WorldWideScience

Sample records for suprathermal electron isotropy

  1. Measurement of suprathermal electron confinement by cyclotron transmission

    International Nuclear Information System (INIS)

    Kirkwood, R.; Hutchinson, I.H.; Luckhardt, S.C.; Porkolab, M.; Squire, J.P.

    1990-01-01

    The confinement time of suprathermal electrons is determined experimentally from the distribution function determined via wave transmission measurements. Measurements of the lowest moment of the distribution perpendicular to the B field as a function of the parallel electron momentum as well as the global input power allow the suprathermal electron confinement time (τ se ) to be calculated during lower-hybrid and inductive current drive. Finite particle confinement is found to be the dominant energy loss term for the suprathermals and improves with plasma current and density

  2. PIC simulation of the electron-ion collision effects on suprathermal electrons

    International Nuclear Information System (INIS)

    Wu Yanqing; Han Shensheng

    2000-01-01

    The generation and transportation of suprathermal electrons are important to both traditional ICF scheme and 'Fast Ignition' scheme. The author discusses the effects of electron-ion collision on the generation and transportation of the suprathermal electrons by parametric instability. It indicates that the weak electron-ion term in the PIC simulation results in the enhancement of the collisional absorption and increase of the hot electron temperature and reduction in the maximum electrostatic field amplitude while wave breaking. Therefore the energy and distribution of the suprathermal electrons are changed. They are distributed more close to the phase velocity of the electrostatic wave than the case without electron-ion collision term. The electron-ion collision enhances the self-consistent field and impedes the suprathermal electron transportation. These factors also reduce the suprathermal electron energy. In addition, the authors discuss the effect of initial condition on PIC simulation to ensure that the results are correct

  3. Effect of suprathermal electrons on the impurity ionization state

    International Nuclear Information System (INIS)

    Ochando, M A; Medina, F; Zurro, B; McCarthy, K J; Pedrosa, M A; Baciero, A; Rapisarda, D; Carmona, J M; Jimenez, D

    2006-01-01

    The effect of electron cyclotron resonance heating induced suprathermal electron tails on the ionization of iron impurities in magnetically confined plasmas is investigated. The behaviour of plasma emissivity immediately after injection provides evidence of a spatially localized 'shift' towards higher charge states of the impurity. Bearing in mind that the non-inductive plasma heating methods generate long lasting non-Maxwellian distribution functions, possible implications on the deduced impurity transport coefficients, when fast electrons are present, are discussed

  4. Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma

    Science.gov (United States)

    Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.

    2017-11-01

    The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.

  5. Electron heat conduction and suprathermal particles

    International Nuclear Information System (INIS)

    Bakunin, O.G.; Krasheninnikov, S.I.

    1991-01-01

    As recognized at present, the applicability of Spitzer-Harm's theory on electron heat conduction along the magnetic field is limited by comparatively small values of the thermal electron mean free path ratio, λ to the characteristic length of changes in plasma parameters, L: γ=λ/L≤10 -2 . The stationary kinetic equation for the electron distribution function inhomogeneous along the x-axis f e (v,x) allows one to have solutions in the self-similar variables. The objective of a given study is to generalize the solutions for the case of arbitrary Z eff , that will allow one to compare approximate solutions to the kinetic equation with the precise ones in a wide range of parameters. (author) 8 refs., 2 figs

  6. A method to measure the suprathermal density distribution by electron cyclotron emission

    International Nuclear Information System (INIS)

    Tutter, M.

    1986-05-01

    Electron cyclotron emission spectra of suprathermal electrons in a thermal main plasma are calculated. It is shown that for direction of observation oblique to the magnetic field, which decays in direction to the receiver, one may obtain information on the spatial density distribution of the suprathermal electrons from those spectra. (orig.)

  7. Ignition and burn propagation with suprathermal electron auxiliary heating

    International Nuclear Information System (INIS)

    Han Shensheng; Wu Yanqing

    2000-01-01

    The rapid development in ultrahigh-intensity lasers has allowed the exploration of applying an auxiliary heating technique in inertial confinement fusion (ICF) research. It is hoped that, compared with the 'standard fast ignition' scheme, raising the temperature of a hot-spot over the ignition threshold based on the shock-heated temperature will greatly reduce the required output energy of an ignition ultrahigh-intensity pulse. One of the key issues in ICF auxiliary heating is: how can we transport the exogenous energy efficiently into the hot-spot of compressed DT fuel? A scheme is proposed with three phases. First, a partial-spherical-shell capsule, such as double-conical target, is imploded as in the conventional approach to inertial fusion to assemble a high-density fuel configuration with a hot-spot of temperature lower than the ignition threshold. Second, a hole is bored through the shell outside the hot-spot by suprathermal electron explosion boring. Finally, the fuel is ignited by suprathermal electrons produced in the high-intensity ignition laser-plasma interactions. Calculations with a simple hybrid model show that the new scheme can possibly lead to ignition and burn propagation with a total drive energy of a few tens of kilojoules and an output energy as low as hundreds of joules for a single ignition ultrahigh-intensity pulse. (author)

  8. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Masters, A.; Dougherty, M. K. [The Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom); Sulaiman, A. H. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Sergis, N. [Office of Space Research and Technology, Academy of Athens, Soranou Efesiou 4, 11527 Athens (Greece); Stawarz, L. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Krakow (Poland); Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Coates, A. J., E-mail: a.masters@imperial.ac.uk [Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom)

    2016-07-20

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  9. SUPRATHERMAL ELECTRONS AT SATURN'S BOW SHOCK

    International Nuclear Information System (INIS)

    Masters, A.; Dougherty, M. K.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini . The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV) during shock crossings, but the higher energy channels were at (or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with the theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ∼1 MeV).

  10. Determination of the energy of suprathermal electrons during lower hybrid current drive on PBX-M

    International Nuclear Information System (INIS)

    von Goeler, S.; Bernabei, S.; Davis, W.; Ignat, D.; Kaita, R.; Roney, P.; Stevens, J.; Post-Zwicker, A.

    1993-06-01

    Suprathermal electrons are diagnosed by a hard x-ray pinhole camera during lower hybrid current drive on PBX-M. The experimental hard x-ray images are compared with simulated images, which result from an integration of the relativistic bremsstrahlung along lines-of-sight through the bean-shaped plasma. Images with centrally peaked and radially hollow radiation profiles are easily distinguished. The energy distribution of the suprathermal electrons is analyzed by comparing images taken with different absorber foils. An effective photon temperature is derived from the experimental images, and a comparison with simulated photon temperatures yields the energy of the suprathermal electrons. The analysis indicates that the energy of the suprathermal electrons in the hollow discharges is in the 50 to 100 key range in the center of the discharge. There seems to exist a very small higher energy component close to the plasma edge

  11. 5-D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    2000-01-01

    ECRH driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5-D phase space. Two different phases of the ECRH driven transport of suprathermal electrons can be seen. The first is a rapid convective phase due to the direct radial motion of trapped electrons and the second is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile in W7-AS is clarified. The ECRH driven flux is also evaluated and considered in relation to the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity, and thus the observed electron root feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. A possible scenario for this type of electron root is considered for the LHD plasma. (author)

  12. 5D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    1999-01-01

    ECRH-driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5D phase space. Two different phases of the ECRH-driven transport of suprathermal electrons can be seen; one is a rapid convective phase due to the direct radial motion of trapped electrons and the other is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile is clarified in W7-AS. The ECRH driven flux is also evaluated and put in relation with the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity and, thus, the observed 'electron root' feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. The possible scenario of this 'ECRH-driven electron root' is considered in the LHD plasma. (author)

  13. A system to measure suprathermal electron distribution functions in toroidal plasmas by electron cyclotron wave absorption

    International Nuclear Information System (INIS)

    Boyd, D.A.; Skiff, F.; Gulick, S.

    1997-01-01

    A two-chord, four-beam suprathermal electron diagnostic has been installed on TdeV (B>1.5 T, R=0.86 m, a=0.25 m). Resonant absorption of extraordinary mode electron cyclotron waves is measured to deduce the chordal averaged suprathermal electron distribution function amplitude at the resonant momentum. Simultaneously counterpropagating beams permit good refractive loss cancellation. A nonlinear frequency sweep leads to a concentration of appropriately propagating power in a narrow range of time of flight, thus increasing the signal-to-noise ratio and facilitating the rejection of spurious reflections. Numerous measurements of electron distribution functions have been obtained during lower-hybrid current-drive experiments. copyright 1997 American Institute of Physics

  14. Suprathermal electron studies in the TCV tokamak: Design of a tomographic hard-x-ray spectrometer

    International Nuclear Information System (INIS)

    Gnesin, S.; Coda, S.; Decker, J.; Peysson, Y.

    2008-01-01

    Electron cyclotron resonance heating and electron cyclotron current drive, disruptive events, and sawtooth activity are all known to produce suprathermal electrons in fusion devices, motivating increasingly detailed studies of the generation and dynamics of this suprathermal population. Measurements have been performed in the past years in the tokamak a configuration variable (TCV) tokamak using a single pinhole hard-x-ray (HXR) camera and electron-cyclotron-emission radiometers, leading, in particular, to the identification of the crucial role of spatial transport in the physics of ECCD. The observation of a poloidal asymmetry in the emitted suprathermal bremsstrahlung radiation motivates the design of a proposed new tomographic HXR spectrometer reported in this paper. The design, which is based on a compact modified Soller collimator concept, is being aided by simulations of tomographic reconstruction. Quantitative criteria have been developed to optimize the design for the greatly variable shapes and positions of TCV plasmas.

  15. 5D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    2001-01-01

    ECRH-driven transport of is studied in using a new Monte Carlo simulation technique in 5D phase space. Two different phases of the ECRH-driven transport of suprathermal electrons can be seen; one is a rapid convective phase due to the direct radial motion of trapped electrons and the other is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile is clarified in W7-AS. The ECRH driven flux is also evaluated and put in relation with the ''electron root'' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity and, thus, the observed ''electron root'' feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. The possible scenario of this ''ECRH-driven electron root'' is considered in the LHD plasma. (author)

  16. Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.

    Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects

  17. Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1999-07-01

    Full Text Available In an incoherent scattering radar experiment, the spectral measurement of the so-called up- and downshifted electron plasma lines provides information about their intensity and their Doppler frequency. These two spectral lines correspond, in the backscatter geometry, to two Langmuir waves travelling towards and away from the radar. In the daytime ionosphere, the presence of a small percentage of photoelectrons produced by the solar EUV of the total electron population can excite or damp these Langmuir waves above the thermal equilibrium, resulting in an enhancement of the intensity of the lines above the thermal level. The presence of photo-electrons also modifies the dielectric response function of the plasma from the Maxwellian and thus influences the Doppler frequency of the plasma lines. In this paper, we present a high time-resolution plasma-line data set collected on the Eiscat VHF radar. The analysed data are compared with a model that includes the effect of a suprathermal electron population calculated by a transport code. By comparing the intensity of the analysed plasma lines data to our model, we show that two sharp peaks in the electron suprathermal distribution in the energy range 20-30 eV causes an increased Landau damping around 24.25 eV and 26.25 eV. We have identified these two sharp peaks as the effect of the photoionisation of N2 and O by the intense flux of monochromatic HeII radiation of wavelength 30.378 nm (40.812 eV created in the chromospheric network and coronal holes. Furthermore, we see that what would have been interpreted as a mean Doppler drift velocity for a Maxwellian plasma is actually a shift of the Doppler frequency of the plasma lines due to suprathermal electrons.Key words. Ionosphere (electric fields and currents; solar radiation and cosmic ray effects

  18. Study of the thermal and suprathermal electron density fluctuations of the plasma in the Focus experiment

    International Nuclear Information System (INIS)

    Jolas, A.

    1981-10-01

    An experiment on Thomson scattering of ruby laser light by the electrons of a plasma produced by an intense discharge between the electrodes of a coaxial gun in a gas at low pressure has been carried out. It is shown that the imploding plasma is made up of layers with different characteristics: a dense plasma layer where the density fluctuations are isotropic and have a thermal level, and a tenuous plasma layer where the fluctuations are anisotropic, and strongly suprathermal. The suprathermal fluctuations are attributed to microscopic instabilities generated by the electric current circulating in the transition zone where the magnetic field penetrates the plasma [fr

  19. Electron beam-plasma interaction and electron-acoustic solitary waves in a plasma with suprathermal electrons

    Science.gov (United States)

    Danehkar, A.

    2018-06-01

    Suprathermal electrons and inertial drifting electrons, so called electron beam, are crucial to the nonlinear dynamics of electrostatic solitary waves observed in several astrophysical plasmas. In this paper, the propagation of electron-acoustic solitary waves (EAWs) is investigated in a collisionless, unmagnetized plasma consisting of cool inertial background electrons, hot suprathermal electrons (modeled by a κ-type distribution), and stationary ions. The plasma is penetrated by a cool electron beam component. A linear dispersion relation is derived to describe small-amplitude wave structures that shows a weak dependence of the phase speed on the electron beam velocity and density. A (Sagdeev-type) pseudopotential approach is employed to obtain the existence domain of large-amplitude solitary waves, and investigate how their nonlinear structures depend on the kinematic and physical properties of the electron beam and the suprathermality (described by κ) of the hot electrons. The results indicate that the electron beam can largely alter the EAWs, but can only produce negative polarity solitary waves in this model. While the electron beam co-propagates with the solitary waves, the soliton existence domain (Mach number range) becomes narrower (nearly down to nil) with increasing the beam speed and the beam-to-hot electron temperature ratio, and decreasing the beam-to-cool electron density ratio in high suprathermality (low κ). It is found that the electric potential amplitude largely declines with increasing the beam speed and the beam-to-cool electron density ratio for co-propagating solitary waves, but is slightly decreased by raising the beam-to-hot electron temperature ratio.

  20. Shaping the solar wind electron temperature anisotropy by the interplay of core and suprathermal populations

    Science.gov (United States)

    Shaaban Hamd, S. M.; Lazar, M.; Poedts, S.; Pierrard, V.; Štverák

    2017-12-01

    We present the results of an advanced parametrization of the temperature anisotropy of electrons in the slow solar wind and the electromagnetic instabilities resulting from the interplay of their thermal core and suprathermal halo populations. A large set of observational data (from the Ulysses, Helios and Cluster missions) is used to parametrize these components and establish their correlations. Comparative analysis demonstrates for the first time a particular implication of the suprathermal electrons which are less dense but hotter than thermal electrons. The instabilities are significantly stimulated by the interplay of the core and halo populations, leading to lower thresholds which shape the observed limits of the temperature anisotropy for both the core and halo populations. This double agreement strongly suggests that the selfgenerated instabilities play the major role in constraining the electron anisotropy.

  1. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    Energy Technology Data Exchange (ETDEWEB)

    Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Stange, Jason L.; Trevino, John A.; Webster, James [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); Grubbs, Guy [University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States); Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Michell, Robert G.; Samara, Marilia [Goddard Space Flight Center, National Aeronautics and Space Administration, 8800 Greenbelt Rd, Greenbelt, Maryland 20771 (United States); Jahn, Jörg-Micha [Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States); University of Texas at San Antonio, One UTSA circle, San Antonio, Texas 78249 (United States)

    2016-05-15

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  2. Development and performance of a suprathermal electron spectrometer to study auroral precipitations

    International Nuclear Information System (INIS)

    Ogasawara, Keiichi; Stange, Jason L.; Trevino, John A.; Webster, James; Grubbs, Guy; Michell, Robert G.; Samara, Marilia; Jahn, Jörg-Micha

    2016-01-01

    The design, development, and performance of Medium-energy Electron SPectrometer (MESP), dedicated to the in situ observation of suprathermal electrons in the auroral ionosphere, are summarized in this paper. MESP employs a permanent magnet filter with a light tight structure to select electrons with proper energies guided to the detectors. A combination of two avalanche photodiodes and a large area solid-state detector (SSD) provided 46 total energy bins (1 keV resolution for 3−20 keV range for APDs, and 7 keV resolution for >20 keV range for SSDs). Multi-channel ultra-low power application-specific integrated circuits are also verified for the flight operation to read-out and analyze the detector signals. MESP was launched from Poker Flat Research Range on 3 March 2014 as a part of ground-to-rocket electrodynamics-electrons correlative experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 3 to 120 keV in 120-ms time resolution and characterized the features of suprathermal distributions associated with auroral arcs throughout the flight. The measured electrons were showing the inverted-V type spectra, consistent with the past measurements. In addition, investigations of the suprathermal electron population indicated the existence of the energetic non-thermal distribution corresponding to the brightest aurora.

  3. Electron cyclotron heating and supra-thermal electron dynamics in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gnesin, S.

    2011-10-15

    This thesis is concerned with the physics of supra-thermal electrons in thermonuclear, magnetically confined plasmas. Under a variety of conditions, in laboratory as well as space plasmas, the electron velocity distribution function is not in thermodynamic equilibrium owing to internal or external drives. Accordingly, the distribution function departs from the equilibrium Maxwellian, and in particular generally develops a high-energy tail. In tokamak plasmas, this occurs especially as a result of injection of high-power electromagnetic waves, used for heating and current drive, as well as a result of internal magnetohydrodynamic (MHD) instabilities. The physics of these phenomena is intimately tied to the properties and dynamics of this supra-thermal electron population. This motivates the development of instrumental apparatus to measure its properties as well as of numerical codes to simulate their dynamics. Both aspects are reflected in this thesis work, which features advanced instrumental development and experimental measurements as well as numerical modeling. The instrumental development consisted of the complete design of a spectroscopic and tomographic system of four multi-detector hard X-ray (HXR) cameras for the TCV tokamak. The goal is to measure bremsstrahlung emission from supra-thermal electrons with energies in the 10-300 keV range, with the ultimate aim of providing the first full tomographic reconstruction at these energies in a noncircular plasma. In particular, supra-thermal electrons are generated in TCV by a high-power electron cyclotron heating (ECH) system and are also observed in the presence of MHD events, such as sawtooth oscillations and disruptive instabilities. This diagnostic employs state-of-the-art solid-state detectors and is optimized for the tight space requirements of the TCV ports. It features a novel collimator concept that combines compactness and flexibility as well as full digital acquisition of the photon pulses, greatly

  4. Electron cyclotron heating and supra-thermal electron dynamics in the TCV Tokamak

    International Nuclear Information System (INIS)

    Gnesin, S.

    2011-10-01

    This thesis is concerned with the physics of supra-thermal electrons in thermonuclear, magnetically confined plasmas. Under a variety of conditions, in laboratory as well as space plasmas, the electron velocity distribution function is not in thermodynamic equilibrium owing to internal or external drives. Accordingly, the distribution function departs from the equilibrium Maxwellian, and in particular generally develops a high-energy tail. In tokamak plasmas, this occurs especially as a result of injection of high-power electromagnetic waves, used for heating and current drive, as well as a result of internal magnetohydrodynamic (MHD) instabilities. The physics of these phenomena is intimately tied to the properties and dynamics of this supra-thermal electron population. This motivates the development of instrumental apparatus to measure its properties as well as of numerical codes to simulate their dynamics. Both aspects are reflected in this thesis work, which features advanced instrumental development and experimental measurements as well as numerical modeling. The instrumental development consisted of the complete design of a spectroscopic and tomographic system of four multi-detector hard X-ray (HXR) cameras for the TCV tokamak. The goal is to measure bremsstrahlung emission from supra-thermal electrons with energies in the 10-300 keV range, with the ultimate aim of providing the first full tomographic reconstruction at these energies in a noncircular plasma. In particular, supra-thermal electrons are generated in TCV by a high-power electron cyclotron heating (ECH) system and are also observed in the presence of MHD events, such as sawtooth oscillations and disruptive instabilities. This diagnostic employs state-of-the-art solid-state detectors and is optimized for the tight space requirements of the TCV ports. It features a novel collimator concept that combines compactness and flexibility as well as full digital acquisition of the photon pulses, greatly

  5. Suprathermal electron loss cone distributions in the solar wind: Ulysses observations

    International Nuclear Information System (INIS)

    Phillips, J. L.; Feldman, W. C.; Gosling, J. T.; Hammond, C. M.; Forsyth, R. J.

    1996-01-01

    We present observations by the Ulysses solar wind plasma experiment of a new class of suprathermal electron signatures. At low solar latitudes and heliocentric distances beyond 3.37 AU Ulysses encountered seven intervals, ranging in duration from 1 hour to 22 hours, in which the suprathermal distributions included an antisunward field-aligned beam and a return population with a flux dropout typically spanning ±60 deg. from the sunward field-aligned direction. All events occurred between the forward and reverse shocks or waves bounding corotating interaction regions (CIRs). The observations support a scenario in which the sunward-moving electrons result from reflection of the prevailing antisunward field-aligned beam at magnetic field compressions downstream from the spacecraft, with wide loss cones caused by the relatively weak mirror ratio. This hypothesis requires that the field magnitude within the CIRs actually increased locally with increasing field-aligned distance from the Sun

  6. Generation of suprathermal electrons during plasma current startup by lower hybrid waves in a tokamak

    International Nuclear Information System (INIS)

    Ohkubo, K.; Toi, K.; Kawahata, K.

    1984-10-01

    Suprathermal electrons which carry a seed current are generated by non-resonant parametric decay instability during initial phase of lower hybrid current startup in the JIPP T-IIU tokamak. From the numerical analysis, it is found that parametrically excited lower hybrid waves at lower side band can bridge the spectral gap between the thermal velocity and the low velocity end in the pump power spectrum. (author)

  7. Measurement and modelling of suprathermal electron bursts generated in front of a lower hybrid antenna

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Fuchs, Vladimír; Petržílka, Václav; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Hillairet, J.

    2016-01-01

    Roč. 56, č. 3 (2016), č. článku 036004. ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : lower hybrid * scrape off layer * SOL turbulence * Landau damping * suprathermal electrons Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/3/036004

  8. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.

    Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  9. Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability

    Directory of Open Access Journals (Sweden)

    C. Krafft

    2003-07-01

    Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions

  10. Statistics of counter-streaming solar wind suprathermal electrons at solar minimum: STEREO observations

    Directory of Open Access Journals (Sweden)

    B. Lavraud

    2010-01-01

    Full Text Available Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs in the vicinity of corotating interaction regions (CIRs during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used, but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream, as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1 the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2 that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to

  11. Study of profile control and suprathermal electron production with lower hybrid waves

    International Nuclear Information System (INIS)

    Soeldner, F.X.; Brambilla, M.; Leuterer, F.; Muenich, M.

    1986-05-01

    In this study the coupling of LH waves to suprathermal electrons, the LH current drive efficiency and the mechanism for sawtooth stabilisation will be discussed. A wide data base has been obtained by the LH experiments on Alcator C, ASDEX, FT; JFT-2M, JIPPT-IIU, Petula, PLT, Versator, WT II during the last years and important aspects as the scaling of global current drive efficiency are satisfactorily described by theory. We mainly rely here on experimental results from ASDEX and comparison with theoretical calculations by Fisch and Karney. (orig.)

  12. Observation of suprathermal electron fluxes during ionospheric modification experiments

    International Nuclear Information System (INIS)

    Fejer, J.A.; Sulzer, M.P.

    1987-01-01

    The temporal behavior of backscatter by ionospheric Langmuir waves was observed with the 430-MHz radar at Arecibo while a powerful HF wave was cycled 2 s on, 3 s off. The time resolution was 0.1 s. Late at night, in the absence of photoelectrons, using an HF equivalent radiated power of 80 MW at 3.175 MHz, the initial enhancement of about 6% above system noise of the backscattered power with Doppler shifts between -3.75 and -3.85 MHz was reached about 0.25 s after switching on the HF transmitter. In the following second the enhancement gradually decreased to about 3% and remained there until switching off. During the late afternoon, in the presence of photoelectrons, using the same HF power at 5.1 MHz, an initial enhancement by 25% of the backscattered power with Doppler shifts between -5.25 and -5.35 MHz appeared within less than 0.1 s after switching on the HF transmitter. The incoherent backscatter by Langmuir waves enhanced by photoelectrons was already above system noise by a factor greatly in excess of 10 before switching on the HF transmitter; the 25% enhancement thus corresponds to an enhancement greatly in excess of 250% above system noise. The enhancement drops to less than one tenth of its original value in less than a second. The nighttime effect is attributed to multiple acceleration of electrons from the high-energy tail of the Maxwellian distribution. The daytime effect is believed to be due to a modification in the distribution function of photoelectrons

  13. Nonlinear dust acoustic waves in a charge varying dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Bacha, Mustapha

    2010-01-01

    Arbitrary amplitude dust acoustic waves in a dusty plasma with a high-energy-tail electron distribution are investigated. The effects of charge variation and electron deviation from the Boltzmann distribution on the dust acoustic soliton are then considered. The dust charge variation makes the dust acoustic soliton more spiky. The dust grain surface collects less electrons as the latter evolves far away from their thermodynamic equilibrium. The dust accumulation caused by a balance of the electrostatic forces acting on the dust grains is more effective for lower values of the electron spectral index. Under certain conditions, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation, the strength of which becomes important and may prevail over that of dispersion as the suprathermal character of the plasma becomes important. Our results may explain the strong spiky waveforms observed in auroral plasmas.

  14. Suprathermal Electron Generation and Channel Formation by an Ultrarelativistic Laser Pulse in an Underdense Preformed Plasma

    International Nuclear Information System (INIS)

    Malka, G.; Gaillard, R.; Miquel, J.L.; Rousseaux, C.; Bonnaud, G.; Busquet, M.; Lours, L.; Fuchs, J.; Pepin, H.; Fuchs, J.; Amiranoff, F.; Baton, S.D.

    1997-01-01

    Relativistic electrons are produced, with energies up to 20MeV, by the interaction of a high-intensity subpicosecond laser pulse (1 μm , 300 fs , 10 19 W/cm 2 ) with an underdense plasma. Two suprathermal electron populations appear with temperatures of 1 and 3MeV. In the same conditions, the laser beam transmission is increased up to 20% 30%. We observe both features along with the evidence of laser pulse channeling. A fluid model predicts a strong self-focusing of the pulse. Acceleration in the enhanced laser field seems the most likely mechanism leading to the second electron population. copyright 1997 The American Physical Society

  15. SUPRATHERMAL ELECTRONS IN THE SOLAR CORONA: CAN NONLOCAL TRANSPORT EXPLAIN HELIOSPHERIC CHARGE STATES?

    International Nuclear Information System (INIS)

    Cranmer, Steven R.

    2014-01-01

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by ''kappa'' exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements

  16. Suprathermal electron studies in Tokamak plasmas by means of diagnostic measurements and modeling

    International Nuclear Information System (INIS)

    Kamleitner, J.

    2015-01-01

    To achieve reactor-relevant conditions in a tokamak plasma, auxiliary heating systems are required and can be realized by waves injected in the plasma that heat ions or electrons. Electron cyclotron resonant heating (ECRH) is a very flexible and robust technique featuring localized power deposition and current drive (CD) capabilities. Its fundamental principles are well understood and the application of ECRH is a proven and established tool; electron cyclotron current drive (ECCD) is regularly used to develop advanced scenarios and control magneto-hydrodynamics (MHD) instabilities in the plasma by tailoring the current profile. There remain important open questions, such as the phase space dynamics, the observed radial broadening of the supra-thermal electron distribution function and discrepancies in predicted and experimental CD efficiency. A main goal is to improve the understanding of wave-particle interaction in plasmas and current drive mechanisms. This was accomplished by combined experimental and numerical studies, strongly based on the conjunction of hard X-ray (HXR) Bremsstrahlung measurements and Fokker-Planck modelling, characterizing the supra-thermal electron population. The hard X-ray tomographic spectrometer (HXRS) diagnostic was developed to perform these studies by investigating spatial HXR emission asymmetries in the co- and counter-current directions and within the poloidal plane. The system uses cadmium-telluride detectors and digital acquisition to store the complete time history of incoming photon pulses. An extensive study of digital pulse processing algorithms was performed and its application allows the HXRS to handle high count rates in a noisy tokamak environment. Numerical tools were developed to improve the time resolution by conditional averaging and to obtain local information with the general tomographic inversion package. The interfaces of the LUKE code and the well-established CQL3D Fokker-Planck code to the Tokamak a

  17. Suprathermal electron environment of comet 67P/Churyumov-Gerasimenko: Observations from the Rosetta Ion and Electron Sensor

    Science.gov (United States)

    Clark, G.; Broiles, T. W.; Burch, J. L.; Collinson, G. A.; Cravens, T.; Frahm, R. A.; Goldstein, J.; Goldstein, R.; Mandt, K.; Mokashi, P.; Samara, M.; Pollock, C. J.

    2015-11-01

    Context. The Rosetta spacecraft is currently escorting comet 67P/Churyumov-Gerasimenko until its perihelion approach at 1.2 AU. This mission has provided unprecedented views into the interaction of the solar wind and the comet as a function of heliocentric distance. Aims: We study the interaction of the solar wind and comet at large heliocentric distances (>2 AU) using data from the Rosetta Plasma Consortium Ion and Electron Sensor (RPC-IES). From this we gain insight into the suprathermal electron distribution, which plays an important role in electron-neutral chemistry and dust grain charging. Methods: Electron velocity distribution functions observed by IES fit to functions used to previously characterize the suprathermal electrons at comets and interplanetary shocks. We used the fitting results and searched for trends as a function of cometocentric and heliocentric distance. Results: We find that interaction of the solar wind with this comet is highly turbulent and stronger than expected based on historical studies, especially for this weakly outgassing comet. The presence of highly dynamical suprathermal electrons is consistent with observations of comets (e.g., Giacobinni-Zinner, Grigg-Skjellerup) near 1 AU with higher outgassing rates. However, comet 67P/Churyumov-Gerasimenko is much farther from the Sun and appears to lack an upstream bow shock. Conclusions: The mass loading process, which likely is the cause of these processes, plays a stronger role at large distances from the Sun than previously expected. We discuss the possible mechanisms that most likely are responsible for this acceleration: heating by waves generated by the pick-up ion instability, and the admixture of cometary photoelectrons.

  18. SUPRATHERMAL ELECTRONS IN TITAN’S SUNLIT IONOSPHERE: MODEL–OBSERVATION COMPARISONS

    Energy Technology Data Exchange (ETDEWEB)

    Vigren, E.; Edberg, N. J. T.; Wahlund, J.-E. [Swedish Institute of Space Physics, Uppsala (Sweden); Galand, M.; Sagnières, L. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Wellbrock, A.; Coates, A. J. [Mullard Space Science Laboratory, University College London, Dorking, Surrey RH5 6NT (United Kingdom); Cui, J. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Lavvas, P. [Université Reims Champagne-Ardenne, Reims (France); Snowden, D. [Department of Physics, Central Washington University, Ellensburg, WA 98926 (United States); Vuitton, V., E-mail: erik.vigren@irfu.se [Univ. Grenoble Alpes, CNRS, IPAG, Grenoble (France)

    2016-08-01

    The dayside ionosphere of the Saturnian satellite Titan is generated mainly from photoionization of N{sub 2} and CH{sub 4}. We compare model-derived suprathermal electron intensities with spectra measured by the Cassini Plasma Spectrometer/Electron Spectrometer (CAPS/ELS) in Titan's sunlit ionosphere (altitudes of 970–1250 km) focusing on the T40, T41, T42, and T48 Titan flybys by the Cassini spacecraft. The model accounts only for photoelectrons and associated secondary electrons, with a main input being the impinging solar EUV spectra as measured by the Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment and extrapolated to Saturn. Associated electron-impact electron production rates have been derived from ambient number densities of N{sub 2} and CH{sub 4} (measured by the Ion Neutral Mass Spectrometer/Closed Source Neutral mode) and related energy-dependent electron-impact ionization cross sections. When integrating up to electron energies of 60 eV, covering the bulk of the photoelectrons, the model-based values exceed the observationally based values typically by factors of ∼3 ± 1. This finding is possibly related to current difficulties in accurately reproducing the observed electron number densities in Titan's dayside ionosphere. We compare the utilized dayside CAPS/ELS spectra with ones measured in Titan's nightside ionosphere during the T55–T59 flybys. The investigated nightside locations were associated with higher fluxes of high-energy (>100 eV) electrons than the dayside locations. As expected, for similar neutral number densities, electrons with energies <60 eV give a higher relative contribution to the total electron-impact ionization rates on the dayside (due to the contribution from photoelectrons) than on the nightside.

  19. Microwave heating and diagnostic of suprathermal electrons in an overdense stellarator plasma

    International Nuclear Information System (INIS)

    Stange, Torsten

    2014-01-01

    The resonant coupling of microwaves into a magnetically confined plasma is one of the fundamental methods for the heating of such plasmas. Identifying and understanding the processes of the heating of overdense plasmas, in which the wave propagation is generally not possible because the wave frequency is below the plasma frequency, is becoming increasingly important for high density fusion plasmas. This work focuses on the heating of overdense plasmas in the WEGA stellarator. The excitation of electron Bernstein waves, utilizing the OXB-conversion process, provides a mechanism for the wave to reach the otherwise not accessible resonant absorption layer. In WEGA these OXB-heated plasmas exhibit a suprathermal electron component with energies up to 80 keV. The fast electrons are located in the plasma center and have a Maxwellian energy distribution function within the soft X-ray related energy range. The corresponding averaged energy is a few keV. The OXB-discharges are accompanied by a broadband microwave radiation spectrum with radiation temperatures of the order of keV. Its source was identified as a parametric decay of the heating wave and has no connection to the suprathermal electron component. For the detailed investigation of the microwave emission, a quasioptical mirror system, optimized for the OX-conversion, has been installed. Based on the measurement of the broadband microwave stray radiation of the decay process, the OX-conversion efficiency has been determined to 0.56 being in good agreement with full-wave calculations. In plasmas without an electron cyclotron resonance, corresponding to the wave frequency used, non-resonant heating mechanisms have been identified in the overdense plasma regions. Whistler waves or R-like waves are the only propagable wave types within the overdense plasmas. The analysis of the heating efficiency in dependence on the magnetic flux density leads to tunneling as the most probable coupling mechanism. For the determination

  20. Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Broiles, Thomas W.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Eriksson, A.; Fuselier, S. A.; Frahm, R. A.; Gasc, S.; Goldstein, R.; Henri, P.; Koenders, C.; Livadiotis, G.; Mandt, K. E.; Mokashi, P.; Nemeth, Z.; Odelstad, E.; Rubin, M.; Samara, M.

    2016-11-01

    We use observations from the Ion and Electron Sensor (IES) on board the Rosetta spacecraft to study the relationship between the cometary suprathermal electrons and the drivers that affect their density and temperature. We fit the IES electron observations with the summation of two kappa distributions, which we characterize as a dense and warm population (˜10 cm-3 and ˜16 eV) and a rarefied and hot population (˜0.01 cm-3 and ˜43 eV). The parameters of our fitting technique determine the populations' density, temperature, and invariant kappa index. We focus our analysis on the warm population to determine its origin by comparing the density and temperature with the neutral density and magnetic field strength. We find that the warm electron population is actually two separate sub-populations: electron distributions with temperatures above 8.6 eV and electron distributions with temperatures below 8.6 eV. The two sub-populations have different relationships between their density and temperature. Moreover, the two sub-populations are affected by different drivers. The hotter sub-population temperature is strongly correlated with neutral density, while the cooler sub-population is unaffected by neutral density and is only weakly correlated with magnetic field strength. We suggest that the population with temperatures above 8.6 eV is being heated by lower hybrid waves driven by counterstreaming solar wind protons and newly formed, cometary ions created in localized, dense neutral streams. To the best of our knowledge, this represents the first observations of cometary electrons heated through wave-particle interactions.

  1. Investigation of the role of electron cyclotron resonance heating and magnetic configuration on the suprathermal ion population in the stellarator TJ-II using a luminescent probe

    Science.gov (United States)

    Martínez, M.; Zurro, B.; Baciero, A.; Jiménez-Rey, D.; Tribaldos, V.

    2018-02-01

    Numerous observation exist of a population of high energetic ions with energies well above the corresponding thermal values in plasmas generated by electron cyclotron resonance (ECR) heating in TJ-II stellarator and in other magnetically confined plasmas devices. In this work we study the impact of ECR heating different conditions (positions and powers) on fast ions escaping from plasmas in the TJ-II stellarator. For this study, an ion luminescent probe operated in counting mode is used to measure the energy distribution of suprathermal ions, in the range from 1 to 30 keV. It is observed that some suprathermal ions characteristics (such as temperature, particle and energy fluxes) are related directly with the gyrotron power and focus position of the heating beam in the plasma. Moreover, it is found that suprathermal ion characteristics vary during a magnetic configuration scan (performed along a single discharge). By investigating the suprathermal ions escaping from plasmas generated using two gyrotrons, one with fixed power and the other modulated (on/off) at low frequency (10 Hz), the de-confinement time of the suprathermal ions can be measured, which is of the order of a few milliseconds (power balance is used to understand the de-confinement times in terms of the interaction of suprathermal ions and plasma components. This model also can be used to interpret experimental results of energy loss due to suprathermal ions. Finally, observations of increases (peaks) in the population of escaping suprathermal ions, which are well localized at discrete energies, is documented, these peaks being observed in the energy distributions along a discharge.

  2. Suprathermal electron production in laser-irradiated Cu targets characterized by combined methods of x-ray imaging and spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Renner, Oldřich; Šmíd, Michal; Batani, D.; Antonelli, L.

