Sample records for surface agricultural soils

  1. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A


    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  2. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. (United States)

    Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Yasmeen, Tahira; Ashraf, Muhammad; Siddique, Muhammad; Mubarik, Muhammad Salman; Bragazza, Luca; Buttler, Alexandre


    A field study was conducted to test the potential of 5-year consecutive application of fresh industrial sludge (FIS) and composted industrial sludge (CIS) to restore soil functions at surface (0-15cm) and subsurface (15-30cm) of the degraded agricultural land. Sludge amendments increased soil fertility parameters including total organic carbon (TOC), soil available nitrogen (SAN), soil available phosphorus (SAP) and soil available potassium (SAK) at 0-15cm depth. Soil enzyme activities i.e. dehydrogenase (DHA), β-glucosidase (BGA) and alkaline phosphatase (ALp) were significantly enhanced by FIS and CIS amendments in surface soil. However, urease activity (UA) and acid phosphatase (ACp) were significantly reduced compared to control soil. The results showed that sludge amendments significantly increased microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) at both soil depth, and soil microbial biomass carbon (MBC) only at 0-15cm depth. Significant changes were also observed in the population of soil culturable microflora (bacteria, fungi and actinomycetes) with CIS amendment in surface soil suggesting persistence of microbial activity owing to the addition of organic matter source. Sludge amendments significantly reduced soil heavy metal concentrations at 0-15cm depth, and the effect was more pronounced with CIS compared to unamended control soil. Sludge amendments generally had no significant impact on soil heavy metal concentrations in subsoil. Agronomic viability test involving maize was performed to evaluate phytotoxicity of soil solution extract at surface and sub-surface soil. Maize seeds grown in solution extract (0-15cm) from sludge treated soil showed a significant increase of relative seed germination (RSG), relative root growth (RRG) and germination index (GI). These results suggested that both sludge amendments significantly improved soil properties, however, the CIS amendment was relatively more effective in restoring soil functions

  3. Organic matter composition of soil macropore surfaces under different agricultural management practices (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.


    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  4. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.


    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  5. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam


    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Spatial Scaling Assessment of Surface Soil Moisture Estimations Using Remotely Sensed Data for Precision Agriculture (United States)

    Hassan Esfahani, L.; Torres-Rua, A. F.; Jensen, A.; McKee, M.


    Airborne and Landsat remote sensing are promising technologies for measuring the response of agricultural crops to variations in several agricultural inputs and environmental conditions. Of particular significance to precision agriculture is surface soil moisture, a key component of the soil water balance, which addresses water and energy exchanges at the surface/atmosphere interface and affects vegetation health. Its estimation using the spectral reflectance of agricultural fields could be of value to agricultural management decisions. While top soil moisture can be estimated using radiometric information from aircraft or satellites and data mining techniques, comparison of results from two different aerial platforms might be complicated because of the differences in spatial scales (high resolution of approximately 0.15m versus coarser resolutions of 30m). This paper presents a combined modeling and scale-based approach to evaluate the impact of spatial scaling in the estimation of surface soil moisture content derived from remote sensing data. Data from Landsat 7 ETM+, Landsat 8 OLI and AggieAirTM aerial imagery are utilized. AggieAirTM is an airborne remote sensing platform developed by Utah State University that includes an autonomous Unmanned Aerial System (UAS) which captures radiometric information at visual, near-infrared, and thermal wavebands at spatial resolutions of 0.15 m or smaller for the optical cameras and about 0.6 m or smaller for the thermal infrared camera. Top soil moisture maps for AggieAir and Landsat are developed and statistically compared at different scales to determine the impact in terms of quantitative predictive capability and feasibility of applicability of results in improving in field management.

  7. Agriculture: Soils (United States)

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  8. Agricultural contamination in soil-groundwater-surface water systems in the North China Plain

    DEFF Research Database (Denmark)

    Brauns, Bentje

    of China’s main agricultural production zones, accounting for about one third of the national grain output. The dominant crop system is a winter wheat and summer maize rotation. Beginning in the 1980s, in an effort to increase agricultural productivity, China’s government heavily promoted the use....... Additionally, nitrate was infiltrating from the surface of the field into the aquifer. Anammox, denitrification, and cation exchange were the suggested dominant removal processes in the soil-surface water-groundwater system examined in this study, which showed a very high nitrogen removal capacity. However......, if the composition of the river water were to change (if, for instance, the ammonium concentration were to decrease) the removal processes in the system would also be altered. Consequently, further monitoring of nitrate pollution is suggested. Regarding pesticides, a literature review and data assessment revealed...

  9. Directional reflectance factors for monitoring spatial changes in soil surface structure and soil organic matter erosion in agricultural systems (United States)

    Croft, H.; Anderson, K.


    Soils can experience rapid structural degradation in response to land cover changes, resulting in reduced soil productivity, increased erodibility and a loss of soil organic matter (SOM). The breakdown of soil aggregates through slaking and raindrop impact is linked to organic matter turnover, with subsequently eroded material often displaying proportionally more SOM. A reduction in aggregate stability is reflected in a decline in soil surface roughness (SSR), indicating that a soil structural change can be used to highlight soil vulnerability to SOM loss through mineralisation or erosion. Accurate, spatially-continuous measurements of SSR are therefore needed at a variety of spatial and temporal scales to understand the spatial nature of SOM erosion and deposition. Remotely-sensed data can provide a cost-effective means of monitoring changes in soil surface condition over broad spatial extents. Previous work has demonstrated the ability of directional reflectance factors to monitor soil crusting within a controlled laboratory experiment, due to changes in the levels of self-shadowing effects by soil aggregates. However, further research is needed to test this approach in situ, where other soil variables may affect measured reflectance factors and to investigate the use of directional reflectance factors for monitoring soil erosion processes. This experiment assesses the potential of using directional reflectance factors to monitor changes in SSR, aggregate stability and soil organic carbon (SOC) content for two agricultural conditions. Five soil plots representing tilled and seedbed soils were subjected to different durations of natural rainfall, producing a range of different levels of SSR. Directional reflectance factors were measured concomitantly with sampling for soil structural and biochemical tests at each soil plot. Soil samples were taken to measure aggregate stability (wet sieving), SOC (loss on ignition) and soil moisture (gravimetric method). SSM

  10. Evaluation of two microwave surface distribution systems designed for substratum and agricultural soil disinfection

    International Nuclear Information System (INIS)

    Velázquez Martí, B.; Gracia López, C.


    Heat treatment by microwave for soil disinfection may represent an alternative to chemical treatments. One of the main problems in the design of microwave applicators for agricultural soil disinfection is to achieve a homogeneous surface energy distribution. This work has been carried out in order to evaluate two systems which can solve this problem: the first one is based on the use of a slotted waveguide and the other is based on overlapping the radiation of several magnetrons working simultaneously. Initially, the systems were modelled using an algorithm based on Maxwell equations in order to give a first overview of the system functioning. In a second step, the models were validated by comparison with thermal maps obtained empirically. As a consequence of this work we propose a redesign of the slotted waveguide system to improve the homogeneity of the temperature distribution over a large radiation area. The overlapping system gave adequate homogeneity for commercial purposes [es

  11. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study (United States)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  12. Soil physics and agriculture

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Reichardt, K.; Sparovek, G.


    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  13. Contribution of Heavy Metal Leaching from Agricultural Soils to Surface Water Loads

    NARCIS (Netherlands)

    Bonten, L.T.C.; Romkens, P.F.A.M.; Brus, D.J.


    Point sources for surface water contamination have been reduced by 50 to 90% during the past decades in The Netherlands. However, quality guidelines for heavy metals are still exceeded in many surface waters. It has been suggested that leaching of heavy metals from (diffusively polluted) soils can

  14. Influence and modelling of view angles and microrelief on surface temperature measurements of bare agricultural soils (United States)

    Verbrugghe, Michel; Cierniewski, Jerzy

    The exploitation of remote sensing instruments with large fields of view necessarily implies the analysis of instruments acquired over a wide variety of viewing geometries. The purpose of this study is to underline the effects of view angles and microrelief on the directional surface temperature measurements of cultivated bare soils. A campaign of measurements was carried out at Poznan (Poland) in April 1995. The directional temperatures were measured on a furrowed sandy soil. The measurements were acquired at ground level with a radiothermometer in the 8-14 μm band. The radiothermometer was fixed on a special goniometric support 2.1 m above the soil surface and was directed at the soil with view zenith angles varying from -60° to +60° by steps of 10°. The data were collected for solar zenith angles ranging from 40.2° to 62.3°. In the experiment, for a given sun position, the difference between oblique and nadir measurements could reach 6°C. A model aimed at explaining the variations of the surface temperature measurements of furrowed soil in relation to its viewing conditions is presented. This model requires the precise soil microrelief geometry configuration, the illumination and viewing conditions of the surface and the radiative temperatures of the shaded and sunlit soil facets. The results show a good correlation between the predicted and the measured data. This type of modelling can be used to correct radiative temperature measurements of soils from view angles and soil microrelief geometry effects.

  15. Linking soil biodiversity and agricultural soil management

    NARCIS (Netherlands)

    Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C.


    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend

  16. Near Surface Investigation of Agricultural Soils using a Multi-Frequency Electromagnetic Sensor (United States)

    Sadatcharam, K.; Unc, A.; Krishnapillai, M.; Cheema, M.; Galagedara, L.


    Electromagnetic induction (EMI) sensors have been used as precision agricultural tools over decades. They are being used to measure spatiotemporal variability of soil properties and soil stratification in the sense of apparent electrical conductivity (ECa). We mapped the ECa variability by horizontal coplanar (HCP) and by vertical coplanar (VCP) orientation of a multi-frequency EMI sensor and identified its interrelation with physical properties of soil. A broadband, multi-frequency handheld EMI sensor (GEM-2) was used on a loamy sand soil cultivated with silage-corn in western Newfoundland, Canada. Log and line spaced, three frequency ranges (weak, low, and high), based on the factory calibration were tested using HCP and VCP orientation to produce spatiotemporal data of ECa. In parallel, we acquired data on soil moisture content, texture and bulk density. We then assessed the statistical significance of the relationship between ECa and soil physical properties. The test site had three areas of distinct soil properties corresponding to the elevation, in particular. The same spatial variability was also identified by ECa mapping at different frequencies and the two modes of coil orientations. Data analysis suggested that the high range frequency (38 kHz (log-spaced) and 49 kHz (line-spaced)) for both HCP and VCP orientations produced accurate ECa maps, better than the weak and low range frequencies tested. Furthermore, results revealed that the combined effects of soil texture, moisture content and bulk density affect ECameasurements as obtained by both frequencies and two coil orientations. Keywords: Apparent electrical conductivity, Electromagnetic induction, Horizontal coplanar, Soil properties, Vertical coplanar

  17. Surface irrigation reduces the emission of volatile 1,3-dichloropropene from agricultural soils. (United States)

    Ashworth, D J; Yates, S R


    Low-cost, practicable techniques are required to limit the release of volatile organic compound-containing fumigants such as 1,3-D to the atmosphere. In this study, we aimed to quantify 1,3-D diffusion and emission from laboratory soil columns maintained under realistic conditions and thereby assess the efficacy of soil irrigation as a technique for reducing emissions. In two soils (one relatively high, and one relatively low, in organic matter), irrigation led to a limiting of upward diffusion of the fumigant and to the maintenance of higher soil gas concentrations. Therefore, rather than being emitted from the column, the 1,3-D was maintained in the soil where it was ultimately degraded. As a consequence, emission of 1,3-D from the irrigated columns was around half of thatfrom the nonirrigated columns. It is concluded that surface irrigation represents an effective, low-cost, and readily practicable approach to lessening the environmental impact of 1,3-D fumigant use. In addition, the higher organic matter soil exhibited emissions of around one-fifth of the lower organic matter soil in both irrigated and nonirrigated treatments, due to markedly enhanced degradation of the fumigant. Organic matter amendment of soils may, therefore, also represent an extremely effective, relatively low-cost approach to reducing 1,3-D emissions.

  18. Food, soil, and agriculture

    International Nuclear Information System (INIS)

    Bommer, D.F.R.; Hrabovszky, J.P.


    The growing pressures on the world's land resources will result in problems requiring a major research effort.The first group of problems relates to increased soil degradation. The research to alleviate this will have to incorporate not only physical and biological solutions, but also pay much more attention to the socio-economic context in which the conservation programmes need to succeed.The second major area for research on land resource is to make better use of low-capacity or problem soils.This could be by reducing the existing limitations, such as changing physical or chemical characteristics of the soil, or by developing plants and production techniques which reduce the detrimental effects of constraints. Example of these are acidity, salinity, and aluminium toxicity. Finally the broadest and more important area is that of research to enable more intensive use of better-quality land. Research topics here may relate to optimal plant nutrient management, soil moisture management, and developing cultivation techniques with minimum commercial energy requirements. Making plants more productive will involve research aimed at increasing photosynthetic efficiency, nitrogen fixation, disease and pest resistance, improved weed control, and bio-engineering to adjust plant types to maximize production potentials. Improved rotational systems for the achievement of many of the above goals will become increasingly important, as the potential problems or inappropriate cultivation practices become evident. In conclusion, food supplies of the world could meet the rapidly rising demands that are made on them, if agriculture receives sufficient attention and resources. Even with most modern development, land remains the base for agriculture, and optimal use of the world's land resources is thus crucial for future agricultural production

  19. Soil Erosion and Agricultural Sustainability (United States)

    Montgomery, D. R.


    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  20. Soil erosion and agricultural sustainability


    Montgomery, David R.


    Data drawn from a global compilation of studies quantitatively confirm the long-articulated contention that erosion rates from conventionally plowed agricultural fields average 1–2 orders of magnitude greater than rates of soil production, erosion under native vegetation, and long-term geological erosion. The general equivalence of the latter indicates that, considered globally, hillslope soil production and erosion evolve to balance geologic and climate forcing, whereas conventional plow-bas...

  1. Using satellite data on meteorological and vegetation characteristics and soil surface humidity in the Land Surface Model for the vast territory of agricultural destination (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander


    The model of water and heat exchange between vegetation covered territory and atmosphere (LSM, Land Surface Model) for vegetation season has been developed to calculate soil water content, evapotranspiration, infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat balances components as well as soil surface and vegetation cover temperatures and depth distributions of moisture and temperature. The LSM is suited for utilizing satellite-derived estimates of precipitation, land surface temperature and vegetation characteristics and soil surface humidity for each pixel. Vegetation and meteorological characteristics being the model parameters and input variables, correspondingly, have been estimated by ground observations and thematic processing measurement data of scanning radiometers AVHRR/NOAA, SEVIRI/Meteosat-9, -10 (MSG-2, -3) and MSU-MR/Meteor-M № 2. Values of soil surface humidity has been calculated from remote sensing data of scatterometers ASCAT/MetOp-A, -B. The case study has been carried out for the territory of part of the agricultural Central Black Earth Region of European Russia with area of 227300 km2 located in the forest-steppe zone for years 2012-2015 vegetation seasons. The main objectives of the study have been: - to built estimates of precipitation, land surface temperatures (LST) and vegetation characteristics from MSU-MR measurement data using the refined technologies (including algorithms and programs) of thematic processing satellite information matured on AVHRR and SEVIRI data. All technologies have been adapted to the area of interest; - to investigate the possibility of utilizing satellite-derived estimates of values above in the LSM including verification of obtained estimates and development of procedure of their inputting into the model. From the AVHRR data there have been built the estimates of precipitation, three types of LST: land skin temperature Tsg, air temperature at a level of

  2. Agriculture on Mars: Soils for Plant Growth (United States)

    Ming, D. W.


    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  3. The method of determining surface water erosion influence on agricultural valorization of soils with usage of geoprocessing techniques and spatial information systems

    Directory of Open Access Journals (Sweden)

    Prus Barbara


    Full Text Available The aim of the paper is to propose methodical solutions concerning synthetic agricultural analysis of production space which consists in combined (synthetic – in spatial and statistical contexts – analysis and evaluation of quality and farming utility of soils in connection with soils erosive risk level. The paper is aimed at presentation of methodology useful in such type of analyses as well as demonstration to what extent the areas of farming production space being subject to restrictive protection are exposed to destructive effect of surface water erosion. Own factor (HDSP.E was suggested, which is a high degree synthesis of soil protection in connection with degrees of surface water erosion risk. The proposed methodology was used for detailed spatial analyses performed for Tomice – the Małopolska rural commune (case study. The area model elaborated for the proposed methodology’s purpose faced with soils mechanical composition allowed to make a model of surface water erosion in five-grade scale. Synthetic evaluation (product of spatial objects on numerous thematic layers of quality and farming utility of soils and also zones of surface water erosion risk allowed to assign spatial distribution of HDSP.E factor (abbreviation of high degree of soil protection combined with erosion. The analyses enabled to determine proportional contribution of the most valuable resources of farming production space that are subject to soil erosion negative phenomenon. Geoprocessing techniques used for the analyses of environmental elements of farming production space were applied in the paper. The analysis of spatial distribution of researched phenomena was elaborated in Quantum GIS programme.

  4. VT Data - Agriculturally Important Soil Units (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GeologicSoils_SOAG includes a pre-selected subset of SSURGO soil data depicting prime agricultural soils in Vermont. The SSURGO county coverages...

  5. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)


    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  6. SMAPVEX12 Surface Roughness Data for Agricultural Area V001 (United States)

    National Aeronautics and Space Administration — This data set contains surface roughness data collected at several agricultural sites as a part of the Soil Moisture Active Passive Validation Experiment 2012...

  7. Soil management: The key to soil quality and sustainable agriculture (United States)

    Basch, Gottlieb; Barão, Lúcia; Soares, Miguel


    Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as

  8. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...

  9. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.


    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  10. Connections among soil, ground, and surface water chemistries characterize nitrogen loss from an agricultural landscape in the upper Missouri River Basin (United States)

    Sigler, W. Adam; Ewing, Stephanie A.; Jones, Clain A.; Payn, Robert A.; Brookshire, E. N. Jack; Klassen, Jane K.; Jackson-Smith, Douglas; Weissmann, Gary S.


    Elevated nitrate in shallow aquifers is common in agricultural areas and remediation requires an understanding of nitrogen (N) leaching at a variety of spatial scales. Characterization of the drivers of nitrate leaching at the mesoscale level (102-103 km2) is needed to bridge from field-scale observations to the landscape-scale context, allowing informed water resource management decisions. Here we explore patterns in nitrate leaching rates across a depositional landform in the northern Great Plains within the Upper Missouri Basin, where the predominant land use is non-irrigated small grain production, and nitrate-N concentrations above 10 mg L-1 are common. The shallow Moccasin terrace (260 km2) aquifer is bounded in vertical extent by underlying shale and is isolated from mountain front stream recharge, such that aquifer recharge is dominated by infiltration of precipitation through agricultural soils. This configuration presents a simple landform-scale water balance that we leveraged to estimate leaching rates using groundwater nitrate concentrations and surface water discharge, and quantify uncertainty using a Monte Carlo approach based on spatial variation in observations of groundwater nitrate concentrations. A participatory research approach allowed local farmer knowledge of the landscape to be incorporated into the study design, improved selection of and access to sample sites, and enhanced prospects for addressing nitrate leaching through collaborative understanding of system hydrology. Mean landform-scale nitrate-N leaching rates were 11 and 18 kg ha-1 yr-1 during the 2012-2014 study for the two largest catchments draining the terrace. Over a standard three-year crop rotation, these leaching rates represent 19-31% of typical fertilizer N application rates; however, leaching losses are likely derived not only from fertilizer but also from soil organic N mineralization, and are apparently higher during the post-fallow phase of the crop rotation. Groundwater

  11. Estimation of bare soil surface temperature from air temperature and ...

    African Journals Online (AJOL)

    Soil surface temperature has critical influence on climate, agricultural and hydrological activities since it serves as a good indicator of the energy budget of the earth's surface. Two empirical models for estimating soil surface temperature from air temperature and soil depth temperature were developed. The coefficient of ...

  12. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.


    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  13. Intensive agriculture reduces soil biodiversity across Europe

    Czech Academy of Sciences Publication Activity Database

    Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; Van der Putten, W. H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; Bjornlund, L.; Bracht Jorgensen, H.; Christensen, S.; Hertefeldt, T.D.; Hotes, S.; Hol, W.H.G.; Frouz, Jan; Liiri, M.; Mortimer, S. R.; Setälä, H.; Tzanopoulos, J.; Uteseny, K.; Pižl, Václav; Starý, Josef; Wolters, V.; Hedlund, K.


    Roč. 21, č. 2 (2015), s. 973-985 ISSN 1354-1013 Institutional support: RVO:60077344 Keywords : agricultural intensification * body mass * ecosystem services * functional groups * soil food web Subject RIV: EH - Ecology, Behaviour Impact factor: 8.444, year: 2015

  14. Observation of soil moisture variability in agricultural and grassland field soils using a wireless sensor network (United States)

    Priesack, Eckart; Schuh, Max


    Soil moisture dynamics is a key factor of energy and matter exchange between land surface and atmosphere. Therefore long-term observation of temporal and spatial soil moisture variability is important in studying impacts of climate change on terrestrial ecosystems and their possible feedbacks to the atmosphere. Within the framework of the network of terrestrial environmental observatories TERENO we installed at the research farm Scheyern in soils of two fields (of ca. 5 ha size each) the SoilNet wireless sensor network (Biogena et al. 2010). The SoilNet in Scheyern consists of 94 sensor units, 45 for the agricultural field site and 49 for the grassland site. Each sensor unit comprises 6 SPADE sensors, two sensors placed at the depths 10, 30 and 50 cm. The SPADE sensor ( GmbH, Horn-Bad Meinberg Germany) consists of a TDT sensor to estimate volumetric soil water content from soil electrical permittivity by sending an electromagnetic signal and measuring its propagation time, which depends on the soil dielectric properties and hence on soil water content. Additionally the SPADE sensor contains a temperature sensor (DS18B20). First results obtained from the SoilNet measurements at both fields sites will be presented and discussed. The observed high temporal and spatial variability will be analysed and related to agricultural management and basic soil properties (bulk density, soil texture, organic matter content and soil hydraulic characteristics).

  15. The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark) – A base for provenance studies in archaeology and agriculture

    DEFF Research Database (Denmark)

    Frei, Robert; Frei, Karin Margarita


    In this paper we report the Sr isotope signatures, and Sr, Al and Na concentrations of 30 surface waters (lakes/ponds and rivers/creeks) and 19 soil sample extracts from the island of Bornholm (Denmark) and present a categorized 87Sr/86Sr value distribution map that may serve as a base for proven...... and low 87Sr/86Sr values, and a source with lower [Sr] delivering radiogenic Sr to the surface waters, which we equate with Sr leached from the products of mineral weathering (soils)....

  16. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  17. Root Induced Heterogeneity In Agricultural Soils (United States)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.


    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  18. Agronomic potential of some agricultural wastes as surface mulches ...

    African Journals Online (AJOL)

    Studies were carried out at the Teaching and Research Farm of the University of Cape Coast, in the minor seasons of 1992 and 1993, to assess the agronomic potential of some common agricultural wastes as surface mulches in terms of weed control, nematode population in soil, root-knot incidence and growth and yield of ...

  19. Effect of integrating straw into agricultural soils on soil infiltration and evaporation. (United States)

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong


    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  20. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments

    NARCIS (Netherlands)

    Zhao, Longshan; Hou, Rui; Wu, Faqi; Keesstra, Saskia


    Agriculture has a large effect on the properties of the soil and with that on soil hydrology. The partitioning of rainfall into infiltration and runoff is relevant to understand runoff generation, infiltration and soil erosion. Tillage manages soil surface properties and generates soil surface

  1. Headcut erosive regimes influenced by groundwater on disturbed agricultural soils. (United States)

    Rockwell, D L


    A series of simulated rainfall experiments, testing several soils and slope gradients in a 10 m x 0.8m laboratory flume, displayed close correlations between initial development of a water table at a 10 cm depth and highly erosive headcut formation. On some soils and gradients, highly erosive headcuts formed consistently and predictably within minutes or seconds of initial water table rise. However, headcuts alone were not good indicators of increased erosion. In most experiments some headcuts formed early, often when surface hydraulic parameter values reached established rill initiation thresholds, but resulted in little or no erosion increase. Later, at initial water table rise, other headcuts formed coincident with major erosion increase, often with surface hydraulic values then less than rill initiation thresholds. On the four soils tested, highly erosive headcuts never formed without groundwater development, except on steep 9 ° slopes. Common visual indicators such as headcut morphology and headcut advance rates were not effective means of determining either erosion or the existence of groundwater. Only local monitoring of subsurface moisture conditions with micro-standpipes and TDR aided in determining headcut processes and erosive regimes. Groundwater-influenced headcut formation was likely caused by increased soil pore-water pressures and decreased soil shear strengths in surface rainflow, not by sapping or seepage from the soil matrix. Highly erosive headcuts can thus form under common agricultural conditions where reductions in permeability, such as plow pans, exist near the surface--without the need for saturated soils. Headcut erosive regimes were also significantly influenced by soil type and slope gradient, with the greatest effects of groundwater on moderate slopes and fairly permeable soils. Copyright © 2010. Published by Elsevier Ltd.

  2. Long-term fate of nitrate fertilizer in agricultural soils (United States)

    Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André


    Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere–hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three–decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61–65% of the applied fertilizers N were taken up by plants, whereas 12–15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8–12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of 15N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils. PMID:24145428

  3. Soil macronutrient sensing for precision agriculture. (United States)

    Kim, Hak-Jin; Sudduth, Kenneth A; Hummel, John W


    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destructive quantification of soil properties, including nutrient levels, has been possible with optical diffuse reflectance sensing. Another approach, electrochemical sensing based on ion-selective electrodes or ion-selective field effect transistors, has been recognized as useful in real-time analysis because of its simplicity, portability, rapid response, and ability to directly measure the analyte with a wide range of sensitivity. Current sensor developments and related technologies that are applicable to the measurement of soil macronutrients for SSCM are comprehensively reviewed. Examples of optical and electrochemical sensors applied in soil analyses are given, while advantages and obstacles to their adoption are discussed. It is proposed that on-the-go vehicle-based sensing systems have potential for efficiently and rapidly characterizing variability of soil macronutrients within a field.

  4. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)


    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  5. Soil Organic Carbon dynamics in agricultural soils of Veneto Region (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.


    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  6. Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs). (United States)

    Liu, Xueping; Zhang, Wenfeng; Hu, Yuanan; Hu, Erdan; Xie, Xiande; Wang, Lingling; Cheng, Hefa


    Animal wastes from concentrated animal feeding operations (CAFOs) can cause soil arsenic pollution due to the widespread use of organoarsenic feed additives. This study investigated the arsenic pollution of surface soils in a typical CAFO zone, in comparison with that of agricultural soils in the Pearl River Delta, China. The mean soil arsenic contents in the CAFO zone were elevated compared to those in the local background and agricultural soils of the Pearl River Delta region. Chemical speciation analysis showed that the soils in the CAFO zone were clearly contaminated by the organoarsenic feed additive, p-arsanilic acid (ASA). Transformation of ASA to inorganic arsenic (arsenite and arsenate) in the surface soils was also observed. Although the potential ecological risk posed by the arsenic in the surface soils was relatively low in the CAFO zone, continuous discharge of organoarsenic feed additives could cause accumulation of arsenic and thus deserves significant attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Metal contamination of agricultural soils in the copper mining areas ...

    Indian Academy of Sciences (India)

    Soma Giri


    Jun 7, 2017 ... monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution. Keywords. Agricultural soil; heavy metals; copper mining areas; multivariate analysis; geo-accumu- lation index; Nemerow index. 1. Introduction. The contamination of agricultural ...

  8. Modelling uranium leaching from agricultural soils to groundwater

    International Nuclear Information System (INIS)

    Jacques, D.


    Phosphate (P) fertilizers are typically applied annually to agricultural fields, partly in inorganic form.(e.g. Ca(H 2 PO 4 ) 2 ). Mineral P-fertilizers contain some natural alpha-activity due to the presence of 238 U (among other alpha emitters). Uranium concentrations in P-bearing fertilizers have been reported to be in the range of 300 to 9200 Bq kg -1 of fertilizer (for both 238 U and 234 U). The migration of U and other elements in soils depends on a large number of processes, including their interactions with other aqueous components and the solid phase (e.g., cation exchange, surface complexation) as well as time-variable water fluxes and water contents between the soil surface and the groundwater table. Predicting U transport hence requires an advanced reactive transport model integrating water flow, multiple solute transport and biogeochemical reactions. At SCK-CEN, a new reactive transport code for transient flow conditions, HP1, was recently developed. The HP1 code results from the coupling of the HYDRUS-1D water flow and solute transport model with the PHREEQC geochemical speciation model. The capabilities of the HP1 code are illustrated considering natural uranium leaching from agricultural soils to groundwater. The objectives of the study are (1) to provide insight into the complex system of interacting biogeochemical processes that govern uranium mobility in soils using a new state-of-the-art coupled transport model (HP1), with special emphasis on effects of the imposed water flow boundary condition (steady-state infiltration versus atmospheric) on the migration of U in an acid sandy soil profile, and (2) to use the calculated uranium fluxes from soils to groundwater as yardsticks or reference levels for alternative or complementary safety indicators such as radionuclide fluxes from surface repositories for low- and intermediate level short-lived waste

  9. 137Cesium and soil carbon in a small agricultural watershed

    International Nuclear Information System (INIS)

    Ritchie, J.C.; McCarty, G.W.


    Scientific, political, and social interests have developed recently in the concept of using agricultural soils to sequester carbon. Studies supporting this concept indicate that soil erosion and subsequent redeposition of eroded soils in the same field may establish an ecosystem disequilibrium that promotes the buildup of carbon on agricultural landscapes. The problem is to determine the patterns of soil erosion and redeposition on the landscape and to relate these to soil carbon patterns. Radioactive 137 cesium ( 137 Cs) can be used to estimate soil erosion patterns and, more importantly, redeposition patterns at the field level. The purpose of this study was to determine the relationship between 137 Cs, soil erosion, and soil carbon patterns on a small agricultural watershed. Profiles of soils from an upland area and soils in an adjacent riparian system were collected in 5 cm increments and the concentrations of 137 Cs and carbon were determined. 137 Cs and carbon were uniformly mixed in the upper 15-20 cm of upland soils. 137 Cs (Bq g -1 ) and carbon (%) in the upland soils were significantly correlated (r 2 =0.66). Carbon content of the 0-20 cm layer was higher (1.4±0.3%) in areas of soil deposition than carbon content (1.1±0.3%) in areas of soil erosion as determined by the 137 Cs technique. These data suggest that measurements of 137 Cs in the soils can be useful for understanding carbon distribution patterns in surface soil. Carbon content of the upland soils ranged from 0.5 to 1.9% with an average of 1.2±0.4% in the 0-20 cm layer while carbon below this upper tilled layer (20-30 cm) ranged from 0.2 to 1.5% with an average of 0.5±0.3%. Total carbon was 2.66 and 3.20 kg m -2 in the upper 20 cm and upper 30 cm of the upland soils, respectively. Carbon content of the 0-20 cm layer in the riparian system ranged from 1.1 to 67.0% with an average 11.7±17.1%. Carbon content below 20 cm ranged from 1.8 to 79.3% with an average of 18.3±17.5%. Soil carbon in the

  10. Effect of Humic Acids and pesticides on Agricultural Soil Structure and Stability and Its Implication on Soil Quality (United States)

    Gaonkar, O. D.; Nambi, I. M.; G, S. K.


    The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid, organophosphate pesticides and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids and pesticides. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment lead to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding the soil aggregation and the

  11. Neutron moisture gaging of agricultural soil

    International Nuclear Information System (INIS)

    Pospisil, S.; Janout, Z.; Kovacik, M.


    The design is described of a neutron moisture gage which consists of a measuring probe, neutron detector, small electronic recording device and a 241 Am-Be radionuclide source. The neutron detector consists of a surface barrier semiconductor silicon detector and a conversion layer of lithium fluoride. The detection of triton which is the reaction product of lithium with neutrons by the silicon detector is manifested as a voltage pulse. The detector has low sensitivity for fast neutrons and for gamma radiation and is suitable for determining moisture values in large volume samples. Verification and calibration measurements were carried out of chernozem, brown soil and podzolic soils in four series. The results are tabulated. Errors of measurement range between 0.8 to 1.0%. The precision of measurement could be improved by the calibration of the device for any type of soil. (E.S.). 4 tabs., 6 refs., 5 figs

  12. Sampling for Soil Carbon Stock Assessment in Rocky Agricultural Soils (United States)

    Beem-Miller, Jeffrey P.; Kong, Angela Y. Y.; Ogle, Stephen; Wolfe, David


    Coring methods commonly employed in soil organic C (SOC) stock assessment may not accurately capture soil rock fragment (RF) content or soil bulk density (rho (sub b)) in rocky agricultural soils, potentially biasing SOC stock estimates. Quantitative pits are considered less biased than coring methods but are invasive and often cost-prohibitive. We compared fixed-depth and mass-based estimates of SOC stocks (0.3-meters depth) for hammer, hydraulic push, and rotary coring methods relative to quantitative pits at four agricultural sites ranging in RF content from less than 0.01 to 0.24 cubic meters per cubic meter. Sampling costs were also compared. Coring methods significantly underestimated RF content at all rocky sites, but significant differences (p is less than 0.05) in SOC stocks between pits and corers were only found with the hammer method using the fixed-depth approach at the less than 0.01 cubic meters per cubic meter RF site (pit, 5.80 kilograms C per square meter; hammer, 4.74 kilograms C per square meter) and at the 0.14 cubic meters per cubic meter RF site (pit, 8.81 kilograms C per square meter; hammer, 6.71 kilograms C per square meter). The hammer corer also underestimated rho (sub b) at all sites as did the hydraulic push corer at the 0.21 cubic meters per cubic meter RF site. No significant differences in mass-based SOC stock estimates were observed between pits and corers. Our results indicate that (i) calculating SOC stocks on a mass basis can overcome biases in RF and rho (sub b) estimates introduced by sampling equipment and (ii) a quantitative pit is the optimal sampling method for establishing reference soil masses, followed by rotary and then hydraulic push corers.


    Directory of Open Access Journals (Sweden)

    Ioan GRAD


    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  14. Application of machine learning to agricultural soil data


    Sanjay Sirsat, Manisha


    Agriculture is a major sector in the Indian economy. One key advantage of classification and prediction of soil parameters is to save time of specialized technicians developing expensive chemical analysis. In this context, this PhD thesis has been developed in three stages: 1. Classification for soil data: we used chemical soil measurements to classify many relevant soil parameters: village-wise fertility indices; soil pH and type; soil nutrients, in order to recommend suitable amounts of ...

  15. Phosphorus accumulation and spatial distribution in agricultural soils in Denmark

    DEFF Research Database (Denmark)

    Rubæk, Gitte Holton; Kristensen, Kristian; Olesen, S E


    Over the past century, phosphorus (P) has accumulated in Danish agricultural soils. We examined the soil P content and the degree of P saturation in acid oxalate (DPS) in 337 agricultural soil profiles and 32 soil profiles from deciduous forests sampled at 0–0.25, 0.25–0.50, 0.50–0.75 and 0.75–1....

  16. Soil fungi for mycoremediation of arsenic pollution in agriculture soils. (United States)

    Singh, M; Srivastava, P K; Verma, P C; Kharwar, R N; Singh, N; Tripathi, R D


    Soil arsenic (As) contamination of food-chains and public health can be mitigated through fungal bioremediation. To enumerate culturable soil fungi, soils were collected from the As-contaminated paddy fields (3-35 mg kg(-1) ) of the middle Indo-Gangetic Plains. Total 54 fungal strains were obtained and identified at their molecular level. All strains were tested for As tolerance (from 100 to 10,000 mg l(-1) arsenate). Fifteen fungal strains, tolerant to 10,000 mg l(-1) arsenate, were studied for As removal in-vivo for 21 days by cultivating them individually in potato dextrose broth enriched with 10 mg l(-1) As. The bioaccumulation of As in fungal biomass ranged from 0·023 to 0·259 g kg(-1). The biovolatilized As ranged from 0·23 to 6·4 mg kg(-1). Higher As bioaccumulation and biovolatilization observed in the seven fungal strains, Aspergillus oryzae FNBR_L35; Fusarium sp. FNBR_B7, FNBR_LK5 and FNBR_B3; Aspergillus nidulans FNBR_LK1; Rhizomucor variabilis sp. FNBR_B9; and Emericella sp. FNBR_BA5. These fungal strains were also tested and found suitable for significant plant growth promotion in the calendula, withania and oat plants in a greenhouse based pot experiment. These fungal strains can be used for As remediation in As-contaminated agricultural soils. © 2015 The Society for Applied Microbiology.

  17. Long-term consequences of radioactive surface contamination in agriculture

    International Nuclear Information System (INIS)

    Haak, E.


    Based on agricultural statistics of crop and animal produce for 1981, and on transfer coefficients, as obtained from long-term Swedish field experiments and the literature, the transfer of 137-Cs and 90-Sr within the chain: Soil crop - food, and the chain: soil - crop - animal - food was estimated for an average km 2 of farming land in nine different countries, with the assumption that 1 TBq had been deposited at a single event and remained near the surface of grass fields and/or had been incorporated into the plough layer of arable soils prior to reuse after a nuclear accident. Calculations are given in detail, and the results are discussed as regards the situation of unchanged farming and soil management practices. The transfer of the two nuclides from soil to different vectors within the two chains was shown to vary among the countries, due to differences in soil, use of pasture and an arable land, as well as current plant and animal produce. The transfer of nuclides from fodder to food is effectively reduced by the animal link and more so for strontium than for cesium. The contamination recirculates back to the soil. The effect of corrective measures to reduce nuclide transfer from soil to food, by changed fertilizer and soil management practices as well as changes from current farming systems to pig or beef cattle

  18. Finite Element Method Study on Stress State in Soil Induced by Agricultural Traffic

    Directory of Open Access Journals (Sweden)

    Adrian Molnar-Irimie


    Full Text Available In general, when a tyre is running on a deformable soil, the soil compaction will occur not only on surface layers, but also on soil profile, in deeper layers. This leads to a series of negative effects not only on physical and mechanical properties of soil, but also influences the crops growth and the crop yield. For these reasons, currently are needed solutions to reduce soil compaction, caused mainly by agricultural implements passing on the soil surface in order to aply the specific crop production technologies. From our simulation we can draw the following conclusions: the soil stresses decreased with depth; the soil displacements magnitude increased with soil water content due to lower friction forces between soil particles (water acts like a lubricant between soil particles; decreasing rate for soil displacement is influenced by load magnitude and tyre inflation pressure; the soil particles moved in vertical plain from the top to the bottom, but also in horizontal direction, from the center to the edge in cross section and in longitudinal direction; the dimensions of the geometric shape of the mentioned soil volume is influenced by load and tyre inflation pressure. In this paper the agricultural traffic and its influence on stress state in soil, it was used a software application based on Finite Element Method, that has been proved to be a useful tool for soil compaction assessment in order to find the right decisions for a proper field traffic management.

  19. Evaluating the effects of agricultural practices on soil conservation ...

    African Journals Online (AJOL)

    The main crops were maize, ginger, garden pea, cabbage and mulberry. The objective of the study was to contribute a simple method to evaluate the effect of different agricultural practices on the resistance of soil to erosion. Different agricultural practices were studied on similar relief and soil, and under similar weather ...

  20. Optimum soil frost depth to alleviate climate change effects in cold region agriculture (United States)

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi


    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  1. Optimum soil frost depth to alleviate climate change effects in cold region agriculture. (United States)

    Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi


    On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.

  2. Trace metal enrichment in agricultural soils of Jianghan Plain (United States)

    Zhao, R.; Ying, S.; Daniel, J. N.; Bu, J.; Gan, Y.; Wang, Y.; Schaefer, M.; Fendorf, S. E.


    Coal consumption in China is increasing annually due to constantly rising energy demand. As a result, a massive amount of coal combustion byproducts, particularly in the form of fly ash, are expelled from power plants and distributed through atmospheric transport. The fly ash is eventually deposited on to land, potentially contaminating agricultural soils. Coal fly ash contains high concentration of a suite of toxic trace metals including lead, chromium, and arsenic. In this study, we surveyed the concentration of trace metals in agricultural soils at 131 sites within a 20 km radius of Yangluo Power Plant, a 2400 MW plant within the highly populated Jianghan Plain of Central China. Using X-ray fluorecence (XRF) spectrometry, the total concentration of trace metals in homogenized surface and subsurface soil samples were measured to calculate the corresponding enrichment factor at each site. Our initial findings demonstrate that Pb is enriched in a majority of sites, independent of land use, whereas As and Cr are generally not enriched in this region. Further studies using Pb isotopes as a source-tracing tool will help determine the Pb pollution's origin. Ultimately, the results of this study may inform whether crops grown within the Jianghan Plain have the potential of being contaminated by metals emitted from coal power plants.

  3. What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?

    DEFF Research Database (Denmark)

    Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.


    intensification has led to practices that may decrease soil organic carbon (SOC), and agricultural management has the potential to be a powerful tool for climate change mitigation and increased soil fertility through SOC sequestration. Here, we systematically map evidence relating to the impacts of agricultural......Background Soils contain the largest stock of organic carbon (C) in terrestrial ecosystems and changes in soil C stocks may significantly affect atmospheric CO2. A significant part of soil C is present in cultivated soils that occupy about 35 % of the global land surface. Agricultural...... management on SOC in arable systems of the warm temperate and snow climate zones (subset of temperate and continental climates: Köppen–Geiger Classification)....

  4. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Directory of Open Access Journals (Sweden)

    Emilie R Kirk

    Full Text Available Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM oxidation and physical compaction. Rice (Oryza sativa production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined. Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1 was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  5. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach. (United States)

    Kirk, Emilie R; van Kessel, Chris; Horwath, William R; Linquist, Bruce A


    Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta) has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM) oxidation and physical compaction. Rice (Oryza sativa) production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined). Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1) was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  6. Sink Potential of Canadian Agricultural Soils

    International Nuclear Information System (INIS)

    Boehm, M.; Junkins, B.; Desjardins, R.; Lindwall, W.; Kulshreshtha, S.


    Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2-Eq yr-1 in 1990 to 52 Tg CO2-Eq yr-1 in 2008. Adoption of the sink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2-Eq yr-1 (L), 42 Tg CO2-Eq yr-1 (M) or 36 Tg CO2-Eq yr-1 (H). Among the sink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation and manure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992)

  7. Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils. (United States)

    Huang, Junxing; Liang, Chuanzhou; Zhang, Xu


    The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO 2 . The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO 2 . The adsorption of racemic-metalaxyl on SiO 2 decreased to some extent in soil-SiO 2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO 2 in soil-SiO 2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO 2 in the presence of soil. Interactions between SiO 2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO 2 , and the interactions were analyzed by extended Derjaguin-Landau-Verwey-Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Precision agriculture and soil and water management in cranberry production (United States)

    Recent research on soil and water management of cranberry farms is presented in a special issue in Canadian Journal of Soil Science. The special issue (“Precision Agriculture and Soil Water Management in Cranberry Production”) consists of ten articles that include field, laboratory, and modeling stu...

