of amino acid-functionalized hydroxyapatite.

    Science.gov (United States)

    Lee, Wing-Hin; Loo, Ching-Yee; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2015-06-01

    Interactions between proteins and the surface of biomaterials are crucial for the biological function and success of materials implanted in the human body. In this study, hydroxyapatite (HA) with negative and positive surface charges were fabricated by functionalizing the HA surface with acidic or basic amino acids. The influence of HA surface charge on protein adsorption and cell activities was studied. The crystallinity, morphology, and surface charge of amino acid-functionalized HA (AA-HA) particles and the stability of amino acids on the HA surface were determined. Both AA-HA and unmodified HA were studied for their capacity to adsorb proteins present in biological medium. The results showed that the presence of glutamic acid; Glu (acidic amino acids) and arginine; Arg (basic amino acids) on the HA surface resulted in higher protein adsorption owing to stronger electrostatic attraction between the HA particles and the proteins in medium. Functionalizing HA with Glu and Arg significantly promoted osteoblast adhesion on the surface of treated HA. No significant differences in cell proliferation between negatively and positively charged HA was observed. Significantly higher alkaline phosphatase (ALP) activity of osteoblasts on both charged surfaces was seen as compared to the unmodified HA. The study demonstrated that immobilization of amino acids (Glu and Arg) on the surface of HA promoted osteoblast proliferation and ALP activity. © 2014 Wiley Periodicals, Inc.

  8. Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor

    Science.gov (United States)

    Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...

  9. Study of radical processes in amino acids and peptides containing thioether group induced by hydroxyl radicals

    International Nuclear Information System (INIS)

    Pogocki, D.M.

    1996-01-01

    Results of investigations of the OH-induced oxidation of amino acids and peptides containing thioether group are presented. Experiments have been carried out over pH range (0-10.5), employing pulse radiolysis and steady-state γ-radiolysis together with a gas-chromatography (GC), a high-performance ionic chromatography (HPICE), and electron spin resonance (ESR) techniques. A general OH-induced oxidation mechanism of these compounds has been proposed, with a hydroxysulfuranyl radical as a primary product formed by an addition of a hydroxyl radical to the thioether group. Secondary reactions of hydroxysulfuranyl radical are dependent on the geometry of the amino acid/peptide molecule, the number of functionalities and on the concentration of the amino acid/peptide and protons in the solutions. Transient products have been identified spectroscopically together with kinetic parameters of some radical reactions. Carbon dioxide acetaldehyde have been also identified as a final products. (author)

  10. Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry.

    Science.gov (United States)

    Brisson, Emma R L; Xiao, Zeyun; Franks, George V; Connal, Luke A

    2017-01-09

    The copolymerization of N-isopropylacrylamide (NiPAm) with aldehyde functional monomers facilitates postpolymerization functionalization with amino acids via reductive amination, negating the need for protecting groups. In reductive amination, the imine formed from the condensation reaction between an amine and an aldehyde is reduced to an amine. In this work, we categorize amino acids into four classes based on the functionality of their side chains (acidic, polar neutral, neutral, and basic) and use their amine groups in condensation reactions with aldehyde functional polymers. The dynamic nature of the imine as well as the versatility of reductive amination to functionalize a polymer with a range of amino acids is highlighted. In this manner, amino acid functional polymers are synthesized without the use of protecting groups with high yields, demonstrating the high functional group tolerance of carbonyl condensation chemistry and the subsequent reduction of the imine. Prior to the reduction of the imine bond, transimination reactions are used to demonstrate dynamic polymers that shuffle from a glycine- to a histidine-functional polymer.

  11. Study of amino acid disorders among a high risk group of Egyptian ...

    African Journals Online (AJOL)

    Aim of the work: The present work aimed at investigating infants (In neonatal and post neonatal period) and children suspected of having inborn errors of metabolism with unexplained mental retardation. The frequency pattern of the various amino acid disorders, in a group of selected infants and children was done to ...

  12. Synthesis of peptides using tert-butyloxycarbonyl (Boc) as the α-amino protection group

    DEFF Research Database (Denmark)

    Pedersen, Søren W; Armishaw, Christopher J; Strømgaard, Kristian

    2013-01-01

    The use of the tert-butyloxycarbonyl (Boc) as the Nα-amino protecting group in peptide synthesis can be advantageous in several cases, such as synthesis of hydrophobic peptides and peptides containing ester and thioester moieties. The primary challenge of using Boc SPPS is the need for treatment...

  13. A new achiral reagent for the incorporation of multiple amino groups into oligonucleotides

    DEFF Research Database (Denmark)

    Behrens, Carsten; Petersen, Kenneth H.; Egholm, Michael

    1995-01-01

    The synthesis of a new functionalized achiral linker reagent (10) for the incorporation of multiple primary amino groups into oligonucleotides is described. The linker reagent is compatible with conventional DNA-synthesis following the phosphoramidite methodology, and the linker can be incorporated...

  14. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups

    Science.gov (United States)

    Zhang, Lei; Wang, Qiaoyi

    2018-03-01

    We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.

  15. Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups

    OpenAIRE

    Crisp, John; Wiest, Bert

    2003-01-01

    We prove by explicit construction that graph braid groups and most surface groups can be embedded in a natural way in right-angled Artin groups, and we point out some consequences of these embedding results. We also show that every right-angled Artin group can be embedded in a pure surface braid group. On the other hand, by generalising to right-angled Artin groups a result of Lyndon for free groups, we show that the Euler characteristic -1 surface group (given by the relation x^2y^2=z^2) nev...

  16. Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group.

    Science.gov (United States)

    Hu, Yunxia; Zhang, Jun; Yu, Chunwei; Li, Qing; Dong, Fang; Wang, Gang; Guo, Zhanyong

    2014-09-01

    A series of novel inulin derivatives were synthesized via reaction of chloracetyl inulin (CAIL) with amino-pyridines, including 2-(2-amino-pyridyl)acetyl inulin chloride (2APAIL), 2-(3-amino-pyridyl)acetyl inulin chloride (3APAIL), 2-(4-amino-pyridyl)acetyl inulin chloride (4APAIL), 2-(2,3-diamino-pyridyl)acetyl inulin chloride (2,3DAPAIL), and 2-(3,4-diamino-pyridyl)acetyl inulin (3,4DAPAIL). The antioxidant property of the products and 2-pyridylacetyl inulin chloride (PAIL) against hydroxyl radicals (·OH), superoxide radicals (O2·), and DPPH radicals (DPPH·) were evaluated in vitro, respectively. Results showed that 4APAIL and 3,4DAPAIL exhibited remarkable improvement on scavenging ·OH and DPPH·, which can scavenge the radical of OH completely at 0.4 mg/mL. Besides, the scavenging activity of 2,3DAPAIL to O2· was excellent among all of the tested samples, reaching 85% at 1.6 mg/mL. These data indicate that all of the inulin derivatives have better antioxidant activities than inulin, and the scavenging effect indices are affected by the number and position of the amino group on pyridine grafted to the inulin derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Solubility of amino acids: a group-contribution model involving phase and chemical equilibria

    OpenAIRE

    Pinho, Simão; Silva, Carlos M.; Macedo, Eugénia A.

    1994-01-01

    A new model is proposed to represent the solubility behavior of 14 amino acids and 5 small peptides in water. The UNIFAC model is combined with a Debye-Huckel term to describe the activity coefficients of the species present in the biomolecule/water system. New groups have been defined according to the group-contribution concept, and chemical equilibrium is taken into account simultaneously with the physical equilibrium. To estimate the new interaction parameters, molal activity coefficien...

  18. Hydrazinium 2-amino-4-nitrobenzoate dihydrate: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2017-04-01

    Full Text Available In the anion of the title salt hydrate, H5N2+·C7H5N2O4−·2H2O, the carboxylate and nitro groups lie out of the plane of the benzene ring to which they are bound [dihedral angles = 18.80 (10 and 8.04 (9°, respectively], and as these groups are conrotatory, the dihedral angle between them is 26.73 (15°. An intramolecular amino-N—H...O(carboxylate hydrogen bond is noted. The main feature of the crystal packing is the formation of a supramolecular chain along the b axis, with a zigzag topology, sustained by charge-assisted water-O—H...O(carboxylate hydrogen bonds and comprising alternating twelve-membered {...OCO...HOH}2 and eight-membered {...O...HOH}2 synthons. Each ammonium-N—H atom forms a charge-assisted hydrogen bond to a water molecule and, in addition, one of these forms a hydrogen bond with a nitro-O atom. The amine-N—H atoms form hydrogen bonds to carboxylate-O and water-O atoms, and the amine N atom accepts a hydrogen bond from an amino-H atom. The hydrogen bonds lead to a three-dimensional architecture. An analysis of the Hirshfeld surface highlights the major contribution of O...H/H...O hydrogen bonding to the overall surface, i.e. 46.8%, compared with H...H contacts (32.4%.

  19. Mathematical Characterization of Protein Sequences Using Patterns as Chemical Group Combinations of Amino Acids.

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar Das

    Full Text Available Comparison of amino acid sequence similarity is the fundamental concept behind the protein phylogenetic tree formation. By virtue of this method, we can explain the evolutionary relationships, but further explanations are not possible unless sequences are studied through the chemical nature of individual amino acids. Here we develop a new methodology to characterize the protein sequences on the basis of the chemical nature of the amino acids. We design various algorithms for studying the variation of chemical group transitions and various chemical group combinations as patterns in the protein sequences. The amino acid sequence of conventional myosin II head domain of 14 family members are taken to illustrate this new approach. We find two blocks of maximum length 6 aa as 'FPKATD' and 'Y/FTNEKL' without repeating the same chemical nature and one block of maximum length 20 aa with the repetition of chemical nature which are common among all 14 members. We also check commonality with another motor protein sub-family kinesin, KIF1A. Based on our analysis we find a common block of length 8 aa both in myosin II and KIF1A. This motif is located in the neck linker region which could be responsible for the generation of mechanical force, enabling us to find the unique blocks which remain chemically conserved across the family. We also validate our methodology with different protein families such as MYOI, Myosin light chain kinase (MLCK and Rho-associated protein kinase (ROCK, Na+/K+-ATPase and Ca2+-ATPase. Altogether, our studies provide a new methodology for investigating the conserved amino acids' pattern in different proteins.

  20. Investigation and kinetic evaluation of the reactions of hydroxymethylfurfural with amino and thiol groups of amino acids.

    Science.gov (United States)

    Hamzalıoğlu, Aytül; Gökmen, Vural

    2018-02-01

    In this study, reactions of hydroxymethylfurfural (HMF) with selected amino acids (arginine, cysteine and lysine) were investigated in HMF-amino acid (high moisture) and Coffee-amino acid (low moisture) model systems at 5, 25 and 50°C. The results revealed that HMF reacted efficiently and effectively with amino acids in both high and low moisture model systems. High-resolution mass spectrometry (HRMS) analyses of the reaction mixtures confirmed the formations of Michael adduct and Schiff base of HMF with amino acids. Calculated pseudo-first order reaction rate constants were in the following order; k Cysteine >k Arginine >k Lysine for high moisture model systems. Comparing to these rate constants, the k Cysteine decreased whereas, k Arginine and k Lysine increased under the low moisture conditions of Coffee-amino acid model systems. The temperature dependence of the rate constants was found to obey the Arrhenius law in a temperature range of 5-50°C under both low and high moisture conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase.

    Science.gov (United States)

    Liu, Siyu; Zhao, Ning; Cheng, Zhen; Liu, Hongguang

    2015-04-21

    Amino-functionalized fluorescent carbon dots have been prepared by hydrothermal treatment of glucosamine with excess pyrophosphate. The produced carbon dots showed stabilized green emission fluorescence at various excitation wavelengths and pH environments. Herein, we demonstrate the surface energy transfer between the amino-functionalized carbon dots and negatively charged hyaluronate stabilized gold nanoparticles. Hyaluronidase can degrade hyaluronate and break down the hyaluronate stabilized gold nanoparticles to inhibit the surface energy transfer. The developed fluorescent carbon dot/gold nanoparticle system can be utilized as a biosensor for sensitive and selective detection of hyaluronidase by two modes which include fluorescence measurements and colorimetric analysis.

  2. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Farzin; Nouranian, Sasan, E-mail: sasan@olemiss.edu; Mahdavi, Mina [University of Mississippi, Department of Chemical Engineering (United States); Al-Ostaz, Ahmed [University of Mississippi, Department of Civil Engineering (United States)

    2016-11-15

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (−16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (−13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (−7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  3. Grouping pursuit through a regularization solution surface.

    Science.gov (United States)

    Shen, Xiaotong; Huang, Hsin-Cheng

    2010-06-01

    Extracting grouping structure or identifying homogenous subgroups of predictors in regression is crucial for high-dimensional data analysis. A low-dimensional structure in particular-grouping, when captured in a regression model, enables to enhance predictive performance and to facilitate a model's interpretability Grouping pursuit extracts homogenous subgroups of predictors most responsible for outcomes of a response. This is the case in gene network analysis, where grouping reveals gene functionalities with regard to progression of a disease. To address challenges in grouping pursuit, we introduce a novel homotopy method for computing an entire solution surface through regularization involving a piecewise linear penalty. This nonconvex and overcomplete penalty permits adaptive grouping and nearly unbiased estimation, which is treated with a novel concept of grouped subdifferentials and difference convex programming for efficient computation. Finally, the proposed method not only achieves high performance as suggested by numerical analysis, but also has the desired optimality with regard to grouping pursuit and prediction as showed by our theoretical results.

  4. DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers

    Science.gov (United States)

    Vandeventer, Peter E.; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S.; Niemz, Angelika

    2014-01-01

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed, and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction. PMID:23931415

  5. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces.

    Science.gov (United States)

    Ullien, Daniela; Thüne, Peter C; Jager, Wolter F; Sudhölter, Ernst J R; de Smet, Louis C P M

    2014-09-28

    4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2-7 nm, which indicate multilayer formation. Decreasing the diazonium salt concentration and the reaction time resulted in a smaller layer thickness, but did not prevent the formation of multilayers. It was demonstrated, mainly by X-ray photoelectron spectroscopy (XPS), that the diazonium salts not only react with the H-terminated Si surface, but also with electrografted phenyl groups via azo-bond formation. These azo bonds can be electrochemically reduced at Ered = -1.5 V, leading to the corresponding amino groups. This reduction resulted in a modest decrease in layer thickness, and did not yield monolayers. This indicates that other coupling reactions, notably a biphenyl coupling, induced by electrochemically produced phenyl radicals, take place as well. In addition to the azo functionalities, the nitro functionalities in electrografted layers of 4-NBD were independently reduced to amino functionalities at a lower potential (Ered = -2.1 V). The presence of amino functionalities on fully reduced layers, both from 4-NBD- and 4-BBD-modified Si, was shown by the presence of fluorine after reaction with trifluoroacetic anhydride (TFAA). This study shows that the electrochemical reduction of azo bonds generates amino functionalities on layers produced by electrografting of aryldiazonium derivatives. In this way multifunctional layers can be formed by employing functional aryldiazonium salts, which is believed to be very practical in the fabrication of sensor platforms, including those made of multi-array silicon nanowires.

  6. Calcium binding by human erythrocyte membranes. Significance of carboxyl, amino and thiol groups.

    Science.gov (United States)

    Forstner, J; Manery, J F

    1971-11-01

    1. The role of the ionized carboxyl groups of proteins of the erythrocyte membrane as Ca(2+) receptor sites was investigated. A water-soluble carbodi-imide [1-cyclohexyl-3-(2-morpholinoethyl)carbodi-imide methotoluene-p-sulphonate], referred to as carbodi-imide reagent, and glycine methyl ester were used to modify the free carboxyl groups of the membrane. The degree of modification was estimated from amino acid analyses, which showed the amount of glycine incorporated. As the concentration of carbodi-imide reagent was raised (0.1-0.4m) incorporation of glycine increased and Ca(2+) binding decreased by about 77%. At 0.4m-carbodi-imide reagent all of the binding of Ca(2+) to protein was abolished and it was estimated that about 37% of the side-chain carboxyl groups of aspartic acid plus glutamic acid had been blocked by glycine. 2. Acetylation of all of the free amino groups was achieved by incubating the erythrocyte ;ghosts' at pH10.3 with acetic anhydride (10-15mg/10mg of ;ghost' protein). Acetylation increased by 1.5-fold the capacity of the ;ghost' to bind Ca(2+), indicating that the remaining carboxyl groups of aspartic acid and glutamic acid were made available for Ca(2+) binding by this procedure. These findings support the concept that in normal ;ghosts', at pH7.4, Ca(2+) binding to free carboxyl groups is partially hindered by the presence of charged amino groups. 3. Treatment of ;ghosts' with N-acetylneuraminidase, which removed 94% of sialic acid residues, and treatment with 1mm-p-chloromercuribenzoate did not alter Ca(2+) binding. The major effect of 5.8mm-p-chloromercuribenzoate upon ;ghosts' was to cause a solubilization of a calcium-membrane complex, which included about one-third of the ;ghost' protein. The molar ratio of Ca(2+): protein in the solubilized material was the same as that in the intact (untreated) ;ghosts'.

  7. Recovery of uranium by tannin immobilized on matrices which have amino group

    International Nuclear Information System (INIS)

    Nakajima, Akira; Sakaguchi, Takashi

    1990-01-01

    Tannin, which contains polyhydroxy groups, has a high affinity for uranium. Various tannin-protein complexes were prepared to develop new adsorbents for uranium recovery from seawater. Albumin tannate has a high ability to adsorb uranium from seawater. Tannin was immobilized on matrices which have multiple active amino groups, such as aminopolystyrene and poly(vinyl-4,6-diamino-s-triazine)-poly VT. Of these complexes, tannin immobilized on poly VT adsorbed uranium most efficiently from seawater and highly selectively from a solution containing various heavy metals: the uranium adsorption was very rapid and was pH dependent. This adsorbent therefore appears to have potential for use in a commercial process for uranium recovery from seawater or from uranium-containing waste water. (author)

  8. Synthesis of Novel Cellulose Carbamates Possessing Terminal Amino Groups and Their Bioactivity.

    Science.gov (United States)

    Ganske, Kristin; Wiegand, Cornelia; Hipler, Uta-Christina; Heinze, Thomas

    2016-03-01

    Cellulose phenyl carbonates are an excellent platform to synthesize a broad variety of soluble and functional cellulose carbamates. In this study, the synthesis of cellulose carbamates with terminal amino groups, namely ω-aminoethylcellulose- and ω-aminoethyl-p-aminobenzyl-cellulose carbamate, is discussed. The products are well soluble and their structures can be clearly described by NMR spectroscopy. The cellulose carbamates exhibit a bactericide and fungicide activity in vitro. The ω-aminoethylcellulose carbamate possesses a strong activity against Candida albicans and Staphylococcus aureus (IC50 of 0.02 mg mL(-1) and 0.05 mg mL(-1)). The antimicrobial activity and cytotoxicity can be improved by p-amino-benzylamine (ABA) as an additional substituent. The mixed cellulose carbamate exhibits a high biocompatibility (LC50 of 3.18 mg mL(-1)) and forms films on cotton and PES, which exhibit a strong activity against S. aureus and Klebsiella pneumoniae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The assignment of dissociative electron attachment bands in compounds containing hydroxyl and amino groups

    International Nuclear Information System (INIS)

    Skalicky, Tomas; Allan, Michael

    2004-01-01

    Dissociative electron attachment (DEA) spectra were recorded for methanol, phenol, diethylamine, tetramethylhydrazine, piperazine, pyrrole and N,N-dimethylaniline. Comparison with He I photoelectron spectra permitted the assignment of virtually all DEA bands in the saturated compounds to core excited Feshbach resonances with double occupation of Rydberg-like orbitals and various Koopmans' states of the positive ion as a core. These resonances shift to lower energies with alkyl substitution, in contrast to the shape resonances, and are found at surprisingly low energies in the amines. The DEA spectra in the unsaturated compounds show no or only weak evidence for the Rydberg-type Feshbach resonances. It is proposed that DEA in saturated polyatomic molecules containing hydroxyl and amino groups is in general dominated by this type of resonance

  10. Antifungal activities of pradimicin derivatives modified at C4'-amino group.

    Science.gov (United States)

    Kamachi, H; Okuyama, S; Hirano, M; Masuyoshi, S; Konishi, M; Oki, T

    1993-08-01

    In order to explore potent derivatives of pradimicins (PRMs), modification of their C4'-amino group was carried out. 4'-N-Cyano (1,2), 4'-deamino-4'-nitroguanidino (4), 4'-deamino-4'-ureido (7-9) and 4'-deamino-4'-thioureido (10) derivatives were synthesized by trimethylsilylation of PRMs A and C, followed by condensation with appropriate reagents. 4'-Deamino-4'-guanidino (5) and 4'-deamino-4'-amidino (6) derivatives were synthesized by catalytic hydrogenation of 4 and 2, respectively. 4'-N-Nitroso derivative 3 was prepared by treatment of PRM A with nitrous acid. Among these compounds, the 4'-N-cyano derivative of PRM C (2) exhibited in vitro and in vivo antifungal activities comparable to the parent compounds together with good water-solubility.

  11. [Amino acid and peptide derivatives of the tylosin family of macrolide antibiotics modified at the aldehyde group].

    Science.gov (United States)

    Sumbatian, N V; Kuznetsova, I V; Karpenko, V V; Fedorova, N V; Chertkov, V A; Korshunova, G A; Bogdanov, A A

    2010-01-01

    Fourteen new functionally active amino acid and peptide derivatives of the antibiotics tylosin, desmycosin, and 5-O-mycaminosyltylonolide were synthesized in order to study the interaction of the growing polypeptide chain with the ribosomal tunnel. The conjugation of various amino acids and peptides with a macrolide aldehyde group was carried out by two methods: direct reductive amination with the isolation of the intermediate Schiff bases or through binding via oxime using the preliminarily obtained derivatives of 2-aminooxyacetic acid.

  12. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    International Nuclear Information System (INIS)

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-01-01

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  13. On the Search for the Amino Acids on the Lunar Surface as it Relates to Other Extraterrestrial Bodies

    Science.gov (United States)

    Hoover, Richard B.; Kolb, Vera M.

    2009-01-01

    The early search for the amino acids on the lunar surface fines indicated such a low amount of the amino acids that it was deemed insignifi cant. While the later studies seemed to depart in some ways from the earlier results, they were not pursued. In this paper we critically ev aluate the results from the Apollo missions from the new perspective with considerations of the sensitivity of the instrumentation availabl e at the time. We discuss the possible relevance of the lunar results to the findings of the amino acids on the surfaces of other extraterrestrial bodies, such as Mars.

  14. A single amino acid substitution in the group 1 Trypanosoma brucei gambiense haptoglobin-hemoglobin receptor abolishes TLF-1 binding.

    Directory of Open Access Journals (Sweden)

    E DeJesus

    Full Text Available Critical to human innate immunity against African trypanosomes is a minor subclass of human high-density lipoproteins, termed Trypanosome Lytic Factor-1 (TLF-1. This primate-specific molecule binds to a haptoglobin-hemoglobin receptor (HpHbR on the surface of susceptible trypanosomes, initiating a lytic pathway. Group 1 Trypanosoma brucei gambiense causes human African Trypanosomiasis (HAT, escaping TLF-1 killing due to reduced uptake. Previously, we found that group 1 T. b. gambiense HpHbR (TbgHpHbR mRNA levels were greatly reduced and the gene contained substitutions within the open reading frame. Here we show that a single, highly conserved amino acid in the TbgHpHbR ablates high affinity TLF-1 binding and subsequent endocytosis, thus evading TLF-1 killing. In addition, we show that over-expression of TbgHpHbR failed to rescue TLF-1 susceptibility. These findings suggest that the single substitution present in the TbgHpHbR directly contributes to the reduced uptake and resistance to TLF-1 seen in these important human pathogens.

  15. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    International Nuclear Information System (INIS)

    Pal, Amalendu; Chauhan, Nalin

    2011-01-01

    Densities, ρ, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V φ , partial molar volume at infinite dilution, V φ o , and experimental slope, S V were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the (∂V φ 0 /∂T) P values. The partial molar volume of transfer, ΔV φ 0 from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V φ 0 with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH 3 + COO - , and CH 2 groups to V φ 0 .

  16. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amalendu, E-mail: palchem@sify.co [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India); Chauhan, Nalin [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India)

    2011-02-15

    Densities, {rho}, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V{sub {phi}}, partial molar volume at infinite dilution, V{sub {phi}}{sup o}, and experimental slope, S{sub V} were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the ({partial_derivative}V{sub {phi}}{sup 0}/{partial_derivative}T){sub P} values. The partial molar volume of transfer, {Delta}V{sub {phi}}{sup 0} from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V{sub {phi}}{sup 0} with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH{sub 3}{sup +}COO{sup -}, and CH{sub 2} groups to V{sub {phi}}{sup 0}.

  17. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bin [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@hotmail.com [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China); Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Lu, Jian; Zhang, Li; Zhao, Miao; Shi, Changcan; Khan, Musammir [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Guo, Jintang [School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Weijin Road 92, 300072 Tianjin (China)

    2013-07-01

    In order to improve the resistance of platelet adhesion on material surface, 2-methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto polycarbonate urethane (PCU) surface via Michael reaction to create biomimetic structure. After introducing primary amine groups via coupling tris(2-aminoethyl)amine (TAEA) onto the polymer surface, the double bond of MPC reacted with the amino group to obtain MPC modified PCU. The modified surface was characterized by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The results verified that MPC was grafted onto PCU surface by Michael reaction method. The MPC grafted PCU surface had a low water contact angle and a high water uptake. This means that the hydrophilic PC functional groups improved the surface hydrophilicity significantly. In addition, surface morphology of MPC grafted PCU film was imaged by atomic force microscope (AFM). The results showed that the grafted surface was rougher than the blank PCU surface. In addition, platelet adhesion study was evaluated by scanning electron microscopy (SEM) observation. The PCU films after treated with platelet-rich plasma demonstrated that much fewer platelets adhered to the MPC-grafted PCU surface than to the blank PCU surface. The antithrombogenicity of the MPC-grafted PCU surface was determined by the activated partial thromboplastin time (APTT). The result suggested that the MPC modified PCU may have potential application as biomaterials in blood-contacting and some subcutaneously implanted devices. - Highlights: • MPC was successfully grafted onto polycarbonate urethane surface via Michael reaction. • High concentration of PC functional groups on the surface via TAEA molecule • Biomimetic surface modification • The modified surface showed high hydrophilicity and anti-platelet adhesion.

  18. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2017-08-31

    Highlights: • Surface annealing pretreatment on pyrite surfaces can select molecular adsorption. • Enriched monosulfide species on pyrite (100) surface favors NH{sub 2} adsorption form. • Enriching disulfide species on pyrite (100) surface promotes NH{sub 3}{sup +} adsorption form. • Unique structure of each aminoacid provides a particular fingerprint in the process. • Spectroscopy evidence, pretreatment surface processes drives molecular adsorption. - Abstract: This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH{sub 2} chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH{sub 3}{sup +} adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S{sub 2}{sup 2−}) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH{sub 2} to NH{sub 3}{sup +} species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  19. Extended survival of several organisms and amino acids under simulated martian surface conditions

    Science.gov (United States)

    Johnson, A. P.; Pratt, L. M.; Vishnivetskaya, T.; Pfiffner, S.; Bryan, R. A.; Dadachova, E.; Whyte, L.; Radtke, K.; Chan, E.; Tronick, S.; Borgonie, G.; Mancinelli, R. L.; Rothschild, L. J.; Rogoff, D. A.; Horikawa, D. D.; Onstott, T. C.

    2011-02-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms' survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical

  20. New Parameterization of the Cornell et al Empirical Force Field Covering Amino Group Nonplanarity in Nucleic Acid Bases

    Czech Academy of Sciences Publication Activity Database

    Ryjáček, Filip; Kubař, Tomáš; Hobza, Pavel

    2003-01-01

    Roč. 24, - (2003), s. 1891-1901 ISSN 0192-8651 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : Cornell et al. potential * nonplanar amino group * force field parameterization Subject RIV: CF - Physical ; Theoretical Chem istry Impact factor: 3.186, year: 2003

  1. Enzymatic-fluorometric analyses for glutamine, glutamate and free amino groups in protein-free plasma and milk

    DEFF Research Database (Denmark)

    Larsen, Torben; Fernández, Carlos J.

    2017-01-01

    This Technical Research Communication describes new analytical methods for free, unbound glutamic acid and glutamine in protein-free blood plasma and milk and introduces the use of quantitation of free amino groups in the same matrices for descriptive and analytical purposes. The present enzymati...

  2. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    Science.gov (United States)

    Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.

  3. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    Energy Technology Data Exchange (ETDEWEB)

    Caldarola, Dario [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Mitev, Dimitar P. [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Marlin, Lucile [Ecole Nationale Superieure des Ingenieurs en Arts Chimiques et Technologiquesm, Toulouse (France); Irish Separation Science Cluster, Dublin City University, Dublin (Ireland); Nesterenko, Ekaterina P. [Irish Separation Science Cluster, Dublin City University, Dublin (Ireland); Paull, Brett [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia); Onida, Barbara [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); CR-INSTM for Materials with Controlled Porosity (Italy); Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado [Analytical Chemistry Department, University of Torino, Via P. Giuria 5, 10125 Torino (Italy); Nesterenko, Pavel N., E-mail: Pavel.Nesterenko@utas.edu.au [Australian Centre for Research on Separation Sciences (ACROSS), University of Tasmania, Hobart, Tasmania 7001 (Australia)

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (d{sub p} = 37–63 μm, average pore size 6 nm, specific surface area 425 m{sup 2} g{sup −1}) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid–base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 10{sup 4}, 4.9 × 10{sup 5} and 2.6 × 10{sup 4} for Zn(II), Pb(II) and Cd(II), respectively.

  4. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  5. Adsorption behavior of oxidized galactomannans onto amino terminated surfaces and their interaction with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Sierakowski, M.-R; Silva, Maria R.V. da [Universidade Federal do Parana, Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Biopolimeros]. E-mail: mrbiopol@quimica.ufpr.br; Freitas, R.A.; Moreira, Jose S.R. [Universidade Federal do Parana, Curitiba, PR (Brazil). Dept. de Bioquimica; Fujimoto, J.; Petri, D.F.S.; Cordeiro, Paulo R.D. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica]. E-mail: dfsp@quim.iq.usp.br; Andrade, Fabiana D

    2001-07-01

    A galactomannan (CF) extracted from Cassia fastuosa seeds was purified and oxidized with (2,2,6,6- tetramethylpiperidine-1-oxyl) to form a uronic acid-containing polysaccharide (CFOX) with a degree of oxidation (DO) of 0.22. The chemical structures of CF and CFOX were characterized. The adsorption behavior of CF and CFOX onto amino-terminated surfaces was studied by means of ellipsometric measurements. The influence of p H and ionic strength on the adsorption was also investigated. At p H 4, there was a maximum in the adsorbed amount caused by strong electrostatic attraction between the substrate and the oxidized galactomannans. There was no ionic strength effect on the adsorption behavior. The immobilization of bovine serum albumin onto CF and CFOX was studied as a function of p H. At the isoelectric point a maximum in the adsorbed amount was found. (author)

  6. Adsorption behavior of oxidized galactomannans onto amino terminated surfaces and their interaction with bovine serum albumin

    International Nuclear Information System (INIS)

    Sierakowski, M.-R; Silva, Maria R.V. da; Freitas, R.A.; Moreira, Jose S.R.; Fujimoto, J.; Petri, D.F.S.; Cordeiro, Paulo R.D.; Andrade, Fabiana D.

    2001-01-01

    A galactomannan (CF) extracted from Cassia fastuosa seeds was purified and oxidized with (2,2,6,6- tetramethylpiperidine-1-oxyl) to form a uronic acid-containing polysaccharide (CFOX) with a degree of oxidation (DO) of 0.22. The chemical structures of CF and CFOX were characterized. The adsorption behavior of CF and CFOX onto amino-terminated surfaces was studied by means of ellipsometric measurements. The influence of p H and ionic strength on the adsorption was also investigated. At p H 4, there was a maximum in the adsorbed amount caused by strong electrostatic attraction between the substrate and the oxidized galactomannans. There was no ionic strength effect on the adsorption behavior. The immobilization of bovine serum albumin onto CF and CFOX was studied as a function of p H. At the isoelectric point a maximum in the adsorbed amount was found. (author)

  7. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    Science.gov (United States)

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  8. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    Science.gov (United States)

    Vuković, Goran; Marinković, Aleksandar; Obradović, Maja; Radmilović, Velimir; Čolić, Miodrag; Aleksić, Radoslav; Uskoković, Petar S.

    2009-06-01

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)- N, N, N', N'-tetramethyluronium hexafluorophosphate (N-HATU) and N, N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 μg ml -1, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 μg ml -1 reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  9. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, Goran; Marinkovic, Aleksandar [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Obradovic, Maja [Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Radmilovic, Velimir [National Centre for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Colic, Miodrag [Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11002 Belgrade (Serbia); Aleksic, Radoslav [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Uskokovic, Petar S., E-mail: puskokovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia)

    2009-06-30

    Surface functionalization of multi-walled carbon nanotubes (MWCNTs), with amino groups via chemical modification of carboxyl groups introduced on the nanotube surface, using O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (N-HATU) and N,N-diisopropylethylamine (DIEA) is reported. The N-HATU coupling agent provides faster reaction rate and the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. The amines, 1,6-hexanediamine (HDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and 1,4-phenylenediamine (PDA) were used. The resulting materials were characterized with different techniques such as FTIR, XRD, elemental analysis, TGA, TEM, UV-vis spectroscopy and cyclic voltammetry. MWCNTs functionalized with PDA posses the best dispersibility and electron transfer properties in comparison to the others amines. Functionalized MWCNTs, at the concentrations between 1 and 50 {mu}g ml{sup -1}, were not cytotoxic for the fibroblast L929 cell line. However, the concentrations of MWCNTs higher of 10 {mu}g ml{sup -1} reduced cell growth and this effect correlated positively with the degree of their uptake by L929 cells.

  10. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  11. Importance of the terminal α-amino group of bradykinin and some kynins on capillary permeability increase

    International Nuclear Information System (INIS)

    Sugavara, S.

    1979-01-01

    A simple and reliable method is described for the quantitative evaluation of vascular permeability increase induced by vasoactive drugs with Evans blue labelled with iodine-125 or 131. By using this method the importance of α-amino group of bradykinin (Bk), kallidin (Kd) and methionyl-kallidin (Met-Kd) on the biological activity were studied after reacting the kinins with pyridoxal 5'-phosphate followed by reduction with sodium borohydride. Phosphopyridoxyl-kinins were formed leaving free the guanidino groups. Aminoacid analysis of phosphopyridoxyl-kinin showed that the efficiency of the reaction was extremely good in the blockage of α-amino groups [phosphopyridoxyl-bradikinin (PP-Bk) = 98,8%, phosphopyridoxyl-kallidin (PP-Kd) = 95,2%, phosphopyridoxyl-methionyl-kallidin (PP-Met-Kd) = 98,0%. Log dose-response curves were obtained for Bk, Kd, Met-Kd, acetyl-bradykinin (Ac-Bk), PP-Bk, PP-Kd and PP-Met-Kd and the relative potencies calculated through the Lineweaver-Burk plots. The relative potencies were: PP-Bk about 16% the activity of Bk, Ac-Bk about 31% the activity of Bk, PP-Kd about 17% the activity of Kd, PP-Met-Kd about 12% the activity of Met-Kd. The results show that the terminal α-amino group of kinins is important in the mechanisms of biological activity. (Author) [pt

  12. Selective antagonists at group I metabotropic glutamate receptors: synthesis and molecular pharmacology of 4-aryl-3-isoxazolol amino acids

    DEFF Research Database (Denmark)

    Kromann, Hasse; Sløk, Frank A; Stensbøl, Tine B

    2002-01-01

    Homologation of (S)-glutamic acid (Glu, 1) and Glu analogues has previously provided ligands with activity at metabotropic Glu receptors (mGluRs). The homologue of ibotenic acid (7), 2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid (HIBO, 8), and the 4-phenyl derivative of 8, compound 9a, are bot...... antagonists at group I mGluRs. Here we report the synthesis and molecular pharmacology of HIBO analogues 9b-h containing different 4-aryl substituents. All of these compounds possess antagonist activity at group I mGluRs but are inactive at group II and III mGluRs....

  13. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  14. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  15. Intersections of adelic groups on a surface

    International Nuclear Information System (INIS)

    Budylin, R Ya; Gorchinskiy, S O

    2013-01-01

    We solve a technical problem related to adeles on an algebraic surface. Given a finite set of natural numbers, one can associate with it an adelic group. We show that this operation commutes with taking intersections if the surface is defined over an uncountable field, and we provide a counterexample otherwise. Bibliography: 12 titles

  16. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis.

    Science.gov (United States)

    Cao, Wenhong; Zhang, Chaohua; Hong, Pengzhi; Ji, Hongwu

    2008-07-01

    Protein hydrolysates were prepared from the head waste of Penaens vannamei, a China seawater major shrimp by autolysis method. Autolysis conditions (viz., temperature, pH and substrate concentration) for preparing protein hydrolysates from the head waste proteins were optimized by response surface methodology (RSM) using a central composite design. Model equation was proposed with regard to the effect of temperature, pH and substrate concentration. Substrate concentration at 23% (w/v), pH at 7.85 and temperature at 50°C were found to be the optimal conditions to obtain a higher degree of hydrolysis close to 45%. The autolysis reaction was nearly finished in the initial 3h. The amino acid compositions of the autolysis hydrolysates prepared using the optimized conditions in different time revealed that the hydrolysates can be used as a functional food ingredient or flavor enhancer. Endogenous enzymes in the shrimp heads had a strong autolysis capacity (AC) for releasing threonine, serine, valine, isoleucine, tyrosine, histidine and tryptophan. Endogenous enzymes had a relatively lower AC for releasing cystine and glycine. Copyright © 2008. Published by Elsevier Ltd.

  17. Surface field theories of point group symmetry protected topological phases

    Science.gov (United States)

    Huang, Sheng-Jie; Hermele, Michael

    2018-02-01

    We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.

  18. Group 11 complexes with amino acid derivatives: Synthesis and antitumoral studies.

    Science.gov (United States)

    Ortego, Lourdes; Meireles, Margarida; Kasper, Cornelia; Laguna, Antonio; Villacampa, M Dolores; Gimeno, M Concepción

    2016-03-01

    Gold(I), gold(III), silver(I) and copper(I) complexes with modified amino acid esters and phosphine ligands have been prepared in order to test their cytotoxic activity. Two different phosphine fragments, PPh3 and PPh2py (py=pyridine), have been used. The amino acid esters have been modified by introducing an aromatic amine as pyridine that coordinates metal fragments through the nitrogen atom, giving complexes of the type [M(L)(PR3)](+) or [AuCl3(L)] (L=l-valine-N-(4-pyridylcarbonyl) methyl ester (L1), l-alanine-N-(4-pyridylcarbonyl) methyl ester (L2), l-phenylalanine-N-(4-pyridylcarbonyl) methyl-ester) (L3); M=Au(I), Ag(I), Cu(I), PR3=PPh3, PPh2py). The in vitro cytotoxic activity of metal complexes was tested against four tumor human cell lines and one tumor mouse cell line. A metabolic activity test (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT) was used and IC50 values were compared with those obtained for cisplatin. Several complexes displayed significant cytotoxic activities. In order to determine whether antiproliferation and cell death are associated with apoptosis, NIH-3T3 cells were exposed to five selected complexes (Annexin V+ FITC, PI) and analyzed by flow cytometry. These experiments showed that the mechanism by which the complexes inhibit cell proliferation inducing cell death in NIH-3T3 cells is mainly apoptotic. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    Science.gov (United States)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  20. Supramolecular patterns and Hirshfeld surface analysis in the crystal structure of bis(2-amino-4-methoxy-6-methylpyrimidinium isophthalate

    Directory of Open Access Journals (Sweden)

    Muthaiah Jeevaraj

    2017-10-01

    Full Text Available In the title molecular salt, 2C6H10N3O+·C8H4O42−, the N atom of each of the two 2-amino-4-methoxy-6-methylpyrimidine molecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8 and 7.95 (8°. Each of the cations is linked to the anion through a pair of N—H...O(carboxylate hydrogen bonds, forming cyclic R22(8 ring motifs which are then linked through inversion-related N—H...O hydrogen bonds, giving a central R24(8 motif. Peripheral amine N—H...O hydrogen-bonding interactions on either side of the succinate anion, also through centrosymmetric R22(8 extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features π–π stacking interactions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9 Å]. The intermolecular interactions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.

  1. Response Surface Optimization of Lyoprotectant from Amino Acids and Salts for Bifidobacterium Bifidum During Vacuum Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Qi Kangru

    2017-12-01

    Full Text Available High quality probiotic powder can lay the foundation for the commercial production of functional dairy products. The freeze-drying method was used for the preservation of microorganisms, having a deleterious effect on the microorganisms viability. In order to reduce the damage to probiotics and to improve the survival rate of probiotics during freeze-drying, the Response Surface Methodology (RSM was adopted in this research to optimize lyoprotectant composed of amino acids (glycine, arginine and salts (NaHCO3 and ascorbic acid. Probiotic used was Bifidobacterium bifidum BB01. The regression model (p<0.05 was obtained by Box–Behnken experiment design, indicating this model can evaluate the freeze-drying survival rate of B. bifidum BB01 under different lyoprotectants. The results indicated these concentrations as optimal (in W/V: glycine 4.5%, arginine 5.5%, NaHCO3 0.8% and ascorbic acid 2.3%, respectively. Under these optimal conditions, the survival rate of lyophilized powder of B. bifidum BB01 was significantly increased by 80.9% compared to the control group (6.9±0.62%, the results were agreement with the model prediction value (88.7%.

  2. Amino Acid Profile, Group of Functional and Molecular Weight Distribution of Goat Skin Gelatin That Produced Through Acid Process

    OpenAIRE

    Muhammad Irfan Said; Suharjono Triatmojo; Yuny Erwanto; Achmad Fudholi

    2012-01-01

    Gelatin is a product of hydrolysis of collagen protein from animals that are partially processed.  Gelatin used in food and non food industries.  Gelatin is produced when many import of raw skins and bones of pigs and cows.  Goat skins potential as a raw material substitution that still doubt its halal. Process production of gelatin determine the properties of gelatin. The objectives of this research were to determine amino acid profile, group of functional and molecular weight distribution o...

  3. Riemann surfaces, Clifford algebras and infinite dimensional groups

    International Nuclear Information System (INIS)

    Carey, A.L.; Eastwood, M.G.; Hannabuss, K.C.

    1990-01-01

    We introduce of class of Riemann surfaces which possess a fixed point free involution and line bundles over these surfaces with which we can associate an infinite dimensional Clifford algebra. Acting by automorphisms of this algebra is a 'gauge' group of meromorphic functions on the Riemann surface. There is a natural Fock representation of the Clifford algebra and an associated projective representation of this group of meromorphic functions in close analogy with the construction of the basic representation of Kac-Moody algebras via a Fock representation of the Fermion algebra. In the genus one case we find a form of vertex operator construction which allows us to prove a version of the Boson-Fermion correspondence. These results are motivated by the analysis of soliton solutions of the Landau-Lifshitz equation and are rather distinct from recent developments in quantum field theory on Riemann surfaces. (orig.)

  4. Low endotoxic activities of synthetic Salmonella-type lipid A with an additional acyloxyacyl group on the 2-amino group of beta (1-6) glucosamine disaccharide 1,4'-bisphosphate.

    OpenAIRE

    Kotani, S; Takada, H; Takahashi, I; Tsujimoto, M; Ogawa, T; Ikeda, T; Harada, K; Okamura, H; Tamura, T; Tanaka, S

    1986-01-01

    A synthetic lipid A (Salmonella type, compound 516), beta (1-6)-linked D-glucosamine disaccharide 1,4'-bisphosphate, with three acyloxyacyl groups and one hydroxyacyl group, i.e., (R)-3-hexadecanoyloxytetradecanoyl, (R)-3-hydroxytetradecanoyl, (R)-3-dodecanoyloxytetradecanoyl, and (R)-3-tetradecanoyloxytetradecanoyl groups at the 2-amino, 3-hydroxyl, 2'-amino, and 3'-hydroxyl groups, respectively, was less biologically active than the synthetic Escherichia coli-type lipid A (compound 506), wh...