    2016-01-01

    Roč. 58, č. 7 (2016), 1-8, č. článku 075007. ISSN 0741-3335 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162; GA MŠk(CZ) LD14089 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser- plasma interaction * inertial confinement fusion * suprathermal electron Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.392, year: 2016

  3. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Science.gov (United States)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  4. QUIET-TIME SUPRATHERMAL (∼0.1–1.5 keV) ELECTRONS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; He, Jiansen; Tu, Chuanyi [School of Earth and Space Science, Peking University, Beijing 100871 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Alabama 35899 (United States); Salem, Chadi S.; Bale, Stuart D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institute for Experimental and Applied Physics, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2016-03-20

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1–1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ∼0.1–1.5 keV to a Kappa distribution function with an index κ and effective temperature T{sub eff}. We also calculate the number density n and average energy E{sub avg} of strahl and halo electrons by integrating the electron measurements between ∼0.1 and 1.5 keV. We find a strong positive correlation between κ and T{sub eff} for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity)

  5. Quiet-time Suprathermal (~0.1-1.5 keV) Electrons in the Solar Wind

    Science.gov (United States)

    Tao, Jiawei; Wang, Linghua; Zong, Qiugang; Li, Gang; Salem, Chadi S.; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Bale, Stuart D.

    2016-03-01

    We present a statistical survey of the energy spectrum of solar wind suprathermal (˜0.1-1.5 keV) electrons measured by the WIND 3DP instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. After separating (beaming) strahl electrons from (isotropic) halo electrons according to their different behaviors in the angular distribution, we fit the observed energy spectrum of both strahl and halo electrons at ˜0.1-1.5 keV to a Kappa distribution function with an index κ and effective temperature Teff. We also calculate the number density n and average energy Eavg of strahl and halo electrons by integrating the electron measurements between ˜0.1 and 1.5 keV. We find a strong positive correlation between κ and Teff for both strahl and halo electrons, and a strong positive correlation between the strahl n and halo n, likely reflecting the nature of the generation of these suprathermal electrons. In both solar cycles, κ is larger at solar minimum than at solar maximum for both strahl and halo electrons. The halo κ is generally smaller than the strahl κ (except during the solar minimum of cycle 23). The strahl n is larger at solar maximum, but the halo n shows no difference between solar minimum and maximum. Both the strahl n and halo n have no clear association with the solar wind core population, but the density ratio between the strahl and halo roughly anti-correlates (correlates) with the solar wind density (velocity).

  6. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.

    Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  7. Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines

    Directory of Open Access Journals (Sweden)

    P. Guio

    1998-10-01

    Full Text Available The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.Key words. Non-Maxwellian electron velocity distribution · Incoherent scatter plasma lines · EISCAT · Dielectric response function

  8. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Wael [Lund University, Box 124, 221 00 Lund (Sweden); Cairo University, Cairo (Egypt); Svensson Birkedal, Gabriel [Lund University, Biomedical Center A13, 221 84 Lund (Sweden); Thunnissen, Marjolein M. G. M. [Lund University, Box 124, 221 00 Lund (Sweden); Lund University, Box 188, 221 00 Lund (Sweden); Mani, Katrin [Lund University, Biomedical Center A13, 221 84 Lund (Sweden); Logan, Derek T., E-mail: derek.logan@biochemistry.lu.se [Lund University, Box 124, 221 00 Lund (Sweden)

    2013-12-01

    The anisotropy of crystals of glypican-1 was significantly reduced by controlled dehydration using the HC1 device, allowing the building of previously disordered parts of the structure. The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by careful investigation of the following parameters: dehydration rate, final relative humidity and total incubation time T{sub inc}. Of these, the most important was shown to be T{sub inc}. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously disordered parts of the structure.

  9. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  10. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: primoz@geofisica.unam.mx [Mullard Space Science Laboratory, University College London (United Kingdom)

    2016-12-20

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  11. SUPRATHERMAL ELECTRON STRAHL WIDTHS IN THE PRESENCE OF NARROW-BAND WHISTLER WAVES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Kajdič, P.; Alexandrova, O.; Maksimovic, M.; Lacombe, C.; Fazakerley, A. N.

    2016-01-01

    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E T ) and ∼676 eV (∼113 E T ) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  12. Studies of suprathermal electron loss in the magnetic ripple of Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Lipa, M.; Martin, G.; Chantant, M.; Guilhem, D.; Imbeaux, F.; Mitteau, R.; Peysson, Y.; Surle, F.

    2000-01-01

    A new prototype of protection against fast electron trapped in the magnetic ripple was installed on Tore-Supra in 1998. It was designed to support the high flux of fast electron generated by lower hybrid in the CIEL project (up to 6 MW/m 2 ) during steady state experiments. So it is actively cooled and allows a direct measurement of the energy lost in the ripple. (author)

  13. Suprathermal-electron generation, transport, and deposition in CO2-laser-irradiated targets

    International Nuclear Information System (INIS)

    Hauer, A.; Goldman, R.; Kristal, R.

    1982-01-01

    Experiments on both axial and lateral energy transport and deposition in spherical targets are described. A variety of diagnostics have been used to measure hot-electron transport and deposition including bremsstrahlung and inner-shell radiation and soft x-ray temperature measurements. Self-generated electric and magnetic fields play an important role in the transport and deposition of the hot electrons. In some cases distinct patterns of surface deposition consistent with magnetic-field configurations have been observed

  14. Finite grid radius and thickness effects on retarding potential analyzer measured suprathermal electron density and temperature

    International Nuclear Information System (INIS)

    Knudsen, W.C.

    1992-01-01

    The effect of finite grid radius and thickness on the electron current measured by planar retarding potential analyzers (RPAs) is analyzed numerically. Depending on the plasma environment, the current is significantly reduced below that which is calculated using a theoretical equation derived for an idealized RPA having grids with infinite radius and vanishingly small thickness. A correction factor to the idealized theoretical equation is derived for the Pioneer Venus (PV) orbiter RPA (ORPA) for electron gases consisting of one or more components obeying Maxwell statistics. The error in density and temperature of Maxwellian electron distributions previously derived from ORPA data using the theoretical expression for the idealized ORPA is evaluated by comparing the densities and temperatures derived from a sample of PV ORPA data using the theoretical expression with and without the correction factor

  15. Study of suprathermal electron transport in solid or compressed matter for the fast-ignitor scheme

    International Nuclear Information System (INIS)

    Perez, F.

    2010-01-01

    The inertial confinement fusion (ICF) concept is widely studied nowadays. It consists in quickly compressing and heating a small spherical capsule filled with fuel, using extremely energetic lasers. Since approximately 15 years, the fast-ignition (FI) technique has been proposed to facilitate the fuel heating by adding a particle beam - electrons generated by an ultra-intense laser - at the exact moment when the capsule compression is at its maximum. This thesis constitutes an experimental study of these electron beams generated by picosecond-scale lasers. We present new results on the characteristics of these electrons after they are accelerated by the laser (energy, divergence, etc.) as well as their interaction with the matter they pass through. The experimental results are explained and reveal different aspects of these laser-accelerated fast electrons. Their analysis allowed for significant progress in understanding several mechanisms: how they are injected into solid matter, how to measure their divergence, and how they can be automatically collimated inside compressed matter. (author) [fr

  16. Mach probe interpretation in the presence of supra-thermal electrons

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Gunn, J. P.

    2007-01-01

    Roč. 14, č. 3 (2007), 032501-1 ISSN 1070-664X R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : Mach probes * supra -thermal electrons * quasi-neutral PIC codes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.325, year: 2007

  17. Studies of suprathermal emission due to cyclotron-electronic heating of the tokamak TCV plasma

    International Nuclear Information System (INIS)

    Blanchard, P.

    2002-07-01

    Photo sensitization of wide band gap semiconductors is used in a wide range of application like silver halide photography and xerography. The development of a new type of solar cells, based on the sensitization of meso porous metal oxide films by panchromatic dyes, has triggered a lot of fundamental research on electron transfer dynamics. Upon excitation, the sensitizer transfers an electron in the conduction band of the semiconductor. Recombination of the charge separated state is prevented by the fast regeneration of the dye by an electron donor present in solution. Until recently, most of the work in this area has been focused on the competition between the recombination and the regeneration processes, which take place in the nanosecond to millisecond regime. With the development of solid-state femtosecond laser, the measurement of the dynamics of the first electron transfer step occurring in the solar cell has become possible . Electron injection from ruthenium(Il) poly pyridyl complexes into titanium dioxide has been found to occur with a poly exponential rate, with time constants ranging from 10 ps. In spite of the lately acquired capacity to measure the dynamics of these reactions, the physical meaning of this poly exponential kinetics and the factors that can influence this process are still poorly understood. In this work, the development of a new femtosecond pump-probe spectrometer, intended to monitor the ultrafast dynamics of electron injection, is presented. The study of this process requires an excellent temporal resolution and a large wavelength tunability to be able to excite a great variety of dyes and to probe the different products of the reaction. These specifications were met using the latest progress made in optical parametric amplification, which allowed the construction of a versatile experimental set-up. The interfacing by computer of the different devices used during the experiments increase the ease of use of the set-up. Transient

  18. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mayout, Saliha; Gougam, Leila Ait [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr, E-mail: mtribeche@usthb.dz [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria); Algerian Academy of Sciences and Technologies, Algiers (Algeria)

    2016-03-15

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  19. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    International Nuclear Information System (INIS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-01-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK–dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  20. Sparse inpainting and isotropy

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Stephen M.; McEwen, Jason D.; Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Marinucci, Domenico; Cammarota, Valentina [Department of Mathematics, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Roma, 00133 (Italy); Wandelt, Benjamin D., E-mail: s.feeney@imperial.ac.uk, E-mail: marinucc@axp.mat.uniroma2.it, E-mail: jason.mcewen@ucl.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: wandelt@iap.fr, E-mail: cammarot@axp.mat.uniroma2.it [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, 552 University Road, Santa Barbara, CA, 93106 (United States)

    2014-01-01

    Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.

  1. Isotropy of quadratic forms

    Indian Academy of Sciences (India)

    V. Suresh University Of Hyderabad Hyderabad

    2008-10-31

    Oct 31, 2008 ... We say that (a1,··· ,an) is a zero of the polynomial f if f (a1,··· ,an) = 0. One of the main problems in Mathematics is to determine whether the given polynomial has a (non-trivial) zero or not. For example, let us recall the Fermat's last theorem: V. Suresh University Of Hyderabad Hyderabad. Isotropy of quadratic ...

  2. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  3. Supra-thermal charged particle energies in a low pressure radio-frequency electrical discharge in air

    International Nuclear Information System (INIS)

    Littlefield, R.G.

    1976-01-01

    Velocity spectra of supra-thermal electrons escaping from a low-pressure radio-frequency discharge in air have been measured by a time-of-flight method of original design. In addition, the energy spectra of the supra-thermal electrons and positive ions escaping from the rf discharge have been measured by a retarding potential method. Various parameters affecting the energy of the supra-thermal charged particles are experimentally investigated. A model accounting for the supra-thermal charged particle energies is developed and is shown to be consistent with experimental observations

  4. Heating and generation of suprathermal particles at collisionless shocks

    International Nuclear Information System (INIS)

    Thomsen, M.F.

    1985-01-01

    Collisionless plasma shocks are different from ordinary collisional fluid shocks in several important respects. They do not in general heat the electrons and ions equally, nor do they produce Maxwellian velocity distributions downstream. Furthermore, they commonly generate suprathermal particles which propagate into the upstream region, giving advance warning of the presence of the shock and providing a ''seed'' population for further acceleration to high energies. Recent space observations and theory have revealed a great deal about the heating mechanisms which occur in collisionless shocks and about the origin of the various suprathermal particle populations which are found in association with them. An overview of the present understanding of these subjects is presented herein. 83 refs., 8 figs

  5. Testing isotropy in the local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Appleby, Stephen; Shafieloo, Arman, E-mail: stephen.appleby@apctp.org, E-mail: arman@apctp.org [Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2014-10-01

    We test the isotropy of the local distribution of galaxies using the 2MASS extended source catalogue. By decomposing the full sky survey into distinct patches and using a combination of photometric and spectroscopic redshift data, we use both parametric and non-parametric methods to obtain the shape of the luminosity function in each patch. We use the shape of the luminosity function to test the statistical isotropy of the underlying galaxy distribution. The parametric estimator shows some evidence of a hemispherical asymmetry in the north/south Galactic plane. However the non-parametric estimator exhibits no significant anisotropy, with the galaxy distribution being consistent with the assumption of isotropy in all regions considered. The parametric asymmetry is attributed to the relatively poor fit of the functional form to the underlying data. When using the non-parametric estimator, we do find a dipole in the shape of the luminosity function, with maximal deviation from isotropy at galactic coordinate (b,l)=(30{sup o},315{sup o}). However we can ascribe no strong statistical significance to this observation.

  6. Suprathermal ion transport in turbulent magnetized plasmas

    International Nuclear Information System (INIS)

    Bovet, A. D.

    2015-01-01

    Suprathermal ions, which have an energy greater than the quasi-Maxwellian background plasma temperature, are present in many laboratory and astrophysical plasmas. In fusion devices, they are generated by the fusion reactions and auxiliary heating. Controlling their transport is essential for the success of future fusion devices that could provide a clean, safe and abundant source of electric power to our society. In space, suprathermal ions include energetic solar particles and cosmic rays. The understanding of the acceleration and transport mechanisms of these particles is still incomplete. Basic plasma devices allow detailed measurements that are not accessible in astrophysical and fusion plasmas, due to the difficulty to access the former and the high temperatures of the latter. The basic toroidal device TORPEX offers an easy access for diagnostics, well characterized plasma scenarios and validated numerical simulations of its turbulence dynamics, making it the ideal platform for the investigation of suprathermal ion transport. This Thesis presents three-dimensional measurements of a suprathermal ion beam injected in turbulent TORPEX plasmas. The combination of uniquely resolved measurements and first principle numerical simulations reveals the general non-diffusive nature of the suprathermal ion transport. A precise characterization of their transport regime shows that, depending on their energies, suprathermal ions can experience either a super diffusive transport or a subdiffusive transport in the same background turbulence. The transport character is determined by the interaction of the suprathermal ion orbits with the turbulent plasma structures, which in turn depends on the ratio between the ion energy and the background plasma temperature. Time-resolved measurements reveal a clear difference in the intermittency of suprathermal ions time-traces depending on the transport regime they experience. Conditionally averaged measurements uncover the influence of

  7. Suprathermal protons in the interplanetary solar wind

    Science.gov (United States)

    Goodrich, C. C.; Lazarus, A. J.

    1976-01-01

    Using the Mariner 5 solar wind plasma and magnetic field data, we present observations of field-aligned suprathermal proton velocity distributions having pronounced high-energy shoulders. These observations, similar to the interpenetrating stream observations of Feldman et al. (1974), are clear evidence that such proton distributions are interplanetary rather than bow shock associated phenomena. Large Alfven speed is found to be a requirement for the occurrence of suprathermal proton distribution; further, we find the proportion of particles in the shoulder to be limited by the magnitude of the Alfven speed. It is suggested that this last result could indicate that the proton thermal anisotropy is limited at times by wave-particle interactions

  8. Suprathermal grains: on intergalactic magnetic fields

    International Nuclear Information System (INIS)

    Dasgupta, A.K.

    1979-01-01

    Charged dust grains of radii a approximately equal to 3 x 10 -6 to approximately 3 x 10 -5 cm may be driven out of the galaxy due to radiation pressure of starlight. Once clear of the main gas-dust layer, dust grains may then escape into intergalactic space. Such grains are virtually indestructible-being evaporated only during formation. The dust grains, once injected into the intergalactic medium, may acquire suprathermal energy, thus 'suprathermal grains' in collision with magnetized cloud by the Fermi process. In order to attain relativistic energy, suprathermal grains have to move in and out ('scattering') of the magnetic field of the medium. It is now well established that high energy cosmic rays are of the order 10 20 eV or more. It has been speculated that these high energy (> = 10 18 eV) cosmic ray particles are charged dust grains, of intergalactic origin. This is possible only if there exists a magnetic field in the intergalactic medium. (Auth.)

  9. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument

    Science.gov (United States)

    McFadden, J. P.; Kortmann, O.; Curtis, D.; Dalton, G.; Johnson, G.; Abiad, R.; Sterling, R.; Hatch, K.; Berg, P.; Tiu, C.; Gordon, D.; Heavner, S.; Robinson, M.; Marckwordt, M.; Lin, R.; Jakosky, B.

    2015-12-01

    The MAVEN SupraThermal And Thermal Ion Compostion (STATIC) instrument is designed to measure the ion composition and distribution function of the cold Martian ionosphere, the heated suprathermal tail of this plasma in the upper ionosphere, and the pickup ions accelerated by solar wind electric fields. STATIC operates over an energy range of 0.1 eV up to 30 keV, with a base time resolution of 4 seconds. The instrument consists of a toroidal "top hat" electrostatic analyzer with a 360° × 90° field-of-view, combined with a time-of-flight (TOF) velocity analyzer with 22.5° resolution in the detection plane. The TOF combines a -15 kV acceleration voltage with ultra-thin carbon foils to resolve H+, He^{++}, He+, O+, O2+, and CO2+ ions. Secondary electrons from carbon foils are detected by microchannel plate detectors and binned into a variety of data products with varying energy, mass, angle, and time resolution. To prevent detector saturation when measuring cold ram ions at periapsis (˜10^{1 1} eV/cm2 s sr eV), while maintaining adequate sensitivity to resolve tenuous pickup ions at apoapsis (˜103 eV/cm2 s sr eV), the sensor includes both mechanical and electrostatic attenuators that increase the dynamic range by a factor of 103. This paper describes the instrument hardware, including several innovative improvements over previous TOF sensors, the ground calibrations of the sensor, the data products generated by the experiment, and some early measurements during cruise phase to Mars.

  10. Ripple enhanced transport of suprathermal alpha particles

    International Nuclear Information System (INIS)

    Tani, K.; Takizuka, T.; Azumi, M.

    1986-01-01

    The ripple enhanced transport of suprathermal alpha particles has been studied by the newly developed Monte-Carlo code in which the motion of banana orbit in a toroidal field ripple is described by a mapping method. The existence of ripple-resonance diffusion has been confirmed numerically. We have developed another new code in which the radial displacement of banana orbit is given by the diffusion coefficients from the mapping code or the orbit following Monte-Carlo code. The ripple loss of α particles during slowing down has been estimated by the mapping model code as well as the diffusion model code. From the comparison of the results with those from the orbit-following Monte-Carlo code, it has been found that all of them agree very well. (author)

  11. Suprathermal He2+ in the Earth's foreshock region

    International Nuclear Information System (INIS)

    Fuselier, S.A.; Thomsen, M.F.; Ipavich, F.M.; Schmidt, W.K.H.

    1995-01-01

    ISEE 1 and 2 H + and He 2+ observations upstream from the Earth's bow shock are used to investigate the origin of energetic (or diffuse) ion distributions. Diffuse ion distributions have energies from a few keV/e to > 100 keV/e and have near solar wind concentrations (i.e., an average of about 4% He 2+ ). These distributions may evolve from suprathermal ion distributions that have energies between 1 and a few keV/e. Upstream intervals were selected from the ISEE data to determine which suprathermal distributions have He 2+ concentrations similar to those of diffuse ion distributions. The type of distribution and the location in the foreshock were similar in all events studied. Two intervals that represent the results from this study are discussed in detail. The results suggest that diffuse ion distributions evolve from suprathermal distributions in the region upstream from the quasi-parallel bow shock. For He 2+ , the suprathermal distribution is a nongyrotropic partial ring beam and has characteristics consistent with specular reflection off the quasi-parallel bow shock. The suprathermal proton distributions associated with these He 2+ distributions are nongyrotropic partial ring beams or nearly gyrotropic ring beams also approximately consistent with specular reflection. The location in the quasi-parallel foreshock and the similarity of the suprathermal He 2+ and H + distributions suggest that these are the seed population for diffuse distributions in the foreshock region. 30 refs., 5 figs., 1 tab

  12. Discovery of Suprathermal Fe+ in and near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-12-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been observed in and near Earth's equatorial magnetosphere using long-term ( 21 years) Geotail/STICS ion composition data. Fe+ is rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions. Earth's suprathermal Fe+ appears to be positively associated with both geomagnetic and solar activity. Three candidate lower-energy sources are examined for relevance: ionospheric outflow of Fe+ escaped from ion layers altitude, charge exchange of nominal solar wind Fe+≥7, and/or solar wind transported inner source pickup Fe+ (likely formed by solar wind Fe+≥7 interaction with near sun interplanetary dust particles, IDPs). Semi-permanent ionospheric Fe+ layers form near 100 km altitude from the tons of IDPs entering Earth's atmosphere daily. Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data at low-to-moderate geomagnetic activity levels, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source then. Earth flyby and cruise data from Cassini/CHEMS, a nearly identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Therefore, lacking any other candidate sources, it appears that ionospheric Fe+ constitutes at least an important portion of Earth's suprathermal Fe+, comparable to observations at Saturn where ionospheric origin suprathermal Fe+ has also been observed.

  13. Vorticity perturbations and isotropy of the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Anile, A M [Catania Univ. (Italy). Seminario di Matematica; Motta, S

    1976-06-01

    We investigate the effect of vorticity perturbations of an arbitrary Robertson-Walker universe on the isotropy of the cosmic microwave background. The predicted temperature variations are then compared with the upper limits recently found by Parijskij (1974). In this way we obtain an upper limit on the present vorticity on scales L approximately 10 Mpc which is only marginally consistent with the value suggested by de Vaucouleurs (1971), de Vaucouleurs and Peters (1968).

  14. Magnetospheric conditions near the equatorial footpoints of proton isotropy boundaries

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2015-12-01

    Full Text Available Data from a cluster of three THEMIS (Time History of Events and Macroscale Interactions during Substorms spacecraft during February–March 2009 frequently provide an opportunity to construct local data-adaptive magnetospheric models, which are suitable for the accurate mapping along the magnetic field lines at distances of 6–9 Re in the nightside magnetosphere. This allows us to map the isotropy boundaries (IBs of 30 and 80 keV protons observed by low-altitude NOAA POES (Polar Orbiting Environmental Satellites to the equatorial magnetosphere (to find the projected isotropy boundary, PIB and study the magnetospheric conditions, particularly to evaluate the ratio KIB (Rc/rc; the magnetic field curvature radius to the particle gyroradius in the neutral sheet at that point. Special care is taken to control the factors which influence the accuracy of the adaptive models and mapping. Data indicate that better accuracy of an adaptive model is achieved when the PIB distance from the closest spacecraft is as small as 1–2 Re. For this group of most accurate predictions, the spread of KIB values is still large (from 4 to 32, with the median value KIB ~13 being larger than the critical value Kcr ~ 8 expected at the inner boundary of nonadiabatic angular scattering in the current sheet. It appears that two different mechanisms may contribute to form the isotropy boundary. The group with K ~ [4,12] is most likely formed by current sheet scattering, whereas the group having KIB ~ [12,32] could be formed by the resonant scattering of low-energy protons by the electromagnetic ion-cyclotron (EMIC waves. The energy dependence of the upper K limit and close proximity of the latter event to the plasmapause locations support this conclusion. We also discuss other reasons why the K ~ 8 criterion for isotropization may fail to work, as well as a possible relationship between the two scattering mechanisms.

  15. Isotropy of low redshift type Ia supernovae: A Bayesian analysis

    Science.gov (United States)

    Andrade, U.; Bengaly, C. A. P.; Alcaniz, J. S.; Santos, B.

    2018-04-01

    The standard cosmology strongly relies upon the cosmological principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations from the standard cosmological paradigm. In this paper, we use the latest type Ia supernova compilations, namely JLA and Union2.1 to test the cosmological isotropy at low redshift ranges (z <0.1 ). This is performed through a Bayesian selection analysis, in which we compare the standard, isotropic model, with another one including a dipole correction due to peculiar velocities. The full covariance matrix of SN distance uncertainties are taken into account. We find that the JLA sample favors the standard model, whilst the Union2.1 results are inconclusive, yet the constraints from both compilations are in agreement with previous analyses. We conclude that there is no evidence for a dipole anisotropy from nearby supernova compilations, albeit this test should be greatly improved with the much-improved data sets from upcoming cosmological surveys.

  16. Studies of suprathermal emission due to cyclotron-electronic heating of the tokamak TCV plasma; Etudes du rayonnement suprathermique emis lors du chauffage cyclotronique electronique du plasma du tokamak TCV

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P

    2002-07-01

    Photo sensitization of wide band gap semiconductors is used in a wide range of application like silver halide photography and xerography. The development of a new type of solar cells, based on the sensitization of meso porous metal oxide films by panchromatic dyes, has triggered a lot of fundamental research on electron transfer dynamics. Upon excitation, the sensitizer transfers an electron in the conduction band of the semiconductor. Recombination of the charge separated state is prevented by the fast regeneration of the dye by an electron donor present in solution. Until recently, most of the work in this area has been focused on the competition between the recombination and the regeneration processes, which take place in the nanosecond to millisecond regime. With the development of solid-state femtosecond laser, the measurement of the dynamics of the first electron transfer step occurring in the solar cell has become possible . Electron injection from ruthenium(Il) poly pyridyl complexes into titanium dioxide has been found to occur with a poly exponential rate, with time constants ranging from < 100 fs up to > 10 ps. In spite of the lately acquired capacity to measure the dynamics of these reactions, the physical meaning of this poly exponential kinetics and the factors that can influence this process are still poorly understood. In this work, the development of a new femtosecond pump-probe spectrometer, intended to monitor the ultrafast dynamics of electron injection, is presented. The study of this process requires an excellent temporal resolution and a large wavelength tunability to be able to excite a great variety of dyes and to probe the different products of the reaction. These specifications were met using the latest progress made in optical parametric amplification, which allowed the construction of a versatile experimental set-up. The interfacing by computer of the different devices used during the experiments increase the ease of use of the set

  17. (an)isotropy of the X-ray sky

    International Nuclear Information System (INIS)

    Shafer, R.A.; Fabian, A.C.

    1983-01-01

    An assessment is made of the extent to which the study of the isotropy of the X-ray sky has contributed to the present understanding of the structure of the universe at moderate redshifts. It is, of course, the anisotropic character of the sky flux that is valuable in this context. Although it is not currently possible to undertake measurements with the precision and small solid angles that are typically achieved in the microwave range, the comparatively crude limits from the X-ray fluctuations place limits on the largest scale structure of the universe. After indicating the nature of measurements made, with the HEAO 1 A-2 experiment, of the X-ray sky and its anisotropies, it is shown how these place limits on the origin of the X-ray sky and on any large scale structure of the universe. 40 references

  18. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Akrami, Y.; Aluri, P.K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Liu, H.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zibin, J.P.; Zonca, A.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold S...

  19. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.R.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Couchot, F.; Coulais, A.; Crill, B.P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, M.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kim, J.; Kisner, T.S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McEwen, J.D.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H.V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Pogosyan, D.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rath, C.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rotti, A.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Souradeep, T.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the cosmic microwave background (CMB) anisotropy from the Planck satellite. Deviations from isotropy have been found and demonstrated to be robust against component separation algorithm, mask choice and frequency dependence. Many of these anomalies were previously observed in the WMAP data, and are now confirmed at similar levels of significance (about 3 sigma). However, we find little evidence for non-Gaussianity, with the exception of a few statistical signatures that seem to be associated with specific anomalies. In particular, we find that the quadrupole-octopole alignment is also connected to a low observed variance of the CMB signal. A power asymmetry is now found to persist to scales corresponding to about l=600, and can be described in the low-l regime by a phenomenological dipole modulation model. However, any primordial powe...

  20. Testing statistical isotropy in cosmic microwave background polarization maps

    Science.gov (United States)

    Rath, Pranati K.; Samal, Pramoda Kumar; Panda, Srikanta; Mishra, Debesh D.; Aluri, Pavan K.

    2018-04-01

    We apply our symmetry based Power tensor technique to test conformity of PLANCK Polarization maps with statistical isotropy. On a wide range of angular scales (l = 40 - 150), our preliminary analysis detects many statistically anisotropic multipoles in foreground cleaned full sky PLANCK polarization maps viz., COMMANDER and NILC. We also study the effect of residual foregrounds that may still be present in the Galactic plane using both common UPB77 polarization mask, as well as the individual component separation method specific polarization masks. However, some of the statistically anisotropic modes still persist, albeit significantly in NILC map. We further probed the data for any coherent alignments across multipoles in several bins from the chosen multipole range.

  1. Observations of thermal and suprathermal tail ions from WIND

    Science.gov (United States)

    Randol, B. M.; Christian, E. R.; Wilson, L. B., III

    2016-12-01

    The velocity distribution function (VDF) of solar wind protons (as well as other ion populations) is comprised of a thermal Maxwellian core and an accelerated suprathermal tail, beginning at around 1 keV in the frame co-moving with solar wind bulk velocity. The form of the suprathermal tail is a power law in phase space density, f, vs. speed, v, such that f / vγ, where γ is the power law index. This commonly observed index is of particular interest because no traditional theory predicts its existence. We need more data in order to test these theories. The general shape is of interest because it is kappa-like. We show combined observations from three different instruments on the WIND spacecraft: 3DP/PLSP, STICS, and 3DP/SST/Open. These data stretch from 102 to 107 eV in energy, encompassing both the thermal and suprathermal proton populations. We show further evidence for this kappa-like distribution and report on our progress on fitting of empirical functions to these data.

  2. Spectrum and isotropy of the submillimeter background radiation

    International Nuclear Information System (INIS)

    Muehlner, D.

    1977-01-01

    Two great astronomical discoveries have most shaped our present concept of the Big Bang universe. Like the Hubble recession of the galaxies, the discovery of the 3 0 K background radiation by Penzias and Wilson in 1965 has given rise to a line of research which is still very active today. Penzias and Wilson's universal microwave background at 7 cm was immediately interpreted by R.H. Dicke's group at Princeton as coming from the primordial fireball of incandescent plasma which filled the universe for the million years or so after its explosive birth. This interpretation gives rise to two crucial predictions as to the nature of the background radiation. Its spectrum should be thermal even after having been red shifted by a factor of approximately 1000 by the expansion of the universe, and the radiation should be isotropic - assuming that the universe itself is isotropic. If the background radiation is indeed from the primordial fireball it affords us the only direct view at the very young universe. This paper deals with the spectrum and then the isotropy of the background radiation, with emphasis on high frequency or submillimeter measurements. Prospects for the future are discussed briefly. (Auth.)

  3. How does tissue preparation affect skeletal muscle transverse isotropy?

    Science.gov (United States)

    Wheatley, Benjamin B.; Odegard, Gregory M.; Kaufman, Kenton R.; Haut Donahue, Tammy L.

    2016-01-01

    The passive tensile properties of skeletal muscle play a key role in its physiological function. Previous research has identified conflicting reports of muscle transverse isotropy, with some data suggesting the longitudinal direction is stiffest, while others show the transverse direction is stiffest. Accurate constitutive models of skeletal muscle must be employed to provide correct recommendations for and observations of clinical methods. The goal of this work was to identify transversely isotropic tensile muscle properties as a function of post mortem handling. Six pairs of tibialis anterior muscles were harvested from Giant Flemish rabbits and split into two groups: fresh testing (within four hours post mortem), and non-fresh testing (subject to delayed testing and a freeze/thaw cycle). Longitudinal and transverse samples were removed from each muscle and tested to identify tensile modulus and relaxation behavior. Longitudinal non-fresh samples exhibited a higher initial modulus value and faster relaxation than longitudinal fresh, transverse fresh, and transverse rigor samples (p<0.05), while longitudinal fresh samples were less stiff at lower strain levels than longitudinal non-fresh, transverse fresh, and transverse non-fresh samples (p<0.05), but exhibited more nonlinear behavior. While fresh skeletal muscle exhibits a higher transverse modulus than longitudinal modulus, discrepancies in previously published data may be the result of a number of differences in experimental protocol. Constitutive modeling of fresh muscle should reflect these data by identifying the material as truly transversely isotropic and not as an isotropic matrix reinforced with fibers. PMID:27425557

  4. A measure for isotropy-equilibrium degree of a multi-particle system

    International Nuclear Information System (INIS)

    Liu Zhiqing; Li Runze; Xu Mingmei; Liu Lianshou

    2008-01-01

    Aiming at using sphericity as a tool to study the isotropy-equilibrium property of a multi-particle system, in particular the hadronic final state IFS produced in instanton-induced DIS events, we discuss in detail the dependence is sphericity on multiplicity and the multiplicity distribution, as well as on the isotropy degree of the system. A rotational symmetric model with a fluctuating isotropy-degree is constructed, which can fit the mean and width of sphericity of the Monte Carlo IFS-results simultaneously. The IFS from the Monte Carlo simulation is found to be not ideally isotropic but has a probability of 4.7% to be isotropic within error of 5%. The results provide us a description of how far the IFS departs from equilibrium. The method developed is applicable to any Monte Carlo generated multi-particle system, for which the isotropy-equilibrium property is significant. (authors)

  5. Isotropy-violation diagnostics for B -mode polarization foregrounds to the Cosmic Microwave Background

    Energy Technology Data Exchange (ETDEWEB)

    Rotti, Aditya; Huffenberger, Kevin, E-mail: adityarotti@gmail.com, E-mail: khuffenberger@fsu.edu [Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32306 (United States)

    2016-09-01

    Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B -modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B -mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is also a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B -modes, particularly in cases of limited frequency coverage.

  6. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  7. A physical mechanism producing suprathermal populations and initiating substorms in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2008-06-01

    Full Text Available We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS the stretched (tail-like magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≈7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≈10 RE selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now

  8. Time Variations of the Spectral Indices of the Suprathermal Distribution as observed by WIND/STICS

    Science.gov (United States)

    Gruesbeck, J. R.; Christian, E. R.; Lepri, S. T.; Thomas, J.; Zurbuchen, T.; Gloeckler, G.

    2011-12-01

    Suprathermal particle spectra, measured in various regions of the heliosphere and heliosheath by Ulysses, ACE and Voyager, have recently been reported. In many cases long accumulation times had to be used to obtain sufficient statistical accuracy, and corrections were necessary, since only a fraction of phase space was measured. The SupraThermal Ion Composition Spectrometer (STICS), onboard Wind, enables observations of the suprathermal plasma in the solar wind at much higher time resolution. In addition, the STICS samples nearly full three-dimensional phase space, enabling measurements of anisotropies. We present a multi-year investigation of the spectral index of the suprathermal distribution, accumulated over 1 day and less, where we see significant time variation. An average lower bound value of the spectral index is at ~ -5, however, there are time periods during which the observed distributions steepen. We will also present an analysis of time and spatial variations of the suprathermal particle fluxes, observed by STICS and other instruments. In particular, we will compare the observed variability with predictions from a model by Bochsler and Moebius, based on data of the Interstellar Boundary Explorer (IBEX), who postulated that energetic neutral atoms, from outside of the heliosheath, which then penetrate the inner heliosphere and are finally ionized, could be a source of the very suprathermal populations we observe.

  9. Suprathermal fusion reactions in laser-imploded D-T pellets. Applicability to pellet diagnosis and necessity of nuclear data

    International Nuclear Information System (INIS)

    Tabaru, Y.; Nakao, Y.; Kudo, K.; Nakashima, H.

    1995-01-01

    The suprathermal fusion reaction is examined on the basis of coupled transport/hydrodynamic calculation. We also calculate the energy spectrum of neutrons bursting from DT pellet. Because of suprathermal fusion and rapid pellet expansion, these neutrons contain fast components whose maximum energy reachs about 40 MeV. The pellet ρR diagnosis by the detection of suprathermal fusion neutrons is discussed. (author)

  10. Planck 2015 results: XVI. Isotropy and statistics of the CMB

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Akrami, Y.

    2016-01-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consi...

  11. A wavenumber approach to quantifying the isotropy of the sound field in reverberant spaces

    DEFF Research Database (Denmark)

    Nolan, Melanie; Fernandez Grande, Efren; Brunskog, Jonas

    2018-01-01

    This study proposes an experimental method for evaluating isotropy in enclosures, based on an analysis of the wavenumber spectrum in the spherical harmonics domain. The wavenumber spectrum, which results from expanding an arbitrary sound field into a plane-wave basis, is used to characterize the ...

  12. Asymptotic freedom in the early big bang and the isotropy of the cosmic microwave background

    Science.gov (United States)

    Stecker, F. W.

    1980-01-01

    It is suggested that a superunified field theory incorporating gravity and possessing asymptotic freedom could provide a solution to the problem of the isotropy of the universal 3 K background radiation. Thermal equilibrium could be established in this context through interactions occurring in a temporally indefinite pre-Planckian era.

  13. Asymptotic freedom in the early big-bang and the isotropy of the cosmic microwave background

    Science.gov (United States)

    Stecker, F. W.

    1979-01-01

    The isotropy of the universal 3K background radiation is discussed and a superunified field theory incorporating gravity and possessing asymptotic freedom is suggested to provide a solution to the problem. Thermal equilibrium is established in this context through interactions occurring in a temporally indefinite preplanckian era.

  14. Suprathermal He{sup 2+} in the Earth`s foreshock region

    Energy Technology Data Exchange (ETDEWEB)

    Fuselier, S.A. [Lockheed Palo Alto Research Lab., CA (United States); Thomsen, M.F. [Los Alamos National Lab., NM (United States); Ipavich, F.M. [Univ. of Maryland, College Park, MD (United States); Schmidt, W.K.H. [Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau (Germany)

    1995-09-01

    ISEE 1 and 2 H{sup +} and He{sup 2+} observations upstream from the Earth`s bow shock are used to investigate the origin of energetic (or diffuse) ion distributions. Diffuse ion distributions have energies from a few keV/e to > 100 keV/e and have near solar wind concentrations (i.e., an average of about 4% He{sup 2+}). These distributions may evolve from suprathermal ion distributions that have energies between 1 and a few keV/e. Upstream intervals were selected from the ISEE data to determine which suprathermal distributions have He{sup 2+} concentrations similar to those of diffuse ion distributions. The type of distribution and the location in the foreshock were similar in all events studied. Two intervals that represent the results from this study are discussed in detail. The results suggest that diffuse ion distributions evolve from suprathermal distributions in the region upstream from the quasi-parallel bow shock. For He{sup 2+}, the suprathermal distribution is a nongyrotropic partial ring beam and has characteristics consistent with specular reflection off the quasi-parallel bow shock. The suprathermal proton distributions associated with these He{sup 2+} distributions are nongyrotropic partial ring beams or nearly gyrotropic ring beams also approximately consistent with specular reflection. The location in the quasi-parallel foreshock and the similarity of the suprathermal He{sup 2+} and H{sup +} distributions suggest that these are the seed population for diffuse distributions in the foreshock region. 30 refs., 5 figs., 1 tab.