  9. (maize) to a crude oil polluted agricultural soil

    African Journals Online (AJOL)

    ... and 'lethal threshold' respectively for maize growing on crude oil polluted soils. These results highlight the fact that, while concerted efforts should be made to remedy petroleum-contaminated agricultural soils, certain crops like maize can still produce beneficial yield in the presence of good soil management practices.

  10. Surface Mining: Soil, Coal, and Society (United States)

    Singer, S. Fred

    Soil is a resource that is for all practical purposes nonrenewable. Natural soils have been formed over periods of thousands of years, although with intensive management and with inputs of nutrients and conditioners this time could be reduced.Coal is another precious resource, of critical importance as an interim fuel for perhaps the next hundred years or so, until renewable energy resources based on nuclear fusion or solar energy can become economic and widespread. Surface mining is the most efficient method for obtaining coal at lowest cost. But it disturbs the soil and takes it out of agricultural production for many years or decades, and sometimes forever, unless the land is properly restored at considerable cost.

  11. Guidelines for soil sampling from agricultural fields


    Trajkova, Fidanka; Zlatkovski, Vasko


    Content 1. Introduction 1.1 What is soil? 1.2 What is soil fertility? 1.3 Which nutrients the plants extract from the soil? 2. Basic principles of plant nutrition 3. Why do we need soil analysis? 4. Which are the most important parameters the soil analysis needs to consider? 4.1 pH value of soil sample 4.2 ЕС value of soil sample 4.3 Total nitrogen content 4.4 Content of available phosphorus 4.5 Content of available potassium 4.6 Organic mat...

  12. Origin and spatial distribution of metals in agricultural soils

    International Nuclear Information System (INIS)

    Mohammadpour, Gh.A.; Karbassi, A.R.; Baghvand, A.


    Presence of toxic metals in agricultural soils can impose adverse health impact on consumers. The main purpose of this study was to determine spatial distribution of elements Fe, Sb, Mn in agriculture soils and crops of Hamedan Province in Iran. Soil samples (0-20 cm depth) were collected from an area of 2831 km 2 . Iron, Antimony and Manganese in samples of soil and agricultural crops were extracted and their amount was determined using atomic absorption spectrometer. The spatial distribution map of the studied elements was developed using Kriging method. The main concentration of Fe, Sb and Mn in the soil of the study area is about 3.8%, 2.5 and 403 mg/kg, respectively. According to chemical partitioning studies, the anthropogenic share of Fe, Sb and Mn is about 28.51%, 34.83% and 30.35%, respectively. Results of comparison of heavy metals pollution intensity in the agricultural soil with geoaccumulation index and also pollution index, illustrated that iron and manganese are classified in the Non-polluted class and antimony is in the moderately polluted class. Analysis of zoning map of pollution index showed that Fe, Sb and Mn are of geological sources. In fact, these metals are naturally found in soil. However, anthropogenic activities have led to more accumulation of these metals in the soil. The obtained health risk for metals in agricultural crops is indicative of safe value for consumers.

  13. Sorption of Phenanthrene on Agricultural Soils

    DEFF Research Database (Denmark)

    Soares, Antonio Alves; Møldrup, Per; Minh, Luong Nhat


    Polyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively...... low organic porous media such as urban soils and groundwater sediments, but less attention has been given to cultivated soils. In this study, the phenanthrene partition coefficient, KD (liter per kilogram), was measured on 143 cultivated Danish soils (115 topsoils, 0–0.25-m soil depth and 28 subsoils...... (COC and NCOC, grams per gram). Multiple regression analyses showed that the NCOC-based phenanthrene partition coefficient (KNCOC) could be markedly higher than the COC-based partition coefficient (KCOC) for soils with a clay/OC ratio

  14. Evaluation of physico-chemical parameters of agricultural soils ...

    African Journals Online (AJOL)

    Evaluation of physico-chemical parameters of agricultural soils irrigated by the waters of the hydrolic basin of Sebou River and their influences on the transfer of trace elements into sugar crops (the case of sugar cane)

  15. Agricultural soils decontamination techniques: methods and results of tests realized near Chernobyl

    International Nuclear Information System (INIS)

    Maubert, H.; Jouve, A.; Mary, N.


    After a major nuclear accident, decontamination of agricultural soils would be necessary in order to reclaim the land. Specific techniques were studied in the framework of the European program for Rehabilitation of Soils and Surfaces after an Accident (RESSAC). Different ways to remove the top layer of soils are described, and especially the use of Decontaminating Vegetal Network (D.V.N.) combined with spraying of organic polymers. Real scale tests in the 30 km zone around the Chernobyl nuclear power plant showed that it is possible to achieve an excellent decontamination of agricultural fields (decontamination factor greater than 95%. (author)

  16. Irrigated agriculture and soil salinization in the Maltese islands. (United States)

    Vella, Sonya J; Camilleri, Sharlo


    In the Maltese islands, soil is one of the most threatened natural resources, being continuously exposed to a multitude of climatic, environmental, and man-induced impacts. The changes in agricultural practices as well as increases in urban development have intensified environmental problems and have accentuated the pressures on agricultural land and fragile semi-natural ecosystems. Between 1956 and 2001, the total agricultural land declined from 20,433 ha to 10,713 ha, however, during the same period, the irrigated land as a percentage of total agricultural land increased from 3.9% to 10.7%. The poor quality of irrigation water sources, and the supply of treated sewage effluent with a high level of salts, contribute to a significant salt input. The extent of salt-affected soils in the Maltese islands is not well-documented, however, field observations and technical reports indicate that soil salinity is a potential constraint for agricultural production. This article gives a comparative review of the salinity status of soils in three case study areas in Malta, the agricultural dryland at Ghammieri, the intensively cultivated irrigated valley of Pwales, and the agricultural land irrigated with treated sewage effluent of the Sant Antnin Sewage Treatment Plant in the South-East of Malta. This analysis is provided in the context of the environmental impact of irrigation on soil quality in the Maltese islands.

  17. Soil Quality Impacts of Current South American Agricultural Practices

    Directory of Open Access Journals (Sweden)

    Ana B. Wingeyer


    Full Text Available Increasing global demand for oil seeds and cereals during the past 50 years has caused an expansion in the cultivated areas and resulted in major soil management and crop production changes throughout Bolivia, Paraguay, Uruguay, Argentina and southern Brazil. Unprecedented adoption of no-tillage as well as improved soil fertility and plant genetics have increased yields, but the use of purchased inputs, monocropping i.e., continuous soybean (Glycine max (L. Merr., and marginal land cultivation have also increased. These changes have significantly altered the global food and feed supply role of these countries, but they have also resulted in various levels of soil degradation through wind and water erosion, soil compaction, soil organic matter (SOM depletion, and nutrient losses. Sustainability is dependent upon local interactions between soil, climate, landscape characteristics, and production systems. This review examines the region’s current soil and crop conditions and summarizes several research studies designed to reduce or prevent soil degradation. Although the region has both environmental and soil resources that can sustain current agricultural production levels, increasing population, greater urbanization, and more available income will continue to increase the pressure on South American croplands. A better understanding of regional soil differences and quantifying potential consequences of current production practices on various soil resources is needed to ensure that scientific, educational, and regulatory programs result in land management recommendations that support intensification of agriculture without additional soil degradation or other unintended environmental consequences.

  18. Microbial indicators in three agricultural soils with different management

    NARCIS (Netherlands)

    Pompili, L.; Mellina, A.S.; Benedetti, A.; Bloem, J.


    Microorganisms respond rapidly to changing environ-mental conditions. Therefore microbes are generally con-sidered as sensitive indicators of soil health. The aim of this study was to assess the biological fertility status and sustainability of three differently managed agricultural soils by using



    AYDINALP, Cumhur; CRESSER, Malcolm S.; MCCLEAN, Colin


    Olive production is important and intensive agricultural activity in this region. Generally, olive trees occur coastal side of the region under brown forest soils. Ten olive tree plantations were selected in this research. The some important physical, chemical and morphological properties were investigated and classifi ed according to USDA Soil Taxonomy as Typic Xerochrepts.


    Directory of Open Access Journals (Sweden)



    Full Text Available Olive production is important and intensive agricultural activity in this region. Generally, olive trees occur coastal side of the region under brown forest soils. Ten olive tree plantations were selected in this research. The some important physical, chemical and morphological properties were investigated and classifi ed according to USDA Soil Taxonomy as Typic Xerochrepts.

  1. Influence of lokpa cattle market wastes on agricultural soil quality ...

    African Journals Online (AJOL)

    Influence of lokpa cattle market wastes on agricultural soil quality. ... African Journal of Environmental Science and Technology ... Soil samples were collected from the Central, 3 and 6 m Northwards, Southwards, Eastwards and Westwards of Lokpa cattle market, Umuneochi Local Government Area of Abia State, Nigeria at ...

  2. Soil biological fertility: Foundation for the next revolution in agriculture? (United States)

    Feeding the world’s population in 40 years will require improved efficiency in the use of plant nutrients and enhancement of the soil resource. Over the past 60 years, agricultural production has rapidly increased; however, continued degradation of the soil resource may limit further increases. Imp...

  3. The Value of SMAP Soil Moisture Observations For Agricultural Applications (United States)

    Mladenova, I. E.; Bolten, J. D.; Crow, W.; Reynolds, C. A.


    Knowledge of the amount of soil moisture (SM) in the root zone (RZ) is critical source of information for crop analysts and agricultural agencies as it controls crop development and crop condition changes and can largely impact end-of-season yield. Foreign Agricultural Services (FAS), a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected global crop supply and demand estimates, has been relying on RZSM estimates generated by the modified two-layer Palmer model, which has been enhanced to allow the assimilation of satellite-based soil moisture data. Generally the accuracy of model-based soil moisture estimates is dependent on the precision of the forcing data that drives the model and more specifically, the accuracy of the precipitation data. Data assimilation gives the opportunity to correct for such precipitation-related inaccuracies and enhance the quality of the model estimates. Here we demonstrate the value of ingesting passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission. In terms of agriculture, general understanding is that the change in soil moisture conditions precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop conditions. Therefore, we assess the accuracy of the SMAP enhanced Palmer model by examining the lag rank cross-correlation coefficient between the model generated soil moisture observations and the Normalized Difference Vegetation Index (NDVI).

  4. evaluation of physico-chemical parameters of agricultural soils

    African Journals Online (AJOL)

    Benlkhoubi N, Saber S, Lebkiri A, Rifi El and Fahime El


    May 1, 2016 ... industries and which is estimated by 2000 units [4], can generate a metal pollution drained along these rivers that will be transferred to the soil through irrigation waters and subsequently into the crops. This work lists the physicochemical parameters of evaluation of agricultural soils in the city of Kenitra (Sidi ...

  5. Selenium speciation and extractability in Dutch agricultural soils

    NARCIS (Netherlands)

    Supriatin, Supriatin; Weng, Liping; Comans, Rob N.J.


    The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97mgkg-1(on average

  6. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. (United States)

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D


    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  7. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project. (United States)

    Raclot, Damien; Ciampalini, Rossano


    The MASCC project (2016-2019, aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  8. Microbial population changes in tropical agricultural soil ...

    African Journals Online (AJOL)

    Impacts of crude petroleum pollution on the soil environment and microbial population dynamics as well as recovery rates of an abandoned farmland was monitored for seven months spanning the two major seasons in Nigeria with a ... The physico-chemistry of the control and contaminated soils differed just significantly (P ...

  9. About soil cover heterogeneity of agricultural research stations' experimental fields (United States)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia


    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  10. Agricultural management impact on physical and chemical functions of European peat soils. (United States)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph


    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which

  11. Ancient Agricultural Terraces and the Soil Erosion Paradox (United States)

    Brown, Tony


    Geoarchaeology lies at the heart of debates about societal stability and change. Geomorphological research has been used as a foundation for simplistic models of resource depletion based almost entirely on the comparison of soil erosion rates with long-term so- called 'geological' rates. However, the neo-catastrophic collapse of complex agricultural societies is rare, and where it is convincing demonstrated it is even more rarely monocausal. Indeed many societies appear to have continued agricultural exploitation of climatically marginal lands for far longer than soil depletion estimates would forecast. One reason may be that this soil depletion approach has grossly simplified soil creation through weathering, and neglected how past agriculture also affected the soil creation rate (especially on some lithologies) and how soil was conserved (terraces) and utilised even after transport. However, we now have we know have some potentially valuable new tools, including mineral magnetics and cosmogenic nuclides, which can be used to estimate changing soil weathering rates. This approach will be discussed with examples from both the temperate and Mediterranean climatic zones and in relation to causative models of change in complex agricultural societies.


    Directory of Open Access Journals (Sweden)

    Nicola Rampazzo


    Full Text Available Immediately after application glyphosate is mostly adsorbed in the upper 2 cm of soils, and is then transported and adsorbed after few days in deeper soil horizons with concomitant increasing content of its metabolite aminomethylphosphonic acid (AMPA. This work confirmed previous studies, where Fe-oxides seem to play a major role in the adsorption of glyphosate and AMPA in soils:  the Chernozem featured lower contents of Fed and Feo, with consequently lower adsorption of glyphosate and AMPAas compared with the higher weathered Cambisol and Stagnosol.

  13. Quantification Of Erosion Rates Of Agriculturally Used Soils By Artificial (United States)

    Jha, Abhinand


    0.0.1 1. Introduction to soil erosion measurement by radionuclides Soil erosion by water, wind and tillage affects both agriculture and the natural environment. Studying this phenomenon would be one of the advancements in science. Soil erosion occurs worldwide and since the last two decades it has been a main topic of discussion all over the world. The use of environmental radionuclides such as 90Sr, 137Cs to study medium term soil erosion (40 yrs) started in the early 1990's. Using these new techniques better knowledge about erosion can be gained and this knowledge can be implemented for erosion risk management. The erosion and sedimentation study by using man-made and natural radioisotopes is a key technique, which has developed over the past 30 years. Fallout 137Cs and Cosmogenic 7Be are radionuclides that have been used to provide independent measurements of soil-erosion and sediment-deposition rates and patterns [1] [2] [3] [4]. Erosion measurements using radionuclides 137Cs, 7Be Caesium-137 from atmospheric nuclear-weapons tests in the 1950s and 1960s (Fig.1) is a unique tracer of erosion and sedimentation, since there are no natural sources of 137Cs. Unique events such as the Chernobyl accident in April 1986 caused regional dispersal of 137Cs that affects the total global deposition budget. This yearly pattern of fallout can be used to develop a chronology of deposition horizons in lakes, reservoirs, and floodplains. 137Cs can be easily measured by gamma spectroscopy. Using 137Cs is a fast and cheap method to study erosion-deposition processes compared to the traditional methods like silt bags. PIC Figure 1: Global 137Cs fallout (Modified from SAAS Bulletin 353, Part E, DDR, 1986) When 137Cs, 7Be reach the soil surface by wet and dry deposition, they are quickly and strongly adsorbed by ion exchange and are essentially non exchangeable in most environments. Each radionuclide is distributed differently in the soil because of differences in half-lives (30 yrs

  14. Radiocesium and radioiodine in soil particles agitated by agricultural practices: field observation after the Fukushima nuclear accident. (United States)

    Yamaguchi, N; Eguchi, S; Fujiwara, H; Hayashi, K; Tsukada, H


    Three weeks after the accident at the Fukushima Daiichi Nuclear Power Plant, we determined the activity concentrations of (131)I, (134)Cs and (137)Cs in atmospheric dust fugitively resuspended from soil particles due to soil surface perturbation by agricultural practices. The atmospheric concentrations of (131)I, (134)Cs and (137)Cs increased because of the agitation of soil particles by a hammer-knife mower and a rotary tiller. Coarse soil particles were primarily agitated by the perturbation of the soil surface of Andosols. For dust particles smaller than 10 μm, the resuspension factors of radiocesium during the operation of agricultural equipment were 16-times higher than those under background condition. Before tillage, most of the radionuclides accumulated within a few cm of the soil surface. Tillage diluted their concentration in the uppermost soil layer. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sorption of phenanthrene in agricultural soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Minh, Luong Nhat; Vendelboe, Anders Lindblad

    Polycyclic aromatic hydrocarbons (PAH) are among the major contaminants in the terrestrial environment. The background level in normal agricultural land has increased for many years and it is expected to further increase in the future. Because of the very low water solubility and high Kow values...

  16. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities

    Directory of Open Access Journals (Sweden)

    N. La Scala Júnior

    Full Text Available Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha-1 year-1. The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha-1 year-1. The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  17. Soil Quality Indices for Evaluating Smallholder Agricultural Land Uses in Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Aweke M. Gelaw


    Full Text Available Population growth and increasing resource demands in Ethiopia are stressing and degrading agricultural landscapes. Most Ethiopian soils are already exhausted by several decades of over exploitation and mismanagement. Since many agricultural sustainability issues are related to soil quality, its assessment is very important. We determined integrated soil quality indices (SQI within the surface 0–15 cm depth increment for three agricultural land uses: rain fed cultivation (RF; agroforestry (AF and irrigated crop production (IR. Each land use was replicated five times within a semi-arid watershed in eastern Tigray, Northern Ethiopia. Using the framework suggested by Karlen and Stott (1994; four soil functions regarding soil’s ability to: (1 accommodate water entry (WE; (2 facilitate water movement and availability (WMA; (3 resist degradation (RD; and (4 supply nutrients for plant growth (PNS were estimated for each land use. The result revealed that AF affected all soil quality functions positively more than the other land uses. Furthermore, the four soil quality functions were integrated into an overall SQI; and the values for the three land uses were in the order: 0.58 (AF > 0.51 (IR > 0.47 (RF. The dominant soil properties influencing the integrated SQI values were soil organic carbon (26.4%; water stable aggregation (20.0%; total porosity (16.0%; total nitrogen (11.2%; microbial biomass carbon (6.4%; and cation exchange capacity (6.4%. Collectively, those six indicators accounted for more than 80% of the overall SQI values.

  18. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities. (United States)

    La Scala, N; De Figueiredo, E B; Panosso, A R


    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  19. Microbial population changes in tropical agricultural soil ...

    African Journals Online (AJOL)



    Dec 17, 2008 ... that the increase in microbial population was the key factor responsible for oil depletion. As depicted in Figure 2, the population densities of heterotrophic bacteria, fungi, actinomycetes, and nitrogen-fixers were higher during the first 16 weeks of study in the control soil. This trend readily suggests toxicity of ...


    Directory of Open Access Journals (Sweden)

    Andrea Formato


    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  1. The transformation of agriculture in Argentina through soil conservation


    R. Peiretti; J. Dumanski


    The adoption of no till was a major turning point in the transformation of agriculture in Argentina. This paper describes the process of adoption of no till, and the impacts of this on agricultural production. Whereas previously, soil erosion was so extreme and pervasive as to threaten the economic viability and survival of the industry, today with the majority of production under no till, Argentina produces more than ever in the past. The paper also illustrates how, after first focusing on t...

  2. Substantial dust loss of bioavailable phosphorus from agricultural soils (United States)

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon


    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s-1), P flux in conventional agricultural fields can reach 1.83 kg km-2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km-2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles.

  3. Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, J.; Campillo, M.C. del; Barrón, V.


    Soil cation exchange capacity (CEC) depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM) in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH) of 43% (HM43). Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg). Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC. (Author)

  4. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete


    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  5. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi


    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  6. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators (United States)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris


    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  7. Biological and biochemical soil quality indicators for agricultural management (United States)

    Bongiorno, Giulia


    Soil quality is defined as the capacity of a soil to perform multiple functions. Agricultural soils can, in principle, sustain a wide range of functions. However, negative pressure exerted by natural and anthropogenic soil threats such as soil erosion, soil organic matter losses and soil compaction have the potential to permanently damage soil quality. Soil chemical, physical and biological parameters can be used as indicators of soil quality. The specific objective of this study is to assess the suitability of novel soil parameters as soil quality indicators. We focus on biological/biochemical parameters, due to the unique role of soil biota in soil functions and to their high sensitivity to disturbances. The novel indicators are assessed in ten European long-term field experiments (LTEs) with different agricultural land use (arable and permanent crops), management regimes and pedo-climatic characteristics. The contrasts in agricultural management are represented by conventional/reduced tillage, organic/mineral fertilization and organic matter addition/no organic matter addition. We measured two different pools of labile organic carbon (dissolved organic carbon (DOC), and permanganate oxidizable carbon (POXC)), and determined DOC quality through its fractionation in hydrophobic and hydrophilic compounds. In addition, total nematode abundance has been assessed with qPCR. These parameters will be related to soil functions which have been measured with a minimum data set of indicators for soil quality (including TOC, macronutrients, and soil respiration). As a preliminary analysis, the Sensitivity Index (SI) for a given LTE was calculated for DOC and POXC according to Bolinder et al., 1999 as the ratio of the soil attribute under modified practices (e.g. reduced tillage) compared to the conventional practices (e.g. conventional tillage). The overall effect of the sustainable management on the indicators has been derived by calculating an average SI for those LTEs

  8. Soil degradation processes in the Italian agricultural and forest ecosystems

    Directory of Open Access Journals (Sweden)

    Edoardo A.C. Costantini


    Full Text Available A number of processes of degradation threaten soil functions. Ten of them are acknowledged by the European Union and fifteen by the Organisation for Economic Co-operation and Development (OECD, but at least another seven have been indicated by different authors in Italy and in other parts of the world. This short review paper summarizes the nature, economic relevance, and territorial impact of soil degradation in Italy, and with reference to Europe as a whole, and highlights the most relevant research needs in soil conservation. The direct annual costs of the main soil degradation processes are estimated to be over 38,000,000,000 euro per year in Europe as a whole, while in Italy, only for landslides, floods, and soil erosion, costs amount to 900,000,000 euro. Loss of the ability to produce food commodities because of soil degradation is particularly important in Italy, since selfsufficiency in food has recently decreased to less than 80% and Italian agricultural soils are hit by several problems, such as limited soil drainage, unfavorable texture and stoniness, shallow rooting depth, and poor chemical properties. On average, soil sealing, reduction in organic matter, and soil compaction in Italy are comparable with those of many other countries, but the occurrence of soil erosion, floods, and landslides is more widespread than in most parts of Europe, and also the presence of salt-affected soils is becoming a major worry. The fight against soil degradation in Italy is certainly more difficult than in other countries because of the high environmental variability. However, according to the current trends, Italy is mostly probably destined not to achieve the European objective to significantly reduce main soil degradation processes by the year 2020. There are several research needs in the field of soil conservation in Italy. These include: i a better basic knowledge about many soil degradation processes and of pedodiversity; ii reliable, sensitive

  9. Is current biochar soil study addressing global soil constraints for sustainable agriculture? (United States)

    Pan, Genxing; Zhang, Dengxiao; Yan, Ming; Niu, Yaru; Liu, Xiaoyu; van Zwieten, Lukas; Chen, De; Bian, Rongjun; Cheng, Kun; Li, Lianqing; Joseph, Stephen; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Crowley, David; Filley, Timothy


    Global soil degradation has been increasingly threatened sustainability of world agriculture. Use of biochar from bio-wastes has been proposed as a global option for its great potential in tackling soil degradation and mitigating climate change in agriculture. For last 10 years, there have been greatly increasing interests in application of charred biomass, more recently termed biochar, as a soil amendment for addressing soil constraints for sustainable agriculture. Biochar soil studies could deliver reliable information for appropriate application of biochar to soils where for sustainable agriculture has been challenged. Here we review the literature of 798 publications reporting biochar soil studies by August, 2015 to address potential gaps in understanding of biochar's role in agriculture. We have found some substantial biases and gaps inherent in the current biochar studies. 1) The majority of published studies were from developed regions where the soils are less constrained and were much more frequent in laboratory and glasshouse pot experiments than field studies under realistic agriculture. 2) The published biochar soil studies have used more often small kiln or lab prepared biochar than commercial scale biochars, more often wood and municipal waste derived biochars than crop straw biochars. Overall, the lack of long-term well designed field studies using biochar produced in commercial processes may have limited our current understanding of biochar's potential to enhance global crop production and climate change mitigation. We have also recommended a global alliance between longer-term research experiments and biochar production facilities to foster the uptake of this important technology at a global scale. Keywords: biochar, soil study, literature review, research gap, global perspective, quantitative assessment, sustainable agriculture

  10. Electrokinetic treatment of an agricultural soil contaminated with heavy metals. (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K


    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  11. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia (United States)

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  12. Genotoxicity of Agricultural Soils after one year of Conversion Period ...

    African Journals Online (AJOL)

    genotoxicity in a field after one year of conversion and in a field under conventional agriculture, not located close to sources of pollution. Soil samples were taken from 0-20 cm and 20-40 cm depth. Allium cepa-test system was used for the cytogenetic analysis. The higher mitotic index and lower frequency of chromosome ...

  13. Load-bearing processes in agricultural wheel-soil systems

    NARCIS (Netherlands)

    Tijink, F.G.J.


    In soil dynamics we distinguish between loosening and loadbearing processes. Load-bearing processes which can occur under agricultural rollers, wheels, and tyres are dealt with In this dissertation.

    We classify rollers, wheels, and tyres and treat some general aspects of these

  14. Bacterial diversity in agricultural soils during litter decomposition

    NARCIS (Netherlands)

    Dilly, O.; Bloem, J.; Vos, A.; Munch, J.C.


    Denaturing gradient gel electrophoresis (DGGE) of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of crop residues in agricultural soils. Ten strains were tested, and eight of these strains produced a single band.

  15. Phytoextraction and assisted phytoextraction of metals from agriculture used soil

    Czech Academy of Sciences Publication Activity Database

    Trakal, L.; Neuberg, M.; Száková, J.; Vohník, Martin; Tejnecký, V.; Drábek, O.; Tlustoš, P.


    Roč. 44, č. 12 (2013), s. 1862-1872 ISSN 0010-3624 Grant - others:Norwegian Financial Mechanism(CZ) EEA Grants CZ0092 Institutional support: RVO:67985939 Keywords : phytoextraction * heavy metals * agriculture soil Subject RIV: EF - Botanics Impact factor: 0.423, year: 2013

  16. Modelling carbon dioxide emissions from agricultural soils in Canada. (United States)

    Yadav, Dhananjay; Wang, Junye


    Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO 2 ) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO 2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO 2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO 2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO 2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO 2 emissions from the agricultural sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Organic matter and soil structure in the Everglades Agricultural Area

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Univ. of Florida, Gainesville, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States)


    This publication pertains to management of organic soils (Histosols) in the Everglades Agricultural Area (EAA). These former wetland soils are a major resource for efficient agricultural production and are important globally for their high organic matter content. Recognition of global warming has led to considerable interest in soils as a repository for carbon. Soils rich in organic matter essentially sequester or retain carbon in the profile and can contribute directly to keeping that sequestered carbon from entering the atmosphere. Identification and utilization of management practices that minimize the loss of carbon from organic soils to the atmosphere can minimize effects on global warming and increase the longevity of subsiding Histosols for agricultural use. Understanding and predicting how these muck soils will respond to current and changing land uses will help to manage soil carbon. The objectives of this document are to: a. Discuss organic soil oxidation relative to storing or releasing carbon and nitrogen b. Evaluate effects of cultivation (compare structure for sugarcane vs. uncultivated soil) Based upon the findings from the land-use comparison (sugarcane or uncultivated), organic carbon was higher with cultivation in the lower depths. There is considerable potential for minimum tillage and residue management to further enhance carbon sequestration in the sugarcane system. Carbon sequestration is improved and soil subsidence is slowed with sugarcane production, and both of these are positive outcomes. Taking action to increase or maintain carbon sequestration appears to be appropriate but may introduce some risk to farming operations. Additional management methods are needed to reduce this risk. For both the longevity of these organic soils and from a global perspective, slowing subsidence through BMP implementation makes sense. Since these BMPs also have considerable societal benefit, it remains to be seen if society will help to offset a part or all

  18. Soil Chemical Characteristics of Organic and Conventional Agriculture

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Aziz


    Full Text Available Use of chemical fertilizers and pesticides on intensive land of both lowland and upland food crops have been shown to increase agricultural productivity significantly. Research aimed to study soil chemical characteristics and soil pesticide residues at some crops of organic and conventional farms. The research was carried out in Laboratory of Soil Chemistry, Indonesian Soil Research Institute and in Laboratory of Agrochemical Residue, Indonesian Agricultural Environment Research Institute, Bogor from February to July 2015. Soil samples at 0-10 cm depth were taken compositely from broccoli (Brassica oleracea, carrots (Daucus carota, maize (Zea mays, and tomatoes (Solanum lycopersicum farms in Bogor Regency as well as from rice field in Tasikmalaya Regency at both organic and conventional farms. Soil chemical characteristics were analyzed include: soil organic-C (Walkey and Black, total-N (Kjeldahl, potential-P (HCl 25%, available-P (Olsen, potential-K (HCl 25%, available-K (NH4OAc 1 N pH 7, CEC (NH4OAc 1 N pH 7, and pH (soil : water = 1: 5, while pesticide residues included levels of organochlorine (lindane, aldrin, heptaklor, dieldrin, DDT, endosulfan; organophosphates (diazinon, fenitrotin, metidation, paration, profenofos; and carbamates (carbofuran, MIPC, BPMC in the soil by using Gas Chromatography method. Results showed that levels of soil organic-C, total-N, potential and available-P, potential and available-K, CEC, pH at organic farms were higher than those at conventional farms. Some pesticide residues compound (organochlorines, organophosphates, and carbamates were detected at conventional farm, while those at organic farm were not detected (trace.

  19. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)


    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  20. Antibiotic resistance of microorganisms in agricultural soils in Russia (United States)

    Danilova, Natasha; Galitskaya, Polina; Selivanovskaya, Svetlana


    Antibiotics are medicines widely used to treat and prevent bacterial infections not only in human medicine but also in veterinary. Besides, in animal husbandry antibiotics are often used in for stimulation of animal's growth. Many antibiotics used for veterinary purposes are weakly absorbed in the animal's gut. So up to 90% of the administered antibiotics are excreted with manure and urine. Therefore use of manure as an organic fertilizer leads to formation and spreading of antibiotic resistance among soil microbes. Another reason of such spreading is the horizontal transfer of genes encoding antibiotic resistance from manure to soil microflora. The level of antibiotic resistance genes pollution of soils has not been properly studied yet. The aim of this study was to estimate the contamination of agricultural soils by antibiotic resistant genes. 30 samples of agricultural soils were selected around of Kazan city (Tatarstan Republic) with 1.3 Mio citizens. Since tetracycline is reported to be the most wide spread veterinary antibiotic in Russia, we estimated the level of soil contamination by tet(X) gene encoding tetracycline decomposition in microbial cell. Real time PCR method with specific primers was used as a method of investigation. Particle size type distribution of 31% of soil samples was estimated to be sandy clay, and 69% of soil samples - to silty clay. Content of dissoluble organic carbon ranged from 0,02 mg g -1 (sample 20) to 0,46 mg g -1 (sample 16). Respiration activity and microbial biomass of soils were estimated to be 0,80-5,28 CO2 C mg g -1 h-1 and 263,51-935,77 µg kg - 1 respectively. The values presented are typical for soils of Tatarstan Republic. In terms of the antibiotic resistant gene content, 27 of 30 samples investigated contained tet(X) gene, while 52% of the samples were highly contaminated, 34% of samples were middle contaminated and 14% of samples - weakly contaminated.

  1. Distribution coefficients for 85Sr and 137Cs in Japanese agricultural soils and their correlations with soil properties

    International Nuclear Information System (INIS)

    Kamei-Ishikawa, N.; Uchida, S.; Tagami, K.


    In this work, soil-soil solution distribution coefficients (K d ) of Sr and Cs were obtained for 112 Japanese agricultural soil samples (50 paddy soil and 62 upland soil samples) using batch sorption test. The relationships between Sr- or Cs-K d values and soil properties were discussed. Furthermore, the amount of Cs fixed in soil was estimated for 22 selected soil samples using a sequential extraction method. Then, cross effects of some soil properties for Cs fixation were evaluated. (author)

  2. The expansion of Brazilian agriculture: Soil erosion scenarios

    Directory of Open Access Journals (Sweden)

    Gustavo H. Merten


    Full Text Available During the next 10 years Brazil’s agricultural area will expand to meet increased domestic and worldwide demand for food, fuel, and fiber. Present choices regarding land use will determine to what degree this expansion will have adverse effects that include soil erosion, reservoir siltation, water quality problems, loss of biodiversity and social conflict, especially around indigenous reservations. This paper presents an up-to-date inventory of soil erosion in Brazil caused by crop and livestock activities and provides estimates based on three different hypothetical land-use scenarios to accommodate the expansion of Brazilian agricultural activity by 2020: Scenario 1 – expansion of cropping into areas of natural vegetation, without adoption of conservation practices; Scenario 2 – expansion of cropping into areas of degraded pasture, without adoption of conservation practices; Scenario 3 – expansion of cropping into areas of degraded pasture, together with conservation practices in 100% of the expanded area. The worst-case scenario involves expansion of agriculture into areas of native vegetation in the Brazilian Savannah (Cerrado and Brazilian rainforest (Amazon biomes, and could increase total soil erosion in Brazil (currently about 800 million metric tons a year by as much as 20%. In the best-case scenario, crop expansion under a conservation agriculture model would utilize currently degraded pasture, especially in the Savannah (circa 40 million hectares, reducing soil erosion in Brazil by around 20%. For this to occur, however, a national soil and water conservation policy needs to be implemented in Brazil to support a sustainable model of agriculture in which the environment can be preserved as much as possible.

  3. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China

    International Nuclear Information System (INIS)

    Kong Shaofei; Ji Yaqin; Liu Lingling; Chen Li; Zhao Xueyan; Wang Jiajun; Bai Zhipeng; Sun Zengrong


    The distribution of six priority phthalic acid esters (PAEs) in suburban farmland, vegetable, orchard and wasteland soils of Tianjin were obtained with gas chromatography-mass spectrometer analysis in 2009. Results showed that total PAEs varied from 0.05 to 10.4 μg g −1 , with the median value as 0.32 μg g −1 . Di-(2-ethylhexyl) phthalate and di-n-butyl phthalate are most abundant species. PAEs concentrations for the four types of soils exhibited decreasing order as vegetable soil > wasteland soil > farmland soil > orchard soil. PAEs exhibited elevated levels in more developed regions when compared with other studies. The agricultural plastic film could elevate the PAEs contents in soils. Principal component analysis indicated the emission from cosmetics and personal care products and plasticizers were important sources for PAEs in suburban soils in Tianjin. The higher PAEs contents in wasteland soils from suburban area should be paid more attention owing to large amounts of solid wastes appeared with the ongoing urbanization. - Highlights: ► PAEs levels in four types of soils in suburban area of Tianjin were studied. ► Vegetable soil and wasteland soil exhibited higher PAEs concentrations. ► PAEs in wasteland soils from suburban area of cities in China should be paid attention. - (1) Vegetable soil and wasteland soil exhibited higher PAEs concentrations; (2) PAEs in wasteland soils from suburban area of cities in China should be paid attention.

  4. Soil surface roughness decay in contrasting climates, tillage types and management systems (United States)

    Vidal Vázquez, Eva; Bertol, Ildegardis; Tondello Barbosa, Fabricio; Paz-Ferreiro, Jorge


    Soil surface roughness describes the variations in the elevation of the soil surface. Such variations define the soil surface microrelief, which is characterized by a high spatial variability. Soil surface roughness is a property affecting many processes such as depression storage, infiltration, sediment generation, storage and transport and runoff routing. Therefore the soil surface microrelief is a key element in hydrology and soil erosion processes at different spatial scales as for example at the plot, field or catchment scale. In agricultural land soil surface roughness is mainly created by tillage operations, which promote to different extent the formation of microdepressions and microelevations and increase infiltration and temporal retention of water. The decay of soil surface roughness has been demonstrated to be mainly driven by rain height and rain intensity, and to depend also on runoff, aggregate stability, soil reface porosity and soil surface density. Soil roughness formation and decay may be also influenced by antecedent soil moisture (either before tillage or rain), quantity and type of plant residues over the soil surface and soil composition. Characterization of the rate and intensity of soil surface roughness decay provides valuable information about the degradation of the upper most soil surface layer before soil erosion has been initiated or at the very beginning of soil runoff and erosion processes. We analyzed the rate of decay of soil surface roughness from several experiments conducted in two regions under temperate and subtropical climate and with contrasting land use systems. The data sets studied were obtained both under natural and simulated rainfall for various soil tillage and management types. Soil surface roughness decay was characterized bay several parameters, including classic and single parameters such as the random roughness or the tortuosity and parameters based on advanced geostatistical methods or on the fractal theory. Our

  5. Strategies for soil-based precision agriculture in cotton (United States)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff


    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  6. Carbon Sequestration in Forests and Agricultural Soils (Invited) (United States)

    Schlesinger, W. H.


    Numerous proposals are before policy makers for enhanced carbon sequestration in terrestrial ecosystems—forests and agricultural soils—yielding carbon offsets in cap-and-trade systems aimed to control net U.S. emissions of greenhouse gases to the atmosphere. Each of these proposals should be examined carefully to evaluate its additionality, permanence and leakage characteristics . Carbon storage in forests is more rapid than in soils and often more efficient, given the higher C/N ratio in wood than in soil organic materials. The efficacy of maintaining carbon storage in old-growth forests, versus providing enhanced carbon uptake in younger, plantation forests, largely tips in favor of old-growth. Nevertheless, even planting fast-growing species would require an area the size of the state of Texas to sequester 10% of the current U.S. CO2 emissions. Schemes to enhance carbon storage in agricultural soils, derived from the adoption of no- or low-tlll technologies, fertilization, irrigation and biochar application, also need careful evaluation. The most efficient storage is likely to be found in areas of cold, wet soils, with impeded decomposition. In the best case scenarios, it will be unlikely to sequester more than 5% of U.S. emissions as enhanced soil organic matter in cropland soils.

  7. Evaluating near-surface soil moisture using Heat Capacity Mapping Mission data (United States)

    Heilman, J. L.; Moore, D. G.


    Four dates of Heat Capacity Mapping Mission (HCMM) data were analyzed in order to evaluate HCMM thermal data use in estimating near-surface soil moisture in a complex agricultural landscape. Because of large spatial and temporal ground cover variations, HCMM radiometric temperatures alone did not correlate with soil water content. The radiometric temperatures consisted of radiance contributions from different canopies and their respective soil backgrounds. However, when surface soil temperatures were empirically estimated from HCMM temperatures and percent cover of each pixel, a highly significant correlation was obtained between the estimated soil temperatures and near-surface soil water content.

  8. Evaluation of Soil Cations in Agricultural Soils of East Wollega Zone ...

    African Journals Online (AJOL)

    Evaluation of Soil Cations in Agricultural Soils of East Wollega Zone in South Western Ethiopia. A Deressa, B Bote, H Legesse. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · · AJOL African ...

  9. Adsorption and degradation of five selected antibiotics in agricultural soil. (United States)

    Pan, Min; Chu, L M


    Large quantities of antibiotics are being added to agricultural fields worldwide through the application of wastewater, manures and biosolids, resulting in antibiotic contamination and elevated environmental risks in terrestrial environments. Most studies on the environmental fate of antibiotics focus on aquatic environments or wastewater treatment plants. Little is known about the behavior of antibiotics at environmentally relevant concentrations in agricultural soil. In this study we evaluated the adsorption and degradation of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) in sterilized and non-sterilized agricultural soils under aerobic and anaerobic conditions. Adsorption was highest for tetracycline (Kd, 1093 L/kg), while that for sulfamethazine was negligible (Kd, 1.365 L/kg). All five antibiotics were susceptible to microbial degradation under aerobic conditions, with half-lives ranging from 2.9 to 43.3 d in non-sterilized soil and 40.8 to 86.6 d in sterilized soil. Degradation occurred at a higher rate under aerobic conditions but was relatively persistent under anaerobic conditions. For all the antibiotics, a higher initial concentration was found to slow down degradation and prolong persistence in soil. The degradation behavior of the antibiotics varied in relation to their physicochemical properties as well as the microbial activities and aeration of the recipient soil. The poor adsorption and relative persistence of sulfamethazine under both aerobic and anaerobic conditions suggest that it may pose a higher risk to groundwater quality. An equation was proposed to predict the fate of antibiotics in soil under different field conditions, and assess their risks to the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The transformation of agriculture in Argentina through soil conservation

    Directory of Open Access Journals (Sweden)

    R. Peiretti


    Full Text Available The adoption of no till was a major turning point in the transformation of agriculture in Argentina. This paper describes the process of adoption of no till, and the impacts of this on agricultural production. Whereas previously, soil erosion was so extreme and pervasive as to threaten the economic viability and survival of the industry, today with the majority of production under no till, Argentina produces more than ever in the past. The paper also illustrates how, after first focusing on technology adoption (no-till, the system in Argentina has now broadened to include the concepts of Conservation Agriculture (CA and Sustainable Land Management (SLM. These strategic moves have contributed to an agricultural industry in Argentina that is more economically and environmentally sustainable than that of the past.

  11. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang


    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  12. Microbial biodiversity in arable soils is affected by agricultural practices (United States)

    Wolińska, Agnieszka; Górniak, Dorota; Zielenkiewicz, Urszula; Goryluk-Salmonowicz, Agata; Kuźniar, Agnieszka; Stępniewska, Zofia; Błaszczyk, Mieczysław


    The aim of the study was to examine the differences in microbial community structure as a result of agricultural practices. Sixteen samples of cultivated and the same number of non-cultivated soils were selected. Gel bands were identified using the GelCompar software to create the presence-absence matrix, where each band represented a bacterial operational taxonomic unit. The data were used for principal-component analysis and additionally, the Shannon- Weaver index of general diversity, Simpson index of dominance and Simpson index of diversity were calculated. Denaturing gradient gel electrophoresis profiles clearly indicated differentiation of tested samples into two clusters: cultivated and non-cultivated soils. Greater numbers of dominant operational taxonomic units (65) in non-cultivated soils were noted compared to cultivated soils (47 operational taxonomic units). This implies that there was a reduction of dominant bacterial operational taxonomic units by nearly 30% in cultivated soils. Simpson dominance index expressing the number of species weighted by their abundance amounted to 1.22 in cultivated soils, whereas a 3-fold higher value (3.38) was observed in non-cultivated soils. Land-use practices seemed to be a important factors affected on biodiversity, because more than soil type determined the clustering into groups.

  13. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands (United States)

    Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...

  14. Immobilization of Agricultural Phosphorus in an Illinois Floodplain Soil (United States)

    Arenberg, M. R.; Arai, Y.