  5. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  6. Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications

    International Nuclear Information System (INIS)

    Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Socol, Gabriel; Grumezescu, Alexandru Mihai; Ficai, Anton; Lazar, Veronica; Chifiriuc, Mariana Carmen; Trusca, Roxana

    2015-01-01

    Graphical abstract: - Highlights: • Thin coatings based on 3-amino propyltrimethoxysilane with anti-adherent properties. • PVC modified surfaces with improved resistance to microbial colonization. • Firstly report on antimicrobial properties of 3-amino propyltrimethoxysilane. - Abstract: The purpose of this study was the fabrication of functionalized anti-adherent surfaces based on the polyvinyl chloride (PVC) coated with 3-amino propyltrimethoxysilane (APTMS) by matrix assisted pulsed laser evaporation (MAPLE) in order to improve the resistance of PVC based prosthetic devices to microbial colonization. Infrared microscopy (IRM) investigations of APTMS thin films proved the compositional homogeneity of the prepared thin film. Scanning electron microscopy (SEM) micrographs revealed a granular morphology with microspheres harboring a diameter between 15 and 60 nm. The microbiological assays proved that MAPLE deposited APTMS films inhibited the adherence capacity and biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus strains. Furthermore, this material proved to be highly biocompatible, allowing the normal growth and development of human endothelial cells. These traits highlight the fact that the fabricated APTMS thin films may be efficiently used for improving different surfaces of medical use, including prostheses and implantable devices

  7. Fabrication and characterization of functionalized surfaces with 3-amino propyltrimethoxysilane films for anti-infective therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Grumezescu, Valentina [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, P.O. Box MG-36, Magurele, Bucharest (Romania); Andronescu, Ecaterina [Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, P.O. Box MG-36, Magurele, Bucharest (Romania); Holban, Alina Maria [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Microbiology Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest – ICUB, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206 Bucharest (Romania); Socol, Gabriel [Lasers Department, National Institute for Lasers, Plasma & Radiation Physics, P.O. Box MG-36, Magurele, Bucharest (Romania); Grumezescu, Alexandru Mihai, E-mail: grumezescu@yahoo.com [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Ficai, Anton [Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest (Romania); Lazar, Veronica; Chifiriuc, Mariana Carmen [Microbiology Immunology Department, Faculty of Biology, Research Institute of the University of Bucharest – ICUB, University of Bucharest, 1–3 Portocalelor Lane, Sector 5, 77206 Bucharest (Romania); Trusca, Roxana [S.C Metav-CD S.A., 31 Rosetti Str., 020015 Bucharest (Romania); and others

    2015-05-01

    Graphical abstract: - Highlights: • Thin coatings based on 3-amino propyltrimethoxysilane with anti-adherent properties. • PVC modified surfaces with improved resistance to microbial colonization. • Firstly report on antimicrobial properties of 3-amino propyltrimethoxysilane. - Abstract: The purpose of this study was the fabrication of functionalized anti-adherent surfaces based on the polyvinyl chloride (PVC) coated with 3-amino propyltrimethoxysilane (APTMS) by matrix assisted pulsed laser evaporation (MAPLE) in order to improve the resistance of PVC based prosthetic devices to microbial colonization. Infrared microscopy (IRM) investigations of APTMS thin films proved the compositional homogeneity of the prepared thin film. Scanning electron microscopy (SEM) micrographs revealed a granular morphology with microspheres harboring a diameter between 15 and 60 nm. The microbiological assays proved that MAPLE deposited APTMS films inhibited the adherence capacity and biofilm development of Pseudomonas aeruginosa and Staphylococcus aureus strains. Furthermore, this material proved to be highly biocompatible, allowing the normal growth and development of human endothelial cells. These traits highlight the fact that the fabricated APTMS thin films may be efficiently used for improving different surfaces of medical use, including prostheses and implantable devices.

  8. Surface functional groups in capacitive deionization with porous carbon electrodes

    Science.gov (United States)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  9. Sunspot Groups as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last ...

  10. Sunspot Groups as Tracers of Sub Surface Processes .

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Data on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun's surface. I present here a report on such studies carried out at Indian Institute of. Astrophysics during the last decade or ...

  11. Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water

    Science.gov (United States)

    Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara

    2017-07-01

    Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.

  12. ON THE FORMATION OF AMIDE POLYMERS VIA CARBONYL–AMINO GROUP LINKAGES IN ENERGETICALLY PROCESSED ICES OF ASTROPHYSICAL RELEVANCE

    Energy Technology Data Exchange (ETDEWEB)

    Förstel, Marko; Maksyutenko, Pavlo; Jones, Brant M.; Kaiser, Ralf I. [Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, 96822 HI (United States); Sun, Bing J.; Lee, Huan C.; Chang, Agnes H. H., E-mail: ralfk@hawaii.edu, E-mail: hhchang@mail.ndhu.edu.tw [Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan (China)

    2016-04-01

    We report on the formation of organic amide polymers via carbonyl–amino group linkages in carbon monoxide and ammonia bearing energetically processed ices of astrophysical relevance. The first group comprises molecules with one carboxyl group and an increasing number of amine moieties starting with formamide (45 u), urea (60 u), and hydrazine carboxamide (75 u). The second group consists of species with two carboxyl (58 u) and up to three amine groups (73 u, 88 u, and 103 u). The formation and polymerization of these linkages from simple inorganic molecules via formamide und urea toward amide polymers is discussed in an astrophysical and astrobiological context. Our results show that long chain molecules, which are closely related to polypeptides, easily form by energetically processing simple, inorganic ices at very low temperatures and can be released into the gas phase by sublimation of the ices in star-forming regions. Our experimental results were obtained by employing reflectron time-of-flight mass spectroscopy, coupled with soft, single photon vacuum ultraviolet photoionization; they are complemented by theoretical calculations.

  13. Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Obdulia Medina-Juárez

    2016-11-01

    Full Text Available Special preparation of Santa Barbara Amorphous (SBA-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO2. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO2 adsorption is only reasonably achieved when the SiO2 surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N2 sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR, and NH3 thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries, present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO2 but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH4 adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO2 one, thus giving proof of their selectivity toward CO2. Although the amount of retained CO2 is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.

  14. Synthesis and Biological Evaluation of Novel Jatrorrhizine Derivatives with Amino Groups Linked at the 3-Position as Inhibitors of Acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Xiaofei Jiang

    2017-01-01

    Full Text Available Jatrorrhizine was considered as one of the active constituents of Coptis chinensis Franch. Herein, jatrorrhizine derivatives with substituted amino groups linked at the 3-position were designed, synthesized, and biologically evaluated as inhibitors of acetylcholinesterase. Jatrorrhizine derivatives inhibited the activity of acetylcholinesterase (AChE to a greater extent than the lead compound jatrorrhizine. All these jatrorrhizine derivatives were proved to be potent inhibitors of acetylcholinesterase (AChE with submicromolar IC50 values, but less sensitive to butyrylcholinesterase (BuChE, which suggests that these jatrorrhizine derivatives are selective for AChE/BuChE. Compound 3g gave the most potent inhibitor activity for AChE (IC50 = 0.301 μM, which is greater than the lead compound jatrorrhizine. All these results demonstrated that these jatrorrhizine derivatives are potential inhibitors for AChE.

  15. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface

    International Nuclear Information System (INIS)

    Chesney, R.W.; Gusowski, N.; Albright, P.

    1985-01-01

    Diamide (dicarboxylic acid bis-(N,N-dimethylamide) has been shown in previous studies to block the uptake of the beta-amino acid taurine at its high affinity transport site in rat renal cortex slices. Diamide may act by increasing the efflux of taurine from the slice. Studies performed in rat slices again indicate enhanced efflux over 8-12 minutes. The time course of reduced glutathione (GSH) depletion from renal cortex is similar, indicating a potential interaction between GSH depletion and inhibition of taurine accumulation. The effect of 9 mM diamide on the Na+ -dependent accumulation of taurine (10 and 250 microM) by brush border membrane vesicles was examined, and the taurine uptake value both initially and at equilibrium was the same in the presence and absence of diamide. Isolation of the brush border surface and subsequent transport studies of taurine are not influenced by diamide. Thus, diamide inhibition of taurine uptake does not involve physiochemical alteration of the membrane surface where active amino acid transport occurs, despite the thiol-oxidizing properties of this agent. Further, these studies suggest that diamide either acts at the basolateral surface, rather than the brush border surface of rat renal cortex or requires the presence of an intact tubule, capable of metabolism, prior to its inhibitory action

  16. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authent...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  17. Surface damage in cystine, an amino acid dimer, induced by keV ions

    Science.gov (United States)

    Salles, R. C. M.; Coutinho, L. H.; da Veiga, A. G.; Sant'Anna, M. M.; de Souza, G. G. B.

    2018-01-01

    We have studied the interaction of an ion beam (17.6 keV F-) with cystine, a dimer formed by the binding of two cysteine residues. Cystine can be considered as an ideal prototype for the study of the relevance of the disulfide (—S—S—) chemical bond in biomolecules. For the sake of comparison, the amino acid cysteine has also been subjected to the same experimental conditions. Characterization of the samples by XPS and NEXAFS shows that both pristine cystine and pristine cysteine are found as a dipolar ion (zwitterion). Following irradiation, the dimer and the amino acid show a tendency to change from the dipole ion form to the normal uncharged form. The largest spectral modification was observed in the high resolution XPS spectra obtained at around the N 1s core level for the two biomolecules. The 2p sulfur edge spectra of cysteine and cystine were much less sensitive to radiation effects. We suggest that the disulfide bond (—S—S—) remains stable before and after irradiation, contributing to the larger radiation stability of cystine as compared to the amino acid cysteine.

  18. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  19. N,N-Dimethyl Tertiary Amino Group Mediated Dual Pancreas- and Lung-Targeting Therapy against Acute Pancreatitis.

    Science.gov (United States)

    Luo, Shi; Li, Peiwen; Li, Sha; Du, Zhengwu; Hu, Xun; Fu, Yao; Zhang, Zhirong

    2017-05-01

    Acute pancreatitis (AP) is a sudden inflammation of the pancreas with high mortality rate worldwide. As a severe complication to AP, acute lung injury has been the major cause of death among patients with AP. Poor penetration across the blood pancreas barrier (BPB) and insufficient drug accumulation at the target site often result in poor therapeutic outcome. Our previous work successfully demonstrated a dual-specific targeting strategy to pancreas and lung using a phenolic propanediamine moiety. Inspired by this, a simplified ligand structure, N,N-dimethyl tertiary amino group, was covalently conjugated to celastrol (CLT) to afford tertiary amino conjugates via either an ester (CP) or an amide linkage (CTA). With sufficient plasma stability, CTA was subjected to the following studies. Compared to CLT, CTA exhibited excellent cellular uptake efficiency in both rat pancreatic acinar cell line (AR42J) and human pulmonary alveolar epithelial cell line (A549). Organic cation transporters were proven to be responsible for this active transport process. Given systemically, CTA specifically distributed to pancreases and lungs in rats thus resulting in a 2.59-fold and 3.31-fold increase in tissue-specific accumulation as compared to CLT. After CTA treatment, tissue lesions were greatly alleviated and the levels of proinflammatory cytokines were downregulated in rats with sodium taurocholate induced AP. Furthermore, CTA demonstrated marginal adverse effect against major organs with reduced cardiac toxicity compared to CLT. Together, tertiary amine mediated dual pancreas- and lung-targeting therapy represents an efficient and safe strategy for AP management.

  20. The Measurement and Interpretation of Surface Wave Group Arrival Times

    Science.gov (United States)

    Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.

    2005-12-01

    We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.

  1. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    Science.gov (United States)

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Integrable systems twistors, loop groups, and Riemann surfaces

    CERN Document Server

    Hitchin, NJ; Ward, RS

    2013-01-01

    This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do werecognize an integrable system? His own contribution then develops connections with algebraic geometry, and inclu

  3. The Synthesis of a Dipeptide from its Component Amino Acids: Protecting Groups in the Elementary Organic Laboratory.

    Science.gov (United States)

    Young, Paul E.; Campbell, Andrew

    1982-01-01

    A simple, three-step procedure for synthesizing a dipeptide from its component amino acids is described. The dipeptide synthesized uses inexpensive amino acids having hydrocarbon side-chains and can be observed in E/Z forms by nuclear magnetic resonance spectroscopy. Each step in the synthesis produces white crystalline products using standard…

  4. Coating of nanoparticles bearing amino groups on the surface with hydrophilic HPMA-based polymers

    Czech Academy of Sciences Publication Activity Database

    Laga, Richard; Koňák, Čestmír; Šubr, Vladimír; Ulbrich, Karel

    2007-01-01

    Roč. 285, č. 13 (2007), s. 1509-1514 ISSN 0303-402X Grant - others:FP6-2002-LifeSciHealth European Commission Funded Research,(EU) GIANT 512087 Institutional research plan: CEZ:AV0Z40500505 Source of funding: R - rámcový projekt EK Keywords : polyelectrolyte complex * latex * nanoparticle Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.620, year: 2007

  5. Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface

    Science.gov (United States)

    Durdureanu-Angheluta, A.; Dascalu, A.; Fifere, A.; Coroaba, A.; Pricop, L.; Chiriac, H.; Tura, V.; Pinteala, M.; Simionescu, B. C.

    2012-05-01

    This manuscript deals with the synthesis of new hydrophilic magnetite particles by employing a two-step method: in the first step magnetite particles with hydrophobic shell formed in presence of oleic acid-oleylamine complex through a synthesis in mass, without solvent, in a mortar with pestle were obtained; while in the second step the hydrophobic shell was interchanged with an aminosilane monomer. The influence of the Fe2+/Fe3+ molar ratio on the dimension of the particles of high importance for their potential applications was carefully investigated. This paper, also presents an alternative method of synthesis of new core-shell magnetite particles and the complete study of their structure and morphology by FT-IR, XPS, TGA, ESEM and TEM techniques. The rheological properties and magnetization analysis of high importance for magnetic particles were also investigated.

  6. Inhibition of Photocatalytic Activity of Basic Blue-41 by ZnO Modified Surface with Amino Silane

    Science.gov (United States)

    Limsapapkasiphon, S.; Sirisaksoontorn, W.; Songsasen, A.

    2018-03-01

    The reduction of the photo catalytic efficiency of ZnO can be achieved by modifying its surface with amino silane, which synthesized through condensation reaction under basic condition. The pH of solution was varied from 8 to 14 during the synthesis and was found that pH 12 was the most suitable pH for the preparation. All of ZMAS were characterized by Elemental Analysis which showed the highest percentage of nitrogen at 3.1064% and IR technique which indicated the Si-O-Zn bond at about 1000 cm-1. The photodegradation property of ZMAS prepared at pH 8-12 toward basic blue 41 was retarded when compared with the unmodified ZnO. Effect of mole ratio of ZnO:APTES (1:0.1, 1:0.5, 1:1, and 1:2) in the preparation of ZMAS was investigated. The photodegration activity of ZMAS prepared at mole ratio of ZnO:APTES as 1:0.5 to 1:2 toward basic blue 41 was retarded when compared with the unmodified ZnO. The coating of amino silane on ZnO surface did not have much effect on the band gap energy of modified ZnO. The absorption edge of ZMAS was only slightly shifted from 392 to 397 nm.

  7. Characterization of Sea Lettuce Surface Functional Groups by Potentiometric Titrations

    Science.gov (United States)

    Ebling, A. M.; Schijf, J.

    2008-12-01

    In pursuit of our ultimate goal to better understand the prodigious capacity of the marine macroalga Ulva lactuca (sea lettuce) for adsorbing a broad range of dissolved trace metals from seawater, we performed an initial characterization of its surface functional groups. Specifically, the number of distinct functional groups as well as their individual bulk concentrations and acid dissociation constants (pKas) were determined by potentiometric titrations in NaCl solutions of various ionic strengths (I = 0.01-5.0 M), under inert nitrogen atmosphere at 25°C. Depending on the ionic strength, Ulva samples were manually titrated down to pH 2 or 3 with 1 N HCl and then up to pH 10 with 1 N NaOH in steps of 0.1-0.2 units, continuously monitoring pH with a glass combination electrode. Titrations of a dehydrated Ulva standard reference material (BCR-279) were compared with fresh Ulva tissue cultured in our laboratory. A titration in filtered natural seawater was also compared with one in an NaCl solution of equal ionic strength. Equilibrium constants for the ionization of water in NaCl solutions as a function of ionic strength were obtained from the literature. Fits to the titration data ([H]T vs. pH) were performed with the FITEQL4.0 computer code using non-electrostatic 3-, 4-, and 5-site models, either by fixing ionic strength at its experimental value or by allowing it to be extrapolated to zero, while considering all functional group pKas and bulk concentrations as adjustable parameters. Since pKas and bulk concentrations were found to be strongly correlated, the latter were also fixed in some cases to further constrain the pKas. Whereas these calculations are currently ongoing, preliminary results point to three, possibly four, functional groups with pKas of about 4.1, 6.3, and 9.5 at I = 0. Bulk concentrations of the three groups are very similar, about 5-6×10-4 mol/g based on dry weight, which suggests that all are homogeneously distributed over the surface and

  8. Amino acids analysis using grouping and parceling of neutrons cross sections techniques; Analise de aminoacidos atraves das tecnicas do agrupamento e parcelamento de secoes de choque para neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Voi, Dante Luiz Voi [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Rocha, Helio Fenandes da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Puericultura e Pediatria Martagao Gesteira

    2002-07-01

    Amino acids used in parenteral administration in hospital patients with special importance in nutritional applications were analyzed to compare with the manufactory data. Individual amino acid samples of phenylalanine, cysteine, methionine, tyrosine and threonine were measured with the neutron crystal spectrometer installed at the J-9 irradiation channel of the 1 kW Argonaut Reactor of the Instituto de Engenharia Nuclear (IEN). Gold and D{sub 2}O high purity samples were used for the experimental system calibration. Neutron cross section values were calculated from chemical composition, conformation and molecular structure analysis of the materials. Literature data were manipulated by parceling and grouping neutron cross sections. (author)

  9. Facile fouling resistant surface modification of microfiltration cellulose acetate membranes by using amino acid L-DOPA.

    Science.gov (United States)

    Azari, Sara; Zou, Linda; Cornelissen, Emile; Mukai, Yasushito

    2013-01-01

    A major obstacle in the widespread application of microfiltration membranes in the wet separation processes such as wastewater treatment is the decline of permeates flux as a result of fouling. This study reports on the surface modification of cellulose acetate (CA) microfiltration membrane with amino acid L-3,4-dihydroxy-phenylalanine (L-DOPA) to improve fouling resistance of the membrane. The membrane surface was characterised using Fourier transform infrared spectroscopy (FTIR), water contact angle and zeta potential measurement. Porosity measurement showed a slight decrease in membrane porosity due to coating. Static adsorption experiments revealed an improved resistance of the modified membranes towards the adhesion of bovine serum albumin (BSA) as the model foulant. Dead end membrane filtration tests exhibited that the fouling resistance of the modified membranes was improved. However, the effect of the modification depended on the foulant solution concentration. It is concluded that L-DOPA modification is a convenient and non-destructive approach to enable low-BSA adhesion surface modification of CA microfiltration membranes. Nevertheless, the extent of fouling resistance improvement depends on the foulant concentration.

  10. Amino(oxo)acetate moiety: A new functional group to improve the cytotoxicity of betulin derived carbamates.

    Science.gov (United States)

    Heller, Lucie; Perl, Vincent; Wiemann, Jana; Al-Harrasi, Ahmed; Csuk, René

    2016-06-15

    While 3-O-acetylated betulin derivatives carrying a carbamate moiety at position C-28 are of rather low cytotoxicity for human tumor cell lines, the corresponding C-3 amino(oxo) acetates show good cytotoxicity. For example, an EC50 as low as 2.0μM was found for (3β) 28-{[(hexylamino)carbonyl]oxy}lup-20(29)-en-3-yl amino(oxo)acetate (16) employing the ovarian cancer cell line A2780. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. APPLICATION OF THE MITSUNOBU REACTION TO EPHEDRINES AND SOME RELATED AMINO-ALCOHOLS - ASPECTS OF INTRAMOLECULAR PARTICIPATION OF THE AMINO GROUP

    NARCIS (Netherlands)

    POELERT, MA; HULSHOF, LA; KELLOGG, RM

    1994-01-01

    Inversion of configuration at the benzylic hydroxyl group of (1S,2S)-pseudoephedrine (2) to afford (1R,2S)-ephedrine is known to be a difficult process. The Mitsunobu reactions of 1 and 2 might offer a route to achieve such inversions. In fact Mitsunobu reactions on 1 and 2 are known to proceed via

  12. Anomalous role change of tertiary amino and ester groups as hydrogen acceptors in eudragit E based solid dispersion depending on the concentration of naproxen.

    Science.gov (United States)

    Ueda, Hiroshi; Wakabayashi, Shinobu; Kikuchi, Junko; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi

    2015-04-06

    Eudragit E (EGE) is a basic polymer incorporating tertiary amino and ester groups. The role of the functional groups of EGE in the formation of solid dispersion (SD) with Naproxen (NAP) was investigated. The glass transition temperature (Tg) of EGE decreased with the plasticizing effect of NAP up to 20% weight ratio. Addition of NAP at over 30% induced a rise in Tg, with the maximum value being reached at 60% NAP. Further addition of NAP led to a rapid drop of the Tg. A dramatic difference of physical stability between the SDs including 60 and 70% NAP was confirmed. The SD including 70% NAP rapidly crystallized at 40 °C with 75% relative humidity, while the amorphous state could be maintained over 6 months in the SD with 60% NAP. The infrared and (13)C solid state-NMR spectra of the SDs suggested a formation of ionic interaction between the carboxylic acid of NAP and the amino group of EGE. The SD with 20% NAP raised the (13)C spin-lattice relaxation (T1) of the amino group, but it decreased with over 30% NAP. The change in the (13)C-T1 disappeared with 70% NAP. The (13)C-T1 of the ester group rose depending on the amount of NAP. From these findings, we concluded that the role as hydrogen acceptor shifted from the amine to the ester group with an increase in amount of NAP. Furthermore, the amino group of EGE did not contribute to the interaction at over 70% NAP. These phenomena could be strongly correlated with Tg and stability.

  13. Intramolecular participation of amino groups in the cleavage and isomerization of ribonucleoside 3'-phosphodiesters: the role in stabilization of the phosphorane intermediate.

    Science.gov (United States)

    Lain, Luigi; Lönnberg, Harri; Lönnberg, Tuomas

    2013-09-09

    A dinucleoside-3',5'-phosphodiester model, 5'-amino-4'-aminomethyl-5'-deoxyuridylyl-3',5'-thymidine, incorporating two aminomethyl functions in the 4'-position of the 3'-linked nucleoside has been prepared and its hydrolytic reactions studied over a wide pH range. The amino functions were found to accelerate the cleavage and isomerization of the phosphodiester linkage in both protonated and neutral form. When present in protonated form, the cleavage of the 3',5'-phosphodiester linkage and its isomerization to a 2',5'-linkage are pH-independent and 50-80 times as fast as the corresponding reactions of uridylyl-3',5'-uridine (3',5'-UpU). The cleavage of the resulting 2',5'-isomer is also accelerated, albeit less than with the 3',5'-isomer, whereas isomerization back to the 3',5'-diester is not enhanced. When the amino groups are deprotonated, the cleavage reactions of both isomers are again pH-independent and up to 1000-fold faster than the pH-independent cleavage of UpU. Interestingly, the 2'- to 3'-isomerization is now much faster than its reverse reaction. The mechanisms of these reactions are discussed. The rate accelerations are largely accounted for by electrostatic and hydrogen-bonding interactions of the protonated amino groups with the phosphorane intermediate. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective antagonists at group I metabotropic glutamate receptors: synthesis and molecular pharmacology of 4-aryl-3-isoxazolol amino acids

    DEFF Research Database (Denmark)

    Kromann, Hasse; Sløk, Frank A; Stensbøl, Tine B

    2002-01-01

    Homologation of (S)-glutamic acid (Glu, 1) and Glu analogues has previously provided ligands with activity at metabotropic Glu receptors (mGluRs). The homologue of ibotenic acid (7), 2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid (HIBO, 8), and the 4-phenyl derivative of 8, compound 9a, are bot...

  15. Surface group amalgams that (don't) act on 3-manifolds

    OpenAIRE

    Hruska, G. Christopher; Stark, Emily; Tran, Hung Cong

    2017-01-01

    We determine which amalgamated products of surface groups identified over multiples of simple closed curves are not fundamental groups of 3-manifolds. We prove each surface amalgam considered is virtually the fundamental group of a 3-manifold. We prove that each such surface group amalgam is abstractly commensurable to a right-angled Coxeter group from a related family. In an appendix, we determine the quasi-isometry classes among these surface amalgams and their related right-angled Coxeter ...

  16. Characterizing seasonal contribution of particles from the surface ocean to the mesopelagic food web through amino acid compound specific isotopic analysis and 234Thorium measurements

    Science.gov (United States)

    Grabb, K. C.; benitez-Nelson, C. R.; Drazen, J.; Close, H. G.; Hannides, C. C.; Ka'apu-Lyons, C. A.; Umhau, B.; Popp, B. N.

    2016-02-01

    The mesopelagic food web is a major contributor to the biological carbon pump but is largely unconstrained mainly due to inadequate sampling of the deep ocean. Recent results of amino acid compound specific nitrogen isotope analyses (AA-CSIA) indicate the possibility of refractory suspended particles contributing to the mesopelagic food community in addition to more labile rapidly sinking particles from the surface oceans. Here we combine amino acid concentrations and AA-CSIA with 234Thorium (234Th) measurements to constrain seasonal differences in the downward flux of particles from the surface ocean at station ALOHA in the subtropical North Pacific Ocean. We determined the concentrations and isotopic composition of specific amino acids as well as the 234Th-normalized flux of C, N and amino acids throughout the upper 400m of the water column during winter and summer of 2014. Results exhibit distinct seasonal profiles. The amino acid flux was 10 times greater in the summer, indicating increased primary production and export from the surface oceans to the deep. In contrast, the fraction of each specific amino acid compared to the total amount of amino acids remained reasonably constant between seasons and depths. Throughout the water column δ15N values of small particles (1-53µm) increased with depth, consistent with previous results from deeper samples (up to 750 meters) and indicating microbial degradation. The large particles (>53µm) have differing isotopic composition, allowing the contribution of small and large particles to be distinguishable within the mesopelagic food web. This study highlights the dependence of the deep ocean on the strength of the biological pump and our results potentially can be used to interpret the seasonal dietary composition of higher trophic level mesopelagic organisms.

  17. Reactivity of group IV (100) semiconductor surfaces towards organic compounds

    Science.gov (United States)

    Wang, George T.

    The reactions of simple and multifunctional organic compounds with the clean silicon, germanium, and diamond (100)-2 x 1 semiconductor surfaces have been investigated using a combination of multiple internal reflection infrared spectroscopy and quantum chemistry density functional theory calculations. From these studies, an improved understanding of the atomic level reactivity of these semiconductor surfaces has been obtained, along with insights into how to achieve their selective coupling with organics of desired and varied functionality. In addition to the Si(100) and Ge(100) surfaces, our results show that cycloaddition chemistry can also be extended to the diamond (100) surface. At room temperature, 1,3-butadiene was found to form a Diels-Alder product with the diamond (100) surface, as evidenced by isotopic substitution experiments and comparison of the surface adduct with its direct molecular analogue, cyclohexene. The reactions of other classes of molecules in addition to alkenes on the Si(100) and Ge(100) surfaces, including a series of five-membered cyclic amines, were also examined. For tertiary aliphatic amines on Si(100) and both secondary and tertiary aliphatic amines on Ge(100), a majority of the molecules were observed to become stably trapped in dative-bonded precursor states rather than form energetically favorable dissociation products. For pyrrole, aromaticity was found to play a defining role in its reactivity, and a comparison of its molecular and surface reactivity reveals interesting similarities. To probe the factors controlling the selectivity of organic reactions on clean semiconductor surfaces, the adsorption of acetone and a series of unsaturated ketones was also investigated. The reaction of acetone on Ge(100) was found to be under thermodynamic control at room temperature, resulting in the formation of an "ene" product rather than the kinetically favored [2+2] C=O cycloaddition product previously observed on the Si(100) surface. In

  18. Spectrophotometric and spectrofluorimetric determination of some drugs containing secondary amino group in bulk drug and dosage forms via derivatization with 7-Chloro-4-Nitrobenzofurazon

    Directory of Open Access Journals (Sweden)

    Armaan Önal

    2011-01-01

    Full Text Available Sensitive and selective spectrophotometric and spectrofluorimetric methods have been developed for determination of some drugs such as Pramipexole, Nebivolol, Carvedilol, and Eletriptan, which commonly contain secondary amino group. The subject methods were developed via derivatization of the secondary amino groups with 7-Chloro-4-Nitrobenzofurazon in borate buffer where a yellow colored reaction product was obtained and measured spectrophotometrically or spectrofluorimetrically. Concentration ranges were found as 2.0 to 250 μg mL-1 and 0.1 to 3.0 μg mL-1, for spectrophotometric and spectrofluorimetric study, respectively. The described methods can be easily applied by the quality control laboratories in routine analyses of these drugs in pharmaceutical preparations.

  19. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces

    NARCIS (Netherlands)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-01-01

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form

  20. A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics.

    Science.gov (United States)

    Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2011-11-16

    Macrolactam antibiotics are an important class of macrocyclic polyketides that contain a unique nitrogen-containing starter unit. In the present study, a set of starter biosynthetic enzymes in the macrolactam antibiotic vicenistatin was characterized. We found that the protection-deprotection strategy of the aminoacyl-ACP intermediate was critical in this system. On the basis of bioinformatics, the described pathway is also proposed as a common method for carrying amino acids in the biosynthesis of other macrolactam antibiotics.

  1. Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Bräuner-Osborne, H; Frydenvang, Karla Andrea

    2001-01-01

    GluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was shown......Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (i...... to originate in (S)-11 (EC(50) = 395 microM, K(b) = 86 and 90 microM, respectively). Compound 9, administered icv, but not sc, was shown to protect mice against convulsions induced by N-methyl-D-aspartic acid (NMDA). Compounds 9 and 11 were resolved using chiral HPLC, and the configurational assignments...

  2. Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors

    DEFF Research Database (Denmark)

    Madsen, U; Bräuner-Osborne, H; Frydenvang, Karla Andrea

    2001-01-01

    Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (i......GluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was shown...... to originate in (S)-11 (EC(50) = 395 microM, K(b) = 86 and 90 microM, respectively). Compound 9, administered icv, but not sc, was shown to protect mice against convulsions induced by N-methyl-D-aspartic acid (NMDA). Compounds 9 and 11 were resolved using chiral HPLC, and the configurational assignments...

  3. Development of fast disintegrating compressed tablets using amino acid as disintegration accelerator: evaluation of wetting and disintegration of tablet on the basis of surface free energy.

    Science.gov (United States)

    Fukami, Jinichi; Ozawa, Asuka; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide

    2005-12-01

    A fast disintegrating compressed tablet was formulated using amino acids, such as L-lysine HCl, L-alanine, glycine and L-tyrosine as disintegration accelerator. The tablets having the hardness of about 4 kgf were prepared and the effect of amino acids on the wetting time and disintegration time in the oral cavity of tablets was examined on the basis of surface free energy of amino acids. The wetting time of the tablets increased in the order of L-lysine HCl, L-alanine, glycine and L-tyrosine, whereas the disintegration time in the oral cavity of the tablets increased in the order of L-alanine, glycine, L-lysine HCl and L-tyrosine. These behaviors were well analyzed by the introduction of surface free energy. When the polar component of amino acid was large value or the dispersion component was small value, faster wetting of tablet was observed. When the dispersion component of amino acid was large value or the dispersion component was small value, faster disintegration of tablet was observed, expect of L-tyrosine tablet. The fast disintegration of tablets was explained by the theory presented by Matsumaru.

  4. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    Science.gov (United States)

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.

  5. Surface ion-imprinted amino-functionalized cellulosic cotton fibers for selective extraction of Cu(II) ions.

    Science.gov (United States)

    Monier, M; Ibrahim, Amr A; Metwally, M M; Badawy, D S

    2015-11-01

    Surface ion-imprinted amino-functionalized cellulosic fibers (Cu-ABZ) were manufactured for efficient selective adsorption of Cu(2+) ions. The chemical modification steps had been characterized utilizing elemental analysis; Fourier transforms infrared (FTIR) along with wide angle X-ray diffraction (XRD) spectroscopy. Also, the morphological structure of the ion-imprinted and the non-imprinted (NI-ABZ) fibers were visualized and compared with that of the native cotton fibers using scanning electron microscope (SEM). In addition, the coordination mode by which the Cu(2+) ions bonded to the active sites were examined by both FTIR and X-ray photo electron spectra (XPS). Both Cu-ABZ and NI-ABZ were implemented in batch experiments for optimizing the conditions by which the Cu(2+) ions can be selectively removal from aqueous medium and pH 5 was the optimum for the metal ion extraction. Moreover, the kinetics and isotherm studies revealed that the adsorption data fitted with pseudo-second-order kinetic and Langmuir models with estimated maximum adsorption capacity 93.6mg/g. Also, the reusability studies indicated that the prepared ion-imprinted adsorbent maintains more than 95% of its original activity after fifth generation cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Adsorption of dianionic surfactants based on amino acids at different surfaces studied by QCM-D and SPR.

    Science.gov (United States)

    Bordes, Romain; Tropsch, Jürgen; Holmberg, Krister

    2010-07-06

    The adsorption of three dicarboxylic amino acid-based surfactants, disodium N-lauroylaminomalonate, disodium N-lauroylaspartate, and disodium N-lauroylglutamate, has been studied by surface plasmon resonance (SPR) and the quartz crystal microbalance with dissipation monitoring (QCM-D). These surfactants have high cmc values, which means that the unimer concentration is high at the plateau value of adsorption. This gives rise to a considerable "bulk effect", which must be deducted from the observed value in order to obtain the true value of the adsorbed amount. In this article, we show how this can be done for the QCM-D technique. Adsorption is studied on silica, gold, gold hydrophobized by a self-assembled layer of an alkane thiol, and hydroxyapatite. Adsorption on hydroxyapatite differs very much among the three surfactants, with the aspartate derivative giving the strongest and the glutamate giving the weakest adsorption. This difference is explained as the difference in ability of the dicarboxylic amphiphiles to chelate calcium in the crystal lattice.

  7. E-Polytopes in Picard Groups of Smooth Rational Surfaces

    Directory of Open Access Journals (Sweden)

    Jae-Hyouk Lee

    2016-04-01

    Full Text Available In this article, we introduce special divisors (root, line, ruling, exceptional system and rational quartic in smooth rational surfaces and study their correspondences to subpolytopes in Gosset polytopes k 21 . We also show that the sets of rulings and exceptional systems correspond equivariantly to the vertices of 2 k 1 and 1 k 2 via E-type Weyl action.

  8. Gemini surfactants from natural amino acids.

    Science.gov (United States)

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.

  9. Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Wei-Chih [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Plichta, Zdeněk [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Lee, Wen-Chien [Department of Chemical Engineering, Systems Biology and Tissue Engineering Research Center, National Chung Cheng University, Minhisung 621, Taiwan (China)

    2014-01-01

    Magnetic poly(glycidyl methacrylate)-based macroporous microspheres with an average particle size of 4.2 μm were prepared using a modified multi-step swelling polymerization method and by introducing amino functionality on their surfaces. Antibody molecules were oxidized on their carbohydrate moieties and bound to the amino-containing magnetic microspheres via a site-directed procedure. CD133-positive cells could be effectively captured from human cancer cell lines (HepG2, HCT116, MCF7, and IMR-32) by using magnetic microspheres conjugated to an anti-human CD133 antibody. After further culture, the immunocaptured CD133-expressing cells from IMR-32 proliferated and gradually detached from the magnetic microspheres. Flow-cytometric analysis confirmed the enrichment of CD133-expressing cells by using the antibody-bound magnetic microspheres. Such microspheres suitable for immunocapture are very promising for cancer diagnosis because the CD133-expressing cells in cancer cell lines have been suggested to be cancer stem cells. - Highlights: • Multi-step swelling polymerization produced poly(glycidyl methacrylate) microspheres. • Anti-human CD133 antibodies were bound to the amino-containing magnetic microspheres. • CD133-positive cells were effectively captured from human cancer cell lines. • Immunocaptured CD133-expressing cells proliferated and were detached from microspheres. • Enrichment of CD133-expressing cells was confirmed by flow-cytometric analysis.

  10. Graphs of groups on surfaces interactions and models

    CERN Document Server

    White, AT

    2001-01-01

    The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English

  11. Thermal properties of some small peptides (N-acetyl-amino acid-N′-methylamides) with non-polar side groups

    International Nuclear Information System (INIS)

    Badea, Elena; Della Gatta, Giuseppe; Pałecz, Bartłomiej

    2014-01-01

    Highlights: • T fus and Δ fus H m of methylamides of N-acetyl substituted non-polar amino acids were measured. • T fus and Δ fus H m increased as a function of the molar mass of the alkyl side chains. • DL racemates showed T fus of about 40 °C lower than those of the corresponding pure L enantiomers. • Ideal solubility of solids at T = 298.15 K was estimated based on their T fus and Δ fus S m . - Abstract: Temperatures and molar enthalpies of fusion of a series of uncharged small peptides, namely the methylamides of N-acetyl substituted glycine, α-amino-butyric acid, alanine, valine, norvaline, leucine, isoleucine, norleucine, and proline, were measured by differential scanning calorimetry (d.s.c.), and molar entropies of fusion were derived. Both L- and DL-compunds were taken into account for the chiral molecules. No solid-to-solid transitions were detected from room temperature to fusion except for N-acetyl-N′-methyl alaninamide. Comparisons were made with the values for the N-acetyl amides of the corresponding amino acids previously reported. Both L enantiomers and DL racemates of α-aminobutyric acid, alanine, valine and isoleucine methylamides displayed temperatures of fusion sharply increasing as a function of molar mass, whereas much lower values, in countertendency with their molar mass increase, were found for proline and leucine methylamides. The racemic DL crystals showed temperatures of fusion of about 40 °C lower than those of the corresponding pure L enantiomers, except for proline and leucine derivatives. The enthalpies and entropies of fusion also varied as a function of molar mass following a similar trend with that of temperatures of fusion, except for alanine derivatives which showed lower values than expected. The values of ideal solubility of solids at T = 298.15 K were estimated based on their temperatures and molar entropies of fusion. Results were discussed with reference to the packing patterns based on hydrogen bonding and

  12. The Development of Nonlinear Surface and Internal Wave Groups.

    Science.gov (United States)

    1982-11-01

    porn (1971a3 observed groups of large amplitude waves propagating in Massachusetts Bay that seemed to rom tidal interaction with a submarine sill...provides a plan view of the tank and a platform for pictures or movies (Fig. 2.2). For these experiments the measurements from 18 wave height sensors

  13. Sunspot Groups as Tracers of Sub Surface Processes .

    Indian Academy of Sciences (India)

    tribpo

    work which is incomplete. 2. Solar magnetic cycle as global MHD oscillations. Using lifespan of a sunspot group as a measure of toroidal magnetic flux emerging during its life, and attaching to it the sign of polarity of bipolar magnetic regions in the respective wing of the butterfly diagram, Gokhale et al. (1992) determined.

  14. Homologie cyclique du produit croise algebrique et groupes de surfaces

    NARCIS (Netherlands)

    Bella Baci, A.

    1997-01-01

    Let a group G act on an associative algebra A One can form the algebraic crossed product A G cf which plays the role of a noncommutative quotient in Conness theory The cyclic homology of this algebra was studied extensively in a series of papers It is well known that this homology admits a

  15. Synthesis, structure and cytotoxicity of cyclic (alkyl)(amino) carbene and acyclic carbene complexes of group 11 metals.

    Science.gov (United States)

    Bertrand, Benoît; Romanov, Alexander S; Brooks, Mark; Davis, Josh; Schmidt, Claudia; Ott, Ingo; O'Connell, Maria; Bochmann, Manfred

    2017-11-21

    A series of complexes of cyclic (alkyl)(amino)carbene (CAAC) complexes of copper, silver and gold have been investigated for their antiproliferative properties. A second series of acyclic carbene (ACC) complexes of gold(i) were prepared by nucleophilic attack on isocyanide complexes by amines and amino esters, to give (ACC)AuCl, [(ACC)Au(PTA)] + (PTA = triazaphosphaadamantane), as well as mixed-carbene compounds [(CAAC)Au(ACC)] + . Representative complexes were characterised by X-ray diffraction which confirmed the mononuclear linear structures without close intermolecular contacts or aurophilic interactions. The redox properties of these complexes have been determined. The compounds were tested against a panel of human cancer cell lines including leukemia (HL 60), breast adenocarcinoma cells (MCF-7) and human lung adenocarcinoma epithelial cell lines (A549), which show varying degrees of cisplatin resistance. The pro-ligand iminium salts and the PTA complexes were non-toxic. By contrast, the CAAC complexes show high cytotoxicity, with IC 50 values in the sub-micromolar to ∼100 nanomolar range, even against cisplatin-insensitive MCF-7 and A549 cells. Cationic bis-carbene complexes [( Me2 CAAC) 2 M] + (6-8, M = Cu, Ag and Au) proved particularly effective. The mechanism of cell growth control by these complexes remains to be established, although possible modes of action such as inhibition of thioredoxin reductase (TrxR), which is a common pathway for gold NHC compounds, or the formation of reactive oxygen species (ROS) through redox processes, could be ruled out as primary pathways.

  16. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  17. Isolation of L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide), a sea anemone neuropeptide containing an unusual amino-terminal blocking group

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Rinehart, K L; Jacob, E

    1990-01-01

    Using a radioimmunoassay for the carboxyl-terminal sequence Arg-Asn-NH2, we have purified a peptide from acetic acid extracts of the sea anemone Anthopleura elegantissima. By classical amino acid analyses, mass spectrometry, and 1H NMR spectroscopy, the structure of this peptide was determined as 3......-phenyllactyl-Leu-Arg-Asn-NH2. By using reversed-phase HPLC and a chiral mobile phase, it was shown that the 3-phenyllactyl group had the L configuration. Immunocytochemical staining with antiserum against Arg-Asn-NH2 showed that L-3-phenyllactyl-Leu-Arg-Asn-NH2 (Antho-RNamide) was localized in neurons of sea...

  18. Synthesis of novel poly(ethylene glycol) derivatives having pendant amino groups and aggregating behavior of its mixture with fatty acid in water.

    Science.gov (United States)

    Koyama, Y; Umehara, M; Mizuno, A; Itaba, M; Yasukouchi, T; Natsume, K; Suginaka, A

    1996-01-01

    Novel poly(ethylene glycol) (PEG) derivatives having pendant amino groups were prepared by copolymerization of allyl glycidyl ether with ethylene oxide followed by chemical modification of the double bond side chains. Dropwise addition of the mixture of monomers to the anionic initiator gave an almost monodisperse (Mw/Mn = 1.05) random copolymer. 1H NMR spectra showed that addition of 2-aminoethanethiol to the pendant allyl groups of the copolymer was completely carried out in methanol without catalyst, and an aminated PEG derivative with a definite structure was obtained. Acetylation of the pendant amino groups was readily performed by acetic anhydride with triethylamine. A gel permeation chromatogram of the acetylated polymer showed a very narrow molecular weight distribution (Mw/Mn = 1.06) of the polyamine. These cationic PEG derivatives make amphiphilic polyion complexes with fatty acids, and then aggregate in water. A fluorescence study using pyrene as a microenvironment probe revealed that the aminated PEG-lauric acid ion complex could take up the hydrophobic fluorescence probe into the lipophilic field inside, and they also had a critical aggregation concentration at [lauric acid] = 0.7 mM. It is much lower than the critical micelle concentration of the corresponding fatty acid sodium salts, indicating high stability of the polymer-fatty acid aggregate.

  19. Genetic Variations in the Human G Protein-coupled Receptor Class C, Group 6, Member A (GPRC6A) Control Cell Surface Expression and Function

    DEFF Research Database (Denmark)

    Jorgensen, Stine; Have, Christian Theil; Underwood, Christina Rye

    2017-01-01

    GPRC6A is a G protein-coupled receptor activated by l-amino acids, which, based on analyses of knock-out mice, has been suggested to have physiological functions in metabolism and testicular function. The human ortholog is, however, mostly retained intracellularly in contrast to the cell surface...... of the human ortholog. Genetic analyses of the 1000 genome database and the Inter99 cohort of 6,000 Danes establish the distribution of genotypes among ethnic groups, showing that the cell surface-expressed and functional variant is much more prevalent in the African population than in European and Asian...

  20. Crystal structure of the bacterial ribosomal decoding site complexed with amikacin containing the gamma-amino-alpha-hydroxybutyryl (haba) group.

    Science.gov (United States)

    Kondo, Jiro; François, Boris; Russell, Rupert J M; Murray, James B; Westhof, Eric

    2006-08-01

    Amikacin is the 4,6-linked aminoglycoside modified at position N1 of the 2-deoxystreptamine ring (ring II) by the L-haba group. In the present study, the crystal structure of a complex between oligonucleotide containing the bacterial ribosomal A site and amikacin has been solved at 2.7 A resolution. Amikacin specifically binds to the A site in practically the same way as its parent compound kanamycin. In addition, the L-haba group interacts with the upper side of the A site through two direct contacts, O2*...H-N4(C1496) and N4*-H...O6(G1497). The present crystal structure shows how the introduction of the L-haba group on ring II of aminoglycoside is an effective mutation for obtaining a higher affinity to the bacterial A site.

  1. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces.

    Science.gov (United States)

    Sankaran, Shrikrishnan; Cavatorta, Emanuela; Huskens, Jurriaan; Jonkheijm, Pascal

    2017-09-05

    Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV 2+ ). The binding affinity of the knottins with CB[8] and MV 2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.

  2. An investigation of the functional groups on the surface of activated carbons

    Directory of Open Access Journals (Sweden)

    MARYTE DERVINYTE

    2004-05-01

    Full Text Available Activated carbons were produced in the laboratory from wood using a 20-run Plackett–Burman experimental design for 19 factors. The obtained batches of activated carbon were analysed by potentiometric titration and FTIR spectroscopy to determine the surface functional groups. The results obtained by potentiometric titration displayed the distribution of individual acidity constants of those groups in the pK range. Considering this parameter, the surface functional groups were divided into carboxyl, lactone and phenol. The linear regression equations reflecting the influence of each operation used for the synthesis on the amount of these functional groups in the obtained activated carbons were generated. The FTIR spectra were used in parallel for the evaluation of the amount and the type of the surface functional groups. Relationships between the two data sets obtained by potentiometric titration and FTIR spectroscopy were evaluated by correlation analysis. It was established that the amount of surface functional groups determined by potentiometric titration positively correlates with the intensity of the peaks of hydrophilic functional groups in the FTIR spectra. At the same time, the negative correlation between potentiometrically determined amount of surface functional groups and the intensity of peaks of hydrophobic functional groups was observed. Most probably, these non-polar formations can take part in the interaction of carbon surface with H+/OH- ions and diminish the strength of existent functional groups.

  3. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Luis [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Reed, David [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nie, Zimin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Schwarz, Ashleigh M. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Nandasiri, Manjula I. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Kizewski, James P. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Wang, Wei [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Thomsen, Edwin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Zhang, Ji-Guang [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Sprenkle, Vincent [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA; Li, Bin [Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999 Richland WA 99352 USA

    2016-05-17

    We decorated the surfaces of graphite felts with some oxygen-containing functional groups, such as C-OH, O=C and HO-C=O. And the mole ratios and amounts of these functional groups were effectively adjusted on the graphite surface by a particular method. The catalytic effects of amounts and mole ratio of different kinds of functional groups on VRB electrode performances were investigated in detail.