  15. Discovery of Suprathermal Ionospheric Origin Fe+ in and Near Earth's Magnetosphere

    Science.gov (United States)

    Christon, S. P.; Hamilton, D. C.; Plane, J. M. C.; Mitchell, D. G.; Grebowsky, J. M.; Spjeldvik, W. N.; Nylund, S. R.

    2017-11-01

    Suprathermal (87-212 keV/e) singly charged iron, Fe+, has been discovered in and near Earth's 9-30 RE equatorial magnetosphere using 21 years of Geotail STICS (suprathermal ion composition spectrometer) data. Its detection is enhanced during higher geomagnetic and solar activity levels. Fe+, rare compared to dominant suprathermal solar wind and ionospheric origin heavy ions, might derive from one or all three candidate lower-energy sources: (a) ionospheric outflow of Fe+ escaped from ion layers near 100 km altitude, (b) charge exchange of nominal solar wind iron, Fe+≥7, in Earth's exosphere, or (c) inner source pickup Fe+ carried by the solar wind, likely formed by solar wind Fe interaction with near-Sun interplanetary dust particles. Earth's semipermanent ionospheric Fe+ layers derive from tons of interplanetary dust particles entering Earth's atmosphere daily, and Fe+ scattered from these layers is observed up to 1000 km altitude, likely escaping in strong ionospheric outflows. Using 26% of STICS's magnetosphere-dominated data when possible Fe+2 ions are not masked by other ions, we demonstrate that solar wind Fe charge exchange secondaries are not an obvious Fe+ source. Contemporaneous Earth flyby and cruise data from charge-energy-mass spectrometer on the Cassini spacecraft, a functionally identical instrument, show that inner source pickup Fe+ is likely not important at suprathermal energies. Consequently, we suggest that ionospheric Fe+ constitutes at least a significant portion of Earth's suprathermal Fe+, comparable to the situation at Saturn where suprathermal Fe+ is also likely of ionospheric origin.

  16. Testing the statistical isotropy of large scale structure with multipole vectors

    International Nuclear Information System (INIS)

    Zunckel, Caroline; Huterer, Dragan; Starkman, Glenn D.

    2011-01-01

    A fundamental assumption in cosmology is that of statistical isotropy - that the Universe, on average, looks the same in every direction in the sky. Statistical isotropy has recently been tested stringently using cosmic microwave background data, leading to intriguing results on large angular scales. Here we apply some of the same techniques used in the cosmic microwave background to the distribution of galaxies on the sky. Using the multipole vector approach, where each multipole in the harmonic decomposition of galaxy density field is described by unit vectors and an amplitude, we lay out the basic formalism of how to reconstruct the multipole vectors and their statistics out of galaxy survey catalogs. We apply the algorithm to synthetic galaxy maps, and study the sensitivity of the multipole vector reconstruction accuracy to the density, depth, sky coverage, and pixelization of galaxy catalog maps.

  17. Interaction of supra-thermal ions with turbulence in a magnetized toroidal plasma

    International Nuclear Information System (INIS)

    Plyushchev, G.

    2009-01-01

    This thesis addresses the interaction of a supra-thermal ion beam with turbulence in the simple magnetized toroidal plasma of TORPEX. The first part of the Thesis deals with the ohmic assisted discharges on TORPEX. The aim of these discharges is the investigation of the open to closed magnetic field line transition. The relevant magnetic diagnostics were developed. Ohmic assisted discharges with a maximum plasma current up to 1 kA are routinely obtained. The equilibrium conditions on the vacuum magnetic field configuration were investigated. In the second part of the Thesis, the design of the fast ion source and detector are discussed. The accelerating electric field needed for the fast ion source was optimized. The fast ion source was constructed and commissioned. To detect the fast ions a specially designed gridded energy analyzer was used. The electron energy distribution function was obtained to demonstrate the efficiency of the detector. The experiments with the fast ion beam were conducted in different plasma regions of TORPEX. In the third part of the Thesis, numerical simulations are used to interpret the measured fast ion beam behavior. It is shown that a simple single particle equation of motion explains the beam behavior in the experiments in the absence of plasma. To explain the fast ion beam experiments with the plasma a turbulent electric field must be used. The model that takes into account this turbulent electrical field qualitatively explains the shape of the fast ion current density profile in the different plasma regions of TORPEX. The vertically elongated fast ion current density profiles are explained by a spread in the fast ion velocity distribution. The theoretically predicted radial fast ion beam spreading due to the turbulent electric field was observed in the experiment. (author)

  18. Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity

    International Nuclear Information System (INIS)

    Mueller, Holger; Chiow, Sheng-wey; Herrmann, Sven; Chu, Steven; Chung, Keng-Yeow

    2008-01-01

    We present a test of the local Lorentz invariance of post-Newtonian gravity by monitoring Earth's gravity with a Mach-Zehnder atom interferometer that features a resolution of up to 8x10 -9 g/√(Hz), the highest reported thus far. Expressed within the standard model extension (SME) or Nordtvedt's anisotropic universe model, the analysis limits four coefficients describing anisotropic gravity at the ppb level and three others, for the first time, at the 10 ppm level. Using the SME we explicitly demonstrate how the experiment actually compares the isotropy of gravity and electromagnetism

  19. MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY

    Directory of Open Access Journals (Sweden)

    Pablo Gregori

    2014-03-01

    Full Text Available This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF, tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.

  20. High symmetry versus optical isotropy of a negative-index metamaterial

    DEFF Research Database (Denmark)

    Menzel, Christoph; Rockstuhl, Carsten; Lliew, Rumen

    2010-01-01

    condition since it is usually assumed that light does not resolve the spatial details of MM but experiences the properties of an effective medium, which is then optically isotropic. In this work we challenge this assumption by analyzing the isofrequency surfaces of the dispersion relation of the split cube...... in carcass negative index MM. We show that this MM is basically optically isotropic but not in the spectral domain where it exhibits negative refraction. The primary goal of this contribution is to introduce a tool that allows to probe a MM against optical isotropy....

  1. Invariant Theory for Dispersed Transverse Isotropy: An Efficient Means for Modeling Fiber Splay

    Science.gov (United States)

    Freed, alan D.; Einstein, Daniel R.; Vesely, Ivan

    2004-01-01

    Most soft tissues possess an oriented architecture of collagen fiber bundles, conferring both anisotropy and nonlinearity to their elastic behavior. Transverse isotropy has often been assumed for a subset of these tissues that have a single macroscopically-identifiable preferred fiber direction. Micro-structural studies, however, suggest that, in some tissues, collagen fibers are approximately normally distributed about a mean preferred fiber direction. Structural constitutive equations that account for this dispersion of fibers have been shown to capture the mechanical complexity of these tissues quite well. Such descriptions, however, are computationally cumbersome for two-dimensional (2D) fiber distributions, let alone for fully three-dimensional (3D) fiber populations. In this paper, we develop a new constitutive law for such tissues, based on a novel invariant theory for dispersed transverse isotropy. The invariant theory is based on a novel closed-form splay invariant that can easily handle 3D fiber populations, and that only requires a single parameter in the 2D case. The model is polyconvex and fits biaxial data for aortic valve tissue as accurately as the standard structural model. Modification of the fiber stress-strain law requires no re-formulation of the constitutive tangent matrix, making the model flexible for different types of soft tissues. Most importantly, the model is computationally expedient in a finite-element analysis.

  2. A kinetic study of solar wind electrons

    International Nuclear Information System (INIS)

    Lie-Svendsen, Oeystein; Leer, Egil

    1996-01-01

    The evolution of the distribution function for a test population of electrons in an isothermal electron-proton corona has been studied using a Fokker-Planck description. The aim is to investigate whether a suprathermal tail forms due to the energy dependence of the Coulomb cross section. We find that a Maxwellian test population, injected into this background close to the coronal base with a temperature equal to that of the background electrons, maintains its shape throughout the transition from collision-dominated to collisionless flow. No significant suprathermal tail in the electron distribution function is seen in the outer corona

  3. Stereo ENA Imaging of the Ring Current and Multi-point Measurements of Suprathermal Particles and Magnetic Fields by TRIO-CINEMA

    Science.gov (United States)

    Lin, R. P.; Sample, J. G.; Immel, T. J.; Lee, D.; Horbury, T. S.; Jin, H.; SEON, J.; Wang, L.; Roelof, E. C.; Lee, E.; Parks, G. K.; Vo, H.

    2012-12-01

    The TRIO (Triplet Ionospheric Observatory) - CINEMA (Cubesat for Ions, Neutrals, Electrons, & Magnetic fields) mission consists of three identical 3-u cubesats to provide high sensitivity, high cadence, stereo measurements of Energetic Neutral Atoms (ENAs) from the Earth's ring current with ~1 keV FWHM energy resolution from ~4 to ~200 keV, as well as multi-point in situ measurements of magnetic fields and suprathermal electrons (~2 -200 keV) and ions (~ 4 -200 keV) in the auroral and ring current precipitation regions in low Earth orbit (LEO). A new Suprathermal Electron, Ion, Neutral (STEIN) instrument, using a 32-pixel silicon semiconductor detector with an electrostatic deflection system to separate ENAs from ions and from electrons below 30 keV, will sweep over most of the sky every 15 s as the spacecraft spins at 4 rpm. In addition, inboard and outboard (on an extendable 1m boom) miniature magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. An S-band transmitter will be used to provide ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station.The first CINEMA (funded by NSF) is scheduled for launch on August 14, 2012 into a 65 deg. inclination LEO. Two more identical CINEMAs are being developed by Kyung Hee University (KHU) in Korea under the World Class University (WCU) program, for launch in November 2012 into a Sun-synchronous LEO to form TRIO-CINEMA. A fourth CINEMA is being developed for a 2013 launch into LEO. This LEO constellation of nanosatellites will provide unique measurements highly complementary to NASA's RBSP and THEMIS missions. Furthermore, CINEMA's development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft may be important for future constellation space missions. Initial results from the first CINEMA will be presented if available.

  4. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Manonukul, Anchalee, E-mail: anchalm@mtec.or.th [National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Srikudvien, Pathompoom [National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Tange, Makiko [Taisei Kogyo Thailand Co., Ltd., Room INC2d-409, Innovation Cluster 2 Building, Tower D, 141 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Puncreobutr, Chedtha [Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2016-02-08

    Polyurethane (PU) foams have both geometry and mechanical property anisotropy. Metal foams, which are manufacturing by investment casting or melt deposition method and using PU foam as a template, also have mechanical property anisotropy. This work studied the mechanical properties in two directions of titanium foam with four different cell sizes fabricated using the replica impregnation method. The two directions are (1) the loading direction parallel to the foaming direction where the cells are elongated (EL direction) and (2) the loading direction perpendicular to the foaming direction where the cell are equiaxed (EQ direction). The results show that the compression responses for both EL and EQ directions are isotropy. Micrographs and X-ray micro-computed tomography show that the degree of geometry anisotropy is not strong enough to results in mechanical property anisotropy.

  5. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method

    International Nuclear Information System (INIS)

    Manonukul, Anchalee; Srikudvien, Pathompoom; Tange, Makiko; Puncreobutr, Chedtha

    2016-01-01

    Polyurethane (PU) foams have both geometry and mechanical property anisotropy. Metal foams, which are manufacturing by investment casting or melt deposition method and using PU foam as a template, also have mechanical property anisotropy. This work studied the mechanical properties in two directions of titanium foam with four different cell sizes fabricated using the replica impregnation method. The two directions are (1) the loading direction parallel to the foaming direction where the cells are elongated (EL direction) and (2) the loading direction perpendicular to the foaming direction where the cell are equiaxed (EQ direction). The results show that the compression responses for both EL and EQ directions are isotropy. Micrographs and X-ray micro-computed tomography show that the degree of geometry anisotropy is not strong enough to results in mechanical property anisotropy.

  6. Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons

    Science.gov (United States)

    Sergeev, V. A.; Chernyaeva, S. A.; Apatenkov, S. V.; Ganushkina, N. Y.; Dubyagin, S. V.

    2015-08-01

    Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy-latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.

  7. Planar isotropy of passive scalar turbulent mixing with a mean perpendicular gradient.

    Science.gov (United States)

    Danaila, L; Dusek, J; Le Gal, P; Anselmet, F; Brun, C; Pumir, A

    1999-08-01

    A recently proposed evolution equation [Vaienti et al., Physica D 85, 405 (1994)] for the probability density functions (PDF's) of turbulent passive scalar increments obtained under the assumptions of fully three-dimensional homogeneity and isotropy is submitted to validation using direct numerical simulation (DNS) results of the mixing of a passive scalar with a nonzero mean gradient by a homogeneous and isotropic turbulent velocity field. It is shown that this approach leads to a quantitatively correct balance between the different terms of the equation, in a plane perpendicular to the mean gradient, at small scales and at large Péclet number. A weaker assumption of homogeneity and isotropy restricted to the plane normal to the mean gradient is then considered to derive an equation describing the evolution of the PDF's as a function of the spatial scale and the scalar increments. A very good agreement between the theory and the DNS data is obtained at all scales. As a particular case of the theory, we derive a generalized form for the well-known Yaglom equation (the isotropic relation between the second-order moments for temperature increments and the third-order velocity-temperature mixed moments). This approach allows us to determine quantitatively how the integral scale properties influence the properties of mixing throughout the whole range of scales. In the simple configuration considered here, the PDF's of the scalar increments perpendicular to the mean gradient can be theoretically described once the sources of inhomogeneity and anisotropy at large scales are correctly taken into account.

  8. Calculation of Self-consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.

    2003-01-01

    Convective transport of supra-thermal electrons can play a significant role in the energy balance of stellarators in case of high power electron cyclotron heating. Here, together with neoclassical thermal particle fluxes also the supra-thermal electron flux should be taken into account in the flux ambipolarity condition, which defines the self-consistent radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial electric field, one needs an iterative procedure to solve the ambipolarity condition, where the supra-thermal electron flux has to be calculated for each iteration. A conventional Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes is rather slow for performing the iterations in reasonable computer time. In the present report, the Stochastic Mapping Technique (SMT), which is more effective than the conventional Monte Carlo method, is used instead. Here, the problem with a local monoenergetic supra-thermal particle source is considered and the effect of supra-thermal electron fluxes on both, the self-consistent radial electric field and the formation of different roots of the ambipolarity condition are studied

  9. Electron distribution functions in Io plasma torus

    International Nuclear Information System (INIS)

    Boev, A.G.

    2003-01-01

    Electron distribution functions measured by the Voyager 1 in different shares of the Io plasma torus are explained. It is proved that their suprathermal tails are formed by the electrical field induced by the 'Jupiter wind'. The Maxwellian parts of all these spectra characterize thermal equilibrium populations of electrons and the radiation of exited ions

  10. Space-dependent step features: Transient breakdown of slow-roll, homogeneity, and isotropy during inflation

    International Nuclear Information System (INIS)

    Lerner, Rose N.; McDonald, John

    2009-01-01

    A step feature in the inflaton potential can model a transient breakdown of slow-roll inflation. Here we generalize the step feature to include space-dependence, allowing it also to model a breakdown of homogeneity and isotropy. The space-dependent inflaton potential generates a classical curvature perturbation mode characterized by the wave number of the step inhomogeneity. For inhomogeneities small compared with the horizon at the step, space-dependence has a small effect on the curvature perturbation. Therefore, the smoothly oscillating quantum power spectrum predicted by the homogeneous step is robust with respect to subhorizon space-dependence. For inhomogeneities equal to or greater than the horizon at the step, the space-dependent classical mode can dominate, producing a curvature perturbation in which modes of wave number determined by the step inhomogeneity are superimposed on the oscillating power spectrum. Generation of a space-dependent step feature may therefore provide a mechanism to introduce primordial anisotropy into the curvature perturbation. Space-dependence also modifies the quantum fluctuations, in particular, via resonancelike features coming from mode coupling to amplified superhorizon modes. However, these effects are small relative to the classical modes.

  11. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-01-01

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index κ increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].

  12. Isotropy of an Upper Limb Exoskeleton and the Kinematics and Dynamics of the Human Arm

    Directory of Open Access Journals (Sweden)

    Joel C. Perry

    2009-01-01

    Full Text Available The integration of human and robot into a single system offers remarkable opportunities for a new generation of assistive technology. Despite the recent prominence of upper limb exoskeletons in assistive applications, the human arm kinematics and dynamics are usually described in single or multiple arm movements that are not associated with any concrete activity of daily living (ADL. Moreover, the design of an exoskeleton, which is physically linked to the human body, must have a workspace that matches as close as possible with the workspace of the human body, while at the same time avoid singular configurations of the exoskeleton within the human workspace. The aims of the research reported in this manuscript are (1 to study the kinematics and the dynamics of the human arm during daily activities in a free and unconstrained environment, (2 to study the manipulability (isotropy of a 7-degree-of-freedom (DOF-powered exoskeleton arm given the kinematics and the dynamics of the human arm in ADLs. Kinematic data of the upper limb were acquired with a motion capture system while performing 24 daily activities from six subjects. Utilising a 7-DOF model of the human arm, the equations of motion were used to calculate joint torques from measured kinematics. In addition, the exoskeleton isotropy was calculated and mapped with respect to the spacial distribution of the human arm configurations during the 24 daily activities. The results indicate that the kinematic joint distributions representing all 24 actions appear normally distributed except for elbow flexion–extension with the emergence of three modal centres. Velocity and acceleration components of joint torque distributions were normally distributed about 0 Nm, whereas gravitational component distributions varied with joint. Additionally, velocity effects were found to contribute only 1/100th of the total joint torque, whereas acceleration components contribute 1/10th of the total torque at the

  13. Proton isotropy boundaries as measured on mid- and low-altitude satellites

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2005-07-01

    Full Text Available Polar CAMMICE MICS proton pitch angle distributions with energies of 31-80 keV were analyzed to determine the locations where anisotropic pitch angle distributions (perpendicular flux dominating change to isotropic distributions. We compared the positions of these mid-altitude isotropic distribution boundaries (IDB for different activity conditions with low-altitude isotropic boundaries (IB observed by NOAA 12. Although the obtained statistical properties of IDBs were quite similar to those of IBs, a small difference in latitudes, most pronounced on the nightside and dayside, was found. We selected several events during which simultaneous observations in the same local time sector were available from Polar at mid-altitudes, and NOAA or DMSP at low-altitudes. Magnetic field mapping using the Tsyganenko T01 model with the observed solar wind input parameters showed that the low- and mid-altitude isotropization boundaries were closely located, which leads us to suggest that the Polar IDB and low-altitude IBs are related. Furthermore, we introduced a procedure to control the difference between the observed and model magnetic field to reduce the large scatter in the mapping. We showed that the isotropic distribution boundary (IDB lies in the region where Rc/ρ~6, that is at the boundary of the region where the non-adiabatic pitch angle scattering is strong enough. We therefore conclude that the scattering in the large field line curvature regions in the nightside current sheet is the main mechanism producing isotropization for the main portion of proton population in the tail current sheet. This mechanism controls the observed positions of both IB and IDB boundaries. Thus, this tail region can be probed, in its turn, with observations of these isotropy boundaries. Keywords. Magnetospheric physics (Energetic particles, Precipitating; Magnetospheric configuration and dynamics; Magnetotail

  14. Proton isotropy boundaries as measured on mid- and low-altitude satellites

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2005-07-01

    Full Text Available Polar CAMMICE MICS proton pitch angle distributions with energies of 31-80 keV were analyzed to determine the locations where anisotropic pitch angle distributions (perpendicular flux dominating change to isotropic distributions. We compared the positions of these mid-altitude isotropic distribution boundaries (IDB for different activity conditions with low-altitude isotropic boundaries (IB observed by NOAA 12. Although the obtained statistical properties of IDBs were quite similar to those of IBs, a small difference in latitudes, most pronounced on the nightside and dayside, was found. We selected several events during which simultaneous observations in the same local time sector were available from Polar at mid-altitudes, and NOAA or DMSP at low-altitudes. Magnetic field mapping using the Tsyganenko T01 model with the observed solar wind input parameters showed that the low- and mid-altitude isotropization boundaries were closely located, which leads us to suggest that the Polar IDB and low-altitude IBs are related. Furthermore, we introduced a procedure to control the difference between the observed and model magnetic field to reduce the large scatter in the mapping. We showed that the isotropic distribution boundary (IDB lies in the region where Rc/ρ~6, that is at the boundary of the region where the non-adiabatic pitch angle scattering is strong enough. We therefore conclude that the scattering in the large field line curvature regions in the nightside current sheet is the main mechanism producing isotropization for the main portion of proton population in the tail current sheet. This mechanism controls the observed positions of both IB and IDB boundaries. Thus, this tail region can be probed, in its turn, with observations of these isotropy boundaries.

    Keywords. Magnetospheric physics (Energetic particles, Precipitating; Magnetospheric configuration and dynamics; Magnetotail

  15. Slowly moving test charge in two-electron component non-Maxwellian plasma

    International Nuclear Information System (INIS)

    Ali, S.; Eliasson, B.

    2015-01-01

    Potential distributions around a slowly moving test charge are calculated by taking into account the electron-acoustic waves in an unmagnetized plasma. Considering a neutralizing background of static positive ions, the supra-thermal hot and cold electrons are described by the Vlasov equations to account for the Kappa (power-law in velocity space) and Maxwell equilibrium distributions. Fourier analysis further leads to the derivation of electrostatic potential showing the impact of supra-thermal hot electrons. The test charge moves slowly in comparison with the hot and cold electron thermal speeds and is therefore shielded by the electrons. This gives rise to a short-range Debye-Hückel potential decaying exponentially with distance and to a far field potential decaying as inverse third power of the distance from the test charge. The results are relevant for both laboratory and space plasmas, where supra-thermal hot electrons with power-law distributions have been observed

  16. Effects of toroidal field ripple on suprathermal ions in tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Towner, H.H.

    1980-02-01

    Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, beam ions become trapped in local magnetic wells near their banana tips due to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, near-perpendicular untrapped ions are captured (again near a banana tip) due to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced variable lingering period near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity α* identical with epsilon/sin theta/Nqdelta is of order unity or smaller

  17. Effects of toroidal field ripple on suprathermal ions in tokamak plasmas

    International Nuclear Information System (INIS)

    Goldston, R.J.; Towner, H.H.

    1981-01-01

    Analytic calculations of three important effects of toroidal field ripple on suprathermal ions in tokamak plasmas are presented. In the first process, collisional ripple-trapping, ions become trapped in local magnetic wells near their banana tips owing to pitch-angle scattering as they traverse the ripple on barely unripple-trapped orbits. In the second process, collisionless ripple-trapping, ions are captured (again near a banana tip) owing to their finite orbits, which carry them out into regions of higher ripple. In the third process, banana-drift diffusion, fast-ion banana orbits fail to close precisely, due to a ripple-induced 'variable lingering period' near the banana tips. These three mechanisms lead to substantial radial transport of banana-trapped, neutral-beam-injected ions when the quantity α* is identical with epsilonsinthetaNqdelta is of order unity or smaller. (author)

  18. Suprathermal ions in the solar wind from the Voyager spacecraft: Instrument modeling and background analysis

    International Nuclear Information System (INIS)

    Randol, B M; Christian, E R

    2015-01-01

    Using publicly available data from the Voyager Low Energy Charged Particle (LECP) instruments, we investigate the form of the solar wind ion suprathermal tail in the outer heliosphere inside the termination shock. This tail has a commonly observed form in the inner heliosphere, that is, a power law with a particular spectral index. The Voyager spacecraft have taken data beyond 100 AU, farther than any other spacecraft. However, during extended periods of time, the data appears to be mostly background. We have developed a technique to self-consistently estimate the background seen by LECP due to cosmic rays using data from the Voyager cosmic ray instruments and a simple, semi-analytical model of the LECP instruments

  19. Energy of auroral electrons and Z mode generation

    Science.gov (United States)

    Krauss-Varban, D.; Wong, H. K.

    1990-01-01

    The present consideration of Z-mode radiation generation, in light of observational results indicating that the O mode and second-harmonic X-mode emissions can prevail over the X-mode fundamental radiation when suprathermal electron energy is low, gives attention to whether the thermal effect on the Z-mode dispersion can be equally important, and whether the Z-mode can compete for the available free-energy source. It is found that, under suitable circumstances, the growth rate of the Z-mode can be substantial even for low suprathermal auroral electron energies. Growth is generally maximized for propagation perpendicular to the magnetic field.

  20. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    Energy Technology Data Exchange (ETDEWEB)

    Macon, David James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brannon, Rebecca Moss [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strack, Otto Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Mechanical testing of porous materials generates physical data that contain contributions from more than one underlying physical phenomenon. All that is measurable is the "ensemble" hardening modulus. This thesis is concerned with the phenomenon of dilatation in triaxial compression of porous media, which has been modeled very accurately in the literature for monotonic loading using models that predict dilatation under triaxial compression (TXC) by presuming that dilatation causes the cap to move outwards. These existing models, however, predict a counter-intuitive (and never validated) increase in hydrostatic compression strength. This work explores an alternative approach for modeling TXC dilatation based on allowing induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral direction) with no increase in hydrostatic strength. Induced elastic anisotropy is introduced through the use of a distortion operator. This operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and deformed compliance and has the same eigenprojectors as the elastic compliance. In the undeformed state, the distortion operator is equal to the fourth-order identity. Through the use of the distortion operator, an evolved stress tensor is introduced. When the evolved stress tensor is substituted into an isotropic yield function, a new anisotropic yield function results. In the case of the von Mises isotropic yield function (which contains only deviatoric components), it is shown that the distortion operator introduces a dilatational contribution without requiring an increase in hydrostatic strength. In the thesis, an introduction and literature review of the cap function is given. A transversely isotropic compliance is presented, based on a linear combination of natural bases constructed about a transverse-symmetry axis. Using a probabilistic distribution of cracks constructed for the case of transverse isotropy, a

  1. Opacity broadening and interpretation of suprathermal CO linewidths: Macroscopic turbulence and tangled molecular clouds

    Science.gov (United States)

    Hacar, A.; Alves, J.; Burkert, A.; Goldsmith, P.

    2016-06-01

    Context. Since their first detection in the interestellar medium, (sub-)millimeter line observations of different CO isotopic variants have routinely been employed to characterize the kinematic properties of the gas in molecular clouds. Many of these lines exhibit broad linewidths that greatly exceed the thermal broadening expected for the low temperatures found within these objects. These observed suprathermal CO linewidths are assumed to originate from unresolved supersonic motions inside clouds. Aims: The lowest rotational J transitions of some of the most abundant CO isotopologues, 12CO and 13CO, are found to present large optical depths. In addition to well-known line saturation effects, these large opacities present a non-negligible contribution to their observed linewidths. Typically overlooked in the literature, in this paper we aim to quantify the impact of these opacity broadening effects on the current interpretation of the CO suprathermal line profiles. Methods: Combining large-scale observations and LTE modeling of the ground J = 1-0 transitions of the main 12CO, 13CO, C18O isotopologues, we have investigated the correlation of the observed linewidths as a function of the line opacity in different regions of the Taurus molecular cloud. Results: Without any additional contributions to the gas velocity field, a large fraction of the apparently supersonic (ℳ ~ 2-3) linewidths measured in both 12CO and 13CO (J = 1-0) lines can be explained by the saturation of their corresponding sonic-like, optically thin C18O counterparts assuming standard isotopic fractionation. Combined with the presence of multiple components detected in some of our C18O spectra, these opacity effects also seem to be responsible for most of the highly supersonic linewidths (ℳ > 8-10) detected in some of the broadest 12CO and 13CO spectra in Taurus. Conclusions: Our results demonstrate that most of the suprathermal 12CO and 13CO linewidths reported in nearby clouds like Taurus

  2. New Measurements of Suprathermal Ions, Energetic Particles, and Cosmic Rays in the Outer Heliosphere from the New Horizons PEPSSI Instrument

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Spencer, J. R.

    2017-12-01

    During the period from January 2012 to December 2017 the New Horizons spacecraft traveled from 22 to 41 AU from the Sun, making nearly continuous interplanetary plasma and particle measurements utilizing the SWAP and PEPSSI instruments. We report on newly extended measurements from PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation) that now bring together suprathermal particles above 2 keV/nuc (including interstellar pickup ions), energetic particles with H, He, and O composition from 30 keV to 1 MeV, and cosmic rays above 65 MeV (with effective count-rate-limited upper energy of 1 GeV). Such a wide energy range allows us to look at the solar wind structures passing over the spacecraft, the energetic particles that are often accelerated by these structures, and the suppression of cosmic rays resulting from the increased turbulence inhibiting cosmic ray transport to the spacecraft position (i.e., Forbush decreases). This broad perspective provides simultaneous, previously unattainable diagnostics of outer heliospheric particle dynamics and acceleration. Besides the benefit of being recent, in-ecliptic measurements, unlike the historic Voyager 1 and 2 spacecraft, these PEPSSI observations are also totally unique in the suprathermal range; in this region only PEPSSI can span the suprathermal range, detecting a population that is a linchpin to understanding the outer heliosphere.

  3. Spatial variations in the suprathermal ion distributions during substorms in the plasma sheet

    International Nuclear Information System (INIS)

    Kistler, L.M.; Moebius, E.; Klecker, B.; Gloeckler, G.; Ipavich, F.M.; Hamilton, D.C.

    1990-01-01

    Using data from AMPTE IRM and AMPTE CCE, the authors have determined the pre- and post-injection suprathermal energy spectra for the ion species H + , O + , He + , and He ++ for six events in which substorm-associated particle injections are observed in both the near-Earth plasma sheet and farther down the tail. They find similar spectral changes in both locations, with the spectra becoming harder with the injection. Post-injection, the flux decreases exponentially with radial distance. Approximately the same gradient is observed in all species. In addition, they find that although the O + /H + and the He ++ /H + ratios increase with energy per charge, the ratios are approximately the same at the same energy per charge at the two spacecraft. The observations are difficult to explain either with a model in which the ions are accelerated at a neutral line and transported toward Earth or with a model in which the ions are accelerated in the near-Earth region by current disruption/diversion and transported down the tail. In either case, the ions would have to be transported throughout the tail without much energization or deenergization in order to explain the energy per charge correlations. Further, earthward transport without energization would not lead to the observed radial gradient. A combination of these acceleration mechanisms, a disturbance that propagates throughout the plasma sheet, or a more global mechanism may explain the observations

  4. A Class of Generalized Gough-Stewart Platforms Used for Effectively Obtaining Dynamic Isotropy – An Analytical Study

    Directory of Open Access Journals (Sweden)

    Afzali-Far Behrouz

    2015-01-01

    Full Text Available In this paper, we propose a class of Generalized Gough-Stewart Platforms (GGSPs used, as a novel approach, to eliminate the classical isotropic constraint of GSPs (hexapods. GGSPs are based on the standard GSP architecture with additional rotations of the three strut-pairs. Despite the architectural generalization introduced in GGSPs, they do not require much more effort in order to be fabricated. This is due to the fact that all the struts (actuators can be chosen identical, similar to standard GSPs. We analytically show how effectively the classical isotropic constraint is removed and that still sufficient simplicity is retained. Furthermore, this paper gives an intuitive understanding of dynamic isotropy in GGSPs as well as GSPs.

  5. Source Population and Acceleration Location of Suprathermal Heavy Ions in Corotating Interaction Regions

    Energy Technology Data Exchange (ETDEWEB)

    Filwett, R. J.; Desai, M. I. [University of Texas at San Antonio, San Antonio, TX (United States); Dayeh, M. A.; Broiles, T. W. [Southwest Research Institute, San Antonio, TX (United States)

    2017-03-20

    We have analyzed the ∼20–320 keV nucleon{sup −1} suprathermal (ST) heavy ion abundances in 41 corotating interaction regions (CIRs) observed by the Wind spacecraft from 1995 January to 2008 December. Our results are: (1) the CIR Fe/CNO and NeS/CNO ratios vary with the sunspot number, with values being closer to average solar energetic particle event values during solar maxima and lower than nominal solar wind values during solar minima. The physical mechanism responsible for the depleted abundances during solar minimum remains an open question. (2) The Fe/CNO increases with energy in the 6 events that occurred during solar maximum, while no such trends are observed for the 35 events during solar minimum. (3) The Fe/CNO shows no correlation with the average solar wind speed. (4) The Fe/CNO is well correlated with the corresponding upstream ∼20–320 keV nucleon{sup −1} Fe/CNO and not with the solar wind Fe/O measured by ACE in 31 events. Using the correlations between the upstream ∼20–40 keV nucleon{sup −1} Fe/CNO and the ∼20–320 keV nucleon{sup −1} Fe/CNO in CIRs, we estimate that, on average, the ST particles traveled ∼2 au along the nominal Parker spiral field line, which corresponds to upper limits for the radial distance of the source or acceleration location of ∼1 au beyond Earth orbit. Our results are consistent with those obtained from recent surveys, and confirm that CIR ST heavy ions are accelerated more locally, and are at odds with the traditional viewpoint that CIR ions seen at 1 au are bulk solar wind ions accelerated between 3 and 5 au.

  6. ON THE REMOTE DETECTION OF SUPRATHERMAL IONS IN THE SOLAR CORONA AND THEIR ROLE AS SEEDS FOR SOLAR ENERGETIC PARTICLE PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin; Moses, J. Daniel; Ko, Yuan-Kuen [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States); Ng, Chee K. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Rakowski, Cara E.; Tylka, Allan J. [NASA/GSFC Code 672, Greenbelt, MD 20771 (United States)

    2013-06-10

    Forecasting large solar energetic particle (SEP) events associated with shocks driven by fast coronal mass ejections (CMEs) poses a major difficulty in the field of space weather. Besides issues associated with CME initiation, the SEP intensities are difficult to predict, spanning three orders of magnitude at any given CME speed. Many lines of indirect evidence point to the pre-existence of suprathermal seed particles for injection into the acceleration process as a key ingredient limiting the SEP intensity of a given event. This paper outlines the observational and theoretical basis for the inference that a suprathermal particle population is present prior to large SEP events, explores various scenarios for generating seed particles and their observational signatures, and explains how such suprathermals could be detected through measuring the wings of the H I Ly{alpha} line.

  7. ON THE REMOTE DETECTION OF SUPRATHERMAL IONS IN THE SOLAR CORONA AND THEIR ROLE AS SEEDS FOR SOLAR ENERGETIC PARTICLE PRODUCTION

    International Nuclear Information System (INIS)

    Laming, J. Martin; Moses, J. Daniel; Ko, Yuan-Kuen; Ng, Chee K.; Rakowski, Cara E.; Tylka, Allan J.

    2013-01-01

    Forecasting large solar energetic particle (SEP) events associated with shocks driven by fast coronal mass ejections (CMEs) poses a major difficulty in the field of space weather. Besides issues associated with CME initiation, the SEP intensities are difficult to predict, spanning three orders of magnitude at any given CME speed. Many lines of indirect evidence point to the pre-existence of suprathermal seed particles for injection into the acceleration process as a key ingredient limiting the SEP intensity of a given event. This paper outlines the observational and theoretical basis for the inference that a suprathermal particle population is present prior to large SEP events, explores various scenarios for generating seed particles and their observational signatures, and explains how such suprathermals could be detected through measuring the wings of the H I Lyα line.

  8. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-01-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO 2 ) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9 to 3 keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse

  9. Suppression of suprathermal ions from a colloidal microjet target containing SnO2 nanoparticles by using double laser pulses

    Science.gov (United States)

    Higashiguchi, Takeshi; Kaku, Masanori; Katto, Masahito; Kubodera, Shoichi

    2007-10-01

    We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO2) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9to3keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.

  10. Modelling of non-thermal electron cyclotron emission during ECRH

    International Nuclear Information System (INIS)

    Tribaldos, V.; Krivenski, V.

    1990-01-01

    The existence of suprathermal electrons during Electron Cyclotron Resonance Heating experiments in tokamaks is today a well established fact. At low densities the creation of large non-thermal electron tails affects the temperature profile measurements obtained by 2 nd harmonic, X-mode, low-field side, electron cyclotron emission. At higher densities suprathermal electrons can be detected by high-field side emission. In electron cyclotron current drive experiments a high energy suprathermal tail, asymmetric in v, is observed. Non-Maxwellian electron distribution functions are also typically observed during lower-hybrid current drive experiments. Fast electrons have been observed during ionic heating by neutral beams as well. Two distinct approaches are currently used in the interpretation of the experimental results: simple analytical models which reproduce some of the expected non-Maxwellian characteristics of the electron distribution function are employed to get a qualitative picture of the phenomena; sophisticated numerical Fokker-Planck calculations give the electron distribution function from which the emission spectra are computed. No algorithm is known to solve the inverse problem, i.e. to compute the electron distribution function from the emitted spectra. The proposed methods all relay on the basic assumption that the electron distribution function has a given functional dependence on a limited number of free parameters, which are then 'measured' by best fitting the experimental results. Here we discuss the legitimacy of this procedure. (author) 7 refs., 5 figs

  11. Electron foreshock

    International Nuclear Information System (INIS)

    Klimas, A.J.