    Nutrient losses from the Mississippi watershed are exacerbating the growth of the hypoxic zone in the Gulf of Mexico. Located within the highly agricultural Piatt County, IL, Allerton Park encompasses a riparian forest that receives an influx of phosphorus (P) via surface runoff and leaching during spring flooding. The purpose of this study is to investigate the ability of a poorly drained Sawmill silty clay loam (fine-silty, mixed, superactive, mesic Cumulic Endoaquolls) and a poorly drained Tice silty clay loam (fine-silty, mixed, superactive, mesic Fluvaquentic Hapludolls), both with an average pH of 7.08, to buffer agricultural P losses through immobilization. If P is effectively sequestered, it may also lead to improved tree growth in woody biomass. The system's response to the seasonal flooding event was assessed by comparing P mineralization-immobilization dynamics within the bottomland and surrounding upland of the forest. Specifically, organic P, microbial P, phosphatase activity, and total P were assessed. First, total P ranged from 338 to 819 mg kg-1, averaging at 580 mg kg-1, in the bottomland and from 113 to 370 mg kg-1, averaging at 245 mg kg-1, in the upland. Next, organic P spanned from 90 to 457 mg kg-1in the bottomland, comprising an average of 45% of total P, and ranged from 42 to 191 mg kg-1in the upland, comprising an average of 36% of total P. Furthermore, microbial P averaged 13.08 mg kg-1 in the bottomland and 6.87 mg kg-1 in the upland. Finally, acidic phosphatase activity averaged 13 μmol p-nitrophenyl phosphate (PNP)/g·hr in the bottomland and 11 μmol PNP/g·hr in the upland while alkaline phosphatase activity averaged 24 μmol PNP/g·hr in the bottomland and 8 μmol PNP/g·hr in the upland. Our preliminary assessment suggests that the concentrations of total P, organic P, and microbial P in the bottomland are greater than that of the upland. This suggests that the floodplain has been effectively immobilizing agricultural P. This

  15. Efficient mapping of agricultural soils using a novel electromagnetic measurement system (United States)

    Trinks, Immo; Pregesbauer, Michael


    "Despite all our accomplishments, we owe our existence to a six-inch layer of topsoil and the fact that it rains." - Paul Harvey. Despite the fact, that a farmers most precious good is the soil that he or she cultivates, in most cases actually very little is known about the soils that are being farmed. Agricultural soils are under constant threat through erosion, depletion, pollution and other degrading processes, in particular when considering intensive industrial scale farming. The capability of soils to retain water and soil moisture is of vital importance for their agricultural potential. Detailed knowledge of the physical properties of soils, their types and texture, water content and the depth of the agricultural layer would be of great importance for resource-efficient tillage with sub-area dependent variable depth, and the targeted intelligent application of fertilizers or irrigation. Precision farming, which has seen increasing popularity in the USA as well as Australia, is still in its infancy in Europe. Traditional near-surface geophysical prospection systems for agricultural soil mapping have either been based on earth resistance measurements using electrode-disks that require soil contact, with inherent issues, or electromagnetic induction (EMI) measurements conducted with EMI devices mounted in non-metallic sledges towed several metres behind survey vehicles across the fields. Every farmer passes over the fields several times during each growing season, working the soil and treating the crops. Therefore a novel user-friendly measurement system, the "Topsoil Mapper" (TSM) has been developed, which enables the farmer to simultaneously acquire soil conductivity information and derived soil parameters while anyway passing over the fields using different agricultural implements. The measurement principle of the TSM is electromagnetic induction using a multi-coil array to acquire conductivity information along a vertical profile down to approximately 1.1 m

  16. Aerosol emissions from biochar-amended agricultural soils (United States)

    Ravi, S.; Sharratt, B. S.; Li, J. J.; Olshvevski, S.; Meng, Z.; Zhang, J.


    Agricultural production is a major contributor to anthropogenic greenhouse gas emissions and associated global warming. In this regard, novel carbon sequestration strategies such as large-scale biochar application may provide sustainable pathways to increase the terrestrial storage of carbon in agricultural areas. Biochar has a long residence time in the soil and hence understanding the soil properties affected by biochar addition needs to be investigated to identify the tradeoffs and synergies of large-scale biochar application. Even though several studies have investigated the impacts of biochar application on a variety of soil properties, very few studies have investigated the impacts on soil erosion, in particular wind (aeolian) erosion and subsequent particulate emissions. Using a combination of wind tunnel studies and laboratory experiments, we investigated the dust emission potential of biochar-amended agricultural soils. We amended biochar (unsieved or sieved to appropriate particle size; application rates ranging from 1 - 5 % of the soil by weight) to three soil types (sand, sandy loam, and silt loam) and estimated the changes in threshold shear velocity for wind erosion and dust emission potential in comparison to control soils. Our experiments demonstrate that emissions of fine biochar particles may result from two mechanisms (a) very fine biochar particles (suspension size) that are entrained into the air stream when the wind velocity exceeds the threshold, and (b) production of fine biochar particles originating from the abrasion by quartz grains. The results indicate that biochar application significantly increased particulate emissions and more interestingly, the rate of increase was found to be higher in the intermediate range of biochar application. As fine biochar particles effectively adsorb/trap contaminants and pathogens from the soil, the preferential erosion of fine biochar particles by wind may lead to concentration of contaminants in the

  17. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar


    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  18. Differentiation of nitrous oxide emission factors for agricultural soils

    International Nuclear Information System (INIS)

    Lesschen, Jan Peter; Velthof, Gerard L.; Vries, Wim de; Kros, Johannes


    Nitrous oxide (N 2 O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N 2 O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N 2 O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach. - Highlights: → We developed an N 2 O emission factor inference scheme for agricultural soils. → This scheme accounts for different N-input sources and environmental conditions. → The derived EF inference scheme performed better than the default IPCC EF. → The use of differentiated EFs allows for better accounting of mitigation measures. - Emission factors for nitrous oxide from agricultural soils are derived as a function of N-input sources and environmental conditions on the basis of empirical information.

  19. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.


    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  20. How long does a phosphate ion remain in the solution of agricultural soils?

    International Nuclear Information System (INIS)

    Morel, J.L.; Sinaj, S.; Frossard, E.; Fardeau, J.C.


    This work was conducted to assess the influences of soil properties and agricultural practices on the mean residence time of phosphate ions in the soil solution (T m ). T m was measured with the isotopic exchange kinetics method on the surface horizon of 213 soils from Albania. Almost 90 per cent of the samples presented a T m value included between 10 4 and 10 -1 minute. T m depended primarily on the soil iron oxide content, and was only slightly affected by current farming practices. As a consequence T m could be inferred from the parent material of the soil. Taking into account this parameter could therefore help in a better management of fertilization. (author)

  1. How long does a phosphate ion remain in the solution of agricultural soils?

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.L. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Physiologie Vegetale et Ecosystemes; Sinaj, S.; Frossard, E.; Fardeau, J.C.


    This work was conducted to assess the influences of soil properties and agricultural practices on the mean residence time of phosphate ions in the soil solution (T{sub m}). T{sub m} was measured with the isotopic exchange kinetics method on the surface horizon of 213 soils from Albania. Almost 90 per cent of the samples presented a T{sub m} value included between 10{sup 4} and 10{sup -1} minute. T{sub m} depended primarily on the soil iron oxide content, and was only slightly affected by current farming practices. As a consequence T{sub m} could be inferred from the parent material of the soil. Taking into account this parameter could therefore help in a better management of fertilization. (author). 5 refs.

  2. Genotoxicity of agricultural soils in the vicinity of industrial area. (United States)

    Ansari, Mohd Ikram; Malik, Abdul


    Soil samples from agricultural fields (cultivated) in the vicinity of industrial area of Ghaziabad City (India) were collected. In this city, wastewater coming from both industrial and domestic sources and without any treatment is used to irrigate the food crops. This practice has been polluting the soil and pollutants might reach the food chain. Gas chromatographic analysis show the presence of certain organochlorine (DDE, DDT, dieldrin, aldrin and endosulfan) and organophosphorus (dimethoate, malathion, methylparathion and chlorpyrifos) pesticides in soil samples. Samples were extracted using different solvents, i.e. methanol, chloroform, acetonitrile, hexane and acetone (all were HPLC-grade, SRL, India), and the extracts were assayed for genotoxic potential using Ames Salmonella/microsome test, DNA repair defective mutants and bacteriophage lambda systems. TA98 and TA100 were found to be the most sensitive strains to all the soil extracts tested. Methanol extracts exhibited a maximum mutagenicity with TA98 strain {540 (-S9) and 638 (+S9) revertants/g of soil} and 938 (-S9) and 1008 (+S9) revertants/g of soil with TA100 strain. The damage in the DNA repair defective mutants was found maximum with methanolic extract followed by acetonitrile, chloroform, hexane and acetone at the dose level of 40 microl/ml culture after 6h of treatment. The survival was 25, 30, 32, 33 and 35% in polA strain after 6h of treatment when tested with wastewater irrigated soil extracts of methanol, acetonitrile, chloroform, hexane and acetone, respectively. A significant decrease in the plaque forming units of bacteriophage lambda was also observed when treated with 40 microl of test samples. Present results showed that methanolic extracts of soil were more toxic than other soil extracts. The soil is accumulating a large number of pollutants due to wastewater irrigation and this practice of accumulation has an impact on soil health.

  3. Antibiotic resistance of microorganisms in agricultural soils in Russia (United States)

    Danilova, N. V.; Galitskaya, P. Yu; Selivanovskaya, S. Yu


    Antibiotics are medicines that are widely used in livestock production not only for the prevention and treatment of infectious diseases, but also for accelerating the growth of animals. The application of manure for fertilizing agricultural soils leads to the entry into the soil ecosystem not only of the antibiotics themselves, but also the resistance genes to them. In this study, 30 samples of arable soils were tested for the presence of the tet(X) gene, which encodes bacterial resistance to antibiotics of the tetracycline group. Using real-time PCR, it was found that 27 out of 30 soil samples contained tet(X). 52% of these samples were heavily contaminated, 34% had a medium level of contamination and 14% were slightly contaminated by the resistance gene tet(X).

  4. Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana


    Full Text Available Urban agriculture has been recently highlighted with the increased importance for recreation in modern society; however, soil quality and public health may not be guaranteed because of continuous exposure to various pollutants. The objective of this study was to evaluate the soil quality of urban agriculture by soil microbial assessments. Two independent variables, organic and inorganic fertilizers, were considered. The activities of soil enzymes including dehydrogenase, β-glucosidase, arylsulfatase, urease, alkaline and acid phosphatases were used as indicators of important microbial mediated functions and the soil chemical properties were measured in the soils applied with organic or inorganic fertilizer for 10 years. Fatty acid methyl ester analysis was applied to determine the soil microbial community composition. Relatively higher microbial community richness and enzyme activities were found in the organic fertilizers applied soils as compared to the inorganic fertilizers applied soils. Principal component analysis explained the positive influence of organic fertilizers on the microbial community. The application of organic fertilizers can be a better alternative compared to inorganic fertilizers for the long-term health and security of urban agriculture.

  5. Evaluating the Utility of Remotely-Sensed Soil Moisture Retrievals for Operational Agricultural Drought Monitoring (United States)

    Bolten, John D.; Crow, Wade T.; Zhan, Xiwu; Jackson, Thomas J.; Reynolds,Curt


    Soil moisture is a fundamental data source used by the United States Department of Agriculture (USDA) International Production Assessment Division (IPAD) to monitor crop growth stage and condition and subsequently, globally forecast agricultural yields. Currently, the USDA IPAD estimates surface and root-zone soil moisture using a two-layer modified Palmer soil moisture model forced by global precipitation and temperature measurements. However, this approach suffers from well-known errors arising from uncertainty in model forcing data and highly simplified model physics. Here we attempt to correct for these errors by designing and applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA modified Palmer soil moisture model. An assessment of soil moisture analysis products produced from this assimilation has been completed for a five-year (2002 to 2007) period over the North American continent between 23degN - 50degN and 128degW - 65degW. In particular, a data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing EnKF soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline Palmer model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model simulation suggests that the assimilation of AMSR-E surface soil moisture retrievals can add significant value to USDA root-zone predictions derived from real-time satellite precipitation products.

  6. Degradation of a chiral nonylphenol isomer in two agricultural soils

    International Nuclear Information System (INIS)

    Zhang Haifeng; Spiteller, Michael; Guenther, Klaus; Boehmler, Gabriele; Zuehlke, Sebastian


    The degradation of a chiral nonylphenol isomer, 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP 112 ), in two agricultural soils from Monheim and Dortmund, Germany has been studied. The degradation of NP 112 and the formation of a nitro-nonylphenol metabolite were determined by means of GC-MS analysis. The degradation followed bi-exponential order kinetics, with half-life of less than 5 days in both soils. The nitro-metabolite was found at different concentration levels in the two soils. The nitro-metabolite of NP 112 was more persistent than its parent compound. After 150 days about 13% of the initially applied NP 112 remained in the Monheim soil as its nitro-metabolite. Results of the E-screen assay revealed that the nitro-NP 112 has oestrogenic potency of 85% of that of NP 112 . Furthermore, the results of chiral GC-MS analysis revealed that no chiral degradation of NP 112 occurred in this study. - The degradation of a chiral nonylphenol isomer in agricultural soils followed bi-exponential order kinetics resulting in a more persistent nitro-metabolite.

  7. Transmission of vertical soil stress under agricultural tyres

    DEFF Research Database (Denmark)

    Keller, Thomas; Berli, M.; Ruiz, S.


    The transmission of stress induced by agricultural machinery within an agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). The aim of this paper was to measure...... and simulate soil stress under defined loads. Stress in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at a water content close to field capacity on five soils (13–66% clay). Stress transmission was then simulated with a semi-analytical model, using vertical stress at 0.1 m depth...... estimated from tyre characteristics as the upper boundary condition, and v was obtained at minimum deviation between measurements and simulations. For the five soils, we obtained an average v of 3.5 (for stress transmitting from 0.1 to 0.7 m depth). This was only slightly different from v = 3 for which...

  8. Changes in soil fungal communities across a landscape of agricultural soil land-uses (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.


    Agricultural management is a major driver of changes in soils and their resident microbial communities, but we do not yet have a clear picture of how agriculture affects soil fungi. This is an important gap in our knowledge since fungi play an important role in many soil processes. Previous research has suggested that organic management practices can lead to an increase in soil fungal community diversity, which could have impacts on soil processes and alter the long term trajectory of soil quality in agricultural systems. Also, the relationship between management effects, biogeography, and soil fungi is not clear. The biogeography of macroscopic species is well described by taxa-area relationships and distance decay models, and recent research has suggested that certain subsets of fungi (e.g. AMF, litter sapotrophs) demonstrate similar patterns. However there is little information on how soil fungi as a whole are distributed across a landscape with soils under different managements. The goal of this project was to examine how different management practices alter soil fungal communities across a landscape of agricultural fields in upstate NY. We asked several specific questions: 1) Do different types of agricultural land-uses lead to divergent or convergent communities of soil fungi? 2) If soil type is held constant, do soil fungal communities diverge with geographic distance? 3) What are the major fungal groups that change in response to soil management, and are they cosmopolitan or endemic across the landscape? We studied these questions across agricultural fields in upstate NY that ranged from conventional corn, organic grains/corn, and long-term pasture. We sampled four fields (conventional, 10 and 20 year organic, and pasture) that had identical soils types and ranged from 100 m to 4 km apart. We utilized a multiplexed pyrosequencing approach on genomic DNA to analyze the structure of the soils' fungal communities. This approach allowed us to study soil fungi

  9. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring (United States)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John


    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  10. Dynamics of agricultural soil erosion in European Russia (United States)

    Litvin, L. F.; Kiryukhina, Z. P.; Krasnov, S. F.; Dobrovol'skaya, N. G.


    Socioeconomic transformation together with climate change in recent decades significantly affected the geography of agricultural erosion in European Russia. Calculations of erosion rate and soil loss from slopes using logical-mathematical erosion models within different landscape zones and administrative regions revealed spatial-temporal regularities in the dynamics of these parameters and made it possible to assess the role of changes in the main natural and anthropogenic factors of erosion. A universal significant reduction in the mass of soil material washed from tilled slopes is revealed on the background of multidirectional changes in erosion rate.

  11. Effect of sludges on bacteria in agricultural soil

    DEFF Research Database (Denmark)

    Kuntz, Jérôme; Nassr-Amellal, Najat; Lollier, Marc


    The effect of composted (CS), digested (DS) and liquid raw (LRS) sludges unspiked or spiked with benzo[a]pyrene(BaPYR), dibuthyl phthalate (DBP) or nonyl phenol (NP) on the structure of the bacterial communities of an agricultural soil was estimated by using thermal temporal gel electrophoresis...... in the laboratory conditions probably due to the favorable conditions of mineralization. The results observed with soil amended with the same sludges and cultivated or not with carrots in outdoor lysimeters were similar to those observed in the laboratory experiments. Thus, this bioassay allowed predicting...

  12. Agricultural soil fumigation as a source of atmospheric methyl bromide. (United States)

    Yagi, K; Williams, J; Wang, N Y; Cicerone, R J


    Methyl bromide (MeBr) is used increasingly as a biocidal fumigant, primarily in agricultural soils prior to planting of crops. This usage carries potential for stratospheric ozone reduction due to Br atom catalysis, depending on how much MeBr escapes from fumigated soils to the atmosphere and on details of atmospheric chemical reactions. We present direct field measurements of MeBr escape; 87% of the applied MeBr was emitted within 7 days after a commercial fumigation. Covering the field with plastic sheets retarded MeBr escape somewhat but first-day losses were still 40%; thicker sections of sheets were relatively more effective than thin sections. We also measured gaseous MeBr concentrations versus depth in the soil column; these profiles display diffusion-like evolution. In soil, MeBr is partitioned among gas, liquid, and adsorbed solid phases. Calculated soil inventories agreed only roughly with applied amounts, probably due to nonequilibrium partitioning (during the first 30 min) and to uncertainties in partitioning coefficients. Fumigated fields may release less MeBr if they are covered by more gas-tight plastic films, if injection techniques are improved and injection is deeper, and if soil moistures, organic amounts, and densities are greater than in the soil studied here.

  13. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  14. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo


    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  15. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China. (United States)

    Zhang, Ying; Wang, Pengjie; Wang, Lei; Sun, Guoqiang; Zhao, Jiaying; Zhang, Hui; Du, Na


    The current study investigates the existence of 15 phthalate esters (PAEs) in surface soils (27 samples) collected from 9 different facility agriculture sites in the black soil region of northeast China, during the process of agricultural production (comprising only three seasons spring, summer and autumn). Concentrations of the 15 PAEs detected significantly varied from spring to autumn and their values ranged from 1.37 to 4.90 mg/kg-dw, with a median value of 2.83 mg/kg-dw. The highest concentration of the 15 PAEs (4.90 mg/kg-dw) was determined in summer when mulching film was used in the greenhouses. Probably an increase in environmental temperature was a major reason for PAE transfer from the mulching film into the soil and coupled with the increased usage of chemical fertilizers in greenhouses. Results showed that of the 15 PAEs, di(2-ethylhexyl) phthalate(DEHP), di-n-butyl phthalate (DBP), diethyl phthalate (DEP) and dimethyl phthalate (DMP) were in abundance with the mean value of 1.12 ± 0.22, 0.46 ± 0.05, 0.36 ± 0.04, and 0.17 ± 0.01 mg/kg-dw, respectively; and their average contributions in spring, summer, and autumn ranged between 64.08 and 90.51% among the 15 PAEs. The results of Principal Component Analysis (PCA) indicated the concentration of these four main PAEs significantly differed among the facility agricultures investigated, during the process of agricultural production. In comparison with foreign and domestic results of previous researches, it is proved that the black soils of facility agriculture in northeast China show higher pollution situation comparing with non-facility agriculture soils. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Spatial Variability of Physical Soil Quality Index of an Agricultural Field

    Directory of Open Access Journals (Sweden)

    Sheikh M. Fazle Rabbi


    Full Text Available A field investigation was carried out to evaluate the spatial variability of physical indicators of soil quality of an agricultural field and to construct a physical soil quality index (SQIP map. Surface soil samples were collected using 10  m×10 m grid from an Inceptisol on Ganges Tidal Floodplain of Bangladesh. Five physical soil quality indicators, soil texture, bulk density, porosity, saturated hydraulic conductivity (KS, and aggregate stability (measured as mean weight diameter, MWD were determined. The spatial structures of sand, clay, and KS were moderate but the structure was strong for silt, bulk density, porosity, and MWD. Each of the physical soil quality indicators was transformed into 0 and 1 using threshold criteria which are required for crop production. The transformed indicators were the combined into SQIP. The kriged SQIP map showed that the agricultural field studied could be divided into two parts having “good physical quality” and “poor physical soil quality.”

  17. Effect of ploughing-down of grapevine chips on soil structure when using special agricultural machinery

    Directory of Open Access Journals (Sweden)

    Barbora Badalíková


    Full Text Available Within the period of 2008–2011, changes in soil structure were studied in two selected localities: one of them was situated in vineyards of the University Training Farm of Mendel University in Žabčice near Brno, the other was in vineyards situated in the cadastre of wine-growing municipality Velké Bílovice. Established were altogether three variants of experiments with application of crushed grapevine wood (chips: Variant 1 – control; Variant 2 – crushed grapevine wood ploughed down to the depth of 0.10 m; Variant 3 – crushed grapevine wood + grass spread on the soil surface as a mulch. Grapevine canes were crushed to chips using a special agricultural machinery while the soil in inter-rows was processed using conventional tilling machines. The obtained results showed that the best coefficient of structurality (expressing the degree of destruction of soil structure was recorded in Variants 2 in both localities. Considering values of this coefficient it could be concluded that just this variant showed a positive effect on soil structure. This variant reduced the compaction of soil caused by the movement of agricultural machines in vineyard inter-rows Crushed grapevine waste wood can therefore compensate losses of organic matter in soil. Better values of structurality coefficient were recorded in the locality Žabčice.

  18. The effect of drains on the alkalinity of agricultural soils

    International Nuclear Information System (INIS)

    Iqbal, M.A.; Butt, T.; Anwar-ul-Haque; Haroon, M.; Haq, I.U.


    The purpose of the study was to observe the effect of industrial and domestic drains on the nearby agricultural areas which are either irrigated or not by the waste water but are close to drains. For this purpose 48 soil samples were collected from the selected areas of Faisalabad and were analyzed for alkali metals like Na/sup +/, K/sup +/, Li/sup +/ and some alkaline earth metals like Ba/sup 2+/> Mg/sup 3+/> Na/sup +/> K/sup +/> Li/sup +/ the levels of Ba/sup +2/ and K/sup +/ were found higher than permissible levels in almost all the soil samples. It was also concluded that the agricultural areas near the industrial drain which are either irrigated or not by the industrial waste water are found highly contaminated with mobile alkali metals (K, Na etc.) and higher values of percentage salinity. (author)

  19. Long and Midterm Effect of Conservation Agriculture on Soil Properties in Dry Areas of Morocco

    Directory of Open Access Journals (Sweden)

    Malika Laghrour


    Full Text Available In Morocco, conservation agriculture, particularly no tillage systems, has become an alternative strategy to mitigate land degradation caused by conventional tillage in semiarid to arid regions. This paper is based on behaviour to tillage treatments of two Vertisols in Morocco. After 11 years of testing, soil organic matter content results showed a significant difference (P<0.05 only at soil surface (0–10 cm in favour of no tillage and a variation of 30% at this depth. The results obtained after 32 years of testing showed a significant soil profile difference (P<0.05, up to 40 cm under no tillage compared to conventional tillage, and a variation of 54% at 5–10 cm. For total nitrogen, there was no significant effect between no tillage and conventional tillage at the soil surface after 11 years unlike the result obtained after 32 years. There are no significant differences in bulk density between tillage treatments at soil surface for both sites. The measurement of soil structural stability showed a significant effect (P<0.05 for all three tests and for both sites. This means that no tillage helped Vertisols to resist different climatic constraints, preserving environmental soil quality.

  20. Agricultural management explains historic changes in regional soil carbon stocks (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark


    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks. PMID:20679194

  1. Agricultural management explains historic changes in regional soil carbon stocks. (United States)

    van Wesemael, Bas; Paustian, Keith; Meersmans, Jeroen; Goidts, Esther; Barancikova, Gabriela; Easter, Mark


    Agriculture is considered to be among the economic sectors having the greatest greenhouse gas mitigation potential, largely via soil organic carbon (SOC) sequestration. However, it remains a challenge to accurately quantify SOC stock changes at regional to national scales. SOC stock changes resulting from SOC inventory systems are only available for a few countries and the trends vary widely between studies. Process-based models can provide insight in the drivers of SOC changes, but accurate input data are currently not available at these spatial scales. Here we use measurements from a soil inventory dating from the 1960s and resampled in 2006 covering the major soil types and agricultural regions in Belgium together with region-specific land use and management data and a process-based model. The largest decreases in SOC stocks occurred in poorly drained grassland soils (clays and floodplain soils), consistent with drainage improvements since 1960. Large increases in SOC in well drained grassland soils appear to be a legacy effect of widespread conversion of cropland to grassland before 1960. SOC in cropland increased only in sandy lowland soils, driven by increasing manure additions. Modeled land use and management impacts accounted for more than 70% of the variation in observed SOC changes, and no bias could be demonstrated. There was no significant effect of climate trends since 1960 on observed SOC changes. SOC monitoring networks are being established in many countries. Our results demonstrate that detailed and long-term land management data are crucial to explain the observed SOC changes for such networks.

  2. Spatial variation of soil salinity in the Mexicali Valley, Mexico: application of a practical method for agricultural monitoring. (United States)

    Judkins, Gabriel; Myint, Soe


    The degradation of irrigated lands through the process of soil salinization, or the buildup of salts in the soil, has hampered recent increases in agricultural productivity and threatens the sustainability of large-scale cultivation in critical agricultural regions of the world. Rapid detection of soil salinity on a regional basis has been identified as key for effective mitigation of such land degradation. The ability to detect regional patterns of soil salinity at an accuracy sufficient for regional-scale resource management is demonstrated using Landsat 5 Thematic Mapper (TM) imagery. A case study of the Mexicali Valley of Baja California, Mexico was selected due to the region's agricultural significance and concern for future soil salinity increases. Surface soil salinity was mapped using georeferenced field measurements of electrical conductivity (EC), collected concurrently with Landsat 5 TM imagery. Correlations between EC measurements and common indices derived from the satellite imagery were used to produce a model of soil salinity through regression analysis. Landsat band 7, TNDVI, PCA 1, Tasseled Cap 3 and Tasseled Cap 5 were found to offer the most promising correlations with surface soil salinity. Generally low levels of soil salinity were detected, however, distinct areas of elevated surface salinity were detected at levels potentially impacting sensitive crops cultivated within the region. The difficulty detecting low levels of salinity and the mid-range spatial resolution of Landsat 5 TM imagery restrict the applicability of this methodology to the study of broad regional patterns of degradation most appropriate for use by regional resource managers.

  3. Estimating the distribution of radionuclides in agricultural soils - dependence on soil parameters. (United States)

    Hormann, Volker; Fischer, Helmut W


    In this study it is shown how radionuclide distributions in agricultural soils and their dependence on soil parameters can be quantitatively estimated. The most important sorption and speciation processes have been implemented into a numerical model using the geochemical code PHREEQC that is able to include specific soil and soil solution compositions. Using this model, distribution coefficients (Kd values) for the elements Cs, Ni, U and Se have been calculated for two different soil types. Furthermore, the dependencies of these Kd values on various soil parameters (e.g. pH value or organic matter content) have been evaluated. It is shown that for each element, an individual set of soil parameters is relevant for its solid-liquid distribution. The model may be used for the calculation of input parameters used by reference biosphere models (e.g. used for the risk assessment of nuclear waste repositories). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions (United States)

    Van Pelt, R. S.; Zhang, G.


    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  5. Integrated soil improvement and agricultural development: why current policy approaches fail

    NARCIS (Netherlands)

    Koning, N.B.J.; Heerink, N.B.M.; Kauffman, S.


    Integrated soil management is an essential condition for agricultural development in West Africa. Such an approach combines improved soil hydraulic measures, organic fertility measures, and inorganic fertilizers and soil amendments. The synergetic effects which result from this combination are

  6. Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources. (United States)

    Heathwaite, Louise; Haygarth, Phil; Matthews, Rachel; Preedy, Neil; Butler, Patricia


    Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p 0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.

  7. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  8. Landscape evolution by soil redistribution in a Mediterranean agricultural context (United States)

    Ciampalini, Rossano; Follain, Stéphane; Le Bissonnais, Yves


    Soils and landscapes are frequently subjected to rapid evolutions induced by climate changes and humans disturbances. Early, soil scientists had already sought to identify the dynamic interactions between soils and landscapes. Soil redistribution modelling is an appropriate analyse methodology widely utilized (Kirkby, 1985; Van Oost et al., 2000; Van Rompaey et al., 2001; Minasny and McBratney, 1999; Van Oost et al., 2005; Govers et al., 2006) to understand space time evolution in soil and landscape processes at short and medium term. The aims of this research is to develop a model able to simulate soil evolution as affected by soil redistribution processes (e.g. water-erosion processes and mechanical erosion) and to use pedological knowledge acquired from a field study coupled with the present research. The LandSoil model, here proposed, is an event based model, dimensioned for fine spatial [1 m] and medium [10 -100 years] temporal scales, taking into account a detailed representation of the agricultural landscape structure. It is composed of three modules for soil erosion/redistribution: rill erosion (Souchère et al., 2003); interrill erosion (Cerdan et al., 2002); and tillage erosion based on the mechanistic rules developed by Govers et al., 1994. After each rain and tillage event a new topography is evaluated as well as all the geometric landscape parameters. Specificities of the model are: i) long-term landscape analysis and topography balance after each rainfall; ii) evaluation of water erosion and soil mechanistic redistribution (tillage erosion); iii) taking in consideration of the landscape geometry, especially connectivity, as a significant information in describing the landscape and useful in modelling (Landscape structure management and landscape design); and iv) utilisation of various and different climate scenarios thanks to the event based model. Subsequently we apply this model to study the effect of different scenarios of land management and

  9. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils (United States)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.


    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to

  10. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff. (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael


    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  11. The usefulness of soil-agricultural maps to identify classes of soil truncation

    Directory of Open Access Journals (Sweden)

    Pindral Sylwia


    Full Text Available Soil erosion led to the severe transformations of the soil cover of young morainic areas of northern Poland. Main alterations are connected with soil truncation on summits and in upper part of slopes, whereas at foot slopes and within depressions colluvial material is accumulated. Information and knowledge about the extent or intensity of erosion are mainly derived from sophisticated geospatial models or laborious field works. To reduce the effort associated with development of studies on erosion the use of easily available cartographic sources is required. The main aim of the paper is an elaboration of key to reinterpret information taken from soil-agricultural maps in the context of determining the degree of pedons truncation. The study is based on a comparison of the properties of soils representing various classes of erosional alterations with the data on existing maps. The correlation between descriptions recorded in the form of cartographic symbols with properties of pedons divided into several classes of vertical texturecontrast soil truncation and results from potential erosion maps was elaborated. The application of developed interpretative principles allows calculating the share of soil truncation classes within investigated area. The five test plots (each - 1 km2 were located along the north slopes of Noteć Middle Valley and Toruń Basin. The proposed interpretation of soil-agricultural maps reveals their significant value in studies on extent and degree of erosional alterations recorded in soil cover.

  12. Regionalization of Uncovered Agricultural Soils Based on Organic Carbon and Soil Texture Estimations

    Directory of Open Access Journals (Sweden)

    Martin Kanning


    Full Text Available The determination of soil texture and organic carbon across agricultural areas provides important information to derive soil condition. Precise digital soil maps can help to till agricultural fields with more accuracy, greater cost-efficiency and better environmental protection. In the present study, the laboratory analysis of sand, silt, clay and soil organic carbon (SOC content was combined with hyperspectral image data to estimate the distribution of soil texture and SOC across an agricultural area. The aim was to identify regions with similar soil properties and derive uniform soil regions based on this information. Soil parameter data and corresponding laboratory spectra were used to calibrate cross-validated (leave-one-out partial least squares regression (PLSR models, resulting in robust models for sand (R2 = 0.77, root-mean-square error (RMSE = 5.37 and SOC (R2 = 0.89, RMSE = 0.27, as well as moderate models for silt (R2 = 0.62, RMSE = 5.46 and clay (R2 = 0.53, RMSE = 2.39. The regression models were applied to Airborne Imaging Spectrometer for Applications DUAL (aisaDUAL hyperspectral image data to spatially estimate the concentration of these parameters. Afterwards, a decision tree, based on the Food and Agriculture Organization (FAO soil texture classification scheme, was developed to determine the soil texture for each pixel of the hyperspectral airborne data. These soil texture regions were further refined with the spatial SOC estimations. The developed method is useful to identify spatial regions with similar soil properties, which can provide a vital information source for an adapted treatment of agricultural fields in terms of the necessary amount of fertilizers or water. The approach can also be adapted to wider regions with a larger sample size to create detailed digital soil maps (DSMs. Further, the presented method should be applied to future hyperspectral satellite missions like Environmental Mapping and Analysis Program (En

  13. Precise soil management as a tool to reduce CH4 and N2O emissions from agricultural soils

    NARCIS (Netherlands)

    Mosquera Losada, J.; Hol, J.M.G.; Rappoldt, C.; Dolfing, J.


    Soil compaction stimulates the emission of nitrous oxide (N2O) and methane (CH4) from agricultural soils. N2O and CH4 are potent greenhouse gases, with a global warming potential respectively 296 times and 23 times greater than CO2.. Agricultural soils are an important source of N2O. Hence there is

  14. Experimental study on soluble chemical transfer to surface runoff from soil. (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei


    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  15. Quantifying the changes of soil surface microroughness due to rainfall impact on a smooth surface

    Directory of Open Access Journals (Sweden)

    B. K. B. Abban


    Full Text Available This study examines the rainfall-induced change in soil microroughness of a bare smooth soil surface in an agricultural field. The majority of soil microroughness studies have focused on surface roughness on the order of ∼ 5–50 mm and have reported a decay of soil surface roughness with rainfall. However, there is quantitative evidence from a few studies suggesting that surfaces with microroughness less than 5 mm may undergo an increase in roughness when subject to rainfall action. The focus herein is on initial microroughness length scales on the order of 2 mm, a low roughness condition observed seasonally in some landscapes under bare conditions and chosen to systematically examine the increasing roughness phenomenon. Three rainfall intensities of 30, 60, and 75 mm h−1 are applied to a smoothened bed surface in a field plot via a rainfall simulator. Soil surface microroughness is recorded via a surface-profile laser scanner. Several indices are utilized to quantify the soil surface microroughness, namely the random roughness (RR index, the crossover length, the variance scale from the Markov–Gaussian model, and the limiting difference. Findings show a consistent increase in roughness under the action of rainfall, with an overall agreement between all indices in terms of trend and magnitude. Although this study is limited to a narrow range of rainfall and soil conditions, the results suggest that the outcome of the interaction between rainfall and a soil surface can be different for smooth and rough surfaces and thus warrant the need for a better understanding of this interaction.

  16. SIMPLE: assessment of non-point phosphorus pollution from agricultural land to surface waters by means of a new methodology

    NARCIS (Netherlands)

    Schoumans, O.F.; Mol-Dijkstra, J.P.; Akkermans, L.M.W.; Roest, C.W.J.


    In the past, environmental phosphorus (P) parameters like soil P indices have been used to catogorize the potential risk of P losses from agricultural land. In order to assess the actual risk of P pollution of groundwater and surface waters, dynamic process oriented soil and water quality models


    Directory of Open Access Journals (Sweden)

    Halus Satriawan


    Full Text Available Currently, many have been concerned with the oil palm cultivation since it may also put land resources in danger and bring about environmental damage. Poor practices in managing agricultural land very often occur due to the inadequate knowledge of soil conservation. Application of soil and water conservation is to maintain the productivity of the land and to prevent further damage by considering land capability classes. This research was aimed at obtaining soil and water conservation techniques which are the most appropriate and optimal for oil palm cultivation areas based on land capability classes which can support sustainable oil palm cultivation. Several soil conservation techniques had been treated to each different class III, IV, and VI of the studied area. These treatment had been performed by a standard plot erosion. The results showed for the land capability class III, Cover plants + Manure was able to control runoff, erosion and reduce leaching of N (LSD P≤0,05, in which soil conservation produced the lowest erosion (3,73t/ha, and N leaching (0,25%. On land capability class IV, Sediment Trap + cover plants+ manure was able to control runoff, erosion and reduce organic C and P leaching (LSD P≤0,05, in which soil conservation produced the lowest runoff (127,77 m3/ha, erosion (12,38t/ha, organic C leaching (1,14 %, and P leaching (1,28 ppm. On land capability class VI, there isn’t significant effect of soil conservation, but Bench Terrace + cover plants +manure has the lowest runoff, erosion and soil nutrient leaching.

  18. Agriculture

    International Nuclear Information System (INIS)


    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  19. Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany (United States)

    Steinke, I.; Funk, R.; Busse, J.; Iturri, A.; Kirchen, S.; Leue, M.; Möhler, O.; Schwartz, T.; Schnaiter, M.; Sierau, B.; Toprak, E.; Ullrich, R.; Ulrich, A.; Hoose, C.; Leisner, T.


    Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011 m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.

  20. Atmospheric impact of abandoned boreal organic agricultural soils depends on hydrological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maljanen, M.; Martikainen, P.J. [Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science], E-Mail:; Hytonen, J. [Finnish Forest Research Inst., Kannus (Finland); Makiranta, P.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Forest Sciences; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)


    Drained agricultural peat soils are significant sources of carbon dioxide (CO{sub 2}) but also small sinks for methane (CH{sub 4}). Leaving these soils without any cultivation practice could be an option to mitigate GHG emissions. To test this hypothesis, we measured, over a three year period, net CO{sub 2} exchange and fluxes of CH{sub 4} for five agricultural peat soils that had been abandoned for 20-30 years. Annually, the sites were either small net sinks or sources of CO{sub 2} and CH{sub 4} (-7,8 to 530 g CO{sub 2}-Cm {sup -2} and -0,41 to 1,8 g CH{sub 4}m{sup -2}). Including N{sub 2}O emissions from our previous study, the net (CH{sub 4}+CO{sub 2}+N{sub 2}O) emissions as CO{sub 2} equivalents were lower than in cultivated peat soils and were lowest in the wet year. Therefore, high GHG emissions from these soils could be avoided if the water table is maintained close to the soil surface when photosynthesis is favoured over respiration. (orig.)

  1. The impact of agriculture management on soil quality in citrus orchards in Eastern Spain (United States)

    Hondebrink, Merel; Cerdà, Artemi; Cammeraat, Erik


    Currently, the agricultural management of citrus orchard in the Valencia region in E Spain, is changing from traditionally irrigated and managed orchards to drip irrigated organic managed orchards. It is not known what is the effect of such changes on soil quality and hope to shed some light with this study on this transition. It is known that the drip-irrigated orchards built in sloping terrain increase soil erosion (Cerdà et al., 2009; Li et al., 2014) and that agricultural management such as catch crops and mulches reduce sediment yield and surface runoff (Xu et al., 2012; ), as in other orchards around the world (Wang et al., 2010; Wanshnong et al., 2013; Li et al., 2014; Hazarika et al., 2014): We hypothesize that these changes have an important impact on the soil chemical and physical properties. Therefor we studied the soil quality of 12 citrus orchards, which had different land and irrigation management techniques. We compared organic (OR) and conventional (CO) land management with either drip irrigation (DRP) or flood irrigation (FLD). Soil samples at two depths, 0-1 cm and 5-10 cm, were taken for studying soil quality parameters under the different treatments. These parameters included soil chemical parameters, bulk density, texture, soil surface shear strength and soil aggregation. Half of the studied orchards were organically managed and the other 6 were conventionally managed, and for each of these 6 study sites three fields were flood irrigated plots (FLD) and the other three drip irrigated systems (DRP) In total 108 soil samples were taken as well additional irrigation water samples. We will present the results of this study with regard to the impact of the studied irrigation systems and land management systems with regard to soil quality. This knowledge might help in improving citrus orchard management with respect to maintaining or improving soil quality to ensure sustainable agricultural practices. References Cerdà, A., Giménez-Morera, A. and

  2. The economics of soil C sequestration and agricultural emissions abatement (United States)

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.


    Carbon is a critical component of soil vitality and is crucial to our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence, this is a case of significant market failure. In the design of alternative policy options, we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing the cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  3. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad


    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  4. An inventory of trace elements inputs to French agricultural soils. (United States)

    Belon, E; Boisson, M; Deportes, I Z; Eglin, T K; Feix, I; Bispo, A O; Galsomies, L; Leblond, S; Guellier, C R


    The inputs of ten trace elements (As, Cd, Cu, Cr, Hg, Mo, Ni, Pb, Se, Zn) to French agricultural soils have been assessed. The six main sources considered were: pesticides, mineral fertilizers, animal manure, liming materials, sludge and composts and atmospheric deposition. Data were collected to compute inputs at both national and regional (departmental) scales. The inventory methodology is based on two principles: data are traceable and easy to update. At a national scale, the inventory showed that trace elements inputs can be ranked: Zn≫Cu≫Cr>Pb>Ni>As=Mo>Se>Cd>Hg. Animal manure, mineral fertilizers and pesticides are the predominant sources of TEs. These results are globally in agreement with literature data though atmospheric deposition is shown to be lower than in more industrial countries such as China and United Kingdom where similar surveys were conducted. The inputs of trace elements vary strongly between regions in relation with agricultural activities. This inventory (and the related database) provides basis for developing and monitoring policies to control and reduce trace elements contamination of agricultural soils at both national and regional (departmental) scales. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Searsville Sediment Experiment: What is the ideal agricultural soil? (United States)

    Leal, J.; Lo, D.; Patel, N.; Gu, S.


    The purpose of this experiment is to decide whether or not the sediment located within Searsville Dam at the Jasper Ridge Biological Preserve is well suited for agricultural soil. By utilizing various combinations of sediment, farm soil, compost, and horse manure to grow basil plants, we underwent an exploratory study in order to better understand what type of materials and nutrients plants can best thrive within. Our general experiment protocol includes watering the crops with irrigation every day while young, and then limiting that water exposure to only Mondays, Wednesdays, and Fridays as they become more established. The basil is growing in pots filled with the different amounts of material, and are arranged randomly to prevent certain plants from getting more sunlight than others. The whole experiment plot is covered with a thin white fabric and secured with bricks and wood to keep out pests in the garden. In order to observe trends in the basil development, plant height and leaf number is recorded once every week. During the third week of the study we performed soil texture tests, and within the fourth week we calculated pH data. We discovered that the sediment our project focuses upon is 10-18% clay and 50% sand which categorizes it as loam, and the Stanford farm soil that serves as our control group contains 20-26% clay and 30% sand so it is a silt loam material. The pH tests also showed an average of 7.45 for sediment, 7.3 for farm soil, 7.85 for compost, and 7.65 for horse manure. By looking at all of the data recorded over the five-week time period, we have so far noticed that the 50% sediment and 50% horse manure combination consistently has the best height increase as well as leaf size and content. The 50% sediment and 50% compost mixture has also performed well in those terms, and is therefore a possibility for the best agricultural soil. However, future lab work conducted by Stanford students to examine the nutrient content of the basil tissue, along

  6. SMEX02 Land Surface Information: Soils Database (United States)

    National Aeronautics and Space Administration — The Soil Moisture Experiment 2002 (SMEX02) took place in Ames, Iowa USA between 25 June and 12 July 2002. The NASA Land Surface Hydrology Data Archive maintains an...