  4. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Proks, Vladimír; Karabiyik, Ö.; Calikoglu Koyuncu, A. C.; Köse, G. T.; Rypáček, František; Studenovská, Hana

    2017-01-01

    Roč. 11, č. 3 (2017), s. 831-842 ISSN 1932-6254 R&D Projects: GA ČR GAP108/12/1629; GA ČR GAP108/12/1538 Grant - others:AV ČR, TUBITAK(CZ) 111M031 Institutional support: RVO:61389013 Keywords : poly(amino acid) * fibrous scaffolds * adhesion peptide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.989, year: 2016

  5. Impact of Micro Silica Surface Hydroxyl Groups on the Properties of Calcium Silicate Products

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Jørgensen, Bianca; Yu, Donghong

    2017-01-01

    to be the limiting step, and therefore large SiO2 surface area is desired. However, other SiO2 surface structure, such as surface impurities (metal ions) and hydroxyl groups might also influence the reaction. In this work, we investigate the influence of micro silica surface hydroxyl groups in the synthesis...... of calcium silicate. We increase the hydroxyl groups by dispersing the micro silica in 10wt% H2O2 (CS10%), and we remove the hydroxyl groups by drying the micro silica at 650°C and then disperse it in water (CS650). A reference sample is also prepared from as-received micro silica dispersed in water (CSref...... by the increase in tobermorite crystal structure. H2O2 increase the micro silica surface area, and the number of hydroxyl groups on the micro silica surface. By removing hydroxyl groups from the silica surface, we tremendously decrease the surface area and the reactivity of micro silica. The results show...

  6. The multilevel analysis of surface acting and mental health: A moderation of positive group affective tone

    Science.gov (United States)

    Lee, Meng-Shiu; Huang, Jui-Chan; Wu, Tzu-Jung

    2017-06-01

    The purpose of this study is to investigate the relationship among surface acting, mental health, and positive group affective tone. According to the prior theory, this study attempts to establish a comprehensive research framework among these variables, and furthermore tests the moderating effect of positive group affective tone. Data were collected from 435 employees in 52 service industrial companies by questionnaire, and this study conducted multilevel analysis. The results showed that surface acting will negatively affect the mental health. In addition, the positive group affective tone have significant moderating effect on the relationship among surface acting and mental health. Finally, this study discusses managerial implications and highlights future research suggestions.

  7. Overview on the Surface Functionalization Mechanism and Determination of Surface Functional Groups of Plasma Treated Carbon Nanotubes.

    Science.gov (United States)

    Saka, Cafer

    2018-01-02

    The use of carbon materials for many applications is due to the unique diversity of structures and properties ranging from chemical bonds between the carbon atoms of the materials to nanostructures, crystallite alignment, and microstructures. Carbon nanotubes and other nanoscale carbonaceous materials draw much attention due to their physical and chemical properties, such as high strength, high resistance to corrosion, electrical and thermal conductivity, stability and a qualified adsorbent. Carbon-based nanomaterials, which have a relatively large specific area and layered structure, can be used as an adsorbent for efficient removal of organic and inorganic contaminants. However, one of the biggest obstacles to the development of carbon-based nanomaterials adsorbents is insolubility and the lack of functional groups on the surface. There are several approaches to introduce functional groups on carbon nanotubes. One of these approaches, plasma applications, now has an important place in the creation of surface functional groups as a flexible, fast, and environmentally friendly method. This review focuses on recent information concerning the surface functionalization and modification of plasma treated carbon nanotube. This review considers the surface properties, advantages, and disadvantages of plasma-applied carbon nanotubes. It also examines the reaction mechanisms involved in the functional groups on the surface.

  8. Determination of surface functional groups on mechanochemically activated carbon cloth by Boehm method

    Directory of Open Access Journals (Sweden)

    Đukić Anđelka B.

    2014-01-01

    Full Text Available In order to improve sorption properties of activated carbon cloth that can be used for wastewater purification, mechanochemical activation was performed in both inert and air atmosphere. Boehm method was used to follow the changes in the number and types of surface groups induced by mechanical milling. The number of the base groups of 0,2493 mmol/g is significantly smaller than the total amount of acidic functional groups, 2,5093 mmol/g. Among the acidic groups present on the surface, the most represented are phenolic groups (2.3846 mmol/g , ie . > 95 % , the carboxylic groups are present far less (0.1173 mmol /g, ie. 4.5 %, while the presence of the lactone group on the surface of ACC is negligible (0.0074 mmol/g ie. under 0.3 %. Mechanochemical activation lead to an increase in the number of acidic and basic groups on the surface of the ACC. The milling in inert atmosphere has dominant effect with respect to the changes in the total number of basic functional groups (compared to milling in an air atmosphere: the number of basic groups of the ACC was 0.8153 mmol/g milled under argon, 0.7933 mmol/g in the air; the number of acidic groups is 2.9807 mmol/g for a sample milled under argon and 3.5313 mmol/g for one milled in the air.

  9. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Mierczynska-Vasilev, Agnieszka, E-mail: agnieszka.mierczynska-vasilev@awri.com.au; Smith, Paul A., E-mail: paul.smith@awri.com.au

    2016-11-15

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO{sub 3}H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH{sub 2} and NR{sub 3} groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR{sub 3} and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO{sub 3}H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH{sub 2} and −NR{sub 3} groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR{sub 3} and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  10. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    International Nuclear Information System (INIS)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-01-01

    Highlights: • Chemical surface composition affects behaviour of wine adsorption. • SO 3 H and COOH groups adsorb more of the wine nitrogen-containing compounds. • NH 2 and NR 3 groups encourage carbon-containing compounds adsorption. • Red wine constituents after filtration adsorbed more on NR 3 and CHO surfaces. - Abstract: The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with −SO 3 H and –COOH groups can adsorb more of the wine nitrogen-containing compounds whereas −NH 2 and −NR 3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on −NR 3 and –CHO surfaces. The –OH modified surfaces had the lowest ability to absorb wine components.

  11. Constant Gaussian curvature surfaces in the 3-sphere via loop groups

    DEFF Research Database (Denmark)

    Brander, David; Inoguchi, Jun-Ichi; Kobayashi, Shimpei

    2014-01-01

    In this paper we study constant positive Gauss curvature K surfaces in the 3-sphere S3 with 0KK... by the second fundamental form if and only if K is constant. We give a uniform loop group formulation for all such surfaces with K≠0, and use the generalized d’Alembert method to construct examples. This representation gives a natural correspondence between such surfaces with KK

  12. Surface modification influencing adsorption of red wine constituents: The role of functional groups

    Science.gov (United States)

    Mierczynska-Vasilev, Agnieszka; Smith, Paul A.

    2016-11-01

    The adsorption of wine constituents at solid surfaces is important in applications such as filtration and membrane fouling, binding to tanks and fittings and interactions with processing aids such as bentonite. The interaction of wine constituents with surfaces is mediated through adsorbed wine components, where the type of constituents, amount, orientation, and conformation are of consequence for the surface response. This study examines the effect of surface chemical functionalities on the adsorption of red wine constituents. Plasma-polymerized films rich in amine, carboxyl, hydroxyl, formyl and methyl functional groups were generated on solid substrates whereas, glycidyltrimethylammonium chloride was covalently attached to allylamine plasma-polymer modified surface and poly(sodium styrenesulfonate) was electrostatically adsorbed to an amine plasma-polymerized surface. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy. The ability of different substrates to adsorb red wine constituents was evaluated by quartz crystal microbalance and atomic force microscopy. The results showed that substrates modified with -SO3H and -COOH groups can adsorb more of the wine nitrogen-containing compounds whereas -NH2 and -NR3 groups encourage carbon-containing compounds adsorption. Red wine constituents after filtration were adsorbed in higher extend on -NR3 and -CHO surfaces. The -OH modified surfaces had the lowest ability to absorb wine components.

  13. Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Alves, P., E-mail: palves@eq.uc.pt [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Ferreira, P. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal); Kaiser, Jean-Pierre [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Salk, Natalie [Mikrofertigung – Micro Engineering, Fraunhofer IFAM, Wiener Strasse 12, D-288359 Bremen (Germany); Bruinink, Arie [EMPA, St. Gallen, Lerchenfeldstrasse 5, CH-9014 St. Gallen (Switzerland); Sousa, Hermínio C. de; Gil, M.H. [CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra (Portugal)

    2013-10-15

    The interaction of polymers with other materials is an important issue, being their surface properties clearly crucial. For some important polymer applications, their surfaces have to be modified. Surface modification aims to tailor the surface characteristics of a material for a specific application without affecting its bulk properties. Materials can be surface modified by using biological, chemical or physical methods. The aim of this work was to improve the reactivity of the thermoplastic polyurethane (TPU) material (Elastollan{sup ®}) surface and to make its surface cell repellent by grafting carboxylic groups onto its surface. Two TPU materials were studied: a polyether-based TPU and a polyester-based TPU. The grafting efficiency was evaluated by contact angle measurements and by analytical determination of the COOH groups. Scanning electron microscopy (SEM) of the membranes surface was performed as well as cell adhesion tests. It was proved that the surfaces of the TPUs membranes were successfully modified and that cell adhesion was remarkably reduced.

  14. The Picard group of the moduli space of r-Spin Riemann surfaces

    DEFF Research Database (Denmark)

    Randal-Williams, Oscar

    2012-01-01

    An r-Spin Riemann surface is a Riemann surface equipped with a choice of rth root of the (co)tangent bundle. We give a careful construction of the moduli space (orbifold) of r-Spin Riemann surfaces, and explain how to establish a Madsen–Weiss theorem for it. This allows us to prove the “Mumford...... conjecture” for these moduli spaces, but more interestingly allows us to compute their algebraic Picard groups (for g≥10, or g≥9 in the 2-Spin case). We give a complete description of these Picard groups, in terms of explicitly constructed line bundles....

  15. Use of polyamfolit complexes of ethyl-amino-crotonate/acrylic acid with surface-active materials for radionuclide extraction

    International Nuclear Information System (INIS)

    Kabdyrakova, A.M.; Artem'ev, O.I.; Protskij, A.V.; Bimendina, L.A.; Yashkarova, M.G.; Orazzhanova, L.K.

    2005-01-01

    Pentifylline of betaine structure was synthesised on the basis of 3-aminocrotonate and acrylic acid. Polyamfolit composition and its complexes with anionic surface-active material (lauryl sulfate of sodium) were determined. It is revealed that complex formation occurs with [polyamfolit]:[surface active material]=1:1 ratio and is accompanied by significant reduce of system characteristics viscosity. The paper presents results of [polyamfolit]:[surface active material] complex apply experimental investigation for radionuclide directed migration in soil. (author)

  16. Arsonic acid as a robust anchor group for the surface modification of Fe3O4.

    Science.gov (United States)

    Ahn, Jihoon; Moon, Doo-Sik; Lee, Jin-Kyu

    2013-12-03

    In order to use iron oxide nanoparticles (Fe3O4) in various applications, a surface modification that provides colloidal stability and additional functionality to the nanoparticles is necessary. For the modification of the nanoparticle surface with ligand molecules, the ligand molecule should contain an anchor group that has a strong affinity for the surface. However, currently used anchor groups have shown some problems such as low affinity and stability as well as reactivity with the surface. In this study, arsonic acid (RAsO(OH)2) was investigated as a novel anchor group. It was possible to introduce azide groups on the surface of iron oxide nanoparticles using 4-azidophenylarsonic acid, and the desired functional molecules could be chemically attached to the surface via copper-catalyzed azide-alkyne cycloaddition (click chemistry). By quantifying and comparing the amount of attached anchors on the surface, it was found that arsonic acid displays better affinity than other currently used anchors (catechol, carboxylic acid). Furthermore, we examined the binding reversibility, long-term anchoring stability, and anchoring stability at various pH values. It was revealed that arsonic acid is a stable anchor in various conditions.

  17. XPS study of PBO fiber surface modified by incorporation of hydroxyl polar groups in main chains

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tao; Hu Dayong; Jin Junhong; Yang Shenglin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Li Guang, E-mail: lig@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Jiang Jianming [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2010-01-15

    Dihydroxy poly(p-phenylene benzobisoxazole) (DHPBO), a modified poly(p-phenylene benzoxazole) (PBO) polymer containing double hydroxyl groups in polymer chains, was synthesized by copolymerization of 4,6-diamino resorcinol dihydrochloride (DAR), purified terephthalic acid (TA) and 2,5-dihydroxyterephthalic acid (DHTA). DHPBO fibers were prepared by dry-jet wet-spinning method. The effects of hydroxyl polar groups on the surface elemental compositions of PBO fiber were investigated by X-ray photoelectron spectroscopy (XPS). The results show that the ratio of oxygen/carbon on the surface of DHPBO fibers is higher than that on the surface of PBO fibers, which indicates the content of polar groups on the surface of DHPBO fiber increase compared with PBO fiber.

  18. Surface-binding through polyfunction groups of Rhodamine B on composite surface and its high performance photodegradation

    Science.gov (United States)

    Wan, Yiqun; Wang, Xiaofen; Gu, Yun; Guo, Lan; Xu, Zhaodi

    2016-03-01

    A kind of novel composite ZnS/In(OH)3/In2S3 is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH)3 and In2S3 phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH)3/In2S3 with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH)3 and suppresses the recombination of photogenerated carrier. The possible adsorption modes of Rh B are discussed on the basis of the experiment results.

  19. Corrosion control of vanadium in aqueous solutions by amino acids

    International Nuclear Information System (INIS)

    El-Rabiee, M.M.; Helal, N.H.; El-Hafez, Gh.M. Abd; Badawy, W.A.

    2008-01-01

    The electrochemical behavior of vanadium in amino acid free and amino acid containing aqueous solutions of different pH was studied using open-circuit potential measurements, polarization techniques and electrochemical impedance spectroscopy (EIS). The corrosion current density, i corr , the corrosion potential, E corr and the corrosion resistance, R corr , were calculated. A group of amino acids, namely, glycine, alanine, valine, histidine, glutamic and cysteine has been investigated as environmentally safe inhibitors. The effect of Cl - on the corrosion inhibition efficiency especially in acid solutions was investigated. In neutral and basic solutions, the presence of amino acids increases the corrosion resistance of the metal. The electrochemical behavior of V before and after the corrosion inhibition process has shown that some amino acids like glutamic acid and histidine have promising corrosion inhibition efficiency at low concentration (≅25 mM). The inhibition efficiency (η) was found to depend on the structure of the amino acid and the constituents of the corrosive medium. The corrosion inhibition process is based on the adsorption of the amino acid molecules on the metal surface and the adsorption process follows the Freundlich isotherm. The adsorption free energy for valine on V in acidic solutions was found to be -9.4 kJ/mol which reveals strong physical adsorption of the amino acid molecules on the vanadium surface

  20. Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO2 Capture, Enhanced Photocatalytic Activity, and Product Selectivity.

    Science.gov (United States)

    Liu, Bing; Ye, Liqun; Wang, Ran; Yang, Jingfeng; Zhang, Yuexing; Guan, Rong; Tian, Lihong; Chen, Xiaobo

    2018-01-31

    Phosphorus-doped graphitic carbon nitrides (P-g-C 3 N 4 ) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on CO 2 reduction have gained little attention. In this work, phosphorus-doped g-C 3 N 4 nanotubes are synthesized through the one-step thermal reaction of melamine and sodium hypophosphite monohydrate (NaH 2 PO 2 ·H 2 O). The phosphine gas generated from the thermal decomposition of NaH 2 PO 2 ·H 2 O induces the formation of P-g-C 3 N 4 nanotubes from g-C 3 N 4 nanosheets, leads to an enlarged BET surface area and a unique mesoporous structure, and creates an amino-rich surface. The interstitial doping phosphorus also down shifts the conduction and valence band positions and narrows the band gap of g-C 3 N 4 . The photocatalytic activities are dramatically enhanced in the reduction both of CO 2 to produce CO and CH 4 and of water to produce H 2 because of the efficient suppression of the recombination of electrons and holes. The CO 2 adsorption capacity is improved to 3.14 times, and the production of CO and CH 4 from CO 2 increases to 3.10 and 13.92 times that on g-C 3 N 4 , respectively. The total evolution ratio of CO/CH 4 dramatically decreases to 1.30 from 6.02 for g-C 3 N 4 , indicating a higher selectivity of CH 4 product on P-g-C 3 N 4 , which is likely ascribed to the unique nanotubes structure and amino-rich surface.

  1. Coupling of carboxylic groups onto the surface of polystyrene parts during fused filament fabrication

    Science.gov (United States)

    Nagel, Jürgen; Zimmermann, Philipp; Schubert, Oliver; Simon, Frank; Schlenstedt, Kornelia

    2017-11-01

    A method for the fabrication of polystyrene parts, modified with carboxylic groups during Fused Filament Fabrication (FFF), is being introduced. This method is based on the application of a thin layer of a reactive polymer carrying carboxylic groups on a substrate surface. A polystyrene film is printed on top of this layer. During contact between the hot melt and the reactive layer, a Friedel-Crafts type acylation using a green catalyst takes place, which attaches the reactive polymer to the polystyrene surface. The modified surface is homogeneous, hydrophilic and able to bind copper ions. The method could be used to fabricate unique parts of polystyrene with tailored surface functionalisation. It could be applied for laboratory use, e.g. for the manufacture of lab-on-a-chip devices.

  2. Surface properties of aqueous amino acid solutions II. Leucine-leucine hydrochloride and leucine-sodium leucinate mixtures.

    Science.gov (United States)

    Matubayasi, Norihiro; Matsuyama, Shohei; Akizuki, Ryosuke

    2005-08-15

    To understand the distinction between the effects of zwitterionic, anionic, and cationic l-leucine upon adsorption and lateral interactions at air/water surface, the surface tensions of aqueous solutions of l-leucine-l-leucine hydrochloride and l-leucine-sodium l-leucinate mixtures were measured as a function of concentration and composition at 25 degrees C. The surface activity decreases in the order l-leucine >l-leucine hydrochloride > sodium l-leucinate. Both l-leucine hydrochloride and sodium l-leucinate form gaseous adsorbed films through the experimentally accessible concentration range, while the adsorbed film of zwitterionic l-leucine shows a transition between gaseous and expanded film.

  3. Surface ferro (or antiferro) magnetism in bulk antiferro (or ferro) magnets: renormalization group analysis

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Tsallis, C.

    1985-01-01

    The renormalization group techniques are applied, for the first time, to surface magnetism in bulk magnets, for all signs of surface and bulk coupling constants. The g-state Potts model is specifically focused, and a interesting q-evolution of the phase diagram is exhibited. In particular the Ising model (q=2) presents a remarkable feature: surface ferro (or antiferro) magnetism can disappear while heating an antiferro (or ferro) magnet, and reappear again for higher temperatures, before entering in the paramagnetic phase. (Author) [pt

  4. Extrapolated renormalization group calculation of the surface tension in square-lattice Ising model

    International Nuclear Information System (INIS)

    Curado, E.M.F.; Tsallis, C.; Levy, S.V.F.; Oliveira, M.J. de

    1980-06-01

    By using self-dual clusters (whose sizes are characterized by the numbers b=2, 3, 4, 5) within a real space renormalization group framework, the longitudinal surface tension of the square-lattice first-neighbour 1/2-spin ferromagnetic Ising model is calculated. The exact critical temperature T sub(c) is recovered for any value of b; the exact assymptotic behaviour of the surface tension in the limit of low temperatures is analytically recovered; the approximate correlation length critical exponents monotonically tend towards the exact value ν=1 (which, at two dimensions, coincides with the surface tension critical exponent μ) for increasingly large cells; the same behaviour is remarked in what concerns the approximate values for the surface tension amplitude in the limit T→T sub(c). Four different numerical procedures are developed for extrapolating to b→infinite the renormalization group results for the surface tension, and quite satisfactory agreement is obtained with Onsager's exact expression (error varying from zero to a few percent on the whole temperature domain). Furthermore the set of RG surface tensions is compared with a set of biased surface tensions (associated to appropriate misfit seams), and find only fortuitous coincidence among them. (Author) [pt

  5. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces

    NARCIS (Netherlands)

    Ullien, D.; Thüne, P.C.; Jager, W.F.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2014-01-01

    4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2–7 nm, which indicate multilayer formation.

  6. Mycosporine like amino acids in brown algae

    OpenAIRE

    Serban Radu; Stoian Gheorghe

    2013-01-01

    Biosynthesis of mycosporine and accumulation in cells serves as protection, by shielding the cells sensitive molecules Mycosporine-like aminoacids (MAAs) are derivated compounds of mycosporine that contains an amino-cyclohexenimine ring liked to an amino acid, amino alcohol or amino group. They preesent absorbtion maximum between 320 and 360 nm.

  7. Mycosporine like amino acids in brown algae

    Directory of Open Access Journals (Sweden)

    Serban Radu

    2013-12-01

    Full Text Available Biosynthesis of mycosporine and accumulation in cells serves as protection, by shielding the cells sensitive molecules Mycosporine-like aminoacids (MAAs are derivated compounds of mycosporine that contains an amino-cyclohexenimine ring liked to an amino acid, amino alcohol or amino group. They preesent absorbtion maximum between 320 and 360 nm.

  8. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  9. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    Science.gov (United States)

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  10. Insights into the selective adsorption mechanism of a novel flotation reagent 4-Amino-5-mercapto-1,2,4-triazole on chalcopyrite surface: an experimental and computational study.

    Science.gov (United States)

    Yin, Zhigang; Hu, Yuehua; Sun, Wei; Zhang, Chenyang; He, Jianyong; Xu, Zhijie; Zou, Jingxiang; Guan, Changping; Zhang, Chen Hu; Guan, Qingjun; Lin, Shangyong

    2018-02-28

    In the present study, a novel compound 4-Amino-5-mercapto-1,2,4-triazole was first synthesized and its selective adsorption mechanism on the surface of chalcopyrite was comprehensively investigated using UV-vis spectra, Zeta potential, Fourier Transform Infrared Spectroscopy(FTIR), X-ray Photoelectron Spectroscopy Measurements(XPS), and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and first principle calculations. The experimental and computational results consistently demonstrated that AMT would chemisorb onto the chalcopyrite surface by the formation of a five-membered chelate ring. The first principle periodic calculations further indicated that AMT would prefer to adsorb onto Cu rather than Fe due to the more negative adsorption energy of AMT on Cu in the chalcopyrite (001) surface, which was further confirmed by the coordination bonding energies of AMT-Cu and AMT-Fe based on the simplified cluster models at a higher accuracy level (UB3LYP/Def2-TZVP). The bench scale results indicated that the selective index improved significantly when using AMT as a chalcopyrite depressant in Cu-Mo flotation separation.

  11. Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jing, E-mail: liujing27@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheney, Marcos A. [Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853 (United States); Wu Fan; Li Meng [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-02-15

    A systematic theoretical study using density functional theory is performed to provide molecular-level understanding of the effects of chemical functional groups on mercury adsorption on carbonaceous surfaces. The zigzag and armchair edges were used in modeling the carbonaceous surfaces to simulate different adsorption sites. The edge atoms on the upper side of the models are unsaturated to simulate active sites. All calculations (optimizations, energies, and frequencies) were made at B3PW91 density functional theory level, using RCEP60VDZ basis set for mercury and 6-31G(d) pople basis set for other atoms. The results indicate that the embedding of halogen atom can increase the activity of its neighboring site which in turn increases the adsorption capacity of the carbonaceous surface for Hg{sup 0}. The adsorption belongs to chemisorptions, which is in good agreement with the experimental results. For the effects of oxygen functional groups, lactone, carbonyl and semiquinone favor Hg{sup 0} adsorption because they increase the neighboring site's activity for mercury adsorption. On the contrary, phenol and carboxyl functional groups show a physisorption of Hg{sup 0}, and reduce Hg capture. This result can explain the seemingly conflicting experimental results reported in the literature concerning the influence of oxygen functional groups on mercury adsorption on carbonaceous surface.

  12. Surface-binding through polyfunction groups of Rhodamine B on composite surface and its high performance photodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Yiqun [College of Chemistry, Nanchang University, Nanchang 330031 (China); Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China); Wang, Xiaofen [College of Chemistry, Nanchang University, Nanchang 330031 (China); Gu, Yun; Guo, Lan [College of Chemistry, Nanchang University, Nanchang 330031 (China); Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China); Xu, Zhaodi, E-mail: xuzhaodi@ncu.edu.cn [Center of Analysis and Testing, Nanchang University, Nanchang 330047 (China)

    2016-03-15

    Graphical abstract: The proper adsorption sites of Rh B depending on the phases of composites significantly enhance photodegradation activity under visible light. - Highlights: • The composites ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} were hydrothermally prepared. • Rhodamine B dye was effectively degraded by the composite under the visible light irradiation. • The three function groups of Rhodamine B bind on the composites ZnS/In(OH){sub 3}/In{sub 2}S{sub 3}. • The proper adsorption mode and site of Rhodamine B effectively suppress the combination of carrier. • A new degradation path of Rhodamine B on ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} is found. - Abstract: A kind of novel composite ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH){sub 3} and In{sub 2}S{sub 3} phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH){sub 3}/In{sub 2}S{sub 3} with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH){sub 3} and suppresses the recombination of photogenerated carrier. The possible

  13. A Chord Diagrammatic Presentation of the Mapping Class Group of a Once Bordered Surface

    DEFF Research Database (Denmark)

    Bene, Alex

    The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichm\\"uller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path...... groupoid of Teichm\\"uller space with a discrete set objects. In particular, it leads to an infinite, but combinatorially simple, presentation of the mapping class group of an orientable surface. In this note, we give a presentation of a full mapping class group equivariant subgroupoid of the Ptolemy...

  14. Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii*

    Science.gov (United States)

    Das, Subha Narayan; Wagenknecht, Martin; Nareddy, Pavan Kumar; Bhuvanachandra, Bhoopal; Niddana, Ramana; Balamurugan, Rengarajan; Swamy, Musti J.; Moerschbacher, Bruno M.; Podile, Appa Rao

    2016-01-01

    We report here the role and mechanism of specificity of a family 32 carbohydrate binding module (CBM32) of a glycoside hydrolase family 8 chitosanase from Paenibacillus elgii (PeCsn). Both the activity and mode of action of PeCsn toward soluble chitosan polymers were not different with/without the CBM32 domain of P. elgii (PeCBM32). The decreased activity of PeCsn without PeCBM32 on chitosan powder suggested that PeCBM32 increases the relative concentration of enzyme on the substrate and thereby enhanced enzymatic activity. PeCBM32 specifically bound to polymeric and oligomeric chitosan and showed very weak binding to chitin and cellulose. In isothermal titration calorimetry, the binding stoichiometry of 2 and 1 for glucosamine monosaccharide (GlcN) and disaccharide (GlcN)2, respectively, was indicative of two binding sites in PeCBM32. A three-dimensional model-guided site-directed mutagenesis and the use of defined disaccharides varying in the pattern of acetylation suggested that the amino groups of chitosan and the polar residues Glu-16 and Glu-38 of PeCBM32 play a crucial role for the observed binding. The specificity of CBM32 has been further elucidated by a generated fusion protein PeCBM32-eGFP that binds to the chitosan exposing endophytic infection structures of Puccinia graminis f. sp. tritici. Phylogenetic analysis showed that CBM32s appended to chitosanases are highly conserved across different chitosanase families suggesting their role in chitosan recognition and degradation. We have identified and characterized a chitosan-specific CBM32 useful for in situ staining of chitosans in the fungal cell wall during plant-fungus interaction. PMID:27405759

  15. Influence of surface functional groups on lithium ion intercalation of carbon cloth

    International Nuclear Information System (INIS)

    Ventosa, Edgar; Xia, Wei; Klink, Stefan; La Mantia, Fabio; Muhler, Martin; Schuhmann, Wolfgang

    2012-01-01

    Commercial carbon cloth made of PAN-based carbon fibres was used as free-standing anode for lithium intercalation. The role of surface functional groups on the specific irreversible charge loss and reversible charge during the intercalation and de-intercalation of lithium ions into carbon cloth has been investigated. Oxygen groups have been introduced by nitric acid vapour treatment and subsequently gradually removed by thermal treatment at different temperatures in He or H 2 atmosphere as confirmed by X-ray photoelectron spectroscopy. A clear correlation between the amount of surface-bound oxygen groups and the irreversible specific charge was observed. Three irreversible processes were distinguished during the first cathodic scan: (i) reduction of oxygen groups, (ii) formation of the solid electrolyte interphase (SEI) and (iii) presumably exfoliation. The latter one was only observed for samples with low surface oxygen concentration, and its contribution to the irreversible capacity was small due to the low graphitization degree of the samples. An increased specific reversible charge upon increasing the amount of oxygen-containing groups was observed with the main improvement above 1.5 V.

  16. Enhanced Group Delay of the Pulse Reflection with Graphene Surface Plasmon via Modified Otto Configuration

    Directory of Open Access Journals (Sweden)

    Guimei Li

    2017-01-01

    Full Text Available In this paper, the group delay of the transverse magnetic (TM polarized wave reflected from a modified Otto configuration with graphene surface plasmon is investigated theoretically. The findings show that the optical group delay in this structure can be enhanced negatively and can be switched from negative to positive due to the excitation of surface plasmon by graphene. It is clear that the negative group delay can be actively tuned through the Fermi energy of the graphene. Furthermore, the delay properties can also be manipulated by changing either the relaxation time of graphene or the distance between the coupling prism and the graphene. These tunable delay characteristics are promising for fabricating grapheme-based optical delay devices and other applications in the terahertz regime.

  17. Determination of L-AP4-bound human mGlu8 receptor amino terminal domain structure and the molecular basis for L-AP4’s group III mGlu receptor functional potency and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Schkeryantz, Jeffery M.; Chen, Qi; Ho, Joseph D.; Atwell, Shane; Zhang, Aiping; Vargas, Michelle C.; Wang, Jing; Monn, James A.; Hao, Junliang (Lilly)

    2018-02-01

    Here, L-2-Amino-4-phosphonobutyric acid (L-AP4) is a known potent and selective agonist for the Group III mGlu receptors. However, it does not show any selectivity among the individual group III mGlu subtypes. In order to understand the molecular basis for this group selectivity, we solved the first human mGlu8 amino terminal domain (ATD) crystal structures in complex with L-glu and L-AP4. In comparison with other published L-glu-bound mGlu ATD structures, we have observed L-glu binds in a significantly different manner in mGlu1. Furthermore, these new structures provided evidence that both the electronic and steric nature of the distal phosphate of L-AP4 contribute to its exquisite Group III functional agonist potency and selectivity.

  18. Antibodies against amino acids 1-15 of tumor necrosis factor block its binding to cell-surface receptor.

    OpenAIRE

    Socher, S H; Riemen, M W; Martinez, D; Friedman, A; Tai, J; Quintero, J C; Garsky, V; Oliff, A

    1987-01-01

    Human tumor necrosis factor (hTNF) mediates a variety of biologic activities, which are dependent on the attachment of hTNF to cell-surface receptors. To identify regions of the hTNF protein involved in binding hTNF to its receptor, we prepared five synthetic peptides [hTNF-(1-15), hTNF-(1-31), hTNF-(65-79), hTNF-(98-111), and hTNF-(124-141)] and two hydroxylamine cleavage fragments [hTNF-(1-39) and hTNF-(40-157)] of hTNF. The hTNF-synthetic peptides and hTNF fragments were tested in hTNF rec...

  19. Effect of the surface oxygen groups on methane adsorption on coals

    Energy Technology Data Exchange (ETDEWEB)

    Hao Shixiong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wen Jie [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu Xiaopeng [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We modified one coal with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. Black-Right-Pointing-Pointer The oxygen groups on coal surface were characterized by XPS. Black-Right-Pointing-Pointer The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Black-Right-Pointing-Pointer The adsorption behaviors were measured by volumetric method. Black-Right-Pointing-Pointer There was a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. - Abstract: To investigate the influence of surface oxygen groups on methane adsorption on coals, one bituminous coal was modified with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. The oxygen groups on coal surface were characterized by X-ray photoelectron spectroscopy (XPS). The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Their surface morphologies were analyzed by scanning electron microscopy (SEM). The methane adsorption behaviors of these coal samples were measured at 303 K in pressure range of 0-5.3 MPa by volumetric method. The adsorption data of methane were fitted to the Langmuir model and Dubinin-Astakhov (D-A) model. The fitting results showed that the D-A model fitted the isotherm data better than the Langmuir model. It was observed that there was, in general, a positive correlation between the methane saturated adsorption capacity and the micropore volume of coals while a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. The methane adsorption capacity was determined by the coal surface chemistry when the microporosity parameters of two samples were similar. Coal with a higher amount of oxygen surface groups, and consequently with a less

  20. The XPS study of physical and chemical forms of neptunium group on the surface of minerals

    Directory of Open Access Journals (Sweden)

    Teterin Anton Yu.

    2010-01-01

    Full Text Available The sorption behavior and the physical and chemical forms of neptunium on the surface of minerals of the two chlorate samples, biotite and kaolin, with different contents of Fe(II was studied. The liquid-liquid extraction and the X-ray photoelectron spectroscopy were employed to identify the valence forms of neptunium. On the basis of the obtained data the quantitative elemental composition of the surface of the studied minerals, as well as the ionic composition of the formed neptunium complexes was determined. It was shown that the Np(IV and Np(VI containing compounds did not form, while the complexes Np(VO+ -hydroxyl did form on the surface. The oxygen ions bonded with iron and oxygen belonging to water and/or of carboxyl were suggested to be present in the equatorial plane of the neptunyl group NpO+.

  1. Microstructuring of thermo-mechanically highly stressed surfaces final report of the DFG research group 576

    CERN Document Server

    Rienäcker, Adrian; Knoll, Gunter; Bach, Friedrich-Wilhelm; Maier, Hans; Reithmeier, Eduard; Dinkelacker, Friedrich

    2015-01-01

    This contributed volume presents the final research results of the DFG Research Group 576, which is a joint initiative of five different institutes of the Leibniz Universität Hannover and the Universität Kassel, Germany. The research of the DFG Research Group 576 focuses on improving the tribological behavior of thermomechanically highly stressed surfaces, particularly on cylinder liner for combustion engines. The target audience primarily comprises researchers and experts in the field but the book may also be beneficial for graduate students who want to specialize in the field.

  2. Combinatorial Methods for Detecting Surface Subgroups in Right-Angled Artin Groups

    OpenAIRE

    Bell, Robert W.

    2010-01-01

    We give a short proof of the following theorem of Sang-hyun Kim: if $A(\\Gamma)$ is a right-angled Artin group with defining graph $\\Gamma$, then $A(\\Gamma)$ contains a hyperbolic surface subgroup if $\\Gamma$ contains an induced subgraph $\\bar{C}_n$ for some $n \\geq 5$, where $\\bar{C}_n$ denotes the complement graph of an $n$-cycle. Furthermore, we give a new proof of Kim's co-contraction theorem.

  3. Two single group, prospective, baseline-controlled feeding studies in infants and children with chronic diarrhea fed a hypoallergenic free amino acid-based formula.

    Science.gov (United States)

    Borschel, Marlene W; Antonson, Dean L; Murray, Nancy D; Oliva-Hemker, Maria; Mattis, Lynn E; Kerzner, Benny; Tolia, Vasundhara; Baggs, Geraldine

    2014-05-29

    Infants and children with chronic diarrhea (CD) often require specialized foods or parenteral nutrition (PN) to achieve adequate nutrient intakes to support growth and development. We assessed the efficacy of an amino acid-based formula (AAF) in supporting growth and improving symptoms in infants and children with CD from multiple etiologies. Two studies were conducted: CD study in children (CD-C) and CD study in infants (CD-I). Each was a single group, baseline-controlled study in which each subject served as his/her own control. At enrollment, all subjects had CD lasting > 2 weeks and had ≥ 4 stools/day. Subjects were fed an AAF for 80 days starting at SD5, and were assessed at SD 28 and 84. 18 of 19 subjects completed the study. At enrollment, the mean age was 5.6 ± 0.7 years, the most common diagnosis was short bowel syndrome (SBS) (n = 13), and 5 subjects with SBS were on PN. Subjects achieved significant increases in weight-for-age z-scores (p = 0.026). Over 50% of subjects achieved improvements in clinical outcomes targeted most frequently by their physicians. Of the five subjects on PN at enrollment, four had substantial weight gain and four had their PN requirements decreased. CD-I: 22 of 27 subjects completed the study. At enrollment, the mean age was 3.3 ± 0.3 months, the most common diagnosis was food allergy (n = 20), and no subjects were on PN. Subjects achieved significant increases in weight-for-age z-scores (p = 0.0023), significant decreases in the number of stools/day (p = 0.0012), and improvements in stool consistency (p = 0.0024). Over 80% of subjects achieved improvements in the clinical outcomes targeted most frequently by their physicians. Infants and children with CD fed an AAF for three months displayed significant improvements in weight-for-age z-scores and clinical symptoms. Children dependent on PN also grew well and four of five decreased their dependence on PN. Both trials were registered on ClinTrials.gov (CD-C, NCT01812629; CD

  4. Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties.

    Science.gov (United States)

    Yan, Dong; Hu, Shihao; Zhou, Zhongzheng; Zeenat, Shah; Cheng, Feng; Li, Yang; Feng, Chao; Cheng, Xiaojie; Chen, Xiguang

    2018-02-01

    The hemostatic properties of surface modified chitosan nonwoven had been investigated. The succinyl groups, carboxymethyl groups and quaternary ammonium groups were introduced into the surface of chitosan nonwoven (obtained NSCS, CMCS and TMCS nonwoven, respectively). For blood clotting, absorbance value (0.105±0.03) of NSCS1 nonwoven was the smallest (CS 0.307±0.002, NSCS2 0.148±0.002, CMCS1 0.195±0.02, CMCS2 0.233±0.001, TMCS1 0.191±0.002, TMCS2 0.345±0.002), which indicated the stronger hemostatic potential. For platelet aggregation, adenosine diphosphate agonist was added to induce the nonwoven to adhered platelets. The aggregation of platelet with TMCS2 nonwoven was highest (10.97±0.16%). Further research of blood coagulation mechanism was discussed, which indicated NSCS and CMCS nonwoven could activate the intrinsic pathway of coagulation to accelerate blood coagulation. NSCS1 nonwoven showed the shortest hemostatic time (147±3.7s) and the lowest blood loss (0.23±0.05g) in a rabbit ear artery injury model. These results demonstrated that these surface modified chitosan nonwoven dressings could use as a promising hemostatic intervention, especially NSCS nonwoven dressing. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior

    International Nuclear Information System (INIS)

    Park, Soo-Jin; Kim, Byung-Joo

    2005-01-01

    The gas phase ozone treatment was used as a method to bind acidic oxygen functional groups on carbon fiber surfaces. The ozone treatment on carbon fibers was varied with the ozone concentration and treatment time. Surface analyses of the carbon fibers before and after treatments were performed by FT-IR, X-ray photoelectron spectrometer (XPS), and dynamic contact angle measurements. Mechanical interfacial properties of the fibers/polymer composites were investigated by using critical stress intensity factor (K IC ) and critical energy release rate (G IC ) measurements. From the results of FT-IR and XPS, it was observed that the oxygen functional groups, such as -OH, O-C=O, C=O, and C-O, were attached on the carbon fiber surfaces after the ozone treatment. The mechanical interfacial properties of the composites also showed higher values than those of untreated composites. Ozone treatment is attributed to the increase of both the acidic functional groups and the degree of adhesion at interfaces between the fibers and polymeric resin in composites

  6. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  7. Identification of amino acids involved in the Flo11p-mediated adhesion of Saccharomyces cerevisiae to a polystyrene surface using phage display with competitive elution

    DEFF Research Database (Denmark)

    Mortensen, Henrik Dam; Dupont, Kitt; Jespersen, Lene

    2007-01-01

    Aims: To identify the main amino acids involved in the Flo11p-mediated adhesion of Saccharomyces cerevisiae to the polystyrene surface PolySorp. Methods and Results: Using a combination of phage display and competitive elution revealed that 12-mer peptides of phages from competitive panning with ...

  8. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  9. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...

  10. Proton migration along the membrane surface in the absence of charged or titratable groups

    International Nuclear Information System (INIS)

    Springer, A.

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. For example, proton diffusion along membrane surfaces is considered to be the dominant mechanism of proton exchange between membrane sites of high and low proton concentrations. For the investigation of this mechanism, kinetic experiments on proton diffusion are evaluated to determine the ability of lipid membranes to retain protons on their surfaces. Experiments on different lipid bilayer membranes (DPhPC, DPhPE and GMO) are performed under the influence of two types of mobile buffer molecules (Capso, NH4CL). During these experiments the surface diffusion of photolytically released protons is visualized in terms of fluorescence changes of a lipid bound pH-sensitive dye (DHPE +fluorescein). The protons under investigation are released by flash photolysis of a hydrophobic caged compound (DMCM, caged diethyl phosphate). The experimental data confirm the existence of an energy barrier, which prevents the protons from escaping into the bulk. So far this effect was attributed to the proton binding to titrateable groups (e.g. ethanolamine) or electrostatic forces created by charged moieties (e.g. phosphate groups) on the membrane/water interface. However, upon removal of the titrateable groups and charged moieties from the membrane surface, a significant energy barrier remained as indicated by the experiments with glycerol monooleate (GMO) bilayers. To estimate the size of the barrier a semi-analytical model is presented that describes the two and three dimensional proton diffusion and the related physical and chemical processes. Common models describe surface proton diffusion as a series of subsequent hopping processes between membrane-anchored buffer molecules. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites s by fluorescence

  11. Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: An approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, H.S.; Chary, K.V.R. [Tata Institute of Fundamental Research, Department of Chemical Sciences (India)

    2001-03-15

    A novel methodology for stereospecific NMR assignments of methyl (CH{sub 3}) groups of Val and Leu residues in fractionally {sup 13}C-labeled proteins is presented. The approach is based on selective 'unlabeling' of specific amino acids in proteins while fractionally {sup 13}C-labeling the rest. A 2D [{sup 13}C-{sup 1}H] HSQC spectrum recorded on such a sample is devoid of peaks belonging to the 'unlabeled' amino acid residues. Such spectral simplification aids in unambiguous stereospecific assignment of diastereotopic CH{sub 3} groups in Val and Leu residues in large proteins. This methodology has been demonstrated on a 15 kDa calcium binding protein from Entamoeba histolytica (Eh-CaBP)

  12. N-terminal amino acid sequences of the major outer membrane proteins from a Neisseria meningitidis group B strain isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni De Simone

    1996-02-01

    Full Text Available The four dominant outer membrane proteins (46, 38, 33 and 28 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE in a semi-purified preparation of vesicle membranes of a Neisseria meningitidis (N44/89, B:4:P1.15:P5.5,7 strain isolated in Brazil. The N-terminal amino acid sequence for the 46 kDa and 28 kDa proteins matched that reported by others for class 1 and 5 proteins respectively, whereas the sequence (25 amino acids for the 38 kDa (class 3 protein was similar to class 1 meningococcal proteins. The sequence for the 33 kDa (class 4 was unique and not homologous to any known protein.

  13. Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention.

    Science.gov (United States)

    Bartels, Julia; Souza, Marina N; Schaper, Amelie; Árki, Pál; Kroll, Stephen; Rezwan, Kurosch

    2016-02-16

    A straightforward chemical functionalization strategy using aminosilanes for high-flux yttria-stabilized zirconia capillary membranes is presented (macroporous, d50 = 144 nm, open porosity =49%, membrane flux ∼150 L/(m(2)hbar)). Three different aminosilanes with one, two or three amino groups per silane molecule, namely 3-aminopropyltriethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AE-APTES) and N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA), are used to generate the amino-functionalized membranes. With a higher number of amino groups per silane molecule increased loading capacities between 0.44 and 1.01 accessible amino groups/nm(2) membrane are achieved. Streaming potential measurements confirm that the zeta-potential of the membrane surface is converted from negative (non-functionalized) to positive (amino-functionalized). By operation in dead-end filtration mode using the model virus MS2 (diameter = 25 nm, IEP = 3.9) the virus retention capacity of the amino-functionalized membranes is significantly increased and log reduction values (LRVs) of up to 9.6 ± 0.3 (TPDA) are obtained whereas a LRV functionalized membranes. Long-term dead-end filtration experiments for 1 week reveal a high stability of immobilized aminosilanes (TPDA), being robust against leaching. By iterative backflushing with desorption buffer MS2-loaded membranes are successfully regenerated being reusable for a new filtration cycle. The presented functionalization platform is highly promising for controlled virus retention.

  14. Electrokinetic characterization of magnetite nanoparticles functionalized with amino acids.

    Science.gov (United States)

    Viota, J L; Arroyo, F J; Delgado, A V; Horno, J

    2010-04-01

    The synthesis of nanoparticles consisting of a magnetite core coated with one or more layers of amino acid (L-arginine, L-lysine, glycine, and L-glutamine) is described in this paper. For all the amino acids it is found that adsorption increases with concentration in solution in the range 0.5-10 mg/mL. The adsorption, however, differs substantially from one amino acid to another, depending on the length of the hydrocarbon chain and the polarity and charge of the side group. Thus, for given concentration and pH, adsorption is found to increase in the order L-arginine magnetite and the charge of the amino acid molecules for different pHs, indicating a significant role of electrostatics in adsorption. This is further checked by means of determinations of the electrophoretic mobility of amino acid-coated magnetite as a function of pH: the results indicate a shift of the isoelectric point of the raw magnetite toward more basic pHs, an indication of adsorption of positive species, as confirmed by the tendency of the mobility of amino acid-coated magnetite toward more positive values below neutral pH. The electrophoretic mobility of coated particles was also measured as a function of the concentration of amino acid, and it was found that for low concentrations the four amino acids provoke charge inversion and overcharging of the magnetite surface at pH 6. Finally, the dependence of the electrophoretic mobility on the ionic strength indicated that from an electrophoretic point of view, the functionalized magnetite-amino acid particles do not behave as soft particles, and that the amino acid coating should be very compact. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Documentation for The Group for High Resolution Sea Surface Temperature (GHRSST) data archived at NCEI (NCEI Accession 0123222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Group for High Resolution Sea Surface Temperature (GHRSST) is an international open group for SST data producers, users, and scientists. It brings together...