    1985-01-01

    ISEE particle and wave data are noted to furnish substantial support for the basic features of the velocity dispersed model at the foreshock boundary that was proposed by Filbert and Kellogg (1979). Among many remaining discrepancies between this model and observation, it is noted that unstable reduced velocity distributions have been discovered behind the thin boundary proposed by the model, and that these are at suprathermal energies lying far below those explainable in terms of an oscillating, two-stream instability. Although the long-theorized unstable beam of electrons has been found in the foreshock, there is still no ready explanation of the means by which it could have gotten there. 16 references

  12. ANTHEM: a two-dimensional multicomponent self-consistent hydro-electron transport code for laser-matter interaction studies

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    The ANTHEM code for the study of CO 2 -laser-generated transport is outlined. ANTHEM treats the background plasma as coupled Eulerian thermal and ion fluids, and the suprathermal electrons as either a third fluid or a body of evolving collisional PIC particles. The electrons scatter off the ions; the suprathermals drag against the thermal background. Self-consistent E- and B-fields are computed by the Implicit Moment Method. The current status of the code is described. Typical output from ANTHEM is discussed with special application to Augmented-Return-Current CO 2 -laser-driven targets

  13. Electron cyclotron emission measurements during 28 GHz electron cyclotron resonance heating in Wendelstein WVII-A stellarator

    International Nuclear Information System (INIS)

    Hartfuss, H.J.; Gasparino, U.; Tutter, M.; Brakel, R.; Cattanei, G.; Dorst, D.; Elsner, A.; Engelhardt, K.; Erckmann, V.; Grieger, G.; Grigull, P.; Hacker, H.; Jaeckel, H.; Jaenicke, R.; Junker, J.; Kick, M.; Kroiss, H.; Kuehner, G.; Maassberg, H.; Mahn, C.; Mueller, G.; Ohlendorf, W.; Rau, F.; Renner, H.; Ringler, H.; Sardei, F.; Weller, A.; Wobig, H.; Wuersching, E.; Zippe, M.; Kasparek, W.; Mueller, G.A.; Raeuchle, E.; Schueller, P.G.; Schwoerer, K.; Thumm, M.

    1987-11-01

    Electron cyclotron emission measurements have been carried out on electron cyclotron resonance heated plasmas in the WENDELSTEIN VII-A Stellarator. Blackbody radiation from the thermalized plasma main body as well as radiation from a small amount of weakly relativistic suprathermal electrons has been detected. In addition sideband emission has been observed near the second harmonic of the heating line source. Harmonic generation and parametric wave decay at the upper hybrid layer may be a reasonable explanation. (orig.)

  14. Some recent advances in 3D crack and contact analysis of elastic solids with transverse isotropy and multifield coupling

    Science.gov (United States)

    Chen, Wei-Qiu

    2015-10-01

    Significant progress has been made in mixed boundary-value problems associated with three-dimensional (3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials. These include material anisotropy and multifield coupling, two typical characteristics of most current multifunctional materials. In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V. I. Fabrikant, whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory. We are particularly interested in crack and contact problems with certain nonlinear features. Emphasis is also placed on the coupling between the temperature field (or the like) and other physical fields (e.g., elastic, electric, and magnetic fields). We further highlight the practical significance of 3D contact solutions, in particular in applications related to modern scanning probe microscopes.

  15. Magnetospheric source region of discrete auroras inferred from their relationship with isotropy boundaries of energetic particles

    Directory of Open Access Journals (Sweden)

    A. G. Yahnin

    1997-08-01

    Full Text Available According to observations, the discrete auroral arcs can sometimes be found, either deep inside the auroral oval or at the poleward border of the wide (so-called double auroral oval, which map to very different regions of the magnetotail. To find common physical conditions for the auroral-arc generation in these magnetotail regions, we study the spatial relationship between the diffuse and discrete auroras and the isotropic boundaries (IBs of the precipitating energetic particles which can be used to characterise locally the equatorial magnetic field in the tail. From comparison of ground observation of auroral forms with meridional profiles of particle flux measured simultaneously by the low-altitude NOAA satellites above the ground observation region, we found that (1 discrete auroral arcs are always situated polewards from (or very close to the IB of >30-keV electrons, whereas (2 the IB of the >30-keV protons is often seen inside the diffuse aurora. These relationships hold true for both quiet and active (substorm conditions in the premidnight-nightside (18-01-h MLT sector considered. In some events the auroral arcs occupy a wide latitudinal range. The most equatorial of these arcs was found at the poleward edge of the diffuse auroras (but anyway in the vicinity of the electron IB, the most poleward arcs were simultaneously observed on the closed field lines near the polar-cap boundary. These observations disagree with the notion that the discrete aurora originate exclusively in the near-Earth portion of plasma sheet or exclusively on the PSBL field lines. Result (1 may imply a fundamental feature of auroral-arc formation: they originate in the current-sheet regions having very curved and tailward-stretched magnetic field lines.

  16. Minkowski Tensors in Two Dimensions: Probing the Morphology and Isotropy of the Matter and Galaxy Density Fields

    Science.gov (United States)

    Appleby, Stephen; Chingangbam, Pravabati; Park, Changbom; Hong, Sungwook E.; Kim, Juhan; Ganesan, Vidhya

    2018-05-01

    We apply the Minkowski tensor statistics to two-dimensional slices of the three-dimensional matter density field. The Minkowski tensors are a set of functions that are sensitive to directionally dependent signals in the data and, furthermore, can be used to quantify the mean shape of density fields. We begin by reviewing the definition of Minkowski tensors and introducing a method of calculating them from a discretely sampled field. Focusing on the statistic {W}21,1—a 2 × 2 matrix—we calculate its value for both the entire excursion set and individual connected regions and holes within the set. To study the morphology of structures within the excursion set, we calculate the eigenvalues λ 1, λ 2 for the matrix {W}21,1 of each distinct connected region and hole and measure their mean shape using the ratio β \\equiv . We compare both {W}21,1 and β for a Gaussian field and a smoothed density field generated from the latest Horizon Run 4 cosmological simulation to study the effect of gravitational collapse on these functions. The global statistic {W}21,1 is essentially independent of gravitational collapse, as the process maintains statistical isotropy. However, β is modified significantly, with overdensities becoming relatively more circular compared to underdensities at low redshifts. When applying the statistics to a redshift-space distorted density field, the matrix {W}21,1 is no longer proportional to the identity matrix, and measurements of its diagonal elements can be used to probe the large-scale velocity field.

  17. Electron Energetics in the Martian Dayside Ionosphere: Model Comparisons with MAVEN Data

    Science.gov (United States)

    Sakai, Shotaro; Andersson, Laila; Cravens, Thomas E.; Mitchell, David L.; Mazelle, Christian; Rahmati, Ali; Fowler, Christopher M.; Bougher, Stephen W.; Thiemann, Edward M. B.; Epavier, Francis G.; hide

    2016-01-01

    This paper presents a study of the energetics of the dayside ionosphere of Mars using models and data from several instruments on board the Mars Atmosphere and Volatile EvolutioN spacecraft. In particular, calculated photoelectron fluxes are compared with suprathermal electron fluxes measured by the Solar Wind Electron Analyzer, and calculated electron temperatures are compared with temperatures measured by the Langmuir Probe and Waves experiment. The major heat source for the thermal electrons is Coulomb heating from the suprathermal electron population, and cooling due to collisional rotational and vibrational CO2 dominates the energy loss. The models used in this study were largely able to reproduce the observed high topside ionosphere electron temperatures (e.g., 3000 K at 300 km altitude) without using a topside heat flux when magnetic field topologies consistent with the measured magnetic field were adopted. Magnetic topology affects both suprathermal electron transport and thermal electron heat conduction. The effects of using two different solar irradiance models were also investigated. In particular, photoelectron fluxes and electron temperatures found using the Heliospheric Environment Solar Spectrum Radiation irradiance were higher than those with the Flare Irradiance Spectrum Model-Mars. The electron temperature is shown to affect the O2(+) dissociative recombination rate coefficient, which in turn affects photochemical escape of oxygen from Mars.

  18. A test of the one-way isotropy of the speed of light from the T2L2 space experiment

    Science.gov (United States)

    Belli, A.; Exertier, P.; Samain, E.

    2017-12-01

    The Time Transfer by Laser Link (T2L2) space experiment that is currently flying on-board Jason-2 (1335 km of altitude) provides an opportunity to make a test of the isotropy of the speed of light using one-way propagation on a non-laboratory scale. Following the general framework given by te{Mansouri1977}, which permits violations of Einstein special relativity, we study the problem of deducing the isotropy of the speed between two clocks as the orientation path varies relative to an inertial reference frame. The short term stability of the T2L2 ground-to-space time transfer has been established at 5-6 ps at 60 seconds between a hydrogen maser and the on-board oscillator on use for the Jason-2 satellite. Nevertheless, during the satellite pass above a laser ranging station (of around 1000 seconds), the stability of the space oscillator is decreasing in τ^{3/2} that clearly impacts the expected performance of the present test. We thus give insights into certain modelling issues and processes, including time transfer problems which have a bearing on the global error budget. Our goal is to achieve an accuracy of {δc}/{c} ≈ 2-3.10^{-9} locally with a scope for improvement by cumulating numerous passes over the same laser ranging station.

  19. Heated electron distributions from resonant absorption

    International Nuclear Information System (INIS)

    DeGroot, J.S.; Tull, J.E.

    1975-01-01

    A simplified model of resonant absorption of obliquely incident laser light has been developed. Using a 1.5 dimensional electrostatic simulation computer code, it is shown that the inclusion of ion motion is critically important in determining the heated electron distributions from resonant absorption. The electromagnetic wave drives up an electron plasma wave. For long density scale lengths (Lapprox. =10 3 lambda/subD//sube/), the phase velocity of this wave is very large (ω/kapproximately-greater-than10V/sub th/) so that if heating does occur, a suprathermal tail of very energetic electrons is produced. However, the pressure due to this wave steepens the density profile until the density gradient scale length near the critical density (where the local plasma frequency equals the laser frequency) is of order 20lambda/subD//sube/. The electrostatic wave is thus forced to have a much lower phase velocity (ω/kapprox. =2.5V/sub th/). In this case, more electrons are heated to much lower velocities. The heated electron distributions are exponential in velocity space. Using a simple theory it is shown that this property of profile steepening applies to most of a typical laser fusion pulse. This steepening raises the threshold for parametric instabilities near the critical surface. Thus, the extensive suprathermal electron distributions typically produced by these parametric instabilities can be drastically reduced

  20. Electron thermal conduction in LASNEX

    International Nuclear Information System (INIS)

    Munro, D.; Weber, S.

    1994-01-01

    This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations

  1. Cluster observations of particle acceleration up to supra-thermal energies in the cusp region related to low-frequency wave activity – possible implications for the substorm initiation process

    Directory of Open Access Journals (Sweden)

    T. A. Fritz

    2008-03-01

    Full Text Available The purpose of our study is to investigate the way particles are accelerated up to supra-thermal energies in the cusp diamagnetic cavities. For this reason we have examined a number of Cluster cusp crossings, originally identified by Zhang et al. (2005, for the years 2001 and 2002 using data from RAPID, STAFF, EFW, CIS, PEACE, and FGM experiments. In the present study we focus on two particular cusp crossings on 25 March 2002 and on 10 April 2002 which demonstrate in a clear way the general characteristics of the events in our survey. Both events exhibit very sharp spatial boundaries seen both in CNO (primarily single-charged oxygen of ionospheric origin based on CIS observations and H+ flux increases within the RAPID energy range with the magnetic field intensity being anti-correlated. Unlike the first event, the second one shows also a moderate electron flux increase. The fact that the duskward electric field Ey has relatively low values <5 mV/m while the local wave activity is very intense provides a strong indication that particle energization is caused primarily by wave-particle interactions. The wave power spectra and propagation parameters during these cusp events are examined in detail. It is concluded that the high ion fluxes and at the same time the presence or absence of any sign of energization in the electrons clearly shows that the particle acceleration depends on the wave power near the local particle gyrofrequency and on the persistence of the wave-particle interaction process before particles escape from cusp region. Furthermore, the continuous existence of energetic O+ ions suggests that energetic O+ populations are of spatial nature at least for the eight events that we have studied so far.

  2. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 1

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  3. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 2

    International Nuclear Information System (INIS)

    1993-03-01

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  4. Self-consistent electric field effect on electron transport of ECH plasmas

    International Nuclear Information System (INIS)

    Chan, V.S.; Murakami, S.

    1999-02-01

    An algorithm is proposed which treats the ECH generated potential in a self-consistent way, by extending the Monte-Carlo Fokker-Planck method used by Murakami [S. Murakami et al., Proc. 17th IAEA Fusion Energy Conference, Yokohama, 1998 (International Atomic Energy Agency, Vienna, in press), paper CN-69/TH2/1]. The additional physics is expected to influence the transport of both thermal and suprathermal electrons in a helical toroidal system. (author)

  5. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  6. Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the suprathermal electrons in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Lazar, M.; Shaaban, S. M.; Poedts, S.; Štverák, Štěpán

    2017-01-01

    Roč. 464, č. 1 (2017), s. 564-571 ISSN 0035-8711 Institutional support: RVO:68378289 Keywords : instabilities * plasmas * methods * analytical * methods: observational * solar wind Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 4.961, year: 2016 https://academic.oup.com/mnras/article-abstract/464/1/564/2236068/Firehose-constraints-of-the-bi-Kappa-distributed?redirectedFrom=fulltext

  7. Firehose constraints of the bi-Kappa-distributed electrons: a zero-order approach for the suprathermal electrons in the solar wind

    Czech Academy of Sciences Publication Activity Database

    Lazar, M.; Shaaban, S. M.; Poedts, S.; Štverák, Štěpán

    2017-01-01

    Roč. 464, č. 1 (2017), s. 564-571 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : instabilities * plasmas * analytical methods Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 4.961, year: 2016

  8. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique.

    Science.gov (United States)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-15

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  9. Artificial electron beams in the magnetosphere and ionosphere

    International Nuclear Information System (INIS)

    Winckler, J.R.

    1990-01-01

    The Plasma Diagnostics Payload of the Echo 7 satellite carried TV cameras and photometers by means of which the luminosity around an electron beam in the polar ionosphere could be studied. It was found that, while the beam Larmor spiral could be clearly seen near 100 km, above this only a column due to suprathermal electrons was observable. At high altitudes, the emission of neutral gas both generated powerful luminosity and substantially reduced accelerator potentials. An analysis of conjugate echoes indicates that inferred magnetospheric electric fields do not map well into the ionosphere, as well as the presence of strong pitch-angle scattering. 11 refs

  10. Self-consistent electron transport in collisional plasmas

    International Nuclear Information System (INIS)

    Mason, R.J.

    1982-01-01

    A self-consistent scheme has been developed to model electron transport in evolving plasmas of arbitrary classical collisionality. The electrons and ions are treated as either multiple donor-cell fluids, or collisional particles-in-cell. Particle suprathermal electrons scatter off ions, and drag against fluid background thermal electrons. The background electrons undergo ion friction, thermal coupling, and bremsstrahlung. The components move in self-consistent advanced E-fields, obtained by the Implicit Moment Method, which permits Δt >> ω/sub p/ -1 and Δx >> lambda/sub D/ - offering a 10 2 - 10 3 -fold speed-up over older explicit techniques. The fluid description for the background plasma components permits the modeling of transport in systems spanning more than a 10 7 -fold change in density, and encompassing contiguous collisional and collisionless regions. Results are presented from application of the scheme to the modeling of CO 2 laser-generated suprathermal electron transport in expanding thin foils, and in multi-foil target configurations

  11. CINEMA (Cubesat for Ion, Neutral, Electron, MAgnetic fields)

    Science.gov (United States)

    Lin, R. P.; Parks, G. K.; Halekas, J. S.; Larson, D. E.; Eastwood, J. P.; Wang, L.; Sample, J. G.; Horbury, T. S.; Roelof, E. C.; Lee, D.; Seon, J.; Hines, J.; Vo, H.; Tindall, C.; Ho, J.; Lee, J.; Kim, K.

    2009-12-01

    The NSF-funded CINEMA mission will provide cutting-edge magnetospheric science and critical space weather measurements, including high sensitivity mapping and high cadence movies of ring current, >4 keV Energetic Neutral Atom (ENA), as well as in situ measurements of suprathermal electrons (>~2 keV) and ions (>~ 4 keV) in the auroral and ring current precipitation regions, all with ~1 keV FWHM resolution and uniform response up to ~100 keV. A Suprathermal Electron, Ion, Neutral (STEIN) instrument adds an electrostatic deflection system to the STEREO STE (SupraThermal Electron) 4-pixel silicon semiconductor sensor to separate ions from electrons and from ENAs up to ~20 keV. In addition, inboard and outboard (on an extendable 1m boom) magnetoresistive sensor magnetometers will provide high cadence 3-axis magnetic field measurements. A new attitude control system (ACS) uses torque coils, a solar aspect sensor and the magnetometers to de-tumble the 3u CINEMA spacecraft, then spin it up to ~1 rpm with the spin axis perpendicular to the ecliptic, so STEIN can sweep across most of the sky every minute. Ideally, CINEMA will be placed into a high inclination low earth orbit that crosses the auroral zone and cusp. An S-band transmitter will be used to provide > ~8 kbps orbit-average data downlink to the ~11m diameter antenna of the Berkeley Ground Station. Two more identical CINEMA spacecraft will be built by Kyung Hee University (KHU) in Korea under their World Class University (WCU) program, to provide stereo ENA imaging and multi-point in situ measurements. Furthermore, CINEMA’s development of miniature particle and magnetic field sensors, and cubesat-size spinning spacecraft will be important for future nanosatellite space missions.

  12. 1/f 2 Characteristics and isotropy in the fourier power spectra of visual art, cartoons, comics, mangas, and different categories of photographs.

    Science.gov (United States)

    Koch, Michael; Denzler, Joachim; Redies, Christoph

    2010-08-19

    Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2) characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2) characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains

  13. 3rd harmonic electron cyclotron resonant heating absorption enhancement by 2nd harmonic heating at the same frequency in a tokamak

    International Nuclear Information System (INIS)

    Gnesin, S; Coda, S; Goodman, T P; Decker, J; Peysson, Y; Mazon, D

    2012-01-01

    The fundamental mechanisms responsible for the interplay and synergy between the absorption dynamics of extraordinary-mode electron cyclotron waves at two different harmonic resonances (the 2nd and 3rd) are investigated in the TCV tokamak. An enhanced 3rd harmonic absorption in the presence of suprathermal electrons generated by 2nd harmonic heating is predicted by Fokker–Planck simulations, subject to complex alignment requirements in both physical space and momentum space. The experimental signature for the 2nd/3rd harmonic synergy is sought through the suprathermal bremsstrahlung emission in the hard x-ray range of photon energy. Using a synthetic diagnostic, the emission variation due to synergy is calculated as a function of the injected power and of the radial transport of suprathermal electrons. It is concluded that in the present experimental setup a synergy signature has not been unambiguously detected. The detectability of the synergy is then discussed with respect to variations and uncertainties in the plasma density and effective charge in view of future optimized experiments. (paper)

  14. Electron beam interaction with space plasmas.

    Science.gov (United States)

    Krafft, C.; Bolokitin, A. S.

    1999-12-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.

  15. The study of dynamics of electrons in the presence of large current densities; Etude de la dynamique des electrons en presence de fortes densites de courant

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G

    2007-11-15

    The runaway electron effect is considered in different fields: nuclear fusion, or the heating of the solar corona. In this thesis, we are interested in runaway electrons in the ionosphere. We consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a parallel electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. A computational example is given illustrating the approach to equilibrium and the impact of the different terms. Then, a static electric field is applied in a new sample run. In this run, the electrons move in the z direction, parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density up to 20% of the total current density. Nevertheless, we note that the divergence free of the current density is not conserved. We introduce major changes in order to take into account the variation of the different moments of the ion distribution functions. We observe that the electron distribution functions are still non-Maxwellian. Runaway electrons are created and carry the current density. The core distribution stay at rest. As these electrons undergo less collisions, they increase the plasma conductivity. We make a parametric study. We fit the electron distribution function by two Maxwellian. We show that the time to reach the maximal current density is a key point. Thus, when we increase this time, we modify the temperatures. The current density plays a primary role. When the current density increases, all the moments of the distributions increase: electron density and mean velocity of the suprathermal distribution and the electron temperature of the core and

  16. Solar wind ∼0.1-1.5 keV electrons at quiet times

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jiawei; Wang, Linghua, E-mail: wanglhwang@gmail.com; Zong, Qiugang; He, Jiansen; Tu, Chuanyi [School of Earth and Space Science, Peking University, Beijing 100871 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Alabama 35899 (United States); Salem, Chadi S.; Bale, Stuart D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Wimmer-Schweingruber, Robert F. [Institute for Experimental and Applied Physics, University of Kiel (Germany)

    2016-03-25

    We present a statistical survey of the energy spectrum of solar wind suprathermal (∼0.1-1.5 keV) electrons measured by the WIND 3-D Plasma & Energetic Particle (3DP) instrument at 1 AU during quiet times at the minimum and maximum of solar cycles 23 and 24. Firstly, we separate strahl (beaming) electrons and halo (isotropic) electrons based on their features in pitch angle distributions. Secondly, we fit the observed energy spectrum of both the strahl and halo electrons at ∼0.1-1.5 keV to a Kappa distribution function with an index κ, effective temperature T{sub eff} and density n{sub 0}. We also integrate the the measurements over ∼0.1-1.5 keV to obtain the average electron energy E{sub avg} of the strahl and halo. We find a strong positive correlation between κ and T{sub eff} for both the strahl and halo, possibly reflecting the nature of the generation of these suprathermal electrons. Among the 245 selected samples, ∼68% have the halo κ smaller than the strahl κ, while ∼50% have the halo E{sub h} larger than the strahl E{sub s}.

  17. Electron cyclotron waves, transport and instabilities in hot plasmas

    International Nuclear Information System (INIS)

    Westerhof, E.

    1987-01-01

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  18. COROTATING INTERACTION REGION ASSOCIATED SUPRATHERMAL HELIUM ION ENHANCEMENTS AT 1 AU: EVIDENCE FOR LOCAL ACCELERATION AT THE COMPRESSION REGION TRAILING EDGE

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; Mason, G. M.

    2012-01-01

    We examined the temporal profiles and peak intensities for 73 corotating interaction region (CIR)-associated suprathermal (∼0.1-8 MeV nucleon –1 ) helium (He) ion enhancements identified at STEREO-A, STEREO-B, and/or Advanced Composition Explorer between 2007 and 2010. We found that in most events the peak He intensity times were well organized by the CIR compression region trailing edge, regardless of whether or not a reverse shock was present. Out of these events, 19% had their 0.193 MeV nucleon –1 He intensities peak within 1 hr and 50% within 4.75 hr of the CIR trailing edge, the distribution having a 1σ value of 7.3 hr. Events with a 0.193 MeV nucleon –1 He intensity peak time within 1σ of the CIR trailing edge showed a positive correlation between the ∼0.1 and 0.8 MeV nucleon –1 He peak intensities and magnetic compression ratios in events both with and without a reverse shock. The peak intensities in all other events showed little to moderate correlation between these parameters. Our results provide evidence that some fraction of the CIR-associated –1 He intensity enhancements observed at 1 AU are locally driven. We suggest an extended source for the CIR-associated energetic particles observed at 1 AU where the –1 ions are accelerated locally at or near the CIR trailing edge, the intensities being proportional to the local compression ratio strength, while the >MeV particles are likely accelerated at CIR-driven shocks beyond Earth orbit.

  19. The study of dynamics of electrons in the presence of large current densities

    International Nuclear Information System (INIS)

    Garcia, G.

    2007-11-01

    The runaway electron effect is considered in different fields: nuclear fusion, or the heating of the solar corona. In this thesis, we are interested in runaway electrons in the ionosphere. We consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a parallel electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. A computational example is given illustrating the approach to equilibrium and the impact of the different terms. Then, a static electric field is applied in a new sample run. In this run, the electrons move in the z direction, parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density up to 20% of the total current density. Nevertheless, we note that the divergence free of the current density is not conserved. We introduce major changes in order to take into account the variation of the different moments of the ion distribution functions. We observe that the electron distribution functions are still non-Maxwellian. Runaway electrons are created and carry the current density. The core distribution stay at rest. As these electrons undergo less collisions, they increase the plasma conductivity. We make a parametric study. We fit the electron distribution function by two Maxwellian. We show that the time to reach the maximal current density is a key point. Thus, when we increase this time, we modify the temperatures. The current density plays a primary role. When the current density increases, all the moments of the distributions increase: electron density and mean velocity of the suprathermal distribution and the electron temperature of the core and

  20. Transport effects with hot electrons in laser fusion. Final report, October 1, 1981-February 28, 1983

    International Nuclear Information System (INIS)

    Shkarofsky, I.P.

    1983-02-01

    Two explanations are offered which can account for heat inhibition found in laser-fusion experiments. The first explanation requires an anisotorpic electron velocity distribution with a higher temperature parallel to the surface than into the surface. This provides axial heat inhibition. Lateral heat inhibition is associated with azimuthal magnetic fields. The second explanation requires the presence of both hot suprathermal and thermal electrons. The hot electrons can cause the flux limiter to decrease substantially below the free-streaming limit in an intermediate range of collisionality. Conditions for this situation occur in the coronal region. We compare a Maxwellian distribution to an exp(-v 5 /v 5 /sub c/) variation for the cold electrons and find that the flux limiter decreases more for the latter case. The effects of collisions between cold and hot electrons is also looked into. The Cartesian tensor approach is used in the above investigations with various forms for the zeroth order electron velocity distribution function

  1. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.

    2012-01-01

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low κ values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-κ distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  2. Neutrino (antineutrino) effective charge in a magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Serbeto, A.; Rios, L.A.; Mendonca, J.T.; Shukla, P.K.

    2004-01-01

    Using dynamical techniques of the plasma physics, the neutrino (antineutrino) effective charge in a magnetized dense electron-positron plasma is determined here. It shown that its value, which is determined by the plasma collective processes, depends mainly on the propagation direction of plasma waves and neutrinos against the external magnetic field direction. The direction dependence of the effective charge occurs due to the fact that the magnetic field breaks the plasma isotropy. The present theory gives a unified picture of the problem which is valid for an external magnetic field below the Landau-Schwinger critical value. Comparison with some of the results from the quantum field theory has been made

  3. Characterization of LH induced current carrying fast electrons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Ramponi, G.; Airoldi, A. [Consiglio Nazionale delle Ricerche, Milan (Italy). Lab. di Fisica del Plasma; Bartlett, D.; Brusati, M.; Froissard, P.; Gormezano, C.; Rimini, F.; Silva, R.P. da; Tanzi, C.P. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1992-12-31

    Lower Hybrid Current Drive (LHCD) experiments have recently been made at JET by coupling up to 2.4 MW of RF power at 3.7 GHz, with a power spectrum centered at n{sub ||} = 1.8 {+-} 0.2 corresponding to a resonating electron energy of about 100 keV via Electron Landau Damping. The Current Drive (CD) efficiency has been observed to increase when LH and ICRH power are applied simultaneously to the plasma, suggesting that a part of the fast magnetosonic wave is absorbed on the LH-generated fast electrons. An important problem of CD experiments in tokamaks is the determination of the radial distribution of the driven current and the characterization in the momentum space of the current carrying fast electrons by using appropriate diagnostic tools. For this purpose, a combined analysis of the Electron Cyclotron Emission (ECE) and of the Fast Electron Bremsstrahlung (FEB) measurements has been made, allowing the relevant parameters of the suprathermal electrons to be estimated. (author) 5 refs., 5 figs., 2 tabs.

  4. Characterization of LH induced current carrying fast electrons in JET

    International Nuclear Information System (INIS)

    Ramponi, G.; Airoldi, A.; Bartlett, D.; Brusati, M.; Froissard, P.; Gormezano, C.; Rimini, F.; Silva, R.P. da; Tanzi, C.P.

    1992-01-01

    Lower Hybrid Current Drive (LHCD) experiments have recently been made at JET by coupling up to 2.4 MW of RF power at 3.7 GHz, with a power spectrum centered at n || = 1.8 ± 0.2 corresponding to a resonating electron energy of about 100 keV via Electron Landau Damping. The Current Drive (CD) efficiency has been observed to increase when LH and ICRH power are applied simultaneously to the plasma, suggesting that a part of the fast magnetosonic wave is absorbed on the LH-generated fast electrons. An important problem of CD experiments in tokamaks is the determination of the radial distribution of the driven current and the characterization in the momentum space of the current carrying fast electrons by using appropriate diagnostic tools. For this purpose, a combined analysis of the Electron Cyclotron Emission (ECE) and of the Fast Electron Bremsstrahlung (FEB) measurements has been made, allowing the relevant parameters of the suprathermal electrons to be estimated. (author) 5 refs., 5 figs., 2 tabs

  5. Electron Fishbone Simulations in FTU-like Equilibria Using XHMGC

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, G.; Briguglio, S.; Fogaccia, G.; Zonca, F.; Di Troia, C.; Fusco, V.; Wang, X., E-mail: gregorio.vlad@enea.it [Associazione Euratom-ENEA sulla Fusione, Rome (Italy); IFTS, Zhejiang University, Hangzhou (China)

    2012-09-15

    Full text: Internal kink instabilities exhibiting fishbone like frequency chirp down have been observed in a variety of experiments where a high energy electron population was present. The relevance of the electron fishbones is primarily related to the fact that suprathermal electrons are characterized by relatively small orbit width, when compared with those of fast ions, similarly to the case of alpha particles in burning plasmas: thus, electron fishbones offer the opportunity to study the coupling between energetic particles and MHD modes in burning plasma relevant conditions even in present machines. In fact, precession resonance depends on energy, not mass; meanwhile, suprathermal electron transport perpendicular to the equilibrium magnetic field caused by fishbones can reflect some properties of fluctuation induced transport of fusion alphas due to precession resonance. The nonlinear MHD-Gyrokinetic code (HMGC) has been recently extended (from which the name XHMGC) to include new physics, including both thermal ion compressibility and diamagnetic effects, and finite parallel electric field due to parallel thermal electron pressure gradient, which enters the parallel Ohm's law and generalizes it, accounting for the kinetic thermal plasma response. Moreover, XHMGC is now able to treat up to three independent particle populations kinetically, assuming different equilibrium distribution functions (as, e.g., bulk ions, energetic (ion and/or electrons) particles accelerated by NBI, ICRH, fusion generated alpha particles, etc.). We will refer to the typical parameters of the FTU machine, where electron fishbones appearance has occurred in Lower Hybrid heated discharges. The FTU-like equilibrium corresponds to a torus with circular shape cross section, with an inverse aspect ratio {approx} 0.3. The safety factor profile has been assumed slightly reversed. Energetic electrons, described by a strongly anisotropic Maxwellian distribution function (thus, retaining

  6. Coordinated observations of electron energy spectra and electrostatic cyclotron waves during diffuse auroras

    International Nuclear Information System (INIS)

    Fontaine, D.; Perraut, S.; Cornilleau-Wehrlin, N.; Aparicio, B.; Bosqued, J.M.; Rodgers, D.

    1986-01-01

    An auroral precipitation event lasting several hours in the dusk sector on June 2, 1982 is studied in conjunction with three instruments: the EISCAT European Incoherent Scatter radar based in Scandinavia, the GEOS-2 European geostationary spacecraft, and the ARCAD-3 French-Soviet polar spacecraft. Electron energy spectra between about 1 and 10 keV, computed from EISCAT measurements, were in agreement, during a diffuse aurora period, with direct observations onboard ARCAD-3, and also with the plasma sheet component (3-10 keV) measured onboard GEOS-2 and available at large pitch-angles. This last comparison suggested the quasi-isotropy of equatorial electron fluxes. The electrostatic electron cyclotron harmonic waves, also observed onboard GEOS-2, were not found to be intense enough to cause by themselves the strong pitch-angle diffusion of electrons of a few keV

  7. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    International Nuclear Information System (INIS)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-01-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior

  8. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn [Institute of Plasma Physics, NSC Kharkov Institute of Physics and Technology, Academicheskaya Str. 1, 61108 Kharkov (Ukraine); Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  9. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Science.gov (United States)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-07-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  10. Isotropy analyses of the Planck convergence map

    Science.gov (United States)

    Marques, G. A.; Novaes, C. P.; Bernui, A.; Ferreira, I. S.

    2018-01-01

    The presence of matter in the path of relic photons causes distortions in the angular pattern of the cosmic microwave background (CMB) temperature fluctuations, modifying their properties in a slight but measurable way. Recently, the Planck Collaboration released the estimated convergence map, an integrated measure of the large-scale matter distribution that produced the weak gravitational lensing (WL) phenomenon observed in Planck CMB data. We perform exhaustive analyses of this convergence map calculating the variance in small and large regions of the sky, but excluding the area masked due to Galactic contaminations, and compare them with the features expected in the set of simulated convergence maps, also released by the Planck Collaboration. Our goal is to search for sky directions or regions where the WL imprints anomalous signatures to the variance estimator revealed through a χ2 analyses at a statistically significant level. In the local analysis of the Planck convergence map, we identified eight patches of the sky in disagreement, in more than 2σ, with what is observed in the average of the simulations. In contrast, in the large regions analysis we found no statistically significant discrepancies, but, interestingly, the regions with the highest χ2 values are surrounding the ecliptic poles. Thus, our results show a good agreement with the features expected by the Λ cold dark matter concordance model, as given by the simulations. Yet, the outliers regions found here could suggest that the data still contain residual contamination, like noise, due to over- or underestimation of systematic effects in the simulation data set.

  11. Testing the isotropy of the Hubble expansion

    OpenAIRE

    Migkas, K.; Plionis, M.

    2016-01-01

    Abstract: We have used the Union2.1 SNIa compilation to search for possible Hubble expansion anisotropies, dividing the sky in 9 solid angles containing roughly the same number of SNIa, as well as in two Galactic hemispheres. We identified only one sky region, containing 82 SNIa (~15% of total sample with z > 0.02), that indeed appears to share a Hubble expansion significantly different from the rest of the sample. However, this behaviour can be attributed to the joint "erratic" behaviour of ...

  12. Properties isotropy of magnesium alloy strip workpieces

    Directory of Open Access Journals (Sweden)

    Р. Кавалла

    2016-12-01

    Full Text Available The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

  13. Non-Local Diffusion of Energetic Electrons during Solar Flares

    Science.gov (United States)

    Bian, N. H.; Emslie, G.; Kontar, E.

    2017-12-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  14. The practical model of electron emission in the radioisotope battery by fast ions

    International Nuclear Information System (INIS)

    Erokhine, N.S.; Balebanov, V.M.

    2003-01-01

    Under the theoretical analysis of secondary-emission radioisotope source of current the estimate of energy spectrum F(E) of secondary electrons with energy E emitted from films is the important problem. This characteristic knowledge allows, in particular, studying the volt-ampere function, the dependence of electric power deposited in the load on the system parameters and so on. Since the rigorous calculations of energy spectrum F(E) are the complicated enough and labour-intensive there is necessity to elaborate the practical model which allows by the simple computer routine on the basis of generalized data (both experimental measurements and theoretical calculations) on the stopping powers and mean free path of suprathermal electrons to perform reliable express-estimates of the energy spectrum F(E) and the volt-ampere function I(V) for the concrete materials of battery emitter films. This paper devoted to description of of the practical model to calculate electron emission characteristics under the passage of fast ion fluxes from the radioisotope source through the battery emitter. The analytical approximations for the stopping power of emitter materials, the electron inelastic mean free path, the ion production of fast electrons and the probability for them to arrive the film surface are taken into account. In the cases of copper and gold films, the secondary electron escaping depth, the position of energy spectrum peak are considered in the dependence on surface potential barrier magnitude U. According to our calculations the energy spectrum peak shifted to higher electron energy under the U growth. The model described may be used for express estimates and computer simulations of fast alpha-particles and suprathermal electrons interactions with the solid state plasma of battery emitter films, to study the electron emission layer characteristics including the secondary electron escaping depth, to find the optimum conditions for excitation of nonequilibrium

  15. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind

    International Nuclear Information System (INIS)

    Zaslavsky, A.; Maksimovic, M.; Volokitin, A. S.; Krasnoselskikh, V. V.; Bale, S. D.

    2010-01-01

    Recent in-situ observations by the TDS instrument equipping the STEREO spacecraft revealed that large amplitude spatially localized Langmuir waves are frequent in the solar wind, and correlated with the presence of suprathermal electron beams during type III events or close to the electron foreshock. We briefly present the new theoretical model used to perform the study of these localized electrostatic waves, and show first results of simulations of the destabilization of Langmuir waves by a beam propagating in the inhomogeneous solar wind. The main results are that the destabilized waves are mainly focalized near the minima of the density profiles, and that the nonlinear interaction of the waves with the resonant particles enhances this focalization compared to a situation in which the only propagation effects are taken into account.

  16. Electron beam interaction with space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.S.

    1999-01-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification. Recently, theoretical studies of the nonlinear evolution of a thin monoenergetic electron beam injected in a magnetized plasma and interacting with a whistler wave packet have led to new results. The influence of an effective dissipation process connected with whistler wave field leakage out of the beam volume to infinity (that is, effective radiation outside the beam) on the nonlinear evolution of beam electrons distribution in phase space has been studied under conditions relevant to active space experiments and related laboratory modelling. The beam-waves system's evolution reveals the formation of stable nonlinear structures continuously decelerated due to the effective friction imposed by the strongly dissipated waves. The nonlinear interaction between the electron bunches and the wave packet are discussed in terms of dynamic energy exchange, particle trapping, slowing down of the beam, wave dissipation and quasi-linear diffusion. (author)

  17. Energization of electrons in a plasma beam entering a curved magnetic field

    International Nuclear Information System (INIS)

    Brenning, N.; Lindberg, L.; Eriksson, A.