  7. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties (United States)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis


    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron

  8. Biochar has no effect on soil respiration across Chinese agricultural soils. (United States)

    Liu, Xiaoyu; Zheng, Jufeng; Zhang, Dengxiao; Cheng, Kun; Zhou, Huimin; Zhang, Afeng; Li, Lianqing; Joseph, Stephen; Smith, Pete; Crowley, David; Kuzyakov, Yakov; Pan, Genxing


    Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  9. Fine dust emissions in sandy and silty agricultural soils (United States)

    Dust emissions from strong winds are common in arid and semi-arid regions and occur under both natural and managed land systems. A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentrations are highly correlat...

  10. Effect of agricultural activity in the salt content in soils of Murcia: comparison with other land uses

    International Nuclear Information System (INIS)

    Acosta Aviles, J. A.; Faz Cano, A.; Martinez-Martinez, S.


    Salinization is one of the main problems of soil degradation in arid and semiarid areas, causing a reduction of soil quality, declining yield and productivity, and even land abandonment. the aim of this study was to evaluate the effect of different land uses, particularly agricultural use in the salt content in soil. The study area is located in the surroundings of Murcia city (SE Spain), with an surface of 100 km 2 , with high agricultural productivity. In order to determine salt content in soil, E. C. was measured in the 1:5 ratio. The results showed that the study area is saline, being the salinity higher when anthropogenic activity is more severe. Agricultural lands present the widest range of data, probably due to the application of poor quality irrigation water, fertilizers and livestock waste. (Author) 9 refs.

  11. Determination of antibiotic residues in manure, soil, and surface waters (United States)

    Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.


    In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

  12. Soil health: an emergent set of soil properties that result from synergy among agricultural management practices (United States)

    The responses of a selected soil microbial property to a single agricultural management practice are often inconsistent among field studies, possibly reflecting the site-specific nature of field studies. An equally compelling explanation is that in complex systems where outcomes are the result of n...

  13. The effect of some soil characteristics on soil radon concentration and radon exhalation from soil surface

    International Nuclear Information System (INIS)

    Sun, Kainan; Cheng, Jianping; Guo, Qiuju


    To find out the impacts of soil characters on radon concentration in soil and radon exhalation from soil, field measurements on soil radon concentrations (60 cm under the soil surface) and radon exhalation rate from soil surface were carried out in totally 31 points with different types of soil in three cities in both South and North China. Soil radium contents, water contents, soil porosity and grain size were concretely analyzed in our laboratory. The linear simulation was used to analyze the above data. The results showed that radon exhalation rate from soil and radon concentrations in soil have direct proportion to soil radium contents. Rather high radium content and radon exhalation rate were measured in Guiyang area, 67±28Bq/Kg and 40±59 mBq/m 2 ·s, however no high soil radon concentration was found due to the difficulties in the measurements on clay soils with high saturation. Compared with soil radium contents, radon exhalation rate from soil and soil radon concentrations are more easily impacted by soil characters and change in a rather large range. (author)

  14. Ecosystem services driven by the diversity of soil biota - understanding and management in agriculture - The Biodiversa SoilMan-Project (United States)

    Potthoff, Martin; Pérès, Guénola; Taylor, Astrid; Schrader, Stefan; Landa, Blanca; Nicolai, Annegret; Sandor, Mignon; Öptik, Maarja; Gema, Guzmán; Bergmann, Holger; Cluzeau, Daniel; Banse, Martin; Bengtsson, Jan; Guernion, Muriel; Zaller, Johann; Roslin, Tomas; Scheu, Stefan; Gómez Calero, José Alfonso


    Soil biota diversity is ensuring primary production in terrestrial ecosystems and agricultural productivity. Water and nutrient cycling, soil formation and aggregation, decomposition and carbon sequestration as well as control of pest organisms are important functions in soil that are driven by biota and biota interactions. In agricultural systems these functions support and regulate ecosystem services directed to agricultural production and agricultural sustainability. A main goal of future cropping systems will be to maintain or raise agricultural productivity while keeping production sustainable in spite of increasing food demands and ongoing soil degradation caused by inappropriate soil management practices. Farm based tools that farmers use to engineer soils for plant production depend as soil management factors on decisions by farmers, which are triggered by regional traditions, knowledge and also by agriculture policies as a governance impact. However, biological impacts on soil fertility and soil health are often neglected or overseen when planning and shaping soil management in annual cropping systems or perennial systems like vineyards. In order to get progress in conservation farming and in agricultural sustainability not only knowledge creation is in need, but also a clash of perspectives has to be overcome within the societies (generals public, farmers associations, NGOs) The talk will present the conception of the recently startet SoilMan-project and summaries selected results from current and recent European research projects.

  15. Estimation of NH 3 bi-directional flux from managed agricultural soils (United States)

    Cooter, Ellen J.; Bash, Jesse O.; Walker, John T.; Jones, M. R.; Robarge, Wayne


    The Community Multi-Scale Air Quality model (CMAQ) is used to assess regional air quality conditions for a wide range of chemical species throughout the United States (U.S.). CMAQ representation of the regional nitrogen budget is limited by its treatment of ammonia (NH 3) soil emission from, and deposition to underlying surfaces as independent rather than tightly coupled processes, and by its reliance on soil emission estimates that do not respond to variable meteorology and ambient chemical conditions. The present study identifies an approach that addresses these limitations, lends itself to regional application, and will better position CMAQ to meet future assessment challenges. These goals were met through the integration of the resistance-based flux model of Nemitz et al. (2001) with elements of the United States Department of Agriculture EPIC (Environmental Policy Integrated Climate) model. Model integration centers on the estimation of ammonium and hydrogen ion concentrations in the soil required to estimate soil NH 3 flux. The EPIC model was calibrated using data collected during an intensive 2007 field study in Lillington, North Carolina. A simplified process model based on the nitrification portion of EPIC was developed and evaluated. It was then combined with the Nemitz et al. (2001) model and measurements of near-surface NH 3 concentrations to simulate soil NH 3 flux at the field site. Finally, the integrated flux (emission) results were scaled upward and compared to recent national ammonia emission inventory estimates. The integrated model results are shown to be more temporally resolved (daily), while maintaining good agreement with established soil emission estimates at longer time-scales (monthly). Although results are presented for a single field study, the process-based nature of this approach and NEI comparison suggest that inclusion of this flux model in a regional application should produce useful assessment results if nationally consistent

  16. Heavy Metals in Agricultural Soils in Nigeria: A Review

    Directory of Open Access Journals (Sweden)

    J. J. Musa


    Full Text Available This review paper presents the health risks of heavy metals such as: lead (Pb, chromium (Cr, zinc (Zn, cadmium (Cd, copper (Cu, mercury (Hg, nickel (Ni and arsenic (As etc contamination in soils. The review reveals the major sources of these metals which are urban and industrial effluents, deterioration of sewage pipe, treatment water works, sewage sludge, fertilizers and pesticides. It also reveals the adopted standard for drinking water (maximum tolerable limit by FAO, JECFA and WHO which are as follows: 0.05mg/L, 0.05mg/L, 1.5mg/L, 0.001mg/L, 0.02mg/L, 15mg/L, 0.3mg/L, 0.5mg/L, 0.01mg/L, 0.05mg/L and 0.05mg/L for Pb, Cr, Cu, Hg, Ni, Zn, Fe, Mn, Se, As and Cd respectively. The accumulation of heavy metals in agricultural soils is of increasing concern because of food safety issues, potential health risks such as neurological disorder, cancer, kidney damage, fragile bone etc and their detrimental effects on soil ecosystem. However, the regular monitoring of levels of these metals from dump sites, effluents and sewages in soil and drinking water is essential to prevent excessive buildup of these metals thereby increasing toxicity and elevating the public health risk.

  17. Limiting Factors for Agricultural Production and Differentiation of Soil Management in Romania (United States)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian; Pop, Horia


    Romania's land area is 23,839,100 ha; 0.16% of the world's surface. Worldwide, Romania is ranked #83 for areal extent, and it consitutes 4.81% of the Europe's surface (ranked #12). Romania has 14,856,800 ha of agricultural land which represents 62.3% of the total surface; 0.65 ha per capita. At the national level, 72.5% and 27.5% of soils in Romania can be broadly classed as very poor and good/very good, respectively, based on intrinsic soil characteristics, climate, topography, and ground water. Romania has a specific geographical situation, namely: i) Romanian territory is located in the southeast portion of Central Europe at the cross roads of several high and low pressure centers that form regularly at the borders. The influence of these air masses is altered by the presence in the central regions of the Carpathian mountain chain resulting in a diverse climate with average annual rain fall amounts between 350 to 1,400 mm and average annual temperatures between 2 and 11.5°C. ii) At the national level, almost all soils in the international classification system are present in Romania; each soil type having specific properties and characteristics. iii) On approximately 12.5 million ha (7.5 million ha arable), soil fertility is adversely affected by erosion, acidity, low humus content, extreme texture (clay, sand), excessive moisture, chemical pollution etc. These natural and anthropogenic factors dramatically influence agricultural production. Furthermore, soil, climate, topography, etc. vary widely not only across the country, but also on smaller scales, even across fields within the same farm. In Steppe zone limitative climatic factors, which require differentiation towards soil management use, include: long periods of drought, high temperatures, high frequency winds (wind erosion in area of sands), low relative air humidity, and harsh frosts during winter. Negative phenomena most commonly encountered in this area are salinization, excess water, temporary

  18. Wastewater use in agriculture and potential effects on meso and macrofauna soil

    Directory of Open Access Journals (Sweden)

    Dinéia Tessaro


    Full Text Available ABSTRACT: The use of wastewater in agriculture has been practiced on an increasing scale over the past decades because of its fertilizing potential and the reduction in demand for surface water and groundwater. However, this practice may bring harm when performed without planning, not respecting the capacity of the soil to recycle organic waste. The most common problems are contamination of surface and groundwater via leaching and runoff, as well as accumulation of nutrients and potentially polluting elements that compromise chemical, physical and biological characteristics of the soil. The biological compartment, represented by the micro, meso and macrofauna, plays an important role in nutrient cycling, decomposition of organic matter, particle movement and transport of materials at different depths, helping to maintain soil physical and chemical characteristics. In this sense, this paper aims to discuss the effect of using different kinds of wastewater in agriculture on soil biology, highlighting strengths and weaknesses, as well as emphasizing the need to conduct investigations that enhance the positive aspects of wastewater use associated with edaphic processes.

  19. Soil biota community structure and abundance under agricultural intensification and extensification

    NARCIS (Netherlands)

    Postma-Blaauw, M.B.; Goede, de R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L.


    Understanding the impacts of agricultural intensification and extensification on soil biota communities is useful in order to preserve and restore biological diversity in agricultural soils and enhance the role of soil biota in agroecosystem functioning. Over four consecutive years, we investigated

  20. Acoustic techniques for studying soil-surface seals and crusts (United States)

    The impact of raindrops on a soil surface during a rainstorm may cause soil-surface sealing and upon drying, soil crusting. Soil-surface sealing is a result of the clogging of interaggregate pores by smaller suspended particles in the water and by structural deformation of the soil fabric, which red...

  1. Survival and transport of faecal bacteria in agricultural soils

    DEFF Research Database (Denmark)

    Bech, Tina Bundgaard

    Today, there is yearly applied 34 million tonnes of animal waste to arable land in Denmark. This waste may contain pathogenic zoonotic bacteria and/or antibiotic resistant bacteria, and when applied to arable land there is a risk of contaminating groundwater, surface water, feeding animals or fresh...... produce. Prediction of faecal bacterial survival and transport in the soil environment will help minimize the risk of contamination, as best management practices can be adapted to this knowledge. The aim of this Ph.D. is to study factors influencing faecal bacteria survival and transport in soil...

  2. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization. (United States)

    Kim, Han Sik; Jung, Myung Chae


    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.

  3. A modeling approach to simulate the role of anecic and endogeic earthworms in soil structure dynamics of two agricultural systems (United States)

    Le Couteulx, Alexis; Wolf, Cédric; Pérès, Guénola; Hallaire, Vincent


    In agriculture, one of the main purposes of innovative systems is to preserve and improve soil quality and noticeably their physical quality. This physical quality of a soil is intimately linked with its structure, i.e. the spatial arrangement of voids and solids. It is well-known that agricultural systems may deeply impact on soil structure through their effect on various structuring processes, in particular (i) the mechanical action of soil tillage and (ii) the burrowing activity and casts production of earthworms. As the assessment of agricultural systems needs long term experiments, it is not feasible to assess them all. However, the modeling approach has been used seldom despite it seems promising. As a first step towards the modeling of agricultural systems, we propose a model that simulates the impact of earthworm bioturbation and several tillage practices on soil structure dynamics. The proposed model accounts for two earthworm ecological categories: anecics and endogeics. Anecics are split into epi-anecics and true anecics and endogeics are kept at the specific level. The model takes into account their physiological and morphological features such as their diapause period, their gut transit time or their body size. In order to simulate the bioturbation activity of earthworms, they can make six different actions: (i) burrow new paths by ingesting soil particles, (ii) move inside existing paths, (iii) move to soil surface, (iv) wait, (v) produce a subsurface cast or (vi) produce a surface cast. For the various species and groups of earthworms, the probability of these actions was adjusted from experiments and published results. This part of the model dedicated to earthworms allows to build and study their network of burrows but also the position and volume of their subsurface and surface casts. This network may be couple with models of water conductivity to assess the role of earthworm on this soil functional property. To better simulate soil structure

  4. Effect of Chemical Remediation of Crude-Oil-Polluted Agricultural Land on Soil Properties and Crop Performance

    Directory of Open Access Journals (Sweden)

    O. E. Essien


    Full Text Available Chemical degreaser with detergent was used to wash crude-oil-polluted agricultural soil and restore it to 83% -93% of the unpolluted soil's status for sustainable productivity. Comparison of reclaimed soil's properties with unpolluted soil sample of the significant differences (p=0.05 between their values for soil moisture content, soil pH, evapotranspiration, root elongation and soil fertility. Root elongation at 1.1 cm/day in the reclaimed soil compared with 1.29 cm/day in unpolluted soil indicated 83% recovery. Saturated hydraulic conductivity also had 83% recovery. However, infiltration rate showed a low recovery of 30%, perhaps, due to the wetness of the reclaimed soil's surface prior to the reclamation process. The soil macro/microspores were unblocked by the degreaser enabling the root pores to overcome the osmotic problem caused by oil-molecules' blockade and conduct moisture through to the phloem and leaves to sustain evapotranspiration, leaves turgidity chemical reclamation by degreaser with detergent is highly recommended for short-duration in-situ remediation of crude-oil-polluted agricultural land.

  5. Soil conservation under climate change: use of recovery biomasses on agricultural soil subjected to the passage of agricultural machinery (United States)

    Bergonzoli, S.; Beni, C.; Servadio, P.


    Biomass administration is a good practice to preserve the soil fertility in climate change conditions. A test regarding the use of compost derived by wine distillation residues was conducted in the coastal area sited west of Rome, on a sandy soil in continuous cropping with carrot, two cycles per year, with a consequent deep environmental impact. The soil was fertilized with different systems: T = unfertilized soil; F = fertigation 200 kg N ha-1; FC = fertigation 100 kg N ha-1 plus half agronomic dose of compost 4 t ha-1; C2 = double compost dose 16 t ha-1; C4 = quadruple compost dose 32 t ha-1. The functional qualities of the soil, subjected to the passage of agricultural machineries, were determined through the following parameters: bulk density, shear strength, water infiltration rate, organic matter and nitrogen content, cation exchange capacity. At the summer harvest, yield of carrots, their sugar content, firmness and nutrients concentration were determined. The plots only amended (C2 and C4), compared to other treatments, presented lower bulk density (1.36 and 1.28 Mg m-3 respectively), higher shear strength (9 and 8 kPa respectively), as well as increased hydraulic conductivity. In these treatments (C2 and C4), in addition, occurred a higher content of organic matter (0.95 and 1.07% respectively) and nitrogen (0.11 and 0.12% respectively) and increased CEC (541 and 556 respectively) respect to the T treatment that was 521 meq 100g-1. In plots T and F, the organic matter content was reduced at the end of the field test. The yield of carrots increased in FC, C2, and C4, compared to the other treatments. In plots C4, however, morphological changes were induced in approximately 30% of tap-roots, due to the excessive compost dose. In treatments C2 and C4 was observed a reduction of the concentration of Na in the roots, as opposed to the higher concentration of Ca and K and trace elements. The administration of compost has also induced the increase of soluble

  6. Practical improvements in soil redox potential (Eh) measurement for characterisation of soil properties. Application for comparison of conventional and conservation agriculture cropping systems

    Energy Technology Data Exchange (ETDEWEB)

    Husson, Olivier, E-mail: [CIRAD/PERSYST/UPR 115 AIDA and AfricaRice Centre, 01 BP 2031 Cotonou (Benin); Husson, Benoit, E-mail: [IDEEAQUACULTURE, Parc Euromédecine 2, 39 Rue Jean Giroux, 34080 Montpellier (France); Brunet, Alexandre, E-mail: [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Babre, Daniel, E-mail: [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Alary, Karine, E-mail: [CIRAD/US 49 Analyse, Avenue Agropolis, TA B-49/01, 34398 Montpellier Cedex (France); Sarthou, Jean-Pierre, E-mail: [ENSAT/INRA/INP UMR AGIR. BP 52627, Chemin de Borde Rouge, 31326 Castanet-Tolosan Cedex (France); Charpentier, Hubert, E-mail: [La Boisfarderie, Brives 36100 (France); Durand, Michel, E-mail: [Le Cazals, Castanet 81 150 (France); Benada, Jaroslav, E-mail: [Agrotest fyto, Kromeriz Institute, Havlíckova 2787, 76701 Kromeriz (Czech Republic); Henry, Marc, E-mail: [UMR CNRS/UdS 7140, Université de Strasbourg, Institut Le Bel, 4, rue Blaise Pascal, CS 90032, Strasbourg 67081 (France)


    The soil redox potential (Eh) can provide essential information to characterise soil conditions. In practice, however, numerous problems may arise regarding: (i) Eh determination in soils, especially aerobic soils, e.g. variations in the instrumentation and methodology for Eh measurement, high spatial and temporal Eh variability in soils, irreversibility of the redox reaction at the surface electrode, chemical disequilibrium; and (ii) measurement interpretation. This study aimed at developing a standardised method for redox potential measurement in soils, in order to use Eh as a soil quality indicator. This paper presents practical improvements in soil Eh measurement, especially regarding the control of electromagnetic perturbations, electrode choice and preparation, soil sample preparation (drying procedure) and soil:water extraction rate. The repeatability and reproducibility of the measurement method developed are highlighted. The use of Eh corrected at pH7, pe+pH or rH{sub 2}, which are equivalent notions, is proposed to facilitate interpretation of the results. The application of this Eh measurement method allows characterisation of soil conditions with sufficient repeatability, reproducibility and accuracy to demonstrate that conservation agriculture systems positively alter the protonic and electronic balance of soil as compared to conventional systems. - Highlights: • Electromagnetic fields can dramatically perturb soil Eh measurement. • Our method overcomes the main difficulties in soil Eh measurement. • Accurate and reproducible measurement of mean soil Eh are achieved. • Eh{sub pH7}, pe+pH and rH{sub 2} are equivalent notions characterising electron activity. • Agricultural practices alter soil protonic and electronic characteristics.

  7. Identification of vulnerable sites in salts affected agricultural soils from South-Eastern Spain (United States)

    Acosta, Jose A.; Faz, Angel; Kalbitz, Karsten; Jansen, Boris; Silvia, Martinez-Martinez


    Soil salinization is one of the main problems in many soils under intensive agricultural practices, especially in arid and semiarid zones. Two important reasons for the occurrence of salinization are i) the use of low quality irrigation water and ii) climatic conditions reducing soil quality. The results of salinization can be quite serious. It limits the growing of crops, constrains agricultural productivity, and in severe cases, leads to the abandonment of agricultural soils. There are mainly two kinds of soil salinity: naturally occurring dry-land salinity and human-induced salinity caused by the low quality of irrigation water, excessive water and fertilizer applications. In both cases the development of plants and soil organisms is limited. Natural occurrence of salts in soils is very difficult to handle and requires higher investments than the reduction of human-induced salinity. For these reasons, identification of vulnerable sites is essential for sustainable agricultural management, especially in these semiarid and arid environments. The main aim of this study was to examine spatial and vertical distribution pattern of salts in a semi-arid study site in South-Eastern Spain in order to identify vulnerable sites. In order to achieve this objective, surface soil samples were collected in January and July 2009 at 48 sites located in a representative lemon production area close to City of Murcia, covering a surface area of 44 km2. The area was divided using a square grid of 1000 m and the samples were taken from these squares. The ionic concentrations were used as the input data for distribution maps. The software used for the spatial analysis was Arcview 3.1. An interpolation method called the Inverse Distanced Weighted (IDW) method was adopted for the interpolation of the data. The results indicated that the concentrations of most anions are higher in summer. The difference was particularly large for chloride, most likely because of its high mobility and

  8. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system (United States)

    Bamminger, Chris; Poll, Christian; Marhan, Sven


    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C

  9. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas


    José Camilo Bedano; Anahí Domínguez


    Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized ...



    Sandip Patil; Kamal Tawfiq; Gang Chen


    Colloid release from the agricultural soil under unsaturated conditions was controlled by the hydrodynamic force, capillary force and electrostatic force that were determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using ...

  11. Damages of surface ozone: evidence from agricultural sector in China (United States)

    Yi, Fujin; McCarl, Bruce A.; Zhou, Xun; Jiang, Fei


    This study measures the damages that surface ozone pollution causes within the Chinese agricultural sector under 2014 conditions. It also analyzes the agricultural benefits of ozone reductions. The analysis is done using a partial equilibrium model of China’s agricultural sector. Results indicate that there are substantial, spatially differentiated damages that are greatest in ozone-sensitive crop growing areas with higher ozone concentrations. The estimated damage to China’s agricultural sector range is between CNY 1.6 trillion and 2.2 trillion, which for comparison is about one fifth of 2014 agricultural revenue. When considering concentration reduction we find a 30% ozone reduction yields CNY 678 billion in sectoral benefits. These benefits largely fall to consumers with producers losing as the production gains lead to lower prices.

  12. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils? (United States)

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens


    Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Our findings suggest that PSS contributes to the spatial modelling of

  13. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    NARCIS (Netherlands)

    Ho, A.; Reim, A.; Kim, S.; Meima-Franke, M.; Termorshuizen, A.; Boer, de W.; Putten, van der W.H.; Bodelier, P.


    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and

  14. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    NARCIS (Netherlands)

    Ho, A.; Reim, A.; Kim, S.Y.; Meima-Franke, M.; Termorshuizen, Aad J; De Boer, W.; Van der Putten, W.H.; Bodelier, P.L.E.


    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even

  15. Redox-Ligand Complexation Controlled Chemical Fate of Ceria Nanoparticles in an Agricultural Soil. (United States)

    Arai, Yuji; Dahle, Jessica T


    Ceria (CeO 2 ) has received much attention in the global nanotechnology market due to its useful industrial applications. Because of its release to the environment, the chemical fate of ceria nanoparticles (NPs) becomes important in protecting the agricultural and food systems. Using experimental biogeochemistry and synchrotron-based X-ray techniques, the fate of ceria NPs (30 and 78 nm) in an agricultural soil (mildly acidic Taccoa entisols) was investigated as a function of exchangeable Ce(III) concentration (0.3 and 1.56 mM/kg in small and large NPs, respectively) under anoxic and oxic conditions. Both ceria NPs strongly adsorbed (>98%) in soils. Under the anoxic condition, the reduction of Ce(IV) was more pronounced in small NPs, whereas the greater concentration of exchangeable Ce(III) in large NPs facilitated the formation of Ce(III) phosphate/oxalate surface precipitates that suppressed the electron transfer reaction. The study shows the importance of redox-ligand complexation controlled chemical fate of ceria NPs in an agricultural soil.

  16. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils. (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L


    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  17. Overcoming soil compaction in surface mine reclamation

    International Nuclear Information System (INIS)

    Sweigard, R.J.


    Rubber-tyred soil reconstruction equipment causes compaction of soil and means surface mine operators cannot satisfy crop yield standards defined by the Surface Mining Control and Reclamation Act. Soil compaction can be overcome by either modifying the reconstruction process or alleviating the problem, for example by deep tillage, once it occurs. The Dept. of Mining Engineering at the Institute of Mining and Minerals Research is conducting a laboratory investigation into a method of injecting low density porous organic material into a bin containing soil at the same time as the soil is ripped. This should prevent voids collapsing when subjected to forces from farm equipment and natural sources. Soil analyses are performed before and after the injection. Ripping and injection with ground pecan shells had a residual effect on nuclear bulk density compared to the initially compacted case and also showed an improvement in hydraulic conductivity. Work is in progress on modifying the system to handle other injection material and should lead on to field tests on a prototype involving both soil analysis and crop yield determination. 1 fig

  18. Use of airborne hyperspectral imagery to map soil parameters in tilled agricultural fields (United States)

    Hively, W. Dean; McCarty, Gregory W.; Reeves, James B.; Lang, Megan W.; Oesterling, Robert A.; Delwiche, Stephen R.


    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ~10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  19. Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields. (United States)

    Quinton, John N; Catt, John A


    Heavy metal pollution of soil and water is often associated with industry, but in this paper we demonstrate that water erosion on agricultural soil which has received only agrochemicals has enriched sediment metal concentrations to toxic levels which breach many accepted standards for soils and sediments. Eight 0.1 ha erosion plots with different cultivation treatments were monitored over a 6 year period for surface runoff, soil loss, and Cr, Cu, Pb, and Ni concentrations. Mean concentrations of these heavy metals were up to 3.98 times higher in the sediment than in the parent soil and in some erosion events the sediment had 13.5 times the concentration of metals in the soil. All the sediment heavy metal concentrations were significantly correlated (p erosion was a highly selective process enriching the detached material in silt, clay, and organic carbon. This was particularly true in smaller erosion events. Sediment metal concentrations tended to follow the shape of runoff hydrographs, although the pattern changed from storm to storm.

  20. Water Infiltration and Moisture in Soils under Conservation and Conventional Agriculture in Agro-Ecological Zone IIa, Zambia

    Directory of Open Access Journals (Sweden)

    Kjell B. Esser


    Full Text Available Conservation agriculture is often presented as being ‘climate smart’ due to anticipated increases in soil moisture. The extent of enhanced water availability in farmers’ fields is, however, poorly documented. This paper presents five data sets describing soil moisture in fields of small-scale conservation and conventional farmers in the Agro-ecological Zone IIa, Zambia. The data include (1 soil cover; (2 time required for visible soil surface saturation, ponding and initial runoff under artificial rainfall; (3 saturated water infiltration rates; (4 weekly soil moisture at six soil depths for two entire rain seasons; and (5 weekly rainfall in each field. Measurements were done for 15 pairs of comparable fields under conservation and conventional agriculture. Pairwise analysis showed significantly shorter time for surface saturation, ponding, and runoff in conservation fields compared to conventional fields. Saturated infiltration rates in riplines and basins of conservation fields were similar to rates in ploughed/hoed fields. Infiltration rates between riplines and between basins were 31–37% lower than those in ploughed/hoed fields. Soil moisture in riplines and basins of conservation fields was higher by an average factor of 1.08 down to 40 cm soil depth, whereas it was lower by an average factor of 0.89 between plant rows compared to fields under conventional tillage. Based on 34,000 soil moisture measurements from 0 to 60 cm depth over two seasons, soils in conservation fields contained a weighted average of 18.2% (vol. water compared to 19.9% (vol. in conventional fields (p < 0.05. The results indicate that small-scale adopters of conservation agriculture are less ‘climate smart’ than conventional farmers in terms of water infiltration and soil moisture.

  1. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects of integrated production (IP) and organic-acceptable soil surface management practices were investigated in a 'Cripps Pink'/M7 apple orchard in the Elgin area, South Africa. Work row treatments included cover crops, weeds and straw mulch. In the IP tree rows, weeds were controlled with herbicide and nitrogen (N) ...

  2. Phosphate stable oxygen isotope variability within a temperate agricultural soil. (United States)

    Granger, Steven J; Harris, Paul; Peukert, Sabine; Guo, Rongrong; Tamburini, Federica; Blackwell, Martin S A; Howden, Nicholas J K; McGrath, Steve


    In this study, we conduct a spatial analysis of soil total phosphorus (TP), acid extractable phosphate (PO 4 ) and the stable oxygen (O) isotope ratio within the PO 4 molecule (δ 18 O PO 4 ) from an intensively managed agricultural grassland site. Total P in the soil was found to range from 736 to 1952 mg P kg - 1 , of which between 12 and 48% was extractable using a 1 M HCl (HCl PO 4 ) solution with the two variables exhibiting a strong positive correlation. The δ 18 O PO 4 of the extracted PO 4 ranged from 17.0 to 21.6‰ with a mean of 18.8‰ (± 0.8). While the spatial variability of Total P has been researched at various scales, this is the first study to assess the variability of soil δ 18 O PO 4 at a field-scale resolution. We investigate whether or not δ 18 O PO 4 variability has any significant relationship with: (i) itself with respect to spatial autocorrelation effects; and (ii) HCl PO 4 , elevation and slope - both globally and locally. Results indicate that δ 18 O PO 4 was not spatially autocorrelated; and that δ 18 O PO 4 was only weakly related to HCl PO 4 , elevation and slope, when considering the study field as a whole. Interestingly, the latter relationships appear to vary in strength locally. In particular, the δ 18 O PO 4 to HCl PO 4 relationship may depend on the underlying soil class and/or on different field managements that had operated across an historical north-south field division of the study field, a division that had been removed four years prior to this study.

  3. Spatial probability of soil water repellency in an abandoned agricultural field in Lithuania (United States)

    Pereira, Paulo; Misiūnė, Ieva


    case study in citrus-croped soils. Soil and Tillage Research, 124, 233-239. Pereira, P., Oliva, M. (2013) Modelling soil water repellency in an abandoned agricultural field, Visnyk Geology, Visnyk Geology 4, 77-80. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surface Process and Landforms, 13, 555-265.

  4. Effect of land management on soil microbial properties in agricultural terraces of Eastern Spain (United States)

    Morugán-Coronado, Alicia; Cerdà, Artemi; Garcia-Orenes, Fuensanta


    Soil quality is important for the sustainable development of terrestrial ecosystems. Agricultural land management is one of most important anthropogenic activities that greatly alters soil characteristics, including physical, chemical, and microbiological properties. The unsuitable land management can lead to a soil fertility loss and to a reduction in the abundance and diversity of soil microorganisms. However, ecological practices and some organic amendments can promote the activities of soil microbial communities, and increase its biodiversity. The microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. In this study, a field experiment was performed at clay-loam agricultural soil with an orchard of orange trees in Alcoleja (eastern Spain) to assess the long-term effects of inorganic fertilizers (F), intensive ploughing (P) and sustainable agriculture (S) on the soil microbial biomass carbon (Cmic), enzyme activities (Urease, ß-glucosidase and phosphatase), basal soil repiration (BSR) and the relationship between them, and soil fertility in agro-ecosystems of Spain. Nine soil samples were taken from each agricultural management plot. In all the samples were determined the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic carbon, nitrogen, available phosphorus, aggregate stability, cation exchange capacity, phosphorous, pH, texture, carbonates, active limestone and as enzimatic activities: Urease, ß-glucosidase and phosphatase. The results showed a substantial level of differentiation in the microbial properties, in terms of management practices, which was highly associated with soil organic matter content. The most marked variation in the different parameters studied appears to be related to sustainable agriculture terrace. The management

  5. Expression of wetness in the names of agricultural mineral soils of Finland (United States)

    Yli-Halla, Markku; Nyborg, Age


    Wetness is an essential characteristic of agricultural land in Finland, 86% of the fields being artificially drained. According to the WRB system, most clay soils of Finland have however been traditionally classified as Vertic Cambisols, and the medium-textured soils as Eutric or Dystric Cambisols. This is also how the areas dominated by agricultural land in Finland are described in the Soil Geographical Database of Europe (SGDE) at scale 1:1000 000. None of these names expresses the inherent wetness. According to US Soil Taxonomy, the same soils have been classified as Aquepts or Aquic subgroups of Inceptisols, indicating wetness at a high level of classification. In Norway, the most common agricultural soils are Stagnosols and Planosols, expressing the stagnic colour pattern and wetness at the reference group level, while Luvisols and Albeluvisols commonly have gleyic and stagnic qualifiers. The hypothesis that the same soils occur in both countries was tested in Finland in 2012 during a soil excursion. The major agricultural soils of Southern Finland were investigated and soil classifications among the two countries was harmonized. Almost all investigated soils in Finland had stagnic colour patterns. Most clay soils were classified as Vertic Luvic Stagnosols, in the lowest positions also as Gleysols. Stagnic colour pattern occurred also in soils with sandy top soils and clayey subsoils, these being classified as Luvic Planosols. Fine silt soils were very poorly developed, falling into Stagnig Regosls instead of their earlier classification as Eutric or Dystric Cambisols. After these revisions the Soil Database of Finland at scale 1:250,000 expresses much better the essential soil characteristics of the country. These soil names can now be used for identification of areas where agriculture is constrained by wetness. Moreover, the soil names, presented in more detail in the presentation, indicate the important soil forming processes in soils of Finland.

  6. Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches. (United States)

    Rogers, Mathew R; Stringfellow, William T


    Constructed wetlands and vegetated agricultural drainage ditches (VADD) have been proposed as structural best management practices for the mitigation of chlorpyrifos contamination in agriculturally dominated watersheds. Sorption to soil and submergent aquatic plants has been measured as an important sink for chlorpyrifos; however, sorption to emergent plants has not been well characterized. Sorption isotherms for two soils and five emergent plants were determined by batch equilibrium technique. Sorption to whole plant stems (K(d)=570-1300 L kg(-1)) was more than 10 times higher than to soil (K(d)=40-71 L kg(-1)). Chopped plant material had K(d) values 7.6-96.2% greater than whole stems. Wetland plants with high internal surface area due to porous tissues had greater linear partitioning coefficients than terrestrial plants with a hollow structure. Chlorpyrifos sorption reached pseudo-equilibrium rapidly, indicating that partitioning will be an important mechanism in vegetated natural treatment systems for mitigating peak concentrations in surface waters and allowing time for attenuation by slower degradation reactions.

  7. Soil quality and soil degradation in agricultural loess soils in Central Europe - impacts of traditional small-scale and modernized large-scale agriculture (United States)

    Schneider, Christian


    The study analyzes the impact of different farming systems on soil quality and soil degradation in European loess landscapes. The analyses are based on geo-chemical soil properties, landscape metrics and geomorphological indicators. The German Middle Saxonian Loess Region represents loess landscapes whose ecological functions were shaped by land consolidation measures resulting in large-scale high-input farming systems. The Polish Proszowice Plateau is still characterized by a traditional small-scale peasant agriculture. The research areas were analyzed on different scale levels combining GIS, field, and laboratory methods. A digital terrain classification was used to identify representative catchment basins for detailed pedological studies which were focused on soil properties that responded to soil management within several years, like pH-value, total carbon (TC), total nitrogen (TN), inorganic carbon (IC), soil organic carbon (TOC=TC-IC), hot-water extractable carbon (HWC), hot-water extractable nitrogen (HWN), total phosphorus, plant-available phosphorus (P), plant-available potassium (K) and the potential cation exchange capacity (CEC). The study has shown that significant differences in major soil properties can be observed because of different fertilizer inputs and partly because of different cultivation techniques. Also the traditional system increases soil heterogeneity. Contrary to expectations the study has shown that the small-scale peasant farming system resulted in similar mean soil organic carbon and phosphorus contents like the industrialized high-input farming system. A further study could include investigations of the effects of soil amendments like herbicides and pesticide on soil degradation.

  8. Effects of agricultural intensification in the tropics on soil carbon losses and soil fertility (United States)

    Guillaume, Thomas; Buttler, Alexandre; Kuzyakov, Yakov


    Tropical forest conversion to agricultural land leads to strong decrease of soil organic carbon (SOC). Nonetheless, the impacts of SOC losses on soil fertility remain unclear. We quantified SOC losses in forest, oil palm plantations, extensive rubber plantations and rubber monocultures on Sumatra Island (Indonesia). Furthermore, we assessed the response of biological (basal respiration, microbial biomass, acid phosphatase) and chemical fertility indicators (light fraction of OM, DOC, total N, available P) to SOC losses. We used a new approach based on (non-)linear regressions between SOC losses and the indicators, normalized to natural ecosystem values, to assess the sensitivity or resistance of fertility indicators to SOC losses. Carbon contents in the Ah horizon under oil palm and intensive rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber (41%). The negative impact of land-use changes on all measured indicators increased in the following sequence: extensive rubber oil palm. Basal respiration, microbial biomass and nutrients were comparatively resistant to SOC losses, whereas the light fraction of OM was lost faster than the SOC. The resistance of the microbial activity to SOC losses is an indication that microbial-mediated soil functions sustain SOC losses. However, responses of basal respiration and microbial biomass to SOC losses were non-linear. Below 2.7% C content, the relationship was reversed. The basal respiration decreased faster than the SOC, resulting in a stronger drop of microbial activity under oil palm compared to rubber, despite small difference in C content. We conclude that the new approach allows a quantitative assessment of the sensitivity and threshold of various soil functions to land-use changes and consequently, can be used to assess their resistance to agricultural intensification. Therefore, this method is appropriate to evaluate the environmental impacts associated

  9. Metal Distribution in Urban Agricultural Soils in the Inland Empire, California (United States)

    Marin, C. C. E.


    Urban environments exhibit unique biogeochemistry due to the presence of a myriad of anthropogenic sources of contaminants. One potential route through which humans have been exposed to metal contaminants is the ingestion of food produced on urban soils. The Inland Empire is a metropolitan located in semi-arid region of Southern California with greater than 4 million residents, where the growing population is demonstrating an increase in citizen participation in contributing to expanding local food systems. In response to the demand for locally grown produce, the Inland Empire is undergoing rapid land use change, where large tracts of land on the periphery of cities, including Riverside, are being converted or set aside for urban agriculture, though the quality of the soil for food production is unknown. At the same time, smaller gardens and farms are growing in number within the more densely populated areas. Assessing the quality of urban soil currently used for food production in this region can aid in projecting how land use change will affect the quality of crops produced as urban agriculture continues to expand in arid regions. Soil samples were taken from a variety of land use types, including areas currently producing crops and areas set aside for future large scale food production. Samples were collected at the surface (0-2 cm) and below till depth (20-22 cm). These soils were analyzed for total carbon including organic and inorganic carbon fractions, total nitrogen, bulk metal and trace metal concentrations (including As, Mn, Cr, Pb, Cd, Zn, and Cu). To approximate the mobility of the trace elements under various conditions, extraction tests were also performed, including EPA Pb bioavailability analysis. Finally, we utilize statistical tools and spatial analysis to illustrate the relationship between previous land use, current land use, and soil quality for urban crop production.

  10. Potential of Biological Agents in Decontamination of Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Javaid


    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  11. Fate of triclocarban in agricultural soils after biosolid applications. (United States)

    Lozano, Nuria; Rice, Clifford P; Ramirez, Mark; Torrents, Alba


    Triclocarban [N-(4-chlorophenyl)-N-(3,4-dichlorophenyl) urea] (TCC) is an antimicrobial agent utilized in a variety of consumer products. It is commonly released into domestic wastewaters and upon treatment, it is known to accumulate in biosolids. This study examines the occurrence of TCC in biosolids and its long-term fate in biosolid-treated soils. TCC levels in the biosolids from a large waste water treatment plant (WWTP) over 2 years showed little variability at 18,800 ± 700 ng g -1 dry wt. (mean ± SEM). Surface soil samples (top 10 cm) were collected from 26 commercial farms located in northern VA, US that had received biosolid applications from the WWTP. Samples were grouped as farms receiving no biosolids, farms with a single biosolid application, and those receiving multiple biosolid applications from 1992 to 2006. Our results illustrate that TCC soil residues remained years after biosolid application. The two most important parameters controlling TCC topsoil concentrations were the biosolid application rate and the period since the last application. No TCC removal was observed in farms where the time since biosolid application was between 7 and 9 months. TCC concentration analyzed 7 and 8 years after biosolid applications were 45.8 ± 6.1 and 72.4 ± 15.3 ng g -1 dry wt., respectively, showing its persistence in soils and build-up upon multiple biosolid applications. A soil TCC half-life of 287.5 ± 45.5 days was estimated.

  12. Dynamics of soil organic carbon and microbial activity in treated wastewater irrigated agricultural soils along soil profiles (United States)

    Jüschke, Elisabeth; Marschner, Bernd; Chen, Yona; Tarchitzky, Jorge


    Treated wastewater (TWW) is an important source for irrigation water in arid and semiarid regions and already serves as an important water source in Jordan, the Palestinian Territories and Israel. Reclaimed water still contains organic matter (OM) and various compounds that may effect microbial activity and soil quality (Feigin et al. 1991). Natural soil organic carbon (SOC) may be altered by interactions between these compounds and the soil microorganisms. This study evaluates the effects of TWW irrigation on the quality, dynamics and microbial transformations of natural SOC. Priming effects (PE) and SOC mineralization were determined to estimate the influence of TWW irrigation on SOC along soil profiles of agricultural soils in Israel and the Westbank. The used soil material derived from three different sampling sites allocated in Israel and The Palestinian Authority. Soil samples were taken always from TWW irrigated sites and control fields from 6 different depths (0-10, 10-20, 20-30, 30-50, 50-70, 70-100 cm). Soil carbon content and microbiological parameters (microbial biomass, microbial activities and enzyme activities) were investigated. In several sites, subsoils (50-160 cm) from TWW irrigated plots were depleted in soil organic matter with the largest differences occurring in sites with the longest TWW irrigation history. Laboratory incubation experiments with additions of 14C-labelled compounds to the soils showed that microbial activity in freshwater irrigated soils was much more stimulated by sugars or amino acids than in TWW irrigated soils. The lack of such "priming effects" (Hamer & Marschner 2005) in the TWW irrigated soils indicates that here the microorganisms are already operating at their optimal metabolic activity due to the continuous substrate inputs with soluble organic compounds from the TWW. The fact that PE are triggered continuously due to TWW irrigation may result in a decrease of SOC over long term irrigation. Already now this could be

  13. Can conservation trump impacts of climate change and extremes on soil erosion in agricultural landscapes (United States)

    Preservation of top soil is critical for the long term sustainability of agricultural productivity, food security, and biodiversity. However, today’s growing population and increasing demand for food and fiber is stressing the agricultural soil and water resources. Climate change imposes additional ...

  14. Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in Dakahlia, Egypt. (United States)

    Issa, Shams A M


    Determination of the natural radioactivity has been carried out, by using a gamma-ray spectrometry [NaI (Tl) 3″ × 3″] system, in surface soil samples collected from various locations in Dakahlia governorate, Egypt. These locations form the agriculturally important regions of Egypt. The study area has many industries such as chemical, paper, organic fertilisers and construction materials, and the soils of the study region are used as a construction material. Therefore, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks. The activity concentrations of (226)Ra, (232)Th and (40)K in the soil ranged from 5.7 ± 0.3 to 140 ± 7, from 9.0 ± 0.4 to 139 ± 7 and from 22 ± 1 to 319 ± 16 Bq kg(-1), respectively. The absorbed dose rate, annual effective dose rate, radium equivalent (Req), excess lifetime cancer risk, hazard indices (Hex and Hin) and annual gonadal dose equivalent, which resulted from the natural radionuclides in the soil were calculated.