  16. Iron carbide on titania surface modified with group VA oxides as Fischer-Tropsch catalysts

    International Nuclear Information System (INIS)

    Wachs, I.E.; Fiato, R.A.; Chersich, C.C.

    1986-01-01

    A catalyst is described comprising iron carbide supported on a surface modified titania wherein the support comprises an oxide of a metal selected form the group consisting of niobium, vanadium, tantalum or mixture thereof supported on the titania wherein at least a portion of the supported oxide of niobium, vanandium, tantalum or mixture is in a non-crystalline form. The amount of the supported oxide ranges from about 0.5 to 25 weight percent metal oxide on the titania support based on the total support composition and the catalyst contains at least about 2 milligrams of iron, calculated as Fe/sub 2/O/sub 3/, per square meter of support surface

  17. Selective agonists at group II metabotropic glutamate receptors: synthesis, stereochemistry, and molecular pharmacology of (S)- and (R)-2-amino-4-(4-hydroxy[1,2,5]thiadiazol-3-yl)butyric acid

    DEFF Research Database (Denmark)

    Clausen, Rasmus P; Bräuner-Osborne, Hans; Greenwood, Jeremy R

    2002-01-01

    )-form of the 1,2,5-thiadiazol-3-ol Glu analogue, 2-amino-3-(4-hydroxy[1,2,5]thiadiazol-3-yl)propionic acid (TDPA, 6), is an 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, which in addition stereospecifically activates group I mGluRs. We have now synthesized the (S)- and (R......Homologation of analogues of the central excitatory neurotransmitter glutamic acid (Glu), in which the distal carboxy group has been bioisosterically replaced by acidic heterocyclic units, has previously provided subtype selective ligands for metabotropic Glu receptors (mGluRs). The (S......)-forms of 2-amino-4-(4-hydroxy[1,2,5]thiadiazol-3-yl)butyric acid (homo-TDPA, 7) and shown that whereas neither enantiomer interacts with AMPA receptors, (S)- and (R)-7 appear to be selective and equipotent agonists at group II mGluRs as represented by the mGluR2 subtype. The activities of (S)- and (R)-7...

  18. Control of Surface Functional Groups on Pertechntate Sorption on Activated Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wang; H. Gao; R. Yeredla; H. Xu; M. Abrecht; G.D. Stasio

    2006-07-05

    {sup 99}Tc is highly soluble and poorly adsorbed by natural materials under oxidizing conditions, thus being of particular concern for radioactive waste disposal. Activated carbon can potentially be used as an adsorbent for removing Tc from aqueous solutions. We have tested six commercial activated carbon materials for their capabilities for sorption of pertechnetate (TcO{sub 4}{sup -}). The tested materials can be grouped into two distinct types: Type I materials have high sorption capabilities with the distribution coefficients (K{sub d}) varying from 9.5 x 10{sup 5} to 3.2 x 10{sup 3} mL/g as the pH changes from 4.5 to 9.5, whereas type II materials have relatively low sorption capabilities with K{sub d} remaining more or less constant (1.1 x 10{sup 3} - 1.8 x 10{sup 3} mL/g) over a similar pH range. The difference in sorption behavior between the two types of materials is attributed to the distribution of surface functional groups. The predominant surface groups are identified to be carboxylic and phenolic groups. The carboxylic group can be further divided into three subgroups A, B, and C in the order of increasing acidity. The high sorption capabilities of type I materials are found to be caused by the presence of a large fraction of carboxylic subgroups A and B, while the low sorption capabilities of type II materials are due to the exclusive presence of phenolic and carboxylic subgroup C. Therefore, the performance of activated carbon for removing TcO{sub 4}{sup -} can be improved by enhancing the formation of carboxylic subgroups A and B during material processing.

  19. Operable Unit 3-13, Group 3, Other Surface Soils (Phase II) Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Schwendiman

    2006-07-27

    This Field Sampling Plan describes the Operable Unit 3-13, Group 3, Other Surface Soils, Phase II remediation field sampling activities to be performed at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory Site. Sampling activities described in this plan support characterization sampling of new sites, real-time soil spectroscopy during excavation, and confirmation sampling that verifies that the remedial action objectives and remediation goals presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13 have been met.

  20. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    DEFF Research Database (Denmark)

    Raza, Søren; Mortensen, N. Asger

    2016-01-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been...... augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface....

  1. Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons

    Science.gov (United States)

    Raza, Søren; Mortensen, N. Asger

    2016-03-01

    The miniaturization of metal structures down to the nanoscale has been accompanied with several recent studies demonstrating plasmonic effects not explainable by classical electromagnetic theory. Describing the optical properties of materials solely through the bulk dielectric function has been augmented with quantum mechanical corrections, such as the electron spill-out effect and nonlocal response. Here, we discuss the latter and its implications on the waveguiding characteristics, such as dispersion and group velocity, of the surface-plasmon polariton mode supported at a metal-air interface.

  2. Enhancing the efficiency of lithium intercalation in carbon nanotube bundles using surface functional groups.

    Science.gov (United States)

    Xiao, Shiyan; Zhu, Hong; Wang, Lei; Chen, Liping; Liang, Haojun

    2014-08-14

    The effect of surface functionalization on the ability and kinetics of lithium intercalation in carbon nanotube (CNT) bundles has been studied by comparing the dynamical behaviors of lithium (Li) ions in pristine and -NH2 functionalized CNTs via ab initio molecular dynamics simulations. It was observed that lithium intercalation has been achieved quickly for both the pristine and surface functionalized CNT bundle. Our calculations demonstrated for the first time that CNT functionalization improved the efficiency of lithium intercalation significantly at both low and high Li ion density. Moreover, we found that keeping the nanotubes apart with an appropriate distance and charging the battery at a rational rate were beneficial to achieve a high rate of lithium intercalation. Besides, the calculated adsorption energy curves indicated that the potential wells in the system of -NH2 functionalized CNT were deeper than that of the pristine CNT bundle by 0.74 eV, and a third energy minimum with a value of 2.64 eV existed at the midpoint of the central axis of the nanotube. Thus, it would be more difficult to remove Li ions from the nanotube interior after surface functionalization. The barrier for lithium diffusion in the interior of the nanotube is greatly decreased because of the surface functional groups. Based on these results, we would suggest to "damage" the nanotube by introducing defects at its sidewall in order to improve not only the capacity of surface functionalized CNTs but also the efficiency of lithium intercalation and deintercalation processes. Our results presented here are helpful in understanding the mechanism of lithium intercalation into nanotube bundles, which may potentially be applied in the development of CNT based electrodes.

  3. Holomorphic representation of constant mean curvature surfaces in Minkowski space: Consequences of non-compactness in loop group methods

    DEFF Research Database (Denmark)

    Brander, David; Rossman, Wayne; Schmitt, Nicholas

    2010-01-01

    We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space $\\R^{2,1}$. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group $SU_2...... symmetry, as well as studying another class of surfaces for which the metric is rotationally invariant....

  4. Influence of deuterium on kinetics of methane isotope exchange with surface deuteroxy groups of Pt/SiO2 catalysts

    International Nuclear Information System (INIS)

    Musoyan, L.M.; Aliev, R.K.

    1990-01-01

    Reaction of isotope methane exchange with surface deuteroxy groups of 2 % Pt/SiO 2 catalyst was studied. It is shown that preliminarily chemisorbed deuterium does not decelerate the exchange reaction, but changes its mechanism. Activation energy of exchange on clean surface is equal to 25 kJ/mol; it grows in the presence of deuterium on the surface

  5. Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups reveals negligible toxicity against three rodent cell-lines

    DEFF Research Database (Denmark)

    Janaszewska, Anna; Ciolkowski, Michal; Wróbel, Dominika

    2013-01-01

    Modification of the surface groups of dendrimers is one of the methods to improve their biocompatibility. This article presents results of experiments related to the toxicity of a modified polyamidoamine (PAMAM) dendrimer of the fourth generation with 4-carbomethoxypyrrolidone surface groups (PAM...

  6. Tunable Oxygen Functional Groups as Electrocatalysts on Graphite Felt Surfaces for All-Vanadium Flow Batteries.

    Science.gov (United States)

    Estevez, Luis; Reed, David; Nie, Zimin; Schwarz, Ashleigh M; Nandasiri, Manjula I; Kizewski, James P; Wang, Wei; Thomsen, Edwin; Liu, Jun; Zhang, Ji-Guang; Sprenkle, Vincent; Li, Bin

    2016-06-22

    A dual oxidative approach using O2 plasma followed by treatment with H2 O2 to impart oxygen functional groups onto the surface of a graphite felt electrode. When used as electrodes for an all-vanadium redox flow battery (VRB) system, the energy efficiency of the cell is enhanced by 8.2 % at a current density of 150 mA cm(-2) compared with one oxidized by thermal treatment in air. More importantly, by varying the oxidative techniques, the amount and type of oxygen groups was tailored and their effects were elucidated. It was found that O-C=O groups improve the cells performance whereas the C-O and C=O groups degrade it. The reason for the increased performance was found to be a reduction in the cell overpotential after functionalization of the graphite felt electrode. This work reveals a route for functionalizing carbon electrodes to improve the performance of VRB cells. This approach can lower the cost of VRB cells and pave the way for more commercially viable stationary energy storage systems that can be used for intermittent renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    Science.gov (United States)

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns.

  8. Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites

    International Nuclear Information System (INIS)

    He, Liping; Li, Wenjun; Chen, Dachuan; Zhou, Dianwu; Lu, Gang; Yuan, Jianmin

    2015-01-01

    Highlights: • Ramie fiber (RF) changed to be hydrophobic after amino silicone oil modification. • Mechanical properties of RF/PP composites improved after fiber being modified. • N−H=O and O−H=N hydrogen bonds formed at the interface of modifier and fiber. • Amino silicone molecular interacts with cellulose in a preferred orientation. - Abstract: The effects of amino silicone oil modification on the properties of ramie fiber and ramie/polypropylene composites were investigated with experiments and molecular dynamics simulation. First, the effects of amino silicone oil treatments on the properties of ramie and ramie/polypropylene composites were investigated by experiments. The results indicated that the amino silicone oil modification can change the surface properties of ramie fiber from hydrophilic to hydrophobic and improve the mechanical properties of ramie/polypropylene composites. And then, the amino silicone oil modification mechanism at atomic and molecular levels was investigated by the molecular dynamics simulation. The simulation work elucidate that the surface modification mechanism can be described as: the amino silicone oil can interact with cellulose by the intermolecular forces, and the molecular chain of amino silicone oil tends to be an orientation that the hydrophobic alkyl groups project outward and the polar amino groups point to the surface of cellulose. Therefore, the surface of ramie fiber was covered with amino silicone oil, and the surface property of ramie fiber was changed from hydrophilic to hydrophobic. So the surface modification with amino silicone oil can improve the interfacial compatibility between ramie fiber and polymer

  9. Hyphal responses of Neurospora crassa to micron-sized beads with functional chemical surface groups

    Science.gov (United States)

    Held, Marie; Edwards, Clive; Nicolau, Dan V.

    2011-02-01

    Filamentous fungi include serious plant and animal pathogens that explore their environment efficiently in order to penetrate the host. This environment is physically and chemically heterogeneous and the fungi rely on specific physical and chemical signals to find the optimal point/s of attack. This study presents a methodology to introduce distinct structures with dimensions similar to the hyphal diameter and specific chemical surface groups into a controllable environment in order to study the fungal response. We introduced 3.3 μm polystyrene beads covered with Epoxy surface groups into microfluidic channels made from PDMS by rapid replica molding. The experimental setup resulted in different areas with low and high densities of beads as well as densely packed patches. The observations of the fungus exploring the areas long-term showed that the growth parameters were altered significantly, compared with the values measured on agar. The fungus responded to both, the physical and chemical parameters of the beads, including temporary directional changes, increased branching angles, decreased branching distances, decreased apical extension velocities and occasional cell wall lysis. The wealth and magnitude of the observed responses indicates that the microfluidic structures provide a powerful platform for the investigation of micron-sized features on filamentous fungi.

  10. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    Science.gov (United States)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  11. Amino acid infusions started after development of intraoperative core hypothermia do not affect rewarming but reduce the incidence of postoperative shivering during major abdominal surgery: a randomized trial.

    Science.gov (United States)

    Inoue, Satoki; Shinjo, Takeaki; Kawaguchi, Masahiko; Nakajima, Yoshiyuki; Furuya, Hitoshi

    2011-12-01

    Previous studies have demonstrated that amino acid infusions exert enhanced thermogenic effects during general anesthesia. This study was conducted to investigate whether amino acid infusions started after development of intraoperative core hypothermia can accelerate rewarming. Twenty-two patients scheduled for major abdominal surgery were included in this study. When tympanic temperature reached 35.5°C, patients were randomly assigned to receive amino acids (amino acid group; n = 11) or saline (saline group; n = 11). A continuous infusion of a mixture of 18 amino acids or saline was started at 200 ml h(-1). Tympanic, forearm, and digit temperatures were recorded. Forearm minus fingertip skin-surface temperature gradients (temperature gradient) were calculated. Postoperative shivering was also evaluated. Tympanic membrane temperature and temperature gradient were similar between the two groups at each time point during the study period. Temperature gradient at extubation in the amino acid group was significantly lower than in the saline group although tympanic temperature at extubation was similar between the two groups. Postoperative shivering score was significantly lower in the amino acid group than in the saline group. Amino acid infusions started after development of intraoperative core hypothermia failed to accelerate rewarming. However, amino acid infusions reduced the incidence of postoperative shivering. Use of amino acid infusions to reduce thermoregulatory vasoconstriction at emergence might contribute to a decrease in the development of postoperative shivering.

  12. Symmetry Scheme for Amino Acid Codons

    OpenAIRE

    Balakrishnan, J.

    2003-01-01

    Group theoretical concepts are invoked in a specific model to explain how only twenty amino acids occur in nature out of a possible sixty four. The methods we use enable us to justify the occurrence of the recently discovered twenty first amino acid selenocysteine, and also enables us to predict the possible existence of two more, as yet undiscovered amino acids.

  13. High protein adsorptive capacity of amino acid-functionalized hydroxyapatite.

    Science.gov (United States)

    Lee, Wing-Hin; Loo, Ching-Yee; Zavgorodniy, Alexander V; Rohanizadeh, Ramin

    2013-03-01

    Charged functional groups present on the surface of biomaterials play an important role to regulate the affinity and attachment of macromolecules, including proteins, on the surface of biomaterials. In this study, the protein adsorptive capacity of hydroxyapatite (HA) was regulated by introducing different amino acids during the precipitation of HA. After incubation of HA samples in 5000 μg/mL lysozyme solution at pH 7.4 for 24 h, unmodified HA adsorbed 0.886 mg/m(2) of lysozyme while amino acid-functionalized HA (AA-HA) particles demonstrated higher adsorption capacity ranging from 1.090 to 1.680 mg/m(2). Incorporation of amino acids with longer side chain lengths decreased the crystallinity and increased the negative value of the surface charge of HA particles. The specific surface areas were significantly increased in the presence of amino acids. Protein loading capacity onto AA-HA was further enhanced by regulating the pH of working solution whereby the protein adsorption rate increased with decreasing the pH, while reverse trend obtained in unmodified HA. The study demonstrated that the amount of adsorbed lysozyme onto AA-HA particles was correlated with the particles' surface charges. Copyright © 2012 Wiley Periodicals, Inc.

  14. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    Directory of Open Access Journals (Sweden)

    Khodakhast Bibak

    2016-09-01

    Full Text Available Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT. Recently, Koch et al. (2013 [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an ‘equivalent’ form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  15. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    Science.gov (United States)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-06-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance.

  16. Surface reactivity measurements as required for grouping and read-across: An advanced FRAS protocol

    International Nuclear Information System (INIS)

    Gandon, Arnaud; Werle, Kai; Neubauer, Nicole; Wohlleben, Wendel

    2017-01-01

    Oxidative stress is a widely accepted paradigm associated with different adverse outcomes of particulate matter, including nanomaterials. It has frequently been identified in in vitro and in vivo studies and different assays have been developed for this purpose. Here we describe a newly developed multi-dose protocol of the FRAS assay (Ferric Reduction Ability of Serum). The purpose of this SOP is the measurement of the surface reactivity of nanomaterials under physiological conditions. Antioxidative components as present in human blood serum (HBS) serve as reporter molecules. The assay separates the oxidative damage from the read-out of the reporter molecules. The results show significantly enhanced repeatability with better sensitivity towards low reactivity, enabling application of FRAS both to a rough grouping by reactive vs. passive nanomaterials and further to substantiation of read-across by enhanced resolution of the similarity between different nanoforms of the same substance. (paper)

  17. Improvement of surface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups

    Energy Technology Data Exchange (ETDEWEB)

    Luo Kaiqing [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China); Jin Junhong [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China); Yang Shenglin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China); Li Guang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China)]. E-mail: lig@dhu.edu.cn; Jiang Jianming [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 200051 (China)

    2006-07-25

    Modified poly(p-phenylene benzoxazole), SPBO, containing ionic sulfonate groups was synthesized by polycondensation of the corresponding monomers in polyphosphoric acid. SPBO fiber was spun via a dry-jet wet-spinning technique. The wetting property of poly(p-phenylene benzoxazole) (PBO) fiber and SPBO fiber were measured by contact angle analysis, and the interfacial shear strength (IFSS) between fibers and epoxy was determined by microbond pull-out testing. The contact angles of water and ethanol on SPBO fiber surface get smaller, and the wetting process becomes faster. The surface free energy of SPBO fiber increases to 38.9 mJ m{sup -2}, which is 9.6% higher than that of PBO fiber. Furthermore the ionic introducing leads to a 23% increase in IFSS from 8.2 MPa for PBO/epoxy to 10.1 MPa for SPBO/epoxy. It could be expected that the failure mode may change from fiber/matrix interface adhesive failure to partly cohesive failure mode.

  18. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups

    Science.gov (United States)

    van der Wel, Casper; van de Stolpe, Guido L.; Verweij, Ruben W.; Kraft, Daniela J.

    2018-03-01

    Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.

  19. Influence of methoxy- and nitro-substitutions in the aromatic ring on proton donation ability in hydrogen bond and on the amino group parameters of free and H-bonded molecules of 2-aminopyrimidine

    Science.gov (United States)

    Borisenko, V. E.; Krekov, S. A.; Fomenko, M. Yu.; Koll, A.; Lipkovski, P.

    2008-06-01

    Amino- and imino- forms of pyrimidine are widely presented as part of antibiotics, corrective medications for heart failures and metabolic stimulators. Hydrogen bonding is one of the fundamental interactions between biologically active molecules. This type of interactions provides flexibility, speed and variety of the biochemical processes. Proton donation properties of aminopyrimidines significantly depend on the position, number and kind of the substituent in its aromatic ring. In present work we studied the influence of the methoxy- and nitro-substitutions in the phenyl radical of pyridine and pyrimidine cycles on the proton donation ability of the amino group in hydrogen bonds as well as on its geometrical, force, electro-optical and thermodynamical characteristics in free and H-bonded (1:1 and 1:2, with various proton acceptors) molecules of primary aromatic amines. Acetonitrile, dioxane, tetrahydrofourane, dimethylformamide, dimethylsulfoxide and hexamethylphosphoramide (whose proton accepting properties vary within a wide range) were used as proton acceptors in our research. In the region of the amino group stretching and deformation vibrations the IR spectra of free and H-bonded (1:1) molecules of 2-amino-4,6-dimethoxy- and 2-amino-5-nitropyrimidine were studied in complexes with proton acceptors in CCl 4 within the temperature range 288-328 K. The spectra of 1:2 complexes were studied in undiluted aprotic solvents. The following spectral characteristics of absorption bands in amino group stretching vibrations were determined: M(0) (zero spectral moment, integrated intensity B); M(1) (first spectral moment, band "centre of gravity"); effective half width, related to the second central moment (Δ ν1/2) eff = 2( M(2)) 1/2, frequencies of the deformation vibrations δ(HNH) of free and H-bonded molecules. It was shown that changes of the absorption band spectral characteristics of the amino group stretching and deformation vibrations in the analyzed

  20. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  1. High surface area Au-SBA-15 and Au-MCM-41 materials synthesis: tryptophan amino acid mediated confinement of gold nanostructures within the mesoporous silica pore walls.

    Science.gov (United States)

    Selvakannan, Pr; Mantri, Kshudiram; Tardio, James; Bhargava, Suresh K

    2013-03-15

    Advantages of confining the gold nanostructures formation within the mesoporous silica pore walls during its silica condensation and consequent improvement in the textural properties such as specific surface area, pore volume, pore diameter have been demonstrated, while retaining gold nanostructures within the silica walls. This has been achieved by tryptophan mediated confinement of gold nanoparticles formation within the condensing silica framework, to obtain Au-SBA-15 (SSA 1247 m(2)/g, V(t)~1.37 cm(3)/g) and Au-MCM-41 (SSA 1287 m(2)/g, V(t)~1.1 cm(3)/g), mesoporous silica materials having the combination of very high surface area from the porous support as well as gold nanoparticles infiltrated silica walls. Choice of tryptophan for this purpose is that it has an indole group, which was known to reduce gold ions to form gold nanoparticles and its amine and carboxylic acid groups, catalyze the hydrolysis of silica precursors in a wide range of pH. These properties have been utilized in restricting the gold nanostructures formation inside the condensing silica phase without affecting the self assembly between the silica precursors and the triblock copolymer (for SBA-15) or cetyltrimethylammonium bromide template (for MCM-41). The polytryptophan and the gold nanostructures, which were encapsulated within the silica framework and upon removal of the template by calcination resulting in the formation mesoporous materials wherein the silica walls become microporous due to the removal of occluded polytryptophan and the resulting microchannels contain very small gold nanostructures. Hence, the resulting materials have very high surface area, high pore volume and narrow pore size distribution as compared to their parent SBA-15, MCM-41 and SBA-15, MCM-41 post functionalized with gold nanoparticles inside the pores. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Introduction of sulfate groups on poly(ethylene) surfaces by argon plasma immobilization of sodium alkyl sulfates

    NARCIS (Netherlands)

    Lens, J.P.; Lens, J.P.; Terlingen, J.G.A.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1998-01-01

    Sulfate groups were introduced at the surface of poly(ethylene) (PE) samples. This was accomplished by immobilizing a precoated layer of either sodium 10-undecene sulfate (S11(:)) or sodium dodecane sulfate (SDS) on the polymeric surface by means of an argon plasma treatment. For this purpose,

  3. Soil surface protection by Biocrusts: effects of functional groups on textural properties

    Science.gov (United States)

    Concostrina-Zubiri, Laura; Huber-Sannwald, Elisabeth; Martínez, Isabel; Flores Flores, José Luis; Escudero, Adrián

    2015-04-01

    In drylands, where vegetation cover is commonly scarce, soil surface is prone to wind and water soil erosion, with the subsequent loss of topsoil structure and chemical properties. These processes are even more pronounced in ecosystems subjected to extra erosive forces, such as grasslands and rangelands that support livestock production. However, some of the physiological and functional traits of biocrusts (i.e., complex association of cyanobacteria, lichens, mosses, fungi and soil particles) make them ideal to resist in disturbed environments and at the same time to protect soil surface from mechanical perturbations. In particular, the filaments and exudates of soil cyanobacteria and the rhizines of lichen can bind together soil particles, forming soil aggregates at the soil surface and thus enhancing soil stability. Also, they act as "biological covers" that preserve the most vulnerable soil layer from wind and runoff erosion and raindrop impact, maintaining soil structure and composition. In this work, we evaluated soil textural properties and organic matter content under different functional groups of biocrusts (i.e., cyanobacteria crust, 3 lichen species, 1 moss species) and in bare soil. In order to assess the impact of livestock trampling on soil properties and on Biocrust function, we sampled three sites conforming a disturbance gradient (low, medium and high impact sites) and a long-term livestock exclusion as control site. We found that the presence of biocrusts had little effects on soil textural properties and organic matter content in the control site, while noticeable differences were found between bare soil and soil under biocrusts (e.g., up to 16-37% higher clay content, compared to bare soil and up to 10% higher organic matter content). In addition, we found that depending on morphological traits and grazing regime, the effects of biocrusts changed along the gradient. For example, soil under the lichen Diploschistes diacapsis, with thick thallus

  4. Nanoparticles affect PCR primarily via surface interactions with PCR components: using amino-modified silica-coated magnetic nanoparticles as a main model

    Science.gov (United States)

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic n...

  5. Characterization of the Drosophila group ortholog to the amino-terminus of the alpha-thalassemia and mental retardation X-Linked (ATRX vertebrate protein.

    Directory of Open Access Journals (Sweden)

    Brenda López-Falcón

    Full Text Available The human ATRX gene encodes hATRX, a chromatin-remodeling protein harboring an helicase/ATPase and ADD domains. The ADD domain has two zinc fingers that bind to histone tails and mediate hATRX binding to chromatin. dAtrx, the putative ATRX homolog in Drosophila melanogaster, has a conserved helicase/ATPase domain but lacks the ADD domain. A bioinformatic search of the Drosophila genome using the human ADD sequence allowed us to identify the CG8290 annotated gene, which encodes three ADD harboring- isoforms generated by alternative splicing. This Drosophila ADD domain is highly similar in structure and in the amino acids which mediate the histone tail contacts to the ADD domain of hATRX as shown by 3D modeling. Very recently the CG8290 annotated gene has been named dadd1. We show through pull-down and CoIP assays that the products of the dadd1 gene interact physically with dAtrxL and HP1a and all of them mainly co-localize in the chromocenter, although euchromatic localization can also be observed through the chromosome arms. We confirm through ChIP analyses that these proteins are present in vivo in the same heterochromatic regions. The three isoforms are expressed throughout development. Flies carrying transheterozygous combinations of the dadd1 and atrx alleles are semi-viable and have different phenotypes including the appearance of melanotic masses. Interestingly, the dAdd1-b and c isoforms have extra domains, such as MADF, which suggest newly acquired functions of these proteins. These results strongly support that, in Drosophila, the atrx gene diverged and that the dadd1-encoded proteins participate with dAtrx in some cellular functions such as heterochromatin maintenance.

  6. Preparation of sulfonated poly(ether ether ketone)s containing amino groups/epoxy resin composite membranes and their in situ crosslinking for application in fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Meimei; Liu, Baijun; Li, Long; Liu, Chang; Wang, Lifeng; Jiang, Zhenhua [Alan G. MacDiarmid Institute, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2010-01-01

    A series of amino-containing sulfonated poly(aryl ether ketone)/4,4'-diglycidyl(biphenyl) epoxy resin (DGBP) composite membranes for proton exchange membranes fuel cells (PEMFCs) are prepared by solution blending and casting. The reaction kinetics and the effects of introduction of DGBP content on the properties of the composite membranes are thoroughly investigated. The crosslinked composite membranes after treatment at either 120 C or 200 C have improved oxidative and dimensional stability than those without crosslinking. Despite the fact that crosslinked membranes generally have lower proton conductivity in comparison with the original ones, the proton conductivities of the membranes treated at 120 C are above 2.22 x 10{sup -2} S cm{sup -1} at room temperature and 9.42 x 10{sup -2} S cm{sup -1} at 100 C. Even for the samples treated at 200 C, their proton conductivities are still higher than 1.26 x 10{sup -2} S cm{sup -1} at room temperature and higher than 8.67 x 10{sup -2} S cm{sup -1} at 100 C, which are well satisfied with elementary requirement of fuel cells. In addition, all the evaluated membranes have low methanol permeability. For example, the methanol permeability of AP6FSPEEK/DGBP1 cured at 200 C is 0.33 x 10{sup -6} cm{sup 2} s{sup -1}, which is an order magnitude lower than Nafion 117. Therefore, these novel crosslinked composite membranes could be potential usage in fuel cells. (author)

  7. Characterisation of heat-induced protein aggregation in whey protein isolate and the influence of aggregation on the availability of amino groups as measured by the ortho-phthaldialdehyde (OPA) and trinitrobenzenesulfonic acid (TNBS) methods.

    Science.gov (United States)

    Mulcahy, Eve M; Fargier-Lagrange, Maéva; Mulvihill, Daniel M; O'Mahony, James A

    2017-08-15

    Whey protein isolate (WPI) solutions, with different levels of aggregated protein, were prepared by heating (5% protein, pH 7, 90°C for 30min) WPI solutions with either 20mM added NaCl (WPI+NaCl), 5mM N-ethylmaleimide (WPI+NEM) or 20mM added NaCl and 5mM NEM (WPI+NaCl+NEM). Gel electrophoresis demonstrated that the heated WPI and WPI+NaCl solutions had higher levels of aggregated protein, due to more covalent interactions between proteins, than the heated WPI+NEM and WPI+NaCl+NEM solutions. There were marked differences in the levels of amino groups between all heated WPI solutions when measured by the OPA and TNBS methods, with lower levels being measured by the TNBS method than by the OPA method. These results demonstrate that the measurement of available amino groups by the OPA method is less impacted than by the TNBS method after heat-induced structural changes, arising from disulfide or sulfhydryl-disulfide bond-mediated aggregation of whey protein molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Group for High Resolution Sea Surface Temperature: Past, Present and Future.

    Science.gov (United States)

    Donlon, Craig; Casey, Kenneth; Minnett, Peter; Corlett, Gary

    2014-05-01

    In the last decade, satellite Agencies, science, operational user/producer and Sea Surface Temperature practitioner communities have come together within the Group for High Resolution SST (GHRSST) to create a new framework for generation, delivery and application of improved common format high-resolution (~1-10 km) satellite SST datasets for the benefit of society. The GHRSST data system is a mature, robust, and highly reliable near real time and delayed mode data system known as the GHRSST Regional/Global Task Sharing framework (R/GTS) and has operated in NRT since 2006. It consists of distributed Regional Data Assembly Centers (RDACs) around the world that submit their data to a Global Data Assembly Center (GDAC) maintained at the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC), where all the data are available for 30 days. After that they are transferred to the GHRSST Long Term Stewardship and Reanalysis Facility (LTSRF) at the U.S. National Oceanographic Data Center (NODC) for long-term preservation and distribution. The extensive user base includes many operational meteorological services, the scientific community, industry and Government. Since the R/GTS has operated, statistics show over 72,000 users have accessed the R/GTS in NRT, accessing over 100 million files amounting to more than 232 Tb of information. GHRSST has an organisation structure that has both fixed and flexible components allowing it to respond effectively and efficiently to new and emerging challenges. GHRSST has often been cited as a model for other Virtual Communities/Constellations. GHRSST is underpinned by an international Science Team and International Project Office together. Long-standing GHRSST Technical Advisory Groups (TAG) and ad hoc Working Groups (WG) are typically at the "cutting edge" of international SST activities delivering real coordination in space-based Earth observations for societal benefit through the prioritized

  9. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum

    Science.gov (United States)

    Persson, Ingemar; Näslund, Lars-Åke; Halim, Joseph; Barsoum, Michel W.; Darakchieva, Vanya; Palisaitis, Justinas; Rosen, Johanna; Persson, Per O. Å.

    2018-03-01

    The two-dimensional (2D) MXene Ti3C2T x is functionalized by surface groups (T x ) that determine its surface properties for, e.g. electrochemical applications. The coordination and thermal properties of these surface groups has, to date, not been investigated at the atomic level, despite strong variations in the MXene properties that are predicted from different coordinations and from the identity of the functional groups. To alleviate this deficiency, and to characterize the functionalized surfaces of single MXene sheets, the present investigation combines atomically resolved in situ heating in a scanning transmission electron microscope (STEM) and STEM simulations with temperature-programmed x-ray photoelectron spectroscopy (TP-XPS) in the room temperature to 750 °C range. Using these techniques, we follow the surface group coordination at the atomic level. It is concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O. Depending on the O/F ratio, the surface bare MXene is exposed as F desorbs, which enables a route for tailored surface functionalization.

  10. Acid-base properties and the chemical imaging of surface-bound functional groups studied with scanning force microscopy

    NARCIS (Netherlands)

    van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this paper we present a scanning force microscopy (SFM) study on electrostatic and hydrogen-bonding interactions between chemically modified SFM probes and surface functional groups. pH-dependent adhesion force measurements in aqueous media between various ionizable functional groups showed a

  11. Surface amination of poly(acrylonitrile)

    NARCIS (Netherlands)

    Hartwig, Andreas; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    The surface amination of poly (acrylonitrile) by ammonia plasma treatment has been studied. Furthermore, two other surface modification techniques have been investigated, the plasma chemical decomposition of an amino group containing chemical (tris-(2-aminoethyl)amine) onto the polymer surface and

  12. The Chemistry of Indoles. XIII. Syntheses of Substituted Indoles carrying an Amino, Nitro, Methoxycarbonyl, or Benzyloxy Group at the 4-Position and Their 1-Hydroxy Derivatives

    OpenAIRE

    Somei, Masanori; Inoue, Satomi; Tokutake, Shoichi; Yamada, Fumio; Kaneko, Chikara

    1981-01-01

    Various 1-hydroxyindoles carrying a nitro, methoxycarbonyl, or benzyloxy group at the 4 position were prepared by the controlled reduction of 6-substituted trans-β-dimethylamino-2-nitrostyrenes with either aqueous titanium (III) chloride or zinc in aqueous ammonium chloride. The stability of 4-substituted 1-hydroxyindoles decreased in the following order : 4-nitro-»4-methoxycarbonyl->4-benzyloxy-1-hydroxyindole. This result clearly indicates that an electron-withdrawing group at the 4-positio...

  13. Solid-phase synthesis of 3-amino-2-pyrazolines

    DEFF Research Database (Denmark)

    Nielsen, John

    1998-01-01

    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to alpha,beta-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2...

  14. Solid-phase synthesis of 3-amino-2-pyrazolines

    DEFF Research Database (Denmark)

    Lyngsø, Lars O.; Nielsen, John

    1998-01-01

    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  15. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers

    Science.gov (United States)

    Wang, Nana; Cheng, Lu; Si, Junjie; Liang, Xiaoyong; Jin, Yizheng; Wang, Jianpu; Huang, Wei

    2016-04-01

    Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr3 perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ˜5000 cd m-2.

  16. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Nana; Cheng, Lu; Wang, Jianpu, E-mail: iamjpwang@njtech.edu.cn [Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China); Si, Junjie; Liang, Xiaoyong [State Key Laboratory of Silicon Materials, Center for Chemistry of High-Performance and Novel Materials, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Jin, Yizheng [Center for Chemistry of High-Performance and Novel Materials, State Key Laboratory of Silicon Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Huang, Wei [Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China); Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 (China)

    2016-04-04

    Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr{sub 3} perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ∼5000 cd m{sup −2}.

  17. High affinity RNA targeting by oligonucleotides displaying aromatic stacking and amino groups in the major groove. Comparison of triazoles and phenylsubstituents

    DEFF Research Database (Denmark)

    Kumar, Pawan; Hornum, Mick; Nielsen, Lise Junker

    2014-01-01

    Three 5-modified 2'-deoxyuridine nucleosides were synthesized and incorporated into oligonucleotides and compared with the previously published 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine monomer W. The introduction of an aminomethyl group on the phenyl group led to monomer X, which was found...... of the phenyltriazole substituent, that is the 5-(4-phenyl-1,2,3-triazol-1-yl)-2'-deoxyuridine monomer Y, was found to destabilize the DNA:RNA duplex significantly, but stacking in the major groove compensated for this when two to four monomers were incorporated consecutively. Finally, the 5-phenyl-2'-deoxyuridine...

  18. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  19. New sugar-based gelators with an amino group, the gelatin ability of which is remarkably reinforced by the hydrogen bond and the metal coordination

    NARCIS (Netherlands)

    Amanokura, Natsuki; Kanekiyo, Yasumasa; Shinkai, Seiji; Reinhoudt, David

    1999-01-01

    Three sugar-integrated gelators bearing a p-aminophenyl group which are expected to exert a hydrogen-bonding effect and a metal coordination effect on the gelation ability were synthesised. -D-Galactose-based 2b was only soluble or precipitated and -D-glucose-based 4b gelated only two of 15 solvents

  20. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance.

    Directory of Open Access Journals (Sweden)

    Rebecca E Symula

    Full Text Available Trypanosoma brucei rhodesiense (Tbr and T. b. gambiense (Tbg, causative agents of Human African Trypanosomiasis (sleeping sickness in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs, components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR. HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb, a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1 and not found in related taxa, which are either human serum susceptible (Tbb or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2. We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR function.

  1. Adhesion of coagulase-negative staphylococci grouped according to physico-chemical surface properties

    NARCIS (Netherlands)

    van der Mei, HC; van de Belt-Gritter, B; Reid, G; Bialkowska-Hobrzanska, H; Busscher, HJ

    1997-01-01

    Physico-chemical cell surface properties of 23 coagulase-negative staphylococcal strains, including contact angles, zeta potentials and elemental cell surface composition were measured, together with the adhesion of all strains to hexadecane, The data were employed in a hierarchical cluster

  2. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups.

    Science.gov (United States)

    Chabolla, S A; Machan, C W; Yin, J; Dellamary, E A; Sahu, S; Gianneschi, N C; Gilson, M K; Tezcan, F A; Kubiak, C P

    2017-06-02

    Herein, we report a new approach to bio-inspired catalyst design. The molecular catalyst employed in these studies is based on the robust and selective Re(bpy)(CO) 3 Cl-type (bpy = 2,2'-bipyridine) homogeneous catalysts, which have been extensively studied for their ability to reduce CO 2 electrochemically or photochemically in the presence of a photosensitizer. These catalysts can be highly active photocatalysts in their own right. In this work, the bipyridine ligand was modified with amino acids and synthetic peptides. These results build on earlier findings wherein the bipyridine ligand was functionalized with amide groups to promote dimer formation and CO 2 reduction by an alternate bimolecular mechanism at lower overpotential (ca. 250 mV) than the more commonly observed unimolecular process. The bio-inspired catalysts were designed to allow for the incorporation of proton relays to support reduction of CO 2 to CO and H 2 O. The coupling of amino acids tyrosine and phenylalanine led to the formation of two structurally similar Re catalyst/peptide catalysts for comparison of proton transport during catalysis. This article reports the synthesis and characterization of novel catalyst/peptide hybrids by molecular dynamics (MD simulations of structural dynamics), NMR studies of solution phase structures, and electrochemical studies to measure the activities of new bio-inspired catalysts in the reduction of CO 2.

  3. Annotated bibliography for liquid metal surface tensions of groups III-A, IV-A, and V-A metals

    International Nuclear Information System (INIS)

    Murtha, M.J.; Burnet, G.

    1976-04-01

    An annotated bibliography has been prepared which includes summaries of 82 publications dating from 1920 and dealing with the measurement of the surface tensions of Groups III-A, IV-A, and V-A metals in the liquid state. The bibliography is organized by key element investigated, and contains a tabulation of correlations for surface tension as a function of temperature. A brief discussion dealing with variables and methods has been included

  4. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission

    KAUST Repository

    Hola, Katerina

    2014-04-01

    We present a simple molecular approach to control the lipophilic/ hydrophilic nature of photoluminescent carbon dots (CDs) based on pyrolysis of alkyl gallate precursors. Depending on the gallic acid derivative used, CDs with different alkyl groups (methyl, propyl, lauryl) on the surface can be obtained by isothermal heating at 270 C. This precursor-derived approach allows not only the control of lipophilicity but also the length of the particular alkyl chain enables the control over both the size and photoluminescence (PL) of the prepared CDs. Moreover, the alkyl chains on the CDs surface can be readily converted to carboxylate groups via a mild base hydrolysis to obtain water dispersible CDs with a record biocompatibility. The observed differences in PL properties of CDs and time-resolved PL data, including contributions from carbogenic cores and surface functional group, are rationalized and discussed in detail using time-dependent density functional theory (TD-DFT) calculations. © 2013 Elsevier Ltd. All rights reserved.

  5. Optimum design of amphiphilic polymers bearing hydrophobic groups for both cell surface ligand presentation and intercellular cross-linking.

    Science.gov (United States)

    Takeo, Masafumi; Li, Cuicui; Matsuda, Masayoshi; Nagai, Hiroko; Hatanaka, Wataru; Yamamoto, Tatsuhiro; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2015-01-01

    Amphiphilic polymers bearing hydrophobic alkyl groups are expected to be applicable for both ligand presentation on the cell surface and intercellular crosslinking. To explore the optimum design for each application, we synthesized eight different acyl-modified dextrans with varying molecular weight, alkyl length, and alkyl modification degree. We found that the behenate-modified polymers retained on the cell surface longer than the palmitate-modified ones. Since the polymers were also modified with biotin, streptavidin can be presented on the cell surface through biotin-streptavidin recognition. The duration of streptavidin on the cell surface is longer in the behenate-modified polymer than the palmitate-modified one. As for the intercellular crosslinking, the palmitate-modified polymers were more efficient than the behenate-modified polymers. The findings in this research will be helpful to design the acyl-modified polymers for the cell surface engineering.

  6. Dissociation and recombination rate constants for CN on Cu and Ni group transition metal surfaces

    Science.gov (United States)

    Sellers, Harrell

    2000-07-01

    We report dissociation and recombination reaction rate constants for CN on the fcc(111) surfaces of Ni, Pd, Pt, Cu, Ag and Au from molecular dynamics simulations employing our normalized bond index-reactive potential functions (NBI-RPF). The Arrhenius pre-exponentials for recombination of CN on these surfaces are about three orders of magnitude greater than the dissociation pre-exponentials. On the series of metals considered herein, the reaction energetics favor dissociation on the more active metals and favor recombination on the least active metals. However, the differences in the pre-exponentials of nearly a factor of 10 3 express the tendency of the reaction entropy to favor the recombination on the surfaces investigated. We also discuss the implications of these results in terms of the thermodynamics of the surface reactions.

  7. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    Science.gov (United States)

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Preparation of Water-soluble Polyion Complex (PIC Micelles Covered with Amphoteric Random Copolymer Shells with Pendant Sulfonate and Quaternary Amino Groups

    Directory of Open Access Journals (Sweden)

    Rina Nakahata

    2018-02-01

    Full Text Available An amphoteric random copolymer (P(SA91 composed of anionic sodium 2-acrylamido-2-methylpropanesulfonate (AMPS, S and cationic 3-acrylamidopropyl trimethylammonium chloride (APTAC, A was prepared via reversible addition-fragmentation chain transfer (RAFT radical polymerization. The subscripts in the abbreviations indicate the degree of polymerization (DP. Furthermore, AMPS and APTAC were polymerized using a P(SA91 macro-chain transfer agent to prepare an anionic diblock copolymer (P(SA91S67 and a cationic diblock copolymer (P(SA91A88, respectively. The DP was estimated from quantitative 13C NMR measurements. A stoichiometrically charge neutralized mixture of the aqueous P(SA91S67 and P(SA91A88 formed water-soluble polyion complex (PIC micelles comprising PIC cores and amphoteric random copolymer shells. The PIC micelles were in a dynamic equilibrium state between PIC micelles and charge neutralized small aggregates composed of a P(SA91S67/P(SA91A88 pair. Interactions between PIC micelles and fetal bovine serum (FBS in phosphate buffered saline (PBS were evaluated by changing the hydrodynamic radius (Rh and light scattering intensity (LSI. Increases in Rh and LSI were not observed for the mixture of PIC micelles and FBS in PBS for one day. This observation suggests that there is no interaction between PIC micelles and proteins, because the PIC micelle surfaces were covered with amphoteric random copolymer shells. However, with increasing time, the diblock copolymer chains that were dissociated from PIC micelles interacted with proteins.

  9. Contributions of the Histidine Side Chain and the N-terminal α-Amino Group to the Binding Thermodynamics of Oligopeptides to Nucleic Acids as a Function of pH

    Science.gov (United States)

    Ballin, Jeff D.; Prevas, James P.; Ross, Christina R.; Toth, Eric A.; Wilson, Gerald M.; Record, M. Thomas

    2010-01-01

    Interactions of histidine with nucleic acid phosphates and histidine pKa shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK (+NH3-His-Trp-Lys-Lys-NH2) and its lysine analog KWKK (+NH3-Lys-Trp-Lys-Lys-NH2) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, Kobs, and magnitudes of log-log salt derivatives SKobs ≡ (∂logKobs/∂log[Na+]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and α-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same Kobs and SKobs within uncertainty, and these SKobs values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pKa shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pKa shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the α-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific versus nonspecific nucleic acid binding. PMID:20108951

  10. Interaction of some essential amino acids with synthesized poorly crystalline hydroxyapatite

    Directory of Open Access Journals (Sweden)

    A. El Rhilassi

    2016-09-01

    Full Text Available This study focused on the release of two essential amino acids, l-lysine and dl-leucine, previously adsorbed onto poorly crystalline hydroxyapatite of Ca/P = 1.59, synthesis by precipitation methods. The composition of the calcium-deficient hydroxyapatite (CDHA is chemically and structurally similar to the bone mineral. Their surface reactivity is indeed linked to the existence of hydrated surface particles (HPO42- and Ca2+. The adsorption kinetics is very fast while the release kinetics is relatively slow. The adsorption rate reached approximately 70%, but the release rate did not exceed 12%. The chemical composition of solution has an influence on the release processes. The presence of phosphate ions favored the release of amino acids, while the calcium ions inhibited it. Also, the release process is slightly influenced by Ra (ml/mg ratio and incubation temperature of the medium. The charged –COO− and NH3+ of amino acids are the strongest groups that interact with the surface of hydroxyapatite, the adsorption is mainly due to the electrostatic interaction between the groups –COO− of amino acids and calcium Ca2+ ions of the hydroxyapatite. dl-Leucine (non-polar and l-Lysine (polar–basic interact with the hydroxyapatite surface in the zwitterionic and cationic forms, respectively. The study of interactions between amino acids and hydroxyapatite is carried out in vitro by using UV–vis and infrared spectroscopy IR techniques.