    1980-09-01

    Earlier experiments have indicated that suprathermal electrons appear when a collisionless plasma flowing along a magnetic field enters a region where the magnetic field is curved. In the present investigation newly developed methods of He-spectroscopy based on the absolute intensities of the He I 3889 A and He II 4686 A lines are utilized to study the electron temperature and to estimate the population of non-thermal electrons. The density of helium added for the diagnostic purpose is so low that the flow is not disturbed. It is found that the intrusion of the plasma into a curved or transverse field gives rise to a slight increase (15-20%) in the electron temperature and a remarkable increase in the fraction of non-thermal (>100 eV) electrons from below 1% to as much as 20-25% of the total electron population. There are also indications that the energization of electrons is particularly efficient on that side of the plasma beam which becomes polarized to a positive potential when entering the curved field. The experiments are confined to the case of weak magnetic field, i.e. only the electrons are magnetically confined. New details of the electric field and potential structure are presented and discussed. Electric field components parallel to the magnetic field are likely to energize the electrons, probably through the run-away phenomenon. (Auth.)

  18. Self-similar variables and the problem of nonlocal electron heat conductivity

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Bakunin, O.G.

    1993-10-01

    Self-similar solutions of the collisional electron kinetic equation are obtained for the plasmas with one (1D) and three (3D) dimensional plasma parameter inhomogeneities and arbitrary Z eff . For the plasma parameter profiles characterized by the ratio of the mean free path of thermal electrons with respect to electron-electron collisions, γ T , to the scale length of electron temperature variation, L, one obtains a criterion for determining the effect that tail particles with motion of the non-diffusive type have on the electron heat conductivity. For these conditions it is shown that the use of a open-quotes symmetrizedclose quotes kinetic equation for the investigation of the strong nonlocal effect of suprathermal electrons on the electron heat conductivity is only possible at sufficiently high Z eff (Z eff ≥ (L/γ T ) 1/2 ). In the case of 3D inhomogeneous plasma (spherical symmetry), the effect of the tail electrons on the heat transport is less pronounced since they are spread across the radius r

  19. Acceleration of runaway electrons in solar flares

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  20. Electron scattering and transport in liquid argon

    International Nuclear Information System (INIS)

    Boyle, G. J.; Cocks, D. G.; White, R. D.; McEachran, R. P.

    2015-01-01

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies

  1. Electron scattering and transport in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, G. J.; Cocks, D. G.; White, R. D. [College of Science, Technology and Engineering, James Cook University, Townsville 4810 (Australia); McEachran, R. P. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-04-21

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.

  2. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  3. Electron precipitation control of the Mars nightside ionosphere

    Science.gov (United States)

    Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.

    2017-12-01

    The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.

  4. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  5. Electronic structure of UCl5: A reexamination

    International Nuclear Information System (INIS)

    Soule, E.; Edelstein, N.

    1980-01-01

    On the basis of the absorption spectrum of UCl 5 recorded at 4.2 K, Leung and Poon attempted a determination of both the spin-orbit coupling constant and the crystal field parameters. Their parameters, however, led to a calculated g-tensor at variance with the position of the electron paramagnetic resonance line observed by Miyake et al. It was therefore attempted to simultaneously interpret both spectra (absorption and EPR), assuming the validity of the Newman superposition model, and taking the point symmetry group on each uranium of the (UCl 5 ) 2 dimer as C 2 sub(v). We obtain one and only one satisfactory solution, namely a set of parameters that reasonably reproduce the observed absorption peaks, and lead to the following principal values of the g-tensor: gx = 0.226 (unobservable); gy = 1.187; gz = 1.186. Therefore the paradox stemming from the apparent isotropy of the EPR signal for a species of low point symmetry is resolved. (orig.)

  6. Charged particle measurements from a rocket-borne electron accelerator experiment

    International Nuclear Information System (INIS)

    Duprat, G.R.J.; McNamara, A.G.; Whalen, B.A.

    1982-01-01

    This chapter presents charged particle observations which relate to the spatial distribution of energetic (keV) charged particles surrounding the accelerator during gun firings, the energy distribution of energetic electrons produced in the plasma by the electron beam, and the dependence of these characteristics on the beam energy, current, and injection angle. The primary objective of the flight of the Nike Black Brant rocket (NUB-06) was to use an electron beam to probe the auroral field lines for electric fields parallel to the magnetic field. The secondary objectives were to study electron beam interactions in the ionosphere and spacecraft charging effects. It is demonstrated that during high current (greater than or equal to 10ma electron beam firings, an intense suprathermal as well as energetic electron population is created on flux tubes near the beam. Certain similarities exist between these measurements and corresponding ones made in the Houston vacuum tank suggesting that the same instability observed in the laboratory is occurring at high altitudes in the ionosphere

  7. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.

    1981-05-01

    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  8. Time-resolved suprathermal x-rays

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Rosen, M.D.

    1978-01-01

    Temporally resolved x-ray spectra in the range of 1 to 20 keV have been obtained from gold disk targets irradiated by 1.06 μm laser pulses from the Argus facility. The x-ray streak camera used for the measurement has been calibrated for streak speed and dynamic range by using an air-gap Fabry-Perot etalon, and the instrument response has been calibrated using a multi-range monoenergetic x-ray source. The experimental results indicate that we are able to observe the ''hot'' x-ray temperature evolve in time and that the experimentally observed values can be qualitatively predicted by LASNEX code computations when the inhibited transport model is used

  9. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  10. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Baluku, T. K.; Hellberg, M. A. [School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa)

    2012-01-15

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low {kappa} values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-{kappa} distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  11. Electronic technology

    International Nuclear Information System (INIS)

    Kim, Jin Su

    2010-07-01

    This book is composed of five chapters, which introduces electronic technology about understanding of electronic, electronic component, radio, electronic application, communication technology, semiconductor on its basic, free electron and hole, intrinsic semiconductor and semiconductor element, Diode such as PN junction diode, characteristic of junction diode, rectifier circuit and smoothing circuit, transistor on structure of transistor, characteristic of transistor and common emitter circuit, electronic application about electronic equipment, communication technology and education, robot technology and high electronic technology.

  12. The Electron

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, George

    1972-01-01

    Electrons are elementary particles of atoms that revolve around and outside the nucleus and have a negative charge. This booklet discusses how electrons relate to electricity, some applications of electrons, electrons as waves, electrons in atoms and solids, the electron microscope, among other things.

  13. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    Science.gov (United States)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  14. Counterstreaming electrons in small interplanetary magnetic flux ropes

    Science.gov (United States)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  15. Hard electronics; Hard electronics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Hard material technologies were surveyed to establish the hard electronic technology which offers superior characteristics under hard operational or environmental conditions as compared with conventional Si devices. The following technologies were separately surveyed: (1) The device and integration technologies of wide gap hard semiconductors such as SiC, diamond and nitride, (2) The technology of hard semiconductor devices for vacuum micro- electronics technology, and (3) The technology of hard new material devices for oxides. The formation technology of oxide thin films made remarkable progress after discovery of oxide superconductor materials, resulting in development of an atomic layer growth method and mist deposition method. This leading research is expected to solve such issues difficult to be easily realized by current Si technology as high-power, high-frequency and low-loss devices in power electronics, high temperature-proof and radiation-proof devices in ultimate electronics, and high-speed and dense- integrated devices in information electronics. 432 refs., 136 figs., 15 tabs.

  16. Electron radiography

    Science.gov (United States)

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  17. Absorbed Dose Distributions in Small Copper Wire Insulation due to Multiple-Sided Irradiations by 0.4 MeV Electrons

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.; Pedersen, Walther Batsberg

    1979-01-01

    When scanned electron beams are used to crosslink polymeric insulation of wire and cable, an important goal is to achieve optimum uniformity of absorbed dose distributions. Accurate measurements of dose distributions in a plastic dosimeter simulating a typical insulating material (polyethylene......) surrounding a copper wire core show that equal irradiations from as few as four sides give approximately isotropy and satisfactorily uniform energy depositions around the wire circumference. Electron beams of 0.4 MeV maximum energy were used to irradiate wires having a copper core of 1.0 mm dia....... and insulation thicknesses between 0.4 and 0.8 mm. The plastic dosimeter simulating polyethylene insulations was a thin radiochromic polyvinyl butyral film wrapped several times around the copper wire, such that when unwrapped and analyzed optically on a scanning microspectrophotometer, high-resolution radial...

  18. Electrons, Electronic Publishing, and Electronic Display.

    Science.gov (United States)

    Brownrigg, Edwin B.; Lynch, Clifford A.

    1985-01-01

    Provides a perspective on electronic publishing by distinguishing between "Newtonian" publishing and "quantum-mechanical" publishing. Highlights include media and publishing, works delivered through electronic media, electronic publishing and the printed word, management of intellectual property, and recent copyright-law issues…

  19. Electron detector

    International Nuclear Information System (INIS)

    Hashimoto, H.; Mogami, A.

    1975-01-01

    A device for measuring electron densities at a given energy level in an electron beam or the like having strong background noise, for example, in the detection of Auger electric energy spectrums is described. An electron analyzer passes electrons at the given energy level and at the same time electrons of at least one adjacent energy level. Detecting means associated therewith produce signals indicative of the densities of the electrons at each energy level and combine these signals to produce a signal indicative of the density of the electrons of the given energy level absent background noise

  20. Solar Wind 0.1-1 keV Electrons in the Corotating Interaction Regions

    Science.gov (United States)

    Wang, L.; Tao, J.; Li, G.; Wimmer-Schweingruber, R. F.; Jian, L. K.; He, J.; Tu, C.; Tian, H.; Bale, S. D.

    2017-12-01

    Here we present a statistical study of the 0.1-1 keV suprathermal electrons in the undisturbed and compressed slow/fast solar wind, for the 71 corotating interaction regions (CIRs) with good measurements from the WIND 3DP and MFI instruments from 1995 to 1997. For each of these CIRs, we separate the strahl and halo electrons based on their different behaviors in pitch angle distributions in the undisturbed and compressed solar wind. We fit both the strahl and halo energy spectra to a kappa function with an index κ index and effective temperature Teff, and calculate the pitch-angle width at half-maximum (PAHM) of the strahl population. We also integrate the electron measurements between 0.1 and 1.0 keV to obtain the number density n and average energy Eavg for the strahl and halo populations. We find that for both the strahl and halo populations within and around these CIRs, the fitted κ index strongly correlates with Teff, similar to the quiet-time solar wind (Tao et al., ApJ, 2016). The number density of both the strahl and halo shows a strong positive correlation with the electron core temperature. The strahl number density ns is correlated with the magnitude of interplanetary magnetic field, and the strahl PAHM width is anti-correlated with the solar wind speed. These results suggest that the origin of strahl electrons from the solar corona is likely related to the electron core temperature and magnetic field strength, while the production of halo electrons in the interplanetary medium could depend on the solar wind velocity.

  1. Electron/electron acoustic instability

    International Nuclear Information System (INIS)

    Gary, S.P.

    1987-01-01

    The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma

  2. The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Nicolas H.; Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Emslie, A. Gordon, E-mail: nicolas.bian@glasgow.gla.ac.uk, E-mail: emslieg@wku.edu [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2017-02-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  3. Electronic emission and electron guns

    International Nuclear Information System (INIS)

    Roy, Amitava

    2010-01-01

    This paper reviews the process of electron emission from metal surface. Although electrons move freely in conductors like metals, they normally do not leave the metal without some manipulation. In fact, heating and bombardment are the two primary ways in which electrons are emitted through the use of a heating element behind the cathode (termed thermionic emission) or as a result of bombardment with a beam of electrons, ions, or metastable atoms (termed secondary emission). Another important emission mechanism called Explosive Electron Emission (EEE) is also often used in various High Voltage Pulse Power Systems to generate very high current (few hundreds of kA) pulsed electron beams. The electron gun is the device in that it shoots off a continuous (or pulsed) stream of electrons. A brief idea about the evolution of the electron gun components and their basis of functioning are also discussed. (author)

  4. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa; Torres Sevilla, Galo Andres; Diaz Cordero, Marlon Steven

    2017-01-01

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces

  5. ELECTRONIC SIGNATURES

    African Journals Online (AJOL)

    10332324

    "[to] promote the understanding and, acceptance of and growth in the number of electronic transactions .... Chapter III of the ECT Act is based on the UNCITRAL Model Law on Electronic. Commerce ... Communications Technology Law 146. 22.

  6. Electronic components

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Components provides a basic grounding in the practical aspects of using and selecting electronics components. The book describes the basic requirements needed to start practical work on electronic equipment, resistors and potentiometers, capacitance, and inductors and transformers. The text discusses semiconductor devices such as diodes, thyristors and triacs, transistors and heat sinks, logic and linear integrated circuits (I.C.s) and electromechanical devices. Common abbreviations applied to components are provided. Constructors and electronics engineers will find the book useful

  7. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  8. Electronic Commerce

    OpenAIRE

    Slavko Đerić

    2016-01-01

    Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks...

  9. Electronic Publishing.

    Science.gov (United States)

    Lancaster, F. W.

    1989-01-01

    Describes various stages involved in the applications of electronic media to the publishing industry. Highlights include computer typesetting, or photocomposition; machine-readable databases; the distribution of publications in electronic form; computer conferencing and electronic mail; collaborative authorship; hypertext; hypermedia publications;…

  10. Response of Saturn's ionosphere to solar radiation: Testing parameterizations for thermal electron heating and secondary ionization processes

    Science.gov (United States)

    Moore, Luke; Galand, Marina; Mueller-Wodarg, Ingo; Mendillo, Michael

    2009-12-01

    We evaluate the effectiveness of two parameterizations in Saturn's ionosphere over a range of solar fluxes, seasons, and latitudes. First, the parameterization of the thermal electron heating rate, Q* e, introduced in [Moore, L., Galand, M., Mueller-Wodarg, I., Yelle, R.V., Mendillo, M., 2008. Plasma temperatures in Saturn's ionosphere. J. Geophys. Res. 113, A10306. doi:10.1029/2008JA013373.] for one specific set of conditions, is found to produce ion and electron temperatures that agree with self-consistent suprathermal electron calculations to within 2% on average under all conditions considered. Next, we develop a new parameterization of the secondary ion production rate at Saturn based on the calculations of [Galand, M., Moore, L., Mueller-Wodarg, I., Mendillo, M., 2009. Modeling the photoelectron secondary ionization process at Saturn. accepted. J. Geophys. Res.]; it is found to be accurate to within 4% on average. The demonstrated effectiveness of these two parameterizations over a wide range of input conditions makes them good candidates for inclusion in 3D Saturn thermosphere-ionosphere general circulation models (TIGCMs).

  11. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-09-08

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces. The stickers can be wrappable, placed on surfaces, glued on walls or mirrors or wood or stone, and have electronics (112, 122, 132) which may or may not be ultrathin. Packaging for the electronic sticker can use polymer on cellulose manufacturing and/or three dimensional (3-D) printing. The electronic stickers may provide lighting capability, sensing capability, and/or recharging capabilities.

  12. Basic electronics

    CERN Document Server

    Holbrook, Harold D

    1971-01-01

    Basic Electronics is an elementary text designed for basic instruction in electricity and electronics. It gives emphasis on electronic emission and the vacuum tube and shows transistor circuits in parallel with electron tube circuits. This book also demonstrates how the transistor merely replaces the tube, with proper change of circuit constants as required. Many problems are presented at the end of each chapter. This book is comprised of 17 chapters and opens with an overview of electron theory, followed by a discussion on resistance, inductance, and capacitance, along with their effects on t

  13. Electronic Commerce and Electronic Business

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This special issue is motivated by the recent upsurge of research activity in the areas of electronic commerce and electronic business both in India and all over the world. The current ... Monte Carlo methods for pricing financial options are then.

  14. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K; Gascó, M; Klievink, A.J.; Lindgren, I; Milano, M; Panagiotopoulos, P; Pardo, T.A.; Parycek, P; Sæbø, Ø

    2016-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies.This book presents papers from the 14th International Federation for Information

  15. Electronic Government and Electronic Participation

    NARCIS (Netherlands)

    Tambouris, E.; Scholl, H.J.; Janssen, M.F.W.H.A.; Wimmer, M.A.; Tarabanis, K.; Gascó, M.; Klievink, A.J.; Lindgren, I.; Milano, M.; Panagiotopoulos, P.; Pardo, T.A.; Parycek, P.; Sæbø, O.

    2015-01-01

    Electronic government and electronic participation continue to transform the public sector and society worldwide and are constantly being transformed themselves by emerging information and communication technologies. This book presents papers from the 14th International Federation for Information

  16. Electron Tree

    DEFF Research Database (Denmark)

    Appelt, Ane L; Rønde, Heidi S

    2013-01-01

    The photo shows a close-up of a Lichtenberg figure – popularly called an “electron tree” – produced in a cylinder of polymethyl methacrylate (PMMA). Electron trees are created by irradiating a suitable insulating material, in this case PMMA, with an intense high energy electron beam. Upon discharge......, during dielectric breakdown in the material, the electrons generate branching chains of fractures on leaving the PMMA, producing the tree pattern seen. To be able to create electron trees with a clinical linear accelerator, one needs to access the primary electron beam used for photon treatments. We...... appropriated a linac that was being decommissioned in our department and dismantled the head to circumvent the target and ion chambers. This is one of 24 electron trees produced before we had to stop the fun and allow the rest of the accelerator to be disassembled....

  17. `Twisted' electrons

    Science.gov (United States)

    Larocque, Hugo; Kaminer, Ido; Grillo, Vincenzo; Leuchs, Gerd; Padgett, Miles J.; Boyd, Robert W.; Segev, Mordechai; Karimi, Ebrahim

    2018-04-01

    Electrons have played a significant role in the development of many fields of physics during the last century. The interest surrounding them mostly involved their wave-like features prescribed by the quantum theory. In particular, these features correctly predict the behaviour of electrons in various physical systems including atoms, molecules, solid-state materials, and even in free space. Ten years ago, new breakthroughs were made, arising from the new ability to bestow orbital angular momentum (OAM) to the wave function of electrons. This quantity, in conjunction with the electron's charge, results in an additional magnetic property. Owing to these features, OAM-carrying, or twisted, electrons can effectively interact with magnetic fields in unprecedented ways and have motivated materials scientists to find new methods for generating twisted electrons and measuring their OAM content. Here, we provide an overview of such techniques along with an introduction to the exciting dynamics of twisted electrons.

  18. Winter nightime ion temperatures and energetic electrons from 0go 6 plasma measurements

    International Nuclear Information System (INIS)

    Sanatani, S.; Breig, E.L.

    1981-01-01

    This paper presents and discusses ion temperature and suprathermal electron flux data acquired with the retarding potential analyzer on board the ogo 6 satellite when it was in solar eclipse. Attention is directed to measurements in the 400- to 800-km height interval between midnight and predawn in the northern winter nonpolar ionosphere. Statistical analysis of data recorded during a 1-month time span permits a decoupling of horizontal and altitude effects. A distinct longitudinal variation is observed for ion temperature above 500 km, with a significant relative enhancement over the western North Altantic Altitude distributions of ion temperature are compatible with Millstone Hill profiles within the common region of this enhancement. Large fluxes of energetic electrons are observed and extend to mush lower geomagnetic latitudes in the same longitude sector. Both a direct correlation in magnitude and a strong similarity in spatial extent are demonstrated for these ion temperature and electron flux data. The location of the limiting low-altitude boundary for observation of the electron fluxes is variable, dependent on local time and season as well as longitude. Variations in this boundary are found to be consistent with a calculated conjugate solar zenith angle of 99 0 +- 2 0 describing photoproduction of energetic electrons in the southern hemisphere. The ogo 6 data are considered to be indicative of an energy source originating in the sunlit summer hemisphere and providing heat via transport of photoelectrons to a broad but preferential segment of the winter nighttime mid-latitude ionosphere. Ions at other longitudes are without access to this energy source and cool to near the neutral temperature at heights to above 800 km inthe predawn hours

  19. Demonstration of Electron Bernstein Wave Heating in a Reversed Field Pinch

    Science.gov (United States)

    Seltzman, Andrew H.

    The Electron Bernstein wave (EBW) presents an alternative to conventional electron cyclotron resonance heating and current drive in overdense plasmas, where electromagnetic waves are inaccessible. The first observation of rf heating in a reversed field pinch (RFP) using the EBW has been demonstrated on Madison Symmetric Torus (MST). The EBW propagates radially inward through a magnetic field that is either stochastic or has broken flux surfaces, before absorption on a substantially Doppler-shifted cyclotron resonance (? = n*?_ce - k_parallel*v_parallel), where n is the harmonic number. Deposition depth is controllable with plasma current on a broad range (n=1-7) of harmonics. Novel techniques were required to measure the suprathermal electron tail generated by EBW heating in the presence of intense Ohmic heating. In the thick-shelled MST RFP, the radial accessibility of the EBW is limited to r/a > 0.8 ( 10 cm), where a=52cm is the minor radius, by magnetic field error induced by the porthole necessary for the antenna; accessibility in a thin-shelled device with actively controlled saddle coils (without the burden of substantial porthole field error) is likely to be r/a> 0.5 in agreement with ray tracing studies. Measured electron loss rates with falloff time constants in the 10s of micros imply a large, non-collisional radial diffusivity; collisional times with background particles are on the order of one millisecond. EBW-heated test electrons are used as a probe of edge (r/a > 0.9) radial transport, showing a modest transition from 'standard' to reduced-tearing RFP operation.

  20. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic-analysis/asy1348

  1. Evaluation of isotropy in wet-mix sprayed concrete

    Directory of Open Access Journals (Sweden)

    Yubero, E.

    2009-07-01

    Full Text Available It is well known that there are differences between the fresh mix concrete and the placed concrete sprayed using dry or wet-mix process. Because of that, the characterization of such material is carried out in cores extracted parallel to the spray direction from sample panels. However, in many applications (e.g. tunnel lining, considerable compressive stresses appear along the transversal direction. In this paper different spayed concretes are evaluated. It was observed that the values of compressive strength and modulus of elasticity were different depending on the direction of measurement. These differences are related to a preferential orientation of the coarse aggregate due to the characteristics of the casting process. Rather than applying classic empirical methods, the concrete mixes used in this study were designed according to a new proportioning method based on the difference between the composition of the fresh mix concrete and the placed concrete.Dadas las diferencias entre el hormigón de partida y el colocado, la evaluación de las propiedades de un hormigón proyectado, por vía húmeda o seca, se realiza mediante la extracción de testigos, evaluándose las propiedades mecánicas o deformacionales de forma uniaxial, según la dirección de la proyección. No obstante, son muchas las aplicaciones, como es el caso del sostenimiento en túneles, en las que esta disposición no representa la forma de trabajo principal del hormigón en la estructura. En el presente artículo se ha verificado que pueden existir diferencias en la resistencia a compresión y módulo de elasticidad del hormigón proyectado por vía húmeda, según la dirección de evaluación. Éstas van ligadas a la orientación que sufre el árido grueso como consecuencia de la puesta en obra del hormigón. Asimismo, el hormigón proyectado del estudio se ha dosificado utilizando como procedimiento de dosificación una propuesta metodológica, basada en las diferencias entre hormigón colocado y de partida, en contraposición a los métodos habituales de dosificación que se fundamentan en la experiencia.

  2. Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy

    International Nuclear Information System (INIS)

    Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.

    2013-01-01

    Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)

  3. Planck 2013 results. XXIII. Isotropy and Statistics of the CMB

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.

    2013-01-01

    The two fundamental assumptions of the standard cosmological model - that the initial fluctuations are statistically isotropic and Gaussian - are rigorously tested using maps of the CMB anisotropy from the \\Planck\\ satellite. The detailed results are based on studies of four independent estimates...

  4. On asymptotic isotropy for a hydrodynamic model of liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2016-01-01

    Roč. 97, 3-4 (2016), s. 189-210 ISSN 0921-7134 Grant - others:European Research Council(XE) MATHEF(320078) Institutional support: RVO:67985840 Keywords : liquid crystal * Q-tensor description * long-time behavior Subject RIV: BA - General Mathematics Impact factor: 0.933, year: 2016 http://content.iospress.com/articles/asymptotic- analysis /asy1348

  5. Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Slavko Đerić

    2016-12-01

    Full Text Available Electronic commerce can be defined in different ways. Any definition helps to understand and explain that concept as better as possible.. Electronic commerce is a set of procedures and technologies that automate the tasks of financial transactions using electronic means. Also, according to some authors, electronic commerce is defined as a new concept, which is being developed and which includes process of buying and selling or exchanging products, services or information via computer networks, including the Internet. Electronic commerce is not limited just to buying and selling, but it also includes all pre-sales and after-sales ongoing activities along the supply chain. Introducing electronic commerce, using the Internet and Web services in business, realizes the way to a completely new type of economy - internet economy.

  6. Advanced Electronics

    Science.gov (United States)

    2017-07-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0114 TR-2017-0114 ADVANCED ELECTRONICS Ashwani Sharma 21 Jul 2017 Interim Report APPROVED FOR PUBLIC RELEASE...NUMBER Advanced Electronics 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) 5d. PROJECT NUMBER 4846 Ashwani Sharma 5e. TASK NUMBER...Approved for public release; distribution is unlimited. (RDMX-17-14919 dtd 20 Mar 2018) 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Space Electronics

  7. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  8. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  9. Electronics Industry

    National Research Council Canada - National Science Library

    Bell, Robert; Carroll-Garrison, Martina; Donovan, Daniel; Fisher, John; Guemmer, Paul; Harms, Robert; Kelly, Timothy; Love, Mattie; McReynolds, James; Ward, Ralph

    2006-01-01

    .... Government action to preserve strategic access to semiconductor producers is clearly needed to ensure DoD electronic systems can be built without compromising sensitive technology, though every...

  10. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  11. Electron holography

    CERN Document Server

    Tonomura, Akira

    1993-01-01

    Holography was devised for breaking through the resolution limit of electron microscopes The advent of a "coherent" field emission electron beam has enabled the use of Electron Holography in various areas of magnetic domain structures observation, fluxon observation in superconductors, and fundamental experiments in physics which have been inaccessible using other techniques After examining the fundamentals of electron holography and its applications to the afore mentioned fields, a detailed discussion of the Aharonov-Bohm effect and the related experiments is presented Many photographs and illustrations are included to elucidate the text

  12. Electron density fluctuation measurements in the TORTUR tokamak

    International Nuclear Information System (INIS)

    Remkes, G.J.J.

    1990-01-01

    This thesis deals with measurements of electron-density fluctuations in the TORTUR tokamak. These measurements are carried out by making use of collective scattering of electromagnetic beams. The choice of the wavelength of the probing beam used in collective scattering experiments has important consequences. in this thesis it is argued that the best choice for a wavelength lies in the region 0.1 - 1 mm. Because sources in this region were not disposable a 2 mm collective scattering apparatus has been used as a fair compromise. The scattering theory, somewhat adapted to the specific TORTUR situation, is discussed in Ch. 2. Large scattering angles are admitted in scattering experiments with 2 mm probing beams. This had consequences for the spatial response functions. Special attention has been paid to the wave number resolution. Expressions for the minimum source power have been determined for two detection techniques. The design and implementation of the scattering apparatus has been described in Ch. 3. The available location of the scattering volume and values of the scattering angle have been determined. The effect of beam deflection due to refraction effects is evaluated. The electronic system is introduced. Ch. 4 presents the results of measurements of density fluctuations in the TORTUR tokamak in the frequency range 1 kHz to 100 MHz end the wave number region 400 - 4000 m -1 in different regions of the plasma. Correlation between density and magnetic fluctuations has been found in a number of cases. During the current decay at the termination of several plasma discharges minor disruptions occurred. The fluctuations during these disruptions have been monitored. Measurements have been performed in hydrogen as well as deuterium. A possible dependence of the wave number on the ion gyroradius has been investigated. The isotropy of the fluctuations in the poloidal plane was investigated. A theoretical discussion of the measured results is given in ch. 5. ( H.W.). 63

  13. The electron

    International Nuclear Information System (INIS)

    Hestenes, David; Weingartshofer, Antonio

    1991-01-01

    The stupendous successes of the Dirac equation and quantum electro-dynamics have established the electron as the best understood of the fundamental constituents of matter. Nevertheless, physicists agree that the electron still has secrets to reveal. Moreover, powerful new theoretical and experimental tools for probing those secrets have been sharpened during the last decade. This workshop was organized to bring theorists and experimentalists together to discuss their common goal of knowing the electron. Present state and future prospects for progress toward that goal are here described. The theoretical papers encompass a wide range of views on the electron. Several argue that the 'Zitter-bewegung' is more than a mathematical peculiarity of the Dirac equation, that it may well be a real physical phenomenon and worthy of serious study, theoretically and experimentally. Besides generating the electron spin and magnetic moment, the 'Zitterbewegung' may be a vital clue to electron structure and self-interaction. Some of the papers employ a radical new formulation of the Dirac theory which reveals a hidden geo-metric structure in the theory that supports a 'Zitterbewegung' inter-pretation. For the last half century the properties of electrons have been probed primarily by scattering experiments at ever higher energies. Recently, however, two powerful new experimental techniques have emerged capable of giving alternative experimental views of the electron. First, techniques for confining single electrons for long term study have led to the most accurate measurements of the electron magnetic moment. Second, the interaction of high intensity laser fields with atoms and electrons have revealed striking new phenomena such as multiphoton ionization. refs.; figs.; tabs

  14. Printed Electronics

    Science.gov (United States)

    Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2018-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  15. Digital electronics

    CERN Document Server

    Morris, John

    2013-01-01

    An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes th

  16. Electronic diagrams

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin

  17. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  18. Starting electronics

    CERN Document Server

    Brindley, Keith

    2005-01-01

    Starting Electronics is unrivalled as a highly practical introduction for hobbyists, students and technicians. Keith Brindley introduces readers to the functions of the main component types, their uses, and the basic principles of building and designing electronic circuits. Breadboard layouts make this very much a ready-to-run book for the experimenter; and the use of multimeter, but not oscilloscopes, puts this practical exploration of electronics within reach of every home enthusiast's pocket. The third edition has kept the simplicity and clarity of the original. New material

  19. Stretchable electronics

    CERN Document Server

    Someya, Takao

    2012-01-01

    With its comprehensive coverage this handbook and ready reference brings together some of the most outstanding scientists in the field to lay down the undisputed knowledge on how to make electronics stretchable.As such, it focuses on gathering and evaluating the materials, designs, models and technologies that enable the fabrication of fully elastic electronic devices which can sustain high strain. Furthermore, it provides a review of those specific applications that directly benefit from highly compliant electronics, including transistors, photonic devices and sensors. In addition to stre

  20. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  1. Electronic identity

    CERN Document Server

    de Andrade, Norberto Nuno Gomes; Argles, David

    2014-01-01

    With the increasing availability of electronic services, security and a reliable means by which identity is verified is essential.Written by Norberto Andrade the first chapter of this book provides an overview of the main legal and regulatory aspects regarding electronic identity in Europe and assesses the importance of electronic identity for administration (public), business (private) and, above all, citizens. It also highlights the role of eID as a key enabler of the economy.In the second chapter Lisha Chen-Wilson, David Argles, Michele Schiano di Zenise and Gary Wills discuss the user-cent

  2. Power Electronics

    DEFF Research Database (Denmark)

    Iov, Florin; Ciobotaru, Mihai; Blaabjerg, Frede

    2008-01-01

    is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power generation, power transmission/distribution and end-user application. This paper discuss the most...... emerging renewable energy sources, wind energy, which by means of power electronics are changing from being a minor energy source to be acting as an important power source in the energy system. Power electronics is the enabling technology and the presentation will cover the development in wind turbine...... technology from kW to MW, discuss which power electronic solutions are most feasible and used today....

  3. Paper electronics.

    Science.gov (United States)

    Tobjörk, Daniel; Österbacka, Ronald

    2011-05-03

    Paper is ubiquitous in everyday life and a truly low-cost substrate. The use of paper substrates could be extended even further, if electronic applications would be applied next to or below the printed graphics. However, applying electronics on paper is challenging. The paper surface is not only very rough compared to plastics, but is also porous. While this is detrimental for most electronic devices manufactured directly onto paper substrates, there are also approaches that are compatible with the rough and absorptive paper surface. In this review, recent advances and possibilities of these approaches are evaluated and the limitations of paper electronics are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron Microprobe

    Data.gov (United States)

    Federal Laboratory Consortium — The JEOL JXA-8600 is a conventional hairpin filament thermal emission electron microprobe that is more than 20 years old. It is capable of performing qualitative and...

  5. Electronic Aggression

    Centers for Disease Control (CDC) Podcasts

    Aggression is no longer limited to the school yard. New forms of electronic media, such as blogs, instant messaging, chat rooms, email, text messaging, and the internet are providing new arenas for youth violence to occur.

  6. Electron Emitters

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2002-01-01

    When two carbon-nanotube coated electrodes are placed at a small distance from each other, electron emission from carbon nanotubes allows a DC or AC electrical current to flow between these two electrodes...

  7. Electronic plants

    Science.gov (United States)

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  8. Electronic Elections

    DEFF Research Database (Denmark)

    Schürmann, Carsten

    2009-01-01

    Electronic voting technology is a two edged sword. It comes with many risks but brings also many benefits. Instead of flat out rejecting the technology as uncontrollably dangerous, we advocate in this paper a different technological angle that renders electronic elections trustworthy beyond...... the usual levels of doubt. We exploit the trust that voters currently have into the democratic process and model our techniques around that observation accordingly. In particular, we propose a technique of trace emitting computations to record the individual steps of an electronic voting machine...... for a posteriori validation on an acceptably small trusted computing base. Our technology enables us to prove that an electronic elections preserves the voter’s intent, assuming that the voting machine and the trace verifier are independent....

  9. Electronic commerce

    OpenAIRE

    Zvolánková, Pavla

    2010-01-01

    The thesis deals with a description of electronic commerce from its beginning up to present situation in this area. It explains basic terms connected with electronic commerce and it summarizes the relevant legislation. Moreover it describes e-contracts and rights and duties of both contractual parties. The main view is the view of Internet retailer, which is reflected in the practical part focused on concrete problems of retailers.

  10. Printed Electronics

    Science.gov (United States)

    Wade, Jessica; Hollis, Joseph Razzell; Wood, Sebastian

    2018-04-01

    The combination of printing technology with manufacturing electronic devices enables a new paradigm of printable electronics, where 'smart' functionality can be readily incorporated into almost any product at low cost. Over recent decades, rapid progress has been made in this field, which is now emerging into the industrial andcommercial realm. However, successful development and commercialisation on a large scale presents some significant technical challenges. For fully-printable electronic systems, all the component parts must be deposited from solutions (inks), requiring the development of new inorganic, organic and hybrid materials.A variety of traditional printing techniques are being explored and adapted forprinting these new materials in ways that result in the best performing electronicdevices. Whilst printed electronics research has initially focused on traditional typesof electronic device such as light-emitting diodes, transistors, and photovoltaics, it is increasingly apparent that a much wider range of applications can be realised. The soft and stretchable nature of printable materials makes them perfect candidates forbioelectronics, resulting in a wealth of research looking at biocompatible printable inks and biosensors. Regardless of application, the properties of printed electronicmaterials depend on the chemical structures, processing conditions, device architecture,and operational conditions, the complex inter-relationships of which aredriving ongoing research. We focus on three particular 'hot topics', where attention is currently focused: novel materials, characterisation techniques, and device stability. With progress advancing very rapidly, printed electronics is expected to grow over the next decade into a key technology with an enormous economic and social impact.

  11. The « 3-D donut » electrostatic analyzer for millisecond timescale electron measurements in the solar wind

    Science.gov (United States)

    Berthomier, M.; Techer, J. D.

    2017-12-01

    Understanding electron acceleration mechanisms in planetary magnetospheres or energy dissipation at electron scale in the solar wind requires fast measurement of electron distribution functions on a millisecond time scale. Still, since the beginning of space age, the instantaneous field of view of plasma spectrometers is limited to a few degrees around their viewing plane. In Earth's magnetosphere, the NASA MMS spacecraft use 8 state-of-the-art sensor heads to reach a time resolution of 30 milliseconds. This costly strategy in terms of mass and power consumption can hardly be extended to the next generation of constellation missions that would use a large number of small-satellites. In the solar wind, using the same sensor heads, the ESA THOR mission is expected to reach the 5ms timescale in the thermal energy range, up to 100eV. We present the « 3-D donut » electrostatic analyzer concept that can change the game for future space missions because of its instantaneous hemispheric field of view. A set of 2 sensors is sufficient to cover all directions over a wide range of energy, e.g. up to 1-2keV in the solar wind, which covers both thermal and supra-thermal particles. In addition, its high sensitivity compared to state of the art instruments opens the possibility of millisecond time scale measurements in space plasmas. With CNES support, we developed a high fidelity prototype (a quarter of the full « 3-D donut » analyzer) that includes all electronic sub-systems. The prototype weights less than a kilogram. The key building block of the instrument is an imaging detector that uses EASIC, a low-power front-end electronics that will fly on the ESA Solar Orbiter and on the NASA Parker Solar Probe missions.

  12. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF......) are chemically merged together to form cruciform-like structures that are an essential part of the thesis. The cruciform molecules were subjected to molecular conductance measurements to explore their capability towards single-crystal field-effect transistors (Part 1), molecular wires, and single electron......, however, was obtained by a study of a single molecular transistor. The investigated OPE5-TTF compound was captured in a three-terminal experiment, whereby manipulation of the molecule’s electronic spin was possible in different charge states. Thus, we demonstrated how the cruciform molecules could...

  13. Electron tube

    Science.gov (United States)

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  14. Spin electronics

    CERN Document Server

    Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael

    2004-01-01

    This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...

  15. Electronic Commerce

    Energy Technology Data Exchange (ETDEWEB)

    Laird, N. [NRG Information Services Inc., Calgary, AB (Canada)

    1995-11-01

    The concept of electronic commerce in the gas industry was discussed. It was defined as the integration of communication technology, advanced information processing capability and business standards, to improve effectiveness of the business process. Examples of electronic data interchange from the automotive, airline, and banking industry were given. The objective of using this technology in the gas industry was described as the provision of one electronic facility to make seamless contractual and operational arrangements for moving natural gas across participating pipelines. The benefit of seamless integration - one readily available standard system used by several companies - was highlighted. A list of value-added services such as the free movement of bulletins, directories, nominations,and other documents was provided.