  15. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    Directory of Open Access Journals (Sweden)

    Michael Schirrmann

    Full Text Available Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils.Proximal soil sensing data, e.g., soil electrical conductivity (EC, pH, and near infrared absorbance (NIR, were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage and sandy to loam soils. PSS was related to observations from a long-term (11 years earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species.Our findings suggest that PSS contributes to the spatial

  16. Biological and biochemical soil indicators: monitoring tools of different agricultural managements (United States)

    Scotti, Riccardo; Sultana, Salma; Scelza, Rosalia; Marzaioli, Rossana; D'Ascoli, Rosaria; Rao, Maria A.


    The intensive agricultural managements, increased in the last twenty years, have resulted in a decrease in fertility of soils, representing a serious threat to agricultural productivity due to both the increase in production cost, mainly for intensive use of mineral fertilizers, and the loss of the quality of crops themselves. Organic matter content is closely related to the soil fertility and its progressive reduction in cultivates soils, without a satisfactory recovery, could make agriculture untenable, resulting in a high detrimental effect on environment. But an appropriate soil management practices can improve soil quality by utilizing organic amendments as alternative to mineral fertilizers to increase soil quality and plant growth. In this context, demand of suitable indicators, whose are able to assess the impact of different agricultural managements on soil quality, has increased. It has shown that soil biological and biochemical properties are able to respond to small changes in soil conditions, thus providing information on subtle alterations in soil quality. Aim of this study was to evaluate the use of soil biological and biochemical properties as fertility indicators in agricultural soils under different agricultural managements, sited in Campania Region (Southern Italy). After a preliminary monitoring phase of soil fertility on different farms sited in five agricultural areas of Campania Region, we have selected two farms in two different study areas to assess the effect on soil quality of different organic amendments. In particular, a compost from municipal solid waste and wood from scraps of poplars pruning were supplied in different doses and ratios. Soil samplings after one month from the amendment addition and then every 4 months until a year were carried out. All collected soil samples were characterized by main physical, chemical, biochemical and biological properties. In general, the use of different organic amendments showed a positive effect

  17. Influence of sustainable irrigation regimes and agricultural practices on the soil CO2 fluxes from olive groves in SE Spain (United States)

    Marañón-Jiménez, Sara; Serrano-Ortíz, Penelope; Vicente-Vicente, Jose Luis; Chamizo, Sonia; Kowalski, Andrew S.


    Olive (Olea europaea) is the dominant agriculture plantation in Spain and its main product, olive oil, is vital to the economy of Mediterranean countries. Given the extensive surface dedicated to olive plantations, olive groves can potentially sequester large amounts of carbon and contribute to mitigate climate change. Their potential for carbon sequestration will, however, largely depend on the management and irrigation practices in the olive grove. Although soil respiration is the main path of C release from the terrestrial ecosystems to the atmosphere and a suitable indicator of soil health and fertility, the interaction of agricultural management practices with irrigation regimes on soil CO2 fluxes have not been assessed yet. Here we investigate the influence of the presence of herbaceous cover, use of artificial fertilizers and their interaction with the irrigation regime on the CO2 emission from the soil to the atmosphere. For this, the three agricultural management treatments were established in replicated plots in an olive grove in the SE of Spain: presence of herbaceous cover ("H"), exclusion of herbaceous cover by using herbicides ("NH"), and exclusion of herbaceous cover along with addition of artificial fertilizers (0.55 kg m-2 year-1 of N, P, K solid fertilizer in the proportion 20:10:10, "NHF"). Within each management treatment, three irrigation regimes were also implemented in a randomized design: no-irrigation ("NO") or rain fed, full irrigation (224 l week-1 per olive tree, "MAX"), and a 50% restriction (112 l week-1 per olive tree, "MED"). Soil respiration was measured every 2-3 weeks at 1, 3, and 5 meters from each olive tree together with soil temperature and soil moisture in order to account for the spatial and seasonal variability over the year. Soil respiration was higher when herbaceous cover was present compared to the herbaceous exclusion, whereas the addition of fertilizer did not exert any significant effect. Although the different

  18. Mitigating Soil Moisture Evaporation via Organic Mulch Application in Cultivated Agricultural Environments

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Avery, William A.; Dercon, Gerd; Heng, Lee


    Soil evaporation constitutes one of the most significant sources of water loss from agricultural soils around the world, particularly in arid regions. Changing climate and precipitation patterns combined with population growth will drive a need to reduce soil water evaporation for better water resource management. This work represents a preliminary effort to develop simple tools for determining the fate of crop residues, or mulch, when applied to an agricultural field, over the course of a growing season

  19. Monitoring of Soil-Borne Pathogens in the Agricultural Soils of the Pestrechinsky District (Tatarstan, Russia) (United States)

    Dzhabarova, K. O.; Kuryntseva, P. A.; Galitskaya, P. Y.; Selivanovskaya, S. Y.


    A recent agricultural trend is aimed to develop organic farming technologies. Organic farming means no mineral fertilizers, pesticides, antibiotics and other chemical substances not characteristic of natural conditions should be used in farm production. When choosing the regions, where this technology can be successfully realized, it is important to evaluate not only the physical and chemical qualities of soils, but also the degree of their infestation with phytopathogens. The Pestrechinsky District of the Republic of Tatarstan, where transfer to organic farming is being planned, was chosen as such a region. Agricultural lands were marked at the map of the administrative region, 100 sampling site were generated using GIS Technologies. It was found out that soil microbial community was characterized by a typical ratio and count of yeast fungi (3.4·105 - 1.6·106 CFU•g-1), mold fungi (1.0·101 - 1.7·105 CFU·g-1) and bacteria (1.6·106 - 3.1·107 CFU·g-1). In all the selected soil samples plant pathogenic fungi of the Fusarium genus were found (26 to 250 CFU·g-1), and as for another genus of plant pathogenic fungi, Alternaria, their count was rather low (0 to 9 CFU·g-1, herewith in 46 samples out of 100 they were absent.

  20. Evaluating the Potential Use of Remotely-Sensed and Model-Simulated Soil Moisture for Agricultural Drought Risk Monitoring (United States)

    Yan, Hongxiang; Moradkhani, Hamid


    Current two datasets provide spatial and temporal resolution of soil moisture at large-scale: the remotely-sensed soil moisture retrievals and the model-simulated soil moisture products. Drought monitoring using remotely-sensed soil moisture is emerging, and the soil moisture simulated using land surface models (LSMs) have been used operationally to monitor agriculture drought in United States. Although these two datasets yield important drought information, their drought monitoring skill still needs further quantification. This study provides a comprehensive assessment of the potential of remotely-sensed and model-simulated soil moisture data in monitoring agricultural drought over the Columbia River Basin (CRB), Pacific Northwest. Two satellite soil moisture datasets were evaluated, the LPRM-AMSR-E (unscaled, 2002-2011) and ESA-CCI (scaled, 1979-2013). The USGS Precipitation Runoff Modeling System (PRMS) is used to simulate the soil moisture from 1979-2011. The drought monitoring skill is quantified with two indices: drought area coverage (the ability of drought detection) and drought severity (according to USDM categories). The effects of satellite sensors (active, passive), multi-satellite combined, length of climatology, climate change effect, and statistical methods are also examined in this study.

  1. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban]. (United States)

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang


    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  2. Biodegradation of Mexican Diesel for a bacteria consortium of an agricultural soil

    International Nuclear Information System (INIS)

    Cardona, Santiago; Iturbe, Rosario


    The biodegradation of diesel in water was done by means of the microorganisms present in an agriculture soil. The kinetics of biodegradation and adsorption of diesel were determined in order to applying the procedure in soil and water resources contaminated with diesel. The methodology and results of biodegradation and adsorption of diesel in synthetic water is presented with a soil characterization. Degradation takes place using the original microorganisms present in the soil but giving nitrogen as nutrient. As oxygen source the hydrogen peroxide was used. The kinetics of diesel volatility is presented too. Kinetics equations for degradation, adsorption and speed constant were determined with the obtained results biodegradation, diesel, agriculture soil, bacterium group

  3. Phosphorus cycling in agricultural soils. Pt.1: Introduction

    NARCIS (Netherlands)

    Ritsema, C.J.


    The excess of phosphorus brought into the soil system is subject to transformation processes and displacement. In general, the mobility of phosphorus in soil solution will remain low due to the very effective retention possibilities of soil

  4. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture (United States)

    Ricigliano, Kristin


    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  5. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France (United States)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain


    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through

  6. Modeling global distribution of agricultural insecticides in surface waters. (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias


    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of soil stripping and dressing for decontamination of radioactive materials on soil fertility of agricultural land

    International Nuclear Information System (INIS)

    Yoshino, Namiko; Takahashi, Yoshihiko; Kobayashi, Hiroyuki; Saitou, Kunihito


    Farms that were highly contaminated with radioactive materials following the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident were decontaminated by removing topsoil and subsequently dressing with fresh soil. We investigated the chemical properties of soils following such decontamination on farms in Iitate village, Fukushima. The nitrogen content of dressed soil was considerably lower than that of the subsoil that was not stripped for decontamination, as a result of which the amount of dressed soil greatly affected the soil fertility of decontaminated farms. The potassium (K) content of soil differs markedly depending on the type of soil dressing material used; accordingly, the type of soil dressing material affected the soil K content on decontaminated farms. On most of the decontaminated farms where sandy soils were used as the soil dressing material, soil exchangeable K contents were less than 25 mg K 2 O/100 g, which is the criterion value for inhibiting cesium absorption in rice and soybean cultivation. However, even in the soil dressing material from agricultural land, soil K content after soil dressing was generally lower than that before soil dressing. During fallow management and at the restart of cultivation on decontaminated farms, it is important to know in advance the chemical properties of soil and take the necessary measures based on this information. (author)

  8. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. (United States)

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie


    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Stocks of C in soils and emissions of CO2 from agricultural soils in the Netherlands

    International Nuclear Information System (INIS)

    Kuikman, P.J.; De Groot, W.J.M.; Hendriks, R.F.A.; Verhagen, J.; De Vries, F.


    Considerations are presented for the choice of options to calculate and monitor stocks of C in all soils and emissions of CO2 from agricultural soils in the Netherlands for the Kyoto 1990 baseline and following years. The objective of the study was to prepare data for a national submission according to the Common Reporting Format for C stocks on specific land uses, land use changes en C fluxes according to article 5.2 in the Kyoto Protocol. In this study we report on the whereabouts of the C stocks in order to be geographically explicit, discuss the uncertainties in the inventory and analyse future inventory options. Modeling approaches (e.g. CESAR) where other parameters, process-oriented (fluxes), uncertainty measure can be added are discussed

  10. Mapping soil fractal dimension in agricultural fields with GPR (United States)

    Oleschko, K.; Korvin, G.; Muñoz, A.; Velazquez, J.; Miranda, M. E.; Carreon, D.; Flores, L.; Martínez, M.; Velásquez-Valle, M.; Brambila, F.; Parrot, J.-F.; Ronquillo, G.


    We documented that the mapping of the fractal dimension of the backscattered Ground Penetrating Radar traces (Fractal Dimension Mapping, FDM) accomplished over heterogeneous agricultural fields gives statistically sound combined information about the spatial distribution of Andosol' dielectric permittivity, volumetric and gravimetric water content, bulk density, and mechanical resistance under seven different management systems. The roughness of the recorded traces was measured in terms of a single number H, the Hurst exponent, which integrates the competitive effects of volumetric water content, pore topology and mechanical resistance in space and time. We showed the suitability to combine the GPR traces fractal analysis with routine geostatistics (kriging) in order to map the spatial variation of soil properties by nondestructive techniques and to quantify precisely the differences under contrasting tillage systems. Three experimental plots with zero tillage and 33, 66 and 100% of crop residues imprinted the highest roughness to GPR wiggle traces (mean HR/S=0.15), significantly different to Andosol under conventional tillage (HR/S=0.47).

  11. Mapping soil fractal dimension in agricultural fields with GPR

    Directory of Open Access Journals (Sweden)

    K. Oleschko


    Full Text Available We documented that the mapping of the fractal dimension of the backscattered Ground Penetrating Radar traces (Fractal Dimension Mapping, FDM accomplished over heterogeneous agricultural fields gives statistically sound combined information about the spatial distribution of Andosol' dielectric permittivity, volumetric and gravimetric water content, bulk density, and mechanical resistance under seven different management systems. The roughness of the recorded traces was measured in terms of a single number H, the Hurst exponent, which integrates the competitive effects of volumetric water content, pore topology and mechanical resistance in space and time. We showed the suitability to combine the GPR traces fractal analysis with routine geostatistics (kriging in order to map the spatial variation of soil properties by nondestructive techniques and to quantify precisely the differences under contrasting tillage systems. Three experimental plots with zero tillage and 33, 66 and 100% of crop residues imprinted the highest roughness to GPR wiggle traces (mean HR/S=0.15, significantly different to Andosol under conventional tillage (HR/S=0.47.

  12. Two-dimensional empirical mode decomposition of heavy metal spatial variation in agricultural soils, Southeast China. (United States)

    Wu, Chunfa; Huang, Jingyi; Minasny, Budiman; Zhu, Hao


    The distribution of heavy metals in agricultural soils is affected by various anthropogenic activities and environmental factors occurring at different spatial scales. This paper introduced the two-dimensional empirical mode decomposition (2D-EMD) to separate the spatial variability in soil heavy metals into different scales. Geostatistics and multivariate analysis were also utilized to quantify their spatial structure and identify their potential influencing factors. The study was conducted in an arable land in southeastern China where 260 surface soil samples were collected and measured for total contents of cadmium (Cd total ), mercury (Hg total ), and sulfur (TS); pH; and soil organic carbon content (SOC). The results showed that both Cd total and Hg total had high coefficients of variation. The overall variation in all five soil variables was separated into three intrinsic mode functions (IMFs) and spatial residues. All three IMFs had short-range spatial correlations (1-8 km), while the spatial residues had moderate-large spatial ranges (13-39 km). IMF1 of Cd total was strongly correlated with IMF1 of SOC and TS, which was consistent with the principal component analysis. This indicated that IMF1 of Cd total represented local variations which were influenced by agricultural activities. IMFs of Hg total showed clustered distributions in the study area, with IMF1 and IMF2 of Hg total correlated in one principal component, and IMF3 of Hg total and IMF3 of soil pH in another component. This indicated that all three IMFs of Hg total might be influenced by different industrial activities or different pathways of the same industrial activities. The residues of Cd total and Hg total , representing the regional trends, only accounted for 26% of the total variance, whereas IMF1 contributed about half of the total variance. It can be concluded that agricultural activities and industrial activities were the dominant contributors of the overall variations in Cd total and

  13. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. (United States)

    Park, Jong Yol; Huwe, Bernd


    We investigated the effect of solution pH and soil structure on transport of sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in combination with batch sorption tests and column experiments. Sorption isotherms properly conformed to Freundlich model, and sorption potential of the antibiotics is as follows; sulfadimethoxine > sulfamethoxazole > sulfamethazine. Decreasing pH values led to increased sorption potential of the antibiotics on soil material in pH range of 4.0-8.0. This likely resulted from abundance of neutral and positive-charged sulfonamides species at low pH, which electrostatically bind to sorption sites on soil surface. Due to destruction of macropore channels, lower hydraulic conductivities of mobile zone were estimated in the disturbed soil columns than in the undisturbed soil columns, and eventually led to lower mobility of the antibiotics in disturbed column. The results suggest that knowledge of soil structure and solution condition is required to predict fate and distribution of sulfonamide antibiotics in environmental matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Properties, classification and agricultural potentials of the soils of ...

    African Journals Online (AJOL)

    A semi-detailed soil survey of the floodplains of lower Oshin River in Kwara State, Nigeria was carried out using rigid-grid survey method. Three soil units designated as OSH-1, OSH-2 and OSH-3 were identified on the basis of drainage, topography, soil texture and depth. The soil texture ranges from sandy clay loam in ...

  15. The impact of land use on biological activity of agriculture soils. An State-of-the-Art (United States)

    Morugán-Coronado, Alicia; Cerdà, Artemi; García-Orenes, Fuensanta


    ., Giménez-Morera, A.G., Bodí, M.B. 2009b. Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin. Earth Surface Processes and Landforms 34, 1822-1830. Deng, H. 2012. A review of diversity-stability relationship of soil microbial community: what do we not know? Journal of Environmental Sciences 24(6),1027-35. DOI:10.1016/S1001-0742(11)60846-2 García-Orenes, F., Cerdà, A., Mataix-Solera, J., Guerrero, C., Bodí, M.B., Arcenegui, V., Zornoza, R. & Sempere, J.G. 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil and Tillage Research 106, 117-123. 10.1016/j.still.2009.06.002 García-Orenes, F., Guerrero, C., Roldán, A.,Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., Caravaca. F. 2010. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research 109, 110-115. 10.1016/j.still.2010.05.005. García-Orenes, F., Morugán-Coronado, A., Zornoza, R., Scow, K. 2013. Changes in Soil Microbial Community Structure Influenced by Agricultural Management Practices in a Mediterranean Agro-Ecosystem. PLoS ONE 8:e80522. García-Orenes, F., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Arcenegui, V., Caravaca, F. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use and Management 28, 571-579. DOI: 10.1111/j.1475-2743.2012.00451.x Macci, C., Doni, S., Peruzzi, E., Mennone, C., Masciandaro, G. 2013. Biostimulation of soil microbial activity through organic fertilizer and almond tree association. Land degradation & development. DOI: 10.1002/ldr.2234 Morugán-Coronado, A., García-Orenes, F., Mataix-Solera, J., Arcenegui, V., Mataix-Beneyto, J. 2011. Short-term effects of treated wastewater irrigation on Mediterranean calcareous soil. Soil and Tillage Research

  16. Soil CO2 emissions in terms of irrigation management in an agricultural soil (United States)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María


    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  17. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface ...... of soil surface temperature are often more important to plants and animals than the average ... shrub, and a long light shadow is obvious on the lee side. At 14:00, shadow is much ...

  18. Measuring evaporation from soil surfaces for environmental and ...

    African Journals Online (AJOL)

    There are many reasons for the need to assess rates and quantities of evaporation or evapotranspiration from natural soil surfaces, the surfaces of deposits of mine or industrial waste, or soil-covered waste surfaces. These include assessing water balances for nearsurface soil strata, landfills, tailings dams and waste dumps ...

  19. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli


    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  20. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. (United States)

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A


    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of Applying Chemical Fertilizers on Concentration of Cd, Pb and Zn in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Hossein Pourmoghadas


    Full Text Available Background &Objective:  Nowadays uncontrolled uses of chemical fertilizers which have many heavy metals such as Cadmium, Lead and Zinc in addition have economic problems, cause to serious damages in the environment. Therefore uncontrolled application of fertilizers can cause accumulation contaminants in soil, water sources and increasing in plants and human & animals’ food chain. The main objective of this research was to investigate the effects of chemical fertilizers application to increase heavy metals in agricultural soils at directions to prevent contamination in water sources, agricultural products and the best uses of chemical fertilizers. Methods: In this study, 20 soil samples and 5 useful chemical fertilizer samples were collected and investigated. After fertilizer and soil samples were prepared, digested and filtered, heavy metals were determined with using atomic absorption. Results: The results of this study showed that, Cd in Diammonum phosphate  fertilizer 1.25 times, Super phosphate triple 1.7 times and in Macro granular fertilizer 1.5 times were as much as maximum acceptable concentration in chemical fertilizers. Cadmium concentration in all of the Jarghoye (Isfahan agricultural soil samples 3 to 7 times and in the Mobarake village (Najaf abad agricultural soil samples 10 to 35 times were as much as maximum acceptable concentration in agricultural soils. But Pb and Zn concentration in all of the agricultural soil samples was less than the amount of maximum acceptable concentration. Conclusion: Phosphate chemical fertilizers were positive effects to increase concentration of Pb and Zn in agricultural soils. Therefore, application of the fertilizer must be more attention because of increasing heavy metals in the agriculture soils and probably increasing heavy metals in food chain.  

  2. Mineralogical and geochemical patterns of urban surface soils, the example of Pforzheim, Germany

    International Nuclear Information System (INIS)

    Norra, Stefan; Lanka-Panditha, Mahesh; Kramar, Utz; Stueben, Doris


    This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0-5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by

  3. Soil conservation in the 21st century: why we need smart agricultural intensification


    Govers, Gerard; Merckx, Roel; Wesemael, Bas; Oost, Kristof


    Soil erosion severely threatens the soil resource and the sustainability of agriculture. After decades of research, this problem still persists, despite the fact that adequate technical solutions now exist for most situations. This begs the question as to why soil conservation is not more rapidly and more generally implemented. Studies show that the implementation of soil conservation measures depends on a multitude of factors but it is also clear that rapid change in agricu...

  4. Restoration success of low-production plant communities on former agricultural soils after top-soil removal

    NARCIS (Netherlands)

    Verhagen, R; Klooker, J.; Bakker, JP; van Diggelen, R

    The success in restoring seven low-production vegetation types on former agricultural soil after top-soil removal was investigated. The colonization and establishment of target species in permanent plots was recorded during the first nine years after restoration measures were taken. For each

  5. Spatio-temporal variation of surface soil moisture over the Yellow River basin during 1961–2012

    Directory of Open Access Journals (Sweden)

    R. Tong


    Full Text Available Soil moisture plays a significant role in agricultural and ecosystem development. However, in the real world soil moisture data are very limited due to many factors. VIC-3L model, as a semi-distribution hydrological model, can potentially provide valuable information regarding soil moisture. In this study, daily soil moisture contents in the surface soil layer (0–10 cm of 1500 grids at 0.25 × 0.25 degree were simulated by the VIC-3L model. The Mann-Kendall trend test and Morlet wavelet analysis methods were used for the analysis of annual and monthly average surface soil moisture series. Results showed that the trend of surface soil moisture was not obvious on the basin scale, but it varied with spatial and temporal conditions. Different fluctuation amplitudes and periods of surface soil moisture were also discovered on the Yellow River basin during 1961 to 2012.

  6. Fungal Community Structure as an Indicator of Soil Agricultural Management Effects in the Cerrado

    Directory of Open Access Journals (Sweden)

    Alana de Almeida Valadares-Pereira


    Full Text Available ABSTRACT Forest-to-agriculture conversion and soil management practices for soybean cropping are frequently performed in the Cerrado (Brazilian tropical savanna. However, the effects of these practices on the soil microbial communities are still unknown. We evaluated and compared the fungal community structure in soil from soybean cropland with soil under native Cerrado vegetation at different times of the year in the Tocantins State. Soil samples were collected in two periods after planting (December and in two periods during the soybean reproductive growth stage (February. Concomitantly, soil samples were collected from an area under native Cerrado vegetation surrounding the agricultural area. The soil DNA was analyzed using a fingerprinting method termed Automated Ribosomal Intergenic Space Analysis (ARISA to assess the fungal community structure in the soil. Differences in the fungal community structure in the soil were found when comparing soybean cropland with the native vegetation (R = 0.932 for sampling 1 and R = 0.641 for sampling 2. Changes in the fungal community structure after management practices for soybean planting in Cerrado areas were related to changes in soil properties, mainly in copper, calcium, and iron contents, cation exchange capacity, base saturation, and calcium to magnesium ratio. These results show the changes in the fungal community structure in the soil as an effect of agricultural soil management in Cerrado vegetation in the state of Tocantins.

  7. Predicting nitrogen leaching losses from intensifying agriculture in sub-Saharan Africa: the role of soils and fertilizer type (United States)

    Tully, K. L.; Russo, T. A.; Palm, C.; Neill, C.


    Fertilizer use is rapidly increasing in sub-Saharan Africa (SSA). However, we currently have little understanding of the consequences of increased nitrogen (N) fertilizer use on surface and groundwater resource quality in these tropical croplands. This is because there are few field studies that examine N dynamics in SSA, and extrapolation is difficult because soil biogeochemistry and land management differ from the regions where most of our understanding of N losses from agriculture has been developed. We present data on N leaching losses in the vadose zone from a high-clay soil in western Kenya and a low-clay soil in mid-western Tanzania. Experimental fields were established in both sites with fertilizer rates ranging from 0 to 200 kg N ha-1 yr-1. We combine measuring soil pore water concentrations from tension lysimeters with a variably saturated hydrologic flow model to estimate N leaching losses under different fertilizer scenarios in two soil types. Vertical N fluxes are given at the soil surface, within, and below the root zone. We find N losses from high-clay soils to be nearly two orders of magnitude lower than low-clay soils likely due to lower fluid flux and higher anion exchange in the high-clay soils. Organic material additions (from leguminous tree prunings) reduced N leaching losses substantially in low-clay soils likely by changing the timing of N-release and by increasing soil organic matter (and thus improving water retention and the formation of soil aggregates). Predicting the fate of added N in SSA is very important as N application is poised to increase in this vulnerable and under-studied region.

  8. Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China. (United States)

    Yi, Qitao; Xie, Kai; Sun, Pengfei; Kim, Youngchul


    Extensive coal mining in the Huainan Coal Mines, Anhui China, in light of the local hydrology and geology, has resulted in extensive land subsidence and submergence around the mines. This has led to the formation of large (>100 km(2)) lakes. Three representative lakes were selected to study the mechanisms of phosphorus (P) unavailability for primary production from the perspective of sedimentary environments, which in turn owe their formation to permanently inundated agricultural soils. Two important issues were considered: (1) potential of P transport from the cultivated soil column toward surface sediments and (2) characterization of P behavior in view of regional ecological rehabilitation and conservation. Accordingly, we conducted field sediment analyses, combined with simulation experiments of soil column inundation/submergence lasting for four months. Enrichment of Fe-(hydr)oxides in surface sediments was verified to be the main reason for limitations in regional P availability in water bodies. Iron (Fe), but not its bound P, moved upward from the submerged soil column to the surface. However, an increasing upward gradient in the contents of organic matter (OM), total nitrogen (N), total phosphorus (TP), and different P fractions was caused by spatial heterogeneity in soil properties. Phosphorus was unable to migrate upward toward the surface sediments as envisioned, because of complex secondary reactions within soil minerals. Phosphorus bound to Fe and/or Al comprised over 50% of TP, which has important implications for local ecological rehabilitation and water conservation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Prediction of soil properties for agricultural and environmental applications from infrared and X-ray soil spectral properties


    Towett, Erick Kibet


    Many of today?s most pressing problems facing developing countries, such as food security, climate change, and environmental protection, require large area data on soil functional capacity. Conventional assessments (methods and measurements) of soil capacity to perform specific agricultural and environmental functions are time consuming and expensive. In addition, repeatability, reproducibility and accuracy of conventional soil analytical data are major challenges. New, rapid methods to quant...

  10. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production (United States)

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo


    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  11. Prevention of soiling of heliostat surfaces (United States)

    Baum, B.; Binette, M.


    Methods for preventing or minimizing soiling of the surface of the glass mirrored heliostat and the plastic dome over the aluminized Mylar mirror were developed. The substrates used were float glass, Kynar, and Petra A polyester. The two general classes of compounds which were being investigated were antistatic and antisoiling agents. The categories of antistatic agents used were amine derivatives, quaternary ammonium salts, phosphate esters, and polyethylene glycol esters. The soil release agents were either hydrophilic ionic or hydrophilic nonionic in character. These compounds were attached to the substrate surface by silane or titanate coupling agents or as a mixture with a hard, weather resistant coating. The silanol groups on the surface of glass provided suitable attachment sites; whereas, the plastic substrates required activation by various procedures. Another route to these objectives lay in direct reaction of an organic compound with a functional group in the glass surface. Evaluation of the various coatings on the three substrates was accomplished by a sequential screening procedure.

  12. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa. (United States)

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun


    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  13. Quantitative parameterization of soil surface structure with increasing rainfall volumes


    Edison Aparecido Mome Filho


    The study of soil structure allows inferences on soil behavior. Quantitative parameters are oftentimes required to describe soil structure and the multifractal ones are still underused in soil science. Some studies have shown relations between the multifractal spectrum and both soil surface roughness decay by rainfall and porous system heterogeneity, however, a particular multifractal response to a specific soil behavior is not established yet. Therefore, the objectives of this research were:...

  14. Estimating soil erosion from the redistribution of fallout cesium 137 in an agricultural land of province of Camaguey

    International Nuclear Information System (INIS)

    Brigido Flores, O.; Barreras Caballero, A.A.; Montalvan Estrada, A.; Gandarilla Benitez, J. E.; Font Vila, L.


    The redistribution of soil has a profound impact on its quality and ultimately on its productivity for crop growth. Significant amounts of fallout Cesium-137 ( Cs) from nuclear weapons tests were introduced to the landscape during the 1950s and 1960s. Once Cs reaches the soil surface it is strongly and quickly adsorbed by clay particles, and is essentially nonexchangeable in most environments. Thus, in recent years, the fallout Cs has found increasing application in investigations of soil erosion on agricultural land. By comparing Cs inventories from different points in fields with the reference inventory for the area it is possible to assemble information on the rates and patterns of soil loss. An investigation of soil erosion was undertaken in the 4 ha field of La Victoria 1 Farm. Three models for converting Cs measurements to estimates of soil redistribution rates on studied cultivated field have been used, The Proportional Model, The Gravimetric Approach and Simplified Mass Balance Model. Using the first one net soil erosion was calculated to be 9.6 t.ha .year . Estimates of soil loss using the gravimetric method and simplified mass balance model were found to be 9.5 and 14.9 t.ha .year ,respectively. Preliminary results suggest that Cs technique may be of considerable value in assembling data on the rates and spatial distribution of soil loss

  15. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    International Nuclear Information System (INIS)

    Grossberger, Amnon; Hadar, Yitzhak; Borch, Thomas; Chefetz, Benny


    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t 1/2 ) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  16. Phytoremediation of soil polluted by nickel using agricultural crops. (United States)

    Giordani, Cesare; Cecchi, Stefano; Zanchi, Camillo


    Soil pollution due to heavy metals is widespread; on the world scale, it involves about 235 million hectares. The objectives of this research were to establish the uptake efficiency of nickel by some agricultural crops. In addition, we wanted to establish also in which part of plants the metal is stored for an eventual use of biomass or for recycling the metal. The experiments included seven herbaceous crops such as: barley (Hordeum vulgaris), cabbage (Brassica juncea), spinach (Spinacea oleracea), sorghum (Sorgum vulgare), bean (Phaseolus vulgaris), tomato (Solanum lycopersicum), and ricinus (Ricinus communis). We used three levels of treatment (150, 300, and 600 ppm) and one control. At the end of the biological cycle of the crops, the different parts of plants, i.e., roots, stems, leaves, fruits, or seeds, were separately collected, oven dried, weighed, milled, and separately analysed. The leaves and stems of spinach showed a very good nickel storage capacity. The ricinus too proved to be a very good nickel storer. The ability of spinach and ricinus to store nickel was observed also in the leaves of cabbage, even if with a lower storage capacity. The bean, barley, and tomato, in decreasing order of uptake and storage capacity, showed a high concentration of nickel in leaves and stems, whereas the sorghum evidenced a lesser capacity to uptake and store nickel in leaves and stems. The bean was the most efficient in storing nickel in fruits or grains. Tomato, sorghum, and barley have shown a storage capacity notably less than bean. The bean appeared to be the most efficient in accumulating nickel in the roots, followed in decreasing order by sorghum, ricinus, and tomato. With regard to the removal of nickel, spinach was the most efficient as it contains the highest level of this metal per gram of dry matter. The ricinus, cabbage, bean, sorghum, barley, and tomato evidenced a progressively decreasing efficiency in the removal of nickel.

  17. Determination of bioavailable macro- and microelements from agricultural soil using different extractants (United States)

    Milićević, Tijana; Relić, Dubravka; Popović, Aleksandar


    and that neither of these macroelements is in correlation with the concentration of microelements isolated with the same extractant. The concentrations of Cu and S extracted from soil by distilled water during 16 h are in correlation. These elements could have entered only through the soil surface layer while grapevines were primarily treated by fungicide copper(II)-sulphate. In addition, the concentration of S is correlated with the concentrations of Mn, P and Na. It can be assumed that the correlation between these elements points to their origin from the pesticides used in agriculture production.

  18. Concentrations of Available Heavy Metals in Mediterranean Agricultural Soils and their Relation with Some Soil Selected Properties: A Case Study in Typical Mediterranean Soils

    Directory of Open Access Journals (Sweden)

    José Rato Nunes


    Full Text Available The characterization of the content of trace metals in soils is an instrument in many programs of environmental protection, including the establishment of regional-level standards to detect sites affected by contamination. The objectives of the present study were to study the available levels of Cd, Cr, Cu, Ni, Pb, and Zn in surface horizons of agricultural soils in a typical European Mediterranean region, to establish the geochemical baseline concentration (GBC, background level (BL, and reference value (RV of each of these available metals, and to investigate their possible correlations with soil properties. To establish the GBC and RV values, we used the “standard threshold method”. Topsoil samples (0–20 cm were collected from 630 sites, and extracted with Diethylene Triamine Pentaacetic Acid (DTPA to determine their available heavy metal concentrations. The GBC values established were: 0.04 to 0.90 mg kg−1, 0.70 to 2.50 mg kg−1, 0.10 to 6.30 mg kg−1, 0.30 to 7.90 mg kg−1, 0.29 to 4.50 mg kg−1, and 0.18 to 2.50 mg kg−1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. Soil properties were found to be correlated with the available heavy metal content, suggesting that the enhanced mobility of heavy metals are related to anthropic activities.

  19. Proximal soil sensors and data fusion for precision agriculture

    NARCIS (Netherlands)

    Mahmood, H.S.


    different remote and proximal soil sensors are available today that can scan entire fields and give detailed information on various physical, chemical, mechanical and biological soil properties. The first objective of this thesis was to evaluate different proximal soil sensors available today and to

  20. EnviroAtlas - Percent Agriculture on Hydric Soil for the Conterminous United States (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on Agricultural Land Coverage on Hydric Soils for each Watershed Boundary Dataset (WBD) 12-Digit Hydrologic Unit Code (HUC-12)...

  1. Remote sensing is a viable tool for mapping soil salinity in agricultural lands (United States)

    Soil salinity negatively impacts the productivity and profitability of western San Joaquin Valley (WSJV) farmland. Drought, climate change, reduced water allocations, and land use changes are among many current phenomena that could potentially worsen salinity conditions in agricultural lands. Monito...

  2. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    Directory of Open Access Journals (Sweden)

    José Camilo Bedano


    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  3. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering

    International Nuclear Information System (INIS)

    Robson, T.C.; Braungardt, C.B.; Rieuwerts, J.; Worsfold, P.


    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite ( −1 ). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg −1 ) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg −1 ) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. -- Highlights: • Sphalerite containing cadmium presents a hazard when present in agricultural soils. • Sphalerite dissolution was slow (0.6–1.2% y −1 ) but constant in contrasting soils. • Cadmium was released during dissolution and was bioavailable to wheat and rice. • Wheat grains accumulated potentially harmful cadmium concentrations. • Flooded paddy (reducing) soils reduced cadmium bioavailability to rice. -- Sphalerite dissolves steadily in oxic agricultural soils and can release highly bioavailable Cd, which may contaminate food crops destined for human consumption

  4. New methods to quantify NH3 volatilization from fertilized surface soil with urea

    Directory of Open Access Journals (Sweden)

    Ana Carolina Alves


    Full Text Available Gaseous N losses from soil are considerable, resulting mostly from ammonia volatilization linked to agricultural activities such as pasture fertilization. The use of simple and accessible measurement methods of such losses is fundamental in the evaluation of the N cycle in agricultural systems. The purpose of this study was to evaluate quantification methods of NH3 volatilization from fertilized surface soil with urea, with minimal influence on the volatilization processes. The greenhouse experiment was arranged in a completely randomized design with 13 treatments and five replications, with the following treatments: (1 Polyurethane foam (density 20 kg m-3 with phosphoric acid solution absorber (foam absorber, installed 1, 5, 10 and 20 cm above the soil surface; (2 Paper filter with sulfuric acid solution absorber (paper absorber, 1, 5, 10 and 20 cm above the soil surface; (3 Sulfuric acid solution absorber (1, 5 and 10 cm above the soil surface; (4 Semi-open static collector; (5 15N balance (control. The foam absorber placed 1 cm above the soil surface estimated the real daily rate of loss and accumulated loss of NH3N and proved efficient in capturing NH3 volatized from urea-treated soil. The estimates based on acid absorbers 1, 5 and 10 cm above the soil surface and paper absorbers 1 and 5 cm above the soil surface were only realistic for accumulated N-NH3 losses. Foam absorbers can be indicated to quantify accumulated and daily rates of NH3 volatilization losses similarly to an open static chamber, making calibration equations or correction factors unnecessary.

  5. Research on the Influence of Soil Structure and Amendments on Surface Water Quality from Cervenia Village, Teleorman County

    Directory of Open Access Journals (Sweden)

    Dana Popa


    Full Text Available This study is part of a research project on the influence of agro-livestock activities on surface water quality inTeleorman County. The paper presents structure, quality and measures to prevent and combat soil erosion in relationto agro-livestock activities in this area. The research has been done in the whole locality, and took soil samples todetermine the type and soil texture and soil supply status with major nutrients (N, P, K. Based on these results andknowing the soil amendaments at Cervenia village level, recommendations were made about avoiding the risks ofpollution of surface water by nitrates from agricultural and livestock activities.



    Abdul Jabbar Al-Rajab; Othman M. Hakami


    Glyphosate [N-phosphonomethyl]glycine is a systematic, non-selective, organophosphorus herbicide used worldwide in agriculture and industrial zones. Following its application, residues of glyphosate can threaten soil or aquatic organisms in adjacent water. In this study, we followed the degradation, stabilization, remobilization and leaching of 14C-glyphosate in three agricultural soils in laboratory incubations and in lysimeters under field condition...

  7. On the utility of land surface models for agricultural drought monitoring

    Directory of Open Access Journals (Sweden)

    W. T. Crow


    Full Text Available The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.

  8. Evapotranspiration and surface energy balance across an agricultural-urban landscape gradient in Southern California, USA. (United States)

    Shiflett, S. A.; Anderson, R. G.; Jenerette, D.


    Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.

  9. Impact of surface coal mining on soil hydraulic properties (United States)

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark


    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  10. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    30 N latitude) are used to study the diurnal, monthly and seasonal soil moisture variations. The effect of rainfall on diurnal and seasonal soil moisture is discussed. We have investigated relationships of soil moisture with sur- face albedo and soil thermal diffusivity. The diurnal variation of surface albedo appears as a.

  11. Soil heat flux and day time surface energy balance closure

    Indian Academy of Sciences (India)

    Soil heat flux is an important input component of surface energy balance. Estimates of soil heat flux were made in the year 2008 using soil temperature data at Astronomical Observatory, Thiruvananthapuram, south Kerala. Hourly values of soil heat flux from 00 to 24 LST are presented for selected days typical of the winter, ...

  12. Occurrence of emerging contaminants in agricultural soils, sewage sludge and waters in Valencia (E Spain) (United States)

    Boluda, Rafael; Marimon, Lupe; Atzeni, Stefania; Mormeneo, Salvador; Iranzo, María; Zueco, Jesús; Gamón, Miguel; Sancenón, José; Romera, David; Gil, Carlos; Amparo Soriano, Maria; Granell, Clara; Roca, Núria; Bech, Jaume


    In recent years, studies into the presence and distribution of emerging contaminants (ECs), like pharmaceutical products, some pesticides and mycotoxins in the natural environment, are receiving considerable attention. Thus, the presence of these compounds in waters, soils and wastes in different locations including agricultural systems has been stressed; very few studies into this matter are available in Spain. The main source of ECs in the environment is wastewater spillage from wastewater treatment plants (WTP), where these compounds arrive from the sewer system network. The objective of this study was to determine the levels of 35 ECs constituted by nine pharmaceutical products, 23 fungicides and three mycotoxins in soils, sewages sludge and waters adjacent to WTP from an agriculture area of Valencia (E Spain) influenced by intense urban and industrial activity. Seven samples from sludge, 13 soil samples and eight samples of waters from the area of influence of WTP were collected. The ECs extraction were performed using 5 g of fresh sample and a mixture of acetonitrile with 1% formic acid and water at the 3:1 ratio by shaking for 45 min and then centrifuging at 4,000 rpm for 5 min. The extract was filtered and determination was done by HPLC system connected to a 3200-Qtrap de triple quadrupole mass spectrometer with an electrospray ion source. The results showed that soil-ECs concentrations were 10 times lower that in sewage sludge. The smaller number of detections and detected compounds should also be stressed. As in previous cases, fungicides azole (tebuconazole and tricyclazole), along with boscalid, were the most detected compounds with concentrations of between 100 and 400 µg kg-1 dw. In second place, propiconazole and azoxystrobin stood out, followed by carbendazim, dimetomorph, pyraclostrobin and propamocarb. The following drugs and mycotoxins were detected to have a higher to lower concentration (1-40 µg kg-1): telmisartan, irbesartan, venlafaxine

  13. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)


    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  14. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward


    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. 14 C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable 14 C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  15. Soils of Agricultural Terraces with Retaining Walls in the Mountains of Dagestan (United States)

    Borisov, A. V.; Korobov, D. S.; Idrisov, I. A.; Kalinin, P. I.


    Soil-archeological studies of agricultural terraces with retaining walls in the area of construction of the Gotsatlinskaya Hydroelectric Power Station in Khunzakh district of the Republic of Dagestan have been performed. The morphogenetic and chemical properties of the anthropogenic soils (Anthrosols) in different parts of the terrace complex are analyzed. It is argued that slope terracing in the mountains ensures the development of thicker soil profiles with pronounced genetic horizons. The soils of agricultural terraces store important information of the paleoenvironmental history and land use. A characteristic feature of the Anthrosols of agricultural terraces is a relatively even distribution of gravelly material of up to 5 cm in diameter in the plow layer. The soils of terraces are characterized by the high variability in their properties within the entire terrace complex and within the particular terraces.

  16. Mineralization of soil organic matter in biochar amended agricultural landscape (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.


    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  17. Degradation of zearalenone and ochratoxin A in three Danish agricultural soils

    DEFF Research Database (Denmark)

    Mortensen, G.K.; Strobel, B.W.; Hansen, H.C.B.


    Degradation of two mycotoxins: zearalenone (ZON) produced by species of Fusarium and ochratoxin A (OTA) produced by species of Penicillium were followed in pot experiments using agricultural topsoils from Danish experimental farms: a sandy soil, a sandy clay soil and a gyttja soil with a high...... content of silt. Experiments with unplanted soil and pots planted with barley were included. Soil samples were withdrawn during a period of 225 days and analysed for the content of OTA and ZON. The degradation of both toxins consisted of an initial fast degradation followed by a slower transformation step......, whereas the half-lives for OTA were about 0.2-1 day. The slowest degradation was measured in soil rich in clay. After 225 days, neither OTA nor ZON was detected in any of the soil types. Generally, the degradation of ZON and OTA was faster in planted soil than in unplanted soil, probably due to higher...