  11. Influence of the pre-adsorption of group III metals on the growth of Ge nanostructures on vicinal Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz; Schmidt, Thomas; Flege, Jan Ingo; Heidmann, Inga; Hoecker, Jan; Wilkens, Torsten; Falta, Jens [Institute of Solid State Physics, University of Bremen (Germany)

    2010-07-01

    The employment of metals as surfactants (surface active agents) is a promising approach to influence the growth of Ge nanostructures on Si surfaces. Especially for group III and group V elements an enhanced or suppressed Stranski-Krastanov growth behaviour is found, respectively. For all group III metal on silicon systems presented in this study we observe a drastic change of the surface morphology after adsorption of a few monolayers. For the investigations we used a variety of surface sensitive techniques, e.g., scanning tunneling microscopy (STM), spot profile analysing low-energy electron diffraction (SPA-LEED), low-energy electron microscopy (LEEM), and X-ray standing waves (XSW). On the one hand, the adsorption of Ga and In leads to a smoothening of the intrinsically unstable Si(112) surface and the development of 1D metal chains. But on the other hand, the stable Si(113) is decomposed into a regular array of nanofacets after adsorption of Ga. For all cases shown here the possibility of growing highly anisotropic Ge Islands is demonstrated (Ga/Si(113),Ga/Si(112),In/Si(112)).

  12. Interaction between two solid surfaces across PDMS : influence of chain length and end group

    NARCIS (Netherlands)

    Sun, G.X.; Stark, R.; Kappl, M.; Leermakers, F.A.M.; Butt, H.J.

    2005-01-01

    Forces between solid surfaces across polymer melts are poorly understood despite their importance for adhesion and composite materials. Using an atomic force microscope (AFM) this force was measured for poly(dimethyl siloxane) (PDMS) on silicon oxide. The influence of molecular weight (4.0-40 kDa)

  13. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  14. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li

    2016-01-01

    © 2016 The Royal Society of Chemistry. The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

  15. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-capping DBS groups

    International Nuclear Information System (INIS)

    Wang Baiqi; Jing Liqiang; Qu Yichun; Li Shudan; Jiang Baojiang; Yang Libin; Xin Baifu; Fu Honggang

    2006-01-01

    TiO 2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO 2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO 2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO 2 mass weight, respectively, and the linkage between DBS groups and TiO 2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO 2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO 2 is also related to the increase in the capability for adsorbing RhB

  16. Comment on Group Velocity Measurement of Surfac Waves by Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Taishi Okamoto

    2007-01-01

    Full Text Available Yamada and Yomogida (1997 applied the discrete wavelet transform (DWT to group velocity measurements for the first time. Although their study is one of the pioneering works in application of DWT to seismological analysis, their method gives an inaccurate value as a group velocity in some cases and requires modification. In this report, we point out the problem and propose a modified DWT method for overcoming the problem. In our method, DWT is carried out not for an analysed signal itself but for its complex envelope (Farnbach 1975. A computation algorithm for DWT coefficients for our method is given and shown to be almost the same as that by Yamada and Ohkitani (1991. The influence of the difference between the conventional method and our method on identification of group arrival times of a wave is also shown by a numerical experiment. If analysts want to identify group arrival times using DWT, our method must be adopted instead of the conventional method.

  17. A chord diagrammatic presentation of the mapping class group of a once bordered surface

    DEFF Research Database (Denmark)

    Bene, Alex

    2010-01-01

    The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichmüller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path groupo...

  18. The Exponential Map of the Group of Area-Preserving Diffeomorphisms of a Surface with Boundary

    Science.gov (United States)

    Benn, James; Misiołek, Gerard; Preston, Stephen C.

    2018-03-01

    We prove that the Riemannian exponential map of the right-invariant L 2 metric on the group of volume-preserving diffeomorphisms of a two-dimensional manifold with a nonempty boundary is a nonlinear Fredholm map of index zero.

  19. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    The structure of monomolecular layers of the protein streptavidin, specifically bound to biotin-functionalized lipid monolayers at aqueous surfaces, has been characterized. Neutron and X-ray reflectivity measurements allowed an assessment of the organization of these self-assembled systems...... with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...

  20. Frozen, but no accident - why the 20 standard amino acids were selected.

    Science.gov (United States)

    Doig, Andrew J

    2017-05-01

    The 20 standard amino acids encoded by the Genetic Code were adopted during the RNA World, around 4 billion years ago. This amino acid set could be regarded as a frozen accident, implying that other possible structures could equally well have been chosen to use in proteins. Amino acids were not primarily selected for their ability to support catalysis, as the RNA World already had highly effective cofactors to perform reactions, such as oxidation, reduction and transfer of small molecules. Rather, they were selected to enable the formation of soluble structures with close-packed cores, allowing the presence of ordered binding pockets. Factors to take into account when assessing why a particular amino acid might be used include its component atoms, functional groups, biosynthetic cost, use in a protein core or on the surface, solubility and stability. Applying these criteria to the 20 standard amino acids, and considering some other simple alternatives that are not used, we find that there are excellent reasons for the selection of every amino acid. Rather than being a frozen accident, the set of amino acids selected appears to be near ideal. © 2016 Federation of European Biochemical Societies.

  1. Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alhedabi, Taleb [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Department of Chemistry, College of Science, University of Thi-qar, Thi-qar (Iraq); Cattey, Hélène [Institut ICMUB - CNRS 6302, Université de Bourgogne Franche-Comté, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon (France); Roussel, Christophe [Ecole Polytechnique Fédérale de Lausanne, Section of Chemistry and Chemical Engineering, Station 6, CH-1015 Lausanne (Switzerland); Blondeau-Patissier, Virginie [Institut FEMTO-ST, UMR CNRS 6174, Department Time-Frequency, 26, Chemin de l' épitaphe, 25030 Besançon Cedex (France); Gharbi, Tijani [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Herlem, Guillaume, E-mail: guillaume.herlem@univ-fcomte.fr [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France)

    2017-01-01

    The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and mass spectroscopy (MALDI-TOF). From thin film coatings observed on the electrode surface, peptide bonds are found, and are in favor of electropolymerization of these polar amino acids into poly-L-amino acids in an irreversible way. Scanning electronic microscopy was also used to study the morphology of these electrodeposited L-amino acids. The electrodeposited poly-L-amino acids on Pt electrode were tested as bioinspired transducer for pH sensing purposes. - Highlights: • Anodic oxidation of polar amino acids with uncharged R group on platinum electrode. • Polypeptide bonds revealed by ATR-IR and XPS spectroscopies. • The film growth depends on the chemistry of the polar amino acid.

  2. General role of the amino and methylsulfamoyl groups in selective cyclooxygenase(COX)-1 inhibition by 1,4-diaryl-1,2,3-triazoles and validation of a predictive pharmacometric PLS model.

    Science.gov (United States)

    Perrone, Maria Grazia; Vitale, Paola; Panella, Andrea; Fortuna, Cosimo G; Scilimati, Antonio

    2015-04-13

    A novel set of 1,4-diaryl-1,2,3-triazoles were projected as a tool to study the effect of both the heteroaromatic triazole as a core ring and a variety of chemical groups with different electronic features, size and shape on the catalytic activity of the two COX isoenzymes. The new triazoles were synthesized in fair to good yields and then evaluated for their inhibitory activity towards COXs arachidonic acid conversion catalysis. Their COXs selectivity was also measured. A predictive pharmacometric Volsurf plus model, experimentally confirmed by the percentage (%) of COXs inhibition at the concentration of 50 μM and IC50 values of the tested compounds, was built by using a number of isoxazoles of known COXs inhibitory activity as a training set. It was found that two compounds {4-(5-methyl-4-phenyl-1H-1,2,3-triazol-1-yl)benzenamine (18) and 4-[1-(4-methoxyphenyl)-5-methyl-1H-1,2,3-triazole-4-yl]benzenamine (19)} bearing an amino group (NH2) are potent and selective COX-1 inhibitors (IC50 = 15 and 3 μM, respectively) and that the presence of a methylsulfamoyl group (SO2CH3) is not a rule to have a Coxib. In fact, 4-(4-methoxyphenyl)-5-methyl-1-[4-(methylsulfonyl)phenyl]-1H-1,2,3-triazole (23) has COX-1 IC50 = 23 μM and was found inactive towards COX-2. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors.

    Science.gov (United States)

    Lavillette, Dimitri; Marin, Mariana; Ruggieri, Alessia; Mallet, François; Cosset, François-Loïc; Kabat, David

    2002-07-01

    The human endogenous retrovirus type W (HERV-W) family includes proviruses with intact protein-coding regions that appear to be under selection pressure, suggesting that some HERV-W proviruses may remain active in higher primates. The envelope glycoprotein (Env) encoded by HERV-W is highly fusogenic, is naturally expressed in human placental syncytiatrophoblasts, and has been reported to function as a superantigen in lymphocyte cultures. Recent evidence suggested that HERV-W Env can mediate syncytium formation by interacting with the human sodium-dependent neutral amino acid transporter type 2 (hASCT2; gene name, SLC1A5) (J.-L. Blond, D. Lavillette, V. Cheynet, O. Bouton, G. Oriol, S. Chapel-Fernandez, B. Mandrand, F. Mallet, and F.-L. Cosset, J. Virol. 74:3321-3329, 2000) and that it can pseudotype human immunodeficiency virus cores (D. S. An, Y. Xie, and I. S. Y. Chen, J. Virol. 75:3488-3489, 2001). By using cell-cell fusion and pseudotype virion infection assays, we found that HERV-W Env efficiently uses both hASCT2 and the related transporter hASCT1 (gene name, SLC1A4) as receptors. In addition, although HERV-W Env mediates only slight syncytium formation or infection of mouse cells, it utilizes the mouse transporters mASCT1 and mASCT2 when their sites for N-linked glycosylation are eliminated by mutagenesis. Consistent with their role as a battlefield in host-virus coevolution, the viral recognition regions in ASCT1 and ASCT2 of humans and mice are highly divergent compared with other regions of these proteins, and their ratios of nonsynonymous to synonymous nucleotide sequence changes are extremely large. The recognition of ASCT1 and ASCT2 despite this divergence of their sequences strongly suggests that the use of both receptors has been highly advantageous for survival and evolution of the HERV-W family of retroviruses.

  4. [Recommendations on the use of 5-amino-levulinic acid in surgery of malignant gliomas. Consensus document. The Neuro-oncology Working Group of the Spanish Neurosurgical Society (SENEC)].

    Science.gov (United States)

    Gil-Salú, José Luis; Arraez, Miguel Ángel; Barcia, Juan Antonio; Piquer, José; Rodríguez de Lope, Angel; Villalba Martínez, Gloria

    2013-01-01

    Among the prognostic factors when it comes to patients with high-grade gliomas, we find the radicality of the surgery performed. The limitations of this factor are caused by either the extension of the tumour or its location in an eloquent area. To achieve this goal, in the last few years we have developed several methods that allow us to maximise tumour resection, while always trying to cause the least possible co-morbidity. One of these methods includes the use of 5-amino-levulinic acid (5-ALA) and the development of fluorescence guided surgery. However, optimal performance requires knowledge of the product employed, the mode of administration and precautions to consider. Members of the neuro-oncology work group of the Spanish Neurosurgical Society (SENEC) have prepared this guideline or consensus document for anyone who wishes to become familiar with the use of 5-ALA fluorescence-guided surgery in the management of high-grade gliomas. For those who already utilise this technique, this document can be useful for consultation purposes. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  5. Amino acid analysis

    Science.gov (United States)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  6. Dynamics of amino acids in the conditioning film developed on glass panels immersed in the surface seawaters of Dona Paula Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Garg, A.; Fernandes, L.; Citon, P.

    adsorption of dissolved organic and/or inorganic matter, is defined as the conditioning film or the molecular film (Baier, 1972; Loeb & Neihof, 1975; Taylor et al. 1997). The adsorbed organic matter forms a discontinuous film of variable thickness (Compere et..., Goa, India, and 2 Ecole Nationale Superieure d’Ingenieures, De Limoges, Limoges, France (Received 13 October 2004; accepted 17 February 2005) Abstract The conditioning film developed on glass panels immersed in surface seawater over a period of 24 h...

  7. Kinetics of oxidation of acidic amino acids by sodium N ...

    Indian Academy of Sciences (India)

    Unknown

    ... the mechanism of amino acids metabolism. Amino acids find a number of applications in biochemical research, metabolism, microbiology, nutrition, pharmaceuticals and fortification of foods and feeds. Generally only the amino and carboxyl functional groups in RCH(NH2)COOH undergo chemical transformations while.

  8. Photoinduced intramolecular charge-transfer reactions in 4-amino-3 ...

    Indian Academy of Sciences (India)

    TECS

    primary amino group, shows dual emission in polar solvents. Absorption and emission ... for understanding the primary processes of vision ... demonstrated ICT in some fluoro-substituted amino benzonitrile deriva- tive and very recently Stalin et al. 10–12 reported charge-transfer reaction in p-amino benzoic acid, 3-.

  9. Synthesis of some labelled non-proteinogenic amino acids

    International Nuclear Information System (INIS)

    Adrianens, P.; Vanderhaeghe, H.

    1987-01-01

    The literature on the synthesis of labeled non-proteinogenic amino acids contains approximately 300 papers, whereas syntheses of labeled proteinogenic amino acids are dealt with in some 800-1000 publications. However, most of the methods described in this paper for the synthesis of non-proteinogenic amino acids are also used for the preparation of the essential amino acids addition, the first category also contains β, γ...amino acids, seleno amino acids, N-methyl and α-methyl amino acids and sometimes have atoms or groups which are not present in the protein building blocks. Furthermore the latter group is more easily available so that methods for synthesis of non-proteinogenic amino acids are more needed

  10. Amino acids as corrosion inhibitors for copper in acidic medium: Experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Milošev Ingrid

    2013-01-01

    Full Text Available Experimental electrochemical methods combined with quantum chemical calculations and molecular dynamics simulations were used to investigate the possibility of use various amino acids as “green” corrosion inhibitors for copper in 0.5 M HCl solution. Among eleven amino acids studied, cysteine achieved the highest inhibitor effectiveness reaching 52% at 10 mM concentration. Other amino acids reached achieved effectiveness less than 25%, some of them even acted as corrosion accelerators. Based on the experimental results, theoretical calculations and simulations were focused on cysteine and alanine. The electronic and reactivity parameters of their protonated forms in electrical double layer were evaluated by density functional calculations. In addition, molecular dynamic simulations were introduced to follow the adsorption behaviour of these two amino acids at the Cu(111 surface in the electrolyte solution. The results indicate that the orientation of both molecules is nearly parallel to the surface except of ammonium group which is directed away from the surface. Therefore, as the orientation of the cysteine and alanine molecules at the surface is similar, thiol functional group is responsible for superior inhibition efficiency of cysteine.

  11. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5

  12. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5.

  13. Skidding accidents : considerations on road surface and vehicle characteristics : summary of the present situation. Provisional recommendation concerning skidding resistance of road surfaces investigation programme. Interim report of the SWOV Working Group "Tyres, road surfaces and skidding accidents"

    NARCIS (Netherlands)

    SWOV Working Group "Tyres, road surfaces and skidding accidents"

    1970-01-01

    This is the first report of SWOV Working Group "Tyres, road surfaces and skidding accidents". Skidding is considered to be an important contributory factor in traffic accidents. Skidding can in principle be prevented in two ways, viz: (1) reduction of the minimum necessary friction, and (2)

  14. Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor

    DEFF Research Database (Denmark)

    Nophar, Y; Kemper, O; Brakebusch, C

    1990-01-01

    the extracellular domain of the type I TNF-R matches the COOH-terminal sequence of TBPI. Amino acid sequences in the extracellular domain also fully match other sequences found in TBPI. On the other hand, amino acid sequences in the soluble form of the type II TNF-R (TBPII), while indicating a marked homology...... found to have effects characteristic of TNF, including stimulating phosphorylation of specific cellular proteins. Oligonucleotide probes designed on the basis of the NH2-terminal amino acid sequence of TBPI were used to clone the cDNA for the structurally related cell surface type 1 TNF-R. It is notable...... that although this receptor can signal the phosphorylation of cellular proteins, it appears from its amino acid sequence to be devoid of intrinsic protein kinase activity. The extracellular domain of the receptor is composed of four internal cysteine-rich repeats, homologous to structures repeated four times...

  15. Poly(amino acid) functionalized maghemite and gold nanoparticles

    International Nuclear Information System (INIS)

    Perego, Davide; Manuel Domínguez-Vera, José; Gálvez, Natividad; Masciocchi, Norberto; Guagliardi, Antonietta

    2013-01-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging. (paper)

  16. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  17. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan

    International Nuclear Information System (INIS)

    G. L. Schwendiman

    2006-01-01

    This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition

  18. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  19. Amino-Acid-Based Polymerizable Surfactants for the Synthesis of Chiral Nanoparticles.

    Science.gov (United States)

    Preiss, Laura C; Wagner, Manfred; Mastai, Yitzhak; Landfester, Katharina; Muñoz-Espí, Rafael

    2016-09-01

    Amino-acid-based chiral surfactants with polymerizable moieties are synthesized, and a versatile approach to prepare particles thereof with a chiral surface functionality is presented. As an example of an application, the synthesized particles are tested for their ability as nucleating agents in the enantioselective crystallization of amino acid conglomerate systems, taking rac-asparagine as a model system. Particles resulting from chiral surfactants with different tail groups are compared and the results demonstrate that only the chiral nanoparticles made of the polymerizable surfactant are able to act efficiently as nucleation agent in enantioselective crystallization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Expression of Hepatitis B virus surface antigen (HBsAg from genotypes A, D and F and influence of amino acid variations related or not to genotypes on HBsAg detection

    Directory of Open Access Journals (Sweden)

    Natalia M. Araujo

    Full Text Available The impact of hepatitis B virus (HBV genotypes on the sensitivity of surface antigen (HBsAg detection assays has been poorly investigated. Here, plasmids carrying consensus or variant coding sequences for HBV surface proteins from genotypes A, D and F, were constructed. HBsAg levels were evaluated in medium and extracts of transfected CHO cells by a commercial polyclonal-based assay. We show that HBsAg detection values of consensus forms from genotypes D and F were, respectively, 37% and 30% lower than those obtained by genotype A. However, the presence of two single variations, T143M in genotype A, and T125M in genotype D, produced a decrease of 44% and an increase of 34%, respectively, on HBsAg mean values in comparison with their consensus forms. In conclusion, HBsAg detection levels varied among HBV genotypes. However, unique amino acid substitutions not linked to genotypes, such as T125M and T143M described here, should have more implications in HBV immunological diagnostics than the set of variations characteristic of each HBV genotype.

  1. Examining Patients' and Other Group Members' Agreement about Their Alliance to the Group as a Whole and Changes in Patient Symptoms Using Response Surface Analysis

    Science.gov (United States)

    Lo Coco, Gianluca; Gullo, Salvatore; Kivlighan, Dennis M., Jr.

    2012-01-01

    There is a lack of research examining patients' and other group members' agreement about their therapeutic alliance. In the present study, the person-group (P-G) fit model was adopted to predict that the group member symptom reduction will be greater when the group member's and the other group members' perceptions of their alliance to the…

  2. Specific effects of surface carboxyl groups on anionic polystyrene particles in their interactions with mesenchymal stem cells

    Science.gov (United States)

    Jiang, Xiue; Musyanovych, Anna; Röcker, Carlheinz; Landfester, Katharina; Mailänder, Volker; Nienhaus, G. Ulrich

    2011-05-01

    Nanoparticle uptake by living cells is governed by chemical interactions between functional groups on the nanoparticle as well as the receptors on cell surfaces. Here we have investigated the uptake of anionic polystyrene (PS) nanoparticles of ~100 nm diameter by mesenchymal stem cells (MSCs) using spinning-disk confocal optical microscopy combined with a quantitative analysis of the fluorescence images. Two types of anionic PS nanoparticles with essentially identical sizes and ζ-potentials were employed in this study, carboxyl-functionalized nanoparticles (CPS) and plain PS nanoparticles, both coated with anionic detergent for stabilization. CPS nanoparticles were observed to internalize more rapidly and accumulate to a much higher level than plain PS nanoparticles. The relative importance of different uptake mechanisms for the two types of nanoparticles was investigated by using specific inhibitors. CPS nanoparticles were internalized mainly via the clathrin-mediated mechanism, whereas plain PS nanoparticles mainly utilized the macropinocytosis pathway. The pronounced difference in the internalization behavior of CPS and plain PS nanoparticles points to a specific interaction of the carboxyl group with receptors on the cell surface.

  3. Adsorção de aminoácidos sobre minerais e a origem da vida Adsorption of amino acids on minerals and the origin of life

    Directory of Open Access Journals (Sweden)

    Dimas A. M. Zaia

    2006-07-01

    Full Text Available Minerals adsorb more readily amino acids with charged R groups than those with uncharged R groups, so that the incorporation of amino acids with charged R groups into peptides would be more frequent than that of amino acids with uncharged R groups. However, 74% of the amino acids in the proteins of modern organisms contain uncharged R groups. Thus, what could have been the mechanism that produced peptides/proteins with more amino acids with uncharged R groups than precursors with charged R groups? The lipid world offers an alternative view of the origin of life. In the present paper, several other mechanisms are also discussed.

  4. Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.

    Science.gov (United States)

    Li, Wenchen; Liu, Qingsheng; Liu, Lingyun

    2014-01-01

    A group of five amino acid containing zwitterionic vinyl monomers, based on serine, lysine, ornithine, glutamic acid, and aspartic acid, respectively, were proposed and developed for potential antifouling applications. Their polymer brushes were grafted on gold chips by surface-initiated photoiniferter-mediated polymerization. We then compared their performance in resisting protein adsorption from full human serum and plasma. All five polymers can reduce protein adsorption by more than 90% compared to the unmodified gold. The ornithine-based and aspartic acid-based poly(methacrylamide) can most strongly resist protein adsorption from serum and plasma, compared to the other three. The ability of surfaces to suppress bacterial adhesion is another criterion in evaluating antifouling properties of materials. Our results show that the five polymer-grafted surfaces can significantly suppress Escherichia coli K12 adhesion to 99% compared to the bare gold surface. The zwitterionic structure of amino acids, with homogenously distributed and balanced positive and negative charges, is responsible for the outstanding antifouling properties. Considering multiple potential applications (e.g. medical devices and drug delivery) of the antifouling materials, we further systematically evaluated the cytotoxicity of both monomers and polymer nanogels for all five materials at various concentrations. Very low cytotoxicity was observed for all tested amino acid-based monomers and nanogels, which is comparable or even lower than the traditional and some newly developed antifouling materials, which might be related to the biomimetic nature of amino acids.

  5. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  6. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... acids are "building blocks" that join together to form proteins. If you have one of these disorders, your body may have trouble breaking down certain amino acids. Or there may be a problem getting the ...

  7. Amino acid racemisation dating

    International Nuclear Information System (INIS)

    Murray-Wallace, C.V.

    1999-01-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject

  8. Quantitative chemical derivatization technique in time-of-flight secondary ion mass spectrometry for surface amine groups on plasma-polymerized ethylenediamine film.

    Science.gov (United States)

    Kim, Jinmo; Shon, Hyun Kyong; Jung, Donggeun; Moon, Dae Won; Han, Sang Yun; Lee, Tae Geol

    2005-07-01

    A chemical derivatization technique in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been developed to quantify the surface density of amine groups of plasma-polymerized ethylenediamine thin film deposited on a glass surface by inductively coupled plasma chemical vapor deposition. Chemical tags of 4-nitrobenzaldehyde or pentafluorobenzaldehyde were hybridized with the surface amine groups and were detected in TOF-SIMS spectra as characteristic molecular secondary ions. The surface amine density was controlled in a reproducible manner as a function of deposition plasma power and was also quantified using UV-visible spectroscopy. A good linear correlation was observed between the results of TOF-SIMS and UV-visible measurements as a function of plasma power. This shows that the chemical derivatization technique in TOF-SIMS analysis would be useful in quantifying the surface density of specific functional groups that exist on the organic surface.

  9. The Optimisation of the Expression of Recombinant Surface Immunogenic Protein of Group B Streptococcus in Escherichia coli by Response Surface Methodology Improves Humoral Immunity.

    Science.gov (United States)

    Díaz-Dinamarca, Diego A; Jerias, José I; Soto, Daniel A; Soto, Jorge A; Díaz, Natalia V; Leyton, Yessica Y; Villegas, Rodrigo A; Kalergis, Alexis M; Vásquez, Abel E

    2018-03-01

    Group B Streptococcus (GBS) is the leading cause of neonatal meningitis and a common pathogen in livestock and aquaculture industries around the world. Conjugate polysaccharide and protein-based vaccines are under development. The surface immunogenic protein (SIP) is a conserved protein in all GBS serotypes and has been shown to be a good target for vaccine development. The expression of recombinant proteins in Escherichia coli cells has been shown to be useful in the development of vaccines, and the protein purification is a factor affecting their immunogenicity. The response surface methodology (RSM) and Box-Behnken design can optimise the performance in the expression of recombinant proteins. However, the biological effect in mice immunised with an immunogenic protein that is optimised by RSM and purified by low-affinity chromatography is unknown. In this study, we used RSM for the optimisation of the expression of the rSIP, and we evaluated the SIP-specific humoral response and the property to decrease the GBS colonisation in the vaginal tract in female mice. It was observed by NI-NTA chromatography that the RSM increases the yield in the expression of rSIP, generating a better purification process. This improvement in rSIP purification suggests a better induction of IgG anti-SIP immune response and a positive effect in the decreased GBS intravaginal colonisation. The RSM applied to optimise the expression of recombinant proteins with immunogenic capacity is an interesting alternative in the evaluation of vaccines in preclinical phase, which could improve their immune response.

  10. Vocalization characteristics of North Atlantic right whale surface active groups in the calving habitat, southeastern United States.

    Science.gov (United States)

    Trygonis, Vasilis; Gerstein, Edmund; Moir, Jim; McCulloch, Stephen

    2013-12-01

    Passive acoustic surveys were conducted to assess the vocal behavior of North Atlantic right whales (Eubalaena glacialis) in the designated critical calving habitat along the shallow coastal waters of southeastern United States. Underwater vocalizations were recorded using autonomous buoys deployed in close proximity to surface active groups (SAGs). Nine main vocalization types were identified with manual inspection of spectrograms, and standard acoustic descriptors were extracted. Classification trees were used to examine the distinguishing characteristics of calls and quantify their variability within the SAG vocal repertoire. The results show that descriptors of frequency, bandwidth, and spectral disorder are the most important parameters for partitioning the SAG repertoire, contrary to duration-related measures. The reported source levels and vocalization statistics provide sound production data vital to inform regional passive acoustic monitoring and conservation for this endangered species.

  11. Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups

    Science.gov (United States)

    Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.

    2016-02-01

    In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.

  12. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody

    Science.gov (United States)

    Torkashvand, Fatemeh; Vaziri, Behrouz; Maleknia, Shayan; Heydari, Amir; Vossoughi, Manouchehr; Davami, Fatemeh; Mahboudi, Fereidoun

    2015-01-01

    Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB) multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44) cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM) to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb) titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds. PMID:26480023

  13. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Fatemeh Torkashvand

    Full Text Available Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44 cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.

  14. Interactions between acid- and base-functionalized surfaces

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    In this paper we present an AFM force study on interactions between chemically modified surfaces. Surfaces with terminal groups of either NH2 or COOH were obtained by chemisorption of a silane-based compound (3-amino-propyltriethoxysilane) on silica or a thiol compound (11-mercapto undecanoic acid)

  15. Amino acid nitrosation products as alkylating agents.

    Science.gov (United States)

    García-Santos, M del P; Calle, E; Casado, J

    2001-08-08

    Nitrosation reactions of alpha-, beta-, and gamma-amino acids whose reaction products can act as alkylating agents of DNA were investigated. To approach in vivo conditions for the two-step mechanism (nitrosation and alkylation), nitrosation reactions were carried out in aqueous acid conditions (mimicking the conditions of the stomach lumen) while the alkylating potential of the nitrosation products was investigated at neutral pH, as in the stomach lining cells into which such products can diffuse. These conclusions were drawn: (i) The alkylating species resulting from the nitrosation of amino acids with an -NH(2) group are the corresponding lactones; (ii) the sequence of alkylating power is: alpha-lactones > beta-lactones > gamma-lactones, coming respectively from the nitrosation of alpha-, beta-, and gamma-amino acids; and (iii) the results obtained may be useful in predicting the mutagenic effectiveness of the nitrosation products of amino acids.

  16. Chemical Force Microscopy Study on the Interactions of COOH Functional Groups with Kaolinite Surfaces: Implications for Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nipada Santha

    2017-12-01

    Full Text Available Clay–oil interactions play a critical role in determining the wettability of sandstone oil reservoirs, which, in turn, governs the effectiveness of enhanced oil recovery methods. In this study, we have measured the adhesion between –COOH functional groups and the siloxane and aluminol faces of kaolinite clay minerals by means of chemical force microscopy as a function of pH, salinity (from 0.001 M to 1 M and cation identity (Na+ vs. Ca2+. Results from measurements on the siloxane face show that Ca2+ displays a reverse low-salinity effect (adhesion decreasing at higher concentrations at pH 5.5, and a low salinity effect at pH 8. At a constant Ca2+ concentration of 0.001 M, however, an increase in pH leads to larger adhesion. In contrast, a variation in the Na+ concentration showed less effect in varying the adhesion of –COOH groups to the siloxane face. Measurements on the aluminol face showed a reverse low-salinity effect at pH 5.5 in the presence of Ca2+, whereas an increase in pH with constant ion concentration resulted in a decrease in adhesion for both Ca2+ and Na+. Results are explained by looking at the kaolinite’s surface complexation and the protonation state of the functional group, and highlight a more important role of the multicomponent ion exchange mechanism in controlling adhesion than the double layer expansion mechanism.

  17. Surface structure determination of group 11 metals adsorbed on a rhenium(10 anti 10) surface by low-energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Messahel, Lyria

    2012-11-12

    This thesis deals with the computational surface determination of various long-range ordered phases formed by thin films of copper, silver, and gold adsorbed on the rhenium- (10 anti 10) surface. It is based upon LEED-I,V curves for these phases that were recorded in the course of detailed experimental investigations of the respective films carried out in our group (using techniques such as LEED, MEED, and TPD). In order to solve the intricate puzzle of surface structural analysis, the electron elastic scattering behaviour of the investigated coinage metal phases was calculated using the Erlangen TensErLEED program package. Thereby first a set of theoretical LEED-I,V curves is derived for a guessed reference structure. Subsequently its structural input parameters are varied in a trial-and-error procedure until optimal agreement between experiment and theory is attained. The (1 x 1) phases formed by the deposited metals were tackled first to establish an absolute coverage calibration and to elucidate the respective growth modes on the Re(10 anti 10) surface. In all three cases the (1 x 1) structure is developed best at a coverage {Theta}{sub Cu,Ag,Au}=2 ML=1 BL. Extension of the investigation to experimental I,V curves for higher Cu coverages revealed that this element continues to grow bilayerwise, thereby retaining the Re hcp morphology. Ag, in contrast to Cu and Au, happens not to grow as homogeneously, and the TPD data suggest that Ag films exhibit the so-called simultaneous-multilayer (SM) growth mode. The following analysis of the sub-bilayer coverage range shows that the three systems exhibit considerable differences. While Cu, having a negative lattice misfit compared to Re, shows no long-range ordered superstructures, Ag and Au with a similar positive misfit form a couple of such phases. Ag features both a (1 x 4) phase, stable at ambient temperatures, that upon heating transforms into a c(2 x 2) phase that only exists at elevated temperatures. The

  18. Surface structure determination of group 11 metals adsorbed on a rhenium(10 anti 10) surface by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Messahel, Lyria

    2012-01-01

    This thesis deals with the computational surface determination of various long-range ordered phases formed by thin films of copper, silver, and gold adsorbed on the rhenium- (10 anti 10) surface. It is based upon LEED-I,V curves for these phases that were recorded in the course of detailed experimental investigations of the respective films carried out in our group (using techniques such as LEED, MEED, and TPD). In order to solve the intricate puzzle of surface structural analysis, the electron elastic scattering behaviour of the investigated coinage metal phases was calculated using the Erlangen TensErLEED program package. Thereby first a set of theoretical LEED-I,V curves is derived for a guessed reference structure. Subsequently its structural input parameters are varied in a trial-and-error procedure until optimal agreement between experiment and theory is attained. The (1 x 1) phases formed by the deposited metals were tackled first to establish an absolute coverage calibration and to elucidate the respective growth modes on the Re(10 anti 10) surface. In all three cases the (1 x 1) structure is developed best at a coverage Θ Cu,Ag,Au =2 ML=1 BL. Extension of the investigation to experimental I,V curves for higher Cu coverages revealed that this element continues to grow bilayerwise, thereby retaining the Re hcp morphology. Ag, in contrast to Cu and Au, happens not to grow as homogeneously, and the TPD data suggest that Ag films exhibit the so-called simultaneous-multilayer (SM) growth mode. The following analysis of the sub-bilayer coverage range shows that the three systems exhibit considerable differences. While Cu, having a negative lattice misfit compared to Re, shows no long-range ordered superstructures, Ag and Au with a similar positive misfit form a couple of such phases. Ag features both a (1 x 4) phase, stable at ambient temperatures, that upon heating transforms into a c(2 x 2) phase that only exists at elevated temperatures. The structure

  19. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  20. EQCM and XPS analysis of 1,2,4-triazole and 3-amino-1,2,4-triazole as copper corrosion inhibitors in chloride solution

    International Nuclear Information System (INIS)

    Finšgar, Matjaž

    2013-01-01

    Highlights: •3-Amino-1,2,4-triazole is a more effective inhibitor than 1,2,4-triazole. •Reasons for the differences in inhibition effectiveness are discussed. •1,2,4-Triazole surface layer growth is faster compared to 3-amino-1,2,4-triazole. •The 1,2,4-triazole surface layer on Cu is thicker compared to 3-amino-1,2,4-triazole. -- Abstract: In this study, the influence of the amino functional group in the 1,2,4-triazole at position C3 (the 3-amino-1,2,4-triazole compound), on the surface layer formation and surface chemistry of these two Cu corrosion inhibitors is explored. Special attention is devoted to the orientation of these two molecules and the way they bond to the Cu surface. With the aim of obtaining electrochemical quartz crystal microbalance and X-ray photoelectron spectroscopy measurements, the article discusses why differences in the corrosion inhibition effectiveness of these two molecules exist. Moreover, the thicknesses of the inhibitor surface layers formed on the Cu are determined

  1. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  2. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2

    DEFF Research Database (Denmark)

    Faissner, A; Kruse, J; Goridis, C

    1984-01-01

    The neural cell adhesion molecule L1 and the group of N-CAM related molecules, BSP-2 and D2 antigen, are immunochemically distinct molecular species. The two groups of surface molecules are also functionally distinct entities, since inhibition of Ca2+-independent adhesion among early post-natal m...

  3. and amino acids

    Indian Academy of Sciences (India)

    Unknown

    (L-Trp), were obtained from Sigma Chemical Company (USA). All the metal ions Cu(II),. Ni(II) and .... respective free amino acids show characteristic band positions, shifts and intensities, which can be correlated to ..... Financial support from the University Grants Commission, New Delhi to Prof P Rabindra. Reddy is gratefully ...

  4. Distribution and Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.

    2015-01-01

    The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.

  5. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Cha, I. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Hashimoto, K. [Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Fujiki, K. [Department of Environmental Science, Niigata Institute of Technology, 1719, Fujihashi, Kashiwazaki, Niigata 945-1195 (Japan); Yamauchi, T. [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan); Tsubokawa, N., E-mail: ntsuboka@eng.niigata-u.ac.jp [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-2181 (Japan); Department of Material Science and Technology, Faculty of Engineering, Niigata University, 8050, Ikarashi, 2-no-cho, Nishi-ku, Niigata 950-218 (Japan)

    2014-02-14

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion.

  6. Modification of dispersibility of nanodiamond by grafting of polyoxyethylene and by the introduction of ionic groups onto the surface via radical trapping

    International Nuclear Information System (INIS)

    Cha, I.; Hashimoto, K.; Fujiki, K.; Yamauchi, T.; Tsubokawa, N.

    2014-01-01

    To improve the dispersibility of polycrystalline nanodiamond (ND) in solvents, the grafting of polymers and introduction of ionic groups onto ND surface via radical trapping by ND surface were investigated. The grafting of polyoxyethylene (POE) onto ND surface by trapping of POE radicals formed by the thermal decomposition of POE macro azo-initiator (Azo-POE) was examined. The polymer radicals formed by the thermal decomposition of Azo-POE were successfully trapped by ND surface to give POE-grafted ND. The effect of temperature on the grafting of POE onto ND was discussed. In addition, the introduction of cationic protonated amidine groups onto ND was achieved by the trapping of radicals bearing protonated amidine groups formed by thermal decomposition of 2,2′-azobis(2-methylpropionamidine)dihydrochloride (AMPA). The anionic carboxylate groups was introduced onto ND surface by the trapping of the radicals bearing carboxyl groups formed by thermal decomposition of 4,4′-azobis(4-cyonovaleric acid) (ACVA) followed by the treatment with NaOH aqueous solution. The dispersibility of ND in water was remarkably improved by the grafting of POE, based on the steric hindrance of polymer chains and by the introduction of ionic groups, based on the ionic repulsion, onto ND surface. - Highlights: • Grafting of PEG onto nanodiamond was achieved by radical trapping. • Introduction of ionic groups onto nanodiamond was achieved by radical trapping. • Nanodiamond was dispersed by PEG grafting based on steric hindrance of PEG chains. • Nanodiamond was dispersed by introduction of ionic groups based on ionic repulsion

  7. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...... carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid...... aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated...

  8. Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion.

    Science.gov (United States)

    Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C

    2010-11-01

    Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Electrochemical Metal Ion Sensors. Exploiting Amino Acids and Peptides as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Wenrong Yang

    2001-08-01

    Full Text Available Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.

  10. Macrocyclic polyether complexes of amino acids and amino acid salts

    International Nuclear Information System (INIS)

    Bidzilya, V.A.; Oleksenko, LP.

    1985-01-01

    This paper deals with the isolation of the complexes formed between various types of amino acid derivatives and macrocyclic polyethers, and the characterisation of their physical and chemical properties. The study shows that macrocyclic polyethers form 1:1 complexes with amino acids and amino acid derivatives, and that these complexes can be isolated in pure form. Amino acids can be bound to these complexes in their anionic forms, in switterionic forms, as well as in their protonated forms. These types of complexes may be useful for the transport of amino acids or their derivatives across both synthetic and natural membranes

  11. First principles-based adsorption comparison of group IV elements (C, Si, Ge, and Sn) on Au(111)/Ag(111) surface

    International Nuclear Information System (INIS)

    Chakraborty, Sudip; Rajesh, Ch.

    2012-01-01

    We have reported a first-principle investigation of the structural properties of monomer and dimer for group IV elements (C, Si, Ge, and Sn) adsorbed on the Au(111) and Ag(111) surfaces. The calculations were performed by means of a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of adatom to be adsorbed on the hexagonal closed packed site of the metal (111) surfaces with strong binding energy. The structures introduce interlayer forces in the adsorbate. The strong bonding with the surface atoms is a result of p–d hybridization. The adsorption energy follows a sequence as one goes down in the group IV elements which imply that the interaction of the group IV elements with Au/Ag is decreasing as the atomic number increases.

  12. Polymers with complexing properties. Simple poly(amino acids)

    Science.gov (United States)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  13. Amino Alcohols from the Ascidian Pseudodistoma sp.

    Directory of Open Access Journals (Sweden)

    Tae Hyung Won

    2014-06-01

    Full Text Available Seven new amino alcohol compounds, pseudoaminols A–G (1–7, were isolated from the ascidian Pseudodistoma sp. collected off the coast of Chuja-do, Korea. Structures of these new compounds were determined by analysis of the spectroscopic data and from chemical conversion. The presence of an N-carboxymethyl group in two of the new compounds (6 and 7 is unprecedented among amino alcohols. Several of these compounds exhibited moderate antimicrobial activity and cytotoxicity, as well as weak inhibitory activity toward Na+/K+-ATPase.

  14. Unusual Amino Acids in Medicinal Chemistry.

    Science.gov (United States)

    Blaskovich, Mark A T

    2016-12-22

    Unusual amino acids are fundamental building blocks of modern medicinal chemistry. The combination of readily functionalized amine and carboxyl groups attached to a chiral central core along with one or two potentially diverse side chains provides a unique three-dimensional structure with a high degree of functionality. This makes them invaluable as starting materials for syntheses of complex molecules, highly diverse elements for SAR campaigns, integral components of peptidomimetic drugs, and potential drugs on their own. This Perspective highlights the diversity of unnatural amino acid structures found in hit-to-lead and lead optimization campaigns and clinical stage and approved drugs, reflecting their increasingly important role in medicinal chemistry.

  15. Indigenous Amino Acids in Iron Meteorites

    Science.gov (United States)

    Elsila, J. E.; Dworkin, J. P.; Glavin, D. P.; Johnson, N. M.

    2018-01-01

    Understanding the organic content of meteorites and the potential delivery of molecules relevant to the origin of life on Earth is an important area of study in astrobiology. There have been many studies of meteoritic organics, with much focus on amino acids as monomers of proteins and enzymes essential to terrestrial life. The majority of these studies have involved analysis of carbonaceous chondrites, primitive meteorites containing approx. 3-5 wt% carbon. Amino acids have been observed in varying abundances and distributions in representatives of all eight carbonaceous chondrite groups, as well as in ungrouped carbonaceous chondrites, ordinary and R chondrites, ureilites, and planetary achondrites [1 and references therein].

  16. Genetic analysis of amino acid content in wheat grain

    Indian Academy of Sciences (India)

    2014-08-22

    Aug 22, 2014 ... 1Group of Quality Wheat Breeding of State Key Laboratory of Crop Biology of Shandong Agricultural University,. No. 61 Daizong Road, Tai'an 271018, ... especially improving the amino acid composition of protein. Contents of wheat grain amino ... nutritional quality of wheat grain. Materials and methods.

  17. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    Science.gov (United States)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  18. Biodegradable polymers derived from amino acids.

    Science.gov (United States)

    Khan, Wahid; Muthupandian, Saravanan; Farah, Shady; Kumar, Neeraj; Domb, Abraham J

    2011-12-08

    In the past three decades, the use of polymeric materials has increased dramatically for biomedical applications. Many α-amino acids derived biodegradable polymers have also been intensely developed with the main goal to obtain bio-mimicking functional biomaterials. Polymers derived from α-amino acids may offer many advantages, as these polymers: (a) can be modified further to introduce new functions such as imaging, molecular targeting and drugs can be conjugated chemically to these polymers, (b) can improve on better biological properties like cell migration, adhesion and biodegradability, (c) can improve on mechanical and thermal properties and (d) their degradation products are expected to be non-toxic and readily metabolized/excreted from the body. This manuscript focuses on biodegradable polymers derived from natural amino acids, their synthesis, biocompatibility and biomedical applications. It is observed that polymers derived from α-amino acids constitute a promising family of biodegradable materials. These provide innovative multifunctional polymers possessing amino acid side groups with biological activity and with innumerous potential applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High-Performance Supercapacitor of Functionalized Carbon Fiber Paper with High Surface Ionic and Bulk Electronic Conductivity: Effect of Organic Functional Groups

    International Nuclear Information System (INIS)

    Suktha, Phansiri; Chiochan, Poramane; Iamprasertkun, Pawin; Wutthiprom, Juthaporn; Phattharasupakun, Nutthaphon; Suksomboon, Montakan; Kaewsongpol, Tanon; Sirisinudomkit, Pichamon; Pettong, Tanut; Sawangphruk, Montree

    2015-01-01

    Highlights: • A supercapacitor of organic functionalized carbon fiber paper (f-CFP) exhibits high areal and volumetric capacitances. • The performance of the supercapacitor depends on the organic functional group on the surface of the f-CFP. • Hydroxyl and carboxylic groups modified on the surface of f-CFP have higher pseudocapacitive property than amide and amine functional groups. • The f-CFP exhibits high surface ionic and bulk electrical conductivities. - Abstract: Although carbon fiber paper (CFP) or nonwovens are widely used as a non-corrosive and conductive substrate or current collector in batteries and supercapacitors as well as a gas diffusion layer in proton exchange membrane fuel cells, the CFP cannot store charges due to its poor ionic conductivity and its hydrophobic surface. In this work, the chemically functionalized CFP (f-CFP) consisting of hydroxyl and carboxylic groups on its surface was produced by an oxidation reaction of CFP in a mixed concentrated acid solution of H 2 SO 4 :HNO 3 (3:1 v/v) at 60 °C for 1 h. Other amide and amine groups modified CFP were also synthesized for comparison using a dehydration reaction of carboxylic modified CFP with ethylenediamine and n-butylamine. Interestingly, it was found that hydroxyl and carboxylic groups modified CFP behave as a pseudocapacitor electrode, which can store charges via the surface redox reaction in addition to electrochemical double layer capacitance. The aqueous-based supercapacitor of f-CFP has high areal, volumetric, and specific energy (49.0 μW.h/cm 2 , 1960 mW.h/L, and 5.2 W.h/Kg) and power (3.0 mW/cm 2 , 120 W/L, and 326.2 W/Kg) based on the total geometrical surface area and volume as well as the total weight of positive and negative electrodes. High charge capacity of the f-CFP stems from high ionic charge and pseudocapacitive behavior due to hydroxyl and carboxylic groups on its surface and high bulk electronic conductivity (2.03 mS/cm) due to 1D carbon fiber paper. The

  20. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    Science.gov (United States)

    Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.

  1. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    Energy Technology Data Exchange (ETDEWEB)

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. To assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.

  2. Amino acid-based surfactants – do they deserve more attention?

    Science.gov (United States)

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions: An easy way to produce 'C-O' functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N., E-mail: nathalie.simon@uvsq.f [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France); Charrier, G.; Etcheberry, A. [Institut Lavoisier de Versailles, UMR 8180, Universite de Versailles-St-Quentin en Yvelines, 45 avenue des Etats Unis, 78000 Versailles (France)

    2010-08-01

    Despite many works are devoted to oxidation of diamond surfaces, it is still a challenge, to successfully produce well defined 'C-O' functions, particularly for functionalization purposes. In this paper we describe and compare, for the first time, the 'electroless' oxidation of as-deposited polycrystalline boron-doped diamond (BDD) films in ceric and ferricyanide solutions at room temperature. Both reactions efficiently generate oxygen functionalities on BDD surface. While a higher amount of 'C-O' moieties is produced with Ce{sup 4+} as oxidizing agent, the use of ferricyanide specie seems the most interesting to specifically generate hydroxyl groups. Additionally, this easy to perform oxidative method appears not damaging for diamond surfaces and adapted to conductive or non-conductive materials. The resulting surfaces were characterized using X-ray photoelectron spectroscopy, contact angle and capacitance-voltage analysis.