  16. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  17. Electronic cigarette

    OpenAIRE

    Wang, Tao

    2016-01-01

    As we know E-cigarette is becoming increasingly popular all over the world. It is a new product that the most of smoking people would like to buy and use. However, we are not realizing advantages and disadvantages of e-cigarette clearly. My objective was to research the development of electronic cigarette whether it is under control or a good way of marketing. The thesis has two main parts. They include answers to questions what is electronic cigarette and how to manage the whole industry...

  18. Electronic School.

    Science.gov (United States)

    Executive Educator, 1994

    1994-01-01

    This issue of "The Electronic School" features a special forum on computer networking. Articles specifically focus on network operating systems, cabling requirements, and network architecture. Tom Wall argues that virtual reality is not yet ready for classroom use. B.J. Novitsky profiles two high schools experimenting with CD-ROM…

  19. Electronic Government

    DEFF Research Database (Denmark)

    Wimmer, Maria A.; Traunmüller, Roland; Grönlund, Åke

    This book constitutes the refereed proceedings of the 4th International Conference on Electronic Government, EGOV 2005, held in Copenhagen, Denmark, in August 2005. The 30 revised papers presented were carefully reviewed and selected from numerous submissions, and assess the state-of-the-art in e-government/e-governance...

  20. Electronics department

    International Nuclear Information System (INIS)

    1979-01-01

    This report summarizes the activities in 1978 of some of the groups within the Electronics Department. The work covered includes plant protection and operator studies, reliability techniques, application of nuclear techniques to mineral exploration, applied laser physics, computing and, lastly, research instrumentation. (author)

  1. Power electronics

    Indian Academy of Sciences (India)

    Kishore Chatterjee

    This special issue of Sadhana is a compilation of papers selected from those presented at the 7th National Power. Electronics Conference (NPEC), held at the Indian Institute of Technology, Bombay, on 21–23 December 2015. From among the papers presented in NPEC-2017, selected papers were peer-reviewed for ...

  2. Electron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G A; Schriber, S O [ed.

    1976-11-01

    A study was made of the present status of the thousand or so electron linacs in the world, and future trends in the field. These machines were classified according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for x-ray and electron therapy, and those which may in the future be used for negative pion therapy. Industrial machines discussed include linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a c-w, 1 GeV, 100..mu..A electron linac is raised, and various options using recirculation and stretchers are examined. In this connection, the status of rf superconductivity is summarized. A review is given of linacs for injectors into synchrotrons and e/sup +-/ storage rings, and recent work done to upgrade the only multi-GeV linac, namely SLAC, is described.

  3. Greening Electronics

    DEFF Research Database (Denmark)

    Pizzol, Massimo; Søes Kokborg, Morten; Thomsen, Marianne

    Based on a literature review with focus on hazardous substances in waste electric and electronic equipment (WEEE) and numbers from a Danish treatment facility a flow analysis for specific substances has been conducted. Further, the accessible knowledge on human and environmental effects due...

  4. Electronic seal

    International Nuclear Information System (INIS)

    Musyck, E.

    1981-01-01

    An electronic seal is presented for a volume such as container for fissile materials. The seal encloses a lock for barring the space as well as a device for the detection and the recording of the intervention of the lock. (AF)

  5. Nuclear electronics

    International Nuclear Information System (INIS)

    Friese, T.

    1981-09-01

    A short survey is given on nuclear radiation detectors and nuclear electronics. It is written for newcomers and those, who are not very familiar with this technique. Some additional information is given on typical failures in nuclear measurement systems. (orig.) [de

  6. Electron linacs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1976-01-01

    To study the present status of the thousand or so electron linacs in the world, and future trends in the field, we have classified these machines according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for X-ray and electron therapy, and those which may in the future be used for negative pion therapy. The section on industrial machines includes linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a C.W., 1 GeV, 100 μA electron linac is raised and various options using recirculation and stretchers are examined. In this connection, the status of RF superconductivity is summarized. Following, there is a review of linacs for injectors into synchrotrons and e +- storage rings. The paper ends with a description of recent work done to upgrade the only multi-GeV linac, namely SLAC. (author)

  7. Contrasting dynamics of electrons and protons in the near-Earth plasma sheet during dipolarization

    Science.gov (United States)

    Malykhin, Andrey Y.; Grigorenko, Elena E.; Kronberg, Elena A.; Koleva, Rositza; Ganushkina, Natalia Y.; Kozak, Ludmila; Daly, Patrick W.

    2018-05-01

    The fortunate location of Cluster and the THEMIS P3 probe in the near-Earth plasma sheet (PS) (at X ˜ -7-9 RE) allowed for the multipoint analysis of properties and spectra of electron and proton injections. The injections were observed during dipolarization and substorm current wedge formation associated with braking of multiple bursty bulk flows (BBFs). In the course of dipolarization, a gradual growth of the BZ magnetic field lasted ˜ 13 min and it was comprised of several BZ pulses or dipolarization fronts (DFs) with duration ≤ 1 min. Multipoint observations have shown that the beginning of the increase in suprathermal ( > 50 keV) electron fluxes - the injection boundary - was observed in the PS simultaneously with the dipolarization onset and it propagated dawnward along with the onset-related DF. The subsequent dynamics of the energetic electron flux was similar to the dynamics of the magnetic field during the dipolarization. Namely, a gradual linear growth of the electron flux occurred simultaneously with the gradual growth of the BZ field, and it was comprised of multiple short ( ˜ few minutes) electron injections associated with the BZ pulses. This behavior can be explained by the combined action of local betatron acceleration at the BZ pulses and subsequent gradient drifts of electrons in the flux pile up region through the numerous braking and diverting DFs. The nonadiabatic features occasionally observed in the electron spectra during the injections can be due to the electron interactions with high-frequency electromagnetic or electrostatic fluctuations transiently observed in the course of dipolarization. On the contrary, proton injections were detected only in the vicinity of the strongest BZ pulses. The front thickness of these pulses was less than a gyroradius of thermal protons that ensured the nonadiabatic acceleration of protons. Indeed, during the injections in the energy spectra of protons the pronounced bulge was clearly observed in a

  8. Electronic Nose and Electronic Tongue

    Science.gov (United States)

    Bhattacharyya, Nabarun; Bandhopadhyay, Rajib

    Human beings have five senses, namely, vision, hearing, touch, smell and taste. The sensors for vision, hearing and touch have been developed for several years. The need for sensors capable of mimicking the senses of smell and taste have been felt only recently in food industry, environmental monitoring and several industrial applications. In the ever-widening horizon of frontier research in the field of electronics and advanced computing, emergence of electronic nose (E-Nose) and electronic tongue (E-Tongue) have been drawing attention of scientists and technologists for more than a decade. By intelligent integration of multitudes of technologies like chemometrics, microelectronics and advanced soft computing, human olfaction has been successfully mimicked by such new techniques called machine olfaction (Pearce et al. 2002). But the very essence of such research and development efforts has centered on development of customized electronic nose and electronic tongue solutions specific to individual applications. In fact, research trends as of date clearly points to the fact that a machine olfaction system as versatile, universal and broadband as human nose and human tongue may not be feasible in the decades to come. But application specific solutions may definitely be demonstrated and commercialized by modulation in sensor design and fine-tuning the soft computing solutions. This chapter deals with theory, developments of E-Nose and E-Tongue technology and their applications. Also a succinct account of future trends of R&D efforts in this field with an objective of establishing co-relation between machine olfaction and human perception has been included.

  9. Electronics Industry

    Science.gov (United States)

    2007-01-01

    countries in developing market nations in Asia (such as Korea, Taiwan, Singapore, Malaysia , China and Vietnam). The competition for the knowledge, economic...Intel, Infineon Technologies, STMicroelectronics, Samsung Electronics, Texas Instruments, AMD Spansion, Philips Semiconductor, Freescale... Samsung ($19.7B), #5 Toshiba ($9.8B), #6 TSMC ($9.7B), #7 Hynix ($8.0B) and #8 Renesas ($7.9B) (McGrath, 2007, p. 3). Samsung , headquartered in

  10. Electronic banking

    OpenAIRE

    Gradišnik, Monika

    2017-01-01

    The development of information and communication technology is one of the most important reasons for the incredibly fast changes in business. Electronic commerce is spreading unstoppably in the operations of companies. The creation of new models, such as online banking, online shopping and the like, has sped up the development of the World Wide Web. Owing to the rapid progress of the World Wide Web and technologies for secure business operations, we can barely imagine life today without e...

  11. Electronic Aggression

    Centers for Disease Control (CDC) Podcasts

    2007-11-20

    Aggression is no longer limited to the school yard. New forms of electronic media, such as blogs, instant messaging, chat rooms, email, text messaging, and the internet are providing new arenas for youth violence to occur.  Created: 11/20/2007 by National Center for Injury Prevention and Control, Division of Violence Prevention.   Date Released: 11/28/2007.

  12. ELECTRON GUN

    Science.gov (United States)

    Christofilos, N.C.; Ehlers, K.W.

    1960-04-01

    A pulsed electron gun capable of delivering pulses at voltages of the order of 1 mv and currents of the order of 100 amperes is described. The principal novelty resides in a transformer construction which is disposed in the same vacuum housing as the electron source and accelerating electrode structure of the gun to supply the accelerating potential thereto. The transformer is provided by a plurality of magnetic cores disposed in circumferentially spaced relation and having a plurality of primary windings each inductively coupled to a different one of the cores, and a helical secondary winding which is disposed coaxially of the cores and passes therethrough in circumferential succession. Additional novelty resides in the disposition of the electron source cathode filament input leads interiorly of the transformer secondary winding which is hollow, as well as in the employment of a half-wave filament supply which is synchronously operated with the transformer supply such that the transformer is pulsed during the zero current portions of the half-wave cycle.

  13. Electronic sputtering

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1989-01-01

    Electronic sputtering covers a range of phenomena from electron and photon stimulated desorption from multilayers to fast heavy ion-induced desorption (sputtering) of biomolecules. In this talk the author attempted. Therefore, to connect the detailed studies of argon ejection from solid argon by MeV ions and keV electrons to the sputtering of low temperatures molecular ices by MeV ions then to biomolecule ejection from organic solids. These are related via changing (dE/dx) e , molecular size, and transport processes occurring in materials. In this regard three distinct regions of (dE/dx) e have been identified. Since the talk this picture has been made explicit using a simple spike model for individual impulsive events in which spike interactions are combined linearly. Since that time also the molecular dynamics programs (at Virginia and Uppsala) have quantified both single atom and dimer processes in solid Ar and the momentum transport in large biomolecule sputtering. 5 refs

  14. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  15. Electronic materials

    CERN Document Server

    Kwok, H L

    2010-01-01

    The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new conc

  16. Electronic wastes

    Science.gov (United States)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  17. Electron gun

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Hughes, R.H.

    1979-01-01

    The invention described relates to cathode ray tubes, and particularly to color picture tubes of the type useful in home television receivers and therefore to electron guns. The invention is especially applicable to self-converging tube-yoke combinations with shadow mask tubes of the type having plural-beam in-line guns disposed in a horizontal plane, an apertured mask with vertically oriented slit-shaped apertures, and a screen with vertically oriented phosphor stripes. The invention is not, however, limited to use in such tubes and may in fact be used, e.g., in dot-type shadow mask tubes and index-type tubes. (Auth.)

  18. Bolometer electronics

    International Nuclear Information System (INIS)

    Groenig, D.E.

    1981-01-01

    High quality is required to the electronic which works with bolometer made of metal for measuring the radiation power in plasmaphysical experiments. If the bandwidth is to be 1 kHz, and the time constant of the bolometer is about 160 ms by high overall gain the critical parameters are the noise of the amplifier, pick up to the system, stability and decoupling of common mode signals. The high overall gain is necessary to be able to measure lowest radiation power. The design made is a good approach to the desired property. (orig.) [de

  19. Basic electronics

    CERN Document Server

    Tayal, DC

    2010-01-01

    The second edition of this book incorporates the comments and suggestions of my friends and students who have critically studied the first edition. In this edition the changes and additions have been made and subject matter has been rearranged at some places. The purpose of this text is to provide a comprehensive and up-to-date study of the principles of operation of solid state devices, their basic circuits and application of these circuits to various electronic systems, so that it can serve as a standard text not only for universities and colleges but also for technical institutes. This book

  20. Nuclear electronics

    International Nuclear Information System (INIS)

    Lucero B, E.

    1989-01-01

    The rapid technical development of Colombia over the past years, resulted among others, a considerable increase in the number of measuring instrumentation and testing laboratories, scientific research and metrology centers, in industry, agriculture, public health, education on the nuclear field, etc. IAN is a well organized institution with qualified management, trained staff and reasonably equipped laboratories to carry out tasks as: Metrology, standardization, quality control and maintenance and repair of nuclear instruments. The government of Colombia has adopted a policy to establish and operate through the country maintenance and repair facilities for nuclear instrumentation. This policy is reflected in the organization of electronic laboratories in Bogota-IAN

  1. Experimental observation of microwave absorption and electron heating due to the two plasmon decay instability and resonance absorption

    International Nuclear Information System (INIS)

    Rasmussen, D.A.

    1981-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in two experimental devices. In the first device an investigation was made of microwave absorption and electron heating due to the parametric decay of microwaves into electron plasma waves (Two Plasmon Decay instability, TPDI), modeling a process which can occur near the quarter critical surface in laser driven pellets. P-polarized microwave (f = 1.2 GHz, P 0 less than or equal to 12 kW) are applied to an essentially collisionless, inhomogeneous plasma, in an oversized waveguide, in the U.C. Davis Prometheus III device. The initial density scale length near the quarter critical surface is quite long (L/lambda/sub De/ approx. = 3000 or k 0 L approx. = 15). The observed threshold power for the TPDI is quite low (P/sub T/approx. = 0.1 kW or v/sub os//v/sub e/ approx. = 0.1). Near the threshold the decay waves only occur near the quarter critical surface. As the incident power is increased above threshold, the decay waves spread to lower densities, and for P 0 greater than or equal to lkW, (v/sub os//v/sub e/ greater than or equal to 0.3) suprathermal electron heating is strong for high powers (T/sub H/ less than or equal to 12 T/sub e/ for P 0 less than or equal to 8 kW or v/sub os//v/sub e/ less than or equal to 0.9)

  2. Practical electronics handbook

    CERN Document Server

    Sinclair, Ian R

    2013-01-01

    Practical Electronics Handbook, Third Edition provides the frequently used and highly applicable principles of electronics and electronic circuits.The book contains relevant information in electronics. The topics discussed in the text include passive and active discrete components; linear and digital I.C.s; microprocessors and microprocessor systems; digital-analogue conversions; computer aids in electronics design; and electronic hardware components.Electronic circuit constructors, service engineers, electronic design engineers, and anyone with an interest in electronics will find the book ve

  3. Rietveld analysis and electronic bands structure on Tc superconductors systems

    International Nuclear Information System (INIS)

    Aldea, N.; Tiusan, C. V.; Sandu, V.

    1999-01-01

    A procedure for simultaneous refinement of structural and micro-structural disorder parameters for polycrystalline YBa 2 Cu 3 O 7-x system is proposed. It is based on Rietveld method combined with Fourier analysis for broadened peaks Another purpose of this paper consists in electronic structure determination studied by using the self-consistent Tight Binding Linear Muffin-Tin Orbital Atomic Spheres Approximation TB-LMTO-ASA methods. The Rietveld method uses an analytical function that describes the profiles, usually pseudo-Voigt (pV) or Pearson VII (PVII). The parameters of the analytical profiles describe its amplitude, position and peak shape. The full width at half maximum (FWHM) is supposed to vary with the diffraction angle in agreement with the Caglioti, Paoletti and Ricci's relationship. The best structural parameters are determined in the least squares sense by the minimisation a classical residual using the Marquardt method. In this case, the peak profiles were modelled by the pseudo-Voigt function corrected by the instrumental asymmetry. The physical information obtained are: scale factor, lattice parameters, atomic position and displacements, atomic occupation numbers, temperature factor (isotropy or anisotropy), preferred orientation parameter, crystalline size and micro-strain along different crystallographic directions, distributions of crystallite size and micro-strain functions. This procedure was implemented on computer code and it has a friendly graphical interface based on pull down menus technique. From the experimental point of view the X-ray diffraction data were collected using a horizontal powder diffractometer in the Bragg-Brentano (BB) geometry with a Ni filtered CuKα, λ = 1.54178 A, at room temperature using a DRON 2 set-up. The diffraction profiles were measured with a proportional gas detector, a single channel pulse-height discrimination and a standard associated counting circuit. The electronic band calculations are based on the TB

  4. Sustainable Management of Electronics

    Science.gov (United States)

    To provide information on EPAs strategy for electronics stewardship, certified electronics recyclers and the Challenge; as well as where to donate unwanted electronics, how to calculate benefits, and what's going on with electronics mgmt in their states.

  5. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  6. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  7. Description of the plasma diagnostics package (PDP) for the OSS-1 Shuttle mission and JSC plasma chamber test in conjunction with the fast pulse electron gun (FPEG)

    Science.gov (United States)

    Shawhan, S. D.

    1982-01-01

    The objectives, equipment, and techniques for the plasma diagnostics package (PDP) carried by the OSS-1 instrument payload of the STS-4 and scheduled for the Spacelab-2 mission are described. The goals of the first flight were to examine the Orbiter-magnetoplasma interactions by measuring the electric and magnetic field strengths, the ionized particle wakes, and the generated waves. The RMS was employed to lift the unit out of the bay in order to allow characterization of the fields, EM interference, and plasma contamination within 15 m of the Orbiter. The PDP will also be used to examine plasma depletion, chemical reaction rates, waves, and energized plasma produced by firing of the Orbiter thrusters. Operation of the PDP was carried out in the NASA Space Environment Simulation Laboratory test chamber, where the PDP was used to assay the fields, fluxes, wave amplitudes, and particle energy spectra. The PDP instrumentation is also capable of detecting thermal ions, thermal electrons suprathermal particles, VHF/UHF EMI levels, and the S-band field strength.

  8. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  9. First-Principles Investigations of the Structural, Anisotropic Mechanical, Thermodynamic and Electronic Properties of the AlNi2Ti Compound

    Directory of Open Access Journals (Sweden)

    Shuli Tang

    2018-02-01

    Full Text Available In this paper, the electronic, mechanical and thermodynamic properties of AlNi2Ti are studied by first-principles calculations in order to reveal the influence of AlNi2Ti as an interfacial phase on ZTA (zirconia toughened alumina/Fe. The results show that AlNi2Ti has relatively high mechanical properties, which will benefit the impact or wear resistance of the ZTA/Fe composite. The values of bulk, shear and Young’s modulus are 164.2, 63.2 and 168.1 GPa respectively, and the hardness of AlNi2Ti (4.4 GPa is comparable to common ferrous materials. The intrinsic ductile nature and strong metallic bonding character of AlNi2Ti are confirmed by B/G and Poisson’s ratio. AlNi2Ti shows isotropy bulk modulus and anisotropic elasticity in different crystallographic directions. At room temperature, the linear thermal expansion coefficient (LTEC of AlNi2Ti estimated by quasi-harmonic approximation (QHA based on Debye model is 10.6 × 10−6 K−1, close to LTECs of zirconia toughened alumina and iron. Therefore, the thermal matching of ZTA/Fe composite with AlNi2Ti interfacial phase can be improved. Other thermodynamic properties including Debye temperature, sound velocity, thermal conductivity and heat capacity, as well as electronic properties, are also calculated.

  10. Electron-electron Bremsstrahlung for bound target electrons

    International Nuclear Information System (INIS)

    Haug, E.

    2008-01-01

    For the process of electron-electron (e-e) Bremsstrahlung the momentum and energy distributions of the recoiling electrons are calculated in the laboratory frame. In order to get the differential cross section and the photon spectrum for target electrons which are bound to an atom, these formulae are multiplied by the incoherent scattering function and numerically integrated over the recoil energy. The effect of atomic binding is most pronounced at low energies of the incident electrons and for target atoms of high atomic numbers. The results are compared to those of previous calculations. (authors)

  11. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    Science.gov (United States)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  12. Electron Beam Generation in Tevatron Electron Lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  13. Electron beam generation in Tevatron electron lenses

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.

    2006-01-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices

  14. Interplay between electron-phonon and electron-electron interactions

    International Nuclear Information System (INIS)

    Roesch, O.; Gunnarsson, O.; Han, J.E.; Crespi, V.H.

    2005-01-01

    We discuss the interplay between electron-electron and electron-phonon interactions for alkali-doped fullerides and high temperature superconductors. Due to the similarity of the electron and phonon energy scales, retardation effects are small for fullerides. This raises questions about the origin of superconductivity, since retardation effects are believed to be crucial for reducing effects of the Coulomb repulsion in conventional superconductors. We demonstrate that by treating the electron-electron and electron-phonon interactions on an equal footing, superconductivity can be understood in terms of a local pairing. The Jahn-Teller character of the important phonons in fullerides plays a crucial role for this result. To describe effects of phonons in cuprates, we derive a t-J model with phonons from the three-band model. Using exact diagonalization for small clusters, we find that the anomalous softening of the half-breathing phonon as well as its doping dependence can be explained. By comparing the solution of the t-J model with the Hartree-Fock approximation for the three-band model, we address results obtained in the local-density approximation for cuprates. We find that genuine many-body results, due to the interplay between the electron-electron and electron-phonon interactions, play an important role for the the results in the t-J model. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Electronics for LHC Experiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document gathers the abstracts of most presentations made at this workshop on electronics for the large hadron collider (LHC) experiments. The presentations were arranged into 6 sessions: 1) electronics for tracker, 2) trigger electronics, 3) detector control systems, 4) data acquisition, 5) electronics for calorimeters and electronics for muons, and 6) links, power systems, grounding and shielding, testing and quality assurance.

  16. Electronics for LHC Experiments

    International Nuclear Information System (INIS)

    2004-01-01

    This document gathers the abstracts of most presentations made at this workshop on electronics for the large hadron collider (LHC) experiments. The presentations were arranged into 6 sessions: 1) electronics for tracker, 2) trigger electronics, 3) detector control systems, 4) data acquisition, 5) electronics for calorimeters and electronics for muons, and 6) links, power systems, grounding and shielding, testing and quality assurance

  17. Electronics and Information

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Previously founded as CCPITMachinery and Electronics Sub-council and CCOIC Machinery and Electronics Chamber of Corn-merce in June, 1988, CCPIT Electronics Sub-Council and CCOIC Electronics Chamber of Commerce were established in May, 1993, and then renamed as CCPIT Electronics and Information Industry Sub-council and CCOIC Electronics and Infor-mation Industry Chamber of Commerce (CCPITECC) in September 1999.

  18. Electron-electron coincidence spectroscopies at surfaces

    International Nuclear Information System (INIS)

    Stefani, G.; Iacobucci, S.; Ruocco, A.; Gotter, R.

    2002-01-01

    In the past 20 years, a steadily increasing number of electron-electron coincidence experiments on atoms and molecules have contributed to a deeper understanding of electron-electron correlation effects. In more recent years this technique has been extended to the study of solid surfaces. This class of one photon IN two electrons OUT experiments will be discussed with an emphasis on grazing incidence geometry, that is expected to be particularly suited for studying surfaces. The crucial question of which is the dominant mechanism that leads to ejection of pairs of electron from the surface will be addressed. It will be shown that, depending on the kinematics chosen, the correlated behaviour of the pairs of electrons detected might be singled out from independent particle one

  19. Electron Microscopy Center (EMC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those...

  20. Electronic, magnetic, elastic and thermodynamic properties of Cu{sub 2}MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sukriti [Department of Physics, Government Kamla Raja Girls Autonomous Post Graduate College, Gwalior 474001, Madhya Pradesh (India); Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India); Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India)

    2016-08-01

    The full-potential linearized augmented plane wave method in the stable Fm-3m phase has been implemented to investigate the structural, elastic, magnetic and electronic properties of Cu{sub 2}MnGa. The optimized equilibrium lattice parameter in stable phase is found to be 5.9495 Å. By the spin resolved density of states calculations, we have shown that the exchange splitting due to Mn atom is the main reason of ferromagnetic behavior of Cu{sub 2}MnGa. The absence of energy gap in both the spin channels predicts that the material is metallic. The total and partial density of states, elastic constants, Shear, Bulk and Young’s moduli, Zener isotropy factor, Cauchy pressure, Pugh's ductility, Kleinman parameter and Poisson's ratio are reported for the first time for the alloy. Cauchy's pressure and Pugh's index of ductility label Cu{sub 2}MnGa as ductile. Cu{sub 2}MnGa is found to be ferromagnetic and anisotropic in nature. The quasi-harmonic approximations have been employed to study the pressure and temperature dependent thermodynamic properties of Cu{sub 2}MnGa. - Highlights: • It is the first attempt to predict a variety of crystal properties of Cu{sub 2}MnGa. • Cu{sub 2}MnGa shows magnetism and hence can prove to be important in modern technology. • Cu{sub 2}MnGa is ductile and hence can attract attention of scientists and technologists.

  1. Interpretation of the Electron Paramagnetic Resonance Spectra of Copper(II)-Tyrosine Complex

    Science.gov (United States)

    Xu, Xiao-Hui; Kuang, Min-Quan

    2017-12-01

    The electron paramagnetic resonance (EPR) spectra of [Cu(l-tyrosine)2]n (CuA) were interpreted based on the fourth-order perturbation treatments where the contributions due to the local distortion, ligand orbit and spin-orbit coupling were included. The calculated band transitions d_{x^2} - y^2 to dxy (≈16412 cm-1) and d_{z^2} (≈14845 cm-1) agree well with the band analysis results (d_{x^2} - y^2 \\to d_{xy} ≈16410 and d_{x^2} - y^2 \\to d_{z^2} ≈14850 cm-1). The unresolved separations d_{x^2} - y^2 \\to d_{xz} and d_{x^2} - y^2 \\to d_{yz} in the absorption spectra were evaluated as 26283 and 26262 cm-1, respectively. For CuA, copper chromophores in 1,3-diaminorpropane isophtalate copper(II) complex (CuB) and N-methyl-1,2-diaminoetaane-bis copper(II) polymer (CuC), the transition d_{x^2} - y^2 \\to d_{xy} (=E1≈10Dq) suffered an increase with a decrease in R̅L which was evaluated as the mean value of the copper-ligand bond lengths. The correlations between the tetragonal elongation ratio ρ (=(Rz-R̅L)/R̅L) (or the ratio G=(gz-ge)/((gx+gy)/2-ge)) and the g isotropy gav (=(gx+gy+gz)/3) (or the covalency factor N) for CuA, CuB and CuC were acquired and all the results were discussed.

  2. Plasmaspheric electron content

    International Nuclear Information System (INIS)

    Hartmann, G.K.

    1978-01-01

    Measurements of the plasmaspheric electron content are reviewed with particular reference to the ATS-6 radio beacon experiment. From the review, it appears likely that measurement of the plasmaspheric electron content is the only one capable of monitoring electron fluxes continuously between L 1 and L 2. Some recent important results deduced from plasmaspheric electron content measurements are discussed

  3. Introduction to electronics

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    Electronics in HEP experiments: specificities and evolution The Art of Electronics: is there something beyond Ohm's law? Basic building blocks of Analog electronics: quickly understanding a schematic Charge preamps, current preamps and future preamps, shaping and the rest Electronics noise: fundamental and practical Evolution of technology: ASICs, FPGAs...

  4. Introduction to Electronics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Electronics in HEP experiments: specificities and evolution The Art of Electronics: is there something beyond Ohm's law? Basic building blocks of Analog electronics: quickly understanding a schematic Charge preamps, current preamps and future preamps, shaping and the rest Electronics noise: fundamental and practical Evolution of technology: ASICs, FPGAs...

  5. Electronics engineer's reference book

    CERN Document Server

    Mazda, F F

    1989-01-01

    Electronics Engineer's Reference Book, Sixth Edition is a five-part book that begins with a synopsis of mathematical and electrical techniques used in the analysis of electronic systems. Part II covers physical phenomena, such as electricity, light, and radiation, often met with in electronic systems. Part III contains chapters on basic electronic components and materials, the building blocks of any electronic design. Part IV highlights electronic circuit design and instrumentation. The last part shows the application areas of electronics such as radar and computers.

  6. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  7. Electron-electron interactions in artificial graphene

    Science.gov (United States)

    Rasanen, Esa

    2013-03-01

    Recent advances in the creation and modulation of graphenelike systems are introducing a science of ``designer Dirac materials.'' In its original definition, artificial graphene is a man-made nanostructure that consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so grows the need for an accurate theory of its electronic properties, including the effects of electron-electron interactions. Here we determine those effects on the band structure and on the emergence of Dirac points, and discuss future investigations and challenges in this field.

  8. Electronic payment systems

    OpenAIRE

    Mláka, Michal

    2010-01-01

    This bachelor thesis analysis issue of electronic payment systems. It discusses their use for payments on the internet and sending funds via e-mail. The first part is devoted to the theoretical definition and legislation of the issuance of electronic money and activities of electronic money institutions. The main part of the work clearly focuses on the use of e-wallets, which is an integral part of electronic payment systems. E-wallet of electronic payment system Moneybookers is considered as...

  9. Electronics engineer's reference book

    CERN Document Server

    Turner, L W

    1976-01-01

    Electronics Engineer's Reference Book, 4th Edition is a reference book for electronic engineers that reviews the knowledge and techniques in electronics engineering and covers topics ranging from basics to materials and components, devices, circuits, measurements, and applications. This edition is comprised of 27 chapters; the first of which presents general information on electronics engineering, including terminology, mathematical equations, mathematical signs and symbols, and Greek alphabet and symbols. Attention then turns to the history of electronics; electromagnetic and nuclear radiatio

  10. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  11. Neutrinos in the Electron

    International Nuclear Information System (INIS)

    Koschmieder, E. L.

    2007-01-01

    I will show that one half of the rest mass of the electron consists of electron neutrinos and that the other half of the rest mass of the electron consists of the mass in the energy of electric oscillations. With this composition we can explain the rest mass of the electron, its charge, its spin and its magnetic moment We have also determined the rest masses of the muon neutrino and the electron neutrino

  12. Electron-electron interactions in disordered systems

    CERN Document Server

    Efros, AL

    1985-01-01

    ``Electron-Electron Interactions in Disordered Systems'' deals with the interplay of disorder and the Coulomb interaction. Prominent experts give state-of-the-art reviews of the theoretical and experimental work in this field and make it clear that the interplay of the two effects is essential, especially in low-dimensional systems.

  13. VIRTUAL ELECTRONIC COMPONENTS OF THE ELECTRONIC EQUIPMENT

    Directory of Open Access Journals (Sweden)

    E. Lazarevich

    2013-01-01

    Full Text Available The article is present new idea of the creation, developments and improvements of the electronic equipment of complex systems by means of the virtual electronic components. The idea of the virtual electronic components is a presentation and perception of the creation and developments of the equipment on two forming: real – in the manner of standard marketed block of the intellectual property and image – in the manner of virtual component. The real component in most cases slows the development of the electronic equipment. The imaginary component is the «locomotive» of development of the electronic equipment. The Imaginary component contains the scientific has brushed against developer. The scientific has brushed against developer reveals of itself in the manner of virtual component on the modern level of the design rates of microelectronics.

  14. Practical XHV electron gun

    International Nuclear Information System (INIS)

    Urata, Tomohiro; Ishikawa, Tsuyoshi; Cho, Boklae; Oshima, Chuhei

    2008-01-01

    We have developed practical XHV chambers of a electron gun, of which the operating pressures are 1x10 -9 Pa in a stainless-steel one and 4x10 -9 Pa in a permalloy one. By mounting a noble single-atom electron source with high brightness and high spatial coherence on the electron gun including electron optics, we demonstrated highly collimated electron-beam emission: ∼80% of the total emission current entered the electron optics. This ratio was two or three orders of magnitude higher than those of the conventional electron sources. In XHV, in addition, we confirmed stable electron emission up to 20 nA, which results in the specimen current high enough for scanning electron microscopes. (author)

  15. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  16. Electronics for dummies

    CERN Document Server

    Shamieh

    2015-01-01

    Explore the basic concepts of electronics, build your electronics workbench, and begin creating fun electronics projects right away! Electronics For Dummies, 3rd Edition is your guide to the world of electronics. Spanning circuitry, wiring, robotics, transmitters, amplifiers, and more, this book demystifies electricity basics and beyond. The third edition offers new content revised to reflect the latest advancements in the electronics field, and it offers full color project examples to spark your creativity and inspire you to put your new skills to use! Packed with projects that can be comple

  17. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  18. Electron emitting filaments for electron discharge devices

    International Nuclear Information System (INIS)

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1988-01-01

    This patent describes an electron emitting device for use in an electron discharge system. It comprises: a filament having a pair of terminal ends, electrical supply means for supplying electrical power to the terminal ends of the filament for directly heating the filament by the passage of an electrical current along the filament between the terminal ends, the filament being substantially tapered in cross section continuously in one direction from one of its pair of terminal ends to another of its pair of terminal ends to achieve uniform heating of the filament along the length thereof by compensating for the nonuniform current along the filament due to the emission of electrons therefrom

  19. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  20. Electronic Submission of Labels

    Science.gov (United States)

    Pesticide registrants can provide draft and final labels to EPA electronically for our review as part of the pesticide registration process. The electronic submission of labels by registrants is voluntary but strongly encouraged.

  1. Electron scattering from pyrimidine

    International Nuclear Information System (INIS)

    Colmenares, Rafael; Fuss, Martina C; García, Gustavo; Oller, Juan C; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo

    2014-01-01

    Electron scattering from pyrimidine (C 4 H 4 N 2 ) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.

  2. THE ELECTRONIC SIGNATURE

    Directory of Open Access Journals (Sweden)

    Voiculescu Madalina Irena

    2009-05-01

    Full Text Available Article refers to significance and the digital signature in electronic commerce. Internet and electronic commerce open up many new opportunities for the consumer, yet, the security (or perceived lack of security of exchanging personal and financial data

  3. Laboratory Handbook Electronics

    CERN Multimedia

    1966-01-01

    Laboratory manual 1966 format A3 with the list of equipment cables, electronic tubes, chassis, diodes transistors etc. One of CERN's first material catalogue for construction components for mechanical and electronic chassis.

  4. Presidential Electronic Records Library

    Data.gov (United States)

    National Archives and Records Administration — PERL (Presidential Electronic Records Library) used to ingest and provide internal access to the Presidential electronic Records of the Reagan, Bush, and Clinton...

  5. Chapter 9: Electronics

    International Nuclear Information System (INIS)

    Grupen, Claus; Shwartz, Boris A.

    2006-01-01

    Sophisticated front-end electronics are a key part of practically all modern radiation detector systems. This chapter introduces the basic principles and their implementation. Topics include signal acquisition, electronic noise, pulse shaping (analog and digital), and data readout techniques

  6. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  7. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-01-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent

  8. Electronic Signature Policy

    Science.gov (United States)

    Establishes the United States Environmental Protection Agency's approach to adopting electronic signature technology and best practices to ensure electronic signatures applied to official Agency documents are legally valid and enforceable

  9. Electronics Industry Study Report

    National Research Council Canada - National Science Library

    Belt, David; Fellows, John R; Kameru, Philip; Nazaroff, Boris-Frank A; Pauroso, Anthony; Schulz, Frederick; Ballew, Bob; Bond, Thomas; Demers, Stephy; Kirkpatrick, Steve

    2005-01-01

    This paper provides a national strategy for the US electronics industry. Electronics is one of the largest industries in the US and plays a critical role in almost every aspect of national security...

  10. Electron microscopy for Engineers

    International Nuclear Information System (INIS)

    Jones, I P

    2009-01-01

    This paper reviews the application of (mainly) Transmission Electron Microscopy (TEM) in an engineering context. The first two sections are TEM and chemical in nature; the final three sections are more general and include aspects of Scanning Electron Microscopy (SEM).

  11. ELSA electron stretcher devices

    International Nuclear Information System (INIS)

    1979-10-01

    The use of an electron stretcher ring at the Bonn electron synchrotron is discussed. The construction of the proposed ring is described, and the costs are estimated. Possible experiments using this ring are discussed. (HSI)

  12. Electron shuttles in biotechnology.

    Science.gov (United States)

    Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi

    2009-12-01

    Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.

  13. Electronic Science Seminar

    Directory of Open Access Journals (Sweden)

    Geidarov P.Sh.

    2015-09-01

    Full Text Available The structure of electronic scientific seminar, which provides a high level of quality of the objectivity in the evaluation of scientific papers, including dissertations, is described. Conditions for the implementation of electronic scientific seminar are also considered.

  14. Copyright of Electronic Publishing.

    Science.gov (United States)

    Dong, Elaine; Wang, Bob

    2002-01-01

    Analyzes the importance of copyright, considers the main causes of copyright infringement in electronic publishing, discusses fair use of a copyrighted work, and suggests methods to safeguard copyrighted electronic publishing, including legislation, contracts, and technology. (Author/LRW)

  15. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  16. Extreme environment electronics

    CERN Document Server

    Cressler, John D

    2012-01-01

    Unfriendly to conventional electronic devices, circuits, and systems, extreme environments represent a serious challenge to designers and mission architects. The first truly comprehensive guide to this specialized field, Extreme Environment Electronics explains the essential aspects of designing and using devices, circuits, and electronic systems intended to operate in extreme environments, including across wide temperature ranges and in radiation-intense scenarios such as space. The Definitive Guide to Extreme Environment Electronics Featuring contributions by some of the world's foremost exp

  17. Electronic theodolite intersection systems

    OpenAIRE

    Bingley, R. M.