  18. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    the effects of shrub (Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy ... Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was ...... dunes and interdunes in southern New Mexico: A study of soil properties ...

  19. Agricultural insecticides threaten surface waters at the global scale. (United States)

    Stehle, Sebastian; Schulz, Ralf


    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  20. Nitric oxide fluxes from an agricultural soil using a flux-gradient method (United States)

    Taylor, N. M.; Wagner-Riddle, C.; Thurtell, G. W.; Beauchamp, E. G.


    Soil emission of nitric oxide may be a significant source of NOx in rural areas. Agricultural practices may enhance these emissions by addition of nitrogen fertilizers. A system that enables continuous measurement of NO fluxes from agricultural surfaces using the flux-gradient method was developed. Hourly differences in NO concentrations in air sampled at two intake heights (0.6 and 1 m) were determined using a chemiluminescence analyzer. Eddy diffusivities were determined using wind profiles (cup anemometers), and stability corrections calculated using a 5 cm path sonic anemometer. Fast switching of sampling between air intake heights (every 30 s) and determination of concentration values at a frequency of 2 Hz minimized the errors due to fluctuations in background concentration. Low travel times for air samples in the tubing (˜8 s) were estimated to result in small errors in flux values (chemical reactions. The overall resolution of the system was estimated as ˜1 ng N m-2s-1. NO fluxes from a bare soil were measured quasi-continuously from January to June 1995 at Elora, Canada, comprising a total of 1833 hourly values. Daily NO fluxes before nitrogen fertilization were small, increasing after nitrogen fertilizer was added (>10 ng N m-2 s-1). Monthly NO fluxes estimated were similar to those observed in previous studies. The designed system could be easily modified to measure NOx and NO fluxes by using an additional chemiluminescence analyzer. The system also could be adapted to measure fluxes sequentially from various plots, enabling testing of agricultural practices on NO emissions.

  1. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. (United States)

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria


    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Slow reaction of soil structure to conservation agriculture practices in Veneto silty soils (North-Easter Italy) (United States)

    Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco


    Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.

  3. Phosphorus status of some semi-arid agricultural soils of northern ...

    African Journals Online (AJOL)

    Phosphorus status of some semi-arid agricultural soils of northern Ghana. E. Owusu-Bennoah, J. G. Ampofo, D. K. Acquay. Abstract. (Ghana Journal of Agricultural Science, 1995-96, 28-29: 29-36). Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  4. Using machine learning to predict the impact of agricultural factors on communities of soil microarthropods

    DEFF Research Database (Denmark)

    Dem?ar, D.; D?eroski, S.; Krogh, P. H.


    With the newly arisen ecological awareness in the agriculture the sustainable use and development of the land is getting more important. With the sustainable use of soil in mind, we are developing a decision support system that helps making decisions on managing agricultural systems and is able t...

  5. Organic waste recycling in agriculture and related effects on soil water retention and plant available water: a review


    Gerke, Horst H.; Houot, Sabine


    The decrease of organic matter content in agricultural soils is a problem of great concern to farmers around the world. Indeed, it lowers soil fertility that directly impairs agricultural crop production and affects a number of other soil properties like water retention capacity, aggregation and structure formation, soil mechanical strength or compactibility. Scarcity in plant available water poses a risk to agriculture, especially in drought-prone areas. However, the increase of organic wast...

  6. Development of methods for remediation of artificial polluted soils and improvement of soils for ecologically clean agricultural production systems

    International Nuclear Information System (INIS)

    Bogachev, V.; Adrianova, G.; Zaitzev, V.; Kalinin, V.; Kovalenko, E.; Makeev, A.; Malikova, L.; Popov, Yu.; Savenkov, A.; Shnyakina, V.


    The purpose of the research: Development of methods for the remediation of artificial polluted soils and the improvement of polluted lands to ecologically clean agricultural production.The following tasks will be implemented in this project to achieve viable practical solutions: - To determine the priority pollutants, their ecological pathways, and sources of origin. - To form a supervised environmental monitoring data bank throughout the various geo system conditions. - To evaluate the degree of the bio geo system pollution and the influence on the health of the local human populations. - To establish agricultural plant tolerance levels to the priority pollutants. - To calculate the standard concentrations of the priority pollutants for main agricultural plant groups. - To develop a soil remediation methodology incorporating the structural, functional geo system features. - To establish a territory zone division methodology in consideration of the degree of component pollution, plant tolerance to pollutants, plant production conditions, and human health. - Scientific grounding of the soil remediation proposals and agricultural plant material introductions with soil pollution levels and relative plant tolerances to pollutants. Technological Means, Methods, and Approaches Final proposed solutions will be based upon geo system and ecosystem approaches and methodologies. The complex ecological valuation methods of the polluted territories will be used in this investigation. Also, laboratory culture in vitro, application work, and multi-factor field experiments will be conducted. The results will be statistically analyzed using appropriate methods. Expected Results Complex biogeochemical artificial province assessment according to primary pollutant concentrations. Development of agricultural plant tolerance levels relative to the priority pollutants. Assessment of newly introduced plant materials that may possess variable levels of pollution tolerance. Remediation

  7. Environmental Radionuclides in Surface Soils of Vietnam

    International Nuclear Information System (INIS)

    Hien, P.D.; Hiep, H.T.; Quang, N.H.; Luyen, T.V.; Binh, T.V.; Ngo, N.T.; Long, N.Q.; Bac, V.T.


    A database on 238 U, 232 Th, 40 K and 137 Cs in surface soils was established to provide inputs for the assessment of the collective dose to the population of Vietnam and to support soil erosion studies using 137 Cs as a tracer. A total of 292 soil samples were taken from undisturbed sites across the territory and the concentrations of radionuclides were determined by gamma spectrometry method. The multiple regression of 137 Cs inventories against characteristics of sampling locations allowed us to establish the distribution of 137 Cs deposition density and its relationship with latitude and annual rainfall. The 137 Cs deposition density increases northward and varies from 178 Bq m -2 to 1,920 Bq m -2 . High rainfall areas in the northern and central parts of the country have received considerable 137 Cs inputs exceeding 600 Bq m -2 , which is the maximum value that can be expected for Vietnam from the UNSCEAR global pattern. The mean activity concentrations of naturally occurring radionuclides 238 U, 232 Th and 40 K are 45, 59 and 401 Bq kg- 1 , respectively, which entail an average absorbed dose rate in air of 62 nGy h -1 , which is about 7% higher than the world average. (author)

  8. Azospirillum formosense sp. nov., a diazotroph from agricultural soil. (United States)

    Lin, Shih-Yao; Shen, Fo-Ting; Young, Li-Sen; Zhu, Zhi-Long; Chen, Wen-Ming; Young, Chiu-Chung


    A gram-negative, spiral or rod-shaped, non-spore-forming diazotrophic bacterium, designated CC-Nfb-7(T), was isolated from agricultural soil in Yunlin County, Taiwan. 16S rRNA gene sequence analysis showed that strain CC-Nfb-7(T) was most closely related to Azospirillum brasilense DSM 1690(T) (97.4 % 16S rRNA gene sequence similarity), Azospirillum rugosum IMMIB AFH-6(T) (96.8 %) and Azospirillum oryzae JCM 21588(T) (96.6 %); Azospirillum. DNA-DNA relatedness between strain CC-Nfb-7(T) and A. brasilense DSM 1690(T), A. rugosum DSM 19657(T) and A. oryzae JCM 21588(T) was 38.9, 30.1 and 31.8 %, respectively. The respiratory quinone was ubiquinone Q-10. The major fatty acids were summed feature 8 (consisting of C(18 : 1)ω7c and/or C(18 : 1)ω6c), summed feature 3 (consisting of C(16 : 1)ω7c and/or C(16 : 1)ω6c), summed feature 2 (consisting of C(14 : 0) 3-OH and/or iso-C(16 : 1) I), C(16 : 0), C(18 : 0) 2-OH and C(16 : 0) 3-OH. The polar lipids consisted mainly of phosphatidylglycerol, phosphatidylcholine and one unidentified phospholipid. Furthermore, moderate amounts of phosphatidylethanolamine, phosphatidyldimethylethanolamine and one unidentified aminophospholipid were also detected. Strain CC-Nfb-7(T) could be distinguished from members of phylogenetically related species by differences in phenotypic properties. On the basis of morphological, chemotaxonomic and phylogenetic data, strain CC-Nfb-7(T) represents a novel species within the genus Azospirillum, for which we propose the name Azospirillum formosense sp. nov. The type strain is CC-Nfb-7(T) ( = BCRC 80273(T) = JCM 17639(T) = DSM 24137(T)).

  9. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed. (United States)

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami


    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  10. Farmers' knowledge and use of soil fauna in agriculture: a worldwide review

    Directory of Open Access Journals (Sweden)

    Natasha Pauli


    Full Text Available General knowledge of the small, invisible, or hidden organisms that make soil one of the most biodiverse habitats on Earth is thought to be scarce, despite their importance in food systems and agricultural production. We provide the first worldwide review of high-quality research that reports on farmers' knowledge of soil organisms in agriculture. The depth of farmers' knowledge varied; some farming communities held detailed local taxonomies and observations of soil biota, or used soil biological activity as indicators of soil fertility, while others were largely unaware of soil fauna. Elicitation of soil biota knowledge was often incidental to the main research goal in many of the reviewed studies. Farmers are rarely deliberately or deeply consulted by researchers on their existing knowledge of soil biota, soil ecology, or soil ecological processes. Deeper understanding of how farmers use and value soil life can lead to more effective development of collaborative extension programs, policies, and management initiatives directed at maintaining healthy, living soils.

  11. A study of soil surface characteristics in a small watershed in the hilly, gullied area on the Chinese Loess Plateau

    NARCIS (Netherlands)

    Liu Guobin,; Xu Mingxiang,; Ritsema, C.J.


    Soil surface characteristics are closely related to soil surface depressional storage, infiltration, runoff generation and soil erosion, especially in highly erodible loess soil. Soil surface random roughness, soil cohesion and aggregate stability are necessary parameters in the Limburg Soil Erosion

  12. The effect of soil biodiversity on soil quality after agricultural reclamation at the eastern coast of China (United States)

    Wang, Xiaohan; Yang, Jianghua; Pu, Lijie; Chen, Xinjian


    Large area of tidal flats in Chinese coast has been reclaimed to support agriculture and urban development because of rapid population and economic growth. Knowledge of soil development mechanisms is essential for efficient management of land resources in coastal zone. So far, most studies have focused on consequences of soil physico-chemical properties on soil quality evolution after tideland reclamation for cultivation; yet a large part of soil bioprocess drives many soil processes. The effect of organism composition on the performance of soil development remains unclear. The purpose of our work was to reveal the organism composition change and its influence on soil quality impotent. In this study, we choose seven reclamation districts along a chronosequence in eastern coast of China, which were respectively reclaimed in 1956, 1971, 1980, 1997, 2009, 2013 and unenclosed tidal flat. The latest districts reclaimed in 2013 were left to succession fallow which were covered with halophytic vegetation and the rest districts were agriculturally managed. Soil samples at 0-20 cm were collected in each district. Soil physical, chemical and biological properties and wheat yields were measured. The result showed after the transformation from tidal flat to cropland, longer tillage time (>5 year) lead to higher soil clay and silt, SOC contents and lower bulk density, while soil clay and C contents declined within the first 5 years after reclamation. Agricultural reclamation significantly improved SOC contents of 0-20 cm depth form 0.11±0.05% to 0.77±0.10%. It needs about 35 years to achieve stable yield level after reclamation. Meanwhile, the soil community composition changed strongly over time. More significant relationships were found among soil physicochemical properties and bacteria community. And the variation trend of soil community richness (chao1) is similar to soil C contents, dropped at first 5 years and then significantly increased. Our results indicate that the

  13. Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services

    NARCIS (Netherlands)

    Setälä, H.; Bardgett, R.D.; Birkhofer, K.; Brady, M.; Byrne, L.; de Ruiter, P.C.; de Vries, F.T.; Gardi, C.; Hedlund, K.; Hemerik, L.; Hotes, S.; Liiri, M.; Mortimer, S.R.; Pavao-Zuckerman, M.; Pouyat, R.; Tsiafouli, M.; Van der Putten, W.H.


    [KEYWORDS: Agriculture Ecosystem services Land use Management optimization Soil Urban Trade-off] On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services

  14. Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions

    DEFF Research Database (Denmark)

    Schrijver, An De; Vesterdal, Lars; Hansen, Karin Irene


    Fertilisation of agricultural land causes an accumulation of nutrients in the top soil layer, among which phosphorus (P) is particularly persistent. Changing land use from farmland to forest affects soil properties, but changes in P pools have rarely been studied despite their importance to forest...

  15. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production (United States)

    Poffenbarger, Hanna


    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  16. Exploring the reservoir of potential fungal plant pathogens in agricultural soil

    NARCIS (Netherlands)

    Van Agtmaal, M.; Straathof, A.L.; Termorshuizen, A.J.; Teurlincx, S.; Hundscheid, M.P.J.; Ruyters, S; Busschaert, P.; Lievens, Bart; De Boer, W.


    Soil-borne pathogens cause great crop losses in agriculture. Because of their resilience in the soil, these pathogens persist in a population reservoir, causing future outbreaks of crop diseases. Management focus is usually on the most common pathogens occurring, but it is likely that a mixed

  17. Exploring the reservoir of potential fungal plant pathogens in agricultural soil

    NARCIS (Netherlands)

    Agtmaal, van M.; Straathof, Angela; Termorshuizen, Aad; Teurlincx, Sven; Hundscheid, Maria; Ruyters, Stefan; Busschaert, Pieter; Lievens, Bart; Boer, de Wietse


    Soil-borne pathogens cause great crop losses in agriculture. Because of their resilience in the soil, these pathogens persist in a population reservoir, causing future outbreaks of crop diseases. Management focus is usually on the most common pathogens occurring, but it is likely that a mixed

  18. A simulation test of the impact on soil moisture by agricultural ...

    African Journals Online (AJOL)

    To study the impact by agricultural machinery on changes in soil moisture, we used a simulated test method employing round iron plate based on the ground pressure ratio between the front and rear wheels of wheeled tractors and crawler tractors. We conducted soil compactions with five pressure loads (35, 98, 118, 196 ...

  19. Valuing Supporting Soil Ecosystem Services in Agriculture: A Natural Capital Approach

    NARCIS (Netherlands)

    Brady, M.V.; Hedlund, K.; Cong, R.G.; Hemerik, L.; Hotes, S.; Machado, S.; Mattson, L.; Schulz, E.; Thomsen, I.K.


    Soil biodiversity through its delivery of ecosystem functions and attendant supporting ecosystem services—benefits soil organisms generate for farmers—underpins agricultural production. Yet lack of practical methods to value the long-term effects of current farming practices results, inevitably, in

  20. Biodegradation of spilled diesel fuel in agricultural soil: Effect of humates, zeolite, and bioaugmentation

    Czech Academy of Sciences Publication Activity Database

    Kuráň, P.; Trögl, J.; Nováková, J.; Pilařová, V.; Dáňová, P.; Pavlorková, J.; Kozler, J.; Novák, František; Popelka, J.

    -, č. 642427 (2014) ISSN 1537-744X Grant - others:GA MPO(CZ) FR-TI1/456 Institutional support: RVO:60077344 Keywords : biodegradation * spilled diesel fuel * agricultural soil Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 1.219, year: 2013

  1. Copper and Zinc Contents in Urban Agricultural Soils of Niger State ...

    African Journals Online (AJOL)

    Nekky Umera

    Iyaka, Y. A. - Department of Chemistry, Federal University of Technology,. Minna, Niger ... environmental analytical chemists have appreciated the need for more .... Soils in Ondo State under Traditional Cultivation”. Ife Journal of. Agriculture. 1: 134 – 149. Alloway, B. J.(1995). Heavy Metals in Soils. 2nd ed. Glasgow, U.K:.

  2. Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff

    Directory of Open Access Journals (Sweden)

    J. J. Maynard


    Full Text Available The fate of organic carbon (C lost by erosion is not well understood in agricultural settings. Recent models suggest that wetlands and other small water bodies may serve as important long-term sinks of eroded C, receiving ~30 % of all eroded material in the US. To better understand the role of seasonally-saturated wetlands in sequestering eroded C, we examined the spatial and temporal dynamics of C and sediment accumulation in a 13-year-old constructed wetland used to treat agricultural runoff. The fate of C sequestered within deposited sediment was modeled using point-sampling, remote sensing, and geostatistics. Using a spatially-explicit sampling design, annual net rates of sedimentation and above-ground biomass were measured during two contrasting years (vegetated (2004 vs. non-vegetated (2005, followed by collection of sediment cores to the antecedent soil layer, representing 13 years of sediment and C accumulation. We documented high annual variation in the relative contribution of endogenous and exogenous C sources, as well as absolute rates of sediment and C deposition. This annual variation, however, was muted in the long-term (13 yr sediment record, which showed consistent vertical patterns of uniform C distribution (~14 g kg–1 and δ13C signatures in high depositional environments. This was in contrast to low depositional environments which had high levels of surface C enrichment (20–35 g kg–1 underlain by C depleted (5–10 g kg–1 sediments and an increasing δ13C signature with depth indicating increased decomposition. These results highlight the importance of sedimentation in physically protecting soil organic carbon and its role in controlling the long-term C concentration of seasonally-saturated wetland soils. While significant enrichment of surface sediments with endogenous C occurred in newly deposited sediment (i.e., 125 kg m2 in 2004, fluctuating cycles

  3. Conservation agriculture in high tunnels: soil health and profit enhancement (United States)

    In 2013, through the USDA’s Evans-Allen capacity grant, the high tunnel became an on-farm research laboratory for conservation agriculture. Dr. Manuel R. Reyes, Professor and his research team from the North Carolina Agriculture and Technology State University (NCATSU), Greensboro, North Carolina (1...

  4. Climate variability effects on agriculture land use and soil services (United States)

    Climate change is occurring around the world and impacts the ability to produce agricultural crops because of changing land use patterns and variation in production among years. Temperature and precipitation are the two climatic variables exerting the largest impact on agriculture production because...

  5. Recent developments in biochar as an effective tool for agricultural soil management: a review. (United States)

    Laghari, Mahmood; Naidu, Ravi; Xiao, Bo; Hu, Zhiquan; Mirjat, Muhammad Saffar; Hu, Mian; Kandhro, Muhammad Nawaz; Chen, Zhihua; Guo, Dabin; Jogi, Qamardudin; Abudi, Zaidun Naji; Fazal, Saima


    In recent years biochar has been demonstrated to be a useful amendment to sequester carbon and reduce greenhouse gas emission from the soil to the atmosphere. Hence it can help to mitigate global environment change. Some studies have shown that biochar addition to agricultural soils increases crop production. The mechanisms involved are: increased soil aeration and water-holding capacity, enhanced microbial activity and plant nutrient status in soil, and alteration of some important soil chemical properties. This review provides an in-depth consideration of the production, characterization and agricultural use of different biochars. Biochar is a complex organic material and its characteristics vary with production conditions and the feedstock used. The agronomic benefits of biochar solely depend upon the use of particular types of biochar with proper field application rate under appropriate soil types and conditions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. [Characterization and soil environmental safety assessment of super absorbent polymers in agricultural application]. (United States)

    Li, Xi; Liu, Yu-Rong; Zheng, Yuan-Ming; He, Ji-Zheng


    Super absorbent polymers (SAPs) are compounds that can absorb a lot of water which can be several folds of their original size and weight. They can increase soil water content and aggregates, promote fertilizer utilization efficiency, and stimulate crop growth. Therefore, SAPs have been widely regarded as a potential agent for water-saving agriculture. In this paper, we reviewed the advances of SAPs in materials, properties and applications in agriculture and pointed out that the absence of influences of SAPs on soil microbial ecology was the main issue in current studies. In regard to the adverse effects on soil environment caused by misuse of SAPs, we should address the systematic safety assessment of SAPs application in the soil, especially the effects on the soil microorganisms, which should be an important part of chemicals risk assessment in the soil application.

  7. Using infrared thermography for understanding and quantifying soil surface processes (United States)

    de Lima, João L. M. P.


    At present, our understanding of the soil hydrologic response is restricted by measurement limitations. In the literature, there have been repeatedly calls for interdisciplinary approaches to expand our knowledge in this field and eventually overcome the limitations that are inherent to conventional measuring techniques used, for example, for tracing water at the basin, hillslope and even field or plot scales. Infrared thermography is a versatile, accurate and fast technique of monitoring surface temperature and has been used in a variety of fields, such as military surveillance, medical diagnosis, industrial processes optimisation, building inspections and agriculture. However, many applications are still to be fully explored. In surface hydrology, it has been successfully employed as a high spatial and temporal resolution non-invasive and non-destructive imaging tool to e.g. access groundwater discharges into waterbodies or quantify thermal heterogeneities of streams. It is believed that thermal infrared imagery can grasp the spatial and temporal variability of many processes at the soil surface. Thermography interprets the heat signals and can provide an attractive view for identifying both areas where water is flowing or has infiltrated more, or accumulated temporarily in depressions or macropores. Therefore, we hope to demonstrate the potential for thermal infrared imagery to indirectly make a quantitative estimation of several hydrologic processes. Applications include: e.g. mapping infiltration, microrelief and macropores; estimating flow velocities; defining sampling strategies; identifying water sources, accumulation of waters or even connectivity. Protocols for the assessment of several hydrologic processes with the help of IR thermography will be briefly explained, presenting some examples from laboratory soil flumes and field.

  8. Carbon sequestration in agricultural soils: a potential carbon trading opportunity?

    International Nuclear Information System (INIS)

    Cowie, Annette L.; Murphy, Brian; Rawson, Andrew; Wilson, Brian; Singh, Bhupinderpal; Young, Rick; Grange, Ian


    Full text: Emissions trading schemes emerging in Australia and internationally create a market mechanism by which release of greenhouse gases incurs a cost, and implementation of abatement measures generates a financial return. There is growing interest amongst Australian landholders in emissions trading based on sequestration of carbon in soil through modified land management practices. Intensively cropped soils have low carbon content, due to disturbance, erosion and regular periods of minimal organic matter input. Because cropping soils in Australia have lost a substantial amount of carbon there is significant potential to increase carbon stocks through improved land management practices. Evidence from long term trials and modelling indicates that modified cropping practices (direct drilling, stubble retention, controlled traffic) have limited impact on soil carbon (0 to +2 tC02e ha-' year1) whereas conversion from cropping to pasture gives greater increases. Small-increases in soil carbon over large areas can contribute significantly to mitigation of Australia's greenhouse gas emissions. Furthermore, increase in soil organic matter will improve soil health, fertility and resilience. However, the inclusion of soil carbon offsets in an emissions trading scheme cannot occur until several barriers are overcome. The first relates to credibility. Quantification of the extent to which specific land management practices can sequester carbon in different environments will provide the basis for promotion of the concept. Current research across Australia is addressing this need. Secondly, cost-effective and accepted methods of estimating soil carbon change must be available. Monitoring soil carbon to document change on a project scale is not viable due to the enormous variability in carbon stocks on micro and macro scales. Instead estimation of soil carbon change could be undertaken through a combination of baseline measurement to assess the vulnerability of soil carbon

  9. SMEX03 Surface and Soil Temperature Measurements: Alabama (United States)

    National Aeronautics and Space Administration — This data set contains land surface temperature and soil temperature data at depths of 1 cm, 5 cm, and 10 cm collected during the Soil Moisture Experiment 2003...

  10. Relationship between Mineral Soil Surface Area and the Biological Degradation of Biosolids Added to Soil

    Directory of Open Access Journals (Sweden)

    Dongqi Wen


    Full Text Available Geochemical and biological processes that operate in the soil matrix and on the soil surface are important to the degradation of biosolids in soil. Due to the large surface area of soils it is assumed that the microbial ecology is associated with mineral soil surface area. The total mineral surface areas were determined for soils from eight different fields selected from a long term study (1972–2006 of annual biosolids application to 41 fields in central Illinois varying in size from 3.6 to 66 ha. The surface areas for the soils varied from 1 to 9 m2/g of soil. The biological degradation rates for the eight soils were determined using a biological degradation rate model (DRM and varied from 0.02 to 0.20/year−1. Regression analysis revealed that the degradation rate was positively associated with mineral soil surface area (1 m2/g produces 0.018 year−1 increase in the degradation rate. The annual soil sequestration rate was calculated to increase from 1% to 6% when the soil total surface area increased from 1 to 9 m2/g of soil. Therefore, land application of biosolids is an effective way to enhance carbon sequestration in soils and reduce greenhouse gas emissions.

  11. Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe


    Bhim Bahadur Ghaley; Teodor Rusu; Taru Sandén; Heide Spiegel; Cristina Menta; Giovanna Visioli; Lilian O’Sullivan; Isabelle Trinsoutrot Gattin; Antonio Delgado; Mark A. Liebig; Dirk Vrebos; Tamas Szegi; Erika Michéli; Horia Cacovean; Christian Bugge Henriksen


    Conventional farming (CONV) is the norm in European farming, causing adverse effects on some of the five major soil functions, viz. primary productivity, carbon sequestration and regulation, nutrient cycling and provision, water regulation and purification, and habitat for functional and intrinsic biodiversity. Conservation agriculture (CA) is an alternative to enhance soil functions. However, there is no analysis of CA benefits on the five soil functions as most studies addressed individual ...

  12. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  13. Landscape scale assessment of soil and water salinization processes in agricultural coastal area. (United States)

    Elen Bless, Aplena; Follain, Stéphane; Coiln, François; Crabit, Armand


    Soil salinization is among main land degradation process around the globe. It reduces soil quality, disturbs soil function, and has harmful impacts on plant growth that would threaten agricultural sustainability, particularly in coastal areas where mostly susceptible on land degradation because of pressure from anthropogenic activities and at the same time need to preserve soil quality for supporting food production. In this presentation, we present a landscape scale analysis aiming to assess salinization process affecting wine production. This study was carried out at Serignan estuary delta in South of France (Languadoc Roussillon Region, 43˚ 28'N and 3˚ 31'E). It is a sedimentary basin near coastline of Mediterranean Sea. Field survey was design to characterize both space and time variability of soil and water salinity through water electrical conductivity (ECw) and soil 1/5 electrical conductivity (EC1/5). For water measurements, Orb River and groundwater salinity (piezometers) were determined and for soil 1737 samples were randomly collected from different soil depths (20, 50, 80, and 120 cm) between year 2012 and 2016 and measured. In order to connect with agricultural practices observations and interviews with farmers were conducted. We found that some areas combining specific criteria presents higher electrical conductivity: positions with lower elevation (a.s.l), Cambisols (Calcaric) / Fluvisols soil type (WRB) and dominated clay textures. These observations combined with geochemical determination and spatial analysis confirm our first hypothesis of sea salt intrusion as the main driven factor of soil salinity in this region. In this context, identification of salinization process, fine determination of pedological specificities and fine understanding of agricultural practices allowed us to proposed adaptation strategies to restore soil production function. Please fill in your abstract text. Key Words: Salinity, Coastal Agriculture, Landscape, Soil, Water

  14. Radiochlorine concentration ratios for agricultural plants in various soil conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kashparov, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Colle, C. [Institute for Radioprotection and Nuclear Safety (IRSN/DEI/SECRE), Cadarache bat 159, BP 3, 13115 Saint Paul-Lez-Durance (France)]. E-mail:; Levchuk, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Yoschenko, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine); Zvarich, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Strasse 7, Chabany, Kiev Region 08162 (Ukraine)


    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ({sup 36}Cl) transfer to plants from four types of soil, namely, Podzoluvisol, Greyzem, Phaeozem and Chernozem. Radiochlorine concentration ratios (CR = concentration of {sup 36}Cl in the fresh plant material divided by its concentration in the dried soil in the upper 20 cm layer) were obtained in green peas (2.6 {+-} 0.4), onions (1.5 {+-} 0.5), potatoes (8 {+-} 1), clover (90 {+-} 26) and ryegrass (158 {+-} 88) hay, oat seeds (36 {+-} 23) and straw (305 {+-} 159), wheat seeds (35 {+-} 10) and straw (222 {+-} 82). These values correlate with the stable chlorine values for the same plants. It was shown that {sup 36}Cl plant/soil CR in radish roots (CR = 9.7 {+-} 1.4) does not depend on the stable chlorine content in the soil (up to 150 mg kg{sup -1}), soil type and thus, that stable chlorine CR values (9.4 {+-} 1.2) can also be used for {sup 36}Cl. Injection of additional quantities of stable chlorine into the soil (100 mg kg{sup -1} of dry soil) with fertilizer does not change the soil-to-plant transfer of {sup 36}Cl. The results from a batch experiment showed that chlorine is retained in the investigated soils only by live biota and transfers quickly (in just a few hours) into the soil solution from dry vegetation even without decomposition of dead plants and is integrated in the migration processes in soil.

  15. Radiochlorine concentration ratios for agricultural plants in various soil conditions

    International Nuclear Information System (INIS)

    Kashparov, V.; Colle, C.; Levchuk, S.; Yoschenko, V.; Zvarich, S.


    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ( 36 Cl) transfer to plants from four types of soil, namely, Podzoluvisol, Greyzem, Phaeozem and Chernozem. Radiochlorine concentration ratios (CR = concentration of 36 Cl in the fresh plant material divided by its concentration in the dried soil in the upper 20 cm layer) were obtained in green peas (2.6 ± 0.4), onions (1.5 ± 0.5), potatoes (8 ± 1), clover (90 ± 26) and ryegrass (158 ± 88) hay, oat seeds (36 ± 23) and straw (305 ± 159), wheat seeds (35 ± 10) and straw (222 ± 82). These values correlate with the stable chlorine values for the same plants. It was shown that 36 Cl plant/soil CR in radish roots (CR = 9.7 ± 1.4) does not depend on the stable chlorine content in the soil (up to 150 mg kg -1 ), soil type and thus, that stable chlorine CR values (9.4 ± 1.2) can also be used for 36 Cl. Injection of additional quantities of stable chlorine into the soil (100 mg kg -1 of dry soil) with fertilizer does not change the soil-to-plant transfer of 36 Cl. The results from a batch experiment showed that chlorine is retained in the investigated soils only by live biota and transfers quickly (in just a few hours) into the soil solution from dry vegetation even without decomposition of dead plants and is integrated in the migration processes in soil

  16. Value of Soil Organic Carbon in Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)


    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  17. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    International Nuclear Information System (INIS)

    Recatala, L.; Sanchez, J.; Arbelo, C.; Sacristan, D.


    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC 50 ) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  18. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Energy Technology Data Exchange (ETDEWEB)

    Recatala, L., E-mail: [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Sanchez, J. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Arbelo, C. [Departamento de Edafologia y Geologia, Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna (Tenerife), Islas Canarias (Spain); Sacristan, D. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain)


    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC{sub 50}) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  19. Improving models for describing phosphorus cycling in agricultural soils (United States)

    The mobility of phosphorus in the environment is controlled to a large extent by its sorption to soil. Therefore, an important component of all P loss models is how the model describes the biogeochemical processes governing P sorption and desorption to soils. The most common approach to modeling P c...

  20. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso


    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  1. Characterization and Classification of Soils on an Agricultural ...

    African Journals Online (AJOL)

    Organic matter, available P, total N and CEC contents of the soils were generally low. According to .... Cation Exchange Capacity. RESULTS AND ..... Mean. 27.2. 52. 44. MEIR. 20. 40. 32. MEIR=mean equilibrium infiltration rate. Chemical Characteristics. Results of the chemical characteristics of the soils of. Dingyadi District ...

  2. (maize) to a crude oil polluted agricultural soil

    African Journals Online (AJOL)



    Jun 4, 2007 ... growth potentials of a commonly grown crop in the country, Zea mays (maize), on a crude oil contaminated soil. Studies have revealed that the occurrence of large. *Corresponding author. E-mail: amounts of hydrocarbons in the soil leads to a nitrogen deficiency and hence ...

  3. Soil resource information and linkages to agricultural production

    African Journals Online (AJOL)


    soil physical and chemical data. In addition to soil profile description, the existing data has laboratory chemical analyses on bases (Ca, Mg, K, Na, Mn), exchangeable H, cation exchange capacity, base saturation, pH, organic carbon, percent nitrogen and available P, and mechanical analysis for texture (silt and clay).

  4. Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. (United States)

    Meza-Montenegro, Maria M; Gandolfi, A Jay; Santana-Alcántar, María Ernestina; Klimecki, Walter T; Aguilar-Apodaca, María Guadalupe; Del Río-Salas, Rafael; De la O-Villanueva, Margarita; Gómez-Alvarez, Agustín; Mendivil-Quijada, Héctor; Valencia, Martín; Meza-Figueroa, Diana


    This investigation examines the extent of soil metal pollution associated with the Green Revolution, relative to agricultural activities and associated risks to health in the most important agricultural region of Mexico. Metal contents in bulk soil samples are commonly used to assess contamination, and metal accumulations in soils are usually assumed to increase with decreasing particle size. This study profiled the spatial distribution of metals (Ni, Cr, Pb, Cu, Fe, Cd, V, Hg, Co, P, Se, and Mn) in bulk soil and fine-grained fractions (soil-derived dust) from 22 towns and cities. The contamination of soil was assessed through the use of a geoaccumulation index (Igeo) and pollution index (PI). The results of this study indicated that a number of towns and cities are moderately to highly polluted by soil containing Be, Co, Hg, P, S, V, Zn, Se, Cr, and Pb in both size fractions (coarse and fine). Hazard index in fine fraction (HI(children)=2.1) shows that risk assessment based on Co, Mn, V, and Ni spatially related to power plants, have the potential to pose health risks to local residents, especially children. This study shows that risk assessment based on metal content in bulk soil could be overestimated when compared to fine-grained fraction. Our results provide important information that could be valuable in establishing risk assessment associated with residential soils within agricultural areas, where children can ingest and inhale dust. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques (United States)

    Mohamed, Elsayed Said; Belal, Abdelaziz; Shalaby, Adel


    This paper highlights the impacts of soil sealing on the agricultural soils in Nile Delta using remote sensing and GIS. The current work focuses on two aims. The first aim is to evaluate soil productivity lost to urban sprawl, which is a significant cause of soil sealing in Nile Delta. The second aim is to evaluate the Land Use and Land Cover Changes (LU LC) from 2001 to 2013 in El-Gharbia governorate as a case study. Three temporal data sets of images from two different sensors: Landsat 7 Enhanced Thematic Mapper (ETM+) with 30 m resolution acquired in 2001 and Landsat 8 acquired in 2013 with 30 m resolution, and Egypt sat acquired in 2010 with 7.8 m resolution, consequently were used. Four different supervised classification techniques (Maximum Likelihood (ML), Minimum Distance, Neural Networks (NN); and Support Vector Machine (SVM) were applied to monitor the changes of LULC in the investigated area. The results showed that the agricultural soils of the investigated area are characterized by high soil productivity depending on its chemical and physical properties. During 2010-2013, soil sealing took place on 1397 ha from the study area which characterized by soil productivity classes ranging between I and II. It is expected that the urban sprawl will be increased to 12.4% by 2020 from the study area, which means that additional 3400 ha of productive soils will be lost from agriculture. However, population growth is the most significant factor effecting urban sprawl in Nile Delta.

  6. Dissipation of antibiotics in three different agricultural soils after repeated application of biosolids. (United States)

    Yang, Lu; Wu, Longhua; Liu, Wuxing; Huang, Yujuan; Luo, Yongming; Christie, Peter


    Application of biosolids to agricultural soils is one of the pathways by which antibiotics can be introduced into agricultural ecosystems. A pot experiment was conducted with repeated soil amendment with biosolids to examine the concentrations of four classes of antibiotics (tetracyclines, sulfonamides, fluoroquinolones, and macrolides) and their dissipation in three different soil types in wheat-rice rotations. Antibiotics accumulate in the soils after repeated application of biosolids. Fluoroquinolones showed stronger accumulation and persistence in the test soils than the other three classes of antibiotics. The maximum residual antibiotic concentration was that of norfloxacin at 155 ± 16 μg kg -1 in the Typic Hapli-Stagnic Anthrosols (paddy soil). Predicted half-lives were up to 3.69 years, a much longer period than that between biosolid applications (twice each year on average). Antibiotic accumulation followed the rough order fluoroquinolones > tetracyclines > macrolides > sulfonamides, and the sulfonamides were seldom encountered. When biosolid application was suspended, the dissipation rate accelerated. Antibiotic dissipation was slightly slower when biosolids with high heavy metal concentrations were applied and microbial degradation may have been the main mechanism of dissipation. Norfloxacin persistence was positively correlated with its soil adsorption capacity. Cation exchange capacity and soil organic matter content may have vital roles in the soil adsorption of fluoroquinolones. Because of their persistence, the fluoroquinolones must be taken into account in the planning of biosolid applications in agricultural practice.

  7. Validating modeled soil moisture with in-situ data for agricultural drought monitoring in West Africa (United States)

    McNally, A.; Yatheendradas, S.; Jayanthi, H.; Funk, C. C.; Peters-Lidard, C. D.


    The declaration of famine in Somalia on July 21, 2011 highlights the need for regional hydroclimate analysis at a scale that is relevant for agropastoral drought monitoring. A particularly critical and robust component of such a drought monitoring system is a land surface model (LSM). We are currently enhancing the Famine Early Warning Systems Network (FEWS NET) monitoring activities by configuring a custom instance of NASA's Land Information System (LIS) called the FEWS NET Land Data Assimilation System (FLDAS). Using the LIS Noah LSM, in-situ measurements, and remotely sensed data, we focus on the following question: How can Noah be best parameterized to accurately simulate hydroclimate variables associated with crop performance? Parameter value testing and validation is done by comparing modeled soil moisture against fortuitously available in-situ soil moisture observations in the West Africa. Direct testing and application of the FLDAS over African agropastoral locations is subject to some issues: [1] In many regions that are vulnerable to food insecurity ground based measurements of precipitation, evapotranspiration and soil moisture are sparse or non-existent, [2] standard landcover classes (e.g., the University of Maryland 5 km dataset), do not include representations of specific agricultural crops with relevant parameter values, and phenologies representing their growth stages from the planting date and [3] physically based land surface models and remote sensing rain data might still need to be calibrated or bias-corrected for the regions of interest. This research aims to address these issues by focusing on sites in the West African countries of Mali, Niger, and Benin where in-situ rainfall and soil moisture measurements are available from the African Monsoon Multidisciplinary Analysis (AMMA). Preliminary results from model experiments over Southern Malawi, validated with Normalized Difference Vegetation Index (NDVI) and maize yield data, show that the

  8. Temporal observations of surface soil moisture using a passive microwave sensor

    International Nuclear Information System (INIS)

    Jackson, T.J.; O'Neill, P.


    A series of 10 aircraft flights was conducted over agricultural fields to evaluate relationships between observed surface soil moisture and soil moisture predicted using passive microwave sensor observations. An a priori approach was used to predict values of surface soil moisture for three types of fields: tilled corn, no-till corn with soybean stubble, and idle fields with corn stubble. Acceptable predictions were obtained for the tilled corn fields, while poor results were obtained for the others. The source of error is suspected to be the density and orientation of the surface stubble layer; however, further research is needed to verify this explanation. Temporal comparisons between observed, microwave predicted, and soil water-simulated moisture values showed similar patterns for tilled well-drained fields. Divergences between the observed and simulated measurements were apparent on poorly drained fields. This result may be of value in locating and mapping hydrologic contributing areas

  9. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins (United States)

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.


    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  10. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas

    Directory of Open Access Journals (Sweden)

    Mohammad El Hajj


    Full Text Available Soil moisture mapping at a high spatial resolution is very important for several applications in hydrology, agriculture and risk assessment. With the arrival of the free Sentinel data at high spatial and temporal resolutions, the development of soil moisture products that can better meet the needs of users is now possible. In this context, the main objective of the present paper is to develop an operational approach for soil moisture mapping in agricultural areas at a high spatial resolution over bare soils, as well as soils with vegetation cover. The developed approach is based on the synergic use of radar and optical data. A neural network technique was used to develop an operational method for soil moisture estimates. Three inversion SAR (Synthetic Aperture Radar configurations were tested: (1 VV polarization; (2 VH polarization; and (3 both VV and VH polarization, all in addition to the NDVI information extracted from optical images. Neural networks were developed and validated using synthetic and real databases. The results showed that the use of a priori information on the soil moisture condition increases the precision of the soil moisture estimates. The results showed that VV alone provides better accuracy on the soil moisture estimates than VH alone. In addition, the use of both VV and VH provides similar results, compared to VV alone. In conclusion, the soil moisture could be estimated in agricultural areas with an accuracy of approximately 5 vol % (volumetric unit expressed in percent. Better results were obtained for soil with a moderate surface roughness (for root mean surface height between 1 and 3 cm. The developed approach could be applied for agricultural plots with an NDVI lower than 0.75.

  11. Agriculturization in the Argentinean Northern Humid Pampas: the Impact on Soil Structure and Runoff (United States)

    Sasal, M. C.; Léonard, J.; Andriulo, A.; Wilson, M. G.


    Argentina is among the countries with the largest cropped area under no-tillage (NT). No tillage was adopted in the northern Humid Pampas to reduce the widespread soil degradation by water erosion. With the advent of genetically modified soybean varieties, NT has developed exponentially. This evolution, combined with the influence of the international market trend, has resulted in large changes in crop sequence composition toward the disappearance of pastures and the expansion of soybean monoculture. The aim of this work was to evaluate the long-term consequences of these changes on the topsoil structure and the way in which the evolution of soil structure relates to the simplification of the crop sequence and to runoff at a regional scale. We analyzed the topsoil structure of 25 sites with Argiudolls having 4 to 29 consecutive years of NT using the cultural profile approach. An intensification sequence index (ISI) was calculated as the ratio between the length of the growth period and the length of the year. Fifteen natural-rainfall runoff plots (100 m2) with 3.5% slope were used to analyze the relationship between soil structural state, crop sequence and runoff for four years. Four types of soil structures were identified and a general pattern of vertical soil structure organization was revealed. The top centimeters of 72% of the sites were dominated by a granular structure. Platy soil structure development was omnipresent: all sites exhibited a horizontal platy structure (<10 cm thick) developing either directly from the soil surface or from below the granular structure. Below the platy structure layer, a gamma soil structure (with visible structural porosity) was observed in all sites (30-75% of the A horizon), while compacted delta soil structure was detected in localized zones. A significant parabolic relationship (R2=0.60) was found between the number of consecutive years under NT and the proportion of platy structure in the A horizon. The proportion of

  12. Impact of agricultural extensification on the relation between soil biodiversity and ecosystem services (soil structure maintenance, water regulation)

    DEFF Research Database (Denmark)

    Faber, J.; Pérès, G.; Groot, A. de

    Introduction – There are increasing pressures on soil biodiversity and soil degradation remains a pertinent issue. In this context, one aim of the EcoFINDERS European project was to assess the impact of agricultural extensification, across a broad range of European land-use systems, on the relati...... biodiversity, providing better soil structure and water infiltration. These results provide more quantitative insights that allow for ecohydrological modelling (forecasting) and economic valuation......., on the relationships between soil biodiversity and ecosystem services. Special attention was given to the relation between i) soil biodiversity and aggregate stability, and ii) earthworms and soil macroporosity and water infiltration.  Method - Data from seven long-term field studies (France, Germany, United......-Kingdom, Slovenia, Denmark) on replicated plots of different land management scenarios (grassland, arable cropping, mixed crop-grassland, reduced or conventional tillage) were analysed. Earthworms were sampled using hand sorting and chemical extraction. Aggregate stability was measured using wet sieving method...