  4. Influence of Group-III-metal and Ag adsorption on the Ge growth on Si(111) and its vicinal surface

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz

    2011-12-15

    In the framework of this thesis the surfactant-mediated heteroepitaxial growth of Ge on different Si surfaces has been investigated by means of low-energy electron microscopy, low-energy electron diffraction, spot-profile analysing low-energy electron diffraction, X-ray standing waves, grazing-incidence X-ray diffraction, x-ray photoemission electron microscopy, X-ray photoemission spectroscopy, scanning tunneling microscopy, scanning electron microscopy, transmission electron microscopy, and density functional theory calculations. As surfactants gallium, indium, and silver were used. The adsorption of Ga or In on the intrinsically faceted Si(112) surface leads to a smoothing of the surface and the formation of (N x 1) reconstructions, where a mixture of building blocks of different sizes is always present. For both adsorbates the overall periodicity on the surface is strongly dependent on the deposition temperature and the coverage. For the experimental conditions chosen here, the periodicities are in the range of 5.2{<=}N{<=}6.5 and 3.4{<=}N{<=}3.7 for Ga and In, respectively. The (N x 1) unit cells of Ga/Si(112) and In/Si(112) are found to consist of adsorbate atoms on terrace and step-edge sites, forming two atomic chains along the [110] direction. In the Ga-induced structures two Ga-vacancies per unit cell (one in the terrace and one in the step-edge site) are found and a continuous vacancy line on the surface is formed. In the In/Si(112) structure only one vacancy per unit cell in the step-edge site exists and, thus, a continuous adsorbate chain on the terrace sites is present. The adsorption of Ga or In on Si(112) strongly influences the subsequent Ge growth. Ge deposition on the Ga-terminated Si(112) surface leads to the formation of Ge nanowires, which are elongated along the Ga chains and reach lengths of up to 2000 nm for a growth temperature of 600 C. On In-covered Si(112), both small dash-like Ge islands and triangularly shaped islands are found, where

  5. Adsorption of amino acids (ALA, CYS, HIS, MET) on zeolites: fourier transform infrared and Raman spectroscopy investigations.

    Science.gov (United States)

    Carneiro, Cristine E A; de Santana, Henrique; Casado, Clara; Coronas, Joaquin; Zaia, Dimas A M

    2011-06-01

    Minerals adsorb more amino acids with charged R-groups than amino acids with uncharged R-groups. Thus, the peptides that form from the condensation of amino acids on the surface of minerals should be composed of amino acid residues that are more charged than uncharged. However, most of the amino acids (74%) in today's proteins have an uncharged R-group. One mechanism with which to solve this paradox is the use of organophilic minerals such as zeolites. Over the range of pH (pH 2.66-4.50) used in these experiments, the R-group of histidine (His) is positively charged and neutral for alanine (Ala), cysteine (Cys), and methionine (Met). In acidic hydrothermal environments, the pH could be even lower than those used in this study. For the pH range studied, the zeolites were negatively charged, and the overall charge of all amino acids was positive. The conditions used here approximate those of prebiotic Earth. The most important finding of this work is that the relative concentrations of each amino acid (X=His, Met, Cys) to alanine (X/Ala) are close to 1.00. This is an important result with regard to prebiotic chemistry because it could be a solution for the paradox stated above. Pore size did not affect the adsorption of Cys and Met on zeolites, and the Si/Al ratio did not affect the adsorption of Cys, His, and Met. ZSM-5 could be used for the purification of Cys from other amino acids (Student-Newman-Keuls test, pamino acids from each other (Student-Newman-Keuls test, p<0.05). As shown by Fourier transform infrared (FT-IR) spectra, Ala interacts with zeolites through the [Formula: see text] group, and methionine-zeolite interactions involve the COO, [Formula: see text], and CH(3) groups. FT-IR spectra show that the interaction between the zeolites and His is weak. Cys showed higher adsorption on all zeolites; however, the hydrophobic Van der Waals interaction between zeolites and Cys is too weak to produce any structural changes in the Cys groups (amine, carboxylic

  6. Adsorption of Amino Acids (Ala, Cys, His, Met) on Zeolites: Fourier Transform Infrared and Raman Spectroscopy Investigations

    Science.gov (United States)

    Carneiro, Cristine E. A.; de Santana, Henrique; Casado, Clara; Coronas, Joaquin; Zaia, Dimas A. M.

    2011-06-01

    Minerals adsorb more amino acids with charged R-groups than amino acids with uncharged R-groups. Thus, the peptides that form from the condensation of amino acids on the surface of minerals should be composed of amino acid residues that are more charged than uncharged. However, most of the amino acids (74%) in today's proteins have an uncharged R-group. One mechanism with which to solve this paradox is the use of organophilic minerals such as zeolites. Over the range of pH (pH 2.66-4.50) used in these experiments, the R-group of histidine (His) is positively charged and neutral for alanine (Ala), cysteine (Cys), and methionine (Met). In acidic hydrothermal environments, the pH could be even lower than those used in this study. For the pH range studied, the zeolites were negatively charged, and the overall charge of all amino acids was positive. The conditions used here approximate those of prebiotic Earth. The most important finding of this work is that the relative concentrations of each amino acid (X=His, Met, Cys) to alanine (X/Ala) are close to 1.00. This is an important result with regard to prebiotic chemistry because it could be a solution for the paradox stated above. Pore size did not affect the adsorption of Cys and Met on zeolites, and the Si/Al ratio did not affect the adsorption of Cys, His, and Met. ZSM-5 could be used for the purification of Cys from other amino acids (Student-Newman-Keuls test, pzeolites through the group, and methionine-zeolite interactions involve the COO, , and CH3 groups. FT-IR spectra show that the interaction between the zeolites and His is weak. Cys showed higher adsorption on all zeolites; however, the hydrophobic Van der Waals interaction between zeolites and Cys is too weak to produce any structural changes in the Cys groups (amine, carboxylic, sulfhydryl, etc.); thus, the FT-IR and Raman spectra are the same as those of solid Cys.

  7. Surface Modification for Microreactor Fabrication

    Directory of Open Access Journals (Sweden)

    Wladyslaw Torbicz

    2006-04-01

    Full Text Available In this paper, methods of surface modification of different supports, i.e. glass andpolymeric beads for enzyme immobilisation are described. The developed method ofenzyme immobilisation is based on Schiff’s base formation between the amino groups onthe enzyme surface and the aldehyde groups on the chemically modified surface of thesupports. The surface of silicon modified by APTS and GOPS with immobilised enzymewas characterised by atomic force microscopy (AFM, time-of-flight secondary ion massspectroscopy (ToF-SIMS and infrared spectroscopy (FTIR. The supports withimmobilised enzyme (urease were also tested in combination with microreactors fabricatedin silicon and Perspex, operating in a flow-through system. For microreactors filled withurease immobilised on glass beads (Sigma and on polymeric beads (PAN, a very high andstable signal (pH change was obtained. The developed method of urease immobilisationcan be stated to be very effective.

  8. Amino acids interacting with defected carbon nanotubes: ab initio calculations

    Directory of Open Access Journals (Sweden)

    M. Darvish Ganji

    2016-09-01

    Full Text Available The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT is investigated by using the density-functional theory (DFT calculations. The adsorption energies and equilibrium distances are calculated for various configurations such as amino acid attaching to defect sites heptagon, pentagon and hexagon in defective tube and also for several molecular orientations with respect to the nanotube surface. The results showed that amino acids prefer to be physisorbed on the outer surface of the defected nanotube with different interaction strength following the hierarchy histidine > glycine > phenylalanine > cysteine. Comparing these findings with those obtained for perfect SWCNTs reveals that the adsorption energy of the amino acids increase for adsorption onto defected CNTs. The adsorption nature has also been evaluated by means of electronics structures analysis within the Mulliken population and DOS spectra for the interacting entities.

  9. Mechanism of Decomposition of Surface Ethoxy Species to Ethene and Acidic OH Groups on H-ZSM-5.

    Science.gov (United States)

    Kondo, Junko N; Yamazaki, Hiroshi; Osuga, Ryota; Yokoi, Toshiyuki; Tatsumi, Takashi

    2015-06-18

    The reaction mechanism of the decomposition of ethoxy species to ethene and acidic OH groups on H-ZSM-5 was studied by IR spectroscopy using isotope-labeled ethanol. The concerted mechanism occurring on both the ethoxy (acid) site and the counterpart lattice oxygen was suggested by GC-MS analysis of evolved d2-ethene and IR observation of the recovery of OH s groups on acid sites from the decomposition of CH3CD2O- ethoxy species. The concerted mechanism was further confirmed by the estimation of activation energy for decomposition of CH3CH2O-, CH3CD2O-, and CD3CD2O- ethoxy species, 122 ± 3, 125 ± 3, and 140 ± 5 kJ mol(-1), respectively, where the kinetic isotope effect was observed for the cleavage of the CH or CD bond of the methyl group of the ethoxy species.

  10. 2-Amino-4-hydroxyethylaminoanisole sulfate

    DEFF Research Database (Denmark)

    Madsen, Jakob T; Andersen, Klaus E

    2016-01-01

    positive patch test reactions to the coupler 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. METHODS: Patch test results from the Allergen Bank database for eczema patients patch tested with 2-amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014 were reviewed. RESULTS......: A total of 902 dermatitis patients (154 from the dermatology department and 748 from 65 practices) were patch tested with amino-4-hydroxyethylaminoanisole sulfate 2% pet. from 2005 to 2014. Thirteen (1.4%) patients had a positive patch test reaction. Our results do not indicate irritant reactions....... CONCLUSIONS: 2-Amino-4-hydroxyethylaminoanisole sulfate is a new but rare contact allergen....

  11. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  12. Surface functionalization of silicone rubber for permanent adhesion improvement.

    Science.gov (United States)

    Roth, Jan; Albrecht, Victoria; Nitschke, Mirko; Bellmann, Cornelia; Simon, Frank; Zschoche, Stefan; Michel, Stefan; Luhmann, Claudia; Grundke, Karina; Voit, Brigitte

    2008-11-04

    The surface properties of poly(dimethyl siloxane) (PDMS) layers screen printed onto silicon wafers were studied after oxygen and ammonia plasma treatments and subsequent grafting of poly(ethylene -alt-maleic anhydride) (PEMA) using X-ray photoelectron spectroscopy (XPS), roughness analysis, and contact angle and electrokinetic measurements. In the case of oxygen-plasma-treated PDMS, a hydrophilic, brittle, silica-like surface layer containing reactive silanol groups was obtained. These surfaces indicate a strong tendency for "hydrophobic recovery" due to the surface segregation of low-molecular-weight PDMS species. The ammonia plasma treatment of PDMS resulted in the generation of amino-functional surface groups and the formation of a weak boundary layer that could be washed off by polar liquids. To avoid the loss of the plasma modification effect and to achieve stabilization of the mechanically instable, functionalized PDMS top layer, PEMA was subsequently grafted directly or after using gamma-APS as a coupling agent on the plasma-activated PDMS surfaces. In this way, long-time stable surface functionalization of PDMS was obtained. The reactivity of the PEMA-coated PDMS surface caused by the availability of anhydride groups could be controlled by the number of amino functional surface groups of the PDMS surface necessary for the covalent binding of PEMA. The higher the number of amino functional surface groups available for the grafting-to procedure, the lower the hydrophilicity and hence the lower the reactivity of the PEMA-coated PDMS surface. Additionally, pull-off tests were applied to estimate the effect of surface modification on the adhesion between the silicone rubber and an epoxy resin.

  13. carcass amino acid composition and utilization of dietary amino

    African Journals Online (AJOL)

    Maynard (1954), Fisher & Scott (1954), Forbes &. Rao (1959), Hartsook & Mitchell (1956). King (1963) showed that individual amino acids in the carcass could differ widely from the requirement by the anirnal for those particular amino acids used for purposes other than protein synthesis and subsequent retention. How-.

  14. Whistle emissions of Indo-Pacific bottlenose dolphins (Tursiops aduncus) differ with group composition and surface behaviors.

    Science.gov (United States)

    Hawkins, Elizabeth R; Gartside, Donald F

    2010-04-01

    The intricate and highly developed acoustic communication system of bottlenose dolphins reflects the complexities of their social organization. Indo-Pacific bottlenose dolphins (Tursiops aduncus) produce numerous types of acoustic emissions, including a diverse repertoire of whistles used for communicative purposes. The influence of group composition on whistle production and the function of different whistles produced by dolphins in wild contexts are relatively unknown. Recordings of acoustic emissions and behavior of dolphins were made concurrently during vessel-based surveys along the coast of northern New South Wales, Australia. Whistles were divided into five tonal classes (sine, rise, down-sweep, flat, and concave) and categorized into distinct whistle types. It is shown that while whistle repetition rate and whistle diversity was influenced by group composition, it is not influenced by behavior. Noncalf groups produced a significantly higher whistle repetition rate and whistle diversity than calf groups. In contrast, the types of whistles produced were related to the behavior in which the dolphins were engaged in: some tonal classes and distinct whistle types were related to different behavior states. Findings suggested that some whistle types may be used to communicate specific information on the behavioral context of the individuals involved.

  15. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids

    Science.gov (United States)

    Sridev Mohapatra; Rakesh Minocha; Stephanie Long; Subhash C. Minocha

    2010-01-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis...

  16. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions

    Science.gov (United States)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi

    2017-08-01

    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  17. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  18. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation.

    Science.gov (United States)

    Hermans, Jos; Ongay, Sara; Markov, Vadym; Bischoff, Rainer

    2017-09-05

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC-MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pK a , and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure-property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R 2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response.

  19. Cyanobacteria as efficient producers of mycosporine-like amino acids.

    Science.gov (United States)

    Jain, Shikha; Prajapat, Ganshyam; Abrar, Mustari; Ledwani, Lalita; Singh, Anoop; Agrawal, Akhil

    2017-09-01

    Mycosporine-like amino acids are the most common group of transparent ultraviolet radiation absorbing intracellular secondary metabolites. These molecules absorb light in the range of ultraviolet-A and -B with a maximum absorbance between 310 and 362 nm. Cyanobacteria might have faced the most deleterious ultraviolet radiation, which leads to an evolution of ultraviolet protecting mycosporine-like amino acids for efficient selection in the environment. In the last 30 years, scientists have investigated various cyanobacteria for novel mycosporine-like amino acids, applying different induction techniques. This review organizes all the cyanobacterial groups that produce various mycosporine-like amino acids. We found out that cyanobacteria belonging to orders Synechococcales, Chroococcales, Oscillatoriales, and Nostocales are frequently studied for the presence of mycosporine-like amino acids, while orders Gloeobacterales, Spirulinales, Pleurocapsales, and Chroococcidiopsidales are still need to be investigated. Nostoc and Anabaena strains are major studied genus for the mycosporine-like amino acids production. Hence, this review will give further insight to the readers about potential mycosporine-like amino acid producing cyanobacterial groups in future investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantification of variable functional-group densities of mixed-silane monolayers on surfaces via a dual-mode fluorescence and XPS label.

    Science.gov (United States)

    Fischer, Tobias; Dietrich, Paul M; Streeck, Cornelia; Ray, Santanu; Nutsch, Andreas; Shard, Alex; Beckhoff, Burkhard; Unger, Wolfgang E S; Rurack, Knut

    2015-03-03

    The preparation of aminated monolayers with a controlled density of functional groups on silica surfaces through a simple vapor deposition process employing different ratios of two suitable monoalkoxysilanes, (3-aminopropyl)diisopropylethoxysilane (APDIPES) and (3-cyanopropyl)dimethylmethoxysilane (CPDMMS), and advances in the reliable quantification of such tailored surfaces are presented here. The one-step codeposition process was carried out with binary silane mixtures, rendering possible the control over a wide range of densities in a single step. In particular, APDIPES constitutes the functional silane and CPDMMS the inert component. The procedure requires only small amounts of silanes, several ratios can be produced in a single batch, the deposition can be carried out within a few hours and a dry atmosphere can easily be employed, limiting self-condensation of the silanes. Characterization of the ratio of silanes actually bound to the surface can then be performed in a facile manner through contact angle measurements using the Cassie equation. The reliable estimation of the number of surface functional groups was approached with a dual-mode BODIPY-type fluorescence label, which allows quantification by fluorescence and XPS on one and the same sample. We found that fluorescence and XPS signals correlate over at least 1 order of magnitude, allowing for a direct linking of quantitative fluorescence analysis to XPS quantification. Employment of synchrotron-based methods (XPS; reference-free total reflection X-ray fluorescence, TXRF) made the traceable quantification of surface functional groups possible, providing an absolute reference for quantitative fluorescence measurements through a traceable measurement chain.

  1. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Science.gov (United States)

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  2. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  3. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  4. Readiness Review Plan for the Interim Remedial Action on Surface Debris in Waste Area Grouping 11 at Oak Ridge National Laboratory, Oak Ridge, TN

    International Nuclear Information System (INIS)

    1993-10-01

    This Readiness Review Plan was prepared by the Waste Area Grouping (WAG) 11 Site Project Readiness Review Team as an overview of the Interim Remedial Action on Surface Debris in WAG 11 project at Oak Ridge National Laboratory, including major readiness milestones, criteria development methodology, and a list of events to occur as part of the review process for determining readiness for each project phase

  5. Interactive network analysis of the plasma amino acids profile in a mouse model of hyperglycemia

    OpenAIRE

    Tanaka, Takayuki; Mochida, Taiga; Maki, Yukihiro; Shiraki, Yasuko; Mori, Hiroko; Matsumoto, Shirou; Shimbo, Kazutaka; Ando, Toshihiko; Nakamura, Kimitoshi; Endo, Fumio; Okamoto, Masahiro

    2013-01-01

    Amino acids are a group of metabolites that are important substrates for protein synthesis, are important as signaling molecules and play central roles as highly connected metabolic hubs, and therefore, there are many reports that describe disease-specific abnormalities in plasma amino acids profile. However, the causes of progression from a healthy control to a manifestation of the plasma amino acid changes remain obscure. Here, we extended the plasma amino acids profile to relationships tha...

  6. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  7. Selective agonists at group II metabotropic glutamate receptors: synthesis, stereochemistry, and molecular pharmacology of (S)- and (R)-2-amino-4-(4-hydroxy[1,2,5]thiadiazol-3-yl)butyric acid

    DEFF Research Database (Denmark)

    Clausen, Rasmus P; Bräuner-Osborne, Hans; Greenwood, Jeremy R

    2002-01-01

    Homologation of analogues of the central excitatory neurotransmitter glutamic acid (Glu), in which the distal carboxy group has been bioisosterically replaced by acidic heterocyclic units, has previously provided subtype selective ligands for metabotropic Glu receptors (mGluRs). The (S)-form of t...

  8. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  9. Leucine, starch and bicarbonate utilization by specific bacterial groups in surface shelf waters off Galicia (NW Spain).

    Science.gov (United States)

    Teira, E; Hernando-Morales, V; Guerrero-Feijóo, E; Varela, M M

    2017-06-01

    The capability of different bacterial populations to degrade abundant polymers, such as algal-derived polysaccharides, or to utilize preferentially polymers over monomers, remains largely unknown. In this study, microautoradiography was combined with fluorescence in situ hybridization (MAR-FISH) to evaluate the ability of Bacteroidetes, SAR11, Roseobacter spp., Gammaproteobacteria and SAR86 cells to use bicarbonate, leucine and starch under natural light conditions at two locations in shelf surface waters off NW Spain. The percentage of cells incorporating bicarbonate was relatively high (mean 32% ± 4%) and was positively correlated with the intensity of solar radiation. The proportion of cells using starch (mean 56% ± 4%) or leucine (mean 47% ± 4%) was significantly higher than that using bicarbonate. On average, SAR11, Roseobacter spp. and Gammaproteobacteria showed a similarly high percentage of cells using leucine (47%-65% of hybridized cells) than using starch (51%-64% of hybridized cells), while Bacteroidetes and SAR86 cells preferentially used starch (53% of hybridized cells) over leucine (34%-40% of hybridized cells). We suggest that the great percentage of bacteria using starch is related to a high ambient availability of polymers associated to algal cell lysis, which, in turn, weakens the short-term coupling between phytoplankton release and bacterial production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Preparation and surface active properties of oxypropylated diol monoesters of fatty acids with an amide oxime terminal group

    Directory of Open Access Journals (Sweden)

    Eissa, A. M.F.

    1994-10-01

    Full Text Available Locally produced non-edible oil, namely, rice bran oil (R.B.O. was utilized as starting materials for preparing new nonionic surfactant. Oxypropylated diol monoesters of linoleic and rice bran oil fatty acids were prepared. Also amide oxime derivatives were obtained. Surface active properties of these compounds were measured. Under neutral condition amide eximes served as nonionic surfactants and their properties were similar to other oxypropylated monoesters.

    Se ha utilizado un aceite no comestible de producción local, denominado, aceite de salvado de arroz (R.B.O. como materia prima para la preparación de nuevos tensioactivos no iónicos. Se prepararon diol monoésteres oxipropilados de ácido linoleico y ácidos grasos de aceite de salvado de arroz. También se obtuvieron los derivados de amido oxima. Se midieron las propiedades de tensión superficial de estos compuestos. Bajo condiciones neutras las amido eximas sirvieron como tensioactivos no iónicos y sus propiedades fueron similares a los de otros monoésteres oxipropilados.

  11. Chemistry of rhenium and technetium. II. Schiff base complexes with polyfunctional amino acids

    International Nuclear Information System (INIS)

    Du Preez, J.G.H.; Gerber, T.I.A.; Fourie, P.J.; Van Wyk, A.J.

    1984-01-01

    Amino acid Schiff base technetium(V) complexes of salicylaldehyde with l-cysteine, l-serine, l-histodine, l-threonine, l-glutamic acid and l-tryptophan have been preapred by direct reaction and by constituent combination. The amino acid part of the ligands coordinates to the technetium through the carboxylate group, while the other available functional group of the amino acids plays a more minor role as blocking group or in intramolecular bonding. 3 tables

  12. Studies on radiolysis of amino acids, (4)

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1978-01-01

    In order to elucidate the effect of adding methionine on the loss of amino acid by γ-irradiation in amino acid mixture, because methionine is one of the most radio-sensitive in amino acids, the remaining amino acids in γ-irradiated aqueous solution of amino acid mixture were studied by determining the total amount of each remaining amino acid. The mixture of 18 amino acids which contains methionine and that of 17 amino acids without methionine were used. Amino acids and the irradiation products were determined with an automatic amino acid analyzer. The total amount of remaining amino acids in the irradiated solution of 18 amino acid mixture was more than that of 17 amino acid mixture. The order of the total amount of each remaining amino acid by low-dose irradiation was Gly>Ala>Asp>Glu>Val>Ser, Pro>Ile, Leu>Thr>Lys>Tyr>Arg>His>Phe>Try>Cys>Met. In case of the comparison of amino acids of same kinds, the total remaining amount of each amino acid in amino acid mixture was more than that of individually irradiated amino acid. The total remaining amounts of glycine, alanine and aspartic acid in irradiated 17 amino acid mixture resulted in slight increase. Ninhydrin positive products formed from 18 amino acid mixture irradiated with 2.640 x 10 3 rad were ammonia, methionine sulfoxide and DOPA of 1.34, 0.001 and 0.25 μmoles/ml of the irradiated solution, respectively. (Kobake, H.)

  13. Engineering a Zirconium MOF through Tandem "Click" Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface.

    Science.gov (United States)

    Zhang, Yingfan; Gui, Bo; Chen, Rufan; Hu, Guiping; Meng, Yi; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2018-02-19

    Metal-organic frameworks (MOFs) assembled from linkers of identical length but with different functional groups have gained increasing interests recently. However, it is very challenging for precise control of the ratios of different functionalities. Herein, we reported a stable azide- and alkyne-appended Zr-MOF that can undergo quantitative tandem click reactions on the different functional sites, thus providing a unique platform for quantitative loading of bifunctional moieties. As an added advantage, the same MOF product can be obtained via two independent routes. The method is versatile and can tolerate a wide variety of functional groups, and furthermore, a heterogeneous acid-base MOF organocatalyst was synthesized by tandemly introducing both acidic and basic groups onto the predesigned pore surface. The presented strategy provides a general way toward the construction of bifunctional MOFs with a precise control of ratio of different functionalities for desirable applications in future.

  14. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  15. Amino-siloxane composition and methods of using the same

    Science.gov (United States)

    O'Brien, Michael Joseph; Farnum, Rachel Lizabeth; Perry, Robert James

    2018-03-20

    An amino-siloxane composition is presented. The amino-siloxane composition includes structure (I): ##STR00001## wherein R1 is independently at each occurrence a C1-C5 aliphatic radical; R2 is a C3-C.4 aliphatic radical; R3 is a C1-C5 aliphatic radical or R4, wherein R4 comprises structure (II): ##STR00002## and X is an electron donating group. Methods of reducing an amount of carbon dioxide in a process stream using the amino-siloxane composition are also presented.

  16. Amino-siloxane composition and methods of using the same

    Science.gov (United States)

    O'Brien, Michael Joseph; Farnum, Rachel Lizabeth; Perry, Robert James

    2016-08-30

    An amino-siloxane composition is presented. The amino-siloxane composition includes structure (I): ##STR00001## wherein R.sup.1 is independently at each occurrence a C.sub.1-C.sub.5 aliphatic radical; R.sup.2 is a C.sub.3-C.sub.4 aliphatic radical; R.sup.3 is a C.sub.1-C.sub.5 aliphatic radical or R.sup.4, wherein R.sup.4 comprises structure (II): ##STR00002## and X is an electron donating group. Methods of reducing an amount of carbon dioxide in a process stream using the amino-siloxane composition are also presented.

  17. Renal amino acid transport in immature and adult rats during thallium-induced nephrotoxicity.

    Science.gov (United States)

    Fleck, C; Appenroth, D

    1996-01-08

    The effect of Tl2SO4 (Tl, 2 mg/100 g b.wt.) on renal amino acid excretion and plasma amino acid composition was investigated in 10- and 55-day-old rats. Tl decreased glomerular filtration rate only in adult rats. On the other hand, the renal fractional excretion (FE) of amino acids was distinctly higher in adult rats as a sign of lower amino acid reabsorption capacity after Tl. In immature animals FE was increased only for a few amino acids. However, in both age groups Tl administration significantly decreased plasma amino acid concentrations, and was more pronounced in immature rats. The investigation of renal amino acid handling (1) confirms that Tl was more nephrotoxic in 55-day-old animals as demonstrated before using other parameters for nephrotoxicity testing and (2) showed that determination of renal amino acid handling is a suitable marker for nephrotoxicity in adult rats.

  18. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  19. Effect of growth at low pH on the cell surface properties of a typical strain of Lactobacillus casei group.

    Science.gov (United States)

    Hossein Nezhad, M; Stenzel, Dj; Britz, Ml

    2010-09-01

    Although members of the Lactobacillus casei group are known to survive under acidic conditions, the underlying mechanisms of growth at acidic condition and the impact of low pH on the relative level of protein expression at the cell surface remain poorly studied. After confirming the taxonomy of L. casei strain GCRL 12 which was originally isolated from cheese and confirmed by 16S rRNA sequence analysis, the impact of acidic pH on growth rate was determined. Late log-phase cells cultured at pH 4.0 showed obvious changes in Gram staining properties while transmission electron microscopy analysis revealed evidence of structural distortions of the cell surface relative to the controls cultured at pH 6.5. When comparing cytosolic or whole cell preparations on SDS-PAGE, few changes in protein profiles were observed under the two growth conditions. However, analysis of surface protein extracted by 5M LiCl demonstrated changes in the proportions of proteins present in the molecular weight range of 10 to 80 kDa, with some proteins more dominant at pH 6.5 and other at pH 4. These data suggest that surface proteins of this strain are associated with growth and survival at low pH. The function of these proteins is subject to further investigation.

  20. The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure Pd(1 0 0): A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanping [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Dong, Xiuqin [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Yu, Yingzhe, E-mail: yzhyu@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China); Zhang, Minhua, E-mail: mhzhangtj@163.com [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin (China)

    2016-12-01

    Highlights: • All dehydrogenation reactions in vinyl acetate synthesis on Pd(1 0 0) were studied. • The energy barriers of the transition state of the three reactions were calculated. • The influence of surface Os and OHs on all dehydrogenation actions was discussed. - Abstract: On the basis of a Langmuir–Hinshelwood-type mechanism, the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate (VAH) on pure Pd(1 0 0) with surface oxygen atoms (Os) and hydroxyl groups (OHs) was studied with density functional theory (DFT) method. Our calculation results show that both Os and OHs can consistently reduce the activation energies of dehydrogenation of ethylene, acetic acid and VAH to some degree with only one exception that OHs somehow increase the activation energy of VAH. Based on Langmuir–Hinshelwood mechanism, the three dehydrogenation reactions in presence of surface Os and OHs are almost consistently favored, compared with the corresponding processes on clean Pd(1 0 0) surfaces, and thus a Langmuir–Hinshelwood-type mechanism may not be excluded beforehand when investigating the microscopic performance of the oxygen-assisted vinyl acetate synthesis on Pd(1 0 0) catalysts.

  1. Reactive blending of poly(styrene-maleic) anhydride with poly(phenylene oxide) by addition of `-amino-polystyrene

    NARCIS (Netherlands)

    Koning, Cor; Ikker, Andreas; Ikker, A.; Borggreve, Rein; Leemans, Luc; Möller, Martin; Moller, M.

    1993-01-01

    -(3-Aminopropyl-l-amino)polystyrene (-amino-PS) was melt-blended with styrene/maleic anhydride copolymers (SMA) containing 28 wt% maleic anhydride groups. The terminal primary amino group can react with the maleic anhydride monomer units in SMA, forming imides. The resulting product turned out to be

  2. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  3. Comparison of amino acids interaction with gold nanoparticle.

    Science.gov (United States)

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  4. Analysis of amino acid and codon usage in Paramecium bursaria.

    Science.gov (United States)

    Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo

    2015-10-07

    The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... for aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth. Extrapolation to a typical cold deep sea sediment temperature of 3 °C suggests racemization rate constants of on the order of 10-5 yr-1 without evident differences...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  6. Traffic accidents and road surface skidding resistance : an investigation into the statistical relationship between the skidding resistance of the road surface and relative road risk. Summary of the research report of Sub-committee V of the Working Group on Tyres, Road Surfaces and Skidding Accidents of the Institute for Road Safety Research, SWOV

    NARCIS (Netherlands)

    Schlösser, L.H.M

    1975-01-01

    This study forms part of an extended research programme of the Working Group on Tyres, Road-surfaces and Skidding accidents. According to the terms of reference a statistical relationship had to be established between the skidding resistance of a road-surface and the number of accidents per million

  7. Interpretation of plasma amino acid profile using multiple marker approach

    Directory of Open Access Journals (Sweden)

    T. F. Subbotina

    2015-01-01

    Full Text Available In the analysis of plasma amino acid profile in a group of patients with left ventricular outflow tract pathology (n = 151 increased levels of serine, alanine, arginine, and lysine has been found. These metabolic shifts can be linked with the development of circulatory deficiency and mitochondrial dysfunction. The differentiation of the reference values intervals helps in the assessment of individual amino acid profiles.

  8. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods

    Science.gov (United States)

    Wang, Peng; Zhao, Jinjin; Liu, Jinxi; Wei, Liyu; Liu, Zhenghao; Guan, Lihao; Cao, Guozhong

    2017-01-01

    Perovskite solar cells have advanced rapid in the last few years, however the thermal instability of perovskite film on ZnO nanorods (NRs) remains a big challenge limiting its commercialization. The present work demonstrated effective suppression of the decomposition of CH3NH3PbI3 perovskite through inserting a thin tin oxide (SnO2) passivation layer between ZnO NRs and perovskite films. Although X-ray photoelectron spectroscopy (XPS) results showed no distinct difference in the amount of hydroxyl groups and oxygen vacancies on the surface of ZnO NRs and ZnO@SnO2 NRs, Raman spectra suggested the hydroxyl groups might be trapped in oxygen vacancies on SnO2 surface, preventing the decomposition of CH3NH3PbI3 perovskite through reacting with the hydroxyl groups. The power conversion efficiency of perovskite solar cells was significantly increased from 6.92% to 12.17% and became hysteresis-free by applying SnO2 passivating layer between perovskite and ZnO layers.

  9. Surface radiological investigation of Trench 5 in Waste Area Grouping 7 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goff, D.D.

    1991-08-01

    A surface radiological investigation of areas encompassing Trench 5 on the Oak Ridge Reservation (ORR) was conducted from May 1990 through November 1990. This survey was led by the author, assisted by various members of the Measurement Applications and Development (MAD) group of the Health and Safety Research Division (HASRD) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the investigation was to determine the presence, nature, and extent of surface radiological contamination at Trench 5, the Homogeneous Reactor Experiment fuel wells, and surrounding areas. Based on the data obtained in the field, interim corrective measures were recommended to limit human exposure to radioactivity and to minimize insult to the environment. It should be stressed that this project was not intended to be a complete site characterization but rather to be a preliminary investigation into the potential contamination problem that might exist as a result of past operations at Trench 5.

  10. Nature's starships. I. Observed abundances and relative frequencies of amino acids in meteorites

    International Nuclear Information System (INIS)

    Cobb, Alyssa K.; Pudritz, Ralph E.

    2014-01-01

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.

  11. Morphology and luminescence characteristics of combustion synthesized Y{sub 2}O{sub 3}: (Eu, Dy, Tb) nanoparticles with various amino-acid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S.; Sudarsan, V. [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sastry, P.U.; Patra, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-01-15

    Y{sub 2}O{sub 3} nanoparticles doped with Dy{sup 3+}, Eu{sup 3+} and Tb{sup 3+} together were prepared by the gel combustion method using a variety of amino acids namely, glycine, phenyl alanine, arginine, glutamic and aspartic acids. Number of carboxylate groups present in the amino acids used for combustion reaction was found to have strong influence on powder characteristics as well as luminescence from the samples. Based on small angle X-ray scattering studies, it is inferred that the nanoparticles prepared by using glycine and arginine as the fuels have smooth surface compared to those prepared using other amino acids. For the nanoparticles prepared using glutamic and aspartic acids, there exist a diffused pore-grain interface due to the lesser extent of heat generated in the reaction which leads to smaller particle size, poor crystallinity and improper burning of the organic materials. Lower surface area and smooth surface of the nanoparticles prepared using glycine leads to their improved luminescence properties. -- Highlights: • Surface smoothness of Y{sub 2}O{sub 3} (Dy, Eu, Tb) nanoparticles vary with amino acids. • Optimum luminescence intensity is observed when glycine is used as the fuel. • Diffused pore grain interface when glutamic and aspartic acids are used as fuels.

  12. Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays.

    Science.gov (United States)

    Bonini, Massimo; Gabbani, Alessio; Del Buffa, Stefano; Ridi, Francesca; Baglioni, Piero; Bordes, Romain; Holmberg, Krister

    2017-03-07

    Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C 12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.

  13. Main: Amino acid Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Amino acid Analysis GO classification InterPro Result of GO classification by Inter...Pro motif search result kome_go_classification_interpro.zip kome_go_classification_interpro ...

  14. Main: Amino acid Analysis [KOME

    Lifescience Database Archive (English)

    Full Text Available Amino acid Analysis GO classification GenBank Result of GO classification by GenBan...k homology search result kome_go_classification_genbank.zip kome_go_classification_genbank ...

  15. Deorphanization of GPRC6A: a promiscuous L-alpha-amino acid receptor with preference for basic amino acids

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Hansen, Kasper B; Balsgaard, Anders

    2005-01-01

    . To identify agonists at this orphan receptor, we faced the challenges of achieving surface expression in mammalian cell lines and establishing an appropriate functional assay. Generating a chimeric receptor construct, h6A/5.24, containing the ligand binding amino-terminal domain (ATD) of hGPRC6A...... with the signal transducing transmembrane and C terminus of the homologous goldfish 5.24 receptor allowed us to overcome these obstacles. Homology modeling of the hGPRC6A ATD based on the crystal structure of the metabotropic glutamate receptor subtype 1 predicted interaction with alpha-amino acids...... and was employed to rationally select potential ligands. Measurement of Ca2+-dependent chloride currents in Xenopus laevis oocytes facilitated the deorphanization of h6A/5.24 and identification of L-alpha-amino acids as agonists. The most active agonists were basic L-alpha-amino acids, L-Arg, L-Lys, and L...

  16. 2-Amino-5-chloropyridinium nitrate

    Directory of Open Access Journals (Sweden)

    Donia Zaouali Zgolli

    2009-11-01

    Full Text Available The title structure, C5H6ClN2+·NO3−, is held together by extensive hydrogen bonding between the NO3− ions and 2-amino-5-chloropyridinium H atoms. The cation–anion N—H...O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyanopyridinium nitrate.

  17. Cloud droplet activation mechanisms of amino acid aerosol particles: insight from molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Xin Li

    2013-07-01

    Full Text Available Atmospheric amino acids constitute a large fraction of water-soluble organic nitrogen compounds in aerosol particles, and have been confirmed as effective cloud condensation nuclei (CCN materials in laboratory experiments. We present a molecular dynamics (MD study of six amino acids with different structures and chemical properties that are relevant to the remote marine atmospheric aerosol–cloud system, with the aim of investigating the detailed mechanism of their induced changes in surface activity and surface tension, which are important properties for cloud drop activation. Distributions and orientations of the amino acid molecules are studied; these l-amino acids are serine (SER, glycine (GLY, alanine (ALA, valine (VAL, methionine (MET and phenylalanine (PHE and are categorised as hydrophilic and amphiphilic according to their affinities to water. The results suggest that the presence of surface-concentrated amphiphilic amino acid molecules give rise to enhanced Lennard–Jones repulsion, which in turn results in decreased surface tension of a planar interface and an increased surface tension of the spherical interface of droplets with diameters below 10 nm. The observed surface tension perturbation for the different amino acids under study not only serves as benchmark for future studies of more complex systems, but also shows that amphiphilic amino acids are surface active. The MD simulations used in this study reproduce experimental results of surface tension measurements for planar interfaces and the method is therefore applicable for spherical interfaces of nano-size for which experimental measurements are not possible to conduct.

  18. Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces

    International Nuclear Information System (INIS)

    Pershina, V.; Borschevsky, A.; Anton, J.

    2012-01-01

    Graphical abstract: The 4c-DFT calculations were performed for M 2 and MAu (M = K though element 119). Trends in atomic and molecular properties are shown to be reversed in group 1 beyond Cs due to relativity. The 8s(119) AO relativistic stabilization and contraction is the reason for the weakest M–Au bond and smallest adsorption enthalpy of element 119 on noble metals in group 1. Highlights: ► Fully relativistic 4c-DFT calculations were performed for M 2 and MAu (M = K though element 119). ► Trends in atomic and molecular properties are reversed in group 1 from Cs on due to relativity. ► The 8s(119) AO stabilization and contraction result in the weakest M–Au bond in group 1. ► The weakest adsorption of element 119 on noble metals is expected among all group-1 elements. - Abstract: Spectroscopic properties of group-1 M 2 and MAu (M = K, Rb, Cs, Fr, and element 119) were calculated using the 4c-DFT method. The results show that the relativistic contraction and stabilization of the ns(M) AO result in the inversion of trends both in atomic and molecular properties in group 1 beyond Cs. Electronegativity χ of the elements proves to decrease from Cs, the most electropositive element of all elements, to element 119, with its χ value approaching that of Na. Due to the largest relativistic effects on the 8s(119) AO in group 1, bonding in (119) 2 appears to be stronger than that of K 2 , while bonding in 119Au should be the weakest out of all group-1 MAu. Using calculated dissociation energies of M 2 , sublimation enthalpies, ΔH sub , of Fr of 77 kJ/mol and element 119 of 94 kJ/mol were estimated using a linear correlation between these quantities in the chemical group. Using the M–Au binding energies, the adsorption enthalpies, −ΔH ads , of 106 kJ/mol on gold, 76 kJ/mol on platinum, and 63 kJ/mol on silver were estimated for element 119 via a correlation with known ΔH ads in the chemical group. These moderate ΔH ads values are indicative of a

  19. Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol

    International Nuclear Information System (INIS)

    Gallegos-Suarez, E.; Pérez-Cadenas, M.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.; Arcoya, A.

    2013-01-01

    Ruthenium catalysts supported on activated carbons, original (AC) and treated with nitric acid (AC-Ox) were prepared by incipient wetness impregnation from either chloride (Cl) or nitroxyl nitrate (n) precursors. These catalysts were characterized by TG, XPS, TEM, TPD-MS and CO adsorption microcalorimetry and evaluated in the hydrogenolysis of glycerol in the liquid phase, at 453 K and 8 MPa. Studies by TEM show that ruthenium particles supported on AC-Ox are larger than on AC, without any effect of the nature of the metal precursor. However, adsorption of CO on the ex-chloride catalysts is inhibited in comparison with that of the ex-nitroxyl nitrate catalysts. Catalysts characterization by TG, TPD-MS and XPS reveals that the nitric acid treatment and the nitroxyl nitrate precursor generate oxygenated groups on the carbon surface, which provide acid properties to the catalysts, although they are partly destroyed during the reduction treatment applied to the catalysts. The sequence of the overall TOF, Ru(Cl)/AC < Ru(n)/AC < Ru(Cl)/AC-Ox ≈ Ru(n)/AC-Ox, reasonably parallels the population increase of surface acid groups. Participation of the -COOH groups in the transformation of glycerol into 1,2-propanediol is verified by using the admixture Ru(Cl)/AC+AC-Ox as catalyst. In this case, since AC-Ox was not thermally treated and no loss of oxygenated groups occurred, TOF and selectivity toward 1,2-propanediol improve in comparison with those of the more active catalysts.

  20. Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos-Suarez, E. [Departamento de Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Paseo Senda del Rey n° 9, 28040 Madrid (Spain); Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie n° 2, L-10, 28049 Madrid (Spain); Pérez-Cadenas, M. [Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie n° 2, L-10, 28049 Madrid (Spain); Guerrero-Ruiz, A. [Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie n° 2, L-10, 28049 Madrid (Spain); Unidad Asociada UNED ICP-CSIC, Group Design and Applied Heterogeneous Catalysis (Spain); Rodriguez-Ramos, I. [Departamento de Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Paseo Senda del Rey n° 9, 28040 Madrid (Spain); Unidad Asociada UNED ICP-CSIC, Group Design and Applied Heterogeneous Catalysis (Spain); Arcoya, A., E-mail: aarcoya@icp.csic.es [Departamento de Química Inorgánica y Técnica, Facultad de Ciencias, UNED, Paseo Senda del Rey n° 9, 28040 Madrid (Spain); Unidad Asociada UNED ICP-CSIC, Group Design and Applied Heterogeneous Catalysis (Spain)

    2013-12-15

    Ruthenium catalysts supported on activated carbons, original (AC) and treated with nitric acid (AC-Ox) were prepared by incipient wetness impregnation from either chloride (Cl) or nitroxyl nitrate (n) precursors. These catalysts were characterized by TG, XPS, TEM, TPD-MS and CO adsorption microcalorimetry and evaluated in the hydrogenolysis of glycerol in the liquid phase, at 453 K and 8 MPa. Studies by TEM show that ruthenium particles supported on AC-Ox are larger than on AC, without any effect of the nature of the metal precursor. However, adsorption of CO on the ex-chloride catalysts is inhibited in comparison with that of the ex-nitroxyl nitrate catalysts. Catalysts characterization by TG, TPD-MS and XPS reveals that the nitric acid treatment and the nitroxyl nitrate precursor generate oxygenated groups on the carbon surface, which provide acid properties to the catalysts, although they are partly destroyed during the reduction treatment applied to the catalysts. The sequence of the overall TOF, Ru(Cl)/AC < Ru(n)/AC < Ru(Cl)/AC-Ox ≈ Ru(n)/AC-Ox, reasonably parallels the population increase of surface acid groups. Participation of the -COOH groups in the transformation of glycerol into 1,2-propanediol is verified by using the admixture Ru(Cl)/AC+AC-Ox as catalyst. In this case, since AC-Ox was not thermally treated and no loss of oxygenated groups occurred, TOF and selectivity toward 1,2-propanediol improve in comparison with those of the more active catalysts.

  1. Prediction of amino acid residues protected from hydrogen-deuterium exchange in a protein chain.

    Science.gov (United States)

    Dovidchenko, N V; Lobanov, M Yu; Garbuzynskiy, S O; Galzitskaya, O V

    2009-08-01

    We have investigated the possibility to predict protection of amino acid residues from hydrogen-deuterium exchange. A database containing experimental hydrogen-deuterium exchange data for 14 proteins for which these data are known has been compiled. Different structural parameters related to flexibility of amino acid residues and their amide groups have been analyzed to answer the question whether these parameters can be used for predicting the protection of amino acid residues from hydrogen-deuterium exchange. A method for prediction of protection of amino acid residues, which uses only the amino acid sequence of a protein, has been elaborated.

  2. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

  3. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants

  4. Reduction of calcium flux from the extracellular region and endoplasmic reticulum by amorphous nano-silica particles owing to carboxy group addition on their surface

    Directory of Open Access Journals (Sweden)

    Akira Onodera

    2017-03-01

    Full Text Available Several studies have reported that amorphous nano-silica particles (nano-SPs modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70 increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge.