    1990-01-01

    The development of electronic surveying instruments, such as electronic theodolites, and concurrent advances in computer technology, has revolutionised engineering surveying; one of the more recent examples being the introduction of Electronic Theodolite Intersection Systems (ETISs). An ETIS consists of two or more electronic theodolites and a computer, with peripheral hardware and suitable software. The theoretical principles on which they are based have been known for a long time, but ...

  18. Electron-attachment processes

    International Nuclear Information System (INIS)

    Christophorou, L.G.; McCorkle, D.L.; Christodoulides, A.A.

    1982-01-01

    Topics covered include: (1) modes of production of negative ions, (2) techniques for the study of electron attachment processes, (3) dissociative electron attachment to ground-state molecules, (4) dissociative electron attachment to hot molecules (effects of temperature on dissociative electron attachment), (5) molecular parent negative ions, and (6) negative ions formed by ion-pair processes and by collisions of molecules with ground state and Rydberg atoms

  19. Handbook on electronic commerce

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M. [Illinois Univ., Urbana, IL (United States). Beckman Inst. for Advanced Science and Technology; Blanning, R. [Vanderbilt Univ., Nashville, TN (United States). Owen Graduate School of Management; Strader, T. [Iowa State Univ., Ames, IA (United States). Management Information Systems; Whinston, A. [eds.] [Texas Univ., Austin, TX (United States). Dept. of Management Science and Information Systems

    2000-07-01

    The world is undergoing a revolution to a digital economy, with pronounced implications for corporate strategy, marketing, operations, information systems, customer services, global supply-chain management, and product distribution. This handbook examines the aspects of electronic commerce, including electronic storefront, on-line business, consumer interface, business-to-business networking, digital payment, legal issues, information product development, and electronic business models. Indispensable for academics, students and professionals who are interested in Electronic Commerce and Internet Business. (orig.)

  20. Structural, electronic and optical properties of monoclinic Na2Ti3O7 from density functional theory calculations: A comparison with XRD and optical absorption measurements

    Science.gov (United States)

    Araújo-Filho, Adailton A.; Silva, Fábio L. R.; Righi, Ariete; da Silva, Mauricélio B.; Silva, Bruno P.; Caetano, Ewerton W. S.; Freire, Valder N.

    2017-06-01

    Powder samples of bulk monoclinic sodium trititanate Na2Ti3O7 were prepared carefully by solid state reaction, and its monoclinic P21/m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as Eg=3.51±0.01 eV employing UV-Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA, respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=-0.06 Å, Δb=0.02 Å, and Δc=-0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na2Ti3O7 optical absorption and complex dielectric function.

  1. Electron Cyclotron Resonances in Electron Cloud Dynamics

    International Nuclear Information System (INIS)

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-01-01

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code 'POSINST' was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ∼(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed

  2. Syringe injectable electronics

    Science.gov (United States)

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  3. Syringe-injectable electronics.

    Science.gov (United States)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  4. Electrons in Condensed Matter

    Indian Academy of Sciences (India)

    three freely moving electrons. The value at room temperature is 3.1 k B; the electronic specific heat is missing! The next stage in the electronic theory of solids clears up ..... a big dog? We do not know the reasons yet. As it turns out for many fundamentally interesting phenomena, colossal magneto- resistance may also find ...

  5. Arduino electronics blueprints

    CERN Document Server

    Wilcher, Don

    2015-01-01

    This book is intended for those who want to learn about electronics and coding by building amazing devices and gadgets with Arduino. If you are an experienced developer who understands the basics of electronics, then you can quickly learn how to build smart devices using Arduino. The only experience needed is a desire to learn about electronics, circuit breadboarding, and coding.

  6. EFFECTIVE ELECTRONIC TUTORIAL

    Directory of Open Access Journals (Sweden)

    Andrei A. Fedoseev

    2014-01-01

    Full Text Available The article analyzes effective electronic tutorials creation and application based on the theory of pedagogy. Herewith the issues of necessary electronic tutorial functional, ways of the educational process organization with the use of information and communication technologies and the logistics of electronic educational resources are touched upon. 

  7. Embracing Electronic Publishing.

    Science.gov (United States)

    Wills, Gordon

    1996-01-01

    Electronic publishing is the grandest revolution in the capture and dissemination of academic and professional knowledge since Caxton developed the printing press. This article examines electronic publishing, describes different electronic publishing scenarios (authors' cooperative, consolidator/retailer/agent oligopsony, publisher oligopoly), and…

  8. Application of the model of the relativistic anti-loss-cone distribution to ECE spectrum in discharge applying LH wave

    International Nuclear Information System (INIS)

    Sato, Masayasu; Yokomizo, Hideaki

    1987-11-01

    The electron cyclotron emission (ECE) is dominated from supra-thermal electron in discharge applying LH wave. We obtain informations of supra-thermal electron by applying the model of the relativistic anti-loss-cone distribution to ECE spectrum in the discharge. In this model, the emission perpendicular to the magnetic field are considered. The frequency range is considered to be well above the plasma and electron cyclotron frequencies, thus collective effects can be neglected. The electron distribution is assumed to be anisotropic in the velocity space and strongly extended in the direction parallel to the magnetic field, namely the relativistic anti-loss-cone distribution. The informations of supra-thermal electron are obtained by the following way. The temperature and density of the supra-thermal electron and the anti-loss-cone angle are obtained from the power spectrum of LH wave launched, the measured slope of the spectrum of ECE and the spectral radiance of ECE. (author)

  9. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  10. Quantitative secondary electron detection

    Science.gov (United States)

    Agrawal, Jyoti; Joy, David C.; Nayak, Subuhadarshi

    2018-05-08

    Quantitative Secondary Electron Detection (QSED) using the array of solid state devices (SSD) based electron-counters enable critical dimension metrology measurements in materials such as semiconductors, nanomaterials, and biological samples (FIG. 3). Methods and devices effect a quantitative detection of secondary electrons with the array of solid state detectors comprising a number of solid state detectors. An array senses the number of secondary electrons with a plurality of solid state detectors, counting the number of secondary electrons with a time to digital converter circuit in counter mode.

  11. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  12. Molecular electron affinities

    International Nuclear Information System (INIS)

    Fukuda, E.K.

    1983-01-01

    Molecular electron affinities have historically been difficult quantities to measure accurately. These difficulties arise from differences in structure between the ion and neutral as well as the existence of excited negative ion states. To circumvent these problems, relative electron affinities were determined in this dissertation by studying equilibrium electron transfer reactions using a pulsed ion cyclotron resonance (ICR) spectrometer. Direct measurement of ion and neutral concentrations for reactions of the general type, A - + B = B - + A, allow calculation of the equilibrium constant and, therefore, the free energy change. The free energy difference is related to the difference in electron affinities between A and B. A relative electron affinity scale covering a range of about 45 kcal/mol was constructed with various substituted p-benzoquinones, nitrobenzenes, anhydrides, and benzophenones. To assign absolute electron affinities, various species with accurately known electron affinities are tied to the scale via ion-cyclotron double resonance bracketing techniques. After the relative scale is anchored to these species with well-known electron affinities, the scale is then used as a check on other electron affinity values as well as generating new electron affinity values. Many discrepancies were found between the electron affinities measured using the ICR technique and previous literature determinations

  13. Nonambipolar electron source

    International Nuclear Information System (INIS)

    Longmier, B.; Baalrud, S.; Hershkowitz, N.

    2006-01-01

    A radio frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface has been constructed. All of the random electron flux incident on an exit aperture is extracted through an electron sheath resulting in total nonambipolar flow within the device when the ratio of the ion loss area to the electron loss area is approximately equal to the square root of the ratio of the ion mass to the electron mass, and the ion sheath potential drop at the chamber walls is much larger than T e /e. The nonambipolar electron source (NES) has an axisymmetric magnetic field of 100 G at the extraction aperture that results in a uniform plasma potential across the aperture, allowing the extraction of all the incident electron flux without the use of grids. A prototype NES has produced 15 A of continuous electron current, using 15 SCCM (SCCM denotes cubic centimeter per minute at STP) Ar, 1200 W rf power at 13.56 MHz, and 6 times gas utilization. Alternatively 8 A of electron current can be produced, using 3 SCCM Ar at 1200 W rf and 20 times gas utilization. NES could replace hollow cathode electron sources in a wide variety of applications

  14. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  15. Electronic equipment packaging technology

    CERN Document Server

    Ginsberg, Gerald L

    1992-01-01

    The last twenty years have seen major advances in the electronics industry. Perhaps the most significant aspect of these advances has been the significant role that electronic equipment plays in almost all product markets. Even though electronic equipment is used in a broad base of applications, many future applications have yet to be conceived. This versatility of electron­ ics has been brought about primarily by the significant advances that have been made in integrated circuit technology. The electronic product user is rarely aware of the integrated circuits within the equipment. However, the user is often very aware of the size, weight, mod­ ularity, maintainability, aesthetics, and human interface features of the product. In fact, these are aspects of the products that often are instrumental in deter­ mining its success or failure in the marketplace. Optimizing these and other product features is the primary role of Electronic Equipment Packaging Technology. As the electronics industry continues to pr...

  16. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  17. Ion plasma electron gun

    International Nuclear Information System (INIS)

    Wakalopulos, G.

    1976-01-01

    In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode

  18. Seeing with electrons

    International Nuclear Information System (INIS)

    Nellist, P.

    2006-01-01

    Commercially available lens correctors are extending the reach of electron microscopes to unprecedented atomic scales, as Peter Nellist describes. The electron microscope was invented in 1933 and is based on the principle that electrons have a wavelength that is inversely proportional to their momentum. There are two basic types: transmission electron microscopes and scanning electron microscopes, plus a hybrid of the two. The lenses in an electron microscope are provided by electromagnetic fields, but they suffer from spherical aberration. The addition of octupole and quadrupole corrector fields has improved the resolution of the electron microscope to better than 0.1 nm in the last decade. The next step is to correct for chromatic aberration, after which the resolution of the microscope will probably be limited by the size of the atom itself. (U.K.)

  19. Engineered phages for electronics.

    Science.gov (United States)

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Decal electronics for printed high performance cmos electronic systems

    KAUST Repository

    Hussain, Muhammad Mustafa; Sevilla, Galo Torres; Cordero, Marlon Diaz; Kutbee, Arwa T.

    2017-01-01

    High performance complementary metal oxide semiconductor (CMOS) electronics are critical for any full-fledged electronic system. However, state-of-the-art CMOS electronics are rigid and bulky making them unusable for flexible electronic applications

  1. Electronic Publishing or Electronic Information Handling?

    Science.gov (United States)

    Heck, A.

    The current dramatic evolution in information technology is bringing major modifications in the way scientists communicate. The concept of 'electronic publishing' is too restrictive and has often different, sometimes conflicting, interpretations. It is thus giving way to the broader notion of 'electronic information handling' encompassing the diverse types of information, the different media, as well as the various communication methodologies and technologies. New problems and challenges result also from this new information culture, especially on legal, ethical, and educational grounds. The procedures for validating 'published material' and for evaluating scientific activities will have to be adjusted too. 'Fluid' information is becoming a common concept. Electronic publishing cannot be conceived without link to knowledge bases nor without intelligent information retrieval tools.

  2. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  3. Electrons in Nanostructures

    DEFF Research Database (Denmark)

    Flindt, Christian

    2007-01-01

    in the possibilities o®ered by the quantum mechanical behavior of electrons when it comes to informa- tion processing. This branch of research is also concerned with fundamental questions in physics. Besides an introduction to the above-mentioned subjects, the thesis con- tains a number of contributions to the ¯elds...... of coherent electron manip- ulation and the statistical description of electron transport through nano- devices. The physics of the electrons are described with a combination of numerical methods, developed and applied in the thesis, and more analytical approaches, which are also discussed. The thesis......-based communication. The statistical description of electron transport through nanostructures is based on rate equations, and the primary contribution of the thesis in that respect is the development of a method that allows for the calculation of the distribution of electrons passing through a device. The method...

  4. Transition to electronic publishing

    Science.gov (United States)

    Bowning, Sam

    Previous communications have described some of the many changes that will occur in the next few months as AGU makes the transition to fully electronic publishing. With the advent of the new AGU electronic publishing system, manuscripts will be submitted, edited, reviewed, and published in electronic formats. This piece discusses how the electronic journals will differ from the print journals. Electronic publishing will require some adjustments to the ways we currently think about journals from our perspective of standard print versions. Visiting the Web site of AGU's Geochemistry, Geophysics, Geosystems (G-Cubed) is a great way to get familiar with the look and feel of electronic publishing. However, protocols, especially for citations of articles, are still evolving. Some of the biggest changes for users of AGU publications may be the lack of page numbers, the use of a unique identifier (DOI),and changes in citation style.

  5. Electron microscopy of surfaces

    International Nuclear Information System (INIS)

    Venables, J.A.

    1981-01-01

    Electron beam techniques used to study clean surfaces and surface processes on a microscopic scale are reviewed. Recent experimental examples and possible future developments are discussed. Special emphasis is given to (i) transmission diffraction and microscopy techniques, including atomic imaging; (ii) Auger microscopy on bulk and thin film samples; (iii) secondary electron microscopy, especially low energy secondaries for work-function imaging and photoelectron imaging; and (iv) reflection electron microscopy and diffraction. (orig.)

  6. New electronics stuff chemistry

    International Nuclear Information System (INIS)

    Byeon, Su Il

    2003-04-01

    The first part of this book is about equilibrium electrochemistry on electric thermo dynamic equilibrium state of electrochemistry, crystal defect of solid, thermodynamics on defect electron and election in semiconductor, Gawani potential, volta potential and equilibrium potential and thermodynamics application in Gawani battery. The second part deals with dynamic electrochemistry electrode reaction kinetics and corrosion potential in normal state, diffusion and transport of ion and electron and current impedance spectroscopy. It also mentions industrial electrochemistry and laboratory works in electronics chemistry course.

  7. Ceramic Electron Multiplier

    International Nuclear Information System (INIS)

    Comby, G.

    1996-01-01

    The Ceramic Electron Multipliers (CEM) is a compact, robust, linear and fast multi-channel electron multiplier. The Multi Layer Ceramic Technique (MLCT) allows to build metallic dynodes inside a compact ceramic block. The activation of the metallic dynodes enhances their secondary electron emission (SEE). The CEM can be used in multi-channel photomultipliers, multi-channel light intensifiers, ion detection, spectroscopy, analysis of time of flight events, particle detection or Cherenkov imaging detectors. (auth)

  8. Organizing the Electronic Century

    OpenAIRE

    Richard N. Langlois

    2007-01-01

    This paper's title is an echo of Alfred Chandler's (2001) chronicle of the electronics industry, Inventing the Electronic Century. The paper attempts (A) a general reinterpretation of the pattern of technological advance in (American) electronics over the twentieth century and (B) a somewhat revisionist account of the role of organization and institution in that advance. The paper stresses the complex effects of product architecture and intellectual property regime on industrial organization ...

  9. Introduction to printed electronics

    CERN Document Server

    Suganuma, Katsuaki

    2014-01-01

    This book describes in detail modern technologies for printed electronics, explaining how nanotechnology and modern printing technology are merging to revolutionize electronics fabrication of thin, lightweight, large, and inexpensive products. Readers will benefit from the explanations of materials, devices and circuits used to design and implement the latest applications of printed electronics, such as thin flexible OLED displays, organic solar cells, OLED lighting, smart wallpaper, sensors, logic, memory and more.

  10. Interoperability for electronic ID

    OpenAIRE

    Zygadlo, Zuzanna

    2009-01-01

    Electronic Business, including eBanking, eCommerce and eGovernmental services, is today based on a large variety of security solutions, comprising electronic IDs provided by a broad community of Public Key Infrastructure (PKI) vendors. Significant differences in implementations of those solutions introduce a problem of lack of interoperability in electronic business, which have not yet been resolved by standardization and interoperability initiatives based on existing PKI trust models. It i...

  11. TRANSIENT ELECTRONICS CATEGORIZATION

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0169 TRANSIENT ELECTRONICS CATEGORIZATION Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...SUBTITLE TRANSIENT ELECTRONICS CATEGORIZATION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Dr. Burhan...88ABW-2017-3747, Clearance Date 31 July 2017. Paper contains color. 14. ABSTRACT Transient electronics is an emerging technology area that lacks proper

  12. Introduction to electronics

    CERN Document Server

    Korneff, Theodore

    1966-01-01

    Introduction to Electronics focuses on the study of electronics and electronic devices. Composed of 14 chapters, the book starts with discussions on dc circuits, including resistance, voltmeter, ammeter, galvanometer, internal resistance, and positive and negative currents. This topic is followed by discussions on ac circuits, particularly addressing voltage and current, average power, resistive load, complex plane, and parallel circuits. Discussions also focus on filters and tuned circuits, diodes, and power supplies. Particularly given attention are the processes, diagrams, and analyses

  13. Modern electronic materials

    CERN Document Server

    Watkins, John B

    2013-01-01

    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  14. Electron-beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. (UK)

  15. Electron beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. 5 figs

  16. Electron microscopy and diffraction

    International Nuclear Information System (INIS)

    Gjoennes, J.; Olsen, A.

    1986-01-01

    This report is a description of research activities and plans at the electron microscopy laboratorium, Physics Department, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  17. The Electronic Notebook Ontology

    OpenAIRE

    Chalk, Stuart

    2016-01-01

    Science is rapidly being brought into the electronic realm and electronic laboratory notebooks (ELN) are a big part of this activity. The representation of the scientific process in the context of an ELN is an important component to making the data recorded in ELNs semantically integrated. This presentation will outline initial developments of an Electronic Notebook Ontology (ENO) that will help tie together the ExptML ontology, HCLS Community Profile data descriptions, and the VIVO-ISF ontol...

  18. Electronics Environmental Benefits Calculator

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...

  19. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2007-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  20. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  1. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  2. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  3. Two electron Rydberg states

    International Nuclear Information System (INIS)

    Cooke, W.E.

    1981-01-01

    This paper addresses the study of two-electron Rydberg atoms. With Multichannel Quantum Defect Theory (MQDT), there is a technique for characterizing a spectra in terms of a small number of parameters. A survey of some important effects specific to two-electon Rydberg states, using primarily the alkaline earth atoms for examples, is made. The remainder of the paper deals with a discussion of the electron-electron interaction, including some of the basic points of MQDT. Energy exchange between two electrons is also addressed

  4. Fundamentals of electronics

    CERN Document Server

    Schubert, Thomas F

    2015-01-01

    This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to

  5. Electronic signal conditioning

    CERN Document Server

    NEWBY, BRUCE

    1994-01-01

    At technician level, brief references to signal conditioning crop up in a fragmented way in various textbooks, but there has been no single textbook, until now!More advanced texts do exist but they are more mathematical and presuppose a higher level of understanding of electronics and statistics. Electronic Signal Conditioning is designed for HNC/D students and City & Guilds Electronics Servicing 2240 Parts 2 & 3. It will also be useful for BTEC National, Advanced GNVQ, A-level electronics and introductory courses at degree level.

  6. Electronics pocket book

    CERN Document Server

    Parr, E A

    1981-01-01

    Electronics Pocket Book, Fourth Edition is a nonmathematical presentation of the many varied topics covered by electronics. The book tackles electron physics, electronic components (i.e. resistors, capacitors, and conductors), integrated circuits, and the principles of a.c. and d.c. amplifiers. The text also discusses oscillators, digital circuits, digital computers, and optoelectronics (i.e., sensors, emitters, and devices that utilize light). Communications (such as line and radio communications, transmitters, receivers, and digital techniques); the principles and examples of servosystems; a

  7. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  8. Flying Electronic Warfare Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides NP-3D aircraft host platforms for Effectiveness of Navy Electronic Warfare Systems (ENEWS) Program antiship missile (ASM) seeker simulators used...

  9. Free electron laser

    International Nuclear Information System (INIS)

    Ortega, J.M.; Billardon, M.

    1986-01-01

    Operation principle of a laser and an oscillator are recalled together with the klystron one. In the free electron laser, electrons go through an undulator or an optical klystron. Principles of the last one are given. The two distinct ways of producing coherent radiation with an undulator and an optical klystron are presented. The first one is the use of the free electron laser, the second is to make use of the spontaneous emission generation (harmonics generation). The different current types of free electron lasers are presented (Stanford, Los Alamos, Aco at Orsay). Prospects and applications are given in conclusion [fr

  10. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  11. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  12. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2011-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  13. Electrons in water radiolysis

    International Nuclear Information System (INIS)

    Laverne, J.A.; Pimblott, S.M.

    2006-01-01

    The hydrated electron is the main reducing species produced in the radiolysis of water. Many studies have examined its reactivity using pulsed radiolysis techniques and competition kinetics. Data bases list hundreds of rate coefficients for reaction of the hydrated electron with substances ranging from inorganic ions like nitrate to biopolymers like DNA. Although the chemistry of the hydrated electron is often examined, its mechanism of formation and variation in yield are considerable less known, especially under extreme conditions such as in high temperature water or with heavy ion radiolysis. This work will examine various aspects of the radiation chemistry of the hydrated electron beginning with the generation of secondary electrons in primary energy loss events during the passage of ionizing radiation to the radiolytic yields of the hydrated electron produced by different types of radiation. Ion radiation is a 'white light source.' Energy losses range from the minimum excitation energy of the medium up to the kinematic maximum determined by the collision parameters. However, certain energy loss events are more probable than others. The dipole oscillator strength distributions of media essentially give the probability of energy loss events in collisions with no momentum transfer. Dipole oscillator distributions have been constructed from experimental data for a wide variety of materials including all the phases of water. Calculations using cross sections based on dipole oscillator distributions show that the most probable energy loss event in water is only about 20 eV with an average value closer to 60 eV. The preponderance of energy loss events of less than 100 eV means that many low energy electrons are formed by the passage of a single ion. Low energy electrons have short mean free paths and they remain in the vicinity of the primary energy loss events. The spatial distribution of these low energy electrons defines the radial track structure of the incident

  14. INDRA. Electronic Architecture

    International Nuclear Information System (INIS)

    Ganil Team.

    1993-01-01

    The INDRA multidetector electronics is described. The system is a set of 17 rings consisting of 96 ionization chambers and 180 silicon detectors plus 324 cesium iodide and 12 Phoswich scintillators. Their integrated electronic lines, the trigger modules, the control and data acquisition units are presented briefly. (R.P.) 6 figs

  15. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...

  16. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  17. Scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1970-05-15

    The JSM-11 scanning electron microscope at CRNL has been used extensively for topographical studies of oxidized metals, fracture surfaces, entomological and biological specimens. A non-dispersive X-ray attachment permits the microanalysis of the surface features. Techniques for the production of electron channeling patterns have been developed. (author)

  18. Electron scattering from tetrahydrofuran

    International Nuclear Information System (INIS)

    Fuss, M C; Sanz, A G; García, G; Muñoz, A; Oller, J C; Blanco, F; Do, T P T; Brunger, M J; Almeida, D; Limão-Vieira, P

    2012-01-01

    Electron scattering from Tetrahydrofuran (C 4 H 8 O) was investigated over a wide range of energies. Following a mixed experimental and theoretical approach, total scattering, elastic scattering and ionization cross sections as well as electron energy loss distributions were obtained.

  19. Paradoxes of unstable electron

    International Nuclear Information System (INIS)

    Okun, L.B.; Zeldovich, Ya.B.

    1978-01-01

    The hypothesis that electron is unstable - when it is consistent with the vanishing mass of the photon- leads to a number of paradoxical statements. The lifetime of the electron is determined by emission of a huge number of longitudinal photons and exponentially depends on the amount of emitted energy. This suggests to discuss searches for charge nonconservation in experiments with high energy particles

  20. Electron scattering violates parity

    CERN Multimedia

    2004-01-01

    Parity violation has been observed in collisions between electrons at the Stanford Linear Accelerator Center (SLAC) in the US. The resuls, which are in agreement with the Stanford Model of particle physics, also provide a new measurement of the weak charge of the electron (½ page)

  1. Electronically Controlled Resistor Bank

    Science.gov (United States)

    Ross, Walter L.

    1987-01-01

    Resistance quickly varied in small steps over wide range. Device with no moving parts provides variable electrical resistance. Used with analog or digital circuity to provide electronic selection of large number of resistance values for testing, simulation, control, or other purposes. Nearest electromechanical equivalent of all-electronic device is potentiometer driven by servomotor.

  2. Voltmeter with Compton electrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N R; Gorbics, S G; Weidenheimer, D M [Berkeley Research Associates, Springfield, VA (United States)

    1997-12-31

    A technique to measure the electron end point energy of bremsstrahlung in the MV regime using only two detectors is described. One of the detector measures the total radiation, the other filters out all except the hardest photons by looking only at their Compton electrons, whose average energy is determined with a magnetic field. (author). 4 figs., 2 refs.

  3. Advances in Opto Electronics

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Advances in Opto Electronics. Optoelectronics is where electronics was 15 years back. All Optical Amplifiers and Semiconductor Amplifiers. Fastest Semiconductor (InP) switch is at 170GHz- where is terrabit ? MEMS based switches that route traffic at wavelength level ...

  4. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  5. Electron beam simulation applicators

    International Nuclear Information System (INIS)

    Purdy, J.A.

    1983-01-01

    A system for simulating electron beam treatment portals using low-temperature melting point alloy is described. Special frames having the same physical dimensions as the electron beam applicators used on the Varian Clinac 20 linear accelerator were designed and constructed

  6. Radiative electron capture

    International Nuclear Information System (INIS)

    Biggerstaff, J.A.; Appleton, B.R.; Datz, S.; Moak, C.D.; Neelavathi, V.N.; Noggle, T.S.; Ritchie, R.H.; VerBeek, H.

    1975-01-01

    Some data are presented for radiative electron capture by fast moving ions. The radiative electron capture spectrum is shown for O 8+ in Ag, along with the energy dependence of the capture cross-section. A discrepancy between earlier data, theoretical prediction, and the present data is pointed out. (3 figs) (U.S.)

  7. Electronics and Lithuanian Terminology

    Directory of Open Access Journals (Sweden)

    Stasys Zajankauskas

    2011-04-01

    Full Text Available It is found that the vacuum triode, transistor, monolithic circuit and microprocessor were the most important inventions of traditional electronics. Thus, the origins of the traditional electronics should be associated with the invention of the vacuum triode, but not with the invention of vacuum diode. It is shown that the science of electronics is not as young as computer science or up-to-date information technologies: electronics, including active electronics, had already celebrated the centenary, and the period of 2004–2008 is the period of numerous already solid jubilees. Thus, the terminology of electronics is not at initial stage of evolution as well – general terms should be already systematized and normalized. However, Lithuanian terms for electronic devices invented before tens of years and terms for old-defined notions associated with these devices are still varying, some are worsened. Especially, the incorrectly motivated terms used for variations of transistors and microcircuits are analyzed in the article. It is motivated which terms are preferable, systematic and exact. The paper is dedicated to the 50th anniversary of monolithic circuit, as well as the 60th anniversary of transistor, the 40th jubilee of microprocessor and centenary of electronics.

  8. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  9. Managing electronic records

    CERN Document Server

    McLeod, Julie

    2005-01-01

    For records management courses, this book covers the theory and practice of managing electronic records as business and information assets. It focuses on the strategies, systems and procedures necessary to ensure that electronic records are appropriately created, captured, organized and retained over time to meet business and legal requirements.

  10. ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.; AHRENS, L.; BRENNAN, M.; HARRISON, M.; KEWISCH, J.; MACKAY, W.; PEGGS, S.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; YAKIMENKO, V.

    2001-01-01

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics

  11. Electron - proton colliders

    International Nuclear Information System (INIS)

    Wiik, B.H.

    1985-01-01

    Electron-proton storage rings allow us to study the interaction between the two basic constituents of matter, electrons and quarks at very short distances. Such machines were first discussed in connection with the ISR but the idea was abandoned because of the anticipated low counting rate. The interest in electron-proton storage rings was rekindeled by the discovery of large pointlike cross sections in lepton-hardon interactions and several/sup 2-15/ projects have been discussed during the past decade. However, despite a glorious past, which includes the discovery of quarks and neutral currents, and a multitude of proposals no electron-proton storage ring has ever been built. What we might learn by studying electron-proton collisions at high energies is discussed. After some brief comments on present proposals the proposed DESY ep project HERA is described as an example of how to realize such a machine

  12. Electron: Cluster interactions

    International Nuclear Information System (INIS)

    Scheidemann, A.A.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E ∼ 0.1 to E ∼ 6 eV. The investigation focused on the closed shell clusters Na 8 , Na 20 , Na 40 . The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size

  13. Practical electronics for inventors

    CERN Document Server

    Scherz, Paul

    2013-01-01

    Spark your creativity and gain the electronics skills required to transform your innovative ideas into functioning gadgets. This hands-on, updated guide outlines electrical principles and provides thorough, easy-to-follow instructions, schematics, and illustrations. Findout how to select components, safely assemble circuits, perform error tests, and build plug-and-play prototypes. Practical Electronics for Inventors, Third Edition, features all-new chapters on sensors, microcontrollers, modular electronics, and the latest software tools. Coverage includes: Resistors, capacitors, inductors, and transformers Diodes, transistors, and integrated circuits Optoelectronics, solar cells, and phototransistors Sensors, GPS modules, and touch screens Op amps, regulators, and power supplies Digital electronics, LCD displays, and logic gates Microcontrollers and prototyping platforms, including Arduino DC motors, RC servos, and stepper motors Microphones, audio amps, and speakers Modular electronics and prototyping.

  14. Electronically cloaked nanoparticles

    Science.gov (United States)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  15. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  16. Coherent electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  17. Dose calculation for electrons

    International Nuclear Information System (INIS)

    Hirayama, Hideo

    1995-01-01

    The joint working group of ICRP/ICRU is advancing the works of reviewing the ICRP publication 51 by investigating the data related to radiation protection. In order to introduce the 1990 recommendation, it has been demanded to carry out calculation for neutrons, photons and electrons. As for electrons, EURADOS WG4 (Numerical Dosimetry) rearranged the data to be calculated at the meeting held in PTB Braunschweig in June, 1992, and the question and request were presented by Dr. J.L. Chartier, the responsible person, to the researchers who are likely to undertake electron transport Monte Carlo calculation. The author also has carried out the requested calculation as it was the good chance to do the mutual comparison among various computation codes regarding electron transport calculation. The content that the WG requested to calculate was the absorbed dose at depth d mm when parallel electron beam enters at angle α into flat plate phantoms of PMMA, water and ICRU4-element tissue, which were placed in vacuum. The calculation was carried out by the versatile electron-photon shower computation Monte Carlo code, EGS4. As the results, depth dose curves and the dependence of absorbed dose on electron energy, incident angle and material are reported. The subjects to be investigated are pointed out. (K.I.)

  18. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  19. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  20. Electron collisions with biomolecules

    International Nuclear Information System (INIS)

    McKoy, V; Winstead, C

    2008-01-01

    We report on results of recent studies of collisions of low-energy electrons with nucleobases and other DNA constituents. A particular focus of these studies has been the identification and characterization of resonances that play a role in electron attachment leading to strand breaks in DNA. Comparison of the calculated resonance positions with results of electron transmission measurements is quite encouraging. However, the higher-lying π* resonances of the nucleobases appear to be of mixed elastic and core-excited character. Such resonant channel coupling raises the interesting possibility that the higher π*resonances in the nucleobases may promote dissociation of DNA by providing doorway states to triplet excited states.

  1. Field emission electronics

    CERN Document Server

    Egorov, Nikolay

    2017-01-01

    This book is dedicated to field emission electronics, a promising field at the interface between “classic” vacuum electronics and nanotechnology. In addition to theoretical models, it includes detailed descriptions of experimental and research techniques and production technologies for different types of field emitters based on various construction principles. It particularly focuses on research into and production of field cathodes and electron guns using recently developed nanomaterials and carbon nanotubes. Further, it discusses the applications of field emission cathodes in new technologies such as light sources, flat screens, microwave and X-ray devices.

  2. Quantum electronics basic theory

    CERN Document Server

    Fain, V M; Sanders, J H

    1969-01-01

    Quantum Electronics, Volume 1: Basic Theory is a condensed and generalized description of the many research and rapid progress done on the subject. It is translated from the Russian language. The volume describes the basic theory of quantum electronics, and shows how the concepts and equations followed in quantum electronics arise from the basic principles of theoretical physics. The book then briefly discusses the interaction of an electromagnetic field with matter. The text also covers the quantum theory of relaxation process when a quantum system approaches an equilibrium state, and explai

  3. Power Electronics for Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Blaabjerg, Frede

    2016-01-01

    A microgrid (MG) is a stand-alone or grid-connected hybrid renewable system that uses distributed renewable and nonrenewable energy sources and energy storage systems (ESSs) to supply power to local loads. The system is ordinarily based on power electronics, with interface converters allowing...... a continuous supply of power in the presence of variable RES production. This chapter describes some specific features of DC MGs in terms of power architecture, control, and protection. It also reviews several uncommon power electronic interfaces. Regarding control, operation without critical communication...... are explained in this chapter. The chapter concludes with a review of power electronic intensive protection solutions for DC MGs....

  4. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  5. BEPCII electronic logbook system

    International Nuclear Information System (INIS)

    Liu Shu; Zhao Jijiu; Wang Chunhong

    2007-01-01

    According to demands of BEPCII construction and future operation, we are going to supply an open electronic logbook platform for people to record their message in developing and running BEPCII, and browse the log-book on website. That gives people an open and transparent logbook, rather than traditional paper notebook. With the template of DESY's Elogbook, the BEPCII electronic logbook was developed, using the popular JSP technology to develop dynamic Web applications. This paper will introduce the development of BEPCII electronic logbook system. (authors)

  6. Electronic components and systems

    CERN Document Server

    Dennis, W H

    2013-01-01

    Electronic Components and Systems focuses on the principles and processes in the field of electronics and the integrated circuit. Covered in the book are basic aspects and physical fundamentals; different types of materials involved in the field; and passive and active electronic components such as capacitors, inductors, diodes, and transistors. Also covered in the book are topics such as the fabrication of semiconductors and integrated circuits; analog circuitry; digital logic technology; and microprocessors. The monograph is recommended for beginning electrical engineers who would like to kn

  7. A simple electron multiplexer

    International Nuclear Information System (INIS)

    Dobrzynski, L; Akjouj, A; Djafari-Rouhani, B; Al-Wahsh, H; Zielinski, P

    2003-01-01

    We present a simple multiplexing device made of two atomic chains coupled by two other transition metal atoms. We show that this simple atomic device can transfer electrons at a given energy from one wire to the other, leaving all other electron states unaffected. Closed-form relations between the transmission coefficients and the inter-atomic distances are given to optimize the desired directional electron ejection. Such devices can be adsorbed on insulating substrates and characterized by current surface technologies. (letter to the editor)

  8. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  9. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  10. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  11. Modern dictionary of electronics

    CERN Document Server

    Graf, Rudolf F

    1999-01-01

    Included in this fully revised classic are well over 28,000 terms, phrases, acronyms, and abbreviations from the ever-expanding worlds of consumer electronics, optics, microelectronics, computers, communications, and medical electronics. From the basic elements of theory to the most cutting-edge circuit technology, this book explains it all in both words and pictures.For easy reference, the author has provided definitions for standard abbreviations and equations as well as tables of SI (International System of Units) units, measurements, and schematic symbolsModern Dictionary of Electronics is

  12. VLSI electronics microstructure science

    CERN Document Server

    1982-01-01

    VLSI Electronics: Microstructure Science, Volume 4 reviews trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the silicon-on-insulator for VLSI and VHSIC, X-ray lithography, and transient response of electron transport in GaAs using the Monte Carlo method. The technology and manufacturing of high-density magnetic-bubble memories, metallic superlattices, challenge of education for VLSI, and impact of VLSI on medical signal processing are also elaborated. This text likewise covers the impact of VLSI t

  13. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  14. Consulting in Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Florentina Loredana Tache

    2010-10-01

    Full Text Available Economic development of electronic services provide advice and many agents of existingreferral systems to recommend and provide products, information and customized views of thecommunity through a personalized interaction in real time. Distributed systems of autonomous agentsare becoming increasingly important in electronic comet because the basic decisions of agents adviceon trust and reputation are taken in a similar way human society. If these decisions will be as a realconsumer protection, when new aspects of online consumer legislation will become usefulinformation in advice and consulting of electronic commerce.

  15. Coding for Electronic Mail

    Science.gov (United States)

    Rice, R. F.; Lee, J. J.

    1986-01-01

    Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.

  16. Spectral intensity dependence an isotropy of sources stronger than 0.1 Jy at 2700 MHz

    International Nuclear Information System (INIS)

    Balonek, T.J.; Broderick, J.J.; Condon, J.J.; Crawford, D.F.; Jauncey, D.L.

    1975-01-01

    The 1000-foot (305 m) telescope of the National Astronomy and Ionosphere Center was used to measure 430 MHz flux densities of sources stronger than 0.1 Jy at 2700 MHz. Distributions of the resulting two-point spectral indices α (430, 2700) of sources in the intensity range 0.1less than or equal toS<0.35 Jy were compared with α (318, 2700) distributions of sources stronger than 0.35 Jy at 2700 MHz. The median normal-component spectral index and fraction of flat-spectrum sources in the faintest sample do not continue the previously discovered trend toward increased spectral steepening of faint sources. This result differs from the prediction of simple evolutionary cosmological models and therefore favors the alternative explanation that local source-density inhomogeneities are responsible for the observed intensity dependence of spectral indices

  17. A new fifth parameter for transverse isotropy III: reflection and transmission coefficients

    Science.gov (United States)

    Kawakatsu, Hitoshi

    2018-04-01

    The effect of the newly defined fifth parameter, ηκ, of transverse anisotropy to the reflection and transmission coefficients, especially for P-to-S and S-to-P conversion coefficients, is examined. While ηκ systematically affects the P-to-S and S-to-P conversions, in the incidence angle range of the practical interest of receiver function studies, the effect may be asymmetric in a sense that P-wave receiver function is affected more than S-receiver function in terms of amplitude. This asymmetry may help resolving ηκ via extensive receiver function analysis. It is also found that P-wave anisotropy significantly influences P-to-S and S-to-P conversion coefficients that complicates the interpretation of receiver functions, because, for isotropic media, we typically attribute the primary receiver function signals to S-wave velocity changes but not to P-wave changes.