  13. Variability of soil moisture and its relationship with surface albedo ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 119; Issue 4. Variability of soil moisture and its relationship with surface albedo and soil thermal ... The diurnal variation of surface albedo appears as a U-shaped curve on sunny days. Surface albedo decreases with the increase of solar elevation angle, and it tends ...

  14. Divergent surface and total soil moisture projections under global warming (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.


    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  15. Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region. (United States)

    Trabaquini, Kleber; Galvão, Lênio Soares; Formaggio, Antonio Roberto; de Aragão, Luiz Eduardo Oliveira E Cruz


    The Brazilian Cerrado area is in rapid decline because of the expansion of modern agriculture. In this study, we used extensive field data and a 30-year chronosequence of Landsat images (1980-2010) to assess the effects of time since conversion of Cerrado into agriculture upon soil chemical attributes and soybean/corn yield in the Alto do Rio Verde watershed. We determined the rates of vegetation conversion into agriculture, the agricultural land use time since conversion, and the temporal changes in topsoil (0-20 cm soil depth) and subsurface (20-40 cm) chemical attributes of the soils. In addition, we investigated possible associations between fertilization/over-fertilization and land use history detected from the satellites. The results showed that 61.8% of the native vegetation in the Alto do Rio Verde watershed was already converted into agriculture with 31% of soils being used in agriculture for more than 30 years. While other fertilizers in cultivated soils (e.g., Ca +2 , Mg +2 , and P) have been compensated over time by soil management practices to keep crop yield high, large reductions in C org (38%) and N tot (29%) were observed in old cultivated areas. Furthermore, soybean and cornfields having more than 10 years of farming presented higher values of P and Mg +2 than the ideal levels necessary for plant development. Therefore, increased risks of over-fertilization of the soils and environmental contamination with these macronutrients were associated with soybean and cornfields having more than 10 years of farming, especially those with more than 30 years of agricultural land use.

  16. Constraining Agricultural Irrigation Surface Energy Budget Feedbacks in Atmospheric Models (United States)

    Aufforth, M. E.; Desai, A. R.; Suyker, A.


    The expansion and modernization of irrigation increased the relevance of knowing the effects it has on regional weather and climate feedbacks. We conducted a set of observationally-constrained simulations determining the result irrigation exhibits on the surface energy budget, the atmospheric boundary layer, and regional precipitation feedbacks. Eddy covariance flux tower observations were analyzed from two irrigated and one rain-fed corn/soybean rotation sites located near Mead, Nebraska. The evaluated time period covered the summer growing months of June, July, and August (JJA) during the years when corn grew at all three sites. As a product of higher continuous surface moisture availability, the irrigated crops had significantly higher amounts of energy partitioned towards latent heating than the non-irrigated site. The daily average peak of latent heating at the rain-fed site occurred before the irrigated sites and was approximately 45 W/m2 lower. Land surface models were evaluated on their ability to reproduce these effects, including those used in numerical weather prediction and those used in agricultural carbon cycle projection. Model structure, mechanisms, and parameters that best represent irrigation-surface energy impacts will be compared and discussed.

  17. Soil property changes over a 120-yr chronosequence from forest to agriculture in western Kenya

    Directory of Open Access Journals (Sweden)

    G. Nyberg


    Full Text Available Much of the native forest in the highlands of western Kenya has been converted to agricultural land in order to feed the growing population, and more land is being cleared. In tropical Africa, this land use change results in progressive soil degradation, as the period of cultivation increases. Both rates and variation in infiltration, soil carbon concentration and other soil parameters are influenced by management within agricultural systems, but they have rarely been well documented in East Africa. We constructed a chronosequence for an area of western Kenya, using two native forest sites and six fields that had been converted to agriculture for up to 119 yr.

    We assessed changes in infiltrability (the steady-state infiltration rate, bulk density, proportion of macro- and microaggregates in soil, soil C and N concentrations, as well as the isotopic signature of soil C (δ13C, along the 119-yr chronosequence of conversion from natural forest to agriculture. Infiltration, soil C and N decreased within 40 yr after conversion, while bulk density increased. Median infiltration rates fell to about 15% of the initial values in the forest, and C and N concentrations dropped to around 60%, whilst the bulk density increased by 50%. Despite high spatial variability, these parameters have correlated well with time since conversion and with each other.

  18. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    Javid, M.A.; Ali, K.; Javed, M.; Mahmood, A.


    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  19. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils

    Czech Academy of Sciences Publication Activity Database

    Oehl, F.; Laczko, E.; Oberholzer, H.-R.; Jansa, Jan; Egli, S.


    Roč. 53, č. 7 (2017), s. 777-797 ISSN 0178-2762 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal * Agriculture * Biodiversity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.683, year: 2016

  20. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Bruno [ISPA, Villenave d' Ornon (France); Augusto, Laurent [ISPA, Villenave d' Ornon (France); Monod, Herve [Univ. Paris-Saclay, Jouy-en-Josas (France); van Apeldoorn, Dirk [Utrecht Univ., Utrecht (The Netherlands); Bouwman, Lex [Utrecht Univ., Utrecht (The Netherlands); Yang, Xiaojuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Achat, David L. [ISPA, Villenave d' Ornon (France); Chini, Louise P. [Univ. of Maryland, College Park, MD (United States); Van Oost, Kristof [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Guenet, Bertrand [Univ. Paris-Saclay, Gif-sur-Yvette (France); Wang, Rong [Univ. Paris-Saclay, Gif-sur-Yvette (France); Peking Univ., Beijing (China); Decharme, Bertrand [CNRS/Meteo-France, Toulouse (France); Nesme, Thomas [ISPA, Villenave d' Ornon (France); Pellerin, Sylvain [ISPA, Villenave d' Ornon (France)


    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs PILAB. Indeed, 97% of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of PILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.

  1. GEMAS: Geochemical distribution of iodine in European agricultural soil (United States)

    Birke, Manfred; Reimann, Clemens; Ladenberger, Anna; Négrel, Philippe; Rauch, Uwe; Demetriades, Alecos; Korte, Frank; Dinelli, Enrico


    Iodine concentrations are reported for the Galicia and France, where the organic matter content in the soil is generally high. The continuous supply of I from sea spray represents a potential source for high and elevated I concentrations. In the coastal zones of SE Spain, SE Ukraine and SW Croatia the I concentration in Ap samples is usually high. Along the eastern Adriatic coast as well as in South-East Ukraine and in the Crimea the elevated and anomalous I concentrations correspond well with the distribution of terra rossa soils developed on karst and organic-rich soils (black soil). In SE Spain the I enriched soils are most likely related to the occurrence of evaporites. The comparison of I background values (medians) based on the parent materials demonstrates a higher I content in soils over limestone and shale. Iodine-low soil areas (< 1.5 mg I/kg) correspond well with sandy deposits (East Germany, Poland, Lithuania and Latvia), sedimentary rocks (central Iberian Peninsula) and glacial and aeolian deposits (NW Ukraine).

  2. Dynamics of soil organic matter pools after agricultural abandonment (United States)

    Novara, Agata; Gristina, Luciano; Rühl Rühl, Juliane; La Mantia, Tommaso; Badalucco, Luigi; Kuzyakov, Yakov; Laudicina, Vito Armando


    Changes of land use from croplands to natural vegetation usually increase Carbon (C) stocks in soil. However, the contribution of old and new C to various pools still is not clearly analyzed. We measured the δ13C signature of soil organic carbon (SOC) pools after vegetation change from vineyard (C3) to grassland (C4) under Mediterranean climate to assess the changes of old and new C in total SOC, microbial biomass (MB), dissolved organic C (DOC), and CO2 efflux from soil. Development of the perennial grass Hyparrhenia hirta (C4) on vineyard abandoned for 15 or 35 years ago increased C stocks for 13% and 16%, respectively (in the upper 15 cm). This increase was linked to the incorporation of new C in SOC and with exchange of 25% of old C by new C after 35 years. The maximal incorporation of new C was observed in MB, thus reflecting the maximal turnover and availability of this pool. The DOC was produced mainly from old C of soil organic matter (SOM), showing that under Mediterranean climate DOC will be mainly produced not from fresh litter but from old SOM sources. Decomposition of SOM during a 51 days laboratory incubation was higher in cultivated vineyard than H. hirta soils. Based on changes in δ13C values of SOM, MB, DOC and CO2 in C3 soil and in soils after 15 and 35 years of C4 plant colonization, we separated 13C fractionation in soil from changes of isotopic composition by preferential utilization of substrates with different availability. The utilization pattern in this soil under Mediterranean climate was different from that in temperate ecosystems.

  3. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. (United States)

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon


    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied. © 2014 John Wiley & Sons Ltd.

  4. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils (United States)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta


    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  5. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.


    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  6. Soil Structure - A Neglected Component of Land-Surface Models (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.


    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  7. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils

    International Nuclear Information System (INIS)

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria


    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. - Highlights: • Soil pollution in an intensively farmed area of

  8. Genetic and functional diversity of ubiquitous DNA viruses in selected Chinese agricultural soils (United States)

    Han, Li-Li; Yu, Dan-Ting; Zhang, Li-Mei; Shen, Ju-Pei; He, Ji-Zheng


    Viral community structures in complex agricultural soils are largely unknown. Electron microscopy and viromic analyses were conducted on six typical Chinese agricultural soil samples. Tailed bacteriophages, spherical and filamentous viral particles were identified by the morphological analysis. Based on the metagenomic analysis, single-stranded DNA viruses represented the largest viral component in most of the soil habitats, while the double-stranded DNA viruses belonging to the Caudovirales order were predominanted in Jiangxi-maize soils. The majority of functional genes belonged to the subsystem “phages, prophages, transposable elements, and plasmids”. Non-metric multidimensional analysis of viral community showed that the environment medium type was the most important driving factor for the viral community structure. For the major viral groups detected in all samples (Microviridae and Caudovirales), the two groups gathered viruses from different sites and similar genetic composition, indicating that viral diversity was high on a local point but relatively limited on a global scale. This is a novel report of viral diversity in Chinese agricultural soils, and the abundance, taxonomic, and functional diversity of viruses that were observed in different types of soils will aid future soil virome studies and enhance our understanding of the ecological functions of soil viruses.

  9. Ecosystem Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil Management

    Directory of Open Access Journals (Sweden)

    Mohsen Forouzangohar


    Full Text Available Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation. We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  10. Ecosystem services in agricultural landscapes: a spatially explicit approach to support sustainable soil management. (United States)

    Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T


    Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.

  11. Soil surface roughness modeling: limit of global characterization in remote sensing (United States)

    Chimi-Chiadjeu, O.; Vannier, E.; Dusséaux, R.; Taconet, O.


    Many scientists use a global characterization of bare soil surface random roughness. Surface roughness is often characterized by statistical parameters deduced from its autocorrelation function. Assuming an autocorrelation model and a Gaussian height distribution, some authors have developed algorithms for numerical generation of soil surfaces that have the same statistical properties. This approach is widespread and does not take into account morphological aspects of the soil surface micro-topography. Now a detail surface roughness analysis reveals that the micro-topography is structured by holes, aggregates and clods. In the present study, we clearly show that when describing surface roughness as a whole, some information related to morphological aspects is lost. Two Digital Elevation Model (DEM) of a same natural seedbed surface were recorded by stereo photogrammetry. After estimating global parameters of these natural surfaces, we generated numerical surfaces of the same average characteristics by linear filtering. Big aggregates and clods were then captured by a contour-based approach. We show that the two-dimensional autocorrelation functions of generated surfaces and of the two agricultural surfaces are close together. Nevertheless, the number and shape of segmented object contours change from generated surfaces to the natural surfaces. Generated surfaces show fewer and bigger segmented objects than in the natural case. Moreover, the shape of some segmented objects is unrealistic in comparison to real clods, which have to be convex and of low circularity.

  12. The effects of the sub-grid variability of soil and land cover data on agricultural droughts in Germany (United States)

    Kumar, Rohini; Samaniego, Luis; Zink, Matthias


    Simulated soil moisture from land surface or water balance models is increasingly used to characterize and/or monitor the development of agricultural droughts at regional and global scales (e.g. NLADS, EDO, GLDAS). The skill of these models to accurately replicate hydrologic fluxes and state variables is strongly dependent on the quality meteorological forcings, the conceptualization of dominant processes, and the parameterization scheme used to incorporate the variability of land surface properties (e.g. soil, topography, and vegetation) at a coarser spatial resolutions (e.g. at least 4 km). The goal of this study is to analyze the effects of the sub-grid variability of soil texture and land cover properties on agricultural drought statistics such as duration, severity, and areal extent. For this purpose, a process based mesoscale hydrologic model (mHM) is used to create two sets of daily soil moisture fields over Germany at the spatial resolution of (4 × 4) km2 from 1950 to 2011. These simulations differ from each other only on the manner in which the land surface properties are accounted within the model. In the first set, soil moisture fields are obtained with the multiscale parameter regionalization (MPR) scheme (Samaniego, et. al. 2010, Kumar et. al. 2012), which explicitly takes the sub-grid variability of soil texture and land cover properties into account. In the second set, on the contrary, a single dominant soil and land cover class is used for ever grid cell at 4 km. Within each set, the propagation of the parameter uncertainty into the soil moisture simulations is also evaluated using an ensemble of 100 best global parameter sets of mHM (Samaniego, et. al. 2012). To ensure comparability, both sets of this ensemble simulations are forced with the same fields of meteorological variables (e.g., precipitation, temperature, and potential evapotranspiration). Results indicate that both sets of model simulations, with and without the sub-grid variability of

  13. Soil and substrate morphology as witnesses of present and former agricultural landscape management (United States)

    Chartin, C.; Salvador-Blanes, S.; Hinschberger, F.; Bourennane, H.; Macaire, J.-J.


    thickness observed in the lynchet. This implies that the substrate, which is mostly homogeneous, has been largely excavated below these limits certainly due to repeated tillage operations. Concerning the secondary structures, soil thickness increases slightly from 35 cm at 16 m up- and downslope the former field limit to 70 cm at the maximum of the bulges convexity. However, the slope morphology seems to show larger soil accumulation considering a regular substrate morphology along the hillslope profile. Here too, by combining soil thickness and surface topography, we show that the substrate has certainly been strongly remodelled at these former field limits by tillage erosion. The spatial variability of the various soils types is closely linked to the sequence of structures oriented perpendicularly to the direction of the main slope. Although the current topography is clearly marked by various structures linked to former and present field limits, it appears that soil thickness is not the only factor explaining these large variations in the slope morphology: long-term agricultural practices, certainly tillage, "shape" the substrate as well. It is thus important to take into account these substrate excavations for sediment budget studies. The use of tracers such as 137Cs will allow to understand the intensity of these morphological changes at the slope scale within the last decades.

  14. Enhanced degradation of metalaxyl in agricultural soils of São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Papini Solange


    Full Text Available This work investigated the effect of repeated applications on enhanced degradation of metalaxyl in two different agricultural soils used for cultivation of orange and lemon from Casa Branca and Itapetininga districts of São Paulo State, Brazil. Soil samples were collected from areas repeatedly treated with commercial ridomil 50GR for six successive years, and from other areas never exposed to this fungicide. At the laboratory, soil samples received a 14C-metalaxyl solution and its degradation was studied through radiometric techniques to measure biomineralization and recovery of extractable- and soil-bound products. Enhanced degradation was verified only in one soil, although partial degradation and mineralization of the fungicide were detected in both soils. The different rates and patterns of metalaxyl degradation in the soils were probably due to their different physical, chemical, and biological characteristics.

  15. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge. (United States)

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter


    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  16. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette


    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil...... on selection of resistance among soil bacteria. No variations in resistance levels were observed between farms; but when the four differently treated soils were compared, resistance was seen for carbadox, chloramphenicol, nalidixan (nalidixic acid), nitrofurantoin, streptomycin and tetracycline for Pseudomonas...... spp., and for bacitracin, erythromycin, penicillin and streptomycin for the B. cereus group. Variations in resistance levels were observed when soil before and after spread of animal waste was compared, indicating an effect from spread of animal waste....

  17. Farm, land, and soil nitrogen budgets for agriculture in Europe calculated with CAPRI

    International Nuclear Information System (INIS)

    Leip, Adrian; Britz, Wolfgang; Weiss, Franz; Vries, Wim de


    We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha -1 yr -1 in a soil budget and 65 kg N 2 O-N ha -1 yr -1 and 67 kg N ha -1 yr -1 in land and farm budgets, respectively. NUE is 31% for the farm budget, 60% for the land budget and 63% for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE. - Highlights: → Farm, land and soil N-budgets are important tools to characterize agricultural systems. → Farm N Use Efficiency (NUE) is lower than soil NUE; farm nitrogen surplus is higher. → On EU27 average, farm NUE is 31%, soil NUE is 63%, N surplus is 55-67 kg N ha -1 yr -1 . → Soil NUE is best explained by the share of imported feedstuff. → Intensive farming and specialization to animal production cause a high NS and low NUE. - Consistent calculations of farm, land and soil N-budgets for agriculture in Europe are presented and discussed at the national level and for EU27.

  18. Soil governance in the agricultural landscapes of New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Ashley A Webb


    Full Text Available Soil is a valuable natural resource. In the state of New South Wales, Australia, the governance of soil has evolved since Federation in 1901. Following rapid agricultural development, and in the face of widespread soil degradation, the establishment of the Soil Conservation Service marked a turning point in the management of soil. Throughout the 20th century, advances in knowledge were translated into evolving governance frameworks that were largely reactionary but saw progressive reforms such as water pollution legislation and case studies of catchment-scale land and vegetation management. In the 21st century, significant reforms have embedded sustainable use of agricultural soils within catchment- and landscape-scale legislative and institutional frameworks. What is clear, however, is that a multitude of governance strategies and models are utilised in NSW. No single governance model is applicable to all situations because it is necessary to combine elements of several different mechanisms or instruments to achieve the most desired outcomes. Where an industry, such as the sugar industry, has taken ownership of an issue such as acid sulfate soil management, self-regulation has proven to be extremely effective. In the case of co-managing agricultural soils with other landuses, such as mining, petroleum exploration and urban development, regulation, compliance and enforcement mechanisms have been preferred. Institutional arrangements in the form of independent commissioners have also played a role. At the landscape or total catchment level, it is clear that a mix of mechanisms is required. Fundamental, however, to the successful evolution of soil governance is strategic investment in soil research and development that informs the ongoing productive use of agricultural landscapes while preventing land degradation or adverse environmental effects.

  19. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward, E-mail:


    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of {sup 3}H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT{sub 50}) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent.

  20. Persistence and dissipation pathways of the antidepressant sertraline in agricultural soils

    International Nuclear Information System (INIS)

    Li, Hongxia; Sumarah, Mark W.; Topp, Edward


    Sertraline is a widely-used antidepressant that is one of the selective serotonin reuptake inhibitors. It has been detected in biosolids and effluents from sewage treatment plants. Since sertraline can reach agriculture land through the application of municipal biosolids or reclaimed water, the persistence and dissipation pathways of 3 H-sertraline were determined in laboratory incubations using three agriculture soils varying in textures and properties. The total solvent extractable radioactivity decreased in all three soils with times to dissipate 50% of material (DT 50 ) ranging from 48.1 ± 3.5 (loam soil) to 84.5 ± 13.8 (clay soil) days. Two hydroxylated sertraline transformation products were identified in all three soils by high performance liquid chromatography with time-of-flight mass spectrometry (HPLC–TOF-MS), but the accumulation did not exceed 10% of the initial parent concentration. The addition of liquid municipal biosolids to the loam soil had no effect on the rate of sertraline dissipation, or production of transformation products. In summary, sertraline was persistent in agricultural soils with major dissipation pathways including the production of non-extractable soil-bound residues, and accumulation of hydroxylated transformation products. The biologically active sertraline transformation product norsertraline was not detected in soil. - Highlights: • The antidepressant drug sertraline is carried in biosolids used as fertilizers. • The persistence of this drug in agricultural soils was determined using radioisotope methods. • The half-life ranged from about 50 to 85 days. • Hydroxylated transformation products accumulated to less than 10% of the concentration of the added parent


    Directory of Open Access Journals (Sweden)

    Shevchenko O.


    Full Text Available In the article modern scientific and theoretical positions concerning determination of the effectiveness of soil protection measures on agricultural lands are investigated. It is analyzed that the protection of land from degradation is one of the most important problems of agriculture, as this process leads to a significant decrease in soil fertility and crop yields. That is why in today's conditions, when the protection of agricultural land became urgent and a priority task, the scientific substantiation of the economic assessment of the damage caused by the degradation of land to agriculture, as well as the development of methods for determining the economic efficiency of the most progressive soil protection measures, technologies and complexes based on their overall Comparative evaluation. It was established that ground protection measures are a system of various measures aimed at reducing the negative degradation effect on the soil cover and ensuring the preservation and reproduction of soil fertility and integrity, as well as increasing their productivity as a result of rational use. The economic essence of soil protection measures is the economic effect achieved by preventing damage caused by land degradation to agriculture, as well as for obtaining additional profit as a result of their action. The economic effectiveness of soil protection measures means their effectiveness, that is, the correlation between the results and the costs that they provided. The excess of the economic result over the cost of its achievement indicates the economic efficiency of soil protection measures, and the difference between the result and the expenditure characterizes the economic effect. Ecological efficiency is characterized by environmental parameters of the soil cover, namely: the weakening of degradation effects on soils; improvement of their qualitative properties; An increase in production without violation of environmental standards, etc. Economic

  2. How does pyrogenic organic matter affect the N dynamic in agricultural soils? An incubation study (United States)

    de La Rosa, José M.; Knicker, Heike


    Besides other environmental factors, N availability drives the carbon (C) and nitrogen (N) cycles in grasslands. Since grass-dominated ecosystems cover approximately 40% of the terrestrial surface and store more than 30% of global soil organic carbon (SOC), alterations to those ecosystems could have significant consequences and potential implications for global C and N cycles and climate (Schlesinger et al., 1990). Understanding the processes that govern the efficient cycling of nutrients through soil/plant systems remains an important topic to underpin the choice of strategies aimed at ensuring the long-term sustainability of ecosystems. In Mediterranean ecosystems, wild-fires occur frequently. Whereas factors such as water shortage or erosion contribute to reduced N-availability by lowering the litter input, burning additionally increase the refractory N and C-pools by charring litter and humic material (charred pyrogenic organic matter-PyOM) (Gonzalez-Pérez, 2004). In general, the addition of organic matter either as plant residues or farmyard manure has been shown to significantly increase biological activity, microbial biomass and enzyme activity in soil (Dick, 1992). Even in situations where microbial biomass appears to be unaffected, the activity of specific processes (e.g. N mineralization) can be significantly influenced by the addition of organic residues). However, little is known about the changes of the N cycle caused by the addition of PyOM. Therefore, the interest of our research was to study the impact of 15N enriched-biochars either alone or in conjunction with a 15N enriched fertilizer (K15NO3) on aggregate stability and organic carbon (C) and nitrogen (N) distribution among the different soil fractions. The latter may help to elucidate both, the quality of the stored organic matter and if the accumulation is related to interaction with the mineral matter. Therefore, biochar derived from grass material grown on 15N-enriched fertilizer was added

  3. Trace Element and Pesticide Dynamics During a Flood Event in the Save Agricultural Watershed: Soil-River Transfer Pathways and Controlling Factors


    El Azzi, Désirée; Probst, Jean-Luc; Teisserenc, Roman; Merlina, Georges; Baqué, David; Julien, Frédéric; Payre-Suc, Virginie; Guiresse, Agnès Maritchù


    Agricultural practices are the main source of water contamination in rural areas. Rainfall events, and subsequently, soil leaching and storm runoff are mainly controlling the transfer of pollutants from diffuse sources in watersheds during floods. These periods are also very important to better understand their dynamics, particularly their different soil-river transfer pathways (surface runoff SR, subsurface runoff SSR, and groundwater flow GF). This study focuses on riverin...

  4. Migration of radionuclides in the soil-crop-food product system and assessment of agricultural countermeasures

    International Nuclear Information System (INIS)

    Bogdevitch, I.; Ageyets, V.


    Studies on dynamics of redistribution of radionuclides through of profile of the different soils on uncultivated agricultural lands of Belarus during the 1986-1995 period show that vertical migration occurs with low rate. In arable soils the radionuclides are distributed in comparatively uniform way through the whole depth of the 25-30 cm cultivated layer. Investigations on migration of radionuclides with wind erosion on the drained series of wet sandy and peat soils and water erosion on sloping lands show that one should take into consideration the secondary contamination of soils while forecasting a possible accumulation of radionuclides in farm products

  5. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. (United States)

    Edmondson, Jill L; Davies, Zoe G; Gaston, Kevin J; Leake, Jonathan R


    Modern agriculture, in seeking to maximize yields to meet growing global food demand, has caused loss of soil organic carbon (SOC) and compaction, impairing critical regulating and supporting ecosystem services upon which humans also depend. Own-growing makes an important contribution to food security in urban areas globally, but its effects on soil qualities that underpin ecosystem service provision are currently unknown. We compared the main indicators of soil quality; SOC storage, total nitrogen (TN), C : N ratio and bulk density (BD) in urban allotments to soils from the surrounding agricultural region, and between the allotments and other urban greenspaces in a typical UK city. A questionnaire was used to investigate allotment management practices that influence soil properties. Allotment soils had 32% higher SOC concentrations and 36% higher C : N ratios than pastures and arable fields and 25% higher TN and 10% lower BD than arable soils. There was no significant difference between SOC concentration in allotments and urban non-domestic greenspaces, but it was higher in domestic gardens beneath woody vegetation. Allotment soil C : N ratio exceeded that in non-domestic greenspaces, but was lower than that in garden soil. Three-quarters of surveyed allotment plot holders added manure, 95% composted biomass on-site, and many added organic-based fertilizers and commercial composts. This may explain the maintenance of SOC, C : N ratios, TN and low BD, which are positively associated with soil functioning. Synthesis and applications . Maintenance and protection of the quality of our soil resource is essential for sustainable food production and for regulating and supporting ecosystem services upon which we depend. Our study establishes, for the first time, that small-scale urban food production can occur without the penalty of soil degradation seen in conventional agriculture, and maintains the high soil quality seen in urban greenspaces. Given the

  6. Measurement of natural radioactivity in chemical fertilizer and agricultural soil: evidence of high alpha activity. (United States)

    Ghosh, Dipak; Deb, Argha; Bera, Sukumar; Sengupta, Rosalima; Patra, Kanchan Kumar


    People are exposed to ionizing radiation from the radionuclides that are present in different types of natural sources, of which phosphate fertilizer is one of the most important sources. Radionuclides in phosphate fertilizer belonging to 232Th and 238U series as well as radioisotope of potassium (40K) are the major contributors of outdoor terrestrial natural radiation. The study of alpha activity in fertilizers, which is the first ever in West Bengal, has been performed in order to determine the effect of the use of phosphate fertilizers on human health. The data have been compared with the alpha activity of different types of chemical fertilizers. The measurement of alpha activity in surface soil samples collected from the cultivated land was also performed. The sampling sites were randomly selected in the cultivated land in the Midnapore district, which is the largest district in West Bengal. The phosphate fertilizer is widely used for large agricultural production, mainly potatoes. The alpha activities have been measured using solid-state nuclear track detectors (SSNTD), a very sensitive detector for alpha particles. The results show that alpha activity of those fertilizer and soil samples varies from 141 Bq/kg to 2,589 Bq/kg and from 109 Bq/kg to 660 Bq/kg, respectively. These results were used to estimate environmental radiation exposure on human health contributed by the direct application of fertilizers.

  7. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface. (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong


    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  8. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model (United States)

    DY, C. Y.; Fung, J. C. H.


    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  9. Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water (United States)

    Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.


    We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds

  10. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices (United States)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.


    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  11. Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing (United States)

    Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne


    The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.

  12. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    Directory of Open Access Journals (Sweden)

    Basuki Wasis


    Full Text Available Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conducted in purposive sampling in natural forest and agricultural areas.  Observation suggest that damage to the natural forest vegetation has caused the soil is not protected so that erosion has occurred. Destruction of natural forest into agricultural are as has caused damage to soil physical properties, soil chemical properties, and biological soil properties significantly. Forms of soil degradation caused by the destruction of natural forests, which is an increase in soil density (density Limbak by 103%, a decrease of 93% organic C and soil nitrogen decreased by 81%. The main factors causing soil degradation is the reduction of organic matter and soil erosion due to loss of natural forest vegetation.  Criteria for soil degradation in Governance Regulation Number 150/2000 can be used to determine the extent of soil degradation in natural forest ecosystems.Keywords: Gunung Leuser National Park, natural forest, agricultural land, land damage, soil properties

  13. Effects of 137Cs and 90Sr on structure and functional aspects of the microflora in agricultural used soils

    International Nuclear Information System (INIS)

    Niedree, Bastian


    At long sight 137 Cs and 90 Sr are the main radionuclides responsible for the contamination of agricultural soils due to core melts in nuclear power plants such as Chernobyl or Fukushima. Once deposited on the soil surface, the two radionuclides remain in the upper soil layer for several decades. In the upper soil layer the highest microbial activity can be found, due to high organic matter contents, warm temperatures and gas exchange with the atmosphere. Hence, in contaminated soils microorganisms in upper soil layers (e.g. the plow layer on agricultural fields) are exceedingly exposed to radioactivity. However, no data are available how radioactive contaminations with 137 Cs or 90 Sr in a realistic order of magnitude affect the microbial community and its functions in soils. This dissertation discusses the effects of radioactive contaminations on the microbial community structure and some of its functions in soils. Therefore, typical agricultural soils, an Orthic Luvisol from field site Merzenhausen and a Gleyic Cambisol from field site Kaldenkirchen-Huelst were artificially contaminated with various concentrations of 137 Cs and 90 Sr and partly applied with radiolabeled substrates and incubated in soil microcosms under controlled laboratory conditions. The lower radionuclide concentrations corresponded to the contaminations in the Chernobyl exclusion zone, the higher concentrations were up to 50-fold that of the maximum occurring hotspots ( 137 Cs) in this zone. In three experiments the effects of the ionizing radiation on the bacterial and the fungal community structure (16S and 18S rDNA DGGE), the degradation of 14 C-labeled wheat straw or uniformly ring-labeled 2,4-dichlorophenoxyacetic acid, the development of the fungal biomass (ergosterol quantification) and the chemical composition of the soil organic matter ( 13 C CP/MAS NMR) were investigated. In half of the microcosms the soils were autoclaved and reinoculated with native soil, with intention to

  14. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils. (United States)

    Andersson, Helena; Bergström, Lars; Djodjic, Faruk; Ulén, Barbro; Kirchmann, Holger


    Eutrophication, a major problem in many fresh and brackish waters, is largely caused by nonpoint-source pollution by P from agricultural soils. This lysimeter study examined the influence of P content, physical properties, and sorption characteristics in topsoil and subsoil on P leaching measured during 21 mo in 1-m-long, undisturbed soil columns of two clay and two sandy soils. Total P losses during the period varied between 0.65 and 7.40 kg ha. Dissolved reactive P was the dominant form in leachate from the sandy soils and one clay soil, varying from 48 to 76%. Particulate P dominated in leachate from the other clay soil, where low pH (5.2) in the subsoil decreased aggregate stability and thereby probably increased the dispersion of clay particles. Phosphorus leaching was small from soils with high P sorption index (PSI) and low P saturation (35% of PSI) in the profile. High sorption capacity in the subsoil was more important for P leaching in sandy soils than in clay soils with macropore flow, where the effect of high sorption capacity was reduced due to less interaction between percolating water and the soil matrix. The results suggest that P leaching is greatly affected by subsoil properties and that topsoil studies, which dominate current research, are insufficient for assessing P leaching in many soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies (United States)

    Daly, Amanda; Grandy, A. Stuart


    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen

  16. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh (United States)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul


    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  17. Fate of triclosan in agricultural soils after biosolid applications (United States)

    Triclosan (5-chloro-2-[2,4-dichloro-phenoxy]-phenol (TCS) is a bactericidal compound that is added to a wide variety of household and personal care products. The consumer use of these products releases TCS into urban wastewater and this compound ends up in the environment when agricultural land is ...

  18. Year-round metagenomes reveal remarkably stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization (United States)

    Insight to what underlies the seasonal dynamics of indigenous soil microbial communities in agricultural soils, especially after major activities such as nitrogen fertilization, remain elusive. More detailed understanding of population dynamics will have important implications for modeling efforts a...

  19. The Role of Biochar in Ameliorating Disturbed Soils and Sequestering Soil Carbon in Tropical Agricultural Production Systems

    Directory of Open Access Journals (Sweden)

    Wolde Mekuria


    Full Text Available Agricultural soils in the tropics have undergone significant declines in their native carbon stock through the long-term use of extractive farming practices. However, these soils have significant capacity to sequester CO2 through the implementation of improved land management practices. This paper reviews the published and grey literature related to the influence of improved land management practices on soil carbon stock in the tropics. The review suggests that the implementation of improved land management practices such as crop rotation, no-till, cover crops, mulches, compost, or manure can be effective in enhancing soil organic carbon pool and agricultural productivity in the tropics. The benefits of such amendments were, however, often short-lived, and the added organic matters were usually mineralized to CO2 within a few cropping seasons leading to large-scale leakage. We found that management of black carbon (C, increasingly referred to as biochar, may overcome some of those limitations and provide an additional soil management option. Under present circumstances, recommended crop and land management practices are inappropriate for the vast majority of resource constrained smallholder farmers and farming systems. We argue that expanding the use of biochar in agricultural lands would be important for sequestering atmospheric CO2 and mitigating climate change, while implementing the recommended crop and land management practices in selected areas where the smallholder farmers are not resource constrained.

  20. Agriculture

    International Nuclear Information System (INIS)

    Goetz, B.; Riss, A.; Zethner, G.


    This chapter deals with fertilization techniques, bioenergy from agriculture, environmental aspects of a common agriculture policy in the European Union, bio-agriculture, fruit farming in Austria and with environmental indicators in agriculture. In particular renewable energy sources (bio-diesel, biogas) from agriculture are studied in comparison to fossil fuels and other energy sources. (a.n.)

  1. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain (United States)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose


    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  2. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils. (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil


    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  3. Geophysical mapping of soil static characteristics and monitoring of soil dynamic states: an example on agricultural land. (United States)

    Cassiani, G.; Ursino, N.; Deiana, R.; Vignoli, G.; Boaga, J.; Rossi, M.; Perri, M. T.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U.


    In this contribution we the results of nearly three years of non invasive monitoring of the soil conditions in an experimental farm in a region of semi-arid climate in Southern Sardinia. The main of the study is to understand the effects of soil types and soil-vegetation interactions on soil water balance. The adopted technique is a combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements, with the general aim of achieving quantitative field-scale estimates of moisture content of the first meter of topsoil. Mapping of natural gamma-ray emission, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. Unlike remote sensing techniques, non invasive geophysics penetrates the soil subsurface and can effectively image moisture content in the soil active layer. We observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system.

  4. Soil resource information and linkages to agricultural production

    African Journals Online (AJOL)


    Preliminary results indicate that some boundaries on the existing soil map are not a true reflection of the ground truth. Key words: PMA, sustainability, environment and natural resources, SGDB, GIS. Introduction. Better natural resource management and utilisation and protection of the environment are a major contributor to.

  5. Genotoxicity of Agricultural Soils after one year of Conversion Period ...

    African Journals Online (AJOL)


    cells and a substantial decrease in the mitotic index in 20-40 cm soil layer from both fields were observed. Regarding the field in conversion this might be due to the presence of agrochemicals used in the previous years, and indicates the necessity of longer conversion period. The results showed that Allium cepa-test might ...

  6. An assessment of actual evapotranspiration and soil water deficit in agricultural regions in Europe

    DEFF Research Database (Denmark)

    Kurnik, Blaž; Kajfež-Bogataj, Lučka; Horion, Stéphanie Marie Anne F


    ) analysis and the Pearson correlation coefficients (RPearson), we showed that large-scale agricultural droughts are influenced by the recurrence of the North Atlantic Oscillation (NAO) and by the atmospheric blocking. Atmospheric blocking in different months throughout the year and extreme NAO index (mainly......Changes in agricultural droughts were investigated using simulations of soil water deficit (SWD) and actual evapotranspiration (ETA) from a distributed semi-empirical soil water balance model – swbEWA. At European scale, both SWD and ETA did not change significantly between 1951 and 2011. However...... in winter months) contribute to the severity of agricultural droughts. During a negative phase of NAO, storms over the North Atlantic and Europe are less frequent and as a consequence dry weather in Europe is observed. Positive NAO influences agricultural drought in Europe by shifting storms tracks from...

  7. Adsorption-desorption behavior of atrazine on agricultural soils in China. (United States)

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin


    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  8. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the nearsurface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the ...

  9. Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts (United States)

    Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert


    Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.

  10. Thermal destruction of organic waste hydrophobicity for agricultural soils application. (United States)

    Comino, Francisco; Aranda, Víctor; Domínguez-Vidal, Ana; Ayora-Cañada, María José


    Use of organic amendments is a good strategy for combating the growing problem of soil degradation due to deterioration of organic matter content, particularly severe in semi-arid European Mediterranean regions, while at the same time providing an opportunity for recycling organic wastes. Olive mill pomace (OMP), the main by-product of the olive oil industry, is being used increasingly in olive grove soils for this purpose. Although the positive effects of OMP amendments have been widely studied, they also have some negative effects on soil. One of the most critical is that they increase water repellency (WR) due to the presence of poorly evolved, strongly aliphatic compounds. This detrimental effect has received very little attention, although it may impair plant water availability and infiltration rates, increase erosion and lower long-term soil quality. This study proposed, for the first time, thermal treatment as an effective way of reducing WR in organic amendments (i.e. mixtures of OMP, olive tree pruning, chicken manure and spent coffee grounds) prior to their application to soil. Thermal treatment at 275 °C proved effective in removing WR, while lower temperatures (175 or 225 °C) can even increase it. Changes by thermal treatment in the characteristics of the organic amendments studied with FTIR and UV-Vis spectroscopy and thermogravimetric analysis showed that it strongly reduced the aliphatic compounds mainly responsible for their hydrophobicity, concentrated aromatic compounds and increased thermostability. Heating also reduced phytotoxicity, making all of the organic amendments usable in the field (germination index over 100%). Therefore, heating at 275 °C could be an acceptable option for removing WR from organic amendments, enhancing their quality with more stable evolved characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Geochemical characterization of arsenic-rich coal-combustion ashes buried under agricultural soils and the release of arsenic

    International Nuclear Information System (INIS)

    Veselská, Veronika; Majzlan, Juraj; Hiller, Edgar; Peťková, Katarína; Jurkovič, Ľubomír; Ďurža, Ondrej; Voleková-Lalinská, Bronislava


    Highlights: ► Sources, mineralogy and mobility of As in coal-combustion ashes were investigated. ► After a dam failure in 1965, the spilled ashes were buried under agricultural soils. ► Primary carriers of As within coal-combustion ashes are aluminosilicate glasses. ► The most probable secondary carriers of labile As are oxyhydroxides of Si, Al, and Fe. ► Arsenic stored in ashes is a long-term contamination source for the environment. - Abstract: A combination of geochemical and mineralogical methods was used to determine the concentrations, mobility, and sources of As in coal-combustion ashes and soils in the vicinity of a thermal power plant at Nováky, central Slovakia. Fresh lagooned ash, ashes buried under agricultural soils for 45 a, and the overlying soils, contain high concentrations of As ranging from 61 to 1535 mg/kg. There is no differences in the water extractable percentages of As between the fresh lagooned ash and buried ashes, which range from 3.80% to 6.70% of the total As. This small amount of As may perhaps reside on the surfaces of the ash particles, as postulated in the earlier literature, but no evidence was found to support this claim. Electron microprobe analyses show that the dominant primary As carriers are the aluminosilicate glasses enriched in Ca and Fe. The acid NH 4 + -oxalate extraction hints that the oxyhydroxides of Si, Al, and Fe are the most probable secondary carriers of labile As. The X-ray absorption spectroscopy (XAS) analyses show that As in the lagooned and buried ashes occurs mostly as As(V). The long-term burial of the coal-combustion ash under agricultural soil did not cause any major change of its chemical composition or As lability compared to the fresh lagooned ash

  12. Portable penetrometer for agricultural soil: sensitivity test to identify critical compaction depth

    Directory of Open Access Journals (Sweden)

    João Carlos Medeiros


    Full Text Available To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.

  13. Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought (United States)

    Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.


    We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.



    Gang Chen; Kamal Tawfiq; Sandip Patil


    During animal waste agricultural applications, the major concern is the pathogen spreading, which may contaminate groundwater. Colloid release and pathogen transport during irrigation were evaluated in intact agricultural soil columns in this research using Escherichia coli as a model strain. In order to be easily identified and quantified, E. coli was incorporated with green fluorescent protein genes. The experiments were conducted at a water flow rate of 100 ml/min and the elution was colle...

  15. Monitoring changes in soil carbon resulting from intensive production, a non-traditional agricultural methodology.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P.


    New Mexico State University and a group of New Mexico farmers are evaluating an innovative agricultural technique they call Intensive Production (IP). In contrast to conventional agricultural practice, IP uses intercropping, green fallowing, application of soil amendments and soil microbial inocula to sequester carbon as plant biomass, resulting in improved soil quality. Sandia National Laboratories role was to identify a non-invasive, cost effective technology to monitor soil carbon changes. A technological review indicated that Laser Induced Breakdown Spectroscopy (LIBS) best met the farmers objectives. Sandia partnered with Los Alamos National Laboratory (LANL) to analyze farmers test plots using a portable LIBS developed at LANL. Real-time LIBS field sample analysis was conducted and grab samples were collected for laboratory comparison. The field and laboratory results correlated well implying the strong potential for LIBS as an economical field scale analytical tool for analysis of elements such as carbon, nitrogen, and phosphate.

  16. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field

    DEFF Research Database (Denmark)

    Berg, J.; Tom-Petersen, A.; Nybroe, O.


    Aims: The objective of this study was to determine whether Cu-amendment of field plots affects the frequency of Cu resistance, and antibiotic resistance patterns in indigenous soil bacteria. Methods and Results: Soil bacteria were isolated from untreated and Cu-amended field plots. Cu...... to chloramphenicol and multiple (greater than or equal to2) antibiotics than corresponding isolates from control plots. Significance and Impact of the Study: The results of this field experiment show that introduction of Cu to agricultural soil selects for Cu resistance, but also indirectly selects for antibiotic...... resistance in the Cu-resistant bacteria. Hence, the widespread accumulation of Cu in agricultural soils worldwide could have a significant effect on the environmental selection of antibiotic resistance....