  5. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  6. Escherichia coli, an Intestinal Microorganism, as a Biosensor for Quantification of Amino Acid Bioavailability

    Directory of Open Access Journals (Sweden)

    Vesela I. Chalova

    2009-09-01

    Full Text Available In animal diets optimal amino acid quantities and balance among amino acids is of great nutritional importance. Essential amino acid deficiencies have negative impacts on animal physiology, most often expressed in sub-optimal body weight gains. Over supplementation of diets with amino acids is costly and can increase the nitrogen emissions from animals. Although in vivo animal assays for quantification of amino acid bioavailability are well established, Escherichia coli-based bioassays are viable potential alternatives in terms of accuracy, cost, and time input. E. coli inhabits the gastrointestinal tract and although more abundant in colon, a relatively high titer of E. coli can also be isolated from the small intestine, where primary absorption of amino acids and peptides occur. After feed proteins are digested, liberated amino acids and small peptides are assimilated by both the small intestine and E. coli. The similar pattern of uptake is a necessary prerequisite to establish E. coli cells as accurate amino acid biosensors. In fact, amino acid transporters in both intestinal and E. coli cells are stereospecific, delivering only the respective biological L-forms. The presence of free amino- and carboxyl groups is critical for amino acid and dipeptide transport in both biological subjects. Di-, tri- and tetrapeptides can enter enterocytes; likewise only di-, tri- and tetrapeptides support E. coli growth. These similarities in addition to the well known bacterial genetics make E. coli an optimal bioassay microorganism for the assessment of nutritionally available amino acids in feeds.

  7. 'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.

    Science.gov (United States)

    O'Connell, T C

    2017-06-01

    Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.

  8. [Nutrition proteins and muscular catabolism in severely burnt patients. Comparative effects of small peptides or free amino acids].

    Science.gov (United States)

    Badetti, C; Cynober, L; Bernini, V; Garabedian, M; Manelli, J C

    1994-01-01

    The beneficial effects of high caloric and protein enteral diet on wound healing and prevention of infection in severely burned patients is well documented. However, the relative proportion of each nutrient and especially the form of nitrogen supply have not yet been clearly established. The aim of this study was to compare, in severely burned patients, the efficiency of a partial protein hydrolysate and free amino acid formula during a 15-day enteral feeding. Twenty burned patients ranging in age from 18 to 67 years with a mean burn size of 40 +/- 12% of total body surface area, of which 31 +/- 14% was deep dermal, were studied prospectively and randomised in two groups. Group A received the free amino acid diet which was obtained by hydrolysis of the protein hydrolysate given to Group B (60% small peptides). All diets contained a nitrogen source of similar amino acid composition. Nitrogen balance was measured daily and serum protein concentrations were determined on days 0, 4, 8, 11 and 15. Anthropometric parameters, urinary 3 methylhistidine/creatinine ratio and plasma amino acid concentration were assessed on days 0, 8 and 15. Daily and cumulative nitrogen balance at D15 did not differ between the two groups. In group A, the circulating visceral proteins increased at all times of the study without decrease of acute phase reactant, whereas only transthyretin and retinol binding protein increased at D11 and D15 with a significant decrease of C-reactive protein at the same time in the other group.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Decomposition of Amino Diazeniumdiolates (NONOates): Molecular Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to slowly release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a qualitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = -N(C2H5)2 (1), -N(C3H4NH2)2 (2), or -N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1-H, 3.5 and 83 x 10-3 s-1 for 2-H, and 3.8 and 3.3 x 10-3 s-1 for 3-H. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~0.01%, for 1) undergoes the N-N heterolytic bond cleavage (k ~102 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all these NONOates are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.

  10. Arrangement of Proteinogenic α-Amino Acids on a Cyclic Peptide Comprising Alternate Biphenyl-Cored ζ-Amino Acids.

    Science.gov (United States)

    Tashiro, Shohei; Chiba, Masayuki; Shionoya, Mitsuhiko

    2017-05-18

    Aiming at precisely arranging several proteinogenic α-amino acids on a folded scaffold, we have developed a cyclic hexapeptide comprising an alternate sequence of biphenyl-cored ζ-amino acids and proteinogenic α-amino acids such as l-leucine. The amino acids were connected by typical peptide synthesis, and the resultant linear hexapeptide was intramolecularly cyclized to form a target cyclic peptide. Theoretical analyses and NMR spectroscopy suggested that the cyclic peptide was folded into an unsymmetrical conformation, and the structure was likely to be flexible in CHCl 3 . The optical properties including UV/Vis absorption, fluorescence, and circular dichroism (CD) were also evaluated. Furthermore, the cyclic peptide became soluble in water by introducing three carboxylate groups at the periphery of the cyclic skeleton. This α/ζ-alternating cyclic peptide is therefore expected to serve as a unique scaffold for arranging several functionalities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A molecular rotor based ratiometric sensor for basic amino acids

    Science.gov (United States)

    Pettiwala, Aafrin M.; Singh, Prabhat K.

    2018-01-01

    The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples.

  12. A molecular rotor based ratiometric sensor for basic amino acids.

    Science.gov (United States)

    Pettiwala, Aafrin M; Singh, Prabhat K

    2018-01-05

    The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Non-natural and photo-reactive amino acids as biochemical probes of immune function.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Nuñez

    Full Text Available Wilms tumor protein (WT1 is a transcription factor selectively overexpressed in leukemias and cancers; clinical trials are underway that use altered WT1 peptide sequences as vaccines. Here we report a strategy to study peptide-MHC interactions by incorporating non-natural and photo-reactive amino acids into the sequence of WT1 peptides. Thirteen WT1 peptides sequences were synthesized with chemically modified amino acids (via fluorination and photo-reactive group additions at MHC and T cell receptor binding positions. Certain new non-natural peptide analogs could stabilize MHC class I molecules better than the native sequences and were also able to elicit specific T-cell responses and sometimes cytotoxicity to leukemia cells. Two photo-reactive peptides, also modified with a biotin handle for pull-down studies, formed covalent interactions with MHC molecules on live cells and provided kinetic data showing the rapid clearance of the peptide-MHC complex. Despite "infinite affinity" provided by the covalent peptide bonding to the MHC, immunogenicity was not enhanced by these peptides because the peptide presentation on the surface was dominated by catabolism of the complex and only a small percentage of peptide molecules covalently bound to the MHC molecules. This study shows that non-natural amino acids can be successfully incorporated into T cell epitopes to provide novel immunological, biochemical and kinetic information.

  14. Attraction to amino acids by Lymnaea acuminata, the snail host of Fasciola species

    Directory of Open Access Journals (Sweden)

    Tiwari F.

    2004-01-01

    Full Text Available Adult Lymnaea acuminata (average length 20-22 mm were collected locally from lakes and low-lying submerged fields from Gorakhpur. The chemoattraction studies were made in round glass aquaria measuring 30 cm in diameter and filled to a depth of 10 mm with 500 ml dechlorinated tap water. Each aquarium was divided into four concentric zones. At the starting time of the assay 10 snails were placed on the circumference of outermost zone 0. Snail attractant pellets (SAP were added simultaneously in the center of central zone 3. SAP of different amino acids were prepared at concentrations of 10, 20, 50, 80 and 100 mM/2% agar solution and, subsequently, spread to a uniform thickness of 5 mm. After cooling, SAP were cut in small pieces of 5 mm in diameter. Lymnaea acuminata's attraction to amino acids was studied using different amino acid concentrations in SAP. Pellets containing amino acids with non-polar R groups (proline and tryptophan, a charged polar group (arginine and uncharged polar R groups (serine, citrulline and asparagine were tested. The snails were more attracted to the uncharged polar R group amino acid serine than to other groups of amino acids. The preferred amino acid concentration was 80 mM. The attraction of snails to different amino acids was concentration dependent. Snails could discriminate amongst the different amino acids at > or = 50 mM.

  15. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.

    Science.gov (United States)

    Panagiotou, George D; Petsi, Theano; Bourikas, Kyriakos; Garoufalis, Christos S; Tsevis, Athanassios; Spanos, Nikos; Kordulis, Christos; Lycourghiotis, Alexis

    2008-10-01

    In this article the "titanium oxide/electrolyte solution" interface is studied by taking in advantage the recent developments in the field of Surface and Interface Chemistry relevant to this oxide. Ab-initio calculations were performed in the frame of the DFT theory for estimating the charge of the titanium and oxygen atoms exposed on the anatase (1 0 1), (1 0 0), (0 0 1), (1 0 3)(f) and rutile (1 1 0) crystal faces. These orientations have smaller surface energy with respect to other ones and thus it is more probable to be the real terminations of the anatase and rutile nanocrystallites in the titania polycrystalline powders. Potentiometric titrations for obtaining "fine structured" titration curves as well as microelectrophoresis and streaming potential measurements have been performed. On the basis of ab-initio calculations, and taking into account the relative contribution of each crystal face to the whole surface of the nanocrystals involved in the titania aggregates of a suspension, the three most probable surface ionization models have been derived. These models and the Music model are then tested in conjunction with the "Stern-Gouy-Chapman" and "Basic Stern" electrostatic models. The finally selected surface ionization model (model A) in combination with each one of the two electrostatic models describes very well the protonation/deprotonation behavior of titania. The description is also very good if this model is combined with the Three Plane (TP) model. The application of the "A/(TP)" model allowed mapping the surface (hydr)oxo-groups [TiO(H) and Ti(2)O(H)] of titania exposed in aqueous solutions. At pH>pzc almost all terminal oxygens [TiO] are non-protonated whereas even at low pH values the non-protonated terminal oxygens predominate. The acid-base behavior of the bridging oxygens [Ti(2)O] is different. Thus, even at pH=10 the greater portion of them is protonated. The application of the "A/TP" model in conjunction with potentiometric titrations

  16. The reaction between reducing sugars and amine groups of amino ...

    African Journals Online (AJOL)

    Salamatdoust

    2012-07-19

    Jul 19, 2012 ... antiseptic. In the last decades, modern science has shown increasing interest in folk medicine for a better understanding of the chemical composition of natural products and in finding alternative usages (Ahmed et al.,. 1969; Packer et al., 1999; Kähkönen et al., 1999;. Devaraja et al., 2002; Villagomez et al., ...

  17. Effect of amino acid-functionalized multi-walled carbon nanotubes ...

    Indian Academy of Sciences (India)

    In a single-step, rapid microwave-assisted process, multi-walled carbon nanotubes were functionalized by -valine amino acid. Formation of amino acid on nanotube surface was confirmed by Fourier transform-infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, field emission scanning and transmission ...

  18. Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from antarctica.

    Directory of Open Access Journals (Sweden)

    Shiladitya Dassarma

    Full Text Available The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a glutamic acid with aspartic acid or alanine; (b small polar residues with other small polar or non-polar amino acids; (c small non-polar residues with other small non-polar residues; (d aromatic residues, especially tryptophan, with other aromatic residues; and (e some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere.

  19. Identification of the psaA Gene, Coding for Pneumococcal Surface Adhesin A, in Viridans Group Streptococci other than Streptococcus pneumoniae

    Science.gov (United States)

    Jado, Isabel; Fenoll, Asunción; Casal, Julio; Pérez, Amalia

    2001-01-01

    The gene encoding the pneumococcal surface adhesin A (PsaA) protein has been identified in three different viridans group streptococcal species. Comparative studies of the psaA gene identified in different pneumococcal isolates by sequencing PCR products showed a high degree of conservation among these strains. PsaA is encoded by an open reading frame of 930 bp. The analysis of this fragment in Streptococcus mitis, Streptococcus oralis, and Streptococcus anginosus strains revealed a sequence identity of 95, 94, and 90%, respectively, to the corresponding open reading frame of the previously reported Streptococcus pneumoniae serotype 6B strain. Our results confirm that psaA is present and detectable in heterologous bacterial species. The possible implications of these results for the suitability and potential use of PsaA in the identification and diagnosis of pneumococcal diseases are discussed. PMID:11527799

  20. Towards a highly-efficient fuel-cell catalyst: optimization of Pt particle size, supports and surface-oxygen group concentration.

    Science.gov (United States)

    Muthuswamy, Navaneethan; de la Fuente, Jose Luis Gomez; Ochal, Piotr; Giri, Rajiv; Raaen, Steinar; Sunde, Svein; Rønning, Magnus; Chen, De

    2013-03-21

    In the present work, methanol oxidation reaction was investigated on Pt particles of various diameters on carbon-nanofibers and carbon-black supports with different surface-oxygen concentrations, aiming for a better understanding of the relationship between the catalyst properties and the electrochemical performance. The pre-synthesized Pt nanoparticles in ethylene glycol, prepared by the polyol method without using any capping agents, were deposited on different carbon supports. Removal of oxygen-groups from the carbon supports had profound positive effects on not only the Pt dispersion but also the specific activity. The edge structures on the stacked graphene sheets in the platelet carbon-nanofibers provided a strong interaction with the Pt particles, significantly reconstructing them in the process. Such reconstruction resulted in the formation of more plated Pt particles on the CNF than on the carbon-black and exposure of more Pt atoms with relatively high co-ordination numbers, and thereby higher specific activity. Owing to the combined advantages of optimum Pt particle diameter, an oxygen-free surface and the unique properties of CNFs, Pt supported on heat-treated CNFs exhibited a higher mass activity twice of that of its commercial counterpart.

  1. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  2. Lipidization of Simple and di-Functional Amino Acids

    International Nuclear Information System (INIS)

    Zainab Idris; Mohd Wahid Samsudin; Salmiah Ahmad

    2013-01-01

    This paper discuss the modification of azelaic acid into its applicable form by attachment of both its carboxyl sites to N-terminal of amino acid ethyl ester forming amide linkages in anhydrous medium. Acylation of glycine ethyl ester hydrochloride with azelaic acid dichloride was best conducted in a 100 % anhydrous medium. L-amino acid ethyl ester bearing a primary hydroxyl group on its side chain gave mixtures of product and variation in composition depending on the mole ratio of reactants used. Reduction in purity was also observed for L-amino acid ethyl ester with primary -SH group on its side chain as compared to L-amino acid ethyl ester having -SCH 3 group on the L-amino acid side chain. The diamidoester of azelaic acid with L-alanine ethyl ester, L-valine ethyl ester, L-leucine ethyl ester and L-glutamic acid diethyl ester were in good yield when prepared through the modified Schotten-Baumann reaction conditions. (author)

  3. The Surface faulting produced by the 30 October 2016 Mw 6.5 Central Italy earthquake: the Open EMERGEO Working Group experience

    Science.gov (United States)

    Pantosti, Daniela

    2017-04-01

    The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active

  4. Catalytic pyrolysis of amino acids: Comparison of aliphatic amino acid and cyclic amino acid

    International Nuclear Information System (INIS)

    Liu, Guangyi; Wright, Mark M.; Zhao, Qingliang; Brown, Robert C.; Wang, Kaige; Xue, Yuan

    2016-01-01

    Highlights: • Catalytic pyrolysis of leucine and proline were carried out in a micro-furnace pyrolyzer. • Distributions of carbon, oxygen and nitrogen were comparatively investigated. • Leucine yielded 29.6% aromatic hydrocarbons, 34.9% olefins, and 8.1% alkanes. • Proline yielded 25.3% aromatic hydrocarbons, 14.0% olefins, and 5.5% alkanes. • Insights into the deoxygenation pathways of leucine and proline were elucidated. - Abstract: Catalytic pyrolysis (CP) of protein-rich biomass such as microalgae is a promising approach to biofuel production. CP of amino acids can help understand the cracking of protein-rich biomass in the presence of zeolite catalysts. In this study, as representatives of aliphatic amino acid and cyclic amino acid, respectively, leucine and proline were pyrolyzed with ZSM-5 catalyst in a Tandem micro-furnace reactor coupled with a MS/FID/TCD. At 650 °C, leucine produced more hydrocarbons (aromatic hydrocarbons of 29.6%, olefins of 34.9% and alkanes of 8.1%) than proline (aromatic hydrocarbons of 25.3%, olefins of 14.0% and alkanes of 5.5%) because its relatively simpler amino structure readily detached as ammonia during CP. However, with an N-cyclic structure, proline produced large quantities of nitrogen-containing heterocyclic compounds that favored coke formation in CP. Accordingly, 28.2% of the nitrogen in proline was retained in the solid residue while most of the nitrogen in leucine was converted into ammonia leaving only 4.3% in the solid residue. In addition, though decarboxylation to carbon dioxide was favored in non-catalytic pyrolysis of leucine and proline, decarbonylation to carbon monoxide became the primary deoxygenation pathway in CP. These results indicate that the chemical structures of amino acids have significant effects on product distributions during CP and N-cyclic amino acid is less favored in CP for production of hydrocarbons and ammonia.

  5. Studies on radiolysis of amino acids, 1

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1977-01-01

    In order to elucidate the radiolysis of amino acid, peptide, protein and enzyme, the radiolytic mechanisms of neutral amino acids (glycine, L-alanine, L-valine, L-leucine, L-isoleucine, L-serine, and L-threonine) and acidic amino acids (L-aspartic acid, L-glutamic acid and DL-amino-n-adipic acid) were studied in the presence of air or in the atmosphere nitrogen. An aqueous solution of 1 mM. of each amino acid was sealed in a glass ampoule under air or nitrogen. Irradiation of amino acid solutions was carried out with γ-rays of 60 Co at doses of 4.4-2,640x10 3 rads. The amino acids and the radiolytic products formed were determined by ion-exchange chromatography. From the results of determining amino acids and the radiolytic products formed and their G-values, the radiolytic mechanisms of the amino acids were discussed. (auth.)

  6. Molecular dynamics simulations of the amino acid-ZnO (10-10) interface: A comparison between density functional theory and density functional tight binding results

    Energy Technology Data Exchange (ETDEWEB)

    Holthaus, Svea große; Köppen, Susan, E-mail: koeppen@hmi.uni-bremen.de; Frauenheim, Thomas; Ciacchi, Lucio Colombi [Bremen Centre for Computational Materials Science, University of Bremen, 28359 Bremen (Germany)

    2014-06-21

    We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101{sup ¯}0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.

  7. Characterization of N,N-dimethyl amino acids by electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Naresh Chary, V; Sudarshana Reddy, B; Kumar, Ch Dinesh; Srinivas, R; Prabhakar, S

    2015-05-01

    Methylation is an essential metabolic process for a number of critical reactions in the body. Methyl groups are involved in the healthy function of the body life processes, by conducting methylation process involving specific enzymes. In these processes, various amino acids are methylated, and the occurrence of methylated amino acids in nature is diverse. Nowadays, mass-spectrometric-based identification of small molecules as biomarkers for diseases is a growing research. Although all dimethyl amino acids are metabolically important molecules, mass spectral data are available only for a few of them in the literature. In this study, we report synthesis and characterization of all dimethyl amino acids, by electrospray ionization-tandem mass spectrometry (MS/MS) experiments on protonated molecules. The MS/MS spectra of all the studied dimethyl amino acids showed preliminary loss of H2O + CO to form corresponding immonium ions. The other product ions in the spectra are highly characteristic of the methyl groups on the nitrogen and side chain of the amino acids. The amino acids, which are isomeric and isobaric with the studied dimethyl amino acids, gave distinctive MS/MS spectra. The study also included MS/MS analysis of immonium ions of dimethyl amino acids that provide information on side chain structure, and it is further tested to determine the N-terminal amino acid of the peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field.

    Science.gov (United States)

    Sieradzan, Adam K; Niadzvedtski, Andrei; Scheraga, Harold A; Liwo, Adam

    2014-05-13

    Continuing our effort to introduce d-amino-acid residues in the united residue (UNRES) force field developed in our laboratory, in this work the C α ··· C α ··· C α backbone-virtual-bond-valence-angle (θ) potentials for systems containing d-amino-acid residues have been developed. The potentials were determined by integrating the combined energy surfaces of all possible triplets of terminally blocked glycine, alanine, and proline obtained with ab initio molecular quantum mechanics at the MP2/6-31G(d,p) level to calculate the corresponding potentials of mean force (PMFs). Subsequently, analytical expressions were fitted to the PMFs to give the virtual-bond-valence potentials to be used in UNRES. Alanine represented all types of amino-acid residues except glycine and proline. The blocking groups were either the N -acetyl and N ', N '-dimethyl or N -acetyl and pyrrolidyl group, depending on whether the residue next in sequence was an alanine-type or a proline residue. A total of 126 potentials (63 symmetry-unrelated potentials for each set of terminally blocking groups) were determined. Together with the torsional, double-torsional, and side-chain-rotamer potentials for polypeptide chains containing d-amino-acid residues determined in our earlier work (Sieradzan et al. J. Chem. Theory Comput. , 2012 , 8, 4746), the new virtual-bond-angle (θ) potentials now constitute the complete set of physics-based potentials with which to run coarse-grained simulations of systems containing d-amino-acid residues. The ability of the extended UNRES force field to reproduce thermodynamics of polypeptide systems with d-amino-acid residues was tested by comparing the experimentally measured and the calculated free energies of helix formation of model KLALKLALxxLKLALKLA peptides, where x denotes any d- or l- amino-acid residue. The obtained results demonstrate that the UNRES force field with the new potentials reproduce the changes of free energies of helix formation upon d

  9. Determination of efficacy of fingermark enhancement reagents; the use of propyl chloroformate for the derivatization of fingerprint amino acids extracted from paper.

    Science.gov (United States)

    Mink, Tineke; Voorhaar, Annelies; Stoel, Reinoud; de Puit, Marcel

    2013-09-01

    The analysis of the constituents of fingerprints has been described numerous times, mainly with the purpose of determining the aging effect on fingerprints or showing the differences between donors or groups of donors. In this paper we describe the use of derivatized amino acids to determine the efficacy of the visualization reagents 1,8-diazafluoren-9-one (DFO) and ninhydrin. At present certain conditions are used for the application of these reagents, as determined by trial-and-error investigations, to the effect on fingerprints. The recovery of amino acids from a porous surface can be used as a measure for the efficacy of a visualization agent. In this paper we describe a method for the determination of the amount of amino acid left after reaction with well known fingerprint visualization reagents. This will allow a more scientific approach to method development for fingermark enhancement techniques. Furthermore, investigations on the influence of the concentration of fingermark amino acids, the order of application of and exposure time to reagents and the influence of age of the amino acids were carried out. These studies have resulted in a broader understanding of the mechanism involved in visualization of fingermarks using DFO and ninhydrin. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  10. 1H NMR study on the intermolecular interactions of macrocyclic and single α-amino acids

    Science.gov (United States)

    Quevedo, Rodolfo; Pabón, Laura; Quevedo-Acosta, Yovanny

    2013-06-01

    Through analysis of 1H NMR spectra, evidence was found for intermolecular interactions between macrocyclic amino acid derivatives from L-tyrosine and their importance in the formation of aggregates in solution. It was also shown that both macrocyclic and simple amino acids are capable of retaining alcohol molecules through hydrogen bonding, where the alcohol molecule acts as a proton donor and the amino group acts as an acceptor.

  11. A simple three step method for selective placement of organic groups in mesoporous silica thin films

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (B1650KNA) San Martín, Buenos Aires (Argentina); Llave, Ezequiel de la; Williams, Federico J. [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Soler-Illia, Galo J.A.A., E-mail: galo.soler.illia@gmail.com [Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Buenos Aires (Argentina); Instituto de Nanosistemas, Universidad Nacional de General San Martín, 25 de Mayo y Francia (1650) San Martín, Buenos Aires (Argentina)

    2016-02-01

    Selective functionalization of mesoporous silica thin films was achieved using a three step method. The first step consists in an outer surface functionalization, followed by washing off the structuring agent (second step), leaving the inner surface of the pores free to be functionalized in the third step. This reproducible method permits to anchor a volatile silane group in the outer film surface, and a second type of silane group in the inner surface of the pores. As a concept test we modified the outer surface of a mesoporous silica film with trimethylsilane (–Si–(CH{sub 3}){sub 3}) groups and the inner pore surface with propylamino (–Si–(CH{sub 2}){sub 3}–NH{sub 2}) groups. The obtained silica films were characterized by Environmental Ellipsometric Porosimetry (EEP), EDS, XPS, contact angle and electron microscopy. The selectively functionalized silica (SF) shows an amount of surface amino functions 4.3 times lower than the one-step functionalized (OSF) silica samples. The method presented here can be extended to a combination of silane chlorides and alkoxides as functional groups, opening up a new route toward the synthesis of multifunctional mesoporous thin films with precisely localized organic functions. - Highlights: • Selective functionalization of mesoporous silica thin films was achieved using a three step method. • A volatile silane group is anchored by evaporation on the outer film surface. • A second silane is deposited in the inner surface of the pores by post-grafting. • Contact angle, EDS and XPS measurements show different proportions of amino groups on both surfaces. • This method can be extended to a combination of silane chlorides and alkoxides functional groups.

  12. 20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

    CERN Document Server

    Pantelia, Anna

    2014-01-01

    20 January 2014 - Members of the Regional Assemblies and Parliaments United Kingdom of Great Britain and Northern Ireland visiting the LHC tunnel at Point 8 with Technology Department, Vacuum, Surfaces and Coatings Group P. Cruikshank.

  13. Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area

    International Nuclear Information System (INIS)

    Kim, Jongsik; Kim, Dong Ok; Kim, Dong Wook; Sagong, Kil

    2013-01-01

    To accomplish the postsynthetic modification of MOF with organic-metal precursors (OMPs) described in our previous researches more efficiently, synthesis of MOF (HCC-2) possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit than those of HCC-1 has been successfully conducted via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO 3 ) 2 ·6H 2 O as a metal source, respectively. Also, optimization about the Activation process of HCC-2 was performed to maximize its BET (Brunauer–Emmett–Teller) surface area which was proved to be proportional to the number of exposed active sites on which its postsynthetic modification occurred. However, Activation process having been validated to be so effective with the acquirement of highly-purified HCC-1 (CO 2 supercritical drying step followed by vacuum drying step) was less satisfactory with the case of HCC-2. This might be attributed to relatively higher hydrophilicity and bulkier molecular structure of organic ligand of HCC-2. However, it was readily settled by simple modification of above Activation process. Moreover, indispensable residues composed of both DMF and its thermally degraded derivatives which were chemically attached via coordination bond with hydroxyl functionalities even after Activation process III might enable their H 2 adsorption properties to be seriously debased compared to that of IRMOF-16 having no hydroxyl functionalities. - Graphical abstract: Synthesis of new-structured MOF (HCC-2) simultaneously possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit at the same time than those of HCC-1 has been performed via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO 3 ) 2 ·6H 2 O as a metal source, respectively. Also, the optimization of activation process for HCC-2 was conducted to maximize its BET surface area

  14. Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain.

    Science.gov (United States)

    Rouchon, Candace N; Ly, Anhphan T; Noto, John P; Luo, Feng; Lizano, Sergio; Bessen, Debra E

    2017-11-01

    Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains with a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene was found to be present in most skin specialist strains but largely absent from a genetically related subset of pharyngitis isolates. In an Δ fbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model of impetigo; the Δ fbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. In assays with highly sensitive outcome measures, Alab49ΔfbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., the M53 protein) had additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promoted Alab49 survival in whole blood and appears to fully account for the antiphagocytic effect attributable to pili. The finding that numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions. Copyright © 2017 American Society for Microbiology.

  15. Surface-bound capsular polysaccharide of type Ia group B Streptococcus mediates C1 binding and activation of the classic complement pathway

    International Nuclear Information System (INIS)

    Levy, N.J.; Kasper, D.L.

    1986-01-01

    The role of surface-bound type Ia group B Streptococcus (GBS) capsular polysaccharide in anti-body-independent binding of C1 and activation of the classic component pathway was investigated. In a radiolabeled bacterial-polymorphonuclear leukocyte (PMN) association assay, a measure of bacterial opsonization, preincubation of 3 H-type Ia GBS with purified F(ab') 2 to the organism blocked the association of the bacteria with PMN', and the inhibitory effect was dose dependent. The specificity of F(ab') 2 blocking was shown after adsorption of F(ab') 2 with type Ia polysaccharide-sensitized erythrocytes. Polysaccharide-adsorbed F(ab') 2 had a 70% decrease in ability to block the association of bacteria with PMN. Neuraminidase digestion removed 80% of the terminal sialic acid residues from the native polysaccharide. These neuraminidase-digested organisms had a 72% decrease in binding and transfer of purified C1 compared with non-enzyme-treated organisms. Type Ia capsular polysaccharide bound to sheep erythrocytes promoted classic complement pathway-mediated hemolysis of the cells. The role of C1 inhibitor (INH) in modulation of C1 activation by the organisms was investigated. The possibility existed that the C1 INH could be bound by the bacteria, allowing C1 activation to occur in the fluid phase. The inhibitor was purified from human serum, and its activity was measured before and after incubation with type Ia GBS. The organisms had no effect on C1 INH activity. Thus surface-bound capsular polysacchardie of type Ia GBS mediates C1 binding and classic pathway activation, and this does not involve the C1 INH

  16. Beneficial Effects of the Amino Acid Glycine.

    Science.gov (United States)

    Pérez-Torres, Israel; Zuniga-Munoz, Alejandra María; Guarner-Lans, Veronica

    2017-01-01

    Glycine is the smallest non-essential, neutral and metabolically inert amino acid, with a carbon atom bound to two hydrogen atoms, and to an amino and a carboxyl group. This amino acid is an essential substrate for the synthesis of several biologically important biomolecules and compounds. It participates in the synthesis of proteins, of the tripeptide glutathione and in detoxification reactions. It has a broad spectrum of anti-inflammatory, cytoprotective and immunomodulatory properties. To exert its actions, glycine binds to different receptors. The GlyR anion channel is the most studied receptor for glycine. However, there are GlyR-independent mechanisms for glycine cytoprotection and other possible binding molecules of glycine are the NMDA receptor and receptors GlyT1 and GlyT2. Although, in humans, the normal serum level of glycine is approximately 300 μM, increasing glycine intake can lead to blood levels of more than 900 μM that increase its benefic actions without having harmful side effects. The herbal pesticide glyphosate might disrupt glycine homeostasis. Many in vitro studies involving different cell types have demonstrated beneficial effects of the addition of glycine. Glycine also improved conditions of isolated perfused or stored organs. In vivo studies in experimental animals have also tested glycine as a protector molecule and some studies on the beneficial effects of glycine after its clinical application have been done. Although at high-doses, glycine may cause toxic effects, further studies are needed to investigate the safe range of usage of this aminoacid and to test the diverse routes of administration.

  17. Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2017-02-01

    We report on the radiative emission decay dynamics of a less known, γ-phase manganese selenide quantum dot system (MnSe QDs) subjected to bio-functionalization. A short-ligand thioglycolic acid (TGA), and a long-chain sodium dodecyl sulfate (SDS) surfactants were used as surface anchors prior bioconjugation with albumin proteins (BSA). Time resolved photoluminescence (TR-PL) spectra of the QDs have revealed bi-exponential decay trends with the fast (τ{sub 1}) and slow (τ{sub 2}) decay parameters assigned to the core state recombination and surface trapped excitons; respectively. The average lifetime (τ{sub avg}) was found to get shortened from a value of ∼0.87 ns–0.72 ns in unconjugated and BSA conjugated MnSe-TGA QDs; respectively. Conversely, MnSe-SDS QDs with BSA conjugation exhibited nearly four-fold enhancement of τ{sub avg} with respect to its unconjugated counterpart. Moreover, a considerable amount of Förster resonance energy transfer (FRET) was found to occur from the TGA coated MnSe QDs to BSA and with an ensuing efficiency of ∼61%. The origin of anomalous carrier life-time relaxation features has also been encountered through a simplified model as regards head group interaction experienced by the MnSe QDs with different surfactant types. Exploiting luminescence decay characteristics of a magneto-fluorescent candidate could find immense scope in diverse biological applications including assays, labeling and imaging. - Highlights: • Surface anchored manganese selenide quantum dots (MnSe QDs) have been synthesized via a physico-chemical reduction route. • Time resolved luminescence spectra of the QDs have displayed bi-exponential decay trend. • Thioglycolic acid (TGA) coated QDs exhibited shorter lifetime as compared to sodium dodecyl sulfo-succinate (SDS) coated ones. • Upon BSA conjugation, the average life time is four-fold enhanced in MnSe-SDS QDs. • An efficient FRET process has been revealed in BSA conjugated TGA coated MnSe QDs.

  18. Effect of temperature on the dilution enthalpies of α,ω-amino acids in aqueous solutions

    International Nuclear Information System (INIS)

    Romero, C.M.; Cadena, J.C.; Lamprecht, I.

    2011-01-01

    Highlights: → The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. → The limiting experimental slopes of the enthalpies of dilution with respect to the molality change Δm, are negative suggesting that the solutes interact with water primarily through their alkyl groups. → The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. → The comparison between the pairwise interaction coefficients for α,ω-amino acids and α-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of α,ω-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  19. Growth of 2-amino-5-chlorobenzophenone single crystal by ...

    Indian Academy of Sciences (India)

    Abstract. Organic single crystals of 2-amino-5-chlorobenzophenone (2A5CB) were grown by Microtube Czochral- ski method using Microtube as a seed. The grown crystals were characterized by single crystal and powder X-ray diffraction. The functional groups of the grown crystal were found using Fourier transform ...

  20. Volumetric studies of some amino acids in binary aqueous solutions ...

    Indian Academy of Sciences (India)

    Unknown

    partial molar volumes (Vφ. 0) of each amino acid have been calculated. These data were combined with the earlier reported Vφ. 0 values of glycine, L-alanine, and L-valine in aqueous MgCl2⋅6H2O solutions at. 298⋅15 K in order to describe the temperature dependence behaviour of partial molar quantities. Group.

  1. Kinetics of oxidation of acidic amino acids by sodium N ...

    Indian Academy of Sciences (India)

    Unknown

    pharmaceuticals and fortification of foods and feeds. Generally only the amino and carboxyl functional groups ..... (ii) slowest and rls. X + PhSO2NHBr → products. (iii) fast. Scheme 2. Here [BAB]t represents the total BAB concentration. Equation (5) is in agreement with experimental results, wherein a first-order dependence ...

  2. amino

    Indian Academy of Sciences (India)

    Administrator

    and (Z)-9-hydroxyoctadec-12-enoic acids are used as cheap starting materials in the synthesis of impor- tant biologically ... There are two basic approaches to develop a .... carbonate solution. The solid mass separated was filtered, washed with excess water, dried and recrys- tallized in chloroform-methanol. Yields, melting.

  3. Toward Sustainable Amino Acid Production.

    Science.gov (United States)

    Usuda, Yoshihiro; Hara, Yoshihiko; Kojima, Hiroyuki

    Because the global amino acid production industry has been growing steadily and is expected to grow even more in the future, efficient production by fermentation is of great importance from economic and sustainability viewpoints. Many systems biology technologies, such as genome breeding, omics analysis, metabolic flux analysis, and metabolic simulation, have been employed for the improvement of amino acid-producing strains of bacteria. Synthetic biological approaches have recently been applied to strain development. It is also important to use sustainable carbon sources, such as glycerol or pyrolytic sugars from cellulosic biomass, instead of conventional carbon sources, such as glucose or sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates has been shown to lead to reduction of environmental burdens and cost. Recently, a new fermentation system for glutamate production under acidic pH was developed to decrease the amount of one sub-raw material, ammonium, for maintenance of culture pH. At the same time, the utilization of fermentation coproducts, such as cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease waste. In this chapter, further perspectives for future amino acid fermentation from one-carbon compounds are described.

  4. Amino acids as antioxidants for frying oil

    Science.gov (United States)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  5. Nonprotein amino acids from Cycas revoluta.

    Science.gov (United States)

    Pan, M; Mabry, T J; Beale, J M; Mamiya, B M

    1997-06-01

    Two nonprotein amino acids, cycasindene and cycasthioamide, along with eight known nonprotein amino acids, were isolated from the seeds of Cycas revoluta Thunb. The structures of cycasindene and cycasthioamide were elucidated as 3-[3'-amino-indenyl-2]-alanine (1) and N-[glycinyl-alaninyl-11-thio]-5-one-pipecolic acid (2) by chemical and spectral methods.

  6. Available versus digestible dietary amino acids.

    Science.gov (United States)

    Rutherfurd, Shane M; Moughan, Paul J

    2012-08-01

    Available amino acids are those absorbed from the gastrointestinal tract in a form suitable for body protein synthesis. True ileal digestible amino acids are determined based on the difference between dietary amino acid intake and unabsorbed dietary amino acids at the terminal ileum. The accuracy of ileal digestible amino acid estimates for predicting available amino acid content depends on several factors, including the accuracy of the amino acid analysis procedure. In heat processed foods, lysine can react with compounds to form nutritionally unavailable derivatives that are unstable during the hydrochloric acid hydrolysis step of amino acid analysis and can revert back to lysine causing an overestimate of available lysine. Recently, the true ileal digestible reactive (available) lysine assay based on guanidination has provided a means of accurately determining available lysine in processed foods. Methionine can be oxidised during processing to form methionine sulphoxide and methionine sulphone and cysteine oxidised to cysteic acid. Methionine sulphoxide, but not methionine sulphone or cysteic acid, is partially nutritionally available in some species of animal. Currently, methionine and cysteine are determined as methionine sulphone and cysteic acid respectively after quantitative oxidation prior to acid hydrolysis. Consequently, methionine and cysteine are overestimated if methionine sulphone or cysteic acid are present in the original material. Overall, given the problems associated with the analysis of some amino acids in processed foodstuffs, the available amino acid content may not always be accurately predicted by true ileal amino acid digestibility estimates. For such amino acids specific analytical strategies may be required.

  7. Sugar amino acids and related molecules

    Indian Academy of Sciences (India)

    Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of ...

  8. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, Christopher J.; Schultz, Peter G.

    2017-10-25

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Reactions of tritium atoms with amino acids, deuterated amino acids and mixtures of amino acids. Additivity property and isotope effect

    International Nuclear Information System (INIS)

    Badun, G.A.; Filatov, Eh.S.

    1988-01-01

    Interaction of tritium atoms with glycine (1) and leucine (2) amino acids, deuterated amino acids, their mixtures and glycylleucine (3) peptide in the 77-300 K temperature range is studied in isothermal and gradient regimes. Tagged amino acids were separated from targets after conducting the reaction. At T 150 K are associated with intermolecular transmission of free valence in the mixture of amino acids. Regularities of the reaction found for the mixture of amino acids are conserved for (3) as well, i.e. the peptide bond does not essentially affect the reaction of isotopic exchange conditioned by atomic tritium

  10. Penicillin-insensitive incorporation of D-amino acids into cell wall peptidoglycan influences the amount of bound lipoprotein in Escherichia coli.

    OpenAIRE

    Tsuruoka, T; Tamura, A; Miyata, A; Takei, T; Iwamatsu, K; Inouye, S; Matsuhashi, M

    1984-01-01

    Certain D-amino acids, such as D-methionine and D-cystine, were incorporated into cells of Escherichia coli under conditions inhibiting protein and cell wall synthesis. Part of the radioactivity of D-14C-amino acids incorporated into the cells was found in the isolated cell wall peptidoglycan. A covalent linkage between the amino group of the D-amino acids and the peptidoglycan was presumed to be the main cause of the binding of the D-amino acids to peptidoglycan, because the amino group of t...

  11. Determination of Selected Amino Acids in Serum of Patients with Liver Disease.

    Science.gov (United States)

    Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander

    2016-01-01

    The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.

  12. Amino acid availability regulates the effect of hyperinsulinemia on skin protein metabolism in pigs

    Science.gov (United States)

    The effects of amino acid supply and insulin infusion on skin protein kinetics (fractional synthesis rate (FSR), fractional breakdown rate (FBR), and net balance (NB)) in pigs were investigated. Four-month-old pigs were divided into four groups as follows: control, insulin (INS), amino acid (AA), an...

  13. An Assay of Selected Serum Amino Acids in Patients with Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Drábková, Petra; Šanderová, Jana; Kovařík, Jakub; kanďár, Roman

    2015-01-01

    Amino acids are the building blocks of proteins. In case of insulin resistance, which is typical for type 2 diabetes mellitus (T2DM), proteolysis is increased and protein synthesis is decreased; therefore, we can observe changes in the levels of amino acids in diabetics vs. non-diabetics. The aim of this study was to find differences in the levels of selected amino acids between patients with diabetes (type 2) and a control group. Amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde in the presence of potassium cyanide to form fluorescent 1-cyanobenz(f)isoindole product. Amino acids derivatives were measured using a high-performance liquid chromatography with fluorescence detection. The serum levels of glucose were determined using an automatic biochemistry analyzer, glycated hemoglobin HbA1c was measured by cation exchange chromatography. A total of 19 serum amino acids in T2DM patients and non-diabetics were measured. There were 9 amino acids, which were significantly different in these groups (pdiabetics were found. Significant difference in metabolism of amino acids between diabetics and non-diabetics were observed. The altered levels of amino acids in diabetic patients could be a suitable predictor of diabetes.

  14. Preparation of amino-functionalized regenerated cellulose membranes with high catalytic activity.

    Science.gov (United States)

    Wang, Wei; Bai, Qian; Liang, Tao; Bai, Huiyu; Liu, Xiaoya

    2017-09-01

    The modification of regenerated cellulose (RC) membranes was carried out by using silane coupling agents presenting primary and secondary amino-groups. The grafting of the amino groups onto the modified cellulose molecule was confirmed by X-ray photoelectron spectroscopies and 13 C nuclear magnetic resonance spectroscopic analyses. The crystallinity of the cellulose membranes (CM) decreased after chemical modification as indicated by the X-ray diffraction results. Moreover, a denser structure was observed at the surface and cross section of the modified membranes by SEM images. The contact angle measurements showed that the silane coupling treatment enhanced the hydrophobicity of the obtained materials. Then the catalytic properties of two types of modified membranes were studied in a batch process by evaluating their catalytic performance in a Knoevenagel condensation. The results indicated that the cellulose membrane grafted with many secondary amines exhibited a better catalytic activity compared to the one grafted only by primary amines. In addition, the compact structure of the modified membranes permitted their application in a pervaporation catalytic membrane reactor. Therefore, functional CM that prepared in this paper represented a promising material in the field of industrial catalysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    Science.gov (United States)

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. © 2016 The Author(s).

  16. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid

    Science.gov (United States)

    Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001

  17. Stabilization of enzymes by multipoint covalent immobilization on supports activated with glyoxyl groups.

    Science.gov (United States)

    López-Gallego, Fernando; Fernandez-Lorente, Gloria; Rocha-Martin, Javier; Bolivar, Juan M; Mateo, Cesar; Guisan, Jose M

    2013-01-01

    Stabilization of enzymes via immobilization techniques is a valuable approach in order to convert a necessary protocol (immobilization) into a very interesting tool to improve key enzyme properties (stabilization). Multipoint covalent attachment of each immobilized enzyme molecule may promote a very interesting stabilizing effect. The relative distances among all enzyme residues involved in immobilization has to remain unaltered during any conformational change induced by any distorting agent. Amino groups are very interesting nucleophiles placed on protein surfaces. The immobilization of enzyme through the region having the highest amount of amino groups (Lys residues) is key for a successful stabilization. Glyoxyl groups are small aliphatic aldehydes that form very unstable Schiff's bases with amino groups and they do not seem to be useful for enzyme immobilization at neutral pH. However, under alkaline conditions, glyoxyl supports are able to immobilize enzymes via a first multipoint covalent immobilization through the region having the highest amount of Lysine groups. Activation of supports with a high surface density of glyoxyl groups and the performance of very intense enzyme-support multipoint covalent attachments are here described.

  18. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  19. Amino-siloxane composition and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Michael Joseph; Farnum, Rachel Lizabeth; Perry, Robert James

    2018-03-20

    An amino-siloxane composition is presented. The amino-siloxane composition includes structure (I): ##STR00001## wherein R1 is independently at each occurrence a C1-C5 aliphatic radical; R2 is a C3-C.4 aliphatic radical; R3 is a C1-C5 aliphatic radical or R4, wherein R4 comprises structure (II): ##STR00002## and X is an electron donating group. Methods of reducing an amount of carbon dioxide in a process stream using the amino-siloxane composition are also presented.

  20. The Effect of an Amino Acid Infusion on Central Thermoregulatory Control in Humans

    Science.gov (United States)

    Nakajima, Yasufumi; Takamata, Akira; Matsukawa, Takashi; Sessler, Daniel I.; Kitamura, Yoshihiro; Ueno, Hiroshi; Tanaka, Yoshifumi; Mizobe, Toshiki

    2005-01-01

    Background Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. We thus tested the hypothesis that amino acid infusion increases the thermoregulatory setpoint. Methods Nine male volunteers each participated on four study days in randomized order: 1) intravenous amino acids infused at 4 kJ·kg−1·hr−1 for 2.5 h combined with skin-surface warming; 2) amino acid infusion combined with cutaneous cooling; 3) a saline infusion combined with skin-surface warming; and, 4) saline infusion combined with cutaneous cooling. Results Amino acid infusion increased resting core temperature by 0.3 ± 0.1°C (mean ± SD) and oxygen consumption by 18 ± 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean-skin temperature of 34°C) for active cutaneous vasodilation by 0.3 ± 0.3°C, for sweating by 0.2 ± 0.2°C, for thermoregulatory vasoconstriction by 0.3 ± 0.3°C, and for thermogenesis by 0.4 ± 0.5°C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses. Conclusions Amino acid infusion increased the metabolic rate and resting core temperature. However, amino acids also produced a synchronous increase in all major autonomic thermoregulatory defense thresholds; the increase in core temperature was identical to the setpoint increase — even in a cold environment with amble potential to dissipate heat. In subjects with intact thermoregulatory defenses, amino acid-induced hyperthermia appears to result from an elevated setpoint increase rather than increased metabolic rate per se. PMID:15108979

  1. Plant amino acid-derived vitamins: biosynthesis and function.

    Science.gov (United States)

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  2. Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery.