  18. Reflection moveout approximations for P-waves in a moderately anisotropic homogeneous tilted transverse isotropy layer

    Czech Academy of Sciences Publication Activity Database

    Pšenčík, Ivan; Farra, V.

    2017-01-01

    Roč. 82, č. 5 (2017), C175-C185 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : VTI media * velocity * seismic waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.391, year: 2016

  19. Feasibility of estimating vertical transverse isotropy from microseismic data recorded by surface monitoring arrays

    Czech Academy of Sciences Publication Activity Database

    Gei, D.; Eisner, Leo; Suhadolc, P.

    2011-01-01

    Roč. 76, č. 6 (2011), WC117-WC126 ISSN 0016-8033 Institutional research plan: CEZ:AV0Z30460519 Keywords : anisotropy * inversion * microseismicity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.418, year: 2011

  20. Global imaging of the Earth's deep interior: seismic constraints on (an)isotropy, density and attenuation

    NARCIS (Netherlands)

    Trampert, J.; Fichtner, A.

    2013-01-01

    Seismic tomography is the principal tool to probe the deep interior of the Earth. Models of seismic anisotropy induced by crystal alignment provide insight into the underlying convective motion, and variations of density allow us to discriminate between thermal and compositional heterogeneities.

  1. The art of electronics

    CERN Document Server

    Horowitz, Paul

    2015-01-01

    At long last, here is the thoroughly revised and updated third edition of the hugely successful Art of Electronics. It is widely accepted as the best single authoritative book on electronic circuit design. In addition to new or enhanced coverage of many topics, the Third Edition includes: 90 oscilloscope screenshots illustrating the behavior of working circuits; dozens of graphs giving highly useful measured data of the sort that's often buried or omitted in datasheets but which you need when designing circuits; 80 tables (listing some 1650 active components), enabling intelligent choice of circuit components by listing essential characteristics (both specified and measured) of available parts. The new Art of Electronics ​​retains the feeling of informality and easy access that helped make the earlier editions so successful and popular. It is an indispensable reference and the gold standard​​ for anyone, student or researcher, professional or amateur, who works with electronic circuits.

  2. Electron and Photon ID

    CERN Document Server

    Hryn'ova, Tetiana; The ATLAS collaboration

    2017-01-01

    The identification of prompt photons and the rejection of background coming mostly from photons from hadron decays relies on the high granularity of the ATLAS calorimeter. The electron identification used in ATLAS for run 2 is based on a likelihood discrimination to separate isolated electron candidates from candidates originating from photon conversions, hadron misidentification and heavy flavor decays. In addition, isolation variables are used as further handles to separate signal and background. Several methods are used to measure with data the efficiency of the photon identification requirements, to cover a broad energy spectrum. At low energy, photons from radiative Z decays are used. In the medium energy range, similarities between electrons and photon showers are exploited using Z->ee decays. At high energy, inclusive photon samples are used. The measurement of the efficiencies of the electron identification and isolation cuts are performed with the data using tag and probe techniques with large statis...

  3. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  4. Typewriting by Electronics

    Science.gov (United States)

    Etier, Faborn

    1971-01-01

    By using the electronic typewriting teaching aid, it is believed by those closely associated with its use in teaching typing that as much can be accomplished in one semester as in two semesters using the conventional method of teaching. (Editor)

  5. Electron identification at CDF

    International Nuclear Information System (INIS)

    Kim, Shinhong

    1990-01-01

    Electron identification at CDF is performed using the information of lateral and longitudinal shower spread, the track-cluster position match and the energy-momentum match. The tracking chamber with a solenoidal magnetic field at CDF is powerful for rejecting the backgrounds such as the π ± - π 0 overlaps, the π 0 /γ conversions and interactive π ± in electromagnetic calorimeter: The energy- momentum match cut can decrease the background due to the π ± - π 0 overlaps for non-isolated electrons with Et above 10 GeV by a factor of 20. The conversion electrons are identified using track information with an efficiency of 80 ± 3%. The charge of electrons from W decay can be determined in the pseudorapidity range of |η| < 1.7 at CDF. The charge determination is useful for background estimation of Drell-Yan physics and heavy flavor physics. 5 refs., 5 figs

  6. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  7. Advanced Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.

    2005-02-14

    The research into advanced acceleration concepts for electron linear accelerators being pursued at SLAC is reviewed. This research includes experiments in laser acceleration, plasma wakefield acceleration, and mmwavelength RF driven accelerators.

  8. Electronic Universal Vote

    Directory of Open Access Journals (Sweden)

    Cristian USCATU

    2008-01-01

    Full Text Available In the days of informational society everything is going online. Most aspects of our lives have online components. Since democracy is a big issue, it could not escape this trend. Governments themselves are moving to the online environment for the purpose of improving their internal efficiency and their availability to the citizens, businesses and other parties interested. Since governments are the result of elections, elections have also been touched by the electronic fever. New electronic voting solutions arise and each one brings new debates with many arguments in their favor and against them. Accessibility and ease of use leads the arguments in favor of electronic voting over the internet, while fear of fraud is the main reason people are avoiding electronics and clinging on classic paper ballots.

  9. ORELA electron guns

    International Nuclear Information System (INIS)

    Christian, O.W.; Lewis, T.A.

    1981-09-01

    The most recent information concerning the production and performance of ORELA electron guns is presented. Included are descriptions of procedures for gun fabrication, cathode conditioning and high voltage processing. Highlights of the performance characteristics are also included

  10. Corrosion in Electronics

    DEFF Research Database (Denmark)

    Ambat, Rajan; Gudla, Helene Virginie Conseil; Verdingovas, Vadimas

    2017-01-01

    Electronic control units, power modules, and consumer electronics are used today in a wide variety of varying climatic conditions. Varying external climatic conditions of temperature and humidity can cause an uncontrolled local climate inside the device enclosure. Uncontrolled humidity together...... and high density packing combined with the use of several materials, which can undergo electrochemical corrosion in the presence of water film formed due to humidity exposure and bias conditions on the PCBA surface. This article provides a short review of the corrosion reliability issues of electronics due...... to the use of electronics under varying humidity conditions. Important PCBA aspects, which are fundamental to the corrosion cell formation under humid conditions, are discussed. Effect of hygroscopic residues from the process and service and their role in assisting water film build up and corrosion...

  11. Paper based electronics platform

    KAUST Repository

    Nassar, Joanna Mohammad; Sevilla, Galo Andres Torres; Hussain, Muhammad Mustafa

    2017-01-01

    A flexible and non-functionalized low cost paper-based electronic system platform fabricated from common paper, such as paper based sensors, and methods of producing paper based sensors, and methods of sensing using the paper based sensors

  12. Electronic personal dosemeters

    International Nuclear Information System (INIS)

    Marshall, T.O.; Bartlett, D.T.; Burgess, P.H.; Cranston, C.S.; Higginbottom, D.J.; Sutton, K.W.

    1990-01-01

    Personal dosimetry services approved by their national authorities for category A workers, invariably use passive dosemeters incorporating photographic film or thermoluminescent detectors. However, the performance characteristics of electronic dosemeters has improved substantially over the past decade to such an extent that in the opening lecture of the Solid State Dosimetry Conference at Oxford in 1986 the development of an electronic 'smart card' based on a silicon detector was briefly discussed. This idea has been taken up and at least one development programme is in progress aimed at the production of an electronic dosemeter suitable for use as a legal device. The more important performance requirements of personal dosemeters for this purpose are discussed and the earlier electronic dosemeter designs and the latest devices under development to meet this specification are compared. (author)

  13. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  14. Issues in Electronic Publishing.

    Science.gov (United States)

    Meadow, Charles T.

    1997-01-01

    Discusses issues related to electronic publishing. Topics include writing; reading; production, distribution, and commerce; copyright and ownership of intellectual property; archival storage; technical obsolescence; control of content; equality of access; and cultural changes. (Author/LRW)

  15. Modular Lego-Electronics

    KAUST Repository

    Shaikh, Sohail F.; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Khan, Sherjeel M.; Hussain, Muhammad Mustafa

    2017-01-01

    . Here, a generic manufacturable method of converting state-of-the-art complementary metal oxide semiconductor-based ICs into modular Lego-electronics is shown with unique geometry that is physically identifiable to ease manufacturing and enhance

  16. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  17. Electronics for guitarists

    CERN Document Server

    Dailey, Denton J

    2014-01-01

    Electronics for Guitarists focuses on analog circuitry, and is written for the guitarist interested in transistor and vacuum tube-based amplifiers. Topics include discrete transistors and diodes, classical filter circuits, and vacuum tube-based amplifiers.

  18. Nemo-3 calorimeter electronics

    International Nuclear Information System (INIS)

    Bernaudin, P.; Cheikali, C.; Lavigne, B.; Richard, A.; Lebris, J.

    2000-11-01

    The calorimeter electronics of the NEMO-3 double beta decay experiment fulfills three functions: -energy measurement of the electrons by measuring the charge of the pulses, - time measurement, - fast first level triggering. The electronics of the 1940 Scintillator-PM modules is implemented as 40 '9U x 400 mm VME' boards of up to 51 channels. For each channel the analog signals conditioning is implemented as one SMD daughter board. Each board performs 12 bit charge measurements with 0.35 pC charge resolution, 12 bit time measurements with 50 ps time resolution and a fast analog multiplicity level for triggering. The total handling and conversion time for all the channels is less than 100 μs. The electronics will be presented as well as the test system. (authors)

  19. Novel electron gas systems

    International Nuclear Information System (INIS)

    Senatore, G.; Rapisarda, F.; Conti, S.

    1998-01-01

    We review recent progress on the physics of electrons in the bilayered electron gas, relevant to coupled quantum wells in GaAs/AIGaAs heterostructures. First we focus on the phase diagram of a symmetric bilayer at T = B = 0, obtained by diffusion Monte Carlo (DMC) simulations. It is found that inter-layer correlations stabilize crystalline structures at intermediate inter-layer separation, while favoring a liquid phase at smaller distance. Also, the available DMC evidence is in contrast with the recently (Hartree-Fock) predicted total charge transfer (TCT), whereby all the electron spontaneously jump in one layer. In fact, one can show that such a TCT state is never stable in the ideal bilayer with no tunneling. We finally comment on ongoing DMC investigations on the electron-hole bilayer, where excitonic condensation is expected to take place. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  20. Improved electron transport layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution......; a method of preparing a zinc oxide electron transporting layer, which method comprises: i) coating a substrate with the coating ink of the present invention to form a film; ii) drying the film; and iii) heating the dry film to convert the zinc acetate substantially to ZnO; a method of preparing an organic...... photovoltaic device or an organic LED having a zinc oxide electron transport layer, the method comprising, in this order: a) providing a substrate bearing a first electrode layer; b) forming an electron transport layer according to the following method: i) coating a coating ink comprising an ink according...

  1. Magnetic electron scattering

    International Nuclear Information System (INIS)

    Peterson, G.A.

    1989-01-01

    We briefly review some of the motivations, early results, and techniques of magnetic elastic and inelastic electron-nucleus scattering. We then discuss recent results, especially those acquired at high momentum transfers. 50 refs., 19 figs

  2. Advances in electron dosimetry

    International Nuclear Information System (INIS)

    Harder, D.

    1980-04-01

    Starting from the two most important interactions of electrons with matter, energy loss and scattering, a review is given of a number of effects which are important in electron dosimetry. For determining the absorbed dose in a phantom by means of ionization chambers, imformation is required on the electron spectrum at the location of the measurement, on the stopping powers of different materials and on disturbances such as the displacement of the effective point of measurements from the centre of the chamber. By means of figures and photographs of electron traces in bubble chambers, the origin of the formation of the absorbed dose maximum in a phantom is explained. It is shown, how by multiple scattering, the similarity of dose distributions in different media can be explained and how by Monte-Carlo calculations absorbed dose distributions in the surroundings of inhomogeneities (e.g. cavities) in a phantom can be determined. (orig.) [de

  3. Electron gun for SSRF

    International Nuclear Information System (INIS)

    Sheng Shugang; Lin Guoqiang; Gu Qiang; Li Deming

    2003-01-01

    A 100 kV triode-electron-gun has been designed and manufactured for the Linac of Shanghai Synchrotron Radiation Facility (SSRF). In this paper the performance of the gun and some key components are described

  4. PREFACE: Spin Electronics

    Science.gov (United States)

    Dieny, B.; Sousa, R.; Prejbeanu, L.

    2007-04-01

    Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic

  5. ELECTRONIC BANKING AND ELECTRONIC COMMERCE IN SERBIA

    Directory of Open Access Journals (Sweden)

    Ivana B. Petrevska

    2014-10-01

    Full Text Available Nowadays, we may witness to dramatic and visible changes in our life environment. Business ambient for companies is different every day, and it is very hard to predict a direction of future changes. There is an environment characterized by sharp competition and increasing number of competitors, fast technological improvements and highly sophisticated and informed costumers. Technological process influences the humanity strongly, changing the way that people live, work and spend. Electronic commerce and electronic banking has become incontinent, and makes a great part of today's total transactions. There are an increasing number of companies that perform their business that way and make profit. Social networks are proven to be the least expensive way of information exchange, and they are present in almost every part of the world. The globalization has reached the most distant parts of the Earth. Every resistance to new technologies is dangerous and may lead to bankruptcy. Due to the EU expansion, Internet users are to be expected, and prosperity of the e-commerce business models at the same time. In Serbia, electronic commerce is present, but not as developed as in EU countries. E-commerce, however it might be successful throughout the world, it is somewhat slow in its growth in Serbia. The reasons are numerous, and main obstacles are the lack of trust, still limited usage of banking cards, avoiding of e-payments by older population etc. Also, the recent scandals over the misuse of personal data, and e-crime are discouraging factors for the growth of e-trade and ebanking. The younger generations are ever more ready to use e-commerce, since they are open to new technologies and do not have the defensive attitude towards it. E-commerce and e-banking has growing potential even among older population, if the society prevents them from fear and mistrust.

  6. Thermionics basic principles of electronics

    CERN Document Server

    Jenkins, J; Ashhurst, W

    2013-01-01

    Basic Principles of Electronics, Volume I : Thermionics serves as a textbook for students in physics. It focuses on thermionic devices. The book covers topics on electron dynamics, electron emission, and the themionic vacuum diode and triode. Power amplifiers, oscillators, and electronic measuring equipment are studied as well. The text will be of great use to physics and electronics students, and inventors.

  7. Low emittance thermionic electron guns

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1989-01-01

    The author discusses self-field effects and external field effects for electron guns. He also discusses designs of electron guns and their uses in electron cooling systems and as an injector for electrostatic free electron lasers. He closes by looking at electron guns for linear accelerators. 20 references, 3 figures

  8. A new stage of nuclear electronics-particle electronics

    International Nuclear Information System (INIS)

    Xi Deming

    1987-01-01

    The rapid development of high energy physics experiments has pushed the nuclear electronics to a new stage, i.e. the particle electronics. In this paper the background, main features and recent trends of the particle electronics are expounded

  9. Electron attachment cross sections obtained from electron attachment spectroscopy

    International Nuclear Information System (INIS)

    Popp, P.; Baumbach, J.I.; Leonhardt, J.W.; Mothes, S.

    1988-01-01

    Electron capture detectors have a high sensitivity for substances with high thermal electron attachment cross sections. The electron attachment spectroscopy makes it possible to change the mean electron energy in such a way that the maximum for dissociative electron attachment is reached. Thus, best operation modes of the detection system as well as significant dependencies of electron attachment coefficients are available. Cross sections for electron attachment as a function of the electron energy are obtained with the knowledge of electron energy distribution functions from Boltzmann equation analysis by a special computer code. A disadvantage of this electron attachment spectroscopy is the superposition of space charge effects due to the decrease of the electron drift velocity with increasing mean electron energy. These influences are discussed. (author)

  10. Auroal electron distribution function

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Dusenbery, P.B.; Thomas, B.J.; Arnoldy, R.L.

    1978-01-01

    The electron velocity distribution function is presented in the energy range 25 eV 8 cm/s (E=300 eV) are nearly isotropic in pitch angle throughout the flight. Upgoing electrons show almost no pitch angle dependence beyond 120 0 , and their fluxes decline smoothly as energy increases, with little or no evidence of a plateau. Preliminary results of numerical integrations, to study bulk properties and stability of the plasma are presented

  11. Mathematics for electronic technology

    CERN Document Server

    Howson, D P

    1975-01-01

    Mathematics for Electronic Technology is a nine-chapter book that begins with the elucidation of the introductory concepts related to use of mathematics in electronic engineering, including differentiation, integration, partial differentiation, infinite series, vectors, vector algebra, and surface, volume and line integrals. Subsequent chapters explore the determinants, differential equations, matrix analysis, complex variable, topography, graph theory, and numerical analysis used in this field. The use of Fourier method for harmonic analysis and the Laplace transform is also described. The ma

  12. Electricity electron measurement

    International Nuclear Information System (INIS)

    Kim, Sang Jin; Sung, Rak Jin

    1985-11-01

    This book deals with measurement of electricity and electron. It is divided into fourteen chapters, which depicts basic of electricity measurement, unit and standard, important electron circuit for measurement, instrument of electricity, impedance measurement, power and power amount measurement, frequency and time measurement, waveform measurement, record instrument and direct viewing instrument, super high frequency measurement, digital measurement on analog-digital convert, magnetic measurement on classification by principle of measurement, measurement of electricity application with principle sensors and systematization of measurement.

  13. Electron affinities: theoretical

    International Nuclear Information System (INIS)

    Kaufman, J.J.

    1976-01-01

    A brief description is given of the conceptual background and formalism of the various ab-initio and semi-ab-initio quantum computational techniques for calculating atomic and molecular electron affinities: Hartree--Fock--Roothaan SCF, configuration interaction (CI), multiconfiguration SCF (MC-SCF), Bethe--Goldstone, superposition of configurations (SOC), ab-initio effective core model potentials, Xα-MS, plus other less common methods. Illustrative and comparative examples of electron affinities calculated by these various methods are presented

  14. Electronics practice technology

    International Nuclear Information System (INIS)

    1995-01-01

    This book concentrates on electronic technology. It deals with kinds of terminal and mounting such as teflon terminal, steatite terminal, and harmonica terminal, small parts like connector, plug jack, vernier dial, and coupling, termination of wiring, kinds of switch and mounting, a condenser, fixed resistor, trance coil, loading of semiconductor, mounting of high input impedance circuit, mounting of electric power circuit, manufacturing of print substrate and practice of manufacturing for print substrate. This is one of series books on electronic technology.

  15. Electron-ion collisions

    International Nuclear Information System (INIS)

    Crandall, D.H.

    1982-01-01

    This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments

  16. Newnes electronics toolkit

    CERN Document Server

    Phillips, Geoff

    2013-01-01

    Newnes Electronics Toolkit brings together fundamental facts, concepts, and applications of electronic components and circuits, and presents them in a clear, concise, and unambiguous format, to provide a reference book for engineers. The book contains 10 chapters that discuss the following concepts: resistors, capacitors, inductors, semiconductors, circuit concepts, electromagnetic compatibility, sound, light, heat, and connections. The engineer's job does not end when the circuit diagram is completed; the design for the manufacturing process is just as important if volume production is to be

  17. Electronic states of myricetin

    DEFF Research Database (Denmark)

    Vojta, Danijela; Karlsen, Eva; Spanget-Larsen, Jens

    2017-01-01

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40000 – 20000 cm–1 were characterized with respect to their wavenumbers......, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p)....

  18. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  19. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  20. Weakly oval electron lense

    International Nuclear Information System (INIS)

    Daumenov, T.D.; Alizarovskaya, I.M.; Khizirova, M.A.

    2001-01-01

    The method of the weakly oval electrical field getting generated by the axially-symmetrical field is shown. Such system may be designed with help of the cylindric form coaxial electrodes with the built-in quadrupole duplet. The singularity of the indicated weakly oval lense consists of that it provides the conducting both mechanical and electronic adjustment. Such lense can be useful for elimination of the near-axis astigmatism in the electron-optical system

  1. Electronics 3 checkbook

    CERN Document Server

    Knight, S A; May, A J C

    2013-01-01

    Electronics 3 Checkbook provides a concise coverage of the theories and definitions of concepts in electronics. The book provides problems and worked examples to supplement fuller textbooks of the same subject. The coverage of the text includes decibel measurement, operational amplifiers, DA and AD converters, controlled rectifiers, triggering devices, optoelectronic devices, fiber optics, and power amplifiers. The text will be of great use to electrical engineering students who wish to enhance their understanding of the basics of mechanical and electrical science.

  2. Antifragile Electronic Warfare

    OpenAIRE

    Lichtman, Marc

    2014-01-01

    This letter introduces the concept of antifragile electronic warfare (EW), which we define as the ability to allow a communications link to improve performance due to the presence of a jammer. This concept should not be confused with jamming countermeasures (a.k.a. anti-jamming or electronic protection). Rather, antifragile EW can be thought of as the next step beyond simply avoiding or mitigating jamming. After introducing the concept we narrow down the subset of jammers this concept can be ...

  3. Electrical and electronic principles

    CERN Document Server

    Knight, SA

    1988-01-01

    Electrical and Electronic Principles, 3 focuses on the principles involved in electrical and electronic circuits, including impedance, inductance, capacitance, and resistance.The book first deals with circuit elements and theorems, D.C. transients, and the series circuits of alternating current. Discussions focus on inductance and resistance in series, resistance and capacitance in series, power factor, impedance, circuit magnification, equation of charge, discharge of a capacitor, transfer of power, and decibels and attenuation. The manuscript then examines the parallel circuits of alternatin

  4. Nuclear electronics laboratory manual

    International Nuclear Information System (INIS)

    1984-05-01

    The Nuclear Electronics Laboratory Manual is a joint product of several electronics experts who have been associated with IAEA activity in this field for many years. The manual does not include experiments of a basic nature, such as characteristics of different active electronics components. It starts by introducing small electronics blocks, employing one or more active components. The most demanding exercises instruct a student in the design and construction of complete circuits, as used in commercial nuclear instruments. It is expected that a student who completes all the experiments in the manual should be in a position to design nuclear electronics units and also to understand the functions of advanced commercial instruments which need to be repaired or maintained. The future tasks of nuclear electronics engineers will be increasingly oriented towards designing and building the interfaces between a nuclear experiment and a computer. The manual pays tribute to this development by introducing a number of experiments which illustrate the principles and the technology of interfacing

  5. Auroral electron energies

    International Nuclear Information System (INIS)

    McEwan, D.J.; Duncan, C.N.; Montalbetti, R.

    1981-01-01

    Auroral electron characteristic energies determined from ground-based photometer measurements of the ratio of 5577 A OI and 4278 A N 2 + emissions are compared with electron energies measured during two rocket flights into pulsating aurora. Electron spectra with Maxwellian energy distributions were observed in both flights with an increase in characteristic energy during each pulsation. During the first flight on February 15, 1980 values of E 0 ranging from 1.4 keV at pulsation minima to 1.8 keV at pulsation maxima were inferred from the 5577/4278 ratios, in good agreement with rocket measurements. During the second flight on February 23, direct electron energy measurements yielded E 0 values of 1.8 keV rising to 2.1 keV at pulsation maxima. The photometric ratio measurements in this case gave inferred E 0 values about 0.5 keV lower. This apparent discrepancy is considered due to cloud cover which impaired the absolute emission intensity measurements. It is concluded that the 5577/4278 ratio does yield a meaningful measure of the characteristic energy of incoming electrons. This ratio technique, when added to the more sensitive 6300/4278 ratio technique usable in stable auroras can now provide more complete monitoring of electron influx characteristics. (auth)

  6. Netiquette in Electronic Communication

    Directory of Open Access Journals (Sweden)

    Tomáš Kozík

    2014-06-01

    Full Text Available Electronic mail and electronic communications systems are considered significant and effective tools of communication. One of the most widespread electronic communication tools is e - mail communication. In order to avoid misinterpretation of the report on the side of the recipient, it is need to pay attention to the writing of e - mail messages as well as to their content. With the continuous expansion of the use of electronic communication there have gradually developed certain rules of etiquette in electronic communications. The existing rules of the propriety ones are expressed in the term " etiqutte " and are not automatically applied in the new communications environment - media. For electronic communication, the new rules of etiquette have been stabilised into a term NETIQUETTE. The word netiquette was created by combining words NET (net and ETIKETA (a set of rules of social behavior and habits. Netiquette constitutes the rules of the behavior of users on a network. Although the netiquette is merely "an unwritten set of rules", their not using can be understood as a type of disrespect. Analysis of knowledge of domestic and foreign sources as well as results of a survey confirmed the justification of paying attention to the education of individuals in NETIQUETTE, irrespective of the degree of education.

  7. HDTV versus electronic cinema

    Science.gov (United States)

    Tinker, Michael

    1998-12-01

    We are on the brink of transforming the movie theatre with electronic cinema. Technologies are converging to make true electronic cinema, with a 'film look,' possible for the first time. In order to realize the possibilities, we must leverage current technologies in video compression, electronic projection, digital storage, and digital networks. All these technologies have only recently improved sufficiently to make their use in the electronic cinema worthwhile. Video compression, such as MPEG-2, is designed to overcome the limitations of video, primarily limited bandwidth. As a result, although HDTV offers a serious challenge to film-based cinema, it falls short in a number of areas, such as color depth. Freed from the constraints of video transmission, and using the recently improved technologies available, electronic cinema can move beyond video; Although movies will have to be compressed for some time, what is needed is a concept of 'cinema compression,' rather than video compression. Electronic cinema will open up vast new possibilities for viewing experiences at the theater, while at the same time offering up the potential for new economies in the movie industry.

  8. Transformational III-V Electronics

    KAUST Repository

    Nour, Maha A.

    2014-01-01

    Flexible electronics using III-V materials for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. This thesis describes a complementary metal oxide semiconductor (CMOS

  9. Structural, electronic and optical properties of monoclinic Na2Ti3O7 from density functional theory calculations: A comparison with XRD and optical absorption measurements

    International Nuclear Information System (INIS)

    Araújo-Filho, Adailton A.; Silva, Fábio L.R.; Righi, Ariete; Silva, Mauricélio B. da; Silva, Bruno P.; Caetano, Ewerton W.S.; Freire, Valder N.

    2017-01-01

    Powder samples of bulk monoclinic sodium trititanate Na 2 Ti 3 O 7 were prepared carefully by solid state reaction, and its monoclinic P2 1 /m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as E g =3.51±0.01 eV employing UV–Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA, respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=−0.06 Å, Δb=0.02 Å, and Δc=−0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na 2 Ti 3 O 7 optical absorption and complex dielectric function. - Graphical abstract: Monoclinic sodium trititanate Na2Ti3O7 was characterized by experiment and dispersion-corrected DFT calculations. An indirect gap of 3.5 eV is predicted, with heavy electrons and anisotropic holes ruling its conductivity. - Highlights: • Monoclinic Na2Ti3O7 was characterized by experiment (XRD, SEM, UV–Vis spectroscopy). • DFT GGA+TS optimized geometry and optoelectronic properties were

  10. Beginning analog electronics through projects

    CERN Document Server

    Singmin, Andrew

    2001-01-01

    Analog electronics is the simplest way to start a fun, informative, learning program. Beginning Analog Electronics Through Projects, Second Edition was written with the needs of beginning hobbyists and students in mind. This revision of Andrew Singmin's popular Beginning Electronics Through Projects provides practical exercises, building techniques, and ideas for useful electronics projects. Additionally, it features new material on analog and digital electronics, and new projects for troubleshooting test equipment.Published in the tradition of Beginning Electronics Through Projects an

  11. Electron Accumulative Molecules.

    Science.gov (United States)

    Buades, Ana B; Sanchez Arderiu, Víctor; Olid-Britos, David; Viñas, Clara; Sillanpää, Reijo; Haukka, Matti; Fontrodona, Xavier; Paradinas, Markos; Ocal, Carmen; Teixidor, Francesc

    2018-02-28

    With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B-N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B-N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C 2 B 9 H 11 )(C 2 B 9 H 10 )-NC 5 H 4 -C 5 H 4 N-M'(C 2 B 9 H 11 )(C 2 B 9 H 10 )] (M = M' = Co, Fe and M = Co and M' = Fe) and semi(metallacarboranyl)viologen [3,3'-M(8-(NC 5 H 4 -C 5 H 4 N-1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )] (M = Co, Fe) electron cumulative molecules. These molecules are able to accept up to five electrons and to donate one in single electron steps at accessible potentials and in a reversible way. By targeted synthesis and corresponding electrochemical tests each electron transfer (ET) step has been assigned to specific fragments of the molecules. The molecules have been carefully characterized, and the electronic communication between both metal centers (when this situation applies) has been definitely observed through the coplanarity of both pyridine fragments. The structural characteristics of these molecules imply a low reorganization energy that is a necessary requirement for low energy ET processes. This makes them electronically comparable to fullerenes, but on their side, they have a wide range of possible solvents. The ET from one molecule to another has been clearly demonstrated as well as their self-organizing capacity. We consider that these molecules, thanks to their easy synthesis, ET, self-organizing capacity, wide range of solubility, and easy processability, can

  12. Electronic Submissions of Pesticide Applications

    Science.gov (United States)

    Applications for pesticide registration can be submitted electronically, including forms, studies, and draft product labeling. Applicants need not submit multiple electronic copies of any pieces of their applications.

  13. Electron beams and applications

    International Nuclear Information System (INIS)

    Haouat, G.; Couillaud, C.

    1998-01-01

    Studies of the physical properties of the ELSA-linac electron beam are presented. They include measurements of the characteristic beam parameter and analyzes of the beam transport using simulation codes. The aim of these studies is to determine the best conditions for production of intense and very short electron bunches and to optimize the transport of space-charge dominated beams. Precise knowledge of the transport dynamics allows to produce beams with the required characteristics for light production in Free-Electron Laser (FEL), and to give a good description of energy-transfer phenomena between electrons and photons in the wriggler. The particular features of ELSA authorize studies of high-intensity, high-brightness beam properties, especially the halo surrounding the dense core of the electron bunches, which is formed by the space charge effects. It is also shown that the ELSA facility is well suited for the fabrication of very short γ and X-rays sources for applied research in nuclear and plasma physics, or for time response studies of fast detectors. (author)

  14. Auroral electron time dispersion

    International Nuclear Information System (INIS)

    Kletzing, C.A.

    1989-01-01

    A sounding rocket flight was launched from Greenland in 1985 to study high latitude, early morning auroral physics. The payload was instrumented with electron and ion detectors, AC and DC electric field experiments, a plasma density experiment, and a magnetometer to measure the ambient field. The rocket was launched during disturbed conditions, when the polar cap was in a contracted state with visible aurora overhead. The electron data contained numerous signatures indicative of time-of-flight energy dispersion characterized by a coherent structure in which lower energy electrons arrived at the rocket after higher energy electrons. A model was constructed to explain this phenomena by the sudden application of a region of parallel electric field along a length of magnetic field line above the rocket. The model incorporates detector response and uses an altitudinal density profile based on auroral zone measurements. Three types of potential structures were tried: linear, quadratic and cubic. Of the three it was found that the cubic (electric field growing in a quadratic manner moving up the field line) produced the best fit to the data. The potential region was found to be approximately 1-2 R e in extent with the lower edge 3000-4000 km away from the rocket. The background electron temperature in the model which produced the best fit to the data was of the order of 15 eV

  15. Electron irradiation of zeolites

    International Nuclear Information System (INIS)

    Wang, S.X.; Wang, L.M.; Ewing, R.C.

    1999-01-01

    Three different zeolites (analcime, natrolite, and zeolite-Y) were irradiated with 200 keV and 400 keV electrons. All zeolites amorphized under a relatively low electron fluence. The transformation from the crystalline-to-amorphous state was continuous and homogeneous. The electron fluences for amorphization of the three zeolites at room temperature were: 7.0 x 10 19 e - /cm 2 (analcime), 1.8 x 10 20 e - /cm 2 (natrolite), and 3.4 x 10 20 e - /cm 2 (zeolite-Y). The different susceptibilities to amorphization are attributed to the different channel sizes in the structures which are the pathways for the release of water molecules and Na + . Natrolite formed bubbles under electron irradiation, even before complete amorphization. Analcime formed bubbles after amorphization. Zeolite-Y did not form bubbles under irradiation. The differences in bubble formation are attributed to the different channel sizes of the three zeolites. The amorphization dose was also measured at different temperatures. An inverse temperature dependence of amorphization dose was observed for all three zeolites: electron dose for amorphization decreased with increasing temperature. This unique temperature effect is attributed to the fact that zeolites are thermally unstable. A semi-empirical model was derived to describe the temperature effect of amorphization in these zeolites

  16. Politics Under Electronic Simultaneity

    Directory of Open Access Journals (Sweden)

    Valery P. Terin

    2014-01-01

    Full Text Available In contradistinction to the book and the other typographic products, the electronic media operates on a 24-hour-a-day basis evoking simultaneity as the guiding mode of perception and thinking for all those under its influence. The discovery of this fact manifested itself in the formation and development of the managerial technologies operating by means of the electronic information environment and following the principle of simultaneity in the first place. Thus, at the end of the 1960s already the election campaigns in the U.S.A. began to operate on the basis of the final cause as the guiding principle of the country's mass consciousness motivating to carry out each particular event as if already rejoicing at the victory. With this in mind, there emerged a problem of applying this approach with its enormous managerial potential elsewhere. To add, simultaneity as a norm of perception and thinking turned out to be increasingly important with the advent of the electrical telegraph and the press relying on its short disconnected messages instantaneously arriving from all parts of the world. All the other media, which emerged in the wake of this development, has served to fortify this mode of thought as governing in the electronic information environment. The potential of the electronically operating global managerial technologies is quickly growing. The article also deals with the information overload and pattern recognition problem understood in managerial terms as well as mythologization and demythologization processes as they are necessitated by the electronic media coverage worldwide.

  17. Reversibly Bistable Flexible Electronics

    KAUST Repository

    Alfaraj, Nasir

    2015-05-01

    Introducing the notion of transformational silicon electronics has paved the way for integrating various applications with silicon-based, modern, high-performance electronic circuits that are mechanically flexible and optically semitransparent. While maintaining large-scale production and prototyping rapidity, this flexible and translucent scheme demonstrates the potential to transform conventionally stiff electronic devices into thin and foldable ones without compromising long-term performance and reliability. In this work, we report on the fabrication and characterization of reversibly bistable flexible electronic switches that utilize flexible n-channel metal-oxide-semiconductor field-effect transistors. The transistors are fabricated initially on rigid (100) silicon substrates before they are peeled off. They can be used to control flexible batches of light-emitting diodes, demonstrating both the relative ease of scaling at minimum cost and maximum reliability and the feasibility of integration. The peeled-off silicon fabric is about 25 µm thick. The fabricated devices are transferred to a reversibly bistable flexible platform through which, for example, a flexible smartphone can be wrapped around a user’s wrist and can also be set back to its original mechanical position. Buckling and cyclic bending of such host platforms brings a completely new dimension to the development of flexible electronics, especially rollable displays.

  18. Theory of runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, H [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    This paper treats the problem of electrons moving through an infinite gas of positive ions under the influence of a static uniform electric field of arbitrary strength. In evaluating the electrical conductivity of such a gas the conventional treatment involves a perturbation solution of the time-independent Boltzmann equation, and results in the well-known (temperature){sup 3/2} law. Two assumptions are basic to these treatments: 1) that a steady state electron velocity distribution is attained several mean-free collision times after the electric field is applied, and 2) that the terminal electron drift velocity is small compared to the average random electron speed. Both assumptions are avoided in this paper. In the next section the problem is formulated starting with the Boltzmann equation and a review of approximate analytic solutions appropriate to the weak and strong electric field cases is presented. We then describe a time-dependent numerical solution to the Boltzmann equation and compare these results with the approximate solutions. All of these treatments lead to the conclusion that this problem does not admit a time-independent solution. Because of the strong energy dependence of the Rutherford scattering law, the electron drift velocity is not bounded by a terminal value, rather it grows monotonically with time. This is the so-called runaway effect predicted by Giovanelli. Collective effects, or plasma oscillations, are ignored in this work, although these undoubtedly play an important role in the conduction of electricity through the plasma.

  19. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  20. Electron guns for accelerators

    International Nuclear Information System (INIS)

    Rangarajan, L.M.; Mahadevan, S.; Ramamurthi, S.S.

    1995-01-01

    The high voltage, high current electron guns developed elsewhere for Linacs are based on cathode pulsing with direct emitting cathodes. Our grid pulsed triode gun employs indirect emitting cathode pellet under electron bombardment or a direct cathode emitter. Electron beam from the gun is injected to the accelerator guide at 40 kV and pulse duration is 2.8μsec. The gun is limited to axially symmetric geometry and electron optical design is optimized by computer programming. The gun with a water cooled Faraday cup is connected to a vacuum system comprising of a sputter ion pump and sorption pump. Working pressure is 1x10 -6 Pa. Gun is designed to be baked as an assembly at temperatures of 400 degC while vacuum processing. Materials are therefore restricted to refractory metals, SS, OFHC copper and all the electrodes are housed inside a ceramic tube. Lower Z graphite is used as a base material of Faraday cup. Grid is non-intercepting modulator anode, a new feature introduced, as compared to meshed grid system by others. CAT gun delivers 160 mA current pulses at 40 kV and its working characteristics such as perveance, emittance and beam radius compare well with SLAC and Hermosa guns. The above guns can be used for electron beam machines such as medical Linacs, industrial accelerators and EB welding equipment. (author). 2 refs., 2 figs