  17. Environmental quality of agricultural soils within the Jaguari River Basin - Sao Paulo

    International Nuclear Information System (INIS)

    Ruby, Elaine Cristina


    Environmental impacts have occurred in various forms and intensities on soil, water and air media. Consequently, several countries have used legal criteria for soil protection, either by means of generic guiding values or through case-by-case risk assessment. The Sao Paulo Environmental Agency (CETESB) pioneered the publication of guiding values for soils and groundwater in 2001. The aim of this study was to evaluate the environmental quality of agricultural soils in comparison to pristine soils (control areas) within the Jaguari river basin, Sao Paulo. The evaluation was carried out through multielement determination by Neutron Activation Analysis Instrumental (INAA) technique. The analyses were also complemented by Optical Emission Spectrometry Coupled Plasma (ICP OES), Atomic Absorption Spectrometry and Graphite Furnace (GFAAS) techniques. The results obtained in the analyzed soil samples were compared to the guiding values established by the Sao Paulo State environmental legislation and revealed that there were no median concentrations above the prevention values. The median concentrations for the elements Sb, As, Cd, Pb, Co, Cu, Cr, Ni, V and Zn were below the reference values, except for Pb. Taking into account the 34 elements determined, there were statistically significant differences (p <0.05) between agricultural and pristine soils only for the elements Ba, As, U and V. Among these elements, Ba presented the highest concentrations in pristine soils. It was concluded, that the environmental quality of agricultural soils within the Jaguari river basin - SP was slightly changed for the given parameters. The results also pointed out for the utilization of U and As as indicators of potential contamination in soils. (author)

  18. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. (United States)

    McDaniel, M D; Tiemann, L K; Grandy, A S


    Our increasing dependence on a small number of agricultural crops, such as corn, is leading to reductions in agricultural biodiversity. Reductions in the number of crops in rotation or the replacement of rotations by monocultures are responsible for this loss of biodiversity. The belowground implications of simplifying agricultural plant communities remain unresolved; however, agroecosystem sustainability will be severely compromised if reductions in biodiversity reduce soil C and N concentrations, alter microbial communities, and degrade soil ecosystem functions as reported in natural communities. We conducted a meta-analysis of 122 studies to examine crop rotation effects on total soil C and N concentrations, and the faster cycling microbial biomass C and N pools that play key roles in soil nutrient cycling and physical processes such as aggregate formation. We specifically examined how rotation crop type and management practices influence C and N dynamics in different climates and soil types. We found that adding one or more crops in rotation to a monoculture increased total soil C by 3.6% and total N by 5.3%, but when rotations included a cover crop (i.e., crops that are not harvested but produced to enrich the soil and capture inorganic N), total C increased by 8.5% and total N 12.8%. Rotations substantially increased the soil microbial biomass C (20.7%) and N (26.1%) pools, and these overwhelming effects on microbial biomass were not moderated by crop type or management practices. Crop rotations, especially those that include cover crops, sustain soil quality and productivity by enhancing soil C, N, and microbial biomass, making them a cornerstone for sustainable agroecosystems.

  19. Applying Nitrogen Site-Specifically Using Soil Electrical Conductivity Maps and Precision Agriculture Technology

    Directory of Open Access Journals (Sweden)

    E.D. Lund


    Full Text Available Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower’s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS-referenced mapping of bulk soil electrical conductivity (EC has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  20. Applying nitrogen site-specifically using soil electrical conductivity maps and precision agriculture technology. (United States)

    Lund, E D; Wolcott, M C; Hanson, G P


    Soil texture varies significantly within many agricultural fields. The physical properties of soil, such as soil texture, have a direct effect on water holding capacity, cation exchange capacity, crop yield, production capability, and nitrogen (N) loss variations within a field. In short, mobile nutrients are used, lost, and stored differently as soil textures vary. A uniform application of N to varying soils results in a wide range of N availability to the crop. N applied in excess of crop usage results in a waste of the grower"s input expense, a potential negative effect on the environment, and in some crops a reduction of crop quality, yield, and harvestability. Inadequate N levels represent a lost opportunity for crop yield and profit. The global positioning system (GPS)-referenced mapping of bulk soil electrical conductivity (EC) has been shown to serve as an effective proxy for soil texture and other soil properties. Soils with a high clay content conduct more electricity than coarser textured soils, which results in higher EC values. This paper will describe the EC mapping process and provide case studies of site-specific N applications based on EC maps. Results of these case studies suggest that N can be managed site-specifically using a variety of management practices, including soil sampling, variable yield goals, and cropping history.

  1. Accumulation of Cd in agricultural soil under long-term reclaimed water irrigation

    International Nuclear Information System (INIS)

    Chen, Weiping; Lu, Sidan; Peng, Chi; Jiao, Wentao; Wang, Meie


    Safety of agricultural irrigation with reclaimed water is of great concern as some potential hazardous compounds like heavy metals may be accumulated in soils over time. Impacts of long-term reclaimed water on soil Cd pollution were evaluated based on the field investigation in two main crop areas in Beijing with long irrigation history and on simulation results of STEM-profile model. Under long-term reclaimed water, Cd content in the top 20 cm soil layer was greatly elevated and was more than 2 times higher than that in the deep soil layer. There was very small differences between the field measured and model simulated Cd content in the plow layer (top 20 cm) and entire soil layer. Long-term model prediction showed that reclaimed water irrigation had a low environmental risk of soil Cd pollution, but the risk would be aggravated when there were high metal loading from other sources. The risk is also depending on the soil and plant properties. -- Highlights: •Root zone soil Cd content was elevated by one time under long-term reclaimed water irrigation. •The STEM-profile model can well track the Cd balance in the soil profile. •Reclaimed water irrigation plays a limited role on soil Cd accumulation in Beijing croplands. -- There was a low risk of soil Cd pollution under long-term reclaimed water irrigation

  2. Challenges and opportunities for use of natural fallout 7Be as a soil erosion tracer in agricultural systems (United States)

    Blake, Will; Taylor, Alex; Mabit, Lionel


    High resolution measurement of soil erosion amounts is difficult to achieve using conventional methodologies without interfering with agricultural practice and hence compromising the representativeness of results. Tracer technologies, both natural and tag-and-trace, offer opportunity to derive soil erosion data under 'real-world' conditions, providing a valuable complement to experimental and modelled data. Beryllium-7 (7Be) is a naturally-occurring cosmogenic fallout radionuclide formed in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Its constant production and delivery to the surface via precipitation coupled with its affinity for soil and sediment particles has underpinned its application as a conservative soil and sediment tracer wherein its short half-life (53.3 days) lends itself to tracing soil redistribution dynamics over short time periods. While the radionuclide budget approach to deriving soil redistribution amounts and patterns is conceptually straightforward, important aspects of the tracer's environmental behaviour, especially linked to its physical and geochemical distribution within the soil, remain poorly understood. These contribute to uncertainty in conversion of radionuclide inventory to soil erosion amounts and there is a need to develop a rigorous harmonised approach to application of the tracer, with opportunity to share experience with the tag-and-trace community. Drawing on past studies and recent experimental work within a validation plot experiment, this contribution offers an evaluation of the approach as applied to date and explores the challenges and opportunities for effective use of 7Be as a tracer to support soil conservation and management strategies in the future.

  3. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. (United States)

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H


    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization. Published by Elsevier Ltd.

  4. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate (United States)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed


    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  5. The impact of the soil surface properties in water erosion seen through LandSoil model sensitivity analysis (United States)

    Ciampalini, Rossano; Follain, Stéphane; Cheviron, Bruno; Le Bissonnais, Yves; Couturier, Alain; Walter, Christian


    Quantitative models of soil redistribution at the landscape scale are the current tools for understanding space-time processes in soil and landscape evolution. But models use larger and larger numbers of variables and sometimes it becomes difficult to understand their relative importance and model behaviours in critical conditions. Sensitivity analysis (SA) is widely used to clarify models behaviours, their structure giving fundamental information to ameliorate models their selves. We tested the LandSoil model (LANDscape design for SOIL conservation under soil use and climate change) a model designed for the analysis of agricultural landscape evolution at a fine spatial resolution scale [1-10 meters] and a mid-term temporal scale [10-100 years]. LandSoil is suitable for simulations from parcel to catchment scale. It is spatially distributed, event-based, and considers water and tillage erosion processes that use a dynamic representation of the agricultural landscape through parameters such as a monthly representation of soil surface properties. Our aim was to identify most significant parameters driving the model and to highlight potential particular/singular behaviours of parameter combinations and relationships. The approach was to use local sensitivity analysis, also termed 'one-factor-at-time' (OAT) which consists of a deterministic, derivative method, inquiring the local response O to a particular input factor Pi at a specified point P0 within the full input parameter space of the model expressed as: δO/δP = (O2-O1) / (P2-P1) The local sensitivity represents the partial derivatives of O with respect to Pi at the point P0. In the SA procedure the topographical entity is represented by a virtual hillslope on which soil loss and sensitivity are calculated. Virtual hillslope is inspired from the virtual catchment framework proposed by Cheviron at al. (2011): a fixed topology consisting of a 3X3 square pixel structure having 150 m length allowing to test

  6. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment (United States)

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana


    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  7. Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands (United States)

    Bradford, John B.; Schlaepfer, Daniel R.; Lauenroth, William K.; Yackulic, Charles B.; Duniway, Michael C.; Hall, Sonia A.; Jia, Gensuo; Jamiyansharav, Khishigbayar; Munson, Seth M.; Wilson, Scott D.; Tietjen, Britta


    The distribution of rainfed agriculture is expected to respond to climate change and human population growth. However, conditions that support rainfed agriculture are driven by interactions among climate, including climate extremes, and soil moisture availability that have not been well defined. In the temperate regions that support much of the world’s agriculture, these interactions are complicated by seasonal temperature fluctuations that can decouple climate and soil moisture. Here, we show that suitability to support rainfed agriculture can be effectively represented by the interactive effects of just two variables: suitability increases where warm conditions occur with wet soil, and suitability decreases with extreme high temperatures. 21st century projections based on ecohydrological modeling of downscaled climate forecasts imply geographic shifts and overall increases in the area suitable for rainfed agriculture in temperate regions, especially at high latitudes, and pronounced, albeit less widespread, declines in suitable areas in low latitude drylands, especially in Europe. These results quantify the integrative direct and indirect impact of rising temperatures on rainfed agriculture.

  8. Where Land Use Changes Occur: Using Soil Features to Understand the Economic Trends in Agricultural Lands

    Directory of Open Access Journals (Sweden)

    Rosa Rivieccio


    Full Text Available This study investigates the major land use change processes over the 1990–2008 period in Abruzzo region (Central Italy in relation to the characteristics of the soils and with particular regard to their capability for agricultural purposes, in order to highlight their implications on agricultural productivity. The relative changes in the agricultural incomes and land values were also estimated. To this end, we proposed an inventory approach as a flexible and feasible way for monitoring land use changes at multiple scales. As main outcomes, the shrinkage of agricultural lands and their internal changes (intensification vs. extensification processes were highlighted. The shrinkage of agricultural lands was strictly related to: (a reforestation process in mountain areas and less productive lands after land abandonment; and (b urbanization on plains and more productive lands. Although the intensification process was demonstrated to have a positive effect on the overall regional agricultural incomes, especially on high quality soils, this was not adequate to compensate the economic loss due to the other land use changes, especially in marginal areas and low-to-medium quality soils. Finally, the paper discusses the geographical pattern of land use change processes across the region, including their interrelations and combined effects, and ultimately offers recommendations to decision-makers addressing future sustainable development objectives from local to global scale.

  9. Prediction of soil properties for agricultural and environmental applications from infrared and X-ray soil spectral properties

    International Nuclear Information System (INIS)

    Towett, Erick Kibet


    Many of today's most pressing problems facing developing countries, such as food security, climate change, and environmental protection, require large area data on soil functional capacity. Conventional assessments (methods and measurements) of soil capacity to perform specific agricultural and environmental functions are time consuming and expensive. In addition, repeatability, reproducibility and accuracy of conventional soil analytical data are major challenges. New, rapid methods to quantify soil properties are needed, especially in developing countries where reliable data on soil properties is sparse, and to take advantage of new opportunities for digital soil mapping. Mid infrared diffuse reflectance spectroscopy (MIR) has already shown promise as a rapid analytical tool and there are new opportunities to include other high-throughput techniques, such as total X-ray fluorescence (TXRF), and X-ray diffraction (XRD) spectroscopy. In this study TXRF and XRD were tested in conjunction with IR to provide powerful diagnostic capabilities for the direct prediction of key soil properties for agricultural and environmental applications especially for Sub-Saharan Africa (SSA) soils. Optimal combinations of spectral methods for use in pedotransfer functions for low cost, rapid prediction of chemical and physical properties of African soils as well as prediction models for soil organic carbon and soil fertility properties (soil extractable nutrients, pH and exchangeable acidity) were tested in this study. This study has developed and tested a method for the use of TXRF for direct quantification of total element concentrations in soils using a TXRF (S2 PICOFOX trademark) spectrometer and demonstrated that TXRF could be used as a rapid screening tool for total element concentrations in soils assuming sufficient calibration measures are followed. The results of the current study have shown that TXRF can provide efficient chemical fingerprinting which could be further

  10. Prediction of soil properties for agricultural and environmental applications from infrared and X-ray soil spectral properties

    Energy Technology Data Exchange (ETDEWEB)

    Towett, Erick Kibet


    Many of today's most pressing problems facing developing countries, such as food security, climate change, and environmental protection, require large area data on soil functional capacity. Conventional assessments (methods and measurements) of soil capacity to perform specific agricultural and environmental functions are time consuming and expensive. In addition, repeatability, reproducibility and accuracy of conventional soil analytical data are major challenges. New, rapid methods to quantify soil properties are needed, especially in developing countries where reliable data on soil properties is sparse, and to take advantage of new opportunities for digital soil mapping. Mid infrared diffuse reflectance spectroscopy (MIR) has already shown promise as a rapid analytical tool and there are new opportunities to include other high-throughput techniques, such as total X-ray fluorescence (TXRF), and X-ray diffraction (XRD) spectroscopy. In this study TXRF and XRD were tested in conjunction with IR to provide powerful diagnostic capabilities for the direct prediction of key soil properties for agricultural and environmental applications especially for Sub-Saharan Africa (SSA) soils. Optimal combinations of spectral methods for use in pedotransfer functions for low cost, rapid prediction of chemical and physical properties of African soils as well as prediction models for soil organic carbon and soil fertility properties (soil extractable nutrients, pH and exchangeable acidity) were tested in this study. This study has developed and tested a method for the use of TXRF for direct quantification of total element concentrations in soils using a TXRF (S2 PICOFOX trademark) spectrometer and demonstrated that TXRF could be used as a rapid screening tool for total element concentrations in soils assuming sufficient calibration measures are followed. The results of the current study have shown that TXRF can provide efficient chemical fingerprinting which could be further

  11. Exposure of agricultural crops to nanoparticle CeO2in biochar-amended soil. (United States)

    Servin, Alia D; De la Torre-Roche, Roberto; Castillo-Michel, Hiram; Pagano, Luca; Hawthorne, Joseph; Musante, Craig; Pignatello, Joseph; Uchimiya, Minori; White, Jason C


    Biochar is seeing increased usage as an amendment in agricultural soils but the significance of nanoscale interactions between this additive and engineered nanoparticles (ENP) remains unknown. Corn, lettuce, soybean and zucchini were grown for 28 d in two different soils (agricultural, residential) amended with 0-2000 mg engineered nanoparticle (ENP) CeO 2  kg -1 and biochar (350 °C or 600 °C) at application rates of 0-5% (w/w). At harvest, plants were analyzed for biomass, Ce content, chlorophyll and lipid peroxidation. Biomass from the four species grown in residential soil varied with species and biochar type. However, biomass in the agricultural soil amended with biochar 600 °C was largely unaffected. Biochar co-exposure had minimal impact on Ce accumulation, with reduced or increased Ce content occurring at the highest (5%) biochar level. Soil-specific and biochar-specific effects on Ce accumulation were observed in the four species. For example, zucchini grown in agricultural soil with 2000 mg CeO 2  kg -1 and 350 °C biochar (0.5-5%) accumulated greater Ce than the control. However, for the 600 °C biochar, the opposite effect was evident, with decreased Ce content as biochar increased. A principal component analysis showed that biochar type accounted for 56-99% of the variance in chlorophyll and lipid peroxidation across the plants. SEM and μ-XRF showed Ce association with specific biochar and soil components, while μ-XANES analysis confirmed that after 28 d in soil, the Ce remained largely as CeO 2 . The current study demonstrates that biochar synthesis conditions significantly impact interactions with ENP, with subsequent effects on particle fate and effects. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. How can soil organic carbon stocks in agriculture be maintained or increased? (United States)

    Don, Axel; Leifeld, Jens


    CO2 emissions from soils are 10 times higher than anthropogenic CO2 emissions from fossil burning with around 60 Pg C a-1. At the same time around 60 Pg of carbon is added to the soils as litter from roots and leaves. Thus, the balance between both fluxes is supposed to be zero for the global earth system in steady state without human perturbations. However, the global carbon flux has been altered by humans since thousands of years by extracting biomass carbon as food, feed and fiber with global estimate of 40% of net primary productivity (NPP). This fraction is low in forests but agricultural systems, in particular croplands, are systems with a high net exported carbon fraction. Soils are mainly input driven systems. Agricultural soils depend on input to compensate directly for i) respiration losses, ii) extraction of carbon (and nitrogen) and depletion (e.g. via manure) or indirectly via enhances NPP (e.g. via fertilization management). In a literature review we examined the role of biomass extraction and carbon input via roots, crop residues and amendments (manure, slurry etc.) to agricultural soil's carbon stocks. Recalcitrance of biomass carbon was found to be of minor importance for long-term carbon storage. Thus, also the impact of crop type on soil carbon dynamics seems mainly driven by the amount of crop residuals of different crop types. However, we found distinct differences in the efficiency of C input to refill depleted soil C stocks between above ground C input or below ground root litter C input, with root-C being more efficient due to slower turnover rates. We discuss the role of different measures to decrease soil carbon turnover (e.g. decreased tillage intensity) as compared to measures that increase C input (e.g. cover crops) in the light of global developments in agricultural management with ongoing specialization and segregation between catch crop production and dairy farms.

  13. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology

    Directory of Open Access Journals (Sweden)

    Kurt Heil


    Full Text Available Fast and accurate assessment of within-field variation is essential for detecting field-wide heterogeneity and contributing to improvements in the management of agricultural lands. The goal of this paper is to provide an overview of field scale characterization by electromagnetic induction, firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil water turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs. Furthermore, results concerning special applications in agriculture, horticulture and archaeology are included. In addition to these investigations, this survey also presents a wide range of practical methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific locality is determined by the intensity at which soil factors influence these values in relationship to the desired information. The interpretation and utility of apparent electrical conductivity (ECa readings are highly location- and soil-specific, so soil properties influencing the measurement of ECa must be clearly understood. From the various calibration results, it appears that regression constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe, texture, yield, etc., are not necessarily transferable from one region to another. The modelling of ECa, soil properties, climate and yield are important for identifying the location to which specific utilizations of ECa technology (e.g., ECa−texture relationships can be appropriately applied. In general, the determination of absolute levels of ECa is frequently not possible, but it appears to be quite a robust method to detect relative differences, both spatially and temporally. Often, the use of ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather than as absolute terms.

  14. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment

    Directory of Open Access Journals (Sweden)

    K. S. Sjøgaard


    Full Text Available Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe–S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6–7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  15. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. (United States)

    Su, Jian Qiang; Wei, Bei; Xu, Chun Yan; Qiao, Min; Zhu, Yong Guan


    Soil has been regarded as a rich source of antibiotic resistance genes (ARGs) due to the complex microbial community and diverse antibiotic-producing microbes in soil, however, little is known about the ARGs in unculturable bacteria. To investigate the diversity and distribution of ARGs in soil and assess the impact of agricultural practice on the ARGs, we screened soil metagenomic library constructed using DNA from four different agricultural soil for ARGs. We identified 45 clones conferring resistance to minocycline, tetracycline, streptomycin, gentamicin, kanamycin, amikacin, chloramphenicol and rifampicin. The similarity of identified ARGs with the closest protein in GenBank ranged from 26% to 92%, with more than 60% of identified ARGs had low similarity less than 60% at amino acid level. The identified ARGs include aminoglycoside acetyltransferase, aminoglycoside 6-adenyltransferase, ADP-ribosyl transferase, ribosome protection protein, transporters and other antibiotic resistant determinants. The identified ARGs from the soil with manure application account for approximately 70% of the total ARGs in this study, implying that manure amendment may increase the diversity of antibiotic resistance genes in soil bacteria. These results suggest that antibiotic resistance in soil remains unexplored and functional metagenomic approach is powerful in discovering novel ARGs and resistant mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Soil erosion determinations using 137Cs technique in the agricultural regions of Gediz Basin, Western Turkey

    International Nuclear Information System (INIS)

    Sac, M.; Ymurtaci, E.; Yener, G.; Ugur, A.; Ozden, B.; Camgoz, B.


    Gediz basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation has long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137 Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137 Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137 Cs inventories of the samples using both Proportional Model (PM) and Simplified Mass Balance Model (SMBM). When Proportional Model was used, erosion and deposition rates varied from -15 to -28 t ha -1 y -1 and from +5 to +41 t ha ha -1 y -1 , respectively, they varied from -16 to -33 t ha -1 y -1 and from +5 to +55 t ha -1 y -1 with Simplified Mass Balance Model. A good agreement was observed between the results of two models up to 30 t ha -1 y -1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137 Cs techniques with the results obtained by Universal Soil Loss Equation (USLE) applied in the area before. (authors)

  17. "Green technology": Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil. (United States)

    Annamalai, Sivasankar; Santhanam, Manikandan; Selvaraj, Subbulakshmi; Sundaram, Maruthamuthu; Pandian, Kannan; Pazos, Marta


    The aim of the study is to degrade pollutants as well as to increase the fertility of agricultural soil by starch enhancing electrokinetic (EKA) and electro-bio-stimulation (EBS) processes. Starch solution was used as an anolyte and voltage gradient was about 0.5V/cm. The influence of bacterial mediated process was evaluated in real contaminated farming soil followed by pilot scale experiment. The in-situ formation of β-cyclodextrin from starch in the treatments had also influence on the significant removal of the pollutants from the farming soil. The conductivity of the soil was effectively reduced from 15.5dS/m to 1.5dS/m which corroborates well with the agricultural norms. The bio-stimulation was confirmed by the increase of the phosphorus content in the treated soil. Finally, phytotoxicity assays demonstrated the viability of the developed technique for soil remediation because plant germination percentage was higher in the treated soil in comparison to untreated soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Soil chemical sensor and precision agricultural chemical delivery system and method (United States)

    Colburn, J.W. Jr.


    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  19. Carbon degradation in agricultural soils flooded with seawater after managed coastal realignment (United States)

    Sjøgaard, Kamilla S.; Treusch, Alexander H.; Valdemarsen, Thomas B.


    Permanent flooding of low-lying coastal areas is a growing threat due to climate change and related sea-level rise. An increasingly common solution to protect coastal areas lying below sea level is intentional flooding by "managed coastal realignment". However, the biogeochemical implications of flooding agricultural soils with seawater are still not well understood. We conducted a 1-year mesocosm experiment to investigate microbial carbon degradation processes in soils flooded with seawater. Agricultural soils were sampled on the northern coast of the island Fyn (Denmark) at Gyldensteen Strand, an area that was subsequently flooded in a coastal realignment project. We found rapid carbon degradation to TCO2 1 day after experimental flooding and onwards and microbial sulfate reduction established quickly as an important mineralization pathway. Nevertheless, no free sulfide was observed as it precipitated as Fe-S compounds with Fe acting as a natural buffer, preventing toxic effects of free sulfide in soils flooded with seawater. Organic carbon degradation decreased significantly after 6 months, indicating that most of the soil organic carbon was refractory towards microbial degradation under the anoxic conditions created in the soil after flooding. During the experiment only 6-7 % of the initial soil organic carbon pools were degraded. On this basis we suggest that most of the organic carbon present in coastal soils exposed to flooding through sea-level rise or managed coastal realignment will be permanently preserved.

  20. Transport of selected bacterial pathogens in agricultural soil and quartz sand. (United States)

    Schinner, Tim; Letzner, Adrian; Liedtke, Stefan; Castro, Felipe D; Eydelnant, Irwin A; Tufenkji, Nathalie


    The protection of groundwater supplies from microbial contamination necessitates a solid understanding of the key factors controlling the migration and retention of pathogenic organisms through the subsurface environment. The transport behavior of five waterborne pathogens was examined using laboratory-scale columns packed with clean quartz at two solution ionic strengths (10 mM and 30 mM). Escherichia coli O157:H7 and Yersinia enterocolitica were selected as representative Gram-negative pathogens, Enterococcus faecalis was selected as a representative Gram-positive organism, and two cyanobacteria (Microcystis aeruginosa and Anabaena flos-aquae) were also studied. The five organisms exhibit differing attachment efficiencies to the quartz sand. The surface (zeta) potential of the microorganisms was characterized over a broad range of pH values (2-8) at two ionic strengths (10 mM and 30 mM). These measurements are used to evaluate the observed attachment behavior within the context of the DLVO theory of colloidal stability. To better understand the possible link between bacterial transport in model quartz sand systems and natural soil matrices, additional experiments were conducted with two of the selected organisms using columns packed with loamy sand obtained from an agricultural field. This investigation highlights the need for further characterization of waterborne pathogen surface properties and transport behavior over a broader range of environmentally relevant conditions. Copyright 2008 Elsevier Ltd. All rights reserved.

  1. Impact of agricultural practices on selected soil decomposers fauna

    International Nuclear Information System (INIS)

    Abdalatif, M. A.; Alrayah, A.; Azar, W. Z.


    Soil decomposers fauna i.e. collembolan, mites and nematodes were studied and compared between and within sites in relation to site, treatment and time of collection in Shambat arable and El Rwakeeb dry land. Comparison of results between sites showed that population density/volume of decomposers fauna sampled from Shambat site exceeded their assemblages sampled from El Rawakeeb site. Treatment application in form of cattle manure and neem leaves powder were observed to induce insignificant changes in the three faunal groups between the two sites. Temporal variations showed significant annual variations and insignificant seasonal variations between the two sites. Within each site, population density/volume of each of collembolan, mites and nematodes increased in response to cattle manure application in both sites. Whereas, neem leaves powder application induced a significant decrease in population density/volume of collembola in both sites. These results are generally attributed to variability of soil properties which may add to the suitability of Shambat soil to El Rawakeeb one for the survival of decomposers fauna. Within each site, increase in population density/volume of these fauna upon cattle manure application was attributed to ability of cattle manure to improve soil properties and to provide food. The negative effect of neem leaves powder on mites and nematodes was attributed to neem toxicity, whereas, its positive effects on collembolan was attributed to the ability of collembolan to withstand neem toxicity, collembolan probably physiologically resistant and the neem powder provided food, thus increasing its numbers compared to the central treatment.(Author)

  2. Urban soils: properties for utilitzation for green infrastructure and urban agriculture (United States)

    Shanskiy, Merrit; Krebstein, Kadri


    The human influenced soils in urban areas are of prime importance to human populations. Also, it is becoming a trend that there is large increase in reclaimed lands and new users for old industrial areas. Very often the urban soils are heavily modified by different anthropogenic factors. Therefore, it makes it essential to collect the data and knowledge of urban soils in order to understand better how such soils can be managed, rehabilitated or reconditioned to support green infrastructure or urban agriculture. Although the soil organic carbon (SOC) is the largest carbon stock in terrestrial ecosystems and the carbon sequestration is a widely accepted soil function there is still few studies mapping the carbon stocks in urban areas using digital soil mapping techniques. For urban land-use planning and decision making in a process of green infrastructure sustainable development it is in major importance. The urban soils are often lacking sufficient amount of organic matter but they are degraded (compacted, builded, contaminated by construction debris, graded) making them unsuitable as a growing medium. Therefore, the use of certain green infrastructure practices and the development of urban agriculture can be challenging in an urban environment. The issue of assessing soil quality becomes two-fold: the health of the soil as a growing medium needs to be addressed as well as the possible contamination that may be present. Knowing the development history of a parcel is key to determining what type of soil testing should be done, if any, prior to redevelopment or reuse. For current, pilot scale study the soil sampling was carried out in Tartu, Estonia. The different microenvironments were determined inside of urban areas. Soils were collected from such a microenvironments as urban garden areas, parks, other green infrastructure elements. The soils were analyzed for main agrochemical and physical properties at the Estonian University of Life Sciences, laboratory of the

  3. Active microbial soil communities in different agricultural managements (United States)

    Landi, S.; Pastorelli, R.


    We studied the composition of active eubacterial microflora by RNA extraction from soil (bulk and rhizosphere) under different environmental impact managements, in a hilly basin in Gallura (Sardinia). We contrasted grassy vineyard, in which the soil had been in continuous contact with plant roots for a long period of time, with traditional tilled vineyard. Moreover, we examined permanent grassland, in which plants had been present for some years, with temporary grassland, in which varying plants had been present only during the respective growing seasons. Molecular analysis of total population was carried out by electrophoretic separation by Denaturing Gradient Gel Electrophoresis (DGGE) of amplified cDNA fragments obtained from 16S rRNA. In vineyards UPGMA (Unweighted Pair Group Mathematical Average) analysis made up separate clusters depending on soil management. In spring both clusters showed similarity over 70%, while in autumn the similarity increased, 84% and 90% for grassy and conventional tilled vineyard respectively. Permanent and temporary grassland joined in a single cluster in spring, while in autumn a partial separation was evidenced. The grassy vineyard, permanent and temporary grassland showed higher richness and diversity Shannon-Weiner index values than vineyard with conventional tillage although no significant. In conclusion the expected effect of the rhizosphere was visible: the grass cover influenced positively the diversity of active microbial population.

  4. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems

    Energy Technology Data Exchange (ETDEWEB)

    Chavarría, D.N.; Verdenelli, R.A.; Muñoz, M.J.; Conforto, C.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S.


    Agricultural systems where monoculture prevails are characterized by fertility losses and reduced contribution to ecosystem services. Including cover crops (CC) as part of an agricultural system is a promising choice in sustainable intensification of those demanding systems. We evaluated soil microbial functionality in cash crops in response to the inclusion of CC by analyzing soil microbial functions at two different periods of the agricultural year (cash crop harvest and CC desiccation) during 2013 and 2014. Three plant species were used as CC: oat (Avena sativa L.), vetch (Vicia sativa L.) and radish (Raphanus sativus L.) which weresown in two different mixtures of species: oat and radish mix (CC1) and oat, radish and vetch mix (CC2), with soybean monoculture and soybean/corn being the cash crops. The study of community level physiological profiles showed statistical differences in respiration of specific C sources indicating an improvement of catabolic diversity in CC treatments. Soil enzyme activities were also increased with the inclusion of CC mixtures, with values of dehydrogenase activity and fluorescein diacetate hydrolysis up to 38.1% and 35.3% higher than those of the control treatment, respectively. This research evidenced that CC inclusion promotes soil biological quality through a contribution of soil organic carbon, improving the sustainability of agrosystems. The use of a CC mixture of three plant species including the legume vetch increased soil biological processes and catabolic diversity, with no adverse effects on cash crop grain yield. (Author)

  5. Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity

    Directory of Open Access Journals (Sweden)

    Johan Habig


    Full Text Available Soil microbial communities perform critical functions in ecosystem processes. These functions can be used to assess the impact of agricultural practices on sustainable crop production. In this five-year study, the effect of various agricultural practices on soil microbial diversity and activity was investigated in a summer rainfall area under South African dryland conditions. Microbial diversity and activity were measured in the 0–15 cm layer of a field trial consisting of two fertilizer levels, three cropping systems, and two tillage systems. Using the Shannon–Weaver and Evenness diversity indices, soil microbial species richness and abundance were measured. Microbial enzymatic activities: β-glucosidase, phosphatase and urease, were used to evaluate ecosystem functioning. Cluster analysis revealed a shift in soil microbial community diversity and activity over time. Microbial diversity and activity were higher under no-till than conventional tillage. Fertilizer levels seemed to play a minor role in determining microbial diversity and activity, whereas the cropping systems played a more important role in determining the activity of soil microbial communities. Conservation agriculture yielded the highest soil microbial diversity and activity in diversified cropping systems under no-till.

  6. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid. (United States)

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D


    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.

  7. Fluctuations in ammonia oxidizing communities across agricultural soils are driven by soil structure and pH

    Directory of Open Access Journals (Sweden)

    Michele C ePereira e Silva


    Full Text Available The milieu in soil in which microorganisms dwell is never constant. Conditions such as temperature, water availability, pH and nutrients frequently change, impacting the overall functioning of the soil system. To understand the effects of such factors on soil functioning, proxies (indicators of soil function are needed that, in a sensitive manner, reveal normal amplitude of variation. Thus, the so-called normal operating range (NOR of soil can be defined. In this study we determined different components of nitrification by analyzing, in eight agricultural soils, how the community structures and sizes of ammonia oxidizing bacteria and archaea (AOB and AOA, respectively, and their activity, fluctuate over spatial and temporal scales. The results indicated that soil pH and soil type are the main factors that influence the size and structure of the AOA and AOB, as well as their function. The nitrification rates varied between 0.11 ± 0.03 µgN.h-1.gdw-1 and 1.68 ± 0.11 µgN.h-1.gdw-1, being higher in soils with higher clay content (1.09 ± 0.12 µgN.h-1.gdw-1 and lower in soils with lower clay percentages (0.27 ± 0.04 µgN.h-1.gdw-1. Nitrifying activity was driven by soil pH, mostly related to its effect on AOA but not on AOB abundance. Regarding the influence of soil parameters, clay content was the main soil factor shaping the structure of both the AOA and AOB communities. Overall, the potential nitrifying activities were higher and more variable over time in the clayey than in the sandy soils. Whereas the structure of AOB fluctuated more (62.7 ± 2.10% the structure of AOA communities showed lower amplitude of variation (53.65 ± 3.37%. Similar trends were observed for the sizes of these communities. The present work represents a first step towards defining a NOR for soil nitrification. Moreover, the clear effect of soil texture established here suggests that the NOR should be defined in a soil-type-specific manner.

  8. Effect of organic amendments on quality indexes in an italian agricultural soil (United States)

    Scotti, R.; Rao, M. A.; D'Ascoli, R.; Scelza, R.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.


    Intensive agricultural practices can determine a decline in soil fertility which represents the main constraint to agricultural productivity. In particular, the progressive reduction in soil organic matter, without an adequate restoration, may threaten soil fertility and agriculture sustainability. Some soil management practices can improve soil quality by adding organic amendments as alternative to the sole use of mineral fertilizers for increasing plant quality and growth. A large number of soil properties can be used to define changes in soil quality. In particular, although more emphasis has been given in literature to physical and chemical properties, biological properties, strictly linked to soil fertility, can be valid even more sensitive indicators. Among these, soil enzyme activities and microbial biomass may provide an "early warning" of soil quality and health changes. The aim of this work was to study the effect of preventive sterilization treatment and organic fertilization on enzymatic activities (dehydrogenase, arylsulphatase, beta-glucosidase, phosphatase, urease) and microbial biomass C in an agricultural soil under crop rotation. The study was carried out on an agricultural soil sited in Campania region (South Italy). At the beginning of experiment sterilizing treatments to control soilborne pathogens and weeds were performed by solarization and calcium cyanamide addition to soil. Organic fertilization was carried out by adding compost from vegetable residues, ricin seed exhaust (Rigen) and straw, singly or in association. Three samplings were performed at three different stages of crop rotation: I) September 2005, immediately after the treatments; II) December 2005, after a lettuce cycle; III) January 2007, after peppers and lettuce cycles. The soil sampling followed a W scheme, with five sub-samples for each plot. Soils were sieved at 2 mm mesh and air dried to determine physical and chemical properties; in addition a suitable amount of soils

  9. Nitrous oxide production and consumption potential in an agricultural and a forest soil

    DEFF Research Database (Denmark)

    Yu, Kewei; Struwe, Sten; Kjøller, Annelise


    Both a laboratory incubation experiment using soils from an agricultural field and a forest and field measurements at the same locations were conducted to determine nitrous oxide (N2O) production and consumption (reduction) potentials using the acetylene (C2H2) inhibition technique. Results from...... measurements show that average N2O emission rates were 0.56 and 0.59 kg N ha-1 in the agricultural field and forest, respectively. When C2H2 was provided in the field measurements, N2O emission rates from the agricultural field and forest increased by 38 and 51%, respectively. Nitrous oxide consumption under...

  10. Using IR-measured soil surface temperatures to estimate hydraulic properties of the top soil layer (United States)

    Steenpass, Christian; Vanderborght, Jan; Herbst, Michael; Simunek, Jirka; Vereecken, Harry


    The temporal and spatial development of soil surface temperatures (SST) depends on water availability in the near-surface soil layer. Since the soil loses latent heat during evaporation and water available for evaporation depends on soil hydraulic properties (SHP), the temporal variability of SST should contain information about the near-surface SHP. This study was conducted to investigate the information content of soil surface temperatures for estimation of soil hydraulic properties and their uncertainties, and to determine the effect of soil tillage on near-surface SHP. A hydrological model (HYDRUS-1D) coupled with a global optimizer (DREAM) was used to inversely estimate the van Genuchten-Mualem parameters of SHP from infra-red measured SST and TDR-measured water contents. The general applicability of this approach was tested using synthetic data. The same approach was then applied to a real data set, which was collected during September 2008 in Selhausen, Germany. The synthetic data set was generated using HYDRUS-1D for the same initial and boundary conditions and measurement protocol as the real data set. Using synthetic and real data it was found that although estimated SHP are sensitive to SST, their estimates are relatively uncertain when only information about SST is used. These uncertainties can be reduced by additionally considering also measured soil water contents. A comparison of SHP determined in the laboratory on undisturbed soil samples with those estimated from SST and TDR data measured in a harrowed soil showed similar results for the deeper undisturbed soil and large differences for the harrowed part of the soil profile. This shows the important effect of soil tillage on soil hydraulic properties. Application of the method in the field to characterize the hydraulic properties of the upper soil layer may reduce the amount of needed in-soil measurements and therefore allows larger scale observations.

  11. Conservation agriculture among small scale farmers in semi-arid region of Kenya does improve soil biological quality and soil organic carbon (United States)

    Waweru, Geofrey; Okoba, Barrack; Cornelis, Wim


    The low food production in Sub-Saharan Africa (SSA) has been attributed to declining soil quality. This is due to soil degradation and fertility depletion resulting from unsustainable conventional farming practices such as continuous tillage, crop residue burning and mono cropping. To overcome these challenges, conservation agriculture (CA) is actively promoted. However, little has been done in evaluating the effect of each of the three principles of CA namely: minimum soil disturbance, maximum surface cover and diversified/crop rotation on soil quality in SSA. A study was conducted for three years from 2012 to 2015 in Laikipia East sub county in Kenya to evaluate the effect of tillage, surface cover and intercropping on a wide variety of physical, chemical and biological soil quality indicators, crop parameters and the field-water balance. This abstract reports on soil microbial biomass carbon (SMBC) and soil organic carbon (SOC). The experimental set up was a split plot design with tillage as main treatment (conventional till (CT), no-till (NT) and no-till with herbicide (NTH)), and intercropping and surface cover as sub treatment (intercropping maize with: beans, MB; beans and leucaena, MBL; beans and maize residues at 1.5 Mg ha-1 MBMu, and dolichos, MD). NT had significantly higher SMBC by 66 and 31% compared with CT and NTH respectively. SOC was significantly higher in NTH than CT and NT by 15 and 4%, respectively. Intercropping and mulching had significant effect on SMBC and SOC. MBMu resulted in higher SMBC by 31, 38 and 43%, and SOC by 9, 20 and 22% as compared with MBL, MD and MB, respectively. SMBC and SOC were significantly affected by the interaction between tillage, intercropping and soil cover with NTMBMu and NTHMBMu having the highest SMBC and SOC, respectively. We conclude that indeed tillage, intercropping and mulching substantially affect SMBC and SOC. On the individual components of CA, tillage and surface cover had the highest effect on SMBC and

  12. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    atively longer memory of soil moisture in com- parison with the variation of controlling parame- ters often leads to climatic ... and vegetation cover changes the soil colour and thus varies the surface albedo (Todd and Hoffer. 1998). .... The colour of the soil at the experimental site varied from dark brown to dark reddish brown.

  13. Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern?

    KAUST Repository

    Aljassim, Nada I.


    Resistance to antibiotics is increasingly being recognized as an emerging contaminant posing great risks to effective treatment of infections and to public health. Pristine soils or even soils that predate the antibiotic era naturally contain ARB and ARGs. This book chapter explores the native resistome of soils and collates information on whether soil perturbation through wastewater reuse can lead to accumulation of ARB and ARGs in agricultural soils. Special emphasis was given to ARGs, particularly the blaNDM gene that confers resistance against carbapenem. The fate and persistence of these emerging ARGs have not been studied in depth; however, this book chapter reviews available information on other ARGs to gain insight into the possibility of horizontal gene transfer events in wastewater-irrigated soils and plant surfaces and tissues. Lastly, this book chapter visits solar irradiation and bacteriophage treatment as intervention options to limit dissemination of emerging contaminant threats.


    Directory of Open Access Journals (Sweden)

    O. Shamir


    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  15. Soil compaction on an agricultural post-mining recultivation site in Eastern Germany (United States)

    Krümmelbein, Julia; Raab, Thomas; Bens, Oliver; Hüttl, Reinhard F.


    Our study is concerned with the agricultural recultivation of post lignite mining areas in Lusatia, where Germany's largest lignite mining area is located. In this region mining leads to disturbances on a landscape level. Recultivation efforts attempt to regenerate post mining areas for various land use options. In this study, the agricultural recultivation is considered. The sandy to loamy substrate that is used for recultivation stems from depths of several meters and is free of soil organic matter. The substrate itself is unstructured when used to construct the sites. During site construction, the substrate is subject to strong mechanical stresses due to excavation, deposition and re-levelling. This practice leads to more or less serious soil compaction which can cause decreased yields of agricultural crops. Our experimental area has been heaped up and re-levelled in 2006/2007. On various subplots the extent of compaction, the effect of amelioration by deep loosening, differing organic soil additives and crop rotations which include deep rooting plants is studied. We compare results of the soil physical status-quo sampling (before the application of any recultivation measure, sample collection in 2007) with recent results (sample collection in 2010) to show the development of soil stability, soil structure and soil functions depending on the recultivation practice. The results of the first soil sampling (2007) revealed bulk density values between 1.3 and 1.9 g/cm³ but comparably low values of precompression stress. We found no correlation between bulk density, saturated hydraulic conductivity and air permeability and for one soil depths a negative correlation between bulk density and precompression stress. We show the degree of compaction on different subplots after site construction and the persistence of recultivation measures such as deep loosening, deep-rooting plants (e.g. alfalfa and sweet clover) by investigating their effects on bulk density

  16. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution. (United States)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale


    The idea of offsetting anthropogenic CO2 emissions by increasing global soil o