    Science.gov (United States)

    Gujrati, Maneesh; Vaidya, Amita; Lu, Zheng-Rong

    2016-01-20

    RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in

  3. New branched amino acids for high affinity dendrimeric DC-SIGN ligands.

    Science.gov (United States)

    Cattiaux, Laurent; Porkolab, Vanessa; Fieschi, Franck; Mallet, Jean-Maurice

    2018-03-01

    A branched amino acid was synthesized from methyl glucopyranoside; this amino acid presents three amino groups protected by Fmoc and one acid group and can be used in classic peptide synthesis. In parallel, similar azido terminated blocks were synthesized. Successive coupling reaction and deprotection afforded dendrimers with up to 27 azido functional groups. As an example of application, d-mannose and l-fucose residues were linked through CuAAC coupling and resulting glycodendrimers were evaluated in their interaction with DC-SIGN using SPR competition assay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  5. Surface plasmon resonance analysis shows an IgG-isotype-specific defect in ABO blood group antibody formation in patients with common variable immunodeficiency

    Directory of Open Access Journals (Sweden)

    Michael Bernhard Fischer

    2015-05-01

    Full Text Available Background: Common variable immunodeficiency (CVID is the most common clinically severe primary immunodeficiency and comprises a heterogeneous group of patients with recurrent severe bacterial infections due to the failure to produce IgG antibodies after exposure to infectious agents and immunization. Diagnostic recommendations for antibody failure include assessment of isoagglutinins. We have readdressed this four decades old but still accepted recommendation with up to date methodology.Methods: Anti-A/B IgM- and IgG-antibodies were measured by Diamed-ID Micro Typing, surface plasmon resonance (SPR using the Biacore® device and flow cytometry.Results: When Diamed-ID Micro Typing was used, CVID patients (n=34 showed IgG- and IgM-isoagglutinins that were comparable to healthy volunteers (n=28, while all XLA patients (n=8 had none. Anti-A/B IgM-antibodies were present in more than 2/3 of the CVID patients and showed binding kinetics comparable to anti-A/B IgM-antibodies from healthy individuals. A correlation could be found in CVID patients between levels of anti-A/B IgM-antibodies and levels of serum IgM and PnP-IgM-antibodies. In contrast in CVID patients as a group ABO antibodies were significantly decreased when assessed by SPR, which correlated with levels of switched memory, non-switched memory and naïve B cells, but all CVID patients had low/undetectable anti-A/B IgG-antibodies.Conclusion: These results indicate that conventional isoagglutinin assessment and assessment of anti-A/B IgM antibodies are not suited for the diagnosis of impaired antibody production in CVID. Examination of anti-A/B IgG antibodies by SPR provides a useful method for the diagnosis of IgG antibody failure in all CVID patients studied, thus indicating an important additional rationale to start immunoglobulin replacement therapy early in these patients, before post-infectious sequelae develop.

  6. Differences in the Activities of Eight Enzymes from Ten Soil Fungi and Their Possible Influences on the Surface Structure, Functional Groups, and Element Composition of Soil Colloids

    Science.gov (United States)

    Wang, Wenjie; Li, Yanhong; Wang, Huimei; Zu, Yuangang

    2014-01-01

    How soil fungi function in soil carbon and nutrient cycling is not well understood by using fungal enzymatic differences and their interactions with soil colloids. Eight extracellular enzymes, EEAs (chitinase, carboxymethyl cellulase, β-glucosidase, protease, acid phosphatase, polyphenol oxidase, laccase, and guaiacol oxidase) secreted by ten fungi were compared, and then the fungi that showed low and high enzymatic activity were co-cultured with soil colloids for the purpose of finding fungi-soil interactions. Some fungi (Gomphidius rutilus, Russula integra, Pholiota adiposa, and Geastrum mammosum) secreted 3–4 enzymes with weak activities, while others (Cyathus striatus, Suillus granulate, Phallus impudicus, Collybia dryophila, Agaricus sylvicola, and Lactarius deliciosus) could secret over 5 enzymes with high activities. The differences in these fungi contributed to the alterations of functional groups (stretching bands of O-H, N-H, C-H, C = O, COO- decreased by 11–60%, while P = O, C-O stretching, O-H bending and Si-O-Si stretching increased 9–22%), surface appearance (disappearance of adhesive organic materials), and elemental compositions (11–49% decreases in C1s) in soil colloids. Moreover, more evident changes were generally in high enzymatic fungi (C. striatus) compared with low enzymatic fungi (G. rutilus). Our findings indicate that inter-fungi differences in EEA types and activities might be responsible for physical and chemical changes in soil colloids (the most active component of soil matrix), highlighting the important roles of soil fungi in soil nutrient cycling and functional maintenance. PMID:25398013

  7. Structure-function relationships in human testis-determining factor SRY: an aromatic buttress underlies the specific DNA-bending surface of a high mobility group (HMG) box.

    Science.gov (United States)

    Racca, Joseph D; Chen, Yen-Shan; Maloy, James D; Wickramasinghe, Nalinda; Phillips, Nelson B; Weiss, Michael A

    2014-11-21

    Human testis determination is initiated by SRY, a Y-encoded architectural transcription factor. Mutations in SRY cause 46 XY gonadal dysgenesis with female somatic phenotype (Swyer syndrome) and confer a high risk of malignancy (gonadoblastoma). Such mutations cluster in the SRY high mobility group (HMG) box, a conserved motif of specific DNA binding and bending. To explore structure-function relationships, we constructed all possible substitutions at a site of clinical mutation (W70L). Our studies thus focused on a core aromatic residue (position 15 of the consensus HMG box) that is invariant among SRY-related HMG box transcription factors (the SOX family) and conserved as aromatic (Phe or Tyr) among other sequence-specific boxes. In a yeast one-hybrid system sensitive to specific SRY-DNA binding, the variant domains exhibited reduced (Phe and Tyr) or absent activity (the remaining 17 substitutions). Representative nonpolar variants with partial or absent activity (Tyr, Phe, Leu, and Ala in order of decreasing side-chain volume) were chosen for study in vitro and in mammalian cell culture. The clinical mutation (Leu) was found to markedly impair multiple biochemical and cellular activities as respectively probed through the following: (i) in vitro assays of specific DNA binding and protein stability, and (ii) cell culture-based assays of proteosomal degradation, nuclear import, enhancer DNA occupancy, and SRY-dependent transcriptional activation. Surprisingly, however, DNA bending is robust to this or the related Ala substitution that profoundly impairs box stability. Together, our findings demonstrate that the folding, trafficking, and gene-regulatory function of SRY requires an invariant aromatic "buttress" beneath its specific DNA-bending surface. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Theoretical evaluation of flotation performance of carboxyl hydroxamic acids with different number of polar groups on the surfaces of diaspore (010) and kaolinite (001).

    Science.gov (United States)

    Wang, Fang-ping; Zhan, Guo-ping; Jiang, Yu-ren; Guo, Jing-nan; Yin, Zhi-gang; Feng, Rui

    2013-08-01

    The adsorption behaviors of three carboxyl hydroxamic acids on diaspore (010) and kaolinite (001) have been studied by density functional theory (DFT) and molecular dynamics (MD) method. The results indicated that carboxyl hydroxamic acids could adsorb on diaspore surface by ionic bonds and hydrogen bonds, and adsorb on kaolinite surface by hydrogen bonds. The models of carboxyl hydroxamic acids adsorbed on diaspore and kaolinite surfaces are proposed.

  9. Asymmetric synthesis of propargylamines as amino acid surrogates in peptidomimetics

    Directory of Open Access Journals (Sweden)

    Matthias Wünsch

    2017-11-01

    Full Text Available The amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at Cα, such amide bond surrogates need a chiral moiety. Here the asymmetric synthesis of a set of 24 N-sulfinyl propargylamines is presented. The condensation of various aldehydes with Ellman’s chiral sulfinamide provides chiral N-sulfinylimines, which were reacted with (trimethylsilylethynyllithium to afford diastereomerically pure N-sulfinyl propargylamines. Diverse functional groups present in the propargylic position resemble the side chain present at the Cα of amino acids. Whereas propargylamines with (cycloalkyl substituents can be prepared in a direct manner, residues with polar functional groups require suitable protective groups. The presence of particular functional groups in the side chain in some cases leads to remarkable side reactions of the alkyne moiety. Thus, electron-withdrawing substituents in the Cα-position facilitate a base induced rearrangement to α,β-unsaturated imines, while azide-substituted propargylamines form triazoles under surprisingly mild conditions. A panel of propargylamines bearing fluoro or chloro substituents, polar functional groups, or basic and acidic functional groups is accessible for the use as precursors of peptidomimetics.

  10. The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions

    Science.gov (United States)

    McCollom, Thomas M.

    2013-03-01

    Laboratory experiments were conducted to observe the effect of iron oxide and sulfide minerals on decomposition reactions of norvaline, a representative of a group of alkyl-α-amino acids observed in meteorites and prebiotic synthesis experiments. The primary products observed during heating of aqueous solutions of norvaline at temperatures of 156-186 °C in the presence of minerals included CO2, NH3, butyric acid, and valeric acid. The products indicated that norvaline predominantly decomposed by a combination of pathways that included both decarboxylation followed rapidly by oxidative deamination (norvaline → butanamide + CO2 → butyric acid + NH3) and deamination directly to valeric acid (norvaline → valeric acid + NH3). An experiment performed with alanine under similar conditions showed it decomposed by analogous reactions that produced acetic and propionic acids along with CO2 and NH3. For both amino acids, the presence of minerals accelerated decomposition rates as well as altered the final products of reaction, when compared with decomposition in the absence of mineral substrates. In addition, decomposition of norvaline was found to proceed much faster in the presence of the mineral assemblage hematite-magnetite-pyrite (HMP) than with the assemblage pyrite-pyrrhotite-magnetite (PPM), a trend that has been observed for several other organic compounds. The influence of minerals on decomposition reactions of these amino acids appears to be attributable to a combination of surface catalysis and production of dissolved sulfur compounds. Overall, the results indicate that minerals may exert a substantial influence on amino acid stability in many geologic environments, and emphasize the need to consider the impact of minerals when evaluating the lifetimes and decomposition rates of amino acids in terrestrial and planetary systems. Estimated half-lives for alkyl-α-amino acids based on the experimental results indicate that moderately hot hydrothermal

  11. 2-Amino-5-chloropyridinium trifluoroacetate

    Directory of Open Access Journals (Sweden)

    Madhukar Hemamalini

    2010-04-01

    Full Text Available The asymmetric unit of the title salt, C5H6ClN2+·C2F3O2−, contains two independent 2-amino-5-chloropyridinium cations and two independent trifluoroacetate anions. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.672 (12:0.328 (12 and 0.587 (15:0.413 (15. In the crystal, the cations and anions are linked via N—H...O and C—H...O hydrogen bonds, forming a two-dimensional network parallel to (001.

  12. A novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole by using silver nanoparticles as bridges and carriers.

    Science.gov (United States)

    Tan, Shu-Zhen; Hu, Yan-Jun; Gong, Fu-Chun; Cao, Zhong; Xia, Jiao-Yun; Zhang, Ling

    2009-03-23

    A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 x 10(-6) to 1.5 x 10(-4) molL(-1) with a detection limit of 8.0 x 10(-7) molL(-1). The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.

  13. Scaffolding along Nucleic Acid Duplexes Using 2'-Amino-Locked Nucleic Acids

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Wengel, Jesper

    2014-01-01

    depends on the chemical nature of the modification, its price, its availability, and applications of the product. One of the most useful applications of the product LNA/DNA scaffolds containing 2'-amino-LNA is to detect complementary DNA and RNA targets. Examples of these applications include sensing...... of clinically important single-nucleotide polymorphisms (SNPs) and imaging of nucleic acids in vitro, in cell culture, and in vivo. According to our studies, 2'-amino-LNA scaffolds are efficient within diagnostic probes for DNA and RNA targets and as therapeutics, whereas both 2'-amino- and isomeric 2'-α......-l-amino-LNA scaffolds have promising properties for stabilization and detection of DNA nanostructures. Attachment of fluorescent groups to the 2'-amino group results in very high fluorescent quantum yields of the duplexes and remarkable sensitivity of the fluorescence signal to target binding. Notably, fluorescent LNA...

  14. The location of redox-sensitive groups in the carrier protein of proline at the outer and inner surface of the membrane in Escherichia coli

    NARCIS (Netherlands)

    Poolman, Bert; Konings, Wil N.; Robillard, George T.

    1983-01-01

    Evidence is presented in this report for the presence of two sets of dithiols associated with proline transport activity in Escherichia coli. One set is located at the outer surface, the other at the inner surface of the cytoplasmic membrane. Treatment of right-side-out membrane vesicles from E.

  15. Branched-Chain Amino Acids.

    Science.gov (United States)

    Yamamoto, Keisuke; Tsuchisaka, Atsunari; Yukawa, Hideaki

    Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and L-valine, are essential amino acids that cannot be synthesized in higher organisms and are important nutrition for humans as well as livestock. They are also valued as synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in the feed and pharmaceutical industries is increasing continuously. Traditional industrial fermentative production of BCAAs was performed using microorganisms isolated by random mutagenesis. A collection of these classical strains was also scientifically useful to clarify the details of the BCAA biosynthetic pathways, which are tightly regulated by feedback inhibition and transcriptional attenuation. Based on this understanding of the metabolism of BCAAs, it is now possible for us to pursue strains with higher BCAA productivity using rational design and advanced molecular biology techniques. Additionally, systems biology approaches using augmented omics information help us to optimize carbon flux toward BCAA production. Here, we describe the biosynthetic pathways of BCAAs and their regulation and then overview the microorganisms developed for BCAA production. Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be synthesized by branching the BCAA biosynthetic pathways, which are also outlined.

  16. Mapping the Hydropathy of Amino Acids Based on Their Local Solvation Structure

    KAUST Repository

    Bonella, S.

    2014-06-19

    In spite of its relevant biological role, no general consensus exists on the quantitative characterization of amino acid\\'s hydropathy. In particular, many hydrophobicity scales exist, often producing quite different rankings for the amino acids. To make progress toward a systematic classification, we analyze amino acids\\' hydropathy based on the orientation of water molecules at a given distance from them as computed from molecular dynamics simulations. In contrast with what is usually done, we argue that assigning a single number is not enough to characterize the properties of an amino acid, in particular when both hydrophobic and hydrophilic regions are present in a residue. Instead we show that appropriately defined conditional probability densities can be used to map the hydrophilic and hydrophobic groups on the amino acids with greater detail than possible with other available methods. Three indicators are then defined based on the features of these probabilities to quantify the specific hydrophobicity and hydrophilicity of each amino acid. The characterization that we propose can be used to understand some of the ambiguities in the ranking of amino acids in the current scales. The quantitative indicators can also be used in combination with standard bioinformatics tools to predict the location of transmembrane regions of proteins. The method is sensitive to the specific environment of the amino acids and can be applied to unnatural and modified amino acids, as well as to other small organic molecules. © 2014 American Chemical Society.

  17. Probing surface tension additivity on chemically heterogeneous surfaces by a molecular approach.

    Science.gov (United States)

    Wang, Jihang; Bratko, Dusan; Luzar, Alenka

    2011-04-19

    Surface free energy of a chemically heterogeneous surface is often treated as an approximately additive quantity through the Cassie equation [Cassie ABD (1948) Discuss Faraday Soc 3:11-16]. However, deviations from additivity are common, and molecular interpretations are still lacking. We use molecular simulations to measure the microscopic analogue of contact angle, Θ(c), of aqueous nanodrops on heterogeneous synthetic and natural surfaces as a function of surface composition. The synthetic surfaces are layers of graphene functionalized with prototypical nonpolar and polar head group: methyl, amino, and nitrile. We demonstrate positive as well as negative deviations from the linear additivity. We show the deviations reflect the uneven exposure of mixture components to the solvent and the linear relation is recovered if fractions of solvent-accessible surface are used as the measure of composition. As the spatial variations in polarity become of larger amplitude, the linear relation can no longer be obtained. Protein surfaces represent such natural patterned surfaces, also characterized by larger patches and roughness. Our calculations reveal strong deviations from linear additivity on a prototypical surface comprising surface fragments of melittin dimer. The deviations reflect the disproportionately strong influence of isolated polar patches, preferential wetting, and changes in the position of the liquid interface above hydrophobic patches. Because solvent-induced contribution to the free energy of surface association grows as cos Θ(c), deviations of cos Θ(c) from the linear relation directly reflect nonadditive adhesive energies of biosurfaces.

  18. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 2

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1982-01-01

    In an experiment with 20 15 N-labelled growing rats the excretion of amino acids as well as of metabolic fecal amino acids were investigated after feeding of soybean oil meal as sole protein source. A low, yet statistically significant increase of the excretion of amino acids and metabolic fecal amino acids was ascertained in accordance with a growing quota of soybean oil meal in the ration. The true digestibility of amino acids ascertained according to conventional methods is above 90% and, under consideration of the increase of metabolic fecal amino acids, on the average increases by 3.5 digestibility units (1.4 to 6.2). (author)

  19. Orientation control of photo-immobilized antibodies on the surface of azobenzene-containing polymers by the introduction of functional groups.

    Science.gov (United States)

    Mouri, Makoto; Ikawa, Taiji; Narita, Mamiko; Hoshino, Fumihiko; Watanabe, Osamu

    2010-06-11

    In our photo-induced immobilization technique for an antibody (IgG) using azopolymers, the introduction of COOH and NMe(2) into the azopolymers, which can introduce surface charges, strongly affected the immobilization properties such as the efficiency of immobilization and the activity of the immobilized IgG (i.e., the orientation of the immobilized IgG). The introduction of COOH promoted a more active orientation of the immobilized IgG. The orientation was determined during the adsorption process onto the azopolymer surface in solution before photo-immobilization, and was maintained during the photo-immobilization. The surface charge of the azopolymer appears to be an important factor for IgG orientation, which involves electrostatic interactions between its Fab and the azopolymer surface.

  20. Studies on radiolysis of amino acids, 2

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1977-01-01

    Continuing from the previous paper, the radiolytic mechanisms of basic amino acids, imino acids and aromatic amino acids were studied. Aqueous solutions of L-histidine.HCI.H 2 O, L-lysine.HCI, L-arginine.HCI, DL-ornithine.HCI, L-citrulline, L-proline, L-hydroxyproline, L-tyrosine, L-tryptophan, L-phenylalanine and L-dihydroxyphenyl-alanine (1 mM) were irradiated with γ-rays of 60 Co at doses of 4.4-2,640x10 3 rads in the presence of air or in the atmosphere of nitrogen. The amino acids and the radiolytic products of the amino acid in aqueous solutions were determined by ion-exchange chromatography. The ultraviolet spectra of the aromatic amino acid solutions were measured. From the results obtained and G-values calculated, the radiolytic mechanisms of amino acids were assumed. (auth.)

  1. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Amino Acid Signatures to Evaluate the Beneficial Effects of Weight Loss

    Directory of Open Access Journals (Sweden)

    Nina Geidenstam

    2017-01-01

    Full Text Available Aims. We investigated the relationship between circulating amino acid levels and obesity; to what extent weight loss followed by weight maintenance can correct amino acid abnormalities; and whether amino acids are related to weight loss. Methods. Amino acids associated with waist circumference (WC and BMI were studied in 804 participants from the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC. Changes in amino acid levels were analyzed after weight loss and weight maintenance in 12 obese subjects and evaluated in a replication cohort (n=83. Results. Out of the eight identified BMI-associated amino acids from the MDC-CC, alanine, isoleucine, tyrosine, phenylalanine, and glutamate decreased after weight loss, while asparagine increased after weight maintenance. These changes were validated in the replication cohort. Scores that were constructed based on obesity-associated amino acids and known risk factors decreased in the ≥10% weight loss group with an associated change in BMI (R2=0.16–0.22, p<0.002, whereas the scores increased in the <10% weight loss group (p<0.0004. Conclusions. Weight loss followed by weight maintenance leads to differential changes in amino acid levels associated with obesity. Treatment modifiable scores based on epidemiological and interventional data may be used to evaluate the potential metabolic benefit of weight loss.

  3. Crystal structure of racemic cis-2-amino-1,2-diphenylethanol (ADE

    Directory of Open Access Journals (Sweden)

    Isao Fujii

    2015-12-01

    Full Text Available In the title racemic compound, C14H15NO, the hydroxy and amino groups form a bent tweezer-like motif towards the phenyl groups. In the crystal, enantiomers aggregate with each other and are linked by O—H...N hydrogen bonds, forming chiral 21-helical columnar structures from C(5 chains along the b-axis direction. Left- and right-handed 21 helices are formed from (1S,2R-2-amino-1,2-diphenylethanol and (1R,2S-2-amino-1,2-diphenylethanol, respectively.

  4. THE INTERCORRELATION OF THE AMINO ACID QUALITY ...

    African Journals Online (AJOL)

    a

    Levels of amino acids were determined in the grains of guinea corn, Sorghum bicolor (L.) Moench. ... essential amino acids of 30.70 g/100 g c.p., 28.33 g/100 g c.p. and 21.48 g/100 g c.p. Percentage cystine/total sulfur amino acid ..... F.A.O. Sorghum and millets in human nutrition, FAO Food and Nutrition Series, No. 27,.

  5. Amino acidis derived from Titan tholins

    Science.gov (United States)

    Khare, Bishun N.; Sagan, Carl; Ogino, Hiroshi; Nagy, Bartholomew; Er, Cevat

    1986-01-01

    The production of amino acids by acid treatment of Titan tholin is experimentally investigated. The synthesis of Titan tholin and the derivatization of amino acids to N-trifluoroacetyl isopropyl esters are described. The gas chromatography/mass spectroscopy analysis of the Titan tholins reveals the presence of glycine, alpha and beta alainine, and aspartic acid, and the total yield of amino acids is about 0.01.

  6. Effects of Long-Term Protein Restriction on Meat Quality, Muscle Amino Acids, and Amino Acid Transporters in Pigs.

    Science.gov (United States)

    Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong

    2017-10-25

    This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.

  7. Diverse characteristics of the urinary excretion of amino acids in humans and the use of amino acid supplementation to reduce fatigue and sub-health in adults.

    Science.gov (United States)

    Dunstan, R H; Sparkes, D L; Macdonald, M M; De Jonge, X Janse; Dascombe, B J; Gottfries, J; Gottfries, C-G; Roberts, T K

    2017-03-23

    The excretion of amino acids in urine represents an important avenue for the loss of key nutrients. Some amino acids such as glycine and histidine are lost in higher abundance than others. These two amino acids perform important physiological functions and are required for the synthesis of key proteins such as haemoglobin and collagen. Stage 1 of this study involved healthy subjects (n = 151) who provided first of the morning urine samples and completed symptom questionnaires. Urine was analysed for amino acid composition by gas chromatography. Stage 2 involved a subset of the initial cohort (n = 37) who completed a 30 day trial of an amino acid supplement and subsequent symptom profile evaluation. Analyses of urinary amino acid profiles revealed that three groups could be objectively defined from the 151 participants using k-means clustering. The amino acid profiles were significantly different between each of the clusters (Wilks' Lambda = 0.13, p amino acids with histidine being the most abundant component. Cluster 2 had glycine present as the most abundant urinary amino acid and cluster 3 had equivalent abundances of glycine and histidine. Strong associations were observed between urinary proline concentrations and fatigue/pain scores (r = .56 to .83) for females in cluster 1, with several other differential sets of associations observed for the other clusters. Different phenotypic subsets exist in the population based on amino acid excretion characteristics found in urine. Provision of the supplement resulted in significant improvements in reported fatigue and sleep for 81% of the trial cohort with all females reporting improvements in fatigue. The study was registered on the 18th April 2011 with the Australian New Zealand Clinical Trials Registry ( ACTRN12611000403932 ).

  8. Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments.

    Science.gov (United States)

    Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V; Rohanizadeh, Ramin

    2012-05-07

    Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m(2) g(-1). Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate.

  9. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  10. Fluxes of amino acids and hexosamines to the deep Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Haake, B.; Ittekkot, V.; Ramaswamy, V.; Nair, R.R.; Honjo, S.

    .g. Degens and Ittekkot, 1984; Alldredge and Silver, 1988). Amino acid and hexosamine compositions Amino acid and hexosamine compositions in the Arabian Sea sediment trap materials are very uniform. Averages calculated for 1 year for each depth varied.... Intensive zooplankton grazing can lead to a faster export of material from the surface layer, as suggested by Frost (1984) and Michaels and Silver (1988). Downward transport in the form of faecal pellets can be very fast, with sinking speeds of several...

  11. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang, E-mail: panyuanjiang@zju.edu.cn

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu{sup 2+} through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10{sup −3}–10{sup −6} M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments. - Highlights: • A novel task-specific ionic liquid functionalized gold nanoparticle was successfully prepared. • This material was successfully applied to recognizing five amino acids with Cu(II) through distinctive color changes. • The proposed strategy was successfully used to analyze the histidine in real samples.

  12. Acyl and silyl group effects in reactivity-based one-pot glycosylation: synthesis of embryonic stem cell surface carbohydrates Lc4 and IV(2)Fuc-Lc4.

    Science.gov (United States)

    Hsu, Yun; Lu, Xin-An; Zulueta, Medel Manuel L; Tsai, Chih-Ming; Lin, Kuo-I; Hung, Shang-Cheng; Wong, Chi-Huey

    2012-03-14

    Relative reactivity evaluations showed the graded arming of toluenyl thioglucosides by variously positioned silyl groups but not by their acyl counterparts. These findings were applied in reactivity-based one-pot assembly of linker-attached Lc(4) and IV(2)Fuc-Lc(4), which are components of human embryonic stem cell surface. The sugar-galectin-1 binding was also examined.

  13. Chemiluminescence from thermal oxidation of amino acids and proteins.

    Science.gov (United States)

    Millington, Keith R; Ishii, Hiroshi; Maurdev, George

    2010-05-01

    Chemiluminescence (CL) with maximum emission in the range 550-650 nm is observed when proteins and certain amino acids are heated in air, and CL intensity is significantly reduced in nitrogen. Of the 20 common amino acids, lysine (Lys) has the highest thermal CL intensity by a factor of approximately 30 over arginine, threonine and asparagine. This finding differs from previous studies on amino acids and proteins oxidised using free radical initiators or singlet oxygen, where tryptophan was the dominant factor for CL emission. CL from heating solid Lys in air is accompanied by browning and the generation of fluorescent products which are characteristic of advanced glycosylation end products (AGEs) in thermally treated milk proteins. During thermal oxidation, Lys may react with its own carbonyl oxidation products to form fluorescent compounds similar to AGEs via the formation of Schiff bases. The mechanism of thermal oxidation of proteins may be similar to polyamide polymers, where reaction of free primary amino groups with carbonyls to form Schiff bases plays a key role.

  14. Analysis of Saccharides by the Addition of Amino Acids

    Science.gov (United States)

    Ozdemir, Abdil; Lin, Jung-Lee; Gillig, Kent J.; Gulfen, Mustafa; Chen, Chung-Hsuan

    2016-06-01

    In this work, we present the detection sensitivity improvement of electrospray ionization (ESI) mass spectrometry of neutral saccharides in a positive ion mode by the addition of various amino acids. Saccharides of a broad molecular weight range were chosen as the model compounds in the present study. Saccharides provide strong noncovalent interactions with amino acids, and the complex formation enhances the signal intensity and simplifies the mass spectra of saccharides. Polysaccharides provide a polymer-like ESI spectrum with a basic subunit difference between multiply charged chains. The protonated spectra of saccharides are not well identified because of different charge state distributions produced by the same molecules. Depending on the solvent used and other ions or molecules present in the solution, noncovalent interactions with saccharides may occur. These interactions are affected by the addition of amino acids. Amino acids with polar side groups show a strong tendency to interact with saccharides. In particular, serine shows a high tendency to interact with saccharides and significantly improves the detection sensitivity of saccharide compounds.

  15. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 1

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1981-01-01

    The amount of metabolic fecal amino acids (MFAA) in dependence on the amino acid intake was determined for graded maize rations in 15 N-labelled rats and the part of labelled endogenous amino acids in feces was calculated by the isotope dilution method. The excretion of amino acids and MFAA in feces are described as functions of the amino acid intake for 17 amino acids and calculated regressively. For all 17 amino acids investigated, there was a more or less steep increase of MFAA according to an increasing amino acid intake. In contrast to N-free feeding, the MFAA increase to the 2- to 4.5-fold value in feeding with pure maize (16.5% crude protein). The thesis of the constancy of the excretion of MFAA can consequently be no longer maintained. The true digestibility according to the conventional method is, on an average of all amino acids, 7.3 units below ascertained according to the 15 N method. The limiting amino acids lysine and threonine revealed the greatest difference. Tryptophane as first limiting amino acid could not be determined. The true digestibility of nearly all amino acids ascertained for maize by the isotope method is above 90%. (author)

  16. Volumetric studies of some amino acids in binary aqueous solutions ...

    Indian Academy of Sciences (India)

    Unknown

    0 values of glycine, L-alanine, and L-valine in aqueous MgCl2⋅6H2O solutions at. 298⋅15 K in order to describe the temperature dependence behaviour of partial molar quantities. Group contributions to partial molar volumes have been determined for the amino acids. The trends of transfer volumes (∆Vφ. 0) have been ...

  17. Combinatorial materials research applied to the development of new surface coatings XIII: an investigation of polysiloxane antimicrobial coatings containing tethered quaternary ammonium salt groups.

    Science.gov (United States)

    Majumdar, Partha; Lee, Elizabeth; Gubbins, Nathan; Christianson, David A; Stafslien, Shane J; Daniels, Justin; Vanderwal, Lyndsi; Bahr, James; Chisholm, Bret J

    2009-01-01

    High-throughput biological assays were used to develop structure - antimicrobial relationships for polysiloxane coatings containing chemically bound (tethered) quaternary ammonium salt (QAS) moieties. The QAS-functional polysiloxanes were derived from solution blends of a silanol-terminated polydimethylsiloxane, a trimethoxysilane-functional QAS (QAS-TMS), and methylacetoxysilane. Since the QAS moieties provide antimicrobial activity through interaction with the microorganism cell wall, most of the compositional variables that were investigated were associated with the chemical structure of the QAS-TMS. Twenty different QAS-TMS were synthesized for the study and the antimicrobial activity of sixty unique polysiloxane coatings derived from these QAS-TMS determined toward Escherichia coli , Staphylococcus aureus , and Candida albicans . The results of the study showed that essentially all of the compositional variables significantly influenced antimicrobial activity. Surface characterization of these moisture-cured coatings using atomic force microscopy as well as water contact angle and water contact angle hysteresis measurements indicated that the compositional variables significantly affected coating surface morphology and surface chemistry. Overall, compositional variables that produced heterogeneous surface morphologies provided the highest antimicrobial activity suggesting that the antimicrobial activity was primarily derived from the relationship between coating chemical composition and self-assembly of QAS moieties at the coating/air interface. Using data modeling software, a narrow region of the compositional space was identified that provided broad-spectrum antimicrobial activity.

  18. Group contribution and parachor analysis of experimental data on densities and surface tension for six ionic liquids with the [PF6] anion

    Czech Academy of Sciences Publication Activity Database

    Klomfar, Jaroslav; Součková, Monika; Pátek, Jaroslav

    2015-01-01

    Roč. 385, January (2015), s. 62-71 ISSN 0378-3812 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : ionic liquid * density * surface tension * odd-even effect Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  19. Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets.

    Science.gov (United States)

    Zhang, Y; Dabrowski, K; Hliwa, P; Gomulka, P

    2006-09-01

    The premise that free amino acid or dipeptide based diets will resolve the nutritional inadequacy of formulated feeds for larval and juvenile fish and improve utilization of nitrogen in comparison to protein-based diets was tested in stomachless fish, common carp (Cyprinus carpio L.) larvae. We examined the postprandial whole body free amino acid (FAA) pool in fish that were offered a FAA mixture based diet for the duration of 2 or 4 weeks. We found that the total amount and all indispensable amino acids concentrations in the whole body decreased after a meal. We then fed juvenile carp with dietary amino acids provided in the FAA, dipeptide (PP), or protein (live feed organisms; brine shrimp Artemia salina nauplii, AS) forms. Histidine concentrations in the whole fish body increased in all dietary groups after feeding whereas all other indispensable amino acids decreased in FAA and PP groups in comparison to the AS group. Taurine appears to be the major osmotic pressure balancing free amino acid in larval freshwater fish which may indicate a conditional requirement. We present the first evidence in larval fish that in response to synthetic FAA and PP diets, the whole body indispensable free AA concentrations decreased after feeding. This study shows that amino acids given entirely as FAA or PP cannot sustain stomachless larval fish growth, and may result in depletion of body indispensable AA and most of dispensable AA. The understanding of these responses will determine necessary changes in diet formulations that prevent accelerated excretion of amino acids without protein synthesis.

  20. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    Science.gov (United States)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  1. Amino acid regulation of autophagosome formation

    NARCIS (Netherlands)

    Meijer, Alfred J.

    2008-01-01

    Amino acids are not only substrates for various metabolic pathways, but can also serve as signaling molecules controlling signal transduction pathways. One of these signaling pathways is mTOR-dependent and is activated by amino acids (leucine in particular) in synergy with insulin. Activation of

  2. Synthesis of Trishomocubane Amino Acid Derivatives | Govender ...

    African Journals Online (AJOL)

    The synthesis of four novel trishomocubane amino acid derivatives is described. The hydantoin precursor and bis-Boc protected hydantoin (>95% yield) were previously reported. A mild hydrolysis of the bis-Boc hydantoin with lithium hydroxide at room temperature quantitatively yielded the corresponding novel cage amino ...

  3. Amino acids transport in lactic streptococci

    NARCIS (Netherlands)

    Driessen, Arnold Jacob Mathieu

    1987-01-01

    Lactic streptococci are extremely fastidious bacteria. For growth an exogenous source of amino acids and other nutrients is essential. The amino acid requirement in milk is fulfilled by the milk-protein casein, which is degraded by sequential hydrolysis, involving proteases and peptidases. ... Zie:

  4. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig

  5. The amino acid sequence of hypertensin. II.

    Science.gov (United States)

    SKEGGS, L T; LENTZ, K E; KAHN, J R; SHUMWAY, N P; WOODS, K R

    1956-08-01

    The amino acid sequence of horse hypertensin II has been determined by the use of chymotrypsin, the fluorodinitrobenzene method, and stepwise phenylisothiocyanate degradation. The results indicate that the amino acids of hypertensin II are arranged in the following order: asp-arg-val-tyr-iso-hist-pro-phe.

  6. Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism*

    Science.gov (United States)

    Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N.; Cobb, Melanie H.

    2016-01-01

    The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation. PMID:27587390

  7. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2011-12-01

    Full Text Available Abstract Background Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. Results To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. Conclusions We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function.

  8. Resistance exercise combined with essential amino acid supplementation improved walking ability in elderly people.

    Science.gov (United States)

    Kawada, Shigeo; Okamoto, Y; Ogasahara, K; Yanagisawa, S; Ohtani, M; Kobayashi, K

    2013-09-01

    We investigated the effects of resistance exercise combined with essential amino acid supplementation on psoas major muscle (PMM) hypertrophy and walking ability in elderly individuals. Twenty-nine healthy elderly individuals were assigned to 3 groups: (1) E (exercise), (2) A3 (exercise combined with 3.0 g of essential amino acid supplementation), and (3) A6 (exercise combined with 6.0 g of essential amino acid supplementation). To evaluate walking ability, the participants underwent the following 3 types of tests: the (1) 10-meter walk (10-W), (2) 10-meter walk involving crossing of obstacles (10-W + O), and (3) 6-minute walk (6M-W) tests. The 6-month training program resulted in significant PMM hypertrophy in all groups independent of amino acid supplementation. The extent of hypertrophy in the participants who took amino acids was dose-dependent, although the differences were not significant. Groups A3 and A6 demonstrated improvements in the 10-W and 10-W + O tests, whereas no improvement was observed in group E, regardless of PMM hypertrophy. Furthermore, group A6 showed an improvement in the 6M-W test. These results suggest that our training program causes PMM hypertrophy, whereas the training program combined with essential amino acid supplementation improves walking ability.

  9. Lipid recognition propensities of amino acids in membrane proteins from atomic resolution data

    International Nuclear Information System (INIS)

    Morita, Mizuki; Katta, AVSK Mohan; Ahmad, Shandar; Mori, Takaharu; Sugita, Yuji; Mizuguchi, Kenji

    2011-01-01

    Protein-lipid interactions play essential roles in the conformational stability and biological functions of membrane proteins. However, few of the previous computational studies have taken into account the atomic details of protein-lipid interactions explicitly. To gain an insight into the molecular mechanisms of the recognition of lipid molecules by membrane proteins, we investigated amino acid propensities in membrane proteins for interacting with the head and tail groups of lipid molecules. We observed a common pattern of lipid tail-amino acid interactions in two different data sources, crystal structures and molecular dynamics simulations. These interactions are largely explained by general lipophilicity, whereas the preferences for lipid head groups vary among individual proteins. We also found that membrane and water-soluble proteins utilize essentially an identical set of amino acids for interacting with lipid head and tail groups. We showed that the lipophilicity of amino acid residues determines the amino acid preferences for lipid tail groups in both membrane and water-soluble proteins, suggesting that tightly-bound lipid molecules and lipids in the annular shell interact with membrane proteins in a similar manner. In contrast, interactions between lipid head groups and amino acids showed a more variable pattern, apparently constrained by each protein's specific molecular function

  10. Pyrolysis of amino acids - Mechanistic considerations

    Science.gov (United States)

    Ratcliff, M. A., Jr.; Medley, E. E.; Simmonds, P. G.

    1974-01-01

    Pyrolysis of several structurally different amino acids in a column at 500 C showed differences in the mechanisms and final products. The aliphatic protein amino acids decompose mainly by simple decarboxylation and condensation reactions, while the beta amino acids undergo deamination to unsaturated acids. Alpha amino acids with alpha alkyl substituents undergo an unusual intramolecular SN1 reaction with the formation of an intermediate alpha lactone which decomposes to yield a ketone. The alpha alkyl substituents appear to stabilize the developing negative charge formed by partial heterolytic cleavage of the alpha carbon - NH3 bond. The gamma and delta amino acids give 2-pyrrolidinone and 2-piperidone respectively, while the epsilon acids yield mixed products.

  11. Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films

    Science.gov (United States)

    Lu, Yunhua; Hao, Jican; Xiao, Guoyong; Chen, Lin; Wang, Tonghua; Hu, Zhizhi

    2017-11-01

    The pure light-colored and transparent polyimide (PI) film was prepared from aromatic dianhydride 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and diamine 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) in the solvent of DMAc via two-step method. Graphene oxide (GO) was in situ grafted with 6FAPB and directly used as a functional inorganic nanofiller to further synthesize poly(amic acid) (PAA)/GO solution. Then, PI/GO composite films with different loadings of GO were prepared by the thermal imidization. The mechanical, thermal, optical, electrical, surface properties, and electrochemical behavior were characterized. The FTIR and XPS results indicate that amino groups can be successfully grafted on the surface of GO. The tensile strength and Young's modulus of the PI-1.0%GO composite film were increased to 118.4 MPa and 2.91 GPa, respectively, which was an approximate improvement of 30.8% and 39.9% compared with pure PI film. These PI/GO composites showed around 256 °C for the glass transition temperature, and around 535 °C for the 5% thermal decomposition temperature, respectively. However, the optical transmittance was significantly decreased from 81.5% (pure PI) to 0.8% (PI-1.0%GO). Besides, the electrical conductivity increased from 1.6 × 10-13 S/m (pure PI) to 2.5 × 10-9 S/m (PI-1.0%GO). Furthermore, when the incorporation of GO was 1.0 wt%, an obvious reduction from 1.08% (pure PI) to 0.65% in the water uptake was observed for the PI/GO composite films, and the water surface contact angle raised from 72.5° (pure PI) to 83.5°. The electrochemical behavior showed that the ability of oxygen atom on the imide ring to gain and loss electron was increased due to incorporation of GO. These results indicated that the strong interfacial interaction between GO and PAA as well as uniform dispersion of GO in PI matrix were benefit to improve the mechanical, thermal, electrical properties and so on. The in situ amino-functionalized approach

  12. Gustatory sensation of (L)- and (D)-amino acids in humans.

    Science.gov (United States)

    Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo

    2012-12-01

    Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).

  13. Genetics of Amino Acid Taste and Appetite.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. © 2016 American Society for Nutrition.

  14. Maternal effects and maternal selection arising from variation in allocation of free amino acid to eggs

    Science.gov (United States)

    Newcombe, Devi; Hunt, John; Mitchell, Christopher; Moore, Allen J

    2015-01-01

    Maternal provisioning can have profound effects on offspring phenotypes, or maternal effects, especially early in life. One ubiquitous form of provisioning is in the makeup of egg. However, only a few studies examine the role of specific egg constituents in maternal effects, especially as they relate to maternal selection (a standardized selection gradient reflecting the covariance between maternal traits and offspring fitness). Here, we report on the evolutionary consequences of differences in maternal acquisition and allocation of amino acids to eggs. We manipulated acquisition by varying maternal diet (milkweed or sunflower) in the large milkweed bug, Oncopeltus fasciatus. Variation in allocation was detected by examining two source populations with different evolutionary histories and life-history response to sunflower as food. We measured amino acids composition in eggs in this 2 × 2 design and found significant effects of source population and maternal diet on egg and nymph mass and of source population, maternal diet, and their interaction on amino acid composition of eggs. We measured significant linear and quadratic maternal selection on offspring mass associated with variation in amino acid allocation. Visualizing the performance surface along the major axes of nonlinear selection and plotting the mean amino acid profile of eggs from each treatment onto the surface revealed a saddle-shaped fitness surface. While maternal selection appears to have influenced how females allocate amino acids, this maternal effect did not evolve equally in the two populations. Furthermore, none of the population means coincided with peak performance. Thus, we found that the composition of free amino acids in eggs was due to variation in both acquisition and allocation, which had significant fitness effects and created selection. However, although there can be an evolutionary response to novel food resources, females may be constrained from reaching phenotypic optima with

  15. Amphoteric surface active agents

    OpenAIRE

    Eissa, A.M. F.

    1995-01-01

    2-[trimethyl ammonium, triethyl ammonium, pyridinium and 2-amino pyridinium] alkanoates, four series of surface active agents containing carbon chain C12, C14, C16 and C18carbon atoms, were prepared. Their structures were characterized by microanalysis, infrared (IR) and nuclear magnetic resonance (NMR). Surface and interfacial tension, Krafft point, wetting time, emulsification power, foaming height a...

  16. Controlling Gel Structure to Modulate Cell Adhesion and Spreading on the Surface of Microcapsules.

    Science.gov (United States)

    Zheng, Huizhen; Gao, Meng; Ren, Ying; Lou, Ruyun; Xie, Hongguo; Yu, Weiting; Liu, Xiudong; Ma, Xiaojun

    2016-08-03

    The surface properties of implanted materials or devices play critical roles in modulating cell behavior. However, the surface properties usually affect cell behaviors synergetically so that it is still difficult to separately investigate the influence of a single property on cell behavior in practical applications. In this study, alginate-chitosan (AC) microcapsules with a dense or loose gel structure were fabricated to understand the effect of gel structure on cell behavior. Cells preferentially adhered and spread on the loose gel structure microcapsules rather than on the dense ones. The two types of microcapsules exhibited nearly identical surface positive charges, roughness, stiffness, and hydrophilicity; thus, the result suggested that the gel structure was the principal factor affecting cell behavior. X-ray photoelectron spectroscopy analyses demonstrated that the overall percentage of positively charged amino groups was similar on both microcapsules. The different gel structures led to different states and distributions of the positively charged amino groups of chitosan, so we conclude that the loose gel structure facilitated greater cell adhesion and spreading mainly because more protonated amino groups remained unbound and exposed on the surface of these microcapsules.

  17. Isolation of 3-amino-4-nitrobenzyl acetate: evidence of an undisclosed impurity in 5-amino-2-nitrobenzoic acid

    Directory of Open Access Journals (Sweden)

    Brandon Quillian

    2015-06-01

    Full Text Available Yellow crystals of the title compound 3-amino-4-nitrobenzyl acetate, C9H10N2O4, were isolated from the reaction of acetic anhydride with (5-amino-2-nitrophenylmethanol, prepared from reduction of commerically available 5-amino-2-nitrobenzoic acid with borane–THF. The molecule is essentially planar (r.m.s. deviation = 0.028 Å. The molecules are linked by intermolecular N—H...O hydrogen-bonding interactions between the carbonyl and amine groups, forming a zigzag chain along the b-axis direction lying in a plane parallel to (-102. The chains are stacked along the c axis by π–π interactions [centroid–centroid distances = 3.6240 (3 and 3.5855 (4 Å]. A strong intramolecular N—H...O hydrogen-bonding interaction is observed between the nitro group and the amine group [2.660 (2 Å].

  18. New enzymatic method of chiral amino acid synthesis by dynamic kinetic resolution of amino acid amides: use of stereoselective amino acid amidases in the presence of alpha-amino-epsilon-caprolactam racemase.

    Science.gov (United States)

    Yamaguchi, Shigenori; Komeda, Hidenobu; Asano, Yasuhisa

    2007-08-01

    D- and L-amino acids were produced from L- and D-amino acid amides by D-aminopeptidase from Ochrobactrum anthropi C1-38 and L-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of alpha-amino-epsilon-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides.

  19. Facile fabrication of siloxane @ poly (methylacrylic acid) core-shell microparticles with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zheng-Bai; Tai, Li; Zhang, Da-Ming; Jiang, Yong, E-mail: yj@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2017-02-15

    Siloxane @ poly (methylacrylic acid) core-shell microparticles with functional groups were prepared by a facile hydrolysis-condensation method in this work. Three different silane coupling agents 3-methacryloxypropyltrimethoxysilane (MPS), 3-triethoxysilylpropylamine (APTES), and 3-glycidoxypropyltrimethoxysilane (GPTMS) were added along with tetraethoxysilane (TEOS) into the polymethylacrylic acid (PMAA) microparticle ethanol dispersion to form the Si@PMAA core-shell microparticles with different functional groups. The core-shell structure and the surface special functional groups of the resulting microparticles were measured by transmission electron microscopy and FTIR. The sizes of these core-shell microparticles were about 350–400 nm. The corresponding preparation conditions and mechanism were discussed in detail. This hydrolysis-condensation method also could be used to functionalize other microparticles which contain active groups on the surface. Meanwhile, the Si@PMAA core-shell microparticles with carbon-carbon double bonds and amino groups have further been applied to prepare hydrophobic coatings.

  20. Spherical Surfaces

    DEFF Research Database (Denmark)

    Brander, David

    2016-01-01

    We study surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